Higher National School of Hydraulic The Library

Digital Repository of ENSH

المدرسة الوطنية العليا للري المكتبة المستودع الرقمي للمدرسة العليا للري

The title (العنوان):

Etude de diagnostic et réhabilitation du réseau D'A.E.P de la zone haute de la ville de Bordj Menaeil (w. Boumerdes).

The paper document Shelf mark (الشفرة) : 1-0001-12

APA Citation (توثيق APA):

Zeribit, Abdelhamid Lazhar (2012). Etude de diagnostic et réhabilitation du réseau D'A.E.P de la zone haute de la ville de Bordj Menaeil (w. Boumerdes)[Mem Ing, ENSH].

The digital repository of the Higher National School for Hydraulics "Digital Repository of ENSH" is a platform for valuing the scientific production of the school's teachers and researchers.

Digital Repository of ENSH aims to limit scientific production, whether published or unpublished (theses, pedagogical publications, periodical articles, books...) and broadcasting it online.

Digital Repository of ENSH is built on the open software platform and is managed by the Library of the National Higher School for Hydraulics. المستودع الرقمي للمدرسة الوطنية العليا للري هو منصة خاصة بتثمين الإنتاج العلمي لأساتذة و باحثي المدرسة.

يهدف المستودع الرقمي للمدرسة إلى حصر الإنتاج العلمي سواء كان منشورا أو غير منشور (أطروحات،مطبوعات بيداغوجية، مقالات الدوريات، كتب....) و بثه على الخط.

المستودع الرقمي للمدرسة مبني على المنصة المفتوحة و يتم إدارته من طرف مديرية المكتبة للمدرسة العليا للري.

كل الحقوق محفوظة للمدرسة الوطنية العليا للري.

REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE

MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE

ECOLE NATIONALE SUPERIEURE D'HYDRAULIQUE-ARBAOUI ABDELLAH

DEPARTEMENT GENIE DE L'EAU

MEMOIRE DE FIN D'ETUDES

Pour l'obtention du diplôme d'Ingénieur d'Etat en Hydraulique

Option: Conception des systèmes d'Alimentation en Eau Potable

THEME:

ETUDE DE DIAGNOSTIC ET REHABILITATION DU RESEAU D'AEP DE LA ZONE HAUTE DE LA VILLE DE BORDJ MENAEIL (W.BOUMERDAS)

Présenté par :

M^r: **ZERIBIT ABDELHAMID LAZHAR**

DEVANT LES MEMBRES DU JURY

Nom et Prénom	Grade	Qualité
M ^r O.KHODJET-KESBA	M C.A	Président
M ^r Y.DERNOUNI	M A.A	Examinateur
M ^{me} L.TAFAT	M A.A	Examinatrice
M ^r R.KERID	M A.B	Examinateur
M ^r M.BELALI	M A.B	Examinateur
M ^{me} M.KAHLERRAS	M A.B	Promotrice

Je dédie ce modeste travail en signe de reconnaissances et de respect :

A ma très chère mère et mon père

A ma grande mère

A ma chère tante

A Toutes mes sœurs

A celui qui ma encouragé tout le temps : Ali et Samir

Tous mes amis :Talal, Mohamed, Issa, Hamada, Imade, Amine, moustapha, Yousef.

A notre Algérie

Abdelhamid Juillet-2012

Je remercie tout d'abord Dieu le tout puissant de m'avoir donnée la chance et le courage pour réaliser ce travail.

Je remercie fortement ma promotrice Mme KAHLERRAS d'avoir accepté de m'encadrer lors du présent travail et les précieux conseils qu'elle a bien voulu prodiquer pour cibler les aspects traités dans ce rapport technique.

Aux membres de jury, qui ont bien voulu évaluer ce travail.

Aux enseignants de l'ENSH, qui ont contribue a ma formation de près ou de loin.

A tous mes amis de l'ENSH.

ملخص:

هذه الدراسة مكنتنا من إعطاء بعض الحلول من اجل تحسين خدمة التزويد بالمياه الصالحة للشرب على مستوى الشبكة في الوقت الحالي و المستقبل.

Résumé:

Notre étude consiste à établir un diagnostic et réhabilitation du réseau d'alimentation en eau potable de la zone haute de la ville de Bordj Menaeil, c'est à dire la détermination des défaillances sur le réseau d'AEP de la ville étudiée.

Pour mieux visualiser le comportement hydraulique du réseau existant, nous avons utilisé le logiciel de modulation EPANET.

Cette vérification nous a permis de donner un certains nombres de modifications et recommandations pour améliorer l'alimentation en eau potable de la ville, que ce soit à l'état actuel ou futur.

Abstract:

Our study consists in establishing a diagnosis of the system of drinking water supply of the town of Bordj Menaeil through, the determination of the existing problems in the distributing water network.

In order to recognize the characteristic of the network we have used the EPANET program.

This study allowed us to give some solutions to improve the service of providing drinking water through this network in the present time and in the future.

SOMMAIRE

INTRODUCTION GENERALE	1
CHAPITRE I : PRESENTATION DE LA ZONE	C D'ETUDE.
Introduction	2
I. Présentation générale de la ville de Bordj Menaiel	2
I.1.Situation géographique	2
I.2.Situation topographique	2
I.3. Situation climatologique	3
I.3.1. Le climat	3
I.3.2. Les températures	3
I.3.3.Les vents	3
I.3.4.Séismicité	3
I.4. Cadre de l'étude	4
I.5. Présentation hydraulique de la situation actuelle	4
I.5.1.Resource en eau	4
a)forages	4
b) Transfert SPET	6
I.5.2. Ouvrages du stockage	6
I.5.3. Réseau de distribution	9
I.5.4.Les adductions	12
A). Adduction des eaux souterraine	12
B). Adduction des eaux superficielles	15
B).1. Station de pompage –R 1000m ³	15
B). 2. Station de pompage –R2 X 1000m ³	15
Conclusion	16

CHAPITRE II: CALCUL DES BESOINS

Introduction	17
II-1-Evaluation démographique	17
II-1-1-Population	17
II-1-2-Estimation de la population	17
II-2-Evaluation des besoins	18
II-2-1-Besoin domestique	19
II-2-2-Calcul des besoins d'équipements	20
II-2-3-Calcul des besoins totaux (Q _{moyj})	20
II-3-Variation des débits de consommation dans le temps	21
II-4- Coefficient d'irrégularité	21
II-4-1- Coefficient d'irrégularité maximale journalière (Kmax,j)	21
II-4-2- Coefficient d'irrégularité minimale (Kmin j)	22
II-4-3- Coefficient maximal horaire (K _{max,h})	22
II-4-4- Coefficient minimal horaire (Kmin, h)	22
II -5- Détermination des débits journaliers	23
II -5-1- Consommation maximale journalière (Q _{max,j})	23
II -5-2- Consommation minimale journalière (Qmin j)	24
II-6- Détermination des débits horaires	24
II-6-1- Débit moyen horaire	25
II-6-2- Détermination du débit maximum horaire	25
II -7- Evaluation de la consommation horaire en fonction du nombre d'habitant	25
II-8 Production	30
II-8-1-Bilan de comparaison (production-Besoin)	30
Conclusion	31

CHAPITRE III: LES RESERVOIRS D'ALIMENTATION

Introduction	32
III -1-Rôles des Réservoirs	32
III -2-Emplacement des réservoirs	32
III-3-Principe de fonctionnement	33
III-4-Classification des réservoirs	33
III-4-1-Types de réservoirs	33
III-4-2-Les facteurs interviennent dans la détermination du type de réservoir	33
III-4-3- Les critères les plus souvent retenus pour le choix du type de réservoir	33
III-4-4- Les formes des réservoirs les plus utilisées	34
III-5- Equipements des réservoirs	34
III-5-1-conduite d'arrivée ou d'alimentation	35
III-5-2-Conduite de départ ou de distribution	35
III-5-3-Conduite de trop-plein.	36
III-5-4-Conduite de vidange.	36
III-5-5-Conduite by-pass.	36
III-5-6-Système de matérialisation de la réserve d'incendie	37
III-6- Capacités des réservoirs	37
III-6-1-Méthode graphique	38
III-6-2- Méthode analytique	39
III-7-Analyse de la capacité de stockage	40
III -7-1- vérification de la capacité de stockage futur	41
Conclusion	42
Chapitre IV: FONCTIONNEMENT ET SIMULATION DU RESI EXISTANT	EAU
Introduction	43
IV -1-Calcul du réseau de distribution	43

IV -1-1-Détermination des débits	43
IV -1-1-Cas de pointe	43
a)Débit route	43
b) Débit spécifique	44
c) Calcul du Débit route pour chaque tronçon	44
d) Calcul du Débit nodal	44
IV -1-1-2-Cas de pointe + incendie	49
IV -2-Résultat de la simulation.	50
IV -2-1-Cas de pointe	50
a)Résultat de la première simulation (zone H')	50
b) Résultat de la deuxième simulation (zone H)	52
IV -2-2- Cas de pointe + incendie.	55
a)Résultat de la première simulation (zone H')	55
b) Résultat de la deuxième simulation (zone H)	55
IV - 4-Interprétation des résultats de la simulation	55
Conclusion.	56
CHAPITRE V: RENOVATION DU RESEAU	
Introduction	57
V-1-Choix du matériau des conduites.	57
V-1-1-Tuyaux en PEHD.	57
V-2- Calcul hydraulique du réseau de distribution pour l'horizon 2042	58
V-2-1- Détermination des débits	58
V-2-1-1-Cas de pointe	58
a) Débit route	58
b) Débit spécifique	58
V-2-1-1-Cas de pointe+incendie	63

V-3- Résultats de la simulation hydraulique du réseau rénove	63
V-3-1- Cas de pointe	63
V-3- 2-Cas de pointe + incendie	68
V-4-Les nouveaux paramètres hydrauliques âpres l'installation des deux réc	ducteurs de
Pression	68
V- 4-1-Cas de pointe	68
V- 4-2Cas de pointe + incendie	71
Conclusion.	76
CHAPITRE VI: PROTECTION DES CONDUITE CONTI DE BELIER	RE LE COUP
Introduction	77
VI-1- Phénomène du coup de bélier.	77
VI-1-1- Définition	77
VI-1-2- Causes du coup de bélier	78
VI-1-3- Les risques dus aux coups de bélier	78
VI-1-3-1- Fortes pressions	78
VI-1-3-2- Pressions négatives	78
VI-1-3-3- Fatigue de la conduite	79
VI-2- Analyse physique du phénomène du coup de bélier	79
VI-3- Equipements de protection	80
VI-3-1- Soupapes de décharge	80
VI-3-1-1- Avantage et inconvénient d'une soupape de décharge	81
VI -3-2-Vanne à fermeture lente	81
VI-3-3- cheminées d'équilibre	81
VI-3-3- 1-Domaine d'application.	82
VI -3-4-Les réservoirs d'air	83

VI-3-4-1-Avantage et inconvénient d'un réservoir d'air	83
VI-3-5-Les volants d'inertie	85
VI-3-5-1- Avantage et inconvénient d'un réservoir d'air	85
VI-4- Exemple de calcul d'un moyen de protection anti bélier	85
VI-4-1- Calcul des réservoirs d'air	85
VI-4-1-1- Détails du réservoir d'air	88
VI-4-1-2- Installation du réservoir d'air	89
Conclusion	89
CHAPITRE VII: ORGANISATION DE CHANTI Introduction	
VII -1- Implantation du tracé des tranchées sur le terrain	90
VII-1-1-Matérialisation	90
VII-1-2 - Nivellement	90
VII-2 - Excavation des tranchées	90
VII-2-1- La profondeur (H tr)	91
VII-2-2- Largueur de la tranchée	92
VII-2-3- Choix du coefficient du talus	92
VII-2-4- Distance de la mise du cavalier	92
VII-2-4-1- Section transversale de la tranchée (S tr)	92
VII-2-4-2 Section du cavalier (S c)	92
VII-2-4-3- hauteur du cavalier (H c)	93
VII-2-4-4- Distance de la mise du cavalier (A)	93
VII-2-5- Choix de l'excavateur et le procédé d'excavation	94
VII-2-5-1- Pelle équipée en rétro	94
VII-2-5-2-Pelle équipée en butée	94

VII-2-5-3-Rendement d'exploitation de la pelle choisie	95
VII-2-5-4- La duré d'excavation	96
VII-2-5-5- Choix du bulldozer	96
VII-2-6- Aménagement du lit de pose des conduites	97
VII-3- Pose de conduite	98
VII-4- Epreuve de joint et de la canalisation	98
VII-5- Remblaiement de la tranchée	99
Conclusion	99
CONCLUSION GENERALE	100

LISTE DES TABLEAUX

Tableau I-1:La précipitation mensuelle de la ville de Bordj Menaeil	3
Tableau I-2: Récapitulation des caractéristiques des forages	5
Tableau I-3: Les zones alimentées par les ouvrages de stockage	6
Tableau I-4: caractéristique et état de réservoirs R1000m³ du chef lieu	7
Tableau I-5 : caractéristique et état de réservoirs R2x 1000m³ du coté Est	8
Tableau I-6: Les caractéristiques des différents tronçons du réseau existant	
(Chef lieu alimentée à partir de R1000 m³ (zone H'))	10
Tableau I-7: Les caractéristiques des différents tronçons du réseau existant	
(Coté Est alimentée à partir de R2x1000 m³ (zone H))	11
Tableau I-8 : Récapitulation des caractéristiques d'adduction eaux souterraine	13
Tableau I-9: Récapitulation des caractéristiques d'adduction	
Station de pompage –R 1000m ³	15
Tableau I-10 : Récapitulation des caractéristiques d'adduction Station de pompage	
R2 X 1000m ³	16
Tableau I-11: Récapitulation des caractéristiques d'adduction	
Station depompageR2X1000m ³	16
Tableau II-1 : La population de zone haute pour différents horizons	18
Tableau II-2: Les besoin domestique pour différents horizons	
Tableau II-3: Débit moyen des différents consommateurs.	20
Tableau II-4: Débits moyen journalières des différents horizons.	
Tableau II -5 : β_{max} en fonction du nombre d'habitants	22
Tableau II-6 : β_{min} en fonction du nombre d'habitants	23
Tableau II-7: débits maximums journalières des différents horizons	24
Tableau II-8 : débits minimums journalières des différents horizons	24
Tableau II-9: Variation des débits horaires (2012)	26
Tableau II-10 : Variation des débits horaires (2042)	28
Tableau II-11: Production pour la zone haute à partir de la station de pompage	30
Tableau II-12 : Bilan de comparaison.	30
Tableau III-1 : Analyse de la capacité de stockage.	40
Tableau III-2: bilan besoin- stockage	41
Tableau IV-1 : Calcul des débits nodaux	
(Zone haute alimentée à partir de R1000m³ (zone H'))	45
Tableau IV-2 : Calcul des débits nodaux	
(Zone haute alimentée à partir de R2x1000m³ (zone H))	
Tableau IV-3 : Vitesse et perte de charge dans le réseau existant.	
Tableau IV-4 : Charges et pressions dans le réseau existant.	51
Tableau IV-5 : Vitesse et perte de charge dans le réseau existant.	
Tableau IV-6 : Charges et pressions dans le réseau existant	
Tableau V -1 : calcul des débits nodaux	
Tableau V-2 résultats de la simulation sur les conduites	
Tableau V-3 : charges et pressions dans le réseau rénové	66

Tableau V-4: résultats de la simulation sur les nœuds	69
Tableau VI-1: Les caractéristiques de la conduite de refoulement.	87
Tableau VI-2: Calcul de célérité d'onde de la conduite de refoulent.	88
Tableau VI-3: Calcul de volume de réservoir d'air	88
Tableau VII-1: Choix du coefficient du talus.	.92
Tableau VII-2: Coefficient de foisonnement.	93
Tableau VII-3 : Volume de déblai total et les paramètres pour la détermination de la Pelle	295
Tableau VII-4 Capacité du godet en fonction du volume de terrassement	.95
Tableau VII-5 Choix du bulldozer en fonction de la capacité du godet Tableau VII-6: Volume total du lit de sable	

LISTE DES FIGURES

Figure I-1 : Schéma général d'un système d'AEP à réservoir de tête	9
Figure I-2 : Schéma d'adduction des eaux souterraine	14
Figure I-3 : Schéma d'adduction station de pompage –R 1000m ³	15
Figure I-4 : Schéma d'adduction station de pompage –R2 X 1000m ³	
Figure II-1: prévision de la population de la zone haute.	
Figure II-2 : Les besoin journalières domestiques en fonction de l'horizon	19
Figure II-3: Les débits moyens journaliers en fonction de l'horizon	
Figure II-4: Graphique de consommation totale	
Figure II-5 : Courbe intégrale	
Figure II-6: Graphique de consommation totale.	
Figure II-7 : Courbe intégrale	29
Figure II-8: Comparaison besoin –production	
Figure III-1 : Conduite d'arrivée par le bas	
Figure III-2 : Conduite de départ.	
Figure III-3: Conduite by-pass.	
Figure III.4: Système de matérialisation de la réserve d'incendie	
Figure III-5: Graphique de la méthode graphique	
Figure III-6: Comparaison besoin –stockage.	
Figure V-1: Etat des tronçons du réseau rénove avec deux réducteurs de pression RP1	
Et RP2 (cas de pointe)	72
Figure V-2 : Etat des nœuds du réseau rénove avec deux réducteurs de pression RP1	
Et RP2 (cas de pointe)	73
Figure V-3 : Etat des tronçons du réseau rénove avec deux réducteurs de pressionRP1	
Et RP2 (cas d'incendie)	74
Figure V-4 : Etat des nœuds du réseau rénove avec deux réducteurs de pression RP1 et	
RP2 (cas d'incendie)	75
Figure VI-3: Soupape de décharge	81
Figure VI-2: Cheminée d'équilibre sur une conduite de refoulement.	83
Figure VI-3-Principe de disposition du réservoir d'air anti bélier	84
Figure VI-4 : Variation du volume d'aire au cours des phases de fonctionnement	
du réservoir.	84
Figure VI-5: Planche d'encombrement des réservoirs d'air Hydrofort CHARLATTE	
Figure VI-6: installation du réservoir d'air.	89
Figure VII-1: schéma explicatif des profondeurs	
Figure VII-2: Pelle équipée en rétro.	
Figure VII-3 bulldozer	
Figure VII-4 : pose de la conduite dans la tranchée	99

LISTE DES PLANCHES

Planche N° 1 : Plan de masse avec réseau existant.

Planche N° 2 : Profils en long du réseau de la zone H'.

Planche N° 3 : Profils en long du réseau de la zone H.

Planche Nº 4 : Plan de masse avec réseau rénove.

Planche N° 5 : Profils en long du réseau rénove.

INTRODUCTION GENERALE

Les systèmes de distribution d'eau potable appartiennent, au même titre que les autres réseaux techniques, à un environnement urbain et péri-urbain dans lequel ils agissent et inter-agissent avec les autres réseaux. La gestion technique de tels réseaux a pour principal objectif de livrer aux consommateurs une eau répondant aux normes de qualité, à un pris acceptable et avec une continuité de service en défaut. De tels objectifs nécessitent une connaissance précise de réseau, de ces infrastructures, de son fonctionnement hydraulique et passe par un entretien suivi et régulier du réseau. Or, les exploitants des réseaux d'AEP (alimentation en eau potable) se trouvent généralement confrontés à la difficulté de connaître avec précision leur réseau compte tenue de sa diversité (généralement de multiples tranches de travaux réalisées selon des techniques différentes et sur plusieurs années) de son étendue et des difficultés d'accès.

Le réseau d'AEP constitue un patrimoine qui vieillit et qu'il est nécessaire de renouveler quand il a atteint un seuil de vétusté limite. Ce seuil limite dépond de nombreux paramètres que ce soit environnementaux, techniques, de gestion, économiques ainsi que de la politique des gestionnaires. Pour qu'une politique de renouvellement soit économiquement viable, il faut qu'elle soit liée le plus directement possible au vieillissement qui engendre des dysfonctionnements venant compliquer la tache du gestionnaire.

Les questions récurrentes que le gestionnaire du réseau d'AEP de notre zone d'étude se pose, concernant le renouvellement de réseau sont les suivantes : «devons-nous renouveler les canalisations?, lesquelles ?, quand est-ce nous devons? ». Au cours de notre présent travail nous allons porter des solutions tangibles pour l'état actuel du réseau en répondant d'une manière rationnel aux questions posées précédemment et prévoir un horizon de dimensionnement à long terme.

CHAPITRE I

PRESENTATION DE LA ZONE D'ETUDE

Introduction:

L'objectif de ce travail est de recenser tous les problèmes de l'état actuel du système d'alimentation en eau potable de la zone haute de la ville de Bordj Menaeil afin d'effectuer une nouvelle conception de ce dernier, vu son insuffisances, sa vétusté, pour répondu quantitativement et qualitativement aux besoins des agglomérations.

I-Présentation générale de la ville de Bordj Menaiel :

I-1-Situation géographique :

La ville de Bordj Menaiel se situe à 25 Km de l'Est de la wilaya de Boumerdes, elle s'étend sur une superficie de 850 ha (source PDAU).

Elle est limitée par :

- Au Nord par la commune de Djinet;
- Au Nord Est par la commune d'Ouled Aissa;
- A l'Est par la commune de Naciria ;
- Au Sud par la commune de Timezrit;
- A l'Ouest par les communes Legata, Si Mustapha et Isser.

Cette situation a permit à la ville de se développer rapidement en drainant une population rurale importante et par voix de conséquence un développement des équipements socioéducatifs. Ainsi l'apport de ressource hydraulique et la mise en place des systèmes d'adduction et de distribution doivent répondre au développement de cette ville.

I-2-Situation topographique:

La ville de bordj Menaeil située en partie sur la plaine du bas Isser au nord, elle s'étend vers le sud sur un piémont. Ainsi elle progresse de la cote min de 20 m à la cote de 80 m, les pentes sont irrégulières et de l'ordre de 2 à 12 %.

Cette situation topographique imposera certainement une alimentation en eau potable à partir d'un réseau étagé (02 à 03 étages).

Le réseau alimente deux zones à savoir :

- Zone basse (première étage) de (0 a 45) m;
- Zone haute (deuxième étage) de (55 a 110) m.

I-3 - Situation climatologique:

I-3-1- Le climat :

Le climat est de type méditerranéen à tendance humide à deux saisons contractées s'étendant sur un semestre chacune :

- L'hiver s'étend du moins d'octobre à avril ;
- L'été s'étend du moins de mai au moins de septembre.

L'irrégularité des pluies est caractéristique du climat méditerrané saisonnier, annuel et interannuel. La station de Bordj Menaeil donne les précipitations suivantes :

Tableau I-1:La précipitation mensuelle de la ville de Bordj Menaeil

Mois	Sept	Oct	Nov	Déc	Jan	Févr	Mars	Avril	Mai	Juin	Juin	Aout
P(mm)	35	72	125	143	130	91	87	59	52	18	1	3

I-3-2- Les températures :

- La température moyenne annuelle est de 17.5 0C;
- La température moyenne annuelle des mois les plus chaudes est de 22 ⁰C (d'avril à septembre);
- La température moyenne annuelle des mois les plus froids est de 13.5 °C (octobre à mars).

I-3-3-Les vents:

Les vents dominants sont les vents du sud ouest (27%).ceux du nord (20%) et au Nord-est (18%), en hiver rassemblant (63%) du total.

I-3-4-Séismicité:

Le nord de l'Algérie est associe a une activité sismique superficielle modérée, liée aux mouvements des plaques parasismiques algériennes, le territoire algérien est divise en quatre zone sismiques :

- Zone O : sismicité négligeable ;
- Zone I : sismicité faible ;
- Zone II : sismicité moyenne ;
- Zone III: sismicité forte.

La commune de Bordj Menaeil est classée en Zone III (sismicité forte). Apres l'implantation secousse tellurique qu'a subi Boumerdes le 21 mai 2003.

N.B: La source des Toutes les donnes climatologiques DHW de Boumerdas.

I-4- Cadre de l'étude :

La population du la ville de bordj Menaeil est estimée a 44 046 habitants selon le dernier recensement en 2008, comme le montre les différentes études de PDAU la zone haute représente 25% du nombre total de la population, donc la population dans la zone d'étude et de 11011habitan.

L'alimentation en eau potable de cette zone est assurée par la station de pompage de la ville de Bordj Menaeil qui alimente les deux réservoirs R1 (1000 m³) et R2x(1000) m³ ces derniers alimentent d'une manière gravitaire la zone haute.

I-5- Présentation hydraulique de la situation actuelle :

I-5-1-Resource en eau:

a) Forages:

La ville de Bordj Menaiel était alimentée exclusivement à partir du champ de captage de la nappe alluviale de Bas Isser, qui contient plusieurs forages avec les caractéristiques représentées dans le tableau I-2.

Tableau I-2: Récapitulation des caractéristiques des forages

Forage	Année de réalisation	Prof (m)	Débit mobilisé (l/s)	Débit exploité (l/s)	Observation
BM1R	1990	60	8	6	Arrêt de pompage (Alimentation à partie du SPET)
BM2R	1989	55	12	10	Arrêt de pompage (Alimentation à partie du SPET)
BM3R	1988	55	12	10	Arrêt de pompage (Alimentation à partie du SPET)
BM4R	1991	60	15	6	(Alimentation à partie du SPET) en service
BM5R	1991	57	18	15	(Alimentation à partie du SPET) en service
BM6(BM4R)	2002	65	10	10	Arrêt de pompage (Alimentation à partie du SPET)
BM7	2003	60	16	12,5	Arrêt de pompage (Alimentation à partie du SPET)
BM8	2003	55	6	6	A l'arrêt non exploité débit insuffisant
BM9	2003	71	25	18	Arrêt de pompage (Alimentation à partie du SPET)
BM10	2004	65	22	12	Arrêt de pompage (Alimentation à partie du SPET)
BM11 (11CR2)	2001	71	15	15	Arrêt de pompage (Alimentation à partie du SPET)
BM12 (11DR2)	1996	65	15	15	Arrêt de pompage (Alimentation à partie du SPET)
BM13(11ER4)	2001	60	12	5	A l'arrêt
BM14(11F)	2003	60	20	15	Arrêt de pompage (Alimentation à partir du SPET)
BM15(12A)	2004	60	8	5	A l'arrêt
F1RR Legata(Moll1)	1994	60	13	10	Arrêt de pompage (alimentation à partir du SPET) Problème de la pompe

b) Transfert SPET:

Bordj Menaiel est parmi les six villes de la wilaya de Boumerdes concernés par le raccordement au système SPET, dite (Villes du projet). Le débit transféré pour la ville de Bordj Menaiel est de 17 000 m³/j.

Les ressources disponibles présentent des caractéristiques de disponibilité et de régularité différentes. Les ressource souterraines de la nappe du bas Isser sont collectés à partir de quinze forages dont le fonctionnement et les débits restent irrégulier donc ne garantissent pas une ressource suffisante sur et régulière. Leur fonctionnement est lié à une consommation d'énergie assez importante et la qualité de ces eaux reste à la limite d'une bonne eau.

Si la ressource souterraine laisse la ville de Bordj Menaiel moyennement alimentée avec des coupures régulières et la prise en charge du développement futur incertaine, la ressource provenant du transfert du Taksebt devient une solution incontournable garantissant ainsi une alimentation sûre, suffisante et régulière avec une consommation d'énergie moins importante et assurant entre autre une qualité d'eau satisfaisante.

I-5-2- Ouvrages du stockage :

Les différents ouvrages hydrauliques constituant le système d'alimentation pour la zone haute sont les suivant :

- Station de Pompage.
- Réservoir 1000 m³.
- R2x1000 m³. (un existe et l'autre projeté).

Tableau I-3: Les zones alimentées par les ouvrages de stockage.

	Station de pompage	R1000 m ³	R2x1000 m ³
Source d'alimentation	A partir des forages A partir du SPET	Station de pompage	Station de pompage
Zone alimentée	Tous les ouvrages de stockage	Zone haute (chef lieu)	Zone haute (coté Est)

Tableau I-4 : caractéristique et état de réservoirs R1000m³ du chef lieu.

FICHE TECHNIQUE							
DESIGNATION		RESERVOIR 1000 m3					
caractéris	stiques	Zone alimentée	Observation				
Type et forme	Circulaire semi-enterré		Eclairage interne existe				
Côte radier	124.80 m						
Côte trop plein	128.80 m		Eclairage externe absent				
Structure	Béton armé						
Arrivée	Ø 300 fonte		Clôture en Existe en bon état				
Départ	Ø 350 fonte						
		Zone haute (Chef lieu)	Dispositif de sécurité existe				
	En service et en bon état		gardiennage existe				
ETAT			système d'alarme existe				
			Entretient interne1 fois / an				

Tableau I-5 : caractéristique et état de réservoirs R2x 1000m³ du coté Est.

	FICHE TECHNIQUE					
DESIGNATION	RESERVOIR 2x1000 m3					
caractérist	iques	Zone alimentée	Observation			
Type et forme	Circulaire semi-enterré		Eclairage interne existe			
Côte radier	200 m					
Côte trop plein	203,80 m		Eclairage externe absent			
Structure	Béton armé					
Arrivée	Ø 300 fonte		Clôture en dur . Existe en bon état			
Départ	Ø 400 fonte					
		Zone haute (coté Est)	Dispositif de sécurité existe			
			gardiennage existe			
ETAT	En service et en bon état		système d'alarme existe			
			Entretient interne			

I-5-3- Réseau de distribution :

Les conduite d'alimentation principales de cette ville ont été réalisés en fonte il y'a 28 ans et se maintiennent encore et présente un état acceptable par contre le réseau intérieur de plusieurs quartier est obsolète et inadéquat, Il a été mis en place pour répondre à une urgence sans aucune approche quant au choix du matériau et l'équilibre de l'ensemble.

