Please use this identifier to cite or link to this item: http://localhost:8080/xmlui/handle/123456789/2165
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBelasla, Yasmine-
dc.date.accessioned2025-02-24T08:37:39Z-
dc.date.available2025-02-24T08:37:39Z-
dc.date.issued2024-
dc.identifier.urihttp://localhost:8080/xmlui/handle/123456789/2165-
dc.descriptionMasteren_US
dc.description.abstractThe evolution of climate conditions and their impact on water resources present new challenges for the management of hydraulic infrastructures, especially wastewater networks. In this context, precipitation forecasting becomes crucial. This study explores the application of Long Short-Term Memory (LSTM) neural networks to predict rainfall over a period of 120 months. The goal is to enhance the anticipation of extreme rainfall events and improve the planning of sewage systems. The results demonstrate the effectiveness of the LSTM model in predicting hydrological time series with a good fit between real and predicted valuesen_US
dc.language.isofren_US
dc.subjectPrecipitation, Prediction, LSTM neural networks, Time series, Water resources, Sanitation networksen_US
dc.titleContribution à la prédiction des précipitations par l'apprentissage automatique (machine learning)en_US
dc.typeThesisen_US
Appears in Collections:Conception des Systèmes d'Assainissement

Files in This Item:
File Description SizeFormat 
6-0043-24.pdf1,67 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.