La zone d'étude est alimenté à partir des deux conduites de diamètre Ø (300-350) mm qui sont arrivées a partir de la station de pompage, la première conduite alimente le réservoir R 1000 m³ de chef lieu, la deuxième conduite alimente le réservoir R2x1000 m³ de la (coté Est).

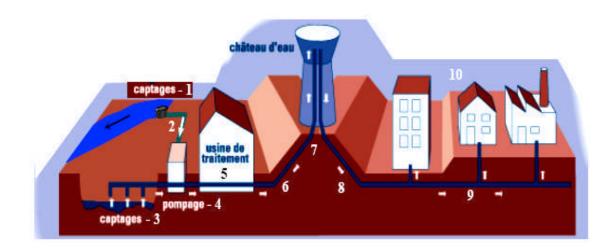


Figure I-1 : Schéma général d'un système d'AEP à réservoir de tête.

Les conduites du réseau de distribution de notre agglomération se constituent essentiellement de trois types de matériaux :

L'acier, la fonte et le PEHD avec Des diamètres allant de 80 mm jusqu'à 400 mm, notre réseau de distribution contient 84 tronçons. Les caractéristiques des différents tronçons du réseau existant sont bien détaille dans les tableaux I-6 et I-7.

Tableau I-6: Les caractéristiques des différents tronçons du réseau existant:

(Chef lieu alimentée à partir de R1000 m³ (zone H')).

N°	De nœud	Au nœud	Diamètres (mm)	Longueurs(m)	Matériaux
1	R1000	H'1	350	519,34	Fonte
2	H'1	H'2	350	161,62	Fonte
3	H'2	H'3	350	360,67	Fonte
4	H'3	H'4	350	165,8	Fonte
5	H'4	H'5	350	345,2	Fonte
6	H'5	H'6	350	55,37	Fonte
7	H'6	H'7	350	173,9	Fonte
8	H'7	H'8	350	200,7	Fonte
9	H'8	H'9	350	138,4	Fonte
10	H'9	H'10	350	100,3	Fonte
11	H'10	H'11	350	43,36	Fonte
12	H'11	H'12	200	157,29	Fonte
13	H'12	H'13	200	37,55	Fonte
14	H'13	H'14	200	90	Fonte
15	H'14	H'15	200	26,77	Fonte
16	H'15	H'16	200	75,22	Fonte
17	H'16	H'17	200	381,28	Fonte
18	H'17	H'18	200	277,9	Fonte
19	H'18	H'19	200	377,7	Fonte
20	H'19	H'20	200	169,02	Fonte
21	H'20	H'11	200	158	Fonte
22	H'12	H'21	125	257,4	Fonte
23	H'16	H'22	150	47,75	Fonte
24	H'22	H'23	150	504,1	Fonte
25	H'23	H'24	150	112,49	Fonte
26	H'24	H'25	150	30,88	Fonte
27	H'25	H'26	150	102	Fonte
28	H'26	H'27	150	250	Fonte
29	H'6	H'28	160	391	Acier
30	H'28	H'29	160	54,95	Acier
31	H'29	H'30	160	252,4	Acier
32	H'30	H'31	160	82,41	Acier
33	H'31	H'32	160	736,48	Acier
34	H'32	H'23	160	77,69	Acier

Tableau I-7: Les caractéristiques des différents tronçons du réseau existant:

(Coté Est alimentée à partir de R2x1000 m³ (zone H))

N°	De nœud	Au nœud	Diamètres (mm)	Longueurs(m)	Matériaux
1	R2X1000	H1	400	1800	Fonte
2	H1	H2	400	324,4	Fonte
3	H2	Н3	400	272,25	Fonte
4	НЗ	H4	400	351,21	Fonte
5	H4	Н5	400	269,8	Fonte
6	H5	Н6	400	299,6	Fonte
7	Н6	H7	400	247,19	Fonte
8	H7	Н8	125	254,13	PEHD
9	H7	Н9	400	156,75	Fonte
10	H7	H10	315	16,67	PEHD
11	H10	H11	315	53,59	PEHD
12	H11	H12	315	125,7	PEHD
13	H12	H13	100	71,08	PEHD
14	H12	H14	315	91,99	PEHD
15	H14	H15	315	187,24	PEHD
16	H15	H16	315	265,62	PEHD
17	H16	H17	315	74,7	PEHD
18	H17	H18	315	117,12	PEHD
19	H18	H19	160	41,55	PEHD
20	H18	H40	315	63,18	PEHD
21	H19	H20	160	85,48	PEHD
22	H19	H21	80	28,25	PEHD
23	H21	H22	80	71,22	PEHD
24	H21	H23	160	43,95	PEHD
25	H23	H24	160	65,5	PEHD
26	H24	H25	160	84,39	PEHD
27	H25	H26	160	89,83	PEHD
28	H26	H27	160	66,49	PEHD
29	H27	H28	80	34,71	PEHD
30	H28	H29	80	42,19	PEHD
31	H28	H30	80	39,6	PEHD
32	H27	H31	160	137,8	PEHD
33	H31	H32	160	134,34	PEHD
34	H32	H33	160	108,86	PEHD

Suite de tableau I-7

N°	De nœud	Au nœud	Diamètres (mm)	Longueurs(m)	Matériaux
35	Н33	H34	80	64,17	PEHD
36	H34	H35	80	33,6	PEHD
37	H34	H36	80	55,3	PEHD
38	H33	H37	160	130	PEHD
39	H38	H37	160	17,06	PEHD
40	H38	H39	80	50,24	PEHD
41	H38	H40	80	81,06	PEHD
42	H40	H41	80	83,47	PEHD
43	H38	H42	160	12,83	PEHD
44	H42	H43	160	141,24	PEHD
45	H43	H44	160	82,9	PEHD
46	H44	H45	160	32,01	PEHD
47	H45	H46	160	124,11	PEHD
48	H46	H47	160	93,91	PEHD
49	H47	H48	160	199,2	PEHD
50	H44	H49	160	181,72	PEHD

On constate que le réseau a un linéaire global de 14414,14 ml.sur lesquels nous avons 9041,21 ml soit 62,72% sont en fonte.3778 ml soit 26,21% en PEHD et 1594.93 ml soit 11,065% en acier. Il apparait clairement la prédominance de la fonte qui représente plus de 60 % du réseau de distribution.

I-5-4-Les adductions:

A)-Adduction des eaux souterraine:

A partir des forages l'eau arrive dans la bâche d'aspiration, de 500 M3 de capacité, par un réseau de collecte en Amiante Ciment et en fonte avec des diamètres allant de 150 mm et 500 mm

> Conduite Ø500 mm en amiante ciment :

La conduite de diamètre 500 mm en amiante ciment collecte les forages BM1, BM2, BM3, BM 10 ainsi que la série des forages 11 (11D, 11E..) et la série des forages 12 (12A, 12E.)

Cette conduite est en état moyen néanmoins le matériau amiante ciment s'avère nécessaire à modifier

> Conduite Ø300 mm en Fonte:

Deux conduites de diamètre 300 mm en fonte collectent le forage BM4, BM5 (Pélissier), BM9 (forage Ghaicha) et le forage MOLL.

Le tableau suivant présente l'adduction à partir des forages par diamètre, matériau et linéaire :

Tableau I-8 Récapitulation des caractéristiques d'adduction eaux souterraine:

Matériau	Diamètre (mm)	Linéaire(m)
Amiante Ciment	500	1000
Annante Chilent	300	2190
	150	420
Fonte	300	800
		TOTAL=3610(m)

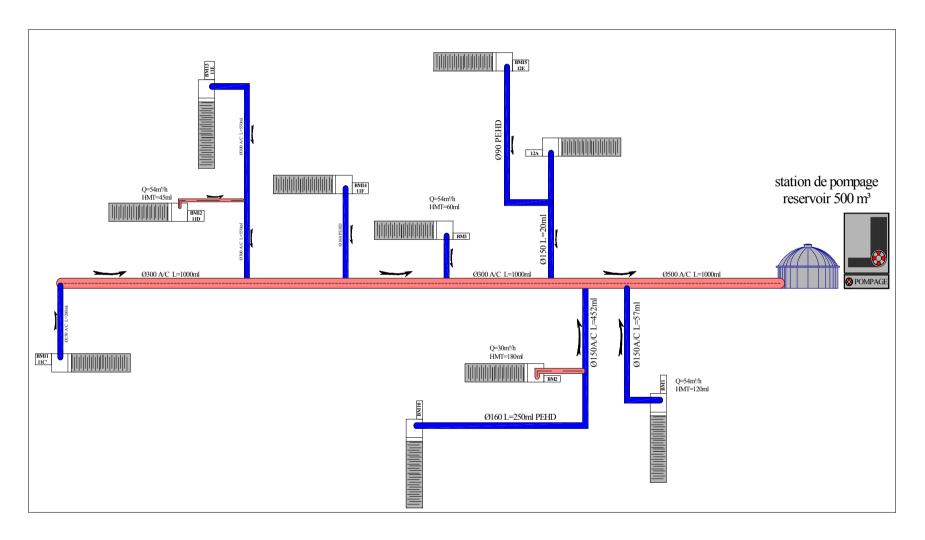
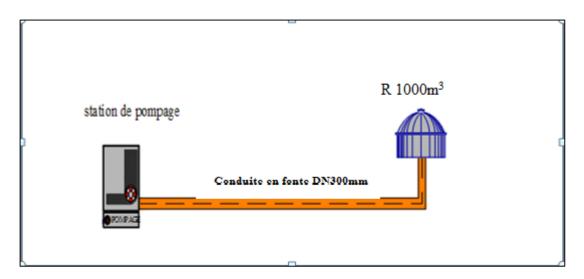


Figure I-2 : Schéma d'adduction des eaux souterraine.


B)-Adduction des eaux superficielles :

B)-1- Station de pompage -R 1000m³:

La conduite DN300 en fonte qui alimente le R 1000m³ du Chef lieu de la ville de Bordj Menaiel a partir de la station de pompage avec un débit de l'ordre 78,19l/s. les caractéristique de cette adduction et bien détaille dans les tableaux Tableau suivant :

Tableau I-9 : Récapitulation des caractéristiques d'adduction Station de pompage –R 1000m³

REFOULEMENT STATION DE POMPAGE -R1000m ³				
Débit (1/s)	78.19	Bon état		
Diamètre (mm)	300			
Longueur (m)	5361			
Matériaux	Fonte			

Figure I-3: Schéma d'adduction station de pompage –R 1000m³

B)- 2- Station de pompage -R2 X 1000m³:

La conduite DN350 en fonte sortent de la station de pompage alimente le R2 X 1000m³ du Coté Est de la ville de Bordj Menaiel par un débit de l'ordre de 78.19 l/s.les caractéristique de cette adduction et bien détaille dans le tableau I-10.

REFOUL	REFOULEMENT STATION DE POMPAGE-R2X1000m ³				
Débit (l/s)	78,19	Bon état			
Diamètre (mm)	350				
Longueur (m)	6100				
Matériaux	Fonte				

Tableau I-10 : Récapitulation des caractéristiques d'adduction Station de pompage R2 X 1000m³

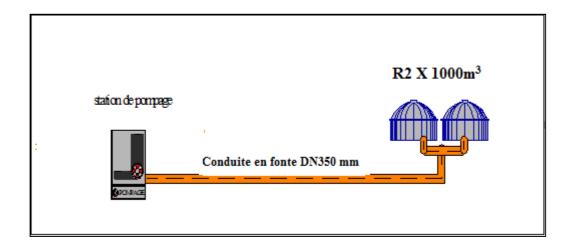


Figure I-4: Schéma d'adduction station de pompage –R2 X 1000m³

On ne constate que le réseau d'adduction a un linéaire global de 15071ml.sur les quels nous avons 12261 ml soit 81.35 % sont en fonte.2810 ml soit 18.35 % en amiante ciment.

Conclusion:

Apres avoir fait connaissance de différents cotés de notre agglomération, sa situation géographique, son tissu et normes urbaines ainsi les caractéristiques de notre réseau, on remarque que le réseau fonctionne avec des conduite anciennes n'assure pas les bonnes qualités d'eau car il existe des conduite en fonte et en acier ainsi que la mise en place des conduites en PEHD sans dimensionnements pour répondre à une urgence (quartier d'habitants précaire et séisme).

CHAPITRE II CALCUL DES BESOINS

Introduction:

Tout projet d'alimentation en eau potable doit être dimensionné pour satisfaire les besoins actuels et futurs. Cette exigence est difficile à satisfaire car les besoins évoluent, leurs évolution suit deux facteurs :

- La croissance de la population dans la localité pour laquelle est réalisé le projet.
- L'augmentation de la consommation en eau par usager.

Afin de faire un diagnostic efficace dans notre étude, on doit estimer avec exactitude les différents besoins en eau de notre agglomération, pour cela on doit fixer une norme pour chaque catégorie de consommateur.

II-1-Evaluation démographique:

La population de la ville de Bordj Menaeil, à l'instar de toutes les autres villes d'Algérie, est répartie en deux zones distinctes et qui sont le chef-lieu de la commune et la zone éparse. D'après la PDAU, 25 % de celle-ci se concentre au niveau de zone haute (Chef lieu et Cote Est), de l'agglomération.

II-1-1-Population:

Le taux d'accroissement doit être en corrélation avec une courbe tendance dont le tracé ne sera significatif que l'osque qu'il sera basé sur quatre ou cinq recensements au moins, cette courbe a une tendance dégressive comme le montre les différentes études de PDAU.

La projection de la population est faite sur la base du dernier recensement en 2008, en prenant un taux d'accroissement de 1,90% pour le court terme, 2,00% pour le moyen terme et 2,10% pour le long terme. Nous disposons comme donnée de base, le nombre de la population en 2008 qui est évalué à 11011habitant.

II-1-2-Estimation de la population :

Pour les calculs d'estimation de la population future, nous utiliserons la formule de l'équation des intérêts composés:

$$P_n = P_0 \times (1+\tau)^n \tag{II-1}$$

Avec:

P_n: la population à l'horizon de calcul.

 P_0 : la population actuelle.

 τ : Le taux d'accroissement moyen annuel de la population.

n : le nombre des années d'écart.

Nous allons donc résumer l'ensemble des résultats de calcul dans le tableau II.1.

Tableau II-1: La population de zone haute pour différents horizons.

	PDAU	Actuel	court terme	moyenne terme	long terme
Horizons	2008	2012	2018	2028	2042
Taux	1,9	1,9	1,9	2	2,1
d'accroissement (%)					
nombre d'habitation	11011	11872	13291	16202	21674

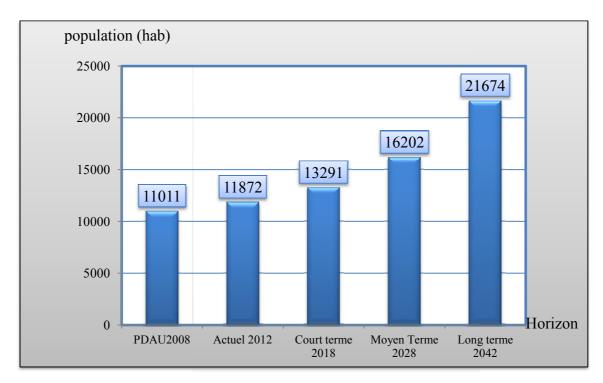


Figure II-1: Prévision de la population de la zone haute.

II-2-Evaluation des besoins :

Pour le calcul des besoins, on a opté pour une dotation de 200 l/j/hab, suite aux informations recueillis auprès de la DHW de la wilaya de Boumerdas.

II-2-1-Besoin domestique:

La consommation moyenne journalière domestique est obtenue par la formule suivante:

$$Q_{moyj} = \frac{\left(Qi * Ni\right)}{1000} \qquad (II-2)$$

Avec:

- Q_{moyj,j}: consommation moyenne journalière en m³/j;
- Q_i : dotation journalière en l/j/hab ;
- N_i: nombre de consommateurs ;

Les résultats de calcul des débits moyenne journalier pour les différents horizons et résume dans le tableau II.2.

Horizons	Nbr	Dotation	Besoin domestique
	Habitant	(l/j/hab)	(m^3/j)
Actuel (2012)	11872	200	2374.4
Court terme(2018)	13291	200	2658.2
Moyen terme(2028)	16202	200	3240.4
Long terme(2042)	21674	200	4334.8

Tableau II-2: Les besoin domestique pour différents horizons.

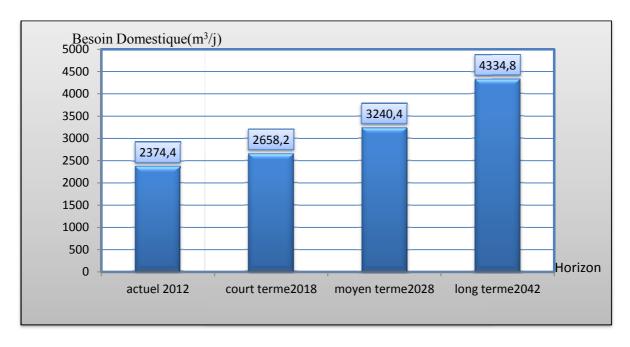


Figure II.2 : Les besoin journalières domestiques en fonction de l'horizon.

II-2-2-Calcul des besoins d'équipements:

Tableau II-3: Débit moyen des différents consommateurs.

Nature des usagers	Unité de base	Nombre	Dotation	Q _{moy}
			(1/j/unité)	(m^3/j)
Ecole primaire	élève	1350	25	33.75
CEM	élève	2080	30	62.4
Lycée	élève	1560	30	46.8
Technicum	élève	450	30	13.5
poste police	Unité de surface (m³)	900	2	1.8
Maison de jeune	Unité de	450	10	4.5
	surface (m ³)			
totale				162.75

II-2-3-Calcul des besoins totaux (Q_{movi}) :

La consommation moyenne journalière totale représente la somme de la consommation moyenne journalière domestique et les besoin d'équipement.

Les résultats des calcules des besoins totaux et résume dans le tableau II.4

Tableau II-4: Débits moyen journalières des différents horizons.

	Actuel	Court terme	Moyen terme	Long terme
Horizons	2012	2018	2025	2042
Besoin domestique (m³/j)	2374.4	2658.2	3240.4	4334.8
Besoins des équipements (m³/j)	162.75	162.75	162.75	162.75
$Q_{\text{moyj}}(m^3/j)$	2537.15	2820.95	3403.15	4497.55



Figure II-3: Les débits moyens journaliers en fonction de l'horizon.

II-3-Variation des débits de consommation dans le temps :

Le débit demandé par les différentes catégories des consommateurs est soumis à plusieurs variabilités en raison de l'irrégularité de la consommation dans le temps.

- Variations annuelles qui dépendent du niveau de vie de l'agglomération considérée.
- Variations mensuelles et saisonnières qui dépendent de l'importance de la ville.
- Variations journalières qui dépendent du jour de la semaine où la consommation est plus importante au début de la semaine qu'en week-end.
- Variations horaires qui dépendent du régime de consommation de la population.
 Elles représentent les variations les plus importantes.

II-4- Coefficient d'irrégularité :

II-4-1- Coefficient d'irrégularité maximale journalière (Kmax,j) :

Le coefficient d'irrégularité maximale journalière (Kmax,j) qui tient compte des pertes d'eau dans le réseau et des gaspillages peut être obtenu par le rapport de la consommation maximale journalière et de la consommation moyenne journalière :

$$K_{\max j} = \frac{Q_{\max j}}{Q_{moyj}}.....(II-3).$$

Ce coefficient varie entre 1,1 et 1,3. Pour notre cas on prend $K_{\text{max,i}} = 1,3$.

II-4-2- Coefficient d'irrégularité minimale (Kmin j) :

Ce coefficient nous indique de combien de fois la consommation minimale est inférieure à la consommation moyenne. Ce coefficient est donné par le rapport suivant :

$$K_{\min,j} = \frac{Q_{\min,j}}{Q_{mov,j}}$$
 (II-4).

Ce coefficient permet de déterminer le débit minimum journalier. $K_{min,j}$ varie de 0,7 à 0,9. Pour notre cas on prend $K_{min,j} = 0.8$.

II-4-3- Coefficient maximal horaire $(K_{max,h})$:

Les ouvrages de distribution d'eau doivent être dimensionnés pour fournir la demande horaire maximale de la journée de pointe.

Pour son calcul, on utilise la formule suivante :

$$K_{\text{max,h}} = \alpha_{\text{max}} \cdot \beta_{\text{max}} \cdot \dots (II-5).$$

- α_{max} : coefficient qui tient compte du confort des équipements de l'agglomération et de régime du travail, varie de 1,2 à 1,5 et dépend du niveau de développement local. Pour notre cas on prend $\alpha_{max} = 1,3$.
- β_{max}: coefficient étroitement lié à l'accroissement de la population. Le tableau II-5 donne Sa variation en fonction du nombre d'habitants.

Tableau II -5 : β_{max} en fonction du nombre d'habitants.

Habitant	<1000	1500	2500	4000	6000	10000	20000	30000	100000
β_{max}	2	1,8	1,6	1,5	1,4	1,3	1,2	1,15	1.1

- Pour l'état actuel (2012)on a un nombre d'habitants de 11872 **hab**, donc $\beta_{max} = 1,128$ $K_{max,h} = 1,3*1,128 = 1.665664$.
- Pour long terme (2042) on a un nombre d'habitants de 21674 hab, donc $\beta_{max} = 1,192$ $K_{max,h} = 1,3*1,192 = 1,549119$.

II-4-4- Coefficient minimal horaire (Kmin, h):

Ce coefficient permet de déterminer le débit minimum horaire caractérisant la consommation la plus faible de la journée :

$$K_{\min,h} = \alpha_{\min} \cdot \beta_{\min} \cdot \dots \cdot (II-6).$$

 α_{\min} : Coefficient qui tient compte du confort des équipements de l'agglomération et du régime de travail, varie de **0,4** à **0,6**. Pour notre cas on prend : $\alpha_{\min} = 0,5$.

 β_{min} : Coefficient étroitement lié à l'accroissement de la population. Le tableau II-6 donne Sa variation en fonction du nombre d'habitants.

Habitant	<1000	1500	2500	4000	6000	10000	20000	30000	100000
β_{min}	0,1	0,1	0,1	0,2	0,25	0,4	0,5	0,6	0.7

Tableau II-6: β_{min} en fonction du nombre d'habitants.

- Pour l'état actuel (2012) on a un nombre d'habitants de 11872 hab, donc $\beta_{min} = 0,41872$ $K_{min,h} = 0,5*0,41872 = 0,20936$.
- Pour long terme (2042) on a un nombre d'habitants de 21674 hab, donc $\beta_{min} = 0.5167$ $K_{min,h} = 0.5*0.5167 = 0.25837$.

II -5- Détermination des débits journaliers :

II -5-1- Consommation maximale journalière (Q max,j):

Ce débit relatif au jour de plus grande consommation pendant l'année est utilisé comme élément de base dans les calculs de dimensionnement du réseau d'adduction, il nous permet de dimensionner le réservoir et la station de pompage.

Ce débit est donné par :

$$Q_{\max,j} = K_{\max,j} * Q_{\max,j}....(II-7)$$

- Q max,j: débit maximum journalier en m³/j;
- Q_{moy,j}: débit moyen journalier en m³/j;
- K_{max, j}: coefficient d'irrégularité maximale journalière, voire la formule (II-3)

Donc:
$$Q_{max,j} = 1.3 * Q_{moy,j}$$

Les résultats de calcul des consommations maximales journaliers et résume dans le tableau II.7

Tableau II-7: débits maximums journalières des différents horizons.

	Actuel	Court terme	Moyen terme	Long terme
Horizons	2012	2018	2025	2042
$Q_{\text{moyj}} (m^3/j)$	2537.15	2820.95	3403.15	4497.55
k _{max j}	1.3	1.3	1.3	1.3
$Q_{\text{maxj}} (m^3/j)$	3298.295	3667.235	4424.095	5846.815

II -5-2- Consommation minimale journalière (Qmin j) :

C'est le débit de jour de faible consommation pendant l'année;

$$Q_{min,j} = K_{min,j} * Q_{moy,j}$$
(II-8)

On prend $K_{min, j} = 0.8$.

Les résultats de calcul des consommations minimales journaliers et résume dans le tableau **II.8**

Tableau II-8 : débits minimums journalières des différents horizons.

	Actuel	Court terme	Moyen terme	Long terme
Horizons	2012	2018	2025	2042
$Q_{\text{moyj}}(m^3/j)$	2537,15	2820,95	3403,15	4497,55
k _{min j}	0,8	0,8	0,8	0,8
$Q_{minj}(m^3/j)$	2029,72	2256,76	2722,52	3598,04

II-6- Détermination des débits horaires :

Généralement on détermine les débits horaires en fonction du développement, des habitudes de la population et du régime de consommation probable.

II-6-1- Débit moyen horaire :

Le débit moyen horaire est donné par la relation suivante :

$$Q_{moy,h} = \frac{Q_{\max j}}{24}$$
 (II-9)

Avec : - Q_{mov,h} : débit moyen horaire en m³/h ;

- Q_{max,j} : débit maximum journalier en m³/j ;
- Pour actuel (2012) : Qmoy,h = $\frac{3298,295}{24}$ = 137,429 m³/h
- Pour long terme (2042): Qmoy,h = $\frac{5846,815}{24}$ = 243.617m³/h

II-6-2- Détermination du débit maximum horaire :

Ce débit joue un rôle très important dans les différents calculs du réseau de distribution, il est déterminé par la relation suivante :

$$Q_{max,h} = K_{max,h} * Q_{moy,h}$$
....(II-10).

Q_{moy,h}: débit moyen horaire en m³/h

K_{max, h}: coefficient de pointe horaire voire formule (II-5)

Q_{max, h}: débit max horaire en m³/h

On a donc:

- Pour actuel (2012): $\mathbf{Q}_{\text{max,h}}=1,665664 * 137,429= 228,91 \text{ m}^3/\text{h} =63,57 \text{ L/s}.$
- Pour long terme (2042): $Q_{\text{max,h}}=1,549119 * 243,617=377,392 \text{ m}^3/\text{h}=104.831 \text{ L/s}$

II -7- Evaluation de la consommation horaire en fonction du nombre d'habitant :

Le débit horaire d'une agglomération est variable selon l'importance de cette dernière. La variation des débits horaires d'une journée est représentée en fonction du nombre d'habitants (Voir annexe N⁰ II-1).

Remarque:

Cette variation des débits horaires est exprimée en pourcentage (%) par rapport au débit maximal journalier de l'agglomération.

Pour notre cas on choisit la répartition variant de 10001 à 50000 habitants pour l'horizon actuel (2012) et pour l'horizon 2042.

Tableau II-9: Variation des débits horaires (2012).

Heures	Consommation total		Courbe de la	consommation
	Q _{max,j} =3298	$3.295 ext{ m}^3/J$	Cui	mulée
(h)	°%	m ³ /h	%	m ³ /h
0-1	1,5	49,474	1,5	49,474
1-2	1,5	49,474	3	98,949
2-3	1,5	49,474	4,5	148,423
3-4	1,5	49,474	6	197,898
4-5	2,5	82,457	8,5	280,355
5-6	3,5	115,440	12	395,795
6-7	4,5	148,423	16,5	544,219
7-8	5,5	181,406	22	725,625
8-9	6,25	206,143	28,25	931,768
9-10	6,25	206,143	34,5	1137,912
10-11	6,25	206,143	40,75	1344,055
11-12	6,25	206,143	47	1550,199
12-13	5	164,915	52	1715,113
13-14	5	164,915	57	1880,028
14-15	5,5	181,406	62,5	2061,434
15-16	6	197,898	68,5	2259,332
16-17	6	197,898	74,5	2457,230
17-18	5,5	181,406	80	2638,636
18-19	5	164,915	85	2803,551
19-20	4,5	148,423	89,5	2951,974
20-21	4	131,932	93,5	3083,906
21-22	3	98,949	96,5	3182,855
22-23	2	65,966	98,5	3248,821
23-24	1,5	49,474	100	3298,295
total	100	3298,295		

$$\begin{aligned} \textbf{NB:} \ Q_{\text{max}, \, h} = & \textbf{206,143 m}^{3} / \textbf{h} \ , \quad Q_{\text{max}, \, h} = & \textbf{57,26 L/s} \\ Q_{\text{min}, \, h} = & \textbf{49,474m}^{3} / \textbf{h}, \qquad Q_{\text{min}, \, h} = & \textbf{13,74 L/s} \end{aligned}$$

D'après ce tableau on trace le graphe de consommation et la courbe intégrale représentée dans les figures II.4 et II.5 respectivement :

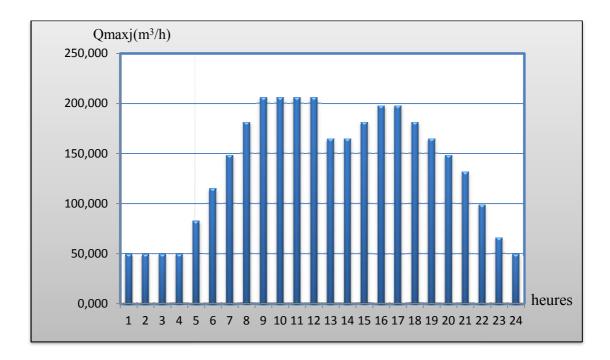


Figure II-4: Graphique de consommation totale.

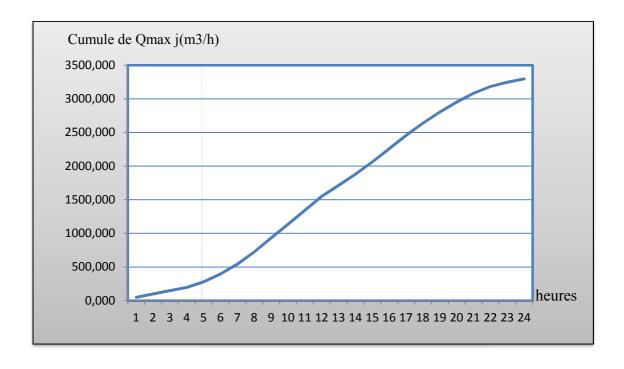


Figure II-5 : Courbe intégrale.

Tableau II-10: Variation des débits horaires (2042).

Heures	Consomma	ation total	Courbe de la consommation		
	Q _{max,j} =5846	$5.815 ext{ m}^3/J$	Cur	mulée	
(h)	%	m ³ /h	c%	m³/h	
0-1	1,5	87,702	1,5	87,702	
1-2	1,5	87,702	3	175,404	
2-3	1,5	87,702	4,5	263,107	
3-4	1,5	87,702	6	350,809	
4-5	2,5	146,170	8,5	496,979	
5-6	3,5	204,639	12	701,618	
6-7	4,5	263,107	16,5	964,724	
7-8	5,5	321,575	22	1286,299	
8-9	6,25	365,426	28,25	1651,725	
9-10	6,25	365,426	34,5	2017,151	
10-11	6,25	365,426	40,75	2382,577	
11-12	6,25	365,426	47	2748,003	
12-13	5	292,341	52	3040,344	
13-14	5	292,341	57	3332,685	
14-15	5,5	321,575	62,5	3654,259	
15-16	6	350,809	68,5	4005,068	
16-17	6	350,809	74,5	4355,877	
17-18	5,5	321,575	80	4677,452	
18-19	5	292,341	85	4969,793	
19-20	4,5	263,107	89,5	5232,899	
20-21	4	233,873	93,5	5466,772	
21-22	3	175,404	96,5	5642,176	
22-23	2	116,936	98,5	5759,113	
23-24	1,5	87,702	100	5846,815	
total	100	3298,295			

$$\begin{split} NB: & Q_{\text{max, h}} \!=\! 365,\! 426 m^3/h \; , \quad Q_{\text{max, h}} \!=\! 101.51 L/s \\ & Q_{\text{min, h}} \!=\! 87,\! 702 m^3/h , \qquad Q_{\text{min, h}} \!=\! 24,\! 36 \; L/s \end{split}$$

D'après ce tableau on trace le graphe de consommation et la courbe intégrale représentée dans les figures II-6 et II-7 respectivement :

Figure II.6: Graphique de consommation totale (2042)

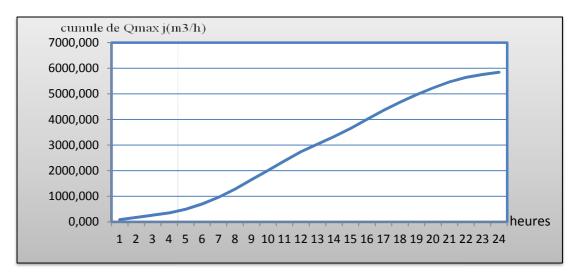
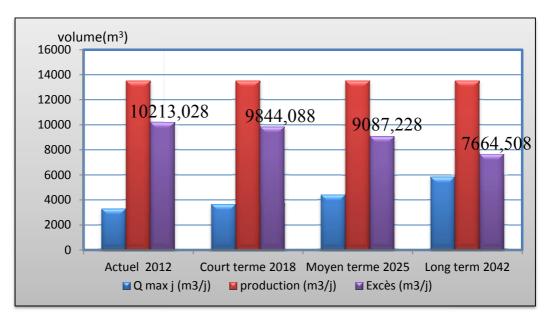


Figure II.7: Courbe intégrale(2042).

II.8 Production:

Tableau II-11: Production pour la zone haute à partir de la station de pompage.


Source	Debit d'exploitation	Production(m ³ /j)
	(l/s)	
Station de pompage ver R1000 m ³	78.19	6755.616
Station de pompage ver R2x1000m ³	78.19	6755.616
		Total=13511.232

II.8-1-Bilan de comparaison (production-Besoin) :

Tableau II.12: Bilan de comparaison.

Horizons	Actuel	Court	Moyen	Long
	(2012)	terme(2018)	terme(2025)	terme(2042)
Q max j (m³/j)	3298.295	3667.235	4424.095	5846.815
production (m ³ /j)	13511.232	13511.232	13511.232	13511.232
Déficit (m³/j)	0	0	0	0
Excès (m³/j)	10213.028	9844.088	9087.228	7664.508

Pour mieux visualiser le bilan de comparaison besoins –production de la zone haute on présente le graphe suivant :

Figure II-8: Comparaison besoin -production.

Interprétation : D'après les résultats du bilan de comparaison ci-dessus il apparait clairement que la production réservée pour la zone haute a partir de la station de pompage est satisfaisante les besoins actuel et futur avec un excédent très important.

Conclusion:

Nous avons remarqué que la population de zone haute a pratiquement doublé à l'horizon d'étude ainsi que la consommation maximale journalière et que la production réservée pour la zone haute est satisfaisante les besoins actuels et futurs avec un excès très important. Il est donc nécessaire de vérifier à ce que nos capacités des réservoirs vont satisfaire la demande de notre agglomération dans le temps.

CHAPITRE III LES RESERVOIRS D'ALIMENTATION

Introduction:

Les points de relie entre les réseaux de distribution et d'adduction sont les réservoirs, ces derniers se sont des ouvrages hydrauliques permettant l'accumulation des eaux et leur distribution d'une façon continue, et assurent la régularisation des débits et de pressions dans le réseau de distribution.

Leur dimensionnement doit être bien fait, pour assurer un bon fonctionnement dans le temps et une quantité nécessaire et suffisante lors des heures de pointe.

Dans notre projet, nous allons utiliser les réservoirs existants avec les caractéristiques citez au chapitre I.

III-1-Rôles des Réservoirs :

Le rôle du réservoir est :

- Assurer la continuité de distribution pendant l'arrêt de la pompe ;
- Emmagasinement de l'eau pendant toute la durée de fonctionnement de la station de pompage ;
- Milieu où on peut traiter l'eau à l'aide de chlore ;
- Réduction des investissements sur les ouvrages de production et le réseau de distribution;
- Réduction des dépenses d'énergie (stockage la nuit et distribution gravitaire pendant les heures de pointe);
- Assurer une réserve d'incendie ;
- Assurer les pressions nécessaires en tout point du réseau ;
- Maintenir l'eau d'une température constante et préserver des contaminations ;
- Ils peuvent également jouer le rôle de brise charge dans le cas d'une distribution étagée.

III -2-Emplacement des réservoirs :

Malgré qu'on a des réservoirs existants, leurs emplacement doit respecter les aspects suivants:

 L'alimentation du réseau de distribution doit se faire par gravité, le réservoir doit être construit à un niveau supérieur à celui de l'agglomération ce qui est vérifie pour notre ville;

- Lorsque plusieurs réservoirs sont nécessaires on doit les implanter de préférence soit en extrémité du réseau ; soit à proximité de l'important centre de la consommation
- l'emplacement du réservoir doit être aussi choisi de telle façon à pouvoir satisfaire les abonnés la pression suffisante ;
- La topographie intervient et a une place prépondérante dans le choix de l'emplacement, de même que la géologie. Il ne faut pas oublier les extensions futures.

III-3-Principe de fonctionnement :

La régularisation des débits (demande et apport), est posée sur les points suivants :

- Les installations et accessoires d'adduction permettant d'amener l'eau avec une régularisation importante ;
- Le réservoir permet de stocker pendant les heures de faible consommation les différences entre les débits (adduction distribution) ce pendant lors des heures de consommation maximum (heure de pointe) le déficit transitera du réservoir vers le réseau de distribution

III-4-Classification des réservoirs :

III-4-1-Types des réservoirs :

Les réservoirs, pour accomplir convenablement les fonctions auxquelles ils sont conçus, peuvent occuper les différentes dispositions suivantes:

- Enterrés ;
- Semi-enterrés :
- Sur sol;
- Sur tour ou surélevé (château d'eau).

III-4-2-Les facteurs interviennent dans la détermination du type de réservoir :

- Conditions topographiques de la région à desservir.
- Conditions hydrauliques de la distribution : volume du réservoir, pression à assurer.
- Type de décideur : maître d'ouvrage, maître d'œuvre ou exploitation.

III-4-3-Les critères les plus souvent retenus pour le choix du type de réservoir :

- Les facteurs économiques ;
- La sécurité d'approvisionnement et la facilité d'exploitation ;

- Les possibilités d'adaptation au réseau ;
- Les possibilités d'inscription harmonieuse dans le site.

III-4-4-Les formes des réservoirs les plus utilisées :

- Rectangulaire ou carrée: En règle générale, les réservoirs sont rectangulaires ou
 polygonaux (si l'ouvrage doit s'adapter à la forme de la parcelle ou aux conditions du
 terrain). Ces formes permettent une construction statique sans surprises et adaptable,
 une exécution solide ainsi que des agrandissements ultérieurs sans difficultés
 majeures.
- Circulaire: Des grands réservoirs circulaires peuvent être réalisés en béton précontraint. Dans la plupart des cas, on ne réalise pas d'économies substantielles par rapport aux réservoirs rectangulaires. Les avantages sont une bonne stabilité des talus d'excavation et un moindre risque de fissuration. Ce type d'exécution ne convient pas dans un terrain en pente soumis à des sollicitations dissymétriques.

Pour notre cas les réservoirs sera de type réservoir semi enterré et qui présente les avantages suivants :

- Économie sur les frais de construction ;
- Étude architecturale très simplifie ;
- Etanchéité plus facile à réaliser ;
- Conservation de la température constante de l'eau ainsi emmagasinée.

III-5-Equipements des réservoirs :

Un réservoir unique ou compartimenté doit être équipé par :

- Une conduite d'arrivée ou d'alimentation ;
- Une conduite de départ ou de distribution ;
- Une conduite de trop-plein ;
- Une conduite de vidange;
- Une conduite by-pass;
- Un système de matérialisation d'incendie ;

Toutes ces conduites doivent normalement aboutir dans une chambre de manœuvre.

III-5-1-conduite d'arrivée ou d'alimentation :

Cette conduite, du type refoulement ou gravitaire, doit arriver de préférence dans la cuve en siphon noyé ou par la bas, toujours a l'oppose de la conduite de départ, pour provoquer, en quelque sorte le brassage d'eau.

Cette arrivée par le bas ou en siphon noyé permet le renouvellement d'eau par mélange en créant des perturbations et écoulement par rouleaux.

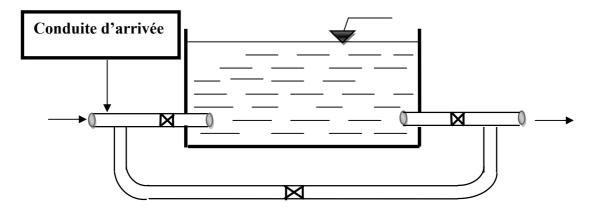


Figure III-1 : Conduite d'arrivée par le bas.

III-5-2-Conduite de départ ou de distribution :

Cette conduite est placée a l'oppose de la conduite d'arrivée a quelques centimètres au dessus du radier (15 a 20 cm) pour éviter l'entrée de matières en suspension .extrémité est munie dune crépine courbée pour éviter le phénomène de vortex (pénétration d'air dans la conduite).cette conduite est équipée dune vanne a survitesse permettant la fermeture rapide en cas de rupture au niveau de cette conduite.

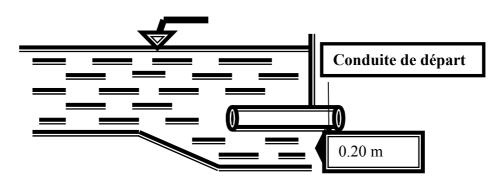


Figure III-2 : Conduite de départ

III-5-3-Conduite de trop-plein:

Cette conduite permet d'évacuer l'excès d'eau arrivant au réservoir en cas ou une pompe ne s'arrête pas.si le réservoir est compartimente, chaque cuve doit avoir une conduite de tropplein.

III-5-4-Conduite de vidange :

La conduite de vidange permet la vidange des réservoirs d'eau, en cas de nettoyage ou d'éventuelles réparations, il est nécessaire de prévoir la vidange au moyen d'une conduite généralement raccordée à la conduite de trop —pleine. Elle est munie d'un robinet vanne qui doit être nettoyé après chaque vidange pour éviter le dépôt de sable qui entraîne une difficulté de manœuvre.

On a intérêt à n'effectuer pas cette vidange que sur un réservoir préalablement presque vidé en exploitation.

III-5-5-Conduite by-pass.:

Elle relie la conduite d'adduction (conduite d'arrivée) à celle de distribution, et sert à alimenter le réseau directement sans stocker l'eau lors de l'isolement de réservoir. Comme montre la figure suivante :

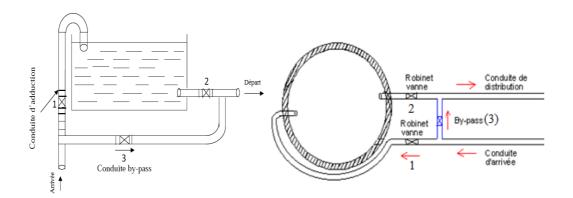


Figure III-3: Conduite by-pass.

Le fonctionnement de la conduite de By-pass sera come suite :

- Les vannes 1 et 2 sont fermées.
- La vanne 3 ouverte.

Dans ce cas, l'eau arrive au réservoir se dirige directement vers l'agglomération. Cette conduite est utilisée pour séparer le réservoir dans le cas d'entretien ou réparation.

III-5-6-Système de matérialisation de la réserve d'incendie :

Pour conserver sûrement une réserve permettant de lutter contre l'incendie, il faut en interdire son utilisation, pour cela un système en siphon présente dans la figure III.4.

C'est une disposition spéciale de la lientérie à adopter au niveau du réservoir, qui permet d'interrompre l'écoulement une fois le niveau de la réserve d'eau consacrée à l'extinction des incendies est atteint. C'est une seule prise et comporte un siphon à évent avec une réserve d'incendie commandée à distance.

Son fonctionnement est le suivant :

• Normal : 3 et 1 ouverts, le 2 est fermé.

• Incendie : il suffit d'ouvrir 1 et 2.

Comme le montre la figure suivante :

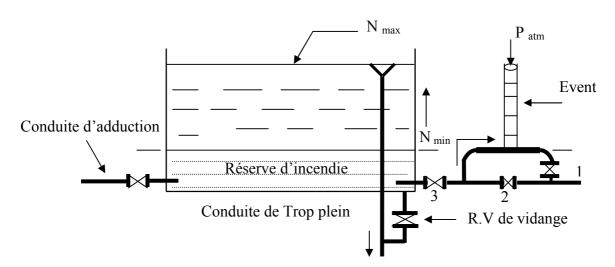


Figure III-4: Système de matérialisation de la réserve d'incendie.

III-6-Capacités des réservoirs :

La capacité d'un réservoir doit être estimée en tenant compte des variations de débit à l'entrée comme à la sortie, c'est-à-dire d'une part du mode d'exploitation des ouvrages situées en amont, et d'autre part de la variabilité de la demande.

La capacité d'un réservoir peut être calculée selon deux méthodes à savoir :

- La méthode graphique.
- La méthode analytique.

III-6-1-Méthode graphique:

Cette méthode est basée sur le volume d'eau entrant et sortant pendant un jour. On trace les courbes de volumes cumulés 'Va' provenant de l'alimentation et 'Vc' correspondant à la consommation. Ensuite, On traçant la courbe de la différence entre les deux courbes précédentes, qui est : [Va – Vc].

Alors, le volume minimum nécessaire du réservoir $V_{rés}$ sera égal à la somme en valeurs absolues, de la plus grande valeur (positive)' V^+ ' et de la plus petite valeur (négative) ' V^- ' de cette différence, on obtiendra le résidu maximal journalier.

Donc, Le volume de régulation V_r est calculé selon la formule suivante :

$$V_{r} = \frac{Q_{max,j} \times R_{max}}{100}$$
;

Avec:

V_r: le volume de régulation (m³).

Q_{max,j}: le débit maximum journalier (m³/j).

R_{max}: résidu maximal journalier (%).

Tel que ce résidu représente $R_{max} = V^{-}$

$$R_{max} = |V^+| + |V^-|$$
 (%);

Pour calculer le volume total en (m^3) , on ajutant le volume de la réserve d'incendie (120 m^3)

$$V_T = V_r + V_{inc}$$
;

Cette méthode est très précise. Car, on dispose des statistiques suffisantes concernant la variation horaire de la consommation pendant la journée de pointe. Elle est illustrée par la figure suivante :

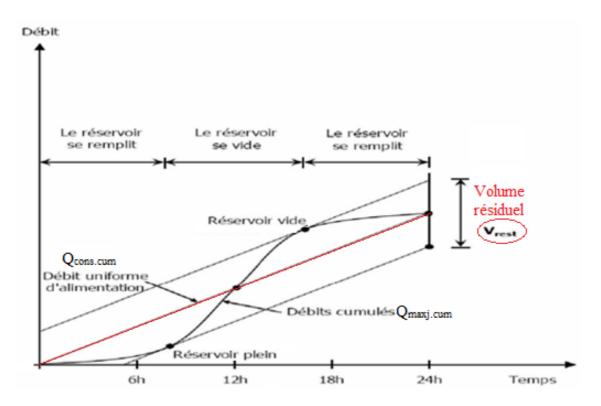


Figure III-5: Graphique de la méthode graphique.

III-6-2-Méthode analytique :

La méthode analytique consiste à faire un calcul de résidus entre un régime d'alimentation qui est caractérisé par un débit constant avec un régime de consommation caractérisé par un débit variable (en fonction de la consommation des habitants).

Le volume qui ressort de ce calcul est comme suit:

$$V_r = \frac{a \times Q_{max.j}}{100} \ ;$$

V_r: capacité résiduelle (m3).

a : fraction horaire du débit maximum journalier (%).

Q_{max,j}: La consommation maximale journalière (m³/j).

Tout on ajutant le volume de la réserve d'incendie, donc le volume total sera :

$$\mathbf{V}_{\mathrm{T}} = \mathbf{V}_{\mathrm{r}} + \mathbf{V}_{\mathrm{inc}}$$

V_T: capacité totale du réservoir (m³).

V_r: capacité résiduelle (m³).

 V_{inc} : volume d'incendie estimé à 120 m^3 .

III-7-Analyse de la capacité de stockage :

Le départ représenté dans le tableau suivant qui est la consommation de la population pendant la journée et la nuit, est tiré à partir de tableau **II.9** en fonction de nombre de la population de la zone haute de Bordj Menaiel.

La station de pompage fonctionnent 20h/j, depuis 4:00 jusqu'à 24:00.

Tableau III-1: Analyse de la capacité de stockage.

Heures (h)	Apport par la pompe (%)	Consommation Horaire en (%)	Arrivé au réservoir (%)	Départ du réservoir (%)	reste d'eau (%)
0-1	0	1.5		1, 5	8,5
1_2	0	1.5		1, 5	7
2_3	0	1.5		1, 5	5,5
3_4	0	1.5		1, 5	4
4_5	5	2.5	2,5		6,5
5_6	5	3.5	1,5		8
6_7	5	4.5	0,5		8,5
7_8	5	5.5		0,5	8
8_9	5	6.25		1,25	6,75
9_10	5	6.25		1,25	5,5
10_11	5	6.25		1, 25	4,25
11_12	5	6.25		1,25	3
12_13	5	5	0	0	3
13_14	5	5	0	0	3
14_15	5	5.5		0,5	2,5
15_16	5	6		1	1,5
16_17	5	6		1	0,5
17_18	5	5.5		0,5	0
18_19	5	5	0	0	0
19_20	5	4.5	0,5		0,5
20_21	5	4	1		1,5
21-22	5	3	2		3,5
22-23	5	2	3		6,5
23-24	5	1.5	3,5		10

D'après le tableau précédent, le résidu maximal pour la zone haute est de 10 %.Donc, le volume utile pour l'état actuel est donnes par la formule suivante:

$$V_{r} = \frac{Q_{max,j} \times R_{max}}{100} ;$$

Avec R_{max}=10 %

$$\mathbf{V}r = \frac{\mathbf{10} \times 3298,295}{\mathbf{100}} = 329,83m^3$$

Et le volume de réservoir $V_t = V_{cal} + V_{inc}$

Avec V_{inc}: volume réservé pour l'incendie ; il est estimé à 120m³

Donc

$$V_t = 329,83+120 = 449,83 \text{ m}^3$$

La capacité totale des réservoirs existants est de (2*1000) m³ +1000 m³, ce qui fait un volume total existant de 3000 m³, alors que le volume calculé est estimé à 499.83 m³.

Alors la capacité existante est largement suffisante pour satisfaire les besoins de notre agglomération.

III -7-1- vérification de la capacité de stockage future:

Tableau III-2: bilan besoin- stockage.

horizons	Actuel (2012)	Court terme (2018)	Moyen terme (2025)	Long terme (2042)
capacité existante (m ³)	3000	3000	3000	3000
capacité utile (m³)	449.83	486.79	562.41	704.68
déficit (m³)	0	0	0	0
Excès (m ³)	2550.15	2513.21	2437.59	2295.32

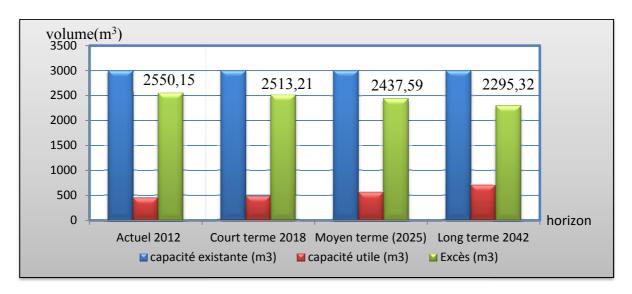


Figure III-6: Comparaison besoin -stockage.

Interprétation : D'après les résultats du bilan de comparaison besoin- stockage ci-dessus il apparait clairement que la capacité existante pour la zone haute est satisfaisante les besoins actuel et futur avec un excédent très important.

Conclusion:

Après avoir calculé le volume utile, on a constaté que la zone haute n'a pas besoin a des réservoirs des grandes capacités et que R1000m³ capable de satisfaire les demandes actuelles et futures facilement.

Chapitre IV

FONCTIONNEMENT ET SIMULATION DU RESEAU EXISTANT

Introduction:

Dans ce chapitre, nous allons procéder à une simulation du comportement hydraulique du réseau de distribution avec le logiciel **EPANET**. On va vérifier la fiabilité de notre réseau c'est à dire la détermination des vitesses et des pressions dans le réseau pour l'état actuel. Pour ce faire, nous allons calculer les débits aux nœuds et les débits en route pour chaque tronçon.

IV -1-Calcul du réseau de distribution :

Le calcul du réseau de distribution se fera pour les deux cas suivants :

- cas de pointe.
- cas de pointe plus incendie.

IV -1-1-Détermination des débits :

La détermination des débits dans un réseau mixte s'effectue de la manière suivante :

- On détermine la longueur de chaque tronçon du réseau mixte ;
- On calcul le débit en route pendant l'heure de pointe ;
- On détermine le débit spécifique en considérant le débit en route.

IV -1-1-Cas de pointe :

D'après le tableau II-9 (chapitre II) de la consommation horaire de notre agglomération, on constate que la pointe est entre 08h et 12h :

$$Q_{pte}=206,143$$
m³/h = 57,26 L//s

Q_{pte}: débit de Pointe de consommation

a) Débit route:

Le débit route est estimer de la manière suivante :

$$\mathbf{Q}_{\text{rte}} = \mathbf{Q}_{\text{pte}} - \Sigma \mathbf{Q}_{\text{cc}}$$

Avec:
$$\Sigma \mathbf{Q_{cc}} = \Sigma \mathbf{Q_{ind}} = 0$$

NB: les industries et les fermes ne sont pas branches sur le réseau d'eau potable, ces deux unités industriels sont dotes de leurs propres réservoirs.

Donc:
$$Q_{rte} = Q_{nte} = 57,26 \text{ l/s}$$

b) Débit spécifique :

$$\mathbf{q_{sp}} = \mathbf{Q_{route}} / \sum \mathbf{L}$$

Avec:

 Σ L: la somme des longueurs des tronçons qui assurent le service en route=12095 ml.

AN:
$$q_{sp} = \frac{57,26}{12095} = 0,004734187l/s/ml$$

$$q_{sp}=0.004734187 l/s/ml$$

c) Calcul du Débit route pour chaque tronçon :

On utilise l'expression suivante :

$$Q_{\text{rte},i} = q_{sp} x Li$$

Avec : qsp ; débit spécifique en l/s/m

Li: longueur de tronçon de l'ordre i.

d) Calcul du Débit nodal:

Les débits nodaux sont des débits concentrés en chaque nœud alimentant la population répartie autour de la moitié du tronçon de la conduite ayant en commun les nœuds considérés, ils sont déterminés par la formule suivante :

$$Qni = 0.5* \sum Qr$$

Où: - Qni =débit au nœud.

- \sum Qr : somme des débits en route des tronçons relies au nœud i.

Le tableau IV -1 présente les valeurs des débits routes et aux nœuds dans notre réseau :

Tableau IV-1:Calcul des débits nodaux

(Zone haute alimentée à partir de R1000 m³ (zone H'))

N° de	Tro	onçon	Longueur	Q_{spi}	Qr	∑Qr	Qn
Nœud	départ	arrivé	m	l/s/ml	l/s	l/s	l/s
H'01	H'01	R1000m ³	519,34	0,004734187		0,7651	0,383
	H'01	H'02	161,62	0,004734187	0,7651		
H'02	H'02	H'01	161,62	0,004734187	0,7651	2,4726	1,236
	H'02	H'03	360,67	0,004734187	1,7075		
H'03	H'03	H'02	360,67	0,004734187	1,7075	2,4924	1,246
	H'03	H'04	165,8	0,004734187	0,7849		
H'04	H'04	H'03	165,8	0,004734187	0,7849	2,4192	1,210
	H'04	H'05	345,2	0,004734187	1,6342		
H'05	H'05	H'04	345,2	0,004734187	1,6342	1,8964	0,948
	H'05	H'06	55,37	0,004734187	0,2621		
H'06	H'06	H'05	55,37	0,004734187	0,2621	2,9365	1,468
	H'06	H'07	173,9	0,004734187	0,8233		
	H'06	H'28	391	0,004734187	1,8511		
H'07	H'07	H'06	173,9	0,004734187	0,8233	1,7734	0,887
	H'07	H'08	200,7	0,004734187	0,9502		
H'08	H'08	H'07	200,7	0,004734187	0,9502	1,6054	0,803
	H'08	H'09	138,4	0,004734187	0,6552		
H'09	H'09	H'08	138,4	0,004734187	0,6552	1,1301	0,565
	H'09	H'10	100,3	0,004734187	0,4748		
H'10	H'10	H'09	100,3	0,004734187	0,4748	0,6801	0,340
	H'10	H'11	43,36	0,004734187	0,2053		
H'11	H'11	H'10	43,36	0,004734187	0,2053	1,6979	0,849
	H'11	H'12	157,29	0,004734187	0,7446		
	H'11	H'20	158	0,004734187	0,7480		
H'12	H'12	H'11	157,29	0,004734187	0,7446	2,1410	1,070
	H'12	H'13	37,55	0,004734187	0,1778		
	H'12	H'21	257,4	0,004734187	1,2186		
H'13	H'13	H'12	37,55	0,004734187	0,1778	0,6038	0,302
	H'13	H'14	90	0,004734187	0,4261		
H'14	H'14	H'13	90	0,004734187	0,4261	0,5528	0,276
	H'14	H'15	26,77	0,004734187	0,1267		
H'15	H'15	H'14	26,77	0,004734187	0,1267	0,4828	0,241
	H'15	H'16	75,22	0,004734187	0,3561		
H'16	H'16	H'15	75,22	0,004734187	0,3561	2,3872	1,194
	H'16	H'17	381,28	0,004734187	1,8051		
	H'16	H'22	47,75	0,004734187	0,2261		

Suite de tableau IV-1

N° de	Tro	nçon	Longueur	Q_{spi}	Qr	∑Qr	Qn
Nœud	départ	arrivé	m	l/s/ml	l/s	l/s	l/s
	H'17	H'16	381,28	0,004734187	1,8051		1,560
H'17	H'17	H'18	277,9	0,004734187	1,3156	3,1207	
	H'18	H'17	277,9	0,004734187	1,3156		1,552
H'18	H'18	H'19	377,7	0,004734187	1,7881	3,1037	
	H'19	H'18	377,7	0,004734187	1,7881		1,294
H'19	H'19	H'20	169,02	0,004734187	0,8002	2,5883	
	H'20	H'19	169,02	0,004734187	0,8002		0,774
H'20	H'20	H'11	158	0,004734187	0,7480	1,5482	
H'21	H'21	H'12	257,4	0,004734187	1,2186	1,2186	0,609
	H'22	H'16	47,75	0,004734187	0,2261	_	1,306
H'22	H'22	H'23	504,1	0,004734187	2,3865	2,6126	
	H'23	H'22	504,1	0,004734187	2,3865		1,643
	H'23	H'24	112,49	0,004734187	0,5325	_	
H'23	H'23	H'32	77,69	0,004734187	0,3678	3,2869	
	H'24	H'23	112,49	0,004734187	0,5325	_	0,339
H'24	H'24	H'25	30,88	0,004734187	0,1462	0,6787	
	H'25	H'24	30,88	0,004734187	0,1462	_	0,315
H'25	H'25	H'26	102	0,004734187	0,4829	0,6291	
	H'26	H'25	102	0,004734187	0,4829		0,833
H'26	H'26	H'27	250	0,004734187	1,1835	1,6664	
H'27	H'27	H'26	250	0,004734187	1,1835	1,1835	0,592
	H'28	H'6	391	0,004734187	1,8511		1,056
H'28	H'28	H'29	54,95	0,004734187	0,2601	2,1112	
	H'29	H'28	54,95	0,004734187	0,2601		0,728
H'29	H'29	H'30	252,4	0,004734187	1,1949	1,4551	
	H'30	H'29	252,4	0,004734187	1,1949		0,793
H'30	H'30	H'31	82,41	0,004734187	0,3901	1,5851	
	H'31	H'30	82,41	0,004734187	0,3901		1,938
Н'31	H'31	H'32	736,48	0,004734187	3,4866	3,8768	
	H'32	H'31	736,48	0,004734187	3,4866		1,927
H'32	H'32	H'23	77,69	0,004734187	0,3678	3,8544	

Tableau IV-2:calcul des débits nodaux (Zone haute alimentée à partir de R2x1000 m³ (zone H))

N° de Nœud	Tr	onçon	Longueur	Q _{spi}	Qr	∑Qr	Qn
	départ	arrivé	m	l/s/ml	l/s	l/s	l/s
H01	H01	R2X1000m ³	1800	0,004734187		1,5358	0,768
	H01	H02	324,4	0,004734187	1,5358		
H02	H02	H01	324,4	0,004734187	1,5358	2,8247	1,412
	H02	H03	272,25	0,004734187	1,2889		
H03	H03	H02	272,25	0,004734187	1,2889	2,9516	1,476
	H03	H04	351,21	0,004734187	1,6627		
H04	H04	H03	351,21	0,004734187	1,6627	2,9400	1,470
	H04	H05	269,8	0,004734187	1,2773		
H05	H05	H04	269,8	0,004734187	1,2773	2,6956	1,348
	H05	H06	299,6	0,004734187	1,4184		
H06	H06	H05	299,6	0,004734187	1,4184	2,5886	1,294
	H06	H07	247,19	0,004734187	1,1702		
H07	H07	H06	247,19	0,004734187	1,1702	3,1943	1,597
	H07	H08	254,13	0,004734187	1,2031		
	H07	H09	156,75	0,004734187	0,7421		
	H07	H10	16,67	0,004734187	0,0789		
H08	H08	H07	254,13	0,004734187	1,2031	1,2031	0,602
H09	H09	H07	156,75	0,004734187	0,7421	0,7421	0,371
H10	H10	H07	16,67	0,004734187	0,0789	0,3326	0,166
	H10	H11	53,59	0,004734187	0,2537		
H11	H11	H10	53,59	0,004734187	0,2537	0,8488	0,424
	H11	H12	125,7	0,004734187	0,5951		
H12	H12	H11	125,7	0,004734187	0,5951	1,3671	0,684
	H12	H13	71,08	0,004734187	0,3365		
	H12	H14	91,99	0,004734187	0,4355		
H13	H13	H12	71,08	0,004734187	0,3365	0,3365	0,168
H14	H14	H12	91,99	0,004734187	0,4355	1,3219	0,661
	H14	H15	187,24	0,004734187	0,8864		
H15	H15	H14	187,24	0,004734187	0,8864	2,1439	1,072
	H15	H16	265,62	0,004734187	1,2575		
H16	H16	H15	265,62	0,004734187	1,2575	1,6111	0,806
	H16	H17	74,7	0,004734187	0,3536		
H17	H17	H16	74,7	0,004734187	0,3536	0,9081	0,454
	H17	H18	117,12	0,004734187	0,5545		

Suite de tableau IV-2

N° de	Tronçons		Tronçons Longueur Q _{spi}		Qr	∑Qr	Qn
Nœud	1						
	départ	arrivé	m	l/s/ml	l/s	l/s	l/s
H18	H18	H17	117,12	0,004734187	0,5544	1,0502	0,525
	H18	H40	63,18	0,004734187	0,2991	_	
	H18	H19	41,55	0,004734187	0,1967		
H19	H19	H18	41,55	0,004734187	0,1967	0,7351	0,368
	H19	H21	28,25	0,004734187	0,1337		
	H19	H20	85,48	0,004734187	0,4047		
H20	H20	H19	85,48	0,004734187	0,4047	0,4047	0,202
H21	H21	H19	28,25	0,004734187	0,1337	0,6790	0,339
	H21	H22	71,22	0,004734187	0,3372		
	H21	H23	43,95	0,004734187	0,2081		
H22	H22	H21	71,22	0,004734187	0,3372	0,3372	0,169
H23	H23	H21	43,95	0,004734187	0,2081	0,5170	0,258
	H23	H24	65,5	0,004734187	0,3089		
H24	H24	H23	65,5	0,004734187	0,3101	0,7096	0,355
	H24	H25	84,39	0,004734187	0,3995		
H25	H25	H24	84,39	0,004734187	0,3995	0,8248	0,412
	H25	H26	89,83	0,004734187	0,4253		
H26	H26	H25	89,83	0,004734187	0,4253	0,7400	0,370
	H26	H27	66,49	0,004734187	0,3148		
H27	H27	H26	66,49	0,004734187	0,3148	1,1315	0,566
	H27	H28	34,71	0,004734187	0,1643	1	
	H27	H31	137,8	0,004734187	0,6524		
H28	H28	H27	34,71	0,004734187	0,1643	0,5515	0,276
	H28	H29	42,19	0,004734187	0,1997		
	H28	H30	39,6	0,004734187	0,1875	1	
H29	H29	H28	42,19	0,004734187	0,1997	0,1997	0,100
H30	H30	H28	39,6	0,004734187	0,1875	0,1875	0,094
Н31	H31	H27	137,8	0,004734187	0,6524	1,2884	0,644
	H31	H32	134,34	0,004734187	0,6360		
H32	H32	H31	134,34	0,004734187	0,6360	1,1514	0,576
	H32	H33	108,86	0,004734187	0,5154		
Н33	H33	H32	108,86	0,004734187	0,5154	1,4346	0,717
	H33	H34	64,17	0,004734187	0,3038		•
	H33	H37	130	0,004734187	0,6154	1	
H34	H34	H33	64,17	0,004734187	0,3038	0,7247	0,362
	H34	H35	33,6	0,004734187	0,1591	1	ĺ
	H34	H36	55,3	0,004734187	0,2618	1	
Н35	H35	H34	33,6	0,004734187	0,1591	0,1591	0,080
H36	H36	H34	55,3	0,004734187	0,2618	0,2618	0,131
Н37	H37	H33	130	0,004734187	0,6154	0,6962	0,348
	H37	H38	17,06	0,004734187	0,0808	1	

Suite de tableau IV-2

N° de Nœud	Tronçons		Longueur	$Q_{ m spi}$	Qr	∑Qr	Qn
	départ	arrivé	m	l/s/ml	l/s	l/s	l/s
H38	H38	H37	17,06	0,004734187	0,0807	0,7631	0,382
	H38	H40	81,06	0,004734187	0,3838		
	H38	H42	12,83	0,004734187	0,0607		
	H38	H39	50,24	0,004734187	0,2378		
H39	H39	H38	50,24	0,004734187	0,2378	0,2378	0,119
H40	H40	H18	63,18	0,004734187	0,2991	1,0780	0,539
	H40	H38	81,06	0,004734187	0,3838		
	H40	H41	83,47	0,004734187	0,3952		
H41	H41	H40	83,47	0,004734187	0,3952	0,3952	0,198
H42	H42	H38	12,83	0,004734187	0,0607	0,7294	0,365
	H42	H43	141,24	0,004734187	0,6687		
H43	H43	H42	141,24	0,004734187	0,6687	1,0611	0,531
	H43	H44	82,9	0,004734187	0,3925		
H44	H44	H43	82,9	0,004734187	0,3925	1,4043	0,702
	H44	H49	181,72	0,004734187	0,8603		
	H44	H45	32,01	0,004734187	0,1515		
H45	H45	H44	32,01	0,004734187	0,1515	0,7391	0,370
	H45	H46	124,11	0,004734187	0,5876		
H46	H46	H45	124,11	0,004734187	0,5876	1,0321	0,516
	H46	H47	93,91	0,004734187	0,4446		
H47	H47	H46	93,91	0,004734187	0,4446	1,3876	0,694
	H47	H48	199,2	0,004734187	0,9431		
H48	H48	H47	199,2	0,004734187	0,9431	0,9431	0,472
H49	H49	H44	181,72	0,004734187	0,8603	0,8603	0,430

IV -1-1-2-Cas de pointe + incendie :

Pour ce cas, c'est le même calcul que le cas de pointe mais on doit s'assurer que le débit nécessaire qui est de **17 l/s** donne par le réservoir se trouve au point le plus défavorable c.a. d. au nœud H'27 de cote de terrain 46.5 et de nœud H 48 de cote de terrain 38.95 m et qui sont situe respectivement dans la zone H' et la zone H

Dans ce cas le débit d'incendie sera considéré comme un débit concentré

Donc :Qni = $0.5*\sum Qr + Qcc$ (Voir annexe N^0 **IV-1**).

IV -2-Résultat de la simulation:

IV -2-1-Cas de pointe :

a)Résultat de la première simulation (zone H'):

Les vitesses et les pertes de charges au niveau du réseau sont représentées dans le tableau IV-3 :

Tableau IV -3 : Vitesse et perte de charge dans le réseau existant :

Tronçon	Longueur	Diamètre	Débit	Vitesse	Pert.Charge Unit.
,	m	mm	l/s	m/s	m/km
H'01-H'02	161,6	350	29,82	0,31	0,27
H'02-H'03	360,67	350	-28,66	0,3	0,25
H'03-H'04	165,8	350	-27,41	0,28	0,23
H'04-H'05	345,2	350	-26,2	0,27	0,21
H'05-H'06	55,37	350	25,25	0,26	0,2
H'06-H'07	173,9	350	-17,73	0,18	0,10
H'07-H'08	200,7	350	-16,84	0,18	0,09
H'08-H'09	138,4	350	-16,04	0,17	0,021
H'09-H'10	100,3	350	-15,47	0,16	0,08
H'10-H'11	43,36	350	-15,13	0,16	0,08
H'11-H'12	157,29	200	8,36	0,26	0,40
H'12-H'21	257,4	125	0,61	0,05	0,04
H'12-H'13	37,55	200	6,62	0,21	0,26
H'13-H'14	90,00	200	6,32	0,20	0,24
H'14-H'15	26,77	200	6,04	0,19	0,22
H'15-H'16	75,22	200	5,80	0,18	0,21
H'16-H'17	381,28	200	-0,80	0,03	0,01
H'17-H'18	277,90	200	2,36	0,08	0,04
H'18-H'19	377,70	200	-3,91	0,12	0,10
H'19-H'20	169,02	200	-5,21	0,17	0,17
H'11-H'20	158,00	200	-5,98	0,19	0,22
H'16-H'22	47,75	150	5,41	0,31	0,75
H'22-H'23	504,10	150	4,11	0,23	0,45
H'6-H'28	391,00	160	6,06	0,3	0,67
H'28-H'29	54,95	160	5,00	0,25	0,47
H'29-H'30	252,40	160	4,27	0,21	0,36
H'30-H'31	82,41	160	-3,48	0,17	0,25
H'31-H'32	736,48	160	-1,54	0,08	0,06
H'32-H'23	77,69	160	-0,38	0,02	0,001
H'23-H'24	112,40	150	2,08	0,12	0,13
H'24-H'25	30,88	150	-1,74	0,10	0,10
H'25-H'26	102,00	150	1,42	0,08	0,07
H'26-H'27	250,00	150	0,59	0,03	0,01

Les charges et les pressions dans le réseau sont représenté dans le tableau suivant :

Tableau IV-4 : Charges et pressions dans le réseau existant :

N ⁰ Nœud	Altitude	Demande	Charge	Pression
	m	l/s	m	m
Nœud H'01	104,4	0,383	126,66	22,26
Nœud H'02	90,2	1,246	126,61	36,41
Nœud H'03	75	1,246	126,52	51,52
Nœud H'04	79,5	1,21	126,48	46,98
Nœud H'05	65,3	0,948	126,41	61,11
Nœud H'06	61,1	1,468	126,4	65,3
Nœud H'07	64,15	0,887	126,38	62,23
Nœud H'08	69,1	0,803	126,36	57,26
Nœud H'09	71,6	0,565	126,35	54,75
Nœud H'10	60,8	0,34	126,34	65,54
Nœud H'11	59,2	0,849	126,34	67,34
Nœud H'12	61,7	1,07	126,28	64,58
Nœud H'13	61,4	0,302	126,27	64,87
Nœud H'14	59,2	0,276	126,24	67,04
Nœud H'15	58,7	0,241	126,24	67,54
Nœud H'16	56,3	1,19	126,22	69,52
Nœud H'17	35,6	1,56	126,23	90,63
Nœud H'18	58,5	1,55	126,24	67,74
Nœud H'19	54,8	1,29	126,28	71,48
Nœud H'20	50,1	0,77	126,3	76,2
Nœud H'21	41,5	0,61	126,27	84,77
Nœud H'22	50,5	1,31	126,14	75,69
Nœud H'23	34,5	1,64	125,96	91,46
Nœud H'24	51	0,34	125,94	74,94
Nœud H'25	51,1	0,31	125,94	74,84
Nœud H'26	53,3	0,83	125,93	72,63
Nœud H'27	46,5	0,59	125,93	79,43
Nœud H'28	41,75	1,106	126,14	84,39
Nœud H'29	40,9	0,73	126,11	85,21
Nœud H'30	40,3	0,79	126,02	85,72
Nœud H'31	38,9	1,94	126	87,1
Nœud H'32	34,5	1,93	125,96	91,46

b) Résultat de la deuxième simulation (zone H) :

Les vitesses et les pertes de charges au niveau du réseau sont représenté dans les tableaux suivant :

Tableau IV-5 : Vitesse et perte de charge dans le réseau existant :

Troncon	Longueur	Diamètre	Débit	Vitesse	Pert.Charge Unit.
	m	mm	l/s	m/s	m/km
H01-H02	324,4	400	26,67	0,21	0,11
H02-H03	272,25	400	25,25	0,20	0,1
Н03-Н04	351,21	400	-23,78	0,19	0,09
H04-H05	269,8	400	22,31	0,18	0,08
H05-H06	299,6	400	-20,96	0,17	0,07
H06-H07	247,19	400	-19,67	0,16	0,07
H07-H08	254,13	125	0,6	0,05	0,04
Н07-Н09	156,75	400	0,37	0,00	0
H07-H10	16,67	315	-17,1	0,22	0,16
H10-H11	53,59	315	-16,93	0,22	0,16
H12-H11	125,7	315	-16,5	0,21	0,15
H12-H13	71,08	110	-0,62	0,07	0,07
H12-H14	91,99	315	15,2	0,20	0,13
H14-H15	187,24	315	14,54	0,19	0,12
H15-H16	265,62	315	13,47	0,17	0,1
H16-H17	74,7	315	-12,66	0,16	0,09
H17-H18	117,12	315	12,21	0,16	0,09
H18-H40	63,18	315	8,32	0,11	0,04
H18-H19	41,55	160	3,36	0,17	0,23
H19-H20	85,48	80	0,2	0,04	0,04
H19-H21	28,25	160	2,79	0,14	0,16
H21-H22	71,22	80	0,17	0,03	0,02
H21-H23	43,95	160	-2,29	0,11	0,12
H23-H24	65,25	160	2,03	0,10	0,09
H24-H25	84,39	160	1,67	0,08	0,07
H25-H26	89,83	160	1,26	0,06	0,04
H27-H26	66,49	160	-0,89	0,04	0,02
H27-H28	34,71	80	0,47	0,09	0,2
H28-H30	39,6	80	0,09	0,02	0,01
H28-H29	42,19	80	0,1	0,02	0,01

Suite de tableau IV-5

Tronçons	Longueur	Diamètre	Débit	Vitesse	Pert.Charge Unit.
	m	mm	l/s	m/s	m/km
H27-H31	137,8	160	-0,14	0,01	0,00
H31-H32	134,34	160	0,79	0,04	0,02
Н32-Н33	108,86	160	1,36	0,07	0,05
H33-H34	64,17	80	0.57	0,11	0,28
H34-H35	33,6	80	0,08	0,02	0,01
H36-H34	55,3	80	-0,13	0,03	0,01
Н37-Н33	130	160	2,65	0,13	0,15
Н37-Н38	17,06	160	3	0,15	0,19
H38-H39	50,24	80	0,12	0,02	0,01
H38-H40	81,06	315	7,58	0,10	0,04
H40-H41	83,47	80	0,2	0,04	0,03
H42-H38	12,83	160	-4,08	0,20	0,33
H42-H43	141,24	160	-3,72	0,19	0,28
H43-H44	82,9	160	-3,18	0,16	0,21
H44-H45	32,01	110	-2,05	0,22	0,59
H45-H46	124,11	110	1,68	0,18	0,41
H46-H47	93,91	110	1,17	0,12	0,21
H47-H48	199,2	110	-0,47	0,05	0,04
H44-H49	181,72	160	0,43	0,02	0,01

Les charges et les pressions dans le réseau sont représenté dans le tableau suivant :

Tableau IV-6: Charges et pressions dans le réseau existant :

	Altitude	Demande	Charge	Pression
N° Nœud	m	l/s	m	m
Nœud H01	75,9	0,77	201,78	125,88
Nœud H02	55,2	1,41	201,75	146,55
Nœud H03	43,1	1,48	201,72	158,62
Nœud H04	42,7	1,47	201,69	158,99
Nœud H05	42,2	1,35	201,66	159,46
Nœud H06	65,1	1,29	201,64	136,54
Nœud H07	50,8	1,60	201,36	150,83
Nœud H08	58,8	0,60	201,62	142,82
Nœud H09	72,61	0,37	201,63	129,02
Nœud H10	50,8	0,17	201,62	150,82
Nœud H11	60	0,42	201,62	141,62
Nœud H12	55,1	0,68	201,6	146,5
Nœud H13	57,5	0,17	201,59	144,09
Nœud H14	48,5	0,66	201,58	153,08
Nœud H15	51,1	1,07	201,56	150,46
Nœud H16	53,6	0,81	201,53	147,93
Nœud H17	46,5	0,45	201,53	155,03
Nœud H18	46,5	0,52	201,52	155,02
Nœud H19	62,65	0,37	201,51	138,86
Nœud H20	55,5	0,20	201,5	146
Nœud H21	62,75	0,34	201,5	138,75
Nœud H22	55,65	0,17	201,5	145,85
Nœud H23	63,25	0,26	201,5	138,25
Nœud H24	63,45	0,35	201,49	138,04
Nœud H25	65,5	0,41	201,49	135,99
Nœud H26	65,5	0,37	201,48	135,98
Nœud H27	67,55	0,57	201,48	133,93
Nœud H28	65,1	0,28	201,47	136,37
Nœud H29	65	0,10	201,47	136,47
Nœud H30	65,1	0,09	201,47	136,37
Nœud H31	58,5	0,64	201,48	142,98
Nœud H32	52,5	0,58	201,48	148,98
Nœud H33	44,5	0,72	201,49	156,99

N° Nœud Altitude **Demande** Charge **Pression** l/s m m m Nœud H34 201,47 145,47 56 0,36 Nœud H35 56,1 0,08 201,47 145,37 Nœud H36 55,9 0,13 201,47 145,57 Nœud H37 42,75 0,35 201,51 158,76 42,8 0,38 201,51 Nœud H38 158,71 0,12 201,51 147,26 Nœud H39 54,25 201,51 Nœud H40 44,7 0,54 156,81 201,51 Nœud H41 55,5 0,20 158,71

0,37

0,53

0,70

0,37

0,52

0,69

0,47

0,43

201,51

201,47

201,45

201,43

201,38

201,36

201,35

201,45

158,76

156,97

155,75

155,68

156,48

161,26

162,4

161,55

Suite de tableau IV-6

IV -2-2- Cas de pointe + incendie :

Nœud H42

Nœud H43

Nœud H44

Nœud H45

Nœud H46

Nœud H47

Nœud H48

Nœud H49

a)Résultat de la première simulation (zone H') : (Voir annexe N⁰ IV-2).

42,75

44,5

45,7

45,75

44,9

40,1

38,95

40

b) Résultat de la deuxième simulation (zone H) : (Voir annexe N⁰ IV-3).

IV -4-Interprétation des résultats de la simulation:

La zone haute peut être convenablement alimentée à partir du réservoir 1000 m3 de côte 124,8 m. L'emplacement des deux réservoirs 2x1000 m3 des côtes 200 m nous pourrait inconvenante pour la zone haute.

Cette constations a été faite hors de la simulation qui fait ressortir les conclusions suivantes :

• 1 ere Simulation à partir de réservoir 1000 m3 :

Les résultats de cette simulation à prit de cette côte font ressortir les résultats suivantes :

- des pressions acceptable avec un maximum de 7 bars et un minimum 2 bars au niveau du nœud de la conduite principale.
- des surpressions avec un maximum de 9 bars au niveau de quelques nœuds surtout en cas de pointe.
- ➤ des vitesses inferieure à 0,3 m/s sur tous les tronçons.

• 2^{ere} Simulation à partir les 2x1000 m3 :

Les résultats de cette simulation font ressortir les résultats suivantes :

- des pressions supérieures à 12 bars sur tous les nœuds
- ➤ le manque de perte de change et des vitesses inferieure a 0.3 m/s sur tous les tronçons.

Remarque:

Les résultats de la simulation sur les tronçons et sur les nœuds pour le réseau à l'état actuel sont montres dans les figures (Voir annexe N⁰ IV-4).

Conclusion:

La simulation et l'équilibre de distribution nous émettre à préconiser l'alimentation de la zone haute à partir du réservoir R 1000 m3 et le réservoir R2x1000 m3 sera destiné pour d'autres usages, avec une rénovation de notre réseau pour répondre aux besoins de cette agglomération dans le temps.

CHAPITRE V RENOVATION DU RESEAU

Introduction:

Après une simulation hydraulique sur notre réseau à l'état actuel et des recommandations sur les insuffisances hydrauliques, nous allons dans ce chapitre procéder l'alimentation de cette zone à partir du réservoir R 1000 m3 avec une rénovation de réseau de distribution pour permettra de satisfaire les besoins croissants de notre agglomération et cela jusqu'à l'horizon 2042

V-1-Choix du matériau des conduites :

Le choix des matériaux utilisé est en fonction de la pression, de l'agressivité des eaux ou du sol, et de' l'ordre économique (coût, disponibilité sur le marché), ainsi que la bonne jonction de la conduite avec les équipements auxiliaires (joints, coudes, vannes) permettent de faire le bon choix.

Parmi les matériaux à utiliser on distingue entre autre : L'acier, la fonte ductile, le PVC (polyvinyle de chlorure) et le PEHD (polyéthylène haute densité).

V-1-1-Tuyaux en PEHD:

• Les avantages :

- Bonne résistance à la corrosion interne, externe, microbiologique et à l'entartage.
 - Disponibilité sur le marché.
- Facilité de pose (grande flexibilité), possibilité d'enroulement en couronne pour les petits diamètres.
 - Fiabilité au niveau des branchements (réduction de risque de fuite).
 - Bonne caractéristique hydraulique.
- Durée de vie prouvée par l'expérience et le test de vieillissement théoriquement de 50 ans à une température de 20°c.

• Les inconvénients :

- Nécessite une grande technicité pour la jonction.

Dans notre cas, nous avons opté pour les tuyaux en PEHD, suite à des nombreux avantages qu'ils procurent.

V-2- Calcul hydraulique du réseau de distribution pour l'horizon 2042 :

Le calcul du réseau de distribution se fera pour les deux cas suivants :

- cas de pointe.
- cas de pointe plus incendie.

V-2-1- Détermination des débits :

La détermination des débits dans un réseau mixte s'effectue de la manière suivante.

- On détermine la longueur de chaque tronçon du réseau.
- On calcul le débit en route pendant l'heure de pointe.
- On détermine le débit spécifique en considérant le débit en route.

V-2-1-1-Cas de pointe :

D'après le tableau II-10 de la consommation horaire de notre agglomération on constate que la pointe est entre 08h et 12h du matin. Avec un débit de pointe de consommation égal à :

$$Q_{pte} = 101,581 \text{ l/s}.$$

a) Débit route : Qrte

$$\mathbf{Q}_{\text{rte}} = \mathbf{Q}_{\text{pte}} - \mathbf{Q}_{\text{cc}}$$
 Avec : $\mathbf{Q}_{\text{cc}} = 0$

Donc: $Q_{rte} = Q_{pte} = 101.58 \text{ l/s}$

b) Débit spécifique :
$$Q_{sp} = \frac{Qrte}{\sum L}$$

Done: Qsp =
$$\frac{101.58}{12095}$$
 = 0, 0083927 L/s/m

Les résultants de calculs des débits sont représentés dans le tableau qui suit :

Tableau V-1 : calcul des débits nodaux

N° de	Tro	nçon	Longueur	Q_{spi}	Qr	∑Qr	Qn
Nœud	départ	arrivé	m	l/s/ml	l/s	1/s	l/s
H'01	H'01	R1000m ³	519,34	0,0083927		1,356	0,678
	H'01	H'02	161,62	0,0083927	1,356		ŕ
H'02	H'02	H'01	161,62	0,0083927	1,356	4,383	2,192
	H'02	H'03	360,67	0,0083927	3,027		ŕ
H'03	H'03	H'02	360,67	0,0083927	3,027	4,419	2,209
	H'03	H'04	165,8	0,0083927	1,392		ŕ
H'04	H'04	H'03	165,8	0,0083927	1,392	2,243	1,122
	H'04	H01	101,5	0,0083927	0,852		
H'05	H'05	H01	243,7	0,0083927	2,045	2,51	1,255
	H'05	H'06	55,37	0,0083927	0,465		
H'06	H'06	H'05	55,37	0,0083927	0,465	5,206	2,603
	H'06	H'07	173,9	0,0083927	1,459	1	
	H'06	H'28	391	0,0083927	3,282	1	
H'07	H'07	H'06	173,9	0,0083927	1,459	3,144	1,572
	H'07	H'08	200,7	0,0083927	1,684		ŕ
H'08	H'08	H'07	200,7	0,0083927	1,684	2,846	1,423
	H'08	H'09	138,4	0,0083927	1,162	1	
H'09	H'09	H'08	138,4	0,0083927	1,162	2,003	1,002
	H'09	H'10	100,3	0,0083927	0,842	1	
H'10	H'10	H'09	100,3	0,0083927	0,842	1,206	0,603
	H'10	H'11	43,36	0,0083927	0,364	1	
H'11	H'11	H'10	43,36	0,0083927	0,364	3,01	1,505
	H'11	H'12	157,29	0,0083927	1,32	1	
	H'11	H'20	158	0,0083927	1,326	1	
H'12	H'12	H'11	157,29	0,0083927	1,32	3,796	1,898
	H'12	H'13	37,55	0,0083927	0,315		
	H'12	H'21	257,4	0,0083927	2,16	1	
H'13	H'13	H'12	37,55	0,0083927	0,315	1,07	0,535
	H'13	H'14	90	0,0083927	0,755		
H'14	H'14	H'13	90	0,0083927	0,755	0,98	0,49
	H'14	H'15	26,77	0,0083927	0,225		
H'15	H'15	H'14	26,77	0,0083927	0,225	0,856	0,428
	H'15	H'16	75,22	0,0083927	0,631		
H'16	H'16	H'15	75,22	0,0083927	0,631	4,232	2,116
	H'16	H'17	381,28	0,0083927	3,2]	
	H'16	H'22	47,75	0,0083927	0,401		
H'17	H'17	H'16	381,28	0,0083927	3,2	5,532	2,766
	H'17	H'18	277,9	0,0083927	2,332]	
H'18	H'18	H'17	277,9	0,0083927	2,332	5,502	2,751
	H'18	H'19	377,7	0,0083927	3,17]	

Suite de tableau V-1

N° de	Tro	nçon	Longueur	Q _{spi}	Qr	∑Qr	Qn
Nœud	départ	arrivé	m	l/s/ml	l/s	l/s	l/s
H'19	H'19	H'18	377,7	0,0083927	3,17	4,588	2,294
	H'19	H'20	169,02	0,0083927	1,419		
H'20	H'20	H'19	169,02	0,0083927	1,419	2,745	1,372
	H'20	H'11	158	0,0083927	1,326	1	
H'21	H'21	H'12	257,4	0,0083927	2,16	2,16	1,08
H'22	H'22	H'16	47,75	0,0083927	0,401	4,632	2,316
	H'22	H'23	504,1	0,0083927	4,231	1	
H'23	H'23	H'22	504,1	0,0083927	4,231	5,827	2,913
	H'23	H'24	112,49	0,0083927	0,944		
	H'23	H'32	77,69	0,0083927	0,652	1	
H'24	H'24	H'23	112,49	0,0083927	0,944	1,203	0,602
	H'24	H'25	30,88	0,0083927	0,259]	
H'25	H'25	H'24	30,88	0,0083927	0,259	1,115	0,558
	H'25	H'26	102	0,0083927	0,856		
H'26	H'26	H'25	102	0,0083927	0,856	2,954	1,477
	H'26	H'27	250	0,0083927	2,098		
H'27	H'27	H'26	250	0,0083927	2,098	2,098	1,049
H'28	H'28	H'6	391	0,0083927	3,282	3,743	1,871
	H'28	H'29	54,95	0,0083927	0,461		
H'29	H'29	H'28	54,95	0,0083927	0,461	2,58	1,29
	H'29	H'30	252,4	0,0083927	2,118]	
H'30	H'30	H'29	252,4	0,0083927	2,118	2,81	1,405
	H'30	H'31	82,41	0,0083927	0,692]	
Н'31	H'31	H'30	82,41	0,0083927	0,692	6,873	3,436
	H'31	H'32	736,48	0,0083927	6,181		
Н'32	H'32	H'31	736,48	0,0083927	6,181	6,833	3,417
	H'32	H'23	77,69	0,0083927	0,652		
H01	H01	H'04	101,5	0,0083927	0,852	5,62	2,81
	H01	H'05	243,7	0,0083927	2,045		
	H01	H02	324,4	0,0083927	2,723		
H02	H02	H01	324,4	0,0083927	2,723	5,008	2,504
	H02	H03	272,25	0,0083927	2,285		
H03	H03	H02	272,25	0,0083927	2,285	5,233	2,616
	H03	H04	351,21	0,0083927	2,948		
H04	H04	H03	351,21	0,0083927	2,948	5,212	2,606
	H04	H05	269,8	0,0083927	2,264		

Suite de tableau V-1

N° de	Troi	ıçon	Longueur	Q _{spi}	Qr	∑Qr	Qn
Nœud	départ	arrivé	m	l/s/ml	l/s	l/s	l/s
H05	H05	H04	269,8	0,0083927	2,264	4,779	2,389
	H05	H06	299,6	0,0083927	2,514		
H06	H06	H05	299,6	0,0083927	2,514	4,589	2,295
	H06	H07	247,19	0,0083927	2,075]
H07	H07	H06	247,19	0,0083927	2,075	5,663	2,831
	H07	H08	254,13	0,0083927	2,133		
	H07	H09	156,75	0,0083927	1,316		
	H07	H10	16,67	0,0083927	0,14		
H08	H08	H07	254,13	0,0083927	2,133	2,133	1,066
H09	H09	H07	156,75	0,0083927	1,316	1,316	0,658
H10	H10	H07	16,67	0,0083927	0,14	0,59	0,295
	H10	H11	53,59	0,0083927	0,45		
H11	H11	H10	53,59	0,0083927	0,45	1,505	0,752
	H11	H12	125,7	0,0083927	1,055		
H12	H12	H11	125,7	0,0083927	1,055	2,424	1,212
	H12	H13	71,08	0,0083927	0,597		
	H12	H14	91,99	0,0083927	0,772		
H13	H13	H12	71,08	0,0083927	0,597	0,597	0,298
H14	H14	H12	91,99	0,0083927	0,772	2,343	1,172
	H14	H15	187,24	0,0083927	1,571		
H15	H15	H14	187,24	0,0083927	1,571	3,801	1,9
	H15	H16	265,62	0,0083927	2,229		
H16	H16	H15	265,62	0,0083927	2,229	2,856	1,428
	H16	H17	74,7	0,0083927	0,627		
H17	H17	H16	74,7	0,0083927	0,627	1,61	0,805
	H17	H18	117,12	0,0083927	0,983		
H18	H18	H17	117,12	0,0083927	0,983	1,862	0,931
	H18	H40	63,18	0,0083927	0,53		
	H18	H19	41,55	0,0083927	0,349		
H19	H19	H18	41,55	0,0083927	0,349	1,303	0,652
	H19	H21	28,25	0,0083927	0,237		
	H19	H20	85,48	0,0083927	0,717		
H20	H20	H19	85,48	0,0083927	0,717	0,717	0,359
H21	H21	H19	28,25	0,0083927	0,237	1,204	0,602
	H21	H22	71,22	0,0083927	0,598		
	H21	H23	43,95	0,0083927	0,369		
H22	H22	H21	71,22	0,0083927	0,598	0,598	0,299
H23	H23	H21	43,95	0,0083927	0,369	0,919	0,46
	H23	H24	65,55	0,0083927	0,55		
H24	H24	H23	65,5	0,0083927	0,55	1,258	0,629
	H24	H25	84,39	0,0083927	0,708		

Suite de tableau V-1

N° de	Tro	nçon	Longueur	Q _{spi}	Qr	∑Qr	Qn
Nœud	départ	arrivé	m	l/s/ml	l/s	l/s	départ
H25	H25	H24	84,39	0,0083927	0,708	1,462	0,731
	H25	H26	89,83	0,0083927	0,754		
H26	H26	H25	89,83	0,0083927	0,754	1,312	0,656
	H26	H27	66,49	0,0083927	0,558		
H27	H27	H26	66,49	0,0083927	0,558	2,006	1,003
	H27	H28	34,71	0,0083927	0,291		
	H27	H31	137,8	0,0083927	1,157		
H28	H28	H27	34,71	0,0083927	0,291	0,978	0,489
	H28	H29	42,19	0,0083927	0,354		
	H28	H30	39,6	0,0083927	0,332		
H29	H29	H28	42,19	0,0083927	0,354	0,354	0,177
H30	H30	H28	39,6	0,0083927	0,332	0,332	0,166
H31	H31	H27	137,8	0,0083927	1,157	2,284	1,142
	H31	H32	134,34	0,0083927	1,127		
H32	H32	H31	134,34	0,0083927	1,127	2,041	1,021
	H32	H33	108,86	0,0083927	0,914		
Н33	H33	H32	108,86	0,0083927	0,914	2,543	1,272
	H33	H34	64,17	0,0083927	0,539		
	Н33	H37	130	0,0083927	1,091		
H34	H34	H33	64,17	0,0083927	0,539	1,285	0,642
	H34	H35	33,6	0,0083927	0,282		
	H34	H36	55,3	0,0083927	0,464		
H35	H35	H34	33,6	0,0083927	0,282	0,282	0,141
Н36	H36	H34	55,3	0,0083927	0,464	0,464	0,232
Н37	H37	H33	130	0,0083927	1,091	1,234	0,617
	H37	H38	17,06	0,0083927	0,143		
H38	H38	H37	17,06	0,0083927	0,143	1,353	0,676
	H38	H40	81,06	0,0083927	0,68		
	H38	H42	12,83	0,0083927	0,108	1	
	H38	H39	50,24	0,0083927	0,422	1	
Н39	H39	H38	50,24	0,0083927	0,422	0,422	0,211
H40	H40	H18	63,18	0,0083927	0,53	1,911	0,956
	H40	H38	81,06	0,0083927	0,68	1	
	H40	H41	83,47	0,0083927	0,701	1	

Suite de tableau V-1

N° de	Troi	nçon	Longueur	Q _{spi}	Q_{r}	∑Qr	Qn
Nœud	départ	arrivé	m	l/s/ml	l/s	l/s	l/s
H41	H41	H40	83,47	0,0083927	0,701	0,701	0,35
H42	H42	H38	12,83	0,0083927	0,108	1,293	0,647
	H42	H43	141,24	0,0083927	1,185		
H43	H43	H42	141,24	0,0083927	1,185	1,881	0,941
	H43	H44	82,9	0,0083927	0,696		
H44	H44	H43	82,9	0,0083927	0,696	2,49	1,245
	H44	H49	181,72	0,0083927	1,525		
	H44	H45	32,01	0,0083927	0,269		
H45	H45	H44	32,01	0,0083927	0,269	1,31	0,655
	H45	H46	124,11	0,0083927	1,042		
H46	H46	H45	124,11	0,0083927	1,042	1,83	0,915
	H46	H47	93,91	0,0083927	0,788		
H47	H47	H46	93,91	0,0083927	0,788	2,46	1,23
	H47	H48	199,2	0,0083927	1,672		
H48	H48	H47	199,2	0,0083927	1,672	1,672	0,836
H49	H49	H44	181,72	0,0083927	1,525	1,525	0,763

V-2-1- 2-Cas de pointe+incendie :

Dans ce cas le calcul se fait de la même manière que le cas précédent mais seulement on doit s'assurer que le débit d'incendie donné par le réservoir (17 l/s) se trouve au point le plus défavorable qui est dans notre cas le nœud n°H48 avec une cote de terrain de 38,95 m.

V-3- Résultats de la simulation hydraulique du réseau rénove :

V-3-1-Cas de pointe :

Les vitesses et les pertes de charge dans le réseau de distribution sont données par le tableau V-2

Tableau V-2 résultats de la simulation sur les conduites :

Tronçons	Longueur	Diamètre	Débit	Vitesse	Pert.Charge Unit.
	m	mm	1/s	m/s	m/km
H'01-H'02	161,62	315	100,83	1,29	4,54
H'02-H'03	360,67	315	98,64	1,27	4,36
H'03-H'04	165,8	315	96,43	1,24	4,17
H'04-H01	101,5	315	95,31	1,22	4,08
H01-H'05	243,7	250	46,03	0,94	3,25
H'05-H'06	55,6	250	44,77	0,91	3,08
H'06-H'07	173,9	200	25,02	0,8	3,13
H'07-H'08	200,7	200	23,45	0,75	2,77
H'08-H'09	138,4	160	22,03	1,1	7,57
H'09-H'10	100,3	160	21,03	1,05	6,93
H'10-H'11	43,36	160	20,42	1,01	6,54
H'11-H'12	157,29	125	11,26	0,92	7,33
H'12-H'13	37,55	110	8,28	0,87	13,23
H'13-H'14	90	110	7,74	0,81	11,6
H'14-H'15	26,77	110	7,25	0,76	6,06
H'15-H'16	75,22	110	6,83	0,72	5,4
H'16-H'17	381,28	50	1,52	0,77	16,82
H'17-H'18	277,9	50	-1,24	0,63	11,6
H'18-H'19	377,7	75	-4	0,9	13,53
H'19-H'20	169,02	110	-6,29	0,66	4,64
H'12-H'21	257,4	50	1,08	0,55	8,88
H'16-H'22	47,75	90	3,19	0,5	3,54
H'22-H'23	504,1	50	0,87	0,44	5,99
H'23-H'24	112,49	75	3,69	0,83	11,6
H'24-H'25	30,88	75	3,08	0,7	8,29
H'25-H'26	102	75	2,53	0,57	5,7
H'26-H'27	250	50	1,05	0,53	8,41
H'06-H'28	391	160	17,15	0,85	4,7
H'28-H'29	54,95	160	15,27	0,76	3,77
H'29-H'30	252,4	125	13,98	1,14	11,08
H'30-H'31	82,41	125	12,58	1,03	9,05
H'31-H'32	736,48	125	9,14	0,75	4,94
H'32-H'23	77,69	125	5,73	0,47	2,05
H'11-H'20	158	125	7,66	0,62	3,54
H01-H02	324,4	250	46,47	0,95	3,31
H02-H03	272,25	250	43,97	0,9	2,98
H03-H04	351,21	250	-41,35	0,84	2,65

Suite de tableau V-2

T	Longueur	Diamètre	Débit	Vitesse	Pert.Charge
Tronçons					Unit.
	m	mm	1/s	m/s	m/km
H04-H05	269,8	250	38,75	0,79	2,34
H05-H06	299,6	250	-36,36	0,74	2,08
H06-H07	247,19	250	-34,06	0,69	1,84
H07-H08	254,13	50	1,07	0,54	8,67
H07-H09	156,75	50	0,66	0,34	3,56
H07-H10	16,67	250	-29,51	0,6	1,4
H10-H11	53,59	250	-29,21	0,6	1,37
H11-H12	125,7	250	-28,46	0,58	1,31
H12-H13	71,08	50	-0,3	0,15	0,86
H12-H14	91,99	250	26,95	0,55	1,18
H14-H15	187,24	250	25,78	0,53	1,09
H15-H16	265,62	200	23,88	0,76	2,87
H16-H17	74,7	200	-22,45	0,71	2,55
H17-H18	117,12	200	21,65	0,69	2,38
H18-H40	63,18	200	14,95	0,48	1,19
H18-H19	41,55	90	5,77	0,91	10,8
H19-H20	85,48	50	0,36	0,18	1,19
H19-H21	28,25	75	4,76	1,08	18,84
H21-H23	71,22	50	0,3	0,15	0,86
H21-H24	43,95	75	-3,86	0,87	12,64
H23-H24	65,25	75	3,4	0,77	9,94
H24-H25	84,39	75	2,77	0,63	6,76
H25-H26	89,83	50	2,04	1,04	29,29
H26-H27	66,49	50	-1,38	0,7	14,04
H27-H28	34,71	50	0,83	0,42	5,48
H28-H30	39,6	50	0,17	0,08	0,31
H28-H29	42,19	50	0,18	0,09	0,35
H27-H31	137,8	50	-0,45	0,23	1,83
H31-H32	134,34	50	1,6	0,81	18,48
H32-H33	108,86	75	2,62	0,59	6,09
H33-H34	64,17	50	1,01	0,52	7,91
H34-H35	33,6	50	0,14	0,07	0,21
H34-H36	55,3	50	-0,23	0,12	0,55
H33-H37	130	75	4,9	1,11	19,97
H37-H38	17,06	90	5,52	0,87	9,94
H38-H39	50,24	50	0,21	0,11	0,47
H38-H40	81,06	200	13,64	0,43	1
H40-H41	83,47	50	0,35	0,18	1,14
H38-H42	12,83	200	-7,23	0,23	0,31
H42-H43	141,24	200	-6,59	0,21	0,26
H43-H44	82,9	160	-5,64	0,28	0,59
H44- H45	32,01	160	-3,64	0,18	0,27

Suite de tableau V-2

Tronçons	Longueur	Diamètre	Débit	Vitesse	Pert.Charge
					Unit.
	m	mm	1/s	m/s	m/km
H45-H46	124,11	160	2,98	0,15	0,19
H46-H47	93,91	160	2,07	0,1	0,1
H47-H48	199,2	160	-0,84	0,04	0,02
H44-H49	181,72	50	0,76	0,39	4,67

Les charges et les pressions dans le réseau sont données par le tableau V-3.

Tableau V.3 : charges et pressions dans le réseau rénové :

N° Nœud	Altitude	Demande	Charge	Pression
	m	1/s	m	m
Nœud H'01	104,4	0,68	124,41	20,01
Nœud H'02	90,2	2,19	123,68	33,48
Nœud H'03	75	2,21	122,1	47,1
Nœud H'04	79,5	1,12	121,41	41,91
Nœud H'05	65,3	1,25	120,21	54,91
Nœud H'06	61,1	2,6	120,04	58,94
Nœud H'07	64,15	1,57	119,49	55,34
Nœud H'08	69,1	1,42	118,93	49,83
Nœud H'09	71,6	1	117,89	46,29
Nœud H'10	60,8	0,6	117,19	56,39
Nœud H'11	59,2	1,5	117,1	57,9
Nœud H'12	61,7	1,9	115,95	54,25
Nœud H'13	61,4	0,54	115,45	54,05
Nœud H'14	59,2	0,49	114,41	55,21
Nœud H'15	58,7	0,43	114,24	55,54
Nœud H'16	56,3	2,12	113,84	57,54
Nœud H'17	35,6	2,77	107,42	71,82
Nœud H'18	58,5	2,75	110,65	52,15
Nœud H'19	54,8	2,29	115,76	60,96
Nœud H'20	50,1	1,37	116,54	66,44
Nœud H'21	41,5	1,08	113,66	72,16
Nœud H'22	50,5	2,32	113,67	63,17
Nœud H'23	34,5	2,91	110,65	76,15
Nœud H'24	51	0,6	109,35	58,35
Nœud H'25	51,1	0,56	109,09	57,99
Nœud H'26	53,3	1,48	108,51	55,21
Nœud H'27	46,5	1,05	106,41	59,91
Nœud H'28	41,75	1,87	118,2	76,45

Suite de tableau V-3

N° Nœud	Altitude	Demande	Charge	Pression
	m	1/s	m	m
Nœud H'29	40,9	1,29	117,99	77,09
Nœud H'30	40,3	1,4	115,19	74,89
Nœud H'31	38,9	3,44	114,45	75,55
Nœud H'32	34,5	3,42	110,81	76,31
Nœud H01	75,9	2,81	121	45,1
Nœud H02	55,2	2,5	119,93	64,73
Nœud H03	43,1	2,62	119,11	76,01
Nœud H04	42,7	2,61	118,18	75,48
Nœud H05	42,2	2,39	117,55	75,35
Nœud H06	65,1	2,3	116,93	51,83
Nœud H07	50,8	2,83	116,48	65,68
Nœud H08	58,8	1,07	114,27	55,47
Nœud H09	72,61	0,66	115,92	43,31
Nœud H10	50,8	0,29	116,45	65,65
Nœud H11	60	0,75	116,38	56,38
Nœud H12	55,1	1,21	116,21	61,11
Nœud H13	57,5	0,3	116,15	58,65
Nœud H14	48,5	1,17	116,11	67,61
Nœud H15	51,1	1,9	115,9	64,8
Nœud H16	53,6	1,43	115,14	61,54
Nœud H17	46,5	0,81	114,95	68,45
Nœud H18	46,5	0,93	114,67	68,17
Nœud H19	62,65	0,65	114,22	51,57
Nœud H20	55,5	0,36	114,12	58,62
Nœud H21	62,75	0,6	113,69	50,94
Nœud H22	55,65	0,3	113,63	57,98
Nœud H23	63,25	0,46	113,13	49,88
Nœud H24	63,45	0,63	112,49	49,04
Nœud H25	65,5	0,73	111,92	46,42
Nœud H26	65,5	0,66	109,28	43,78
Nœud H27	67,55	1	108,35	40,8
Nœud H28	65,1	0,49	108,16	43,06
Nœud H29	65	0,18	108,15	43,15
Nœud H30	65,1	0,17	108,15	43,05
Nœud H31	58,5	1,14	108,6	50,1
Nœud H32	52,5	1,02	111,09	58,59
Nœud H33	44,5	1,27	111,75	67,25
Nœud H34	56	0,64	111,24	55,24
Nœud H35	56,1	0,14	111,23	55,13
Nœud H36	55,9	0,23	111,21	55,31

Suite de tableau V-3

N° Nœud	Altitude	Demande	Charge	Pression
	m	1/s	m	m
Nœud H37	42,75	0,62	114,35	71,6
Nœud H38	42,8	0,68	114,51	71,71
Nœud H39	54,25	0,21	114,49	60,24
Nœud H40	44,7	0,96	114,6	69,9
Nœud H41	55,5	0,35	114,5	59
Nœud H42	42,75	0,65	114,51	71,76
Nœud H43	44,5	0,94	114,47	69,97
Nœud H44	45,7	1,25	114,42	68,72
Nœud H45	45,75	0,65	114,42	68,67
Nœud H46	44,9	0,92	114,39	69,49
Nœud H47	40,1	1,23	114,38	74,28
Nœud H48	38,95	0,84	114,38	75,43
Nœud H49	40	0,76	113,58	73,58

V-3- 2-Cas de pointe + incendie : (voir annexe N^0 V-1).

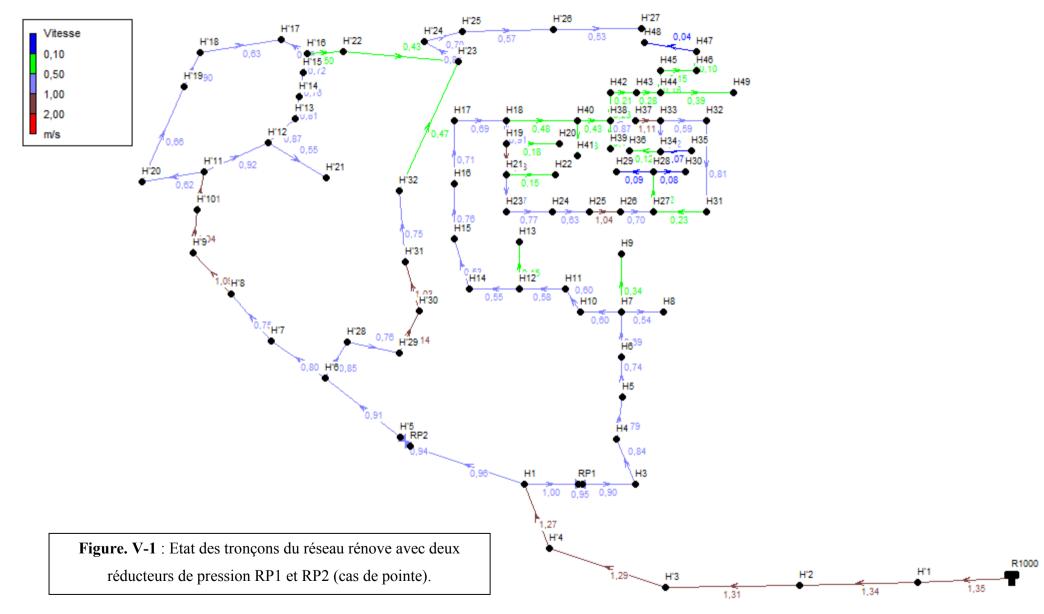
Remarque: Après simulation suite à rénovations apportées il ressort que le réseau zone haute dans sa nouvelle configuration offre des vitesses acceptables mais des pressions dépassant les 6 bars aux points de raccordement. Cette situation d'alimentation à partir de R1000m³ à la côte 124.80m sera retenue et l'installation de deux réducteurs de pressions sur les deux conduites (H1-H2) et (H1- H'5) devient incontournable.

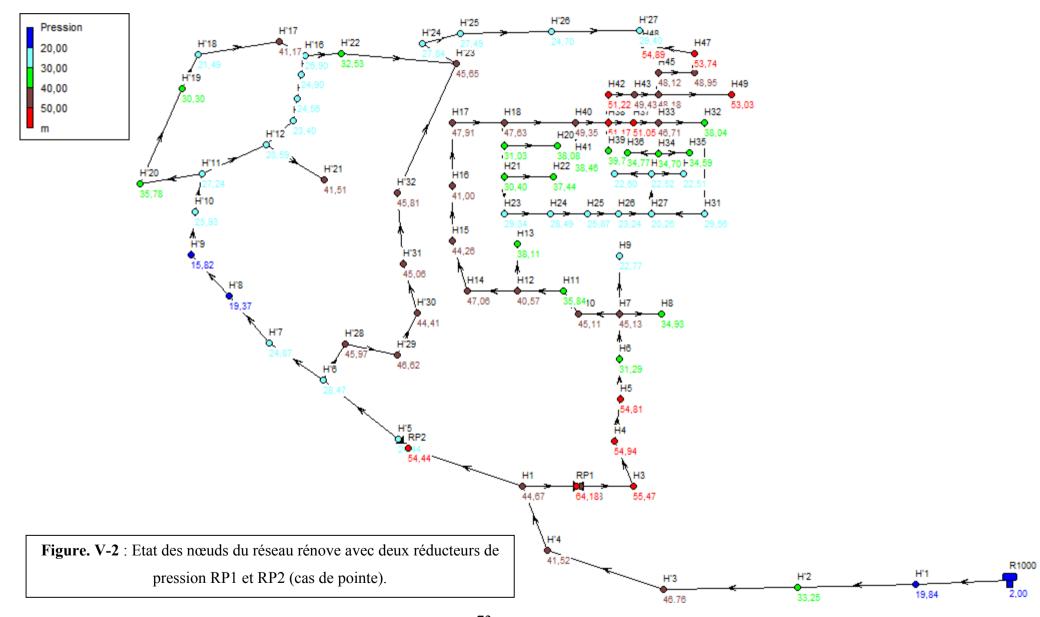
V- 4-Les nouveaux paramètres hydrauliques âpres l'installation des deux réducteurs de pression :

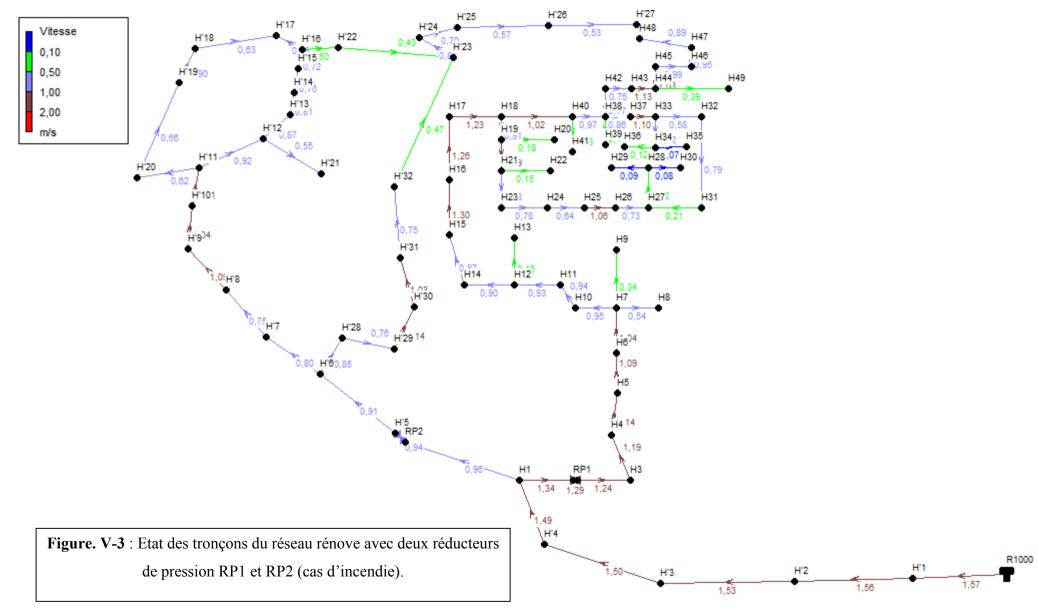
V- 4-1-Cas de pointe : Les calculs sont représentes dans le tableau V.4 :

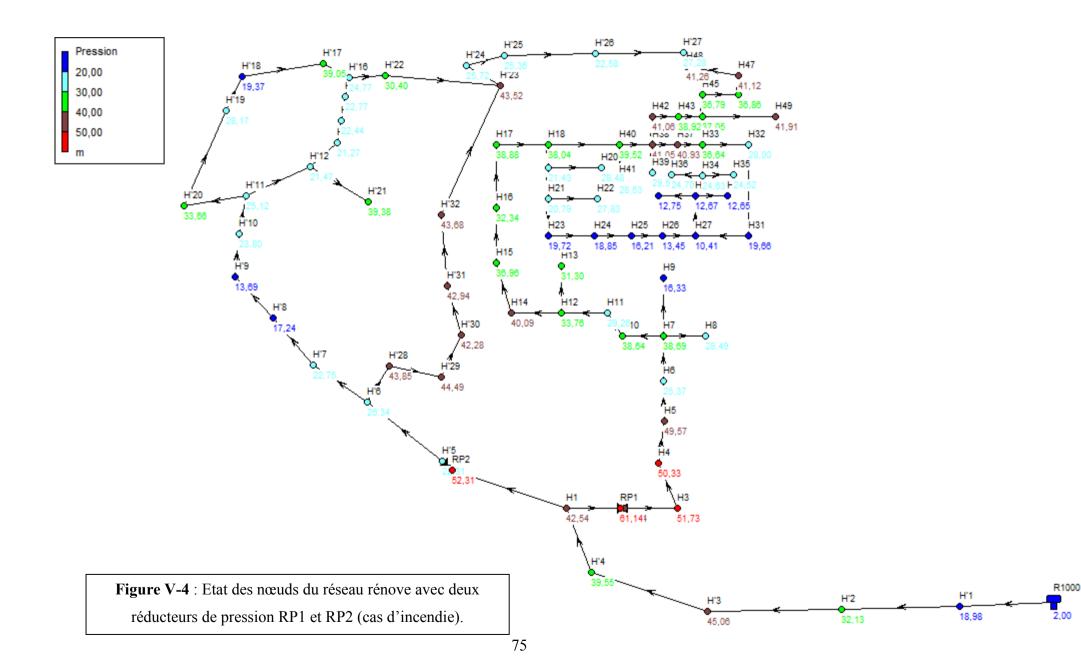
Tableau V.4: résultats de la simulation sur les nœuds.

N° Nœud	Altitude	Demande	Charge	Pression
	m	LPS	m	m
Nœud H'01	104,4	0,68	124,24	19,84
Nœud H'02	90,2	2,19	123,45	33,25
Nœud H'03	75	2,21	121,76	46,76
Nœud H'04	79,5	1,12	121,02	41,52
Nœud H'05	65,3	1,25	89,74	24,44
Nœud H'06	61,1	2,6	89,57	28,47
Nœud H'07	64,15	1,57	89,02	24,87
Nœud H'08	69,1	1,42	88,46	19,36
Nœud H'09	71,6	1	87,42	15,82
Nœud H'10	60,8	0,6	86,72	25,92
Nœud H'11	59,2	1,5	86,63	27,43
Nœud H'12	61,7	1,9	85,48	23,78
Nœud H'13	61,4	0,54	84,98	23,58
Nœud H'14	59,2	0,49	83,94	24,74
Nœud H'15	58,7	0,43	83,77	25,07
Nœud H'16	56,3	2,12	83,37	27,07
Nœud H'17	35,6	2,77	76,95	41,35
Nœud H'18	58,5	2,75	80,18	21,68
Nœud H'19	54,8	2,29	85,29	30,49
Nœud H'20	50,1	1,37	86,07	35,97
Nœud H'21	41,5	1,08	83,19	41,69
Nœud H'22	50,5	2,32	83,2	32,7
Nœud H'23	34,5	2,91	80,18	45,68
Nœud H'24	51	0,6	78,88	27,88
Nœud H'25	51,1	0,56	78,62	27,52
Nœud H'26	53,3	1,48	78,04	24,74
Nœud H'27	46,5	1,05	75,94	29,44
Nœud H'28	41,75	1,87	87,73	45,98
Nœud H'29	40,9	1,29	87,52	46,62
Nœud H'30	40,3	1,4	84,72	44,42
Nœud H'31	38,9	3,44	83,98	45,08
Nœud H'32	34,5	3,42	80,34	45,84
Nœud H01	75,9	2,81	120,57	44,67
Nœud H02	55,2	2,5	99,38	44,18
Nœud H03	43,1	2,62	98,57	55,47
Nœud H04	42,7	2,61	97,64	54,94
Nœud H05	42,2	2,39	97,01	54,81
Nœud H06	65,1	2,3	96,39	31,29


Suite de tableau V-4


N° Nœud	Altitude	Demande	Charge	Pression
	m	LPS	m	m
Nœud H07	50,8	2,83	95,93	45,13
Nœud H08	58,8	1,07	93,73	34,93
Nœud H09	72,61	0,66	95,38	22,77
Nœud H10	50,8	0,29	95,91	45,11
Nœud H11	60	0,75	95,84	35,84
Nœud H12	55,1	1,21	95,67	40,57
Nœud H13	57,5	0,3	95,61	38,11
Nœud H14	48,5	1,17	95,56	47,06
Nœud H15	51,1	1,9	95,36	44,26
Nœud H16	53,6	1,43	94,6	41
Nœud H17	46,5	0,81	94,41	47,91
Nœud H18	46,5	0,93	94,13	47,63
Nœud H19	62,65	0,65	93,68	31,03
Nœud H20	55,5	0,36	93,58	38,08
Nœud H21	62,75	0,6	93,15	30,4
Nœud H22	55,65	0,3	93,09	37,44
Nœud H23	63,25	0,46	92,59	29,34
Nœud H24	63,45	0,63	91,94	28,49
Nœud H25	65,5	0,73	91,37	25,87
Nœud H26	65,5	0,66	88,74	23,24
Nœud H27	67,55	1	87,81	20,26
Nœud H28	65,1	0,49	87,62	22,52
Nœud H29	65	0,18	87,6	22,6
Nœud H30	65,1	0,17	87,61	22,51
Nœud H31	58,5	1,14	88,06	29,56
Nœud H32	52,5	1,02	90,54	38,04
Nœud H33	44,5	1,27	91,21	46,71
Nœud H34	56	0,64	90,7	34,7
Nœud H35	56,1	0,14	90,69	34,59
Nœud H36	55,9	0,23	90,67	34,77
Nœud H37	42,75	0,62	93,8	51,05
Nœud H38	42,8	0,68	93,97	51,17
Nœud H39	54,25	0,21	93,95	39,7
Nœud H40	44,7	0,96	94,05	49,35
Nœud H41	55,5	0,35	93,96	38,46
Nœud H42	42,75	0,65	93,97	51,22
Nœud H43	44,5	0,94	93,93	49,43
Nœud H44	45,7	1,25	93,88	48,18
Nœud H45	45,75	0,65	93,87	48,12
Nœud H46	44,9	0,92	93,85	48,95
Nœud H47	40,1	1,23	93,84	53,74
Nœud H48	38,95	0,84	93,84	54,89
Nœud H49	40	0,76	93,03	53,03


V- 4-2-Cas de pointe + incendie : (Voir annexe N^0 V -2).


Remarque:

Les résultats de la simulation sur les tronçons et sur les nœuds pour le cas de pointe et pointe+incendie sont montres dans les figures ci-dessous.

Conclusion:

Après rénovations, nous avons obtenus des pressions et des vitesses acceptables sur la pluparts des cas dans le réseau de distribution, excepté dans quelques tronçons ou les vitesses sont faibles et inferieur à 0,5 m/s et des pressions peu élevées dues à la présence du grand dénivelé entre le réservoir et les nœuds ce qui nous a poussés a l'installation des deux réducteurs de pressions.

CHAPITRE VI

PROTECTION DES CONDUITE CONTRE LE COUP DE BELIER

Introduction:

La protection contre le régime transitoire doit être effectuée pour les canalisations en contacte avec la terre et fonctionnent en refoulement ou en charge à écoulement gravitaire, il est donc de toute première importance d'étudier les moyens propres a limiter ses effets puisqu'il en résulte une économie dans la construction des tuyaux, lesquels sont calcules, notamment, pour résister a une pression intérieure.

VI-1- Phénomène du coup de bélier :

VI-1-1- Définition :

D'une manière générale, le coup de bélier, exprime toute variation de pression dans une conduite en charge, consécutive à une manœuvre quelconque de l'obturateur aval. Le coup de bélier est un phénomène non stationnaire de propagation d'ondes de pression à très hautes vitesses. Par conséquent, les forces dynamiques qui en résultent nécessitent le renforcement des ouvrages concernés, en particulier les conduites appelées alors conduites forcées, c'est le nom que l'on donne à une onde de choc hydraulique, lorsqu'un liquide non compressible comme l'eau est stoppé dans une canalisation.

Autrement dit, c'est l'arrêt brutal de la circulation de l'eau lorsqu'un robinet (ou tout autre appareil) se ferme. Le coup de bélier est produit par un changement rapide de la vitesse d'écoulement dans les canalisations qui peuvent être provoquées par l'ouverture soudaine d'une valve ou sa fermeture, mise en marche ou l'arrêt des pompes, échec mécanique d'un dispositif,... etc.

Elle pourrait avoir comme conséquence le changement violent de la pression, qui est alors propagée dans la canalisation sous forme d'une vague de pression menant aux dommages graves. La vitesse de cette vague peut dépasser 1000 m/s et les valeurs de la pression peuvent osciller très hautes ou très basses. L'intensité du coup de bélier dépend de plusieurs facteurs, notamment la vitesse de l'eau et la vitesse de fermeture de la valve.

VI-1-2- Causes du coup de bélier :

Les causes les plus fréquentes du coup de bélier sont les suivantes :

- Louverture ou la fermeture instantanée et rapide dune vanne de sectionnement.
- La mise en marche ou l'arrêt des pompes dans les conduites en charge par refoulement.
- Le remplissage ou la vidange d'un système d'AEP.
- Modification de la vitesse dune pompe.
- Une variation du niveau d'un réservoir à une extrémité du réseau.
- Arrêt brutal d'un ou plusieurs groupes électropompes du a la coupure d'électricité. dans une station de pompage qui est la cause la plus répandue du coup de bélier.

VI-1-3- Les risques dus aux coups de bélier :

Le coup de bélier, dont la brutalité est susceptible d'entraîner des ruptures de tuyaux, peut atteindre des valeurs très élevées pouvant être égale à plusieurs fois la pression de service sur les réseaux à basse pression.

Ce phénomène se produit dans une conduite en charge et peut provoquer plusieurs risques suite à une dépression ou surpression engendrée par les manœuvres brusques.

VI-1-3-1- Fortes pressions :

C'est une conséquence du coup de bélier engendrée par une pression importante qui se produit suite à une fermeture instantanée ou rapide d'une vanne de sectionnement. Si la somme de la surpression et de pression initiale dépasse la pression maximale admissible de la conduite, il peut y avoir fissuration de cette dernière, dislocation des joints (les anneaux d'étanchéité seront délogés).

VI-1-3-2- Pressions négatives :

C'est une conséquence du coup de bélier suite à une dépression provoquée par l'arrêt brusque dune pompe ou d'une ouverture instantanée d'une vanne de sectionnement, si cette pression devient inférieure à 10 m.c.e, il se produit une poche de cavitation provoquant l'implosion de la conduite, aspiration des joints.

Une autre conséquence de la cavitation est la détérioration de l'enduit intérieur du tuyau, mais le risque le plus grave est celui d'éclatement de la conduite lors du retour à des pressions positives, les pressions obtenues à ce moment sont en effet souvent très importantes.

VI-1-3-3- Fatigue de la conduite :

En régime transitoire les alternances et la succession des surpressions et des dépressions qui sont une conséquence inévitable du phénomène provoquent la fatigue pour le matériau de la canalisation même si leur amplitude est faible.

VI-2- Analyse physique du phénomène du coup de bélier :

Survient l'arrêt brusque où instantané quatre phases peuvent être envisagées :

• Phase 01:

Une onde de dépression prend naissance au départ de la pompe et se propage jusqu'au réservoir à une vitesse où célérité désignée par **a**.

Si la distance entre la pompe et le réservoir est : L le temps mis par cette onde pour atteindre le réservoir est $\frac{L}{a}$. Au bout de ce temps la conduite est en dépression sur toute la longueur.

• Phase 02:

Par suite de son élasticité la conduite reprend son diamètre primitif et cela de proche en proche .l'eau revient alors dans la conduite et au bout d'un nouveau temps $\frac{L}{a}$ c'est-à-dire à

 $\frac{2L}{a}$ depuis l'origine du phénomène toute l'eau est redescendue mais va se trouver arrêtée par le clapet de la pompe qui entre temps s'est fermé.

• Phase 03:

En raison de cet arrêt la première tranche en contact avec le clapet va se trouver comprimée entraînant une dilatation de la conduite . Au bout d'un nouveau temps $\frac{L}{a}$ c'est-à-dire à $\frac{3L}{a}$ depuis l'origine toute la conduite sera dilatée avec une eau sur pressée immobile.

• Phase 04:

Grâce à l'élasticité de la conduite celle-ci agissant à la manière d'un ressort reprend de proche en proche à partir du réservoir et en allant vers la pompe, son diamètre primitif.

Les tranches d'eau successives reprenant leurs dimensions premières au bout d'un nouveau temps $\frac{L}{a}$ c'est-à-dire à $\frac{4L}{a}$ depuis l'origine nous nous retrouvons dans la même situation qu'au moment de l'arrêt brusque de la pompe. La période du mouvement est donc $\frac{4L}{a}$.

VI-3- Equipements de protection :

Les équipements et moyens de protection sont très variés et sont déterminés en fonction de la protection recherchée, des caractéristiques hydrauliques et géométriques des installations, on peut citer notamment :

- soupape anti-bélier (cas d'une surpression à l'aspiration d'un suppresseur) ;
- volant d'inertie (cas d'une conduite de faible longueur) ;
- cheminée d'équilibre (cas de faible hauteur manométrique de refoulement) ;
- clapet d'aspiration auxiliaire (cas d'une bâche d'aspiration en charge sur la pompe) ;
- clapet en by-pass des pompes (cas d'un suppresseur notamment en irrigation) ;
- réservoir à régulation d'air automatique (cas d'un refoulement en assainissement) ;
- clapet d'entrée d'air (cas de faible hauteur géométrique en assainissement).

Les dispositifs de protection sont spécifiques pour une sollicitation donnée, les plus courants sont :

VI-3-1- Soupapes de décharge :

La soupape de décharge est définit comme étant un appareil anti-bélier qui écrête les surpressions en dérivant un certain débit à l'extérieur de la conduite dès que la pression dépasse une certaine valeur de réglage, estimée généralement à $(1,04 \sim 1,1)$ de la pression maximale admissible. Ces appareils font intervenir un organe mécanique, un ressort à boudin généralement, qui par sa compression obture en exploitation normale, un orifice placé sur la conduite au point à protéger, c'est à dire où la compression à craindre est maximale.

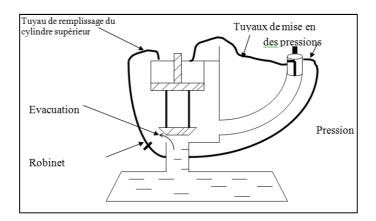


Figure VI-1: Soupape de décharge.

VI-3-1-1- Avantage et inconvénient d'une soupape de décharge :

a) Avantage:

- Coût limité;
- Entretien et réglage facile ;
- Ne consomme pas d'énergie ;
- Indépendant d'une installation électrique.

b) Inconvénient :

- Nécessite un entretien et un contrôle attentifs (ressort);
- Pertes considérables d'eau pendant le fonctionnement.

VI -3-2-Vanne à fermeture lente :

Cette solution ne permet de protéger que les adductions gravitaires car elle ne remédier en aucun cas a l'arrêt intempestif dune pompe il s'agit en fait davantage de limiter l'intensité du coup bélier qui se produire que d'y apporter remède.

VI-3-3- cheminées d'équilibre :

La cheminée d'équilibre est une réserve d'eau en contact permanent avec la conduite et dont la surface libre traduit exactement les variations de pression du fluide, elle doit donc avoir une section assez large pour combler la dépression sans se vider complètement et elle doit être assez haute pour ne pas déborder lorsqu'une surpression fait monter son niveau. La présence d'une cheminée modifie le mouvement transitoire engendré par une disjonction.

Au lieu d'un mouvement oscillatoire de période caractéristique du coup de bélier d'onde, s'instaure un mouvement oscillatoire de période plus grande, l'oscillation en masse.

La cheminée d'équilibre est ouvrage relativement peu utilisé pour la protection des canalisations de refoulement, du fait des pressions rencontrées qui rendent ces ouvrages importants, couteux et difficile à insérer dans le site.

VI-3-3- 1-Domaine d'application:

Les cheminées d'équilibre sont usuellement utilisées lorsque l'installation est constituée d'une longue canalisation ou d'un long chenal d'amenée à faible pente suivi d'une canalisation à forte pente terminée par un appareil de manœuvre susceptible d'engendrer des variations plus ou moins rapides de débit. Ce dispositif trouve essentiellement des applications:

- Pour la protection des canalisations de refoulement d'eaux usées (charge généralement faible, intérêt de simplicité du dispositif ;
- Pour la protection de points hauts difficiles à protéger et disposés le long de la canalisation.

Ce dispositif est par contre beaucoup utilisé en hydro-électricité pour la protection des galeries et pour assurer la stabilité de fonctionnement des groupes.

En dehors du domaine de l'hydroélectricité, on rencontre des cas semblables de canal d'amenée à faible pente dans les grands aménagements qui ont des débits trop importants pour qu'on puisse les véhiculer en conduites. On utilise alors des canaux et des galeries en charge pour traverser les reliefs importants. Lorsqu'il y a des organes de manœuvre à la sortie de ces galeries en charge, une cheminée comme appareil de protection est alors tout indiquée.

Dans le domaine des réseaux sous pression, les cheminées sont rarement utilisées car il faudrait qu'elles aient une hauteur supérieure à la hauteur manométrique totale ; on n'imagine pas une telle cheminée dès que la hauteur de refoulement dépasse quelques mètres. Son emploi redevient d'ailleurs maintenant d'actualité puisqu'on réalise de plus en plus des conduites d'assainissement sous pression. Les hauteurs de refoulement y sont en général faibles et la cheminée présente de réels avantages de simplicité de fonctionnement et de robustesse qui la rendent intéressante.

Elle résout en outre le problème de l'évacuation d'air et on peut facilement envisager de l'installer pour protéger localement un point haut puisqu'elle fonctionne sans apport d'énergie.

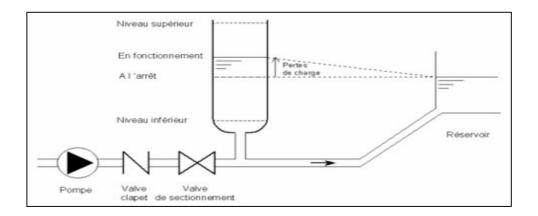


Figure VI-2: Cheminée d'équilibre sur une conduite de refoulement.

VI -3-4-Les réservoirs d'air :

Le réservoir d'air est une réserve d'eau qui se vide pour combler les dépressions et grossit pour absorber les surpressions, c'est le procédé le répondu pour la protection de stations de pompage dans une gamme de débit de quelques litres par seconde et des gammes de pression de quelques mètres à quelques centaines de mètres, c'est un dispositif simple, relativement peu onéreux. Le principe de fonctionnement est le même que pour les cheminées d'équilibre.

VI-3-4-1-Avantage et inconvénient d'un réservoir d'air :

a) Avantage:

- Bon fonctionnement;
- Bonne sécurité;
- Pas de pertes d'eau ;
- Choisir pour les moyennes et grandes hauteurs de refoulement ;
- intervient dans la protection contre la dépression et la surpression.

b) Inconvénient:

• Coût élevé.

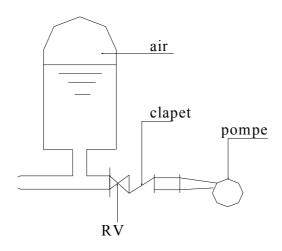



Figure.VI-3-Principe de disposition du réservoir d'air anti bélier

Figure. VI-4 -Variation du volume d'aire au cours des phases de fonctionnement du réservoir

VI-3-5-Les volants d'inertie :

Le volant d'inertie est un dispositif permettant d'augmenter le temps d'arrêt de la pompe, grâce à l'énergie qu'il accumule pendant la marche normale.

Lorsque la pompe cesse d'être alimentée en énergie, elle continue à fonctionner par l'énergie cinétique de sa roue (généralement très faible) et de celle de l'eau, qui le plus souvent ne suffit pas pour assurer l'écoulement pendant un temps suffisant. Le volant d'inertie est donc un moyen de mettre progressivement en réserve, lors du démarrage de l'installation, une quantité d'énergie supplémentaire, sous forme cinétique, celle-ci est ensuite rendue à l'eau à travers la pompe au ralentissement progressif du volant et de celle-ci.

VI-3-5-1- Avantage et inconvénient d'un volants d'inertie :

a) Avantage:

- Dispositif économique ;
- Intéressant sur les installations qui ne s'arrêtent pas trop souvent.

b) Inconvénient:

- Consommation d'énergie supplémentaire ;
- Protection limitée par la puissance du moteur et les caractéristiques de démarrage ;
- Inapproprié dans les stations à forte fréquence de démarrage.

VI-4- Exemple de calcul d'un moyen de protection anti bélier :

Parmi les équipements de protection cite-t-on choisi comme moyen de protection de la conduite de refoulement station de pompage de Bordj Menaiel –réservoir 1000 m 3. Le réservoir d'air grâce à les avantages cite.

VI-4-1- Calcul des réservoirs d'air :

Le calcul du réservoir d'air permet de déterminer les valeurs de la surpression et de la dépression maximales dans les conduites de refoulement et le volume du réservoir d'air.

Comme méthode de calcul, on distingue :

• Méthode de VIBERT :

La méthode de VIBERT donne de bons résultats pour les petites installations et risque de donner des volumes de réservoirs d'air, important dans le cas de grandes installations.

• Méthode de BERGERON:

La méthode de BERGERON est la plus répandue, elle donne de bons résultats que ça soit pour les petites ou pour les grandes installations.

• On calculera la célérité d'onde donnée en (m/s) à l'aide de la formule améliorée par

Mr: SALAH Boualem pour les conduites enterrées :

$$C = \frac{\sqrt{\frac{K}{\rho}}}{\sqrt{1 + \frac{2 \times K \times a \times (1 - v_m^2) \times (1 - v_s)}{(1 - v_m^2) \times a \times E_s + E_m \times e_m \times (1 - v_s)}}};$$

Avec:

K : Coefficient d'élasticité de l'eau ; $K = 2,07 \times 10^9$ Pascal.

 ρ : Masse volumique de l'eau ; $\rho = 1000 \text{ kg} / \text{m}^3$.

 E_m : module de Young du matériau de la conduite ; $E_m = 1.1 \times 10^{11}$ Pa pour la fonte.

 E_s : module de Young du sol ; $E_s \text{=}~2 \times 10^8 Pascal$.

 v_m : coefficient de poisson du matériau. v_m = 0,3 (fonte).

 υ_s : coefficient de poisson du sol entourant la conduite. υ_s =0,33.

 e_m : Epaisseur de la conduite (m). e_m =0,0038m pour la fonte.

a : rayon intérieur de la conduite (m).

• La charge tenant compte du coup de bélier en (m) :

$$Z = H_g + \frac{C \times V_0}{g}$$
;

V₀ : vitesse moyenne de refoulement en (m/s).

g : l'accélération de la pesanteur (m/s²).

H_g: la hauteur géométrique (m).

• La charge statique absolue en (m):

$$Z_0: H_g + 10;$$

• La charge maximale absolue en (m):

$$Z_{max} = Z + 10;$$

On a:

$$\frac{Z_{\text{max}}}{Z_0}$$
 \Rightarrow Abaque de VIBERT $\Rightarrow \frac{U_0}{L \times S}$, $\frac{Z_{min}}{Z_0}$; voir (Annexe N⁰ VI-1).
$$h_0 = \frac{V_0^2}{2 \times g} \Rightarrow \frac{h_0}{Z_0}$$

A partir de
$$\frac{U_0}{L \times S}$$
, L et S, on tire U_0 , donc : $U_0 \times Z_0 = U_{max} \times Z_{min} \Rightarrow U_{max} = \frac{U_0}{\frac{Z_{min}}{Z_0}}$;

Avec U_{max} est le volume du réservoir d'air en (m^3)

Application:

• Les données de base :

Les caractéristiques de la conduite de refoulement sont représentées dans le tableau suivant :

Tableau VI-1: Les caractéristiques de la conduite de refoulement.

Type de matériau	D (mm)	S (m ²)	V_0 (m/s)	L (m)	Hg (m)
Fonte	300	0,07065	1,1	5361	102.7

• Calcul de la célérité d'onde C :

Les résultats trouvés pour le calcul de la célérité d'onde 'C' sont regroupés dans le tableau suivant:

Tableau VI-2: Calcul de célérité d'onde de la conduite de refoulent.

K (Pa)	$\rho (kg/m^3)$	a (m)	υ_{m}	$v_{\rm s}$	E _s (Pa)	E _m (Pa)	e _m (m)	C (m/s)
$2,07\times10^9$	1000	0,15	0,3	0,33	2×10 ⁸	1.1×10 ¹¹	0,0038	864,82

• Calcul de la capacité de réservoir d'air :

Les résultats trouvés pour le calcul de volume de réservoir d'air sont regroupés dans le tableau suivant:

Tableau VI-3: Calcul de volume de réservoir d'air.

\mathbf{Z}_0	Z _{max}	V_0	g	\mathbf{h}_0	h_0	Z max	U_0	Z min	$\mathbf{U_0}$	\mathbf{U}_{max}	$V_{mormalis\acute{e}}$
(m)	(m)	(m/s)	(m/s²)	(m)	$\overline{Z_0}$	Z_0	$\overline{L \times S}$	$\overline{Z_0}$	(m ³)	(m ³)	(litre)
102,7	209,67	1,1	9,81	0,062	6×10 ⁴	2	0,003	0,5	1,13	1,13	2500

VI-4-1-1- Détails du réservoir d'air :

L'encombrement du réservoir d'air auquel on a opté est donné dans la figure (VI-5).

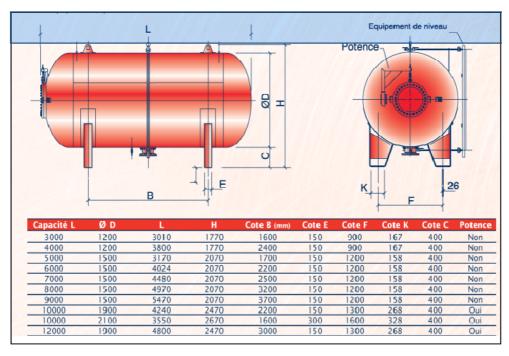


Figure VI-5: Planche d'encombrement des réservoirs d'air Hydrofort CHARLATTE

VI-4-1-2- Installation du réservoir d'air :

Vu ses dimensions, le réservoir d'air sera installé à l'extérieur du bâtiment de la station de pompage afin de réduire l'encombrement à l'intérieur de la salle machines et de gagner sur son génie civil.

Figure VI-6: installation du réservoir d'air

Conclusion:

Pour éviter et limite un peu le risque du coup de bélier sur les conduite, il faut bien choisi et dimensionner l'anti- bélier, ainsi que le dimensionnement correct de la conduite c'est-à-dire tenir en compte de la valeur majore du coup de bélier.

CHAPITRE VII ORGANISATION DE CHANTIER

Introduction:

L'organisation d'un chantier consiste à déterminer et coordonner la mise en œuvre des moyennes nécessaires pour accomplir les travaux d'exécution dans les meilleures conditions possibles et les plus brefs délais.

Les étapes des différents travaux sur des chantiers de réalisation pour un réseau d'A.E.P sont :

- Importation des traces des tranchées sur le terrain ;
- Excavation des trachées ;
- Pose des conduites ;
- Epreuve de joint et de canalisation ;
- Remblaiement des tranchées.

VII -1- Implantation du tracé des tranchées sur le terrain :

VII-1-1-Matérialisation:

On matérialise l'axe de la tranchée sur le terrain avec des jalons placés en ligne droite et espacées de 50 m. On effectue ce travail en mesurant sur le plan leurs distances par des repères fixés où des bornes. La direction des axes et leurs extrémités sont ainsi bien déterminée.

VII-1-2 - Nivellement:

Le nivellement est la mesure des différences d'altitudes entre deux où plusieurs points situés sur une pente uniforme. Le nivellement a pour but de définir le relief d'un terrain en fixant l'altitude d'un certain nombre de points toutes les côtes sont données par rapport à un niveau de base appelé plan de comparaison Lorsque le terrain compte des obstacles on procède au nivellement par cheminement et par un simple calcul. On détermine la hauteur de chaque point ainsi la profondeur de tranchée en point

VII-2 - Excavation des tranchées :

Selon les caractéristiques du terrain l'excavation sera réalisée mécaniquement la profondeur minimale de la tranchée à excaver avarie de 1 à 1,5 m pour :

- Garder la fraîcheur de l'eau pendant les grandes chaleurs ;
- Ne pas gêner le travail de la terre (exploitation);
- Protéger la canalisation contre le gel.

La longueur de la tranchée doit être tel qu'un homme puisse à travailler sans difficulté et elle augmente avec les diamètres des conduites à mettre en place.

L'excavation des tranchées s'effectue par tronçon successive en commençant par les points hauts pour assurer s'il y lieu l'écoulement naturel des eaux d'infiltrations.

Donc l'excavation nécessite la détermination de plusieurs paramètres tels que :

- La profondeur de la tranchée (H tr).
- La longueur de la tranchée (b).
- Distance de la cavalière.

VII-2-1- La profondeur (H_{tr}):

La profondeur de la tranchée dépend du diamètre de la conduite .Elle est donnée par la relation suivante :

$$\boldsymbol{H}_{tr} = \boldsymbol{D} + \boldsymbol{h} + \boldsymbol{h}_1$$

H_{tr}: profondeur de la tranchée (m).

D : diamètre de la conduite (m).

h : hauteur de la génératrice supérieur de la conduite à

la surface du sol.

On prend: h=0,9 m.

 h_1 : épaisseur du lit de pose $h_1 = 0,1$ m.

D'où : $H_{tr} = 1 + D.$ (m).

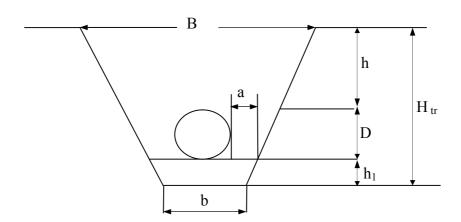


Figure VII-1: schéma explicatif des profondeurs

VII-2-2- Largueur de la tranchée :

Le largueur de la tranchée sera calculée en fonction du diamètre de la conduite on laisse a=30 cm d'espace de chaque côté de la conduite.

$$b = D + 2a$$
.

b : largeur de la tranchée (m).

D : diamètre de la conduite (m).

a : distance entre la génératrice latérale et la base du talus (30 cm).

VII-2-3- Choix du coefficient du talus :

Pour garder la stabilité du talus de la trachée durant les travaux de pose des conduites on définit le coefficient du talus qui est en fonction de la profondeur de la tranchée et de la nature du sol.

profondeur de la tranchée

sols

jusqu'à 1.5 m jusqu'à 3m

sable m=0,5 m=1

limon sableux m=0,25 m=0,67

Tableau VII-1 choix du coefficient du talus:

Dans notre cas la profondeur de la tranchée aille jusqu'a 1,5m et le sol est limon argileux d'où le coefficient de talus m =0.

m=0

m=0,5

VII-2-4- Distance de la mise du cavalier :

VII-2-4-1- Section transversale de la tranchée (S tr) :

limon argileux

$$Str = H_{tr} \times b + m \times H_{tr}^2 \qquad \qquad (m^2). \label{eq:Str}$$

Comme m = 0 on aura $S_{tr} = H_{tr} \times b$

VII-2-4-2 Section du cavalier (S_c) :

Elle est donnée par la relation suivante : $S_c = S_{tr} \times K_f$

Avec : S tr : section transversal de la tranchée (m²).

K_f: coefficient qui dépend de la nature de sol.

Type de sol K_f
sable, matériaux fins 1,08-1,17
Limon argileux 1,14-1,28
Argileux 1,25-1,3

Tableau VII-2 Coefficient de foisonnement

Puisque notre sol est limon argileux on prend $K_f = 1,2$.

VII-2-4-3- hauteur du cavalier (H c):

On a:
$$S_c = \frac{B \times H_c}{2}$$

Avec: B: largeur du cavalier (m).

H_c: hauteur du cavalier (m).

$$B = \frac{2 \times S_c}{H_c} \dots (1).$$

Et
$$m = \frac{B}{2H_c}$$

Avec: m: talus du sol de cavalier m = 1,5.

$$B = 2mH_c \dots (2).$$

De (1) et (2)
$$Hc = \sqrt{\frac{S_c}{m}}$$
.

VII-2-4-4 Distance de la mise du cavalier (A) :

C'est la distance qui sépare l'axe de la tranchée à celui du cavalier. Elle est donnée par la

formule suivante :
$$A = \frac{b}{2} + L + \frac{B}{2} + mH_{tr}$$

Pour notre cas
$$A = \frac{b}{2} + L + \frac{B}{2}$$

Avec: L: longueur de la berme en (m) varie entre 2 et 3 m.

En sachant A, Hc, H_{tr} on peut choisir les machines de terrassement pour la construction de la tranchée.

VII-2-5- Choix de l'excavateur et le procédé d'excavation :

Comme il a été mentionné précédemment l'excavation sera réalisée mécaniquement alors le choix de l'engin (pelle mécanique équipée en rétro où en butée) se base sur leur champ d'application et l'exigence du chantier.

VII-2-5-1- Pelle équipée en rétro :

Les aptitudes de la pelle en rétro sont :

- Creuser en dessous de la surface d'appui à son niveau.
- Peut excaver dans la direction de la machine.
- Creuser avec grande précision et rapidité des tranchées à talus verticaux.

VII-2-5-2-Pelle équipée en butée :

Les caractéristiques de la pelle en butée sont :

- Excavation en hauteur au dessus de l'assise de la machine.
- Ramassage des matériaux.

Connaissant la nature des travaux demandés et comparant le champ d'application ainsi que les caractéristiques de chacune des deux types de pelle, on opte pour une pelle équipée en rétro pour atteindre un rendement optimal de la pelle choisie. Celle ci doit satisfaire les conditions ci-dessous :

- Rayant de déchargement $R_{d\acute{e}ch} \ge A$.
- Hauteur de chargement $H_{ch} \ge H_{tr}$.
- Hauteur de déchargement $H_{d\acute{e}ch} \ge H_c$.
- Largeur du godet $b_g \leq b_{\min}$.

Le calcul pour déterminer les caractéristiques de la pelle est représenté dans le tableau VII-3:

D (mm) 50 75 90 110 125 200 250 315 160 L (m) 3322,8 1083,77 106,36 398,56 1464,27 1216,78 1173,71 2538,94 1308,93 b (m) 0,65 0,675 0,69 0,71 0,725 0,76 0,8 0,85 0,95 $H_{tr}(m)$ 1,09 1,125 1,16 1,2 1,25 1,35 1,05 1,075 1,11 $S(m^2)$ 0,68 0,73 0,75 0,79 0,82 0,88 0,96 1,06 1,28 $S_c(m^2)$ 0,82 0,87 0,90 0,95 0,98 1,06 1,15 1,28 1,54 $H_c(m)$ 0,74 0,76 0,78 0,79 0,81 0,84 0,88 0,92 1,01 3,43 3,48 3,51 3,55 3.99 A(m)3,57 3,64 3,71 3,81 79,99 $V_d (m^3)$ 2267,81 314,11 1194,30 1072,71 1678,70 786,41 1126,76 2697,62 $V_{dT}(m^3)$ 11218,41664

Tableau VII-4 : volume de déblai total et les paramètres pour la détermination de la

Pelle

Remarque:

$$A = A_{\text{max}} = 3,99m$$
 $H_c = H_c \text{ max} = 1,01m$
 $H_m = H_m \text{ max} = 1,35m$ $b = b \text{ min} = 0,65m$

Connaissant les paramètres (A, H _c, H _{tr} et b) pour notre cas l'excavateur sera une pelle mécanique équipée en rétro à roue pneumatique dont les caractéristiques sont représentés dans le tableau suivant. :

Tableau VII-5 Capacité du godet en fonction du volume de terrassement :

volume du terrassement par une pelle (m³)	≤10000	≥10000	>20000	>100000
capacité du godet (m3)	0,25-0,35	0,5-0,65	1-1,25	1,5

Comme le volume total de déblai est supérieur à 10000 m³ on choisit une pelle de capacité du gobet 0.65 m³.

VII-2-5-3-Rendement d'exploitation de la pelle choisie :

Le rendement de la pelle est donné par la relation :

$$R_p = \frac{3600 \times q \times K_r \times K_t}{T_c \times K_f} \text{ (m}^3\text{/h)}.$$

Avec : q : capacité du gobet 0,65 m³.

 K_r : coefficient de remplissage du gobet $K_r = 0.8-0.9$ on prend $K_r = 0.85$

 K_t : coefficient d'utilisation du temps dépend de la nature du sol et de l'habilité du Conducteur. : $K_t = 0.7-0.9$ prenons $K_t = 0.8$.

 K_f : coefficient de foisonnement du sol $K_f = 1,2$.

 T_c : la duré d'un cycle de remplissage du gobet $T_c = (15-30)$ s, on prend $T_c = 20$ s.

$$R_p = \frac{3600 \times 0.65 \times 0.85 \times 0.8}{20 \times 1.2} = 66.3 \, m^3 / h$$

Si on prend une durée de travail de 8 heures par jour R $_p$ = 530,4 m 3 /j.

VII-2-5-4- La duré d'excavation :

Connaissant le volume de terre à excaver et le rendement de l'engin le temps d'exploitation sera :

$$T = \frac{V}{R_p}$$
 (Heure).

V : volume du sol excavé (m³).

$$T = \frac{11218.417}{530.4} = 22 jour$$

Figure VII-2 : Pelle équipée en rétro.

VII-2-5-5- Choix du bulldozer :

Le choix du bulldozer se fait en fonction de la capacité du gobet de l'excavateur. Le bulldozer est utilisé pour le remblaiement de la tranchée après la pose des conduites.

capacité du godet de la pelle (m³)	0,3-0,65	0,75-1,0	1,25-1,5	2,0-3,0
classe du bulldozer d'après la	40-60	70-118	120-140	150-300
puissance du tracteur (KW)				

Tableau VII-6 Choix du bulldozer en fonction de la capacité du godet :

Pour une capacité du gobet de la pelle égale à 0,65 m³ nous prenons un bulldozer ayant les caractéristiques suivantes:

- Puissance Pb = 60 KW.
- Largeur de la lame L = 3 m.
- Hauteur de la lame 1,5 m.

Figure VII-3: bulldozer.

VII-2-6- Aménagement du lit de pose des conduites :

Avant la pose de la conduite on procède aux opérations suivantes :

- Eliminer les grosses pierres sur les côtes de la tranchée.
- Respecter les côtes du profil en long.
- Niveler soigneusement le fond de la tranchée pour que la pression soit constante entre les points de changement de pente prévue.
- Etablir en suite le niveau du fond de la fouille en confectionnant un lit de pose bien donnée avec la terre meuble du sable.

Le volume total du sable pour le lit de pose est calculé d'après le tableau suivant :

D (mm) 50 75 90 110 125 160 200 250 315 1308,93 L (m) 3322,8 1083,77 106,36 398,56 1464,27 1216,78 1173,71 2538,94 b=D+0.6(m)0,65 0,675 0,69 0,71 0,725 0,76 0,8 0,85 0,95 0,071 0,0725 0,076 0,08 $S=0,1\times b(m^2)$ 0,065 0,0675 0,069 0,085 0,095 $Vi=S\times L(m^3)$ 215,98 7,34 28,3 106,16 73,15 92,48 93,89 215,8 124,35 $V_t(m^3)$ 957,46

Tableau VII-7: Volume total du lit de sable

VII-3- Pose de conduite :

Le principe de pose de la canalisation est pratiquement le même par contre le mode de pose est variable d'un terrain à l'autre.

Avant la descente des conduites en fouille on procède à un treillage des conduites de façon à écarter celle qui ont subit un choc et aussi pour les débarrassées de tous corps étranger (Terre, pierre...etc.). Les conduites seront par la suite posées lentement à l'aide d'un pose tube dans la fond de fouille. Cette pose s'effectuera par tronçon successif au cours de la pose on vérifie régulièrement l'alignement des tuyaux pour opérer correctement on utilise des nivelettes.

A chaque arrêt de la pose on bouche les extrémités du tronçon de la conduite.

VII-4- Epreuve de joint et de la canalisation :

Pour plus de sécurité l'essai de pression des conduites et des joints se fait avant le remblaiement on l'effectue l'aide d'une pompe d'essai qui consiste au remplissage en eau de la conduite sous une pression de 1,5 fois. La pression de service à laquelle sera soumise la conduite en cours de fonctionnement.

Cette épreuve doit durer 30 minutes environ où la variation ne doit pas excéder 0,2 bar.

Figure VII-4 : pose de la conduite dans la tranchée

VII-5- Remblaiement de la tranchée :

Une fois les épreuves réussies, la mise en place du remblai bien tassée est effectuée manuellement on utilisant la terre des déblaies (tout élément indésirable étant exclu).

Conclusion:

La maitrise de l'organisation de chantier et les techniques de pose de canalisation s'avèrent importantes pour un meilleur rendement de point de vue technique et économique.

CONCLUSION GENERALE

Pour mener à bien notre travail et bien diagnostiquer le système d'alimentation en eau potable de la zone haute de la ville de Bordj Menaeil, il a été nécessaire de bien comprendre l'architecture du système de distribution, ainsi que la vérification de la capacité de la ressource et de stockage.

Cependant, l'étude menée sur le réseau de distribution a l'état actuel, nous a permis de faire les constatations suivantes :

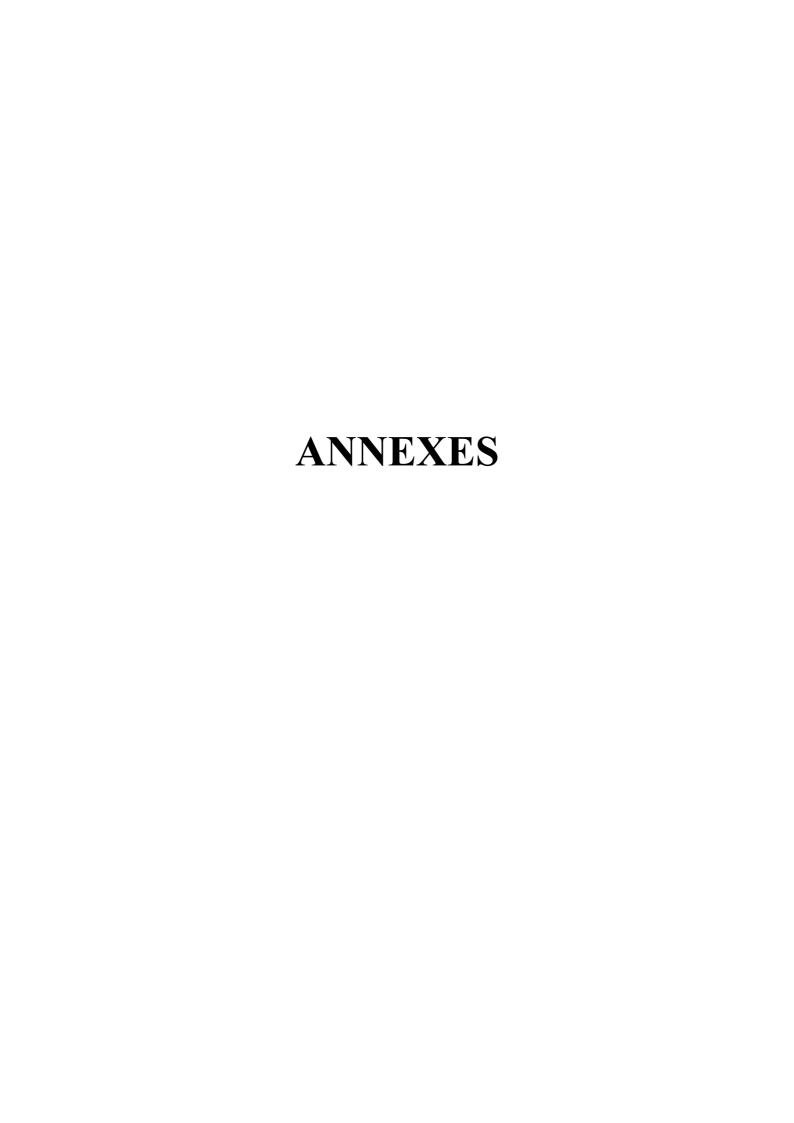
- Mauvais état des conduites existantes.
- Surdimensionnement des ouvrages de stockage.
- Présence d'une surpression dans tout le réseau, dû au mauvais emplacement des réservoirs de la cote Est (R2x1000m³).
- Des vitesses inferieure à la normale dans tout le réseau.

Pour remédier aux problèmes rencontrés, nous avons proposé :

- La zone haute sera alimentée uniquement à partir du réservoir R1000m³ à la côte radier 124,80m.
- Les deux autres réservoirs 2x1000m³ (un existant et l'autre projeté) seront destinés à alimenter les zones les plus hautes comme elle est capable de joue le rôle d'un réservoir tampons.
- Rénovation du réseau pour répondre aux besoins actuels et futurs.

BIBLIOGRAPHIES

Technique et documentation, LAVOISIER., Mémento du gestionnaire de l'alimentation en eau et de l'assainissement.1994


DUPANT, A., Hydraulique urbaines. PARIS 1979

SALAH, B., Polycopie d'alimentation en eau potable. ENSH 1993.

ZATOUT, K., M.F.D (diagnostic du réseau d'alimentation en eau potable de la ville DRAA-BEN-KHEDDA –W.TIZI-OUZOU), ENSH 2010.

CHIALI., Catalogue des conduites en PEHD.

Site internet http/:www.google.com ., avec les mots (réducteur de pression, coup de bélier)

Annexe N⁰ II-1

Tableau N^01 : Répartition des débits horaires en fonction du nombre d'habitants.

Heures		N	ombre d'hab	itants	
	Moins de	10001à	50001à	Plus de	Agglomération de
(h)	10000	50000	100000	100000	type rurale
0-1	1.00	1.5	03	3.35	0.75
1-2	1.00	1.5	3.2	3.25	0.75
2-3	1.00	1.5	2.5	3.3	01
3-4	1.00	1.5	2.6	3.2	01
4-5	2.00	2.5	3.5	3.25	03
5-6	3.00	3.5	4.1	3.4	5.5
6-7	5.00	4.5	4.5	3.85	5.5
7-8	6.50	5.5	4.9	4.45	5.5
8-9	6.50	6.25	4.9	5.2	3.5
9-10	5.50	6.25	4.6	5.05	3.5
10-11	4.50	6.25	4.8	4.85	06
11-12	5.50	6.25	4.7	4.6	8.5
12-13	7.00	5.00	4.4	4.6	8.5
13-14	7.00	5.00	4.1	4.55	06
14-15	5.50	5.50	4.2	4.75	05
15-16	4.50	6.00	4.4	4.7	05
16-17	5.00	6.00	4.3	4.65	3.5
17-18	6.50	5.50	4.1	4.35	3.5
18-19	6.50	5.00	4.5	4.4	06
19-20	5.00	4.50	4.5	4.3	06
20-21	4.50	4.00	4.5	4.3	06
21-22	3.00	3.00	4.8	3.75	03
22-23	2.00	2.00	4.6	3.75	02
23-24	1,00	1.50	3.3	3.7	01

Source (ouvrage d'AEP D'ABRAMOV).

Annexe N^0 IV-1

Tableau N^0 1: calcul des débits nodaux en cas de pointe+incendie (Zone haute alimentée à partir de R1000 m³ (zone H'))

N° de Nœud	Tro	nçons	Longueur	Q _{spi}	Qr	∑Qr	Qc	Qn
	départ	arrivé	m	l/s/ml	l/s	l/s	l/s	l/s
H'1	H'1	R1000m ³	519,34	0,004734187		0,7651	0	0,383
	H'1	H'2	161,62	0,004734187	0,7651			
H'2	H'2	H'1	161,62	0,004734187	0,7651	2,4726	0	1,236
	H'2	H'3	360,67	0,004734187	1,7075			
Н'3	H'3	H'2	360,67	0,004734187	1,7075	2,4924	0	1,246
	H'3	H'4	165,8	0,004734187	0,7849			
H'4	H'4	H'3	165,8	0,004734187	0,7849	2,4192	0	1,210
	H'4	H'5	345,2	0,004734187	1,6342			
H'5	H'5	H'4	345,2	0,004734187	1,6342	1,8964	0	0,948
	H'5	H'6	55,37	0,004734187	0,2621			
H'6	H'6	H'5	55,37	0,004734187	0,2621	2,9365	0	1,468
	H'6	H'7	173,9	0,004734187	0,8233			
	H'6	H'28	391	0,004734187	1,8511			
H'7	H'7	H'6	173,9	0,004734187	0,8233	1,7734	0	0,887
	H'7	H'8	200,7	0,004734187	0,9502			
H'8	H'8	H'7	200,7	0,004734187	0,9502	1,6054	0	0,803
	H'8	H'9	138,4	0,004734187	0,6552			
H'9	H'9	H'8	138,4	0,004734187	0,6552	1,1301	0	0,565
	H'9	H'10	100,3	0,004734187	0,4748			
H'10	H'10	H'9	100,3	0,004734187	0,4748	0,6801	0	0,340
	H'10	H'11	43,36	0,004734187	0,2053			
H'11	H'11	H'10	43,36	0,004734187	0,2053	1,6979	0	0,849
	H'11	H'12	157,29	0,004734187	0,7446			
	H'11	H'20	158	0,004734187	0,7480			
H'12	H'12	H'11	157,29	0,004734187	0,7446	2,1410	0	1,070
	H'12	H'13	37,55	0,004734187	0,1778			
	H'12	H'21	257,4	0,004734187	1,2186			
H'13	H'13	H'12	37,55	0,004734187	0,1778	0,6038	0	0,302
	H'13	H'14	90	0,004734187	0,4261			
H'14	H'14	H'13	90	0,004734187	0,4261	0,5528	0	0,276
	H'14	H'15	26,77	0,004734187	0,1267			
H'15	H'15	H'14	26,77	0,004734187	0,1267	0,4828	0	0,241
	H'15	H'16	75,22	0,004734187	0,3561			
H'16	H'16	H'15	75,22	0,004734187	0,3561	2,3872	0	1,194
	H'16	H'17	381,28	0,004734187	1,8051			
	H'16	H'22	47,75	0,004734187	0,2261			

Suite de tableau N^0 1.

	Tro	nçons	Longueur	Q _{spi}	Qr	∑Qr	Qc	Qn
N° de Nœud	départ	arrivé	m	l/s/ml	l/s	l/s	l/s	l/s
	H'17	H'16	381,28	0,004734187	1,8051		0	1,560
H'17	H'17	H'18	277,9	0,004734187	1,3156	3,1207		
	H'18	H'17	277,9	0,004734187	1,3156		0	1,552
H'18	H'18	H'19	377,7	0,004734187	1,7881	3,1037		
	H'19	H'18	377,7	0,004734187	1,7881		0	1,294
H'19	H'19	H'20	169,02	0,004734187	0,8002	2,5883		
	H'20	H'19	169,02	0,004734187	0,8002		0	0,774
H'20	H'20	H'11	158	0,004734187	0,7480	1,5482		
H'21	H'21	H'12	257,4	0,004734187	1,2186	1,2186	0	0,609
	H'22	H'16	47,75	0,004734187	0,2261		0	1,306
H'22	H'22	H'23	504,1	0,004734187	2,3865	2,6126		
	H'23	H'22	504,1	0,004734187	2,3865		0	1,643
	H'23	H'24	112,49	0,004734187	0,5325			
Н'23	H'23	H'32	77,69	0,004734187	0,3678	3,2869		
	H'24	H'23	112,49	0,004734187	0,5325		0	0,339
H'24	H'24	H'25	30,88	0,004734187	0,1462	0,6787		
	H'25	H'24	30,88	0,004734187	0,1462		0	0,315
H'25	H'25	H'26	102	0,004734187	0,4829	0,6291		
	H'26	H'25	102	0,004734187	0,4829		0	0,833
H'26	H'26	H'27	250	0,004734187	1,1835	1,6664		
H'27	H'27	H'26	250	0,004734187	1,1835	1,1835	17	17,592
	H'28	H'6	391	0,004734187	1,8511		0	1,056
H'28	H'28	H'29	54,95	0,004734187	0,2601	2,1112		
	H'29	H'28	54,95	0,004734187	0,2601		0	0,728
H'29	H'29	H'30	252,4	0,004734187	1,1949	1,4551		
	H'30	H'29	252,4	0,004734187	1,1949]	0	0,793
H'30	H'30	H'31	82,41	0,004734187	0,3901	1,5851		
	H'31	H'30	82,41	0,004734187	0,3901		0	1,938
H'31	H'31	'31 H'32 736,48 0,004734187 3,4866 3,8768		3,8768				
	H'32	H'31	736,48	0,004734187	3,4866		0	1,927
Н'32	H'32	H'23	77,69	0,004734187	0,3678	3,8544		

Tableau N0-2: calcul des débits nodaux en cas de pointe+incendie (zone haute alimentée à partir de R2x1000 m³(zone H))

N° de Nœud	Ti	ronçon	Longueur	Q _{spi}	Qr	∑Qr	Qc	Qn
	départ	arrivé	m	l/s/ml	l/s	l/s	l/s	l/s
H1	H1	R2X1000m ³	1800	0,004734187		1,5358	0	0,768
	H1	H2	324,4	0,004734187	1,5358			
H2	H2	H1	324,4	0,004734187	1,5358	2,8247	0	1,412
	H2	Н3	272,25	0,004734187	1,2889			
Н3	Н3	H2	272,25	0,004734187	1,2889	2,9516	0	1,476
	Н3	H4	351,21	0,004734187	1,6627			
H4	H4	Н3	351,21	0,004734187	1,6627	2,9400	0	1,470
	H4	H5	269,8	0,004734187	1,2773			
Н5	Н5	H4	269,8	0,004734187	1,2773	2,6956	0	1,348
	Н5	Н6	299,6	0,004734187	1,4184			
Н6	Н6	H5	299,6	0,004734187	1,4184	2,5886	0	1,294
	Н6	H7	247,19	0,004734187	1,1702			
H7	Н7	Н6	247,19	0,004734187	1,1702	3,1943	0	1,597
	Н7	H8	254,13	0,004734187	1,2031			
	Н7	Н9	156,75	0,004734187	0,7421			
	Н7	H10	16,67	0,004734187	0,0789			
Н8	Н8	H7	254,13	0,004734187	1,2031	1,2031	0	0,602
Н9	Н9	Н7	156,75	0,004734187	0,7421	0,7421	0	0,371
H10	H10	H7	16,67	0,004734187	0,0789	0,3326	0	0,166
	H10	H11	53,59	0,004734187	0,2537			
H11	H11	H10	53,59	0,004734187	0,2537	0,8488	0	0,424
	H11	H12	125,7	0,004734187	0,5951			
H12	H12	H11	125,7	0,004734187	0,5951	1,3671	0	0,684
	H12	H13	71,08	0,004734187	0,3365			
	H12	H14	91,99	0,004734187	0,4355			
H13	H13	H12	71,08	0,004734187	0,3365	0,3365	0	0,168
H14	H14	H12	91,99	0,004734187	0,4355	1,3219	0	0,661
	H14	H15	187,24	0,004734187	0,8864			
H15	H15	H14	187,24	0,004734187	0,8864	2,1439	0	1,072
	H15	H16	265,62	0,004734187	1,2575			
H16	H16	H15	265,62	0,004734187	1,2575	1,6111	0	0,806
	H16	H17	74,7	0,004734187	0,3536			
H17	H17	H16	74,7	0,004734187	0,3536	0,9081	0	0,454
	H17	H18	117,12	0,004734187	0,5545			

Suite de tableau N⁰-2

N° de	Tron	içon	Longueur	Q _{spi}	$\mathbf{Q}_{\mathbf{r}}$	∑Qr	Qc	Qn
Nœud	départ	arrivé	m	l/s/ml	l/s	l/s	l/s	l/s
H18	H18	H17	117,12	0,004734187	0,5544	1,0502	0	0,525
1110	H18	H40	63,18	0,004734187	0,2991	1,000	Ü	0,020
	H18	H19	41,55	0,004734187	0,1967			
H19	H19	H18	41,55	0,004734187	0,1967	0,7351	0	0,368
	H19	H21	28,25	0,004734187	0,1337	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	H19	H20	85,48	0,004734187	0,4047			
H20	H20	H19	85,48	0,004734187	0,4047	0,4047	0	0,202
H21	H21	H19	28,25	0,004734187	0,1337	0,6790	0	0,339
	H21	H22	71,22	0,004734187	0,3372			
	H21	H23	43,95	0,004734187	0,2081			
H22	H22	H21	71,22	0,004734187	0,3372	0,3372	0	0,169
H23	H23	H21	43,95	0,004734187	0,2081	0,5170	0	0,258
	H23	H24	65,25	0,004734187	0,3089			
H24	H24	H23	65,5	0,004734187	0,3101	0,7096	0	0,355
	H24	H25	84,39	0,004734187	0,3995			
H25	H25	H24	84,39	0,004734187	0,3995	0,8248	0	0,412
	H25	H26	89,83	0,004734187	0,4253			
H26	H26	H25	89,83	0,004734187	0,4253	0,7400	0	0,370
	H26	H27	66,49	0,004734187	0,3148]		
H27	H27	H26	66,49	0,004734187	0,3148	1,1315	0	0,566
	H27	H28	34,71	0,004734187	0,1643			
	H27	H31	137,8	0,004734187	0,6524			
H28	H28	H27	34,71	0,004734187	0,1643	0,5515	0	0,276
	H28	H29	42,19	0,004734187	0,1997			
	H28	H30	39,6	0,004734187	0,1875			
H29	H29	H28	42,19	0,004734187	0,1997	0,1997	0	0,100
H30	H30	H28	39,6	0,004734187	0,1875	0,1875	0	0,094
H31	H31	H27	137,8	0,004734187	0,6524	1,2884	0	0,644
	H31	H32	134,34	0,004734187	0,6360			
H32	H32	H31	134,34	0,004734187	0,6360	1,1514	0	0,576
	H32	H33	108,86	0,004734187	0,5154			
Н33	H33	H32	108,86	0,004734187	0,5154	1,4346	0	0,717
	H33	H34	64,17	0,004734187	0,3038			
	H33	H37	130	0,004734187	0,6154			
H34	H34	H33	64,17	0,004734187	0,3038	0,7247	0	0,362
	H34	H35	33,6	0,004734187	0,1591			
	H34	H36	55,3	0,004734187	0,2618			
H35	H35	H34	33,6	0,004734187	0,1591	0,1591	0	0,080
H36	H36	H34	55,3	0,004734187	0,2618	0,2618	0	0,131
H37	H37	H33	130	0,004734187	0,6154	0,6962	0	0,348
	H37	H38	17,06	0,004734187	0,0808			

Suite de tableau N⁰-2

N° de Nœud	Tron	içon	Longueur	Q _{spi}	Qr	∑Qr	Qc	Qn
	départ	arrivé	m	l/s/ml	l/s	l/s	l/s	l/s
H38	H38	H37	17,06	0,004734187	0,0807	0,7631	0	0,382
	H38	H40	81,06	0,004734187	0,3838			
	H38	H42	12,83	0,004734187	0,0607			
	H38	H39	50,24	0,004734187	0,2378			
H39	H39	H38	50,24	0,004734187	0,2378	0,2378	0	0,119
H40	H40	H18	63,18	0,004734187	0,2991	1,0780	0	0,539
	H40	H38	81,06	0,004734187	0,3838			
	H40	H41	83,47	0,004734187	0,3952			
H41	H41	H40	83,47	0,004734187	0,3952	0,3952	0	0,198
H42	H42	H38	12,83	0,004734187	0,0607	0,7294	0	0,365
	H42	H43	141,24	0,004734187	0,6687			
H43	H43	H42	141,24	0,004734187	0,6687	1,0611	0	0,531
	H43	H44	82,9	0,004734187	0,3925			
H44	H44	H43	82,9	0,004734187	0,3925	1,4043	0	0,702
	H44	H49	181,72	0,004734187	0,8603			
	H44	H45	32,01	0,004734187	0,1515			
H45	H45	H44	32,01	0,004734187	0,1515	0,7391	0	0,370
	H45	H46	124,11	0,004734187	0,5876			
H46	H46	H45	124,11	0,004734187	0,5876	1,0321	0	0,516
	H46	H47	93,91	0,004734187	0,4446			
H47	H47	H46	93,91	0,004734187	0,4446	1,3876	0	0,694
	H47	H48	199,2	0,004734187	0,9431			
H48	H48	H47	199,2	0,004734187	0,9431	0,9431	17	17,47
			101 ==		0.0.0.	0.0505		2
H49	H49	H44	181,72	0,004734187	0,8603	0,8603	0	0,430

Annexe N⁰ IV-2

Tableau N^0 -1 : Vitesse et perte de charge dans le réseau existant :

Tronçon	Longueur	Diamètre	Débit	Vitesse	Pert.Charge Unit.
, ,	m	mm	LPS	m/s	m/km
H'01-R1000	519,34	350	-47,28	0,49	0,64
H'01-H'02	161,6	350	46,89	0,49	0,63
H'02-H'03	360,67	350	-45,66	0,47	0,6
H'03-H'04	165,8	350	-44,41	0,46	0,56
H'04-H'05	345,2	350	-43,2	0,45	0,54
H'05-H'06	55,37	350	42,25	0,44	0,51
H'06-H'07	173,9	350	-27,59	0,29	0,23
H'07-H'08	200,7	350	-26,7	0,28	0,22
H'08-H'09	138,4	350	-25,9	0,27	0,21
H'09-H'10	100,3	350	-25,33	0,26	0,2
H'10-H'11	43,36	350	-24,99	0,26	0,19
H'11-H'12	157,29	200	14,7	0,47	1,15
H'12-H'21	257,4	125	0,61	0,05	0,04
H'12-H'13	37,55	200	13,02	0,41	0,92
H'13-H'14	90	200	12,72	0,41	0,88
H'14-H'15	26,77	200	12,44	0,40	0,84
H'15-H'16	75,22	200	12,2	0,39	0,81
H'16-H'17	381,28	200	-4,26	0,14	0,12
H'17-H'18	277,9	200	5,82	0,19	0,21
H'18-H'19	377,7	200	-7,38	0,24	0,32
H'19-H'20	169,02	200	-8,67	0,28	0,43
H'11-H'20	158	200	-9,44	0,30	0,51
H'16-H'22	47,75	150	15,27	0,86	5,22
H'22-H'23	504,1	150	13,96	0,79	4,4
H'6-H'28	391	160	13,2	0,66	2,86
H'28-H'29	54,95	160	12,14	0,60	2,45
H'29-H'30	252,4	160	11,42	0,57	2,18
H'30-H'31	82,41	160	-10,62	0,53	1,91
H'31-H'32	736,48	160	-8,68	0,43	1,31
H'32-H'23	77,69	160	-6,76	0,34	0,82
H'23-H'24	112,4	150	19,08	1,08	7,98
H'24-H'25	30,88	150	-18,74	1,06	7,71
H'25-H'26	102	150	18,42	1,04	7,46
H'26-H'27	250	150	17,59	1,00	6,83

Tableau N^0 -2: Charges et pressions dans le réseau existant :

	Altitude	Demande Base	Charge	Pression
N° Nœud	m	l/s	m	m
Nœud H'01	104,4	0,38	126, 47	22,07
Nœud H'02	90,2	1,25	126,37	36,17
Nœud H'03	75	1,25	126,06	51,06
Nœud H'04	79,5	1,21	126,06	46,56
Nœud H'05	65,3	0,95	125,88	60,58
Nœud H'06	61,1	1,47	125,85	64,75
Nœud H'07	64,15	0,89	125,81	61,66
Nœud H'08	69,1	0,80	125,76	56,66
Nœud H'09	71,6	0,57	125,73	54,13
Nœuds H'10	60,8	0,34	125,71	64,91
Nœuds H'11	59,2	0,85	125,71	66,51
Nœuds H'12	61,7	1,07	125,52	63,82
Nœud H'13	61,4	0,30	125,49	64,09
Nœud H'14	59,2	0,28	125,41	66,21
Nœud H'15	58,7	0,24	125,39	66,69
Nœud H'16	56,3	1,19	125,33	69,03
Nœud H'17	35,6	1,56	125,37	89,77
Nœud H'18	58,5	1,55	125,43	66,93
Nœud H'19	54,8	1,29	125,55	70,75
Nœud H'20	50,1	0,77	125,63	75,53
Nœud H'21	41,5	0,61	125,21	83,71
Nœud H'22	50,5	1,31	125,08	74,58
Nœud H'23	34,5	1,64	122,86	88,36
Nœud H'24	51	0,34	121,96	70,96
Nœud H'25	51,1	0,31	121,72	70,62
Nœud H'26	53,3	0,83	120,96	67,66
Nœud H'27	46,5	17,59	119,25	72,75
Nœud H'28	41,75	1,11	124,73	82,98
Nœud H'29	40,9	0,73	124,73	83,83
Nœud H'30	40,3	0,79	124,04	83,74
Nœud H'31	38,9	1,94	123,89	84,99
Nœud H'32	34,5	1,93	122,92	88,42

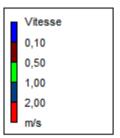
Annexe N⁰ IV-3

Tableau N^0 -1: Vitesse et perte de charge dans le réseau existant :

Tronçons	Longueur	Diamètre	Débit	Vitesse	Pert.Charge Unit.
•	m	mm	l/s	m/s	m/km
H01-R2X1000	1800	400	-47,43	0,38	0,29
H01-H02	324,4	400	43,67	0,35	0,28
H02-H03	272,25	400	42,25	0,34	0,27
H03-H04	351,21	400	-40,78	0,32	0,25
H04-H05	269,8	400	39,31	0,31	0,23
H05-H06	299,6	400	-37,96	0,30	0,22
H06-H07	247,19	400	-36,67	0,29	0,20
H07-H08	254,13	125	0,6	0,05	0,04
Н07-Н09	156,75	400	0,37	0,00	0,00
H07-H10	16,67	315	-34,1	0,44	0,58
H10-H11	53,59	315	-33,93	0,44	0,58
H12-H11	125,7	315	-33,51	0,43	0,56
H12-H13	71,08	110	-0,62	0,07	0,07
H12-H14	91,99	315	32,2	0,41	0,52
H14-H15	187,24	315	31,54	0,40	0,50
H15-H16	265,62	315	30,47	0,39	0,47
H16-H17	74,7	315	-29,66	0,38	0,45
H17-H18	117,12	315	29,21	0,38	0,44
H18-H40	63,18	315	24,67	0,32	0,32
H18-H19	41,55	160	4,01	0,20	0,32
H19-H20	85,48	80	0,2	0,04	0,04
H19-H21	28,25	160	3,44	0,17	0,24
H21-H22	71,22	80	0,17	0,03	0,02
H21-H23	43,95	160	-2,93	0,15	0,18
H23-H24	65,25	160	2,68	0,13	0,15
H24-H25	84,39	160	2,32	0,12	0,12
H25-H26	89,83	160	1,91	0,10	0,08
H27-H26	66,49	160	-1,54	0,08	0,06
H27-H28	34,71	80	0,47	0,09	0,20
H28-H30	39,6	80	0,09	0,02	0,01
H28-H29	42,19	80	0,1	0,02	0,01

Suite de tableau N^0 - 1

Tronçons	Longueur	Diamètre	Débit	Vitesse	Pert.Charge Unit.
	m	mm	l/s	m/s	m/km
H27-H31	137,8	160	0,5	0,02	0,01
H31-H32	134,34	160	0,14	0,01	0,00
Н32-Н33	108,86	160	0,72	0,04	0,02
Н33-Н34	64,17	80	0,57	0,11	0,28
H34-H35	33,6	80	0,08	0,02	0,01
Н36-Н34	55,3	80	-0,13	0,03	0,01
H37-H33	130	160	2,01	0,10	0,09
Н37-Н38	17,06	160	2,36	0,12	0,12
H38-H39	50,24	80	0,12	0,02	0,01
H38-H40	81,06	315	23,94	0,31	0,30
H40-H41	83,47	80	0,2	0,04	0,03
H42-H38	12,83	160	-21,08	1,05	6,96
H42-H43	141,24	160	-20,72	1,03	6,73
H43-H44	82,9	160	-20,18	1,00	6,41
H44-H45	32,01	110	-19,05	2,01	38,58
H45-H46	124,11	110	18,68	1,97	37,14
H46-H47	93,91	110	18,17	1,91	35,18
H47-H48	199,2	110	-17,47	1,84	32,62
H44-H49	181,72	160	0,43	0,02	0,01


Tableau N^0 -2: Charges et pressions dans le réseau existant :

N° Nœud	Altitude	Demande Base	Charge	Pression
	m	1/s	m	m
Nœud H01	75,9	0,77	201,47	125,57
Nœud H02	55,2	1,41	201,38	146,18
Nœud H03	43,1	1,48	201,31	158,21
Nœud H04	42,7	1,47	201,22	158,52
Nœud H05	42,2	1,35	201,16	158,96
Nœud H06	65,1	1,29	201,09	135,99
Nœud H07	50,8	1,6	201,04	150,24
Nœud H08	58,8	0,6	201,04	142,24
Nœud H09	72,61	0,37	201,04	128,43
Nœud H10	50,8	0,17	201,03	150,23
Nœud H11	60	0,42	201	141
Nœud H12	55,1	0,68	200,93	145,83
Nœud H13	57,5	0,17	200,93	143,43
Nœud H14	48,5	0,66	200,88	152,38
Nœud H15	51,1	1,07	200,79	149,69
Nœud H16	53,6	0,81	200,67	147,07
Nœud H17	46,5	0,45	200,63	154,13
Nœud H18	46,5	0,52	200,58	154,08
Nœud H19	62,65	0,37	200,57	137,92
Nœud H20	55,5	0,2	200,56	145,06
Nœud H21	62,75	0,34	200,56	137,81
Nœud H22	55,65	0,17	200,56	144,91
Nœud H23	63,25	0,26	200,55	137,3
Nœud H24	63,45	0,35	200,54	137,09
Nœud H25	65,5	0,41	200,53	135,03
Nœud H26	65,5	0,37	200,53	135,03
Nœud H27	67,55	0,57	200,52	132,97
Nœud H28	65,1	0,28	200,52	135,42
Nœud H29	65	0,1	200,51	135,51
Nœud H30	65,1	0,09	200,51	135,41
Nœud H31	58,5	0,64	200,52	142,02
Nœud H32	52,5	0,58	200,52	148,02
Nœud H33	44,5	0,72	200,52	156,02

Suite de tableau N⁰ -2

N° Nœud	Altitude	Demande Base	Charge	Pression
	m	1/s	m	m
Nœud H34	56	0,36	200,5	144,5
Nœud H35	56,1	0,08	200,5	144,4
Nœud H36	55,9	0,13	200,5	144,6
Nœud H37	42,75	0,35	200,53	157,78
Nœud H38	42,8	0,38	200,54	157,74
Nœud H39	54,25	0,12	200,54	146,29
Nœud H40	44,7	0,54	200,56	155,86
Nœud H41	55,5	0,2	200,56	145,06
Nœud H42	42,75	0,37	200,45	157,7
Nœud H43	44,5	0,53	199,5	155
Nœud H44	45,7	0,7	198,96	153,26
Nœud H45	45,75	0,37	197,73	151,98
Nœud H46	44,9	0,52	193,12	148,22
Nœud H47	40,1	0,69	189,82	149,72
Nœud H48	38,95	17,47	183,32	144,37
Nœud H49	40	0,43	198,96	158,96

Annexe N⁰ IV-4

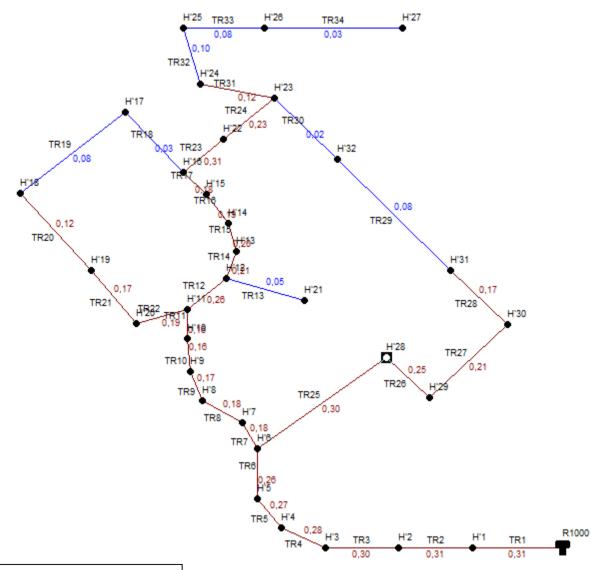
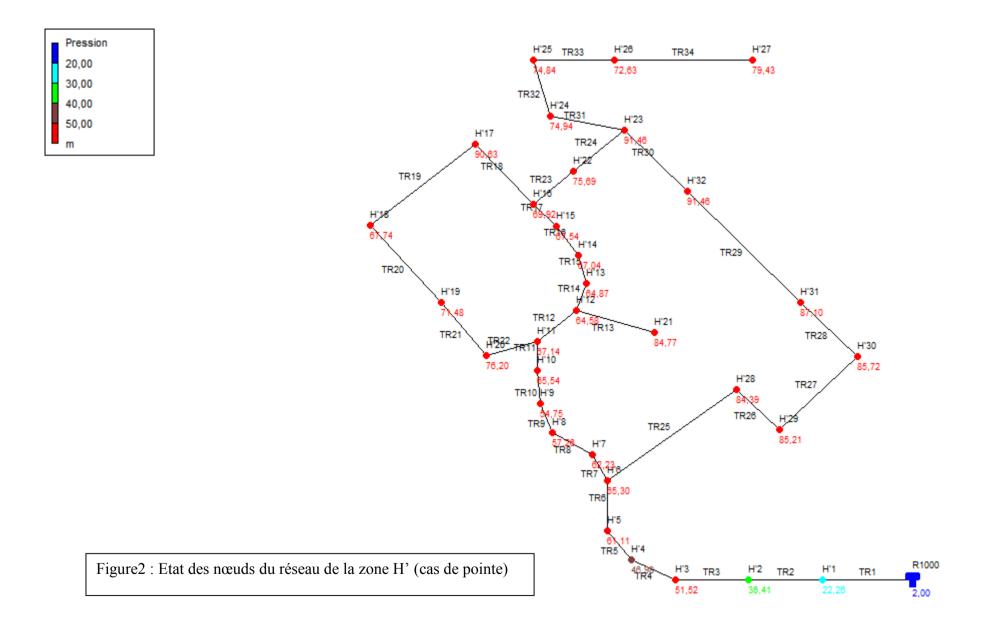
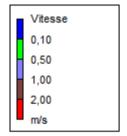




Figure1: Etat des tronçons du réseau de la zone H' (cas de pointe)

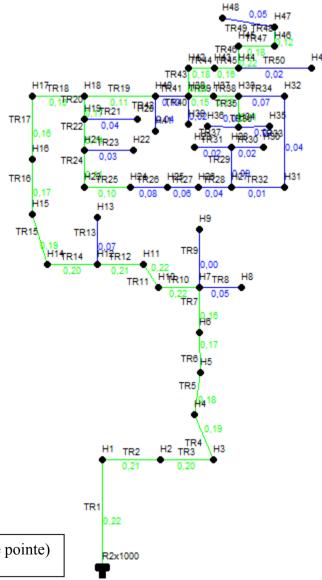
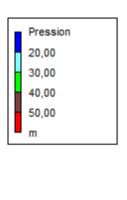
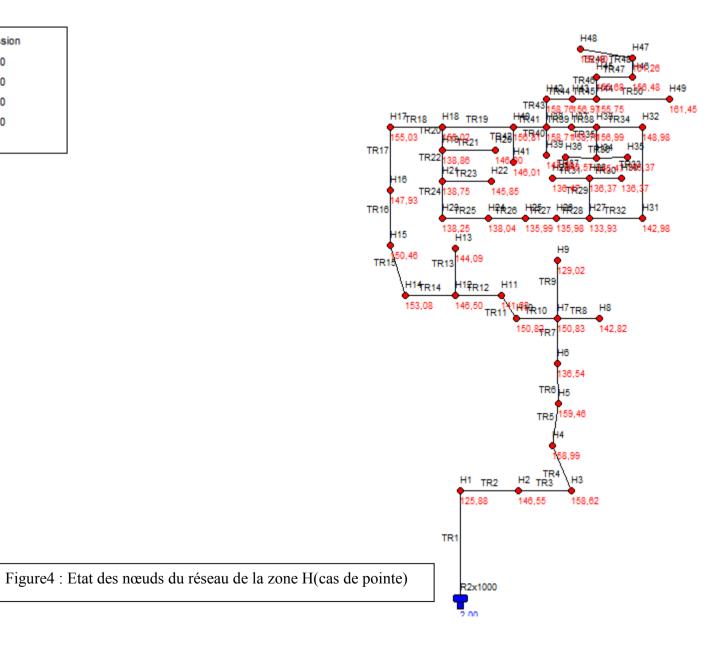




Figure3: Etat des tronçons du réseau de la zone H (cas de pointe)

 $Annexe \ N^0 \ V-1$ $Tableau \ N^0 -1 : \ \ \text{résultats de la simulation sur les conduites} :$

Tronçons	Longueur	Diamètre	Débit	Vitesse	Pert.Charge
			I DC	,	Unit.
11201 11202	m	mm	LPS	m/s	m/km
H'01-H'02	161,62	315	117,83	1,51	6,13
H'02-H'03	360,67	315	115,64	1,48	5,92
H'03-H'04	165,8	315	113,43	1,46	5,7
H'04-H01	101,5	315	112,31	1,44	5,59
H01- H'05	243,7	250	46,03	0,94	3,25
H'05-H'06	55,6	250	44,77	0,91	3,08
H'06- H'07	173,9	200	25,02	0,8	3,13
H'07- H'08	200,7	200	23,45	0,75	2,77
H'08- H'09	138,4	160	22,03	1,1	7,57
H'09- H'10	100,3	160	21,03	1,05	6,93
H'10- H'11	43,36	160	20,42	1,01	6,54
H'11- H'12	157,29	125	11,26	0,92	7,33
H'12- H'13	37,55	110	8,28	0,87	13,23
H'13- H'14	90	110	7,74	0,81	11,6
H'14- H'15	26,77	110	7,25	0,76	6,06
H'15- H'16	75,22	110	6,83	0,72	5,4
H'16- H'17	381,28	50	1,52	0,77	16,82
H'17- H'18	277,9	50	-1,24	0,63	11,6
H'18- H'19	377,7	75	-4	0,9	13,53
H'19- H'20	169,02	110	-6,29	0,66	4,64
H'12- H'21	257,4	50	1,08	0,55	8,88
H'16- H'22	47,75	90	3,19	0,5	3,54
H'22- H'23	504,1	50	0,87	0,44	5,99
H'23- H'24	112,49	75	3,69	0,83	11,6
H'24- H'25	30,88	75	3,08	0,7	8,29
H'25- H'26	102	75	2,53	0,57	5,7
H'26- H'27	250	50	1,05	0,53	8,41
H'06- H'28	391	160	17,15	0,85	4,7
H'28- H'29	54,95	160	15,27	0,76	3,77
H'29- H'30	252,4	125	13,98	1,14	11,08
H'30- H'31	82,41	125	12,58	1,03	9,05
H'31- H'32	736,48	125	9,14	0,75	4,94
H'32- H'23	77,69	125	5,73	0,47	2,05
H'11- H'20	158	125	7,66	0,62	3,54
H01-H02	324,4	250	63,47	1,29	6,01
H02-H03	272,25	250	60,97	1,24	5,57
H03-H04	351,21	250	-58,35	1,19	5,12
H04-H05	269,8	250	55,75	1,14	4,69
H05-H06	299,6	250	-53,36	1,09	4,31
H06-H07	247,19	250	-51,06	1,04	3,96

Suite de tableau N⁰- 1

Tronçons	Longueur	Diamètre	Débit	Vitesse	Pert.Charge Unit.
	m	mm	LPS	m/s	m/km
H07-H08	254,13	50	1,07	0,54	8,67
H07-H09	156,75	50	0,66	0,34	3,56
H07-H10	16,67	250	-46,51	0,95	3,32
H10-H11	53,59	250	-46,21	0,94	3,28
H11-H12	125,7	250	-45,46	0,93	3,17
H12-H13	71,08	50	-0,3	0,15	0,86
H12-H14	91,99	250	43,95	0,9	2,98
H14-H15	187,24	250	42,78	0,87	2,83
H15-H16	265,62	200	40,88	1,3	8
H16-H17	74,7	200	-39,45	1,26	7,47
H17-H18	117,12	200	38,65	1,23	7,18
H18-H40	63,18	200	31,9	1,02	4,97
H18-H19	41,55	90	5,82	0,91	10,98
H19-H20	85,48	50	0,36	0,18	1,19
H19-H21	28,25	75	4,81	1,09	19,22
H21-H22	71,22	50	0,3	0,15	0,86
H21-H23	43,95	75	-3,91	0,88	12,95
H23-H24	65,25	75	3,45	0,78	10,22
H24-H25	84,39	75	2,82	0,64	6,99
H25-H26	89,83	50	2,09	1,06	30,68
H26-H27	66,49	50	-1,43	0,73	15,02
H27-H28	34,71	50	0,83	0,73	5,48
H28-H30	39,6	50	0,17	0,08	0,31
H28-H29	42,19	50	0,17	0,09	0,35
H27-H31	137,8	50	-0,4	0,21	1,48
H31-H32	134,34	50	1,55	0,79	17,4
H32-H33	108,86	75	2,57	0,58	5,88
H33-H34	64,17	50	1,01	0,52	7,91
H34-H35	33,6	50	0,14	0,07	0,21
H34-H36	55,3	50	-0,23	0,12	0,55
H33-H37	130	75	4,85	1,1	19,58
H37-H38	17,06	90	5,47	0,86	9,77
H38-H39	50,24	50	0,21	0,11	0,47
H38-H40	81,06	200	30,59	0,97	4,59
H40-H41	83,47	50	0,35	0,18	1,14
H38-H42	12,83	200	-24,23	0,77	2,95
H42-H43	141,24	200	-23,59	0,75	2,8
H43-H44	82,9	160	-22,64	1,13	7,98
H45-H44	32,01	160	-20,64	1,03	6,69
H45-H46	124,11	160	19,98	0,99	6,29
H46-H47	93,91	160	19,07	0,95	5,75
H47-H48	199,2	160	-17,84	0,89	5,06
H44-H49	181,72	50	0,76	0,39	4,67

Tableau N^0 -2 résultats de la simulation sur les nœuds :

N° Nœud	Altitude	Demande	Charge	Pression
	m	l/s	m	m
Nœud H'01	104,4	0,68	123,58	19,18
Nœud H'02	90,2	2,19	122,59	32,39
Nœud H'03	75	2,21	120,45	45,45
Nœud H'04	79,5	1,12	119,51	40,01
Nœud H'05	65,3	1,25	118,15	52,85
Nœud H'06	61,1	2,6	117,98	56,88
Nœud H'07	64,15	1,57	117,43	53,28
Nœud H'08	69,1	1,42	116,88	47,78
Nœud H'09	71,6	1	115,83	44,23
Nœud H'10	60,8	0,6	115,13	54,33
Nœud H'11	59,2	1,5	115,04	55,84
Nœud H'12	61,7	1,9	113,89	52,19
Nœud H'13	61,4	0,54	113,39	51,99
Nœud H'14	59,2	0,49	112,35	53,15
Nœud H'15	58,7	0,43	112,19	53,49
Nœud H'16	56,3	2,12	111,78	55,48
Nœud H'17	35,6	2,77	105,36	69,76
Nœud H'18	58,5	2,75	108,59	50,09
Nœud H'19	54,8	2,29	113,7	58,9
Nœud H'20	50,1	1,37	114,48	64,38
Nœud H'21	41,5	1,08	111,6	70,1
Nœud H'22	50,5	2,32	111,61	61,11
Nœud H'23	34,5	2,91	108,59	74,09
Nœud H'24	51	0,6	107,29	56,29
Nœud H'25	51,1	0,56	107,03	55,93
Nœud H'26	53,3	1,48	106,45	53,15
Nœud H'27	46,5	1,05	104,35	57,85
Nœud H'28	41,75	1,87	116,14	74,39
Nœud H'29	40,9	1,29	115,93	75,03
Nœud H'30	40,3	1,4	113,14	72,84
Nœud H'31	38,9	3,44	112,39	73,49
Nœud H'32	34,5	3,42	108,75	74,25
Nœud H01	75,9	2,81	118,94	43,04
Nœud H02	55,2	2,5	116,99	61,79
Nœud H03	43,1	2,62	115,47	72,37
Nœud H04	42,7	2,61	113,68	70,98
Nœud H05	42,2	2,39	112,41	70,21
Nœud H06	65,1	2,3	111,12	46,02
Nœud H07	50,8	2,83	110,14	59,34
Nœud H08	58,8	1,07	107,94	49,14
Nœud H09	72,61	0,66	109,58	36,97
Nœud H10	50,8	0,29	110,09	59,29
Nœud H11	60	0,75	109,91	49,91
Nœud H12	55,1	1,21	109,51	54,41

Suite de tableau N⁰- 2

N° Nœud	Altitude	Demande	Charge	Pression
	m	l/s	m	m
Nœud H13	57,5	0,3	109,45	51,95
Nœud H14	48,5	1,17	109,24	60,74
Nœud H15	51,1	1,9	108,71	57,61
Nœud H16	53,6	1,43	106,58	52,98
Nœud H17	46,5	0,81	106,02	59,52
Nœud H18	46,5	0,93	105,18	58,68
Nœud H19	62,65	0,65	104,73	42,08
Nœud H20	55,5	0,36	104,62	49,12
Nœud H21	62,75	0,6	104,18	41,43
Nœud H22	55,65	0,3	104,12	48,47
Nœud H23	63,25	0,46	103,61	40,36
Nœud H24	63,45	0,63	102,95	39,5
Nœud H25	65,5	0,73	102,36	36,86
Nœud H26	65,5	0,66	99,6	34,1
Nœud H27	67,55	1	98,6	31,05
Nœud H28	65,1	0,49	98,41	33,31
Nœud H29	65	0,18	98,4	33,4
Nœud H30	65,1	0,17	98,4	33,3
Nœud H31	58,5	1,14	98,81	40,31
Nœud H32	52,5	1,02	101,14	48,64
Nœud H33	44,5	1,27	101,78	57,28
Nœud H34	56	0,64	101,28	45,28
Nœud H35	56,1	0,14	101,27	45,17
Nœud H36	55,9	0,23	101,25	45,35
Nœud H37	42,75	0,62	104,33	61,58
Nœud H38	42,8	0,68	104,5	61,7
Nœud H39	54,25	0,21	104,47	50,22
Nœud H40	44,7	0,96	104,87	60,17
Nœud H41	55,5	0,35	104,77	49,27
Nœud H42	42,75	0,65	104,46	61,71
Nœud H43	44,5	0,94	104,06	59,56
Nœud H44	45,7	1,25	103,4	57,7
Nœud H45	45,75	0,65	103,19	57,44
Nœud H46	44,9	0,92	102,41	57,51
Nœud H47	40,1	1,23	101,87	61,77
Nœud H48	38,95	17,84	100,86	61,91
Nœud H49	40	0,76	102,55	62,55

Annexe $N^0 \ V$ -2 Tableau N^0 -1: résultats de la simulation sur les nœuds.

N° Nœud	Altitude	Demande	Charge	Pression
	m	l/s	m	m
Nœud H'01	104,4	0,68	123,38	18,98
Nœud H'02	90,2	2,19	122,33	32,13
Nœud H'03	75	2,21	120,06	45,06
Nœud H'04	79,5	1,12	119,05	39,55
Nœud H'05	65,3	1,25	87,61	22,31
Nœud H'06	61,1	2,6	87,44	26,34
Nœud H'07	64,15	1,57	86,89	22,74
Nœud H'08	69,1	1,42	86,34	17,24
Nœud H'09	71,6	1	85,29	13,69
Nœud H'10	60,8	0,6	84,6	23,8
Nœud H'11	59,2	1,5	84,5	25,3
Nœud H'12	61,7	1,9	83,35	21,65
Nœud H'13	61,4	0,54	82,85	21,45
Nœud H'14	59,2	0,49	81,81	22,61
Nœud H'15	58,7	0,43	81,65	22,95
Nœud H'16	56,3	2,12	81,24	24,94
Nœud H'17	35,6	2,77	74,83	39,23
Nœud H'18	58,5	2,75	78,05	19,55
Nœud H'19	54,8	2,29	83,16	28,36
Nœud H'20	50,1	1,37	83,94	33,84
Nœud H'21	41,5	1,08	81,06	39,56
Nœud H'22	50,5	2,32	81,07	30,57
Nœud H'23	34,5	2,91	78,05	43,55
Nœud H'24	51	0,6	76,75	25,75
Nœud H'25	51,1	0,56	76,49	25,39
Nœud H'26	53,3	1,48	75,91	22,61
Nœud H'27	46,5	1,05	73,81	27,31
Nœud H'28	41,75	1,87	85,6	43,85
Nœud H'29	40,9	1,29	85,4	44,5
Nœud H'30	40,3	1,4	82,6	42,3
Nœud H'31	38,9	3,44	81,85	42,95
Nœud H'32	34,5	3,42	78,21	43,71
Nœud H01	75,9	2,81	118,44	42,54
Nœud H02	55,2	2,5	96,34	41,14
Nœud H03	43,1	2,62	94,83	51,73
Nœud H04	42,7	2,61	93,03	50,33
Nœud H05	42,2	2,39	91,77	49,57
Nœud H06	65,1	2,3	90,47	25,37
Nœud H07	50,8	2,83	89,49	38,69
Nœud H08	58,8	1,07	87,29	28,49

Suite de tableau N⁰ -1

N° Nœud	Altitude	Demande	Charge	Pression
	m	l/s	m	m
Nœud H09	72,61	0,66	88,94	16,33
Nœud H10	50,8	0,29	89,44	38,64
Nœud H11	60	0,75	89,26	29,26
Nœud H12	55,1	1,21	88,86	33,76
Nœud H13	57,5	0,3	88,8	31,3
Nœud H14	48,5	1,17	88,59	40,09
Nœud H15	51,1	1,9	88,06	36,96
Nœud H16	53,6	1,43	85,94	32,34
Nœud H17	46,5	0,81	85,38	38,88
Nœud H18	46,5	0,93	84,54	38,04
Nœud H19	62,65	0,65	84,08	21,43
Nœud H20	55,5	0,36	83,98	28,48
Nœud H21	62,75	0,6	83,54	20,79
Nœud H22	55,65	0,3	83,48	27,83
Nœud H23	63,25	0,46	82,97	19,72
Nœud H24	63,45	0,63	82,3	18,85
Nœud H25	65,5	0,73	81,71	16,21
Nœud H26	65,5	0,66	78,95	13,45
Nœud H27	67,55	1	77,96	10,41
Nœud H28	65,1	0,49	77,77	12,67
Nœud H29	65	0,18	77,75	12,75
Nœud H30	65,1	0,17	77,75	12,65
Nœud H31	58,5	1,14	78,16	19,66
Nœud H32	52,5	1,02	80,5	28
Nœud H33	44,5	1,27	81,14	36,64
Nœud H34	56	0,64	80,63	24,63
Nœud H35	56,1	0,14	80,62	24,52
Nœud H36	55,9	0,23	80,6	24,7
Nœud H37	42,75	0,62	83,68	40,93
Nœud H38	42,8	0,68	83,85	41,05
Nœud H39	54,25	0,21	83,83	29,58
Nœud H40	44,7	0,96	84,22	39,52
Nœud H41	55,5	0,35	84,13	28,63
Nœud H42	42,75	0,65	83,81	41,06
Nœud H43	44,5	0,94	83,42	38,92
Nœud H44	45,7	1,25	82,75	37,05
Nœud H45	45,75	0,65	82,54	36,79
Nœud H46	44,9	0,92	81,76	36,86
Nœud H47	40,1	1,23	81,22	41,12
Nœud H48	38,95	17,84	80,21	41,26
Nœud H49	40	0,76	81,91	41,91

Annexe N⁰ VI-1 ABAQUE

O E M . VIBERT

POUR LE CALCUL SIMPLIFIÉ DES RÉSERVOIRS D'AIR

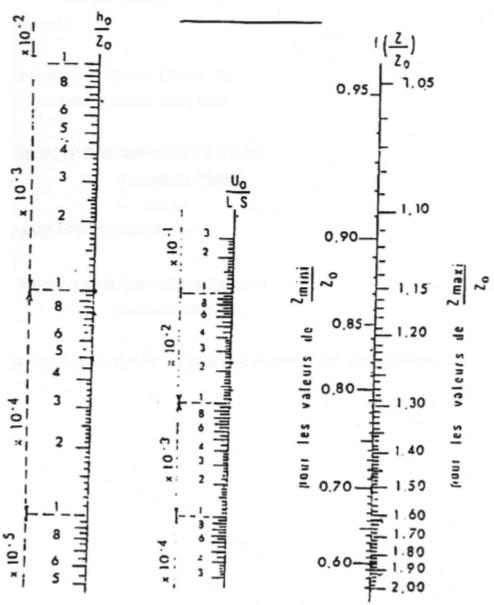


PLANCHE XXVII

: