Higher National School of Hydraulic The Library

Digital Repository of ENSH

المدرسة الوطنية العليا للري المكتبة المستودع الرقمي للمدرسة العليا للري

The title (العنوان):

Renovation d'un réseau d'alimentation en eau potable de la ville de Damous (w. Tipaza).

The paper document Shelf mark (الشفرة) : 1-0009-13

APA Citation (توثيق APA):

Aissaine, Mohamed (2013). Renovation d'un réseau d'alimentation en eau potable de la ville de Damous (w. Tipaza)[Mem Ing, ENSH].

The digital repository of the Higher National School for Hydraulics "Digital Repository of ENSH" is a platform for valuing the scientific production of the school's teachers and researchers.

Digital Repository of ENSH aims to limit scientific production, whether published or unpublished (theses, pedagogical publications, periodical articles, books...) and broadcasting it online.

Digital Repository of ENSH is built on the open software platform and is managed by the Library of the National Higher School for Hydraulics. المستودع الرقمي للمدرسة الوطنية العليا للري هو منصة خاصة بتثمين الإنتاج العلمي لأساتذة و باحثي المدرسة.

يهدف المستودع الرقمي للمدرسة إلى حصر الإنتاج العلمي سواء كان منشورا أو غير منشور (أطروحات،مطبوعات بيداغوجية، مقالات الدوريات، كتب....) و بثه على الخط.

المستودع الرقمي للمدرسة مبني على المنصة المفتوحة و يتم إدارته من طرف مديرية المكتبة للمدرسة العليا للري.

كل الحقوق محفوظة للمدرسة الوطنية العليا للري.

REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE

MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHESCIENTIFIQUE

ECOLE NATIONALE SUPERIEURE D'HYDRAULIQUE- ARBAOUI Abdellah -

DEPARTEMENT GENIE DE L'EAU

MEMOIRE DE FIN D'ETUDES

Pour l'obtention du diplôme d'Ingénieur d'Etat en Hydraulique

Option: Conception Des Systèmes D'Alimentation En Eau Potable

THEME:

RENOVATION D'UN RESEAU D'ALIMENTATION EN EAU POTABLE DE LA VILLE DE DAMOUS (W.TIPAZA)

Présenté par :

Mr AISSAINE Mohamed

DEVANT LES MEMBRES DU JURY :

Nom et prénom	Grade	Qualité
M ^r B.SALAH	Professeur	Président
M ^r M.S BENHAFID	M.A.A	Examinateur
M ^{me} W.MOKRANE	M.A.A	Examinatrice
M ^r A.HACHEMI	M.A.A	Examinateur
M ^r M.BOUZIANE	M.A.B	Examinateur
M ^{me} M.KAHLERRAS	M.A.A	Promotrice

remerciments

A l'issu de cette étude, Je tiens à exprimer mes vifs remerciements à toutes les personnes qui m'ont aidé tout au long de mon travail.

Ma reconnaissance va plus particulièrement à :

Mo promotrice M^{me} KAHLERRAS MALIKA pour sa disponibilité et son aide.

Et à tous ceux qui ont contribué de près ou loin à l'élaboration de ce travail.

A L'ensemble des enseignants qui m'ont suivi durant mon cycle d'étude.

Mon respect aux membres du jury qui me feront l'honneur d'apprécier mon travail

M. Assaine

dédicaces

Je dédie ce modeste travail en signe de reconnaissances et de respect :

A ma très chère mère et mon père

A mes des frères

A toute ma famille,

A mes cousins et cousines

A mes amis de tipaza et ceux de blida et toute ma famille de l'ENSH

A notre Algérie

M.Aissaine

ملخص:

العمل الذي نقوم به يهدف إلى دراسة كيفية تجديد نظام التزويد بالمياه الصالحة للشرب لمدينة الداموس ولاية تيبازة، بمعنى تحديد النقائص الموجودة في نظام جلب و توزيع المياه وكذلك منشات التخزين (خزانات المياه) و أيضا مراجعة سعة الشبكة الحالية لإيصال التدفقات التي نحتاجها لأفاق الدراسة (2040). هده المراجعة سمحت لنا بإعطاء بعض التعديلات والنصائح لتحسين التزويد بالمياه الصالحة للشرب للمدينة بهدف إرضاء المستهلكين الذين يعانون من نقص فادح قي المياه.

Résumé:

Notre travail consiste à faire une étude de rénovation du système d'alimentation en eau potable de la ville de DAMOUS wilaya de TIPAZA. Nous déterminons les défaillances du système d'adduction et de distribution ainsi que les ouvrages de stockage (réservoirs) et la vérification de la capacité du réseau existant pour véhiculer les débits nécessaires à l'horizon d'étude (2040).

Cette vérification nous permettra de satisfaire les besoins des consommateurs qui souffrent d'un manque flagrant d'eau.

Abstract:

Our work consists in studying the renewal of drinking water supply system for the town of DAMOUS wilaya to TIPAZA, i.e. the determination of the failures. The adduction and distribution system as well as the works of storage (water tanks) and the checking of the capacity of the network existing to convey the flows necessary to the horizon of study (2040). This checking will enable us to give certain numbers of modifications and recommendations to improve the drinking water supply of the city .

We quote also the concepts of management, exploitation and the check operations and maintenance to carry out on all the hydraulic works.

SOMMAIRE

Introduction generale:
Chapitre I : présentation de la ville
Introduction
I.1 : Situation administrative et géographique :
I.2 : Analyse physique de site :
I.2-1 : géomorphologie :
I.2-2 : Climatologie et hydrologie :
a) Climatologie
b) Hydrologie:
c) pente:
d) Sismicité :
I.3 : Potentialités de développement :
I.4 : Occupation des sols au niveau de DAMOUS :
I.5 : Situation hydraulique.
I.5.1: Ressources en eau
I.5.2. : Eaux souterraines :
I.5.3 : Eaux de surface :
Conclusion:
Chapitre II: Estimation des besoins
Introduction:
II-1/ Evaluation de la population future :
II-2/Estimation des besoins journalier (2040):
II-2-2/ Besoins en eau pour déférent catégorie :
a) Détermination besoins en eau de la zone 01 :
II-2-3/ Besoins domestiques :
II-2-4/Besoins administratifs :
II-2-5/ Besoins scolaires :
II-2-6/ Besoins sanitaires :
II-2-7/ Besoins socioculturels :
II-2-8/ Besoins commerciaux :
b) Détermination besoins en eau de la zone 02 :
II-2-9/Besoins domestique.
II-2-10/Besoins scolaires.
II-3 : Récapitulation des besoins en eaux de la ville :
II -4/ Variation des débits de consommation dans le temps :
II -4-1/ Variation journalière :
II -4-2/ variation horaire:
II-4-3/ Détermination des débits journaliers :
II -4-3-1/ Consommation maximale journalière (Qmax, j) :
II -4-3-2/ Consommation minimale journalière (Qmin, j)
II -4-4/ Détermination des débits horaires :
II -4-4-1/ Débit moyen horaires

II -4-4-2/ débit maximum horaire :	1
II -4-5/Evaluation de la consommation horaire en fonction du nombre d'habitant :	
II-5/Analyse de capacité de ressource	2
Conclusion:	2
Chapitre III : Diagnostique de réseau distribution	
III-1/ Introduction	
III-2-2/Ressources en eau 24	ļ
III-2-3/Eaux souterraines	
III-3/Etat actuel des ouvrages de stockage	,
III-4/Eta actuel de réseau distribution	
Conclusion:	
Chapitre IV : étude des réservoirs	3
Introduction:	3
	_
IV-2/ Classification des réservoirs	3
IV-3/ Les facteurs intervient dans la détermination du type de réservoir	. 3
IV-4/ Les critères les plus souvent retenus pour les choix du type de réservoir	. 3
IV-5/ Emplacement des réservoirs :	3
IV-6/ Construction des réservoirs :	3
IV.7/ Détermination de la capacité d'un réservoir du réservoir :	3
IV.7-1/ Estimation de la capacité totale de stockage et transit de réservoir :	3
IV-8/ Equipement de réservoir:	3
Conclusion:	3
Chapitre V : Réseau de distribution	
•	_
V.1/ Introduction :	3
V-2/ choix du matériau des conduites :	3
V.3/ Les types de réseaux :	
V.3.1/ Les réseaux maillés :	
V.3.2/ Réseaux ramifie :	
V.3.3/ Réseaux étagés :	. 2
V.4/ Principe de tracé d'un réseau maillé :	
V.5/ Calcul hydraulique du réseau distribution :	4
V-5-1/ Détermination des débits nodaux:	4
V-5-2/débit en route :	4
V-5-3/ Débit spécifique :	_
V-5-4/débits aux nœuds (nodaux):	_
V-5-5/Calcul du réseau de distribution (cas de pointe)	
V-5-5 /Calcul du réseau de distribution (cas de pointe):	4
V-6/ Calcul hydraulique du réseau distribution.	5
V-6-1/ Méthode de calcul :	5
V-6-1-1 / La base de la méthode:	
V-6-2/ Les résultats du calcul:	
V.7/ Equipement du réseau distribution :	
V-7-1/ Appareils et accessoires du réseau :	6
V-7-1-1/Robinet vanne:	6

V-7-1-2/ Bouches ou poteau d'incendie :	65
V-7-1-3/ Clapet:	65
V-7-1-4/ Ventouse :	65
V-7-1-5/ Robinet de vidange	65
V-7-1-6/ Bouche d'arrosage	65
V-7-1-7/ Pièces spécial de raccord.	65
CONCLUSION	66
Chapitre VI: adduction et pompage	
Introduction:	67
VI-1/ Type d'adduction :	
VI-2/ Le choix de tracé.	
VI-3 Choix des types de matériau :	67
VI-4 schéma générale de l'adduction de la ville de DAMOUS :	69
VI-4-1 Adduction à partir des forages :	69
VI-4-1-1 calcul du diamètre économique :	69
VI-4-1-2 Calcul de la hauteur manométrique pour les trois forages :	71
IV-4-1-3-Choix des pompes :	
	0.2
IV-4-1-4 détermination de point de fonctionnement des trois pompes :	83
a) Détermination de point de fonctionnement deux pompes des forges F1,F2 :	
b) Détermination de point de fonctionnement de pompe de forage F3 :	86
Conclusion:90	
Conclusion	
Chapitre VI : Protection des conduites contre le coup de bélier	
Chapitre VI : Protection des conduites contre le coup de bélier	91
Chapitre VI : Protection des conduites contre le coup de bélier VII-1-Définition :	
Chapitre VI : Protection des conduites contre le coup de bélier VII-1-Définition :	91
Chapitre VI : Protection des conduites contre le coup de bélier VII-1-Définition :	91 91
Chapitre VI : Protection des conduites contre le coup de bélier VII-1-Définition : VI-2-Les risques dus aux coups de bélier : VI-2-1-Risque de forte pression : VI-2-2-Pression négative :	91 91 91
Chapitre VI : Protection des conduites contre le coup de bélier VII-1-Définition : VI-2-Les risques dus aux coups de bélier : VI-2-1-Risque de forte pression : VI-2-2-Pression négative : VI-2-3-Fatigues des conduites :	91 91 91 91
Chapitre VI : Protection des conduites contre le coup de bélier VII-1-Définition : VI-2-Les risques dus aux coups de bélier : VI-2-1-Risque de forte pression : VI-2-2-Pression négative : VI-2-3-Fatigues des conduites : VI-2-4- Description des phénomènes physiques	91 91 91 91 91
Chapitre VI : Protection des conduites contre le coup de bélier VII-1-Définition : VI-2-Les risques dus aux coups de bélier : VI-2-1-Risque de forte pression : VI-2-2-Pression négative : VI-2-3-Fatigues des conduites : VI-2-4- Description des phénomènes physiques VI-3-Protection de la conduite de refoulement contre le coup de bélier :	91 91 91 91 91
Chapitre VI : Protection des conduites contre le coup de bélier VII-1-Définition : VI-2-Les risques dus aux coups de bélier : VI-2-1-Risque de forte pression : VI-2-2-Pression négative : VI-2-3-Fatigues des conduites : VI-2-4- Description des phénomènes physiques VI-3-Protection de la conduite de refoulement contre le coup de bélier : VI-3-1/Calcul du réservoir d'air :	91 91 91 91 91 91
Chapitre VI : Protection des conduites contre le coup de bélier VII-1-Définition : VI-2-Les risques dus aux coups de bélier : VI-2-1-Risque de forte pression : VI-2-2-Pression négative : VI-2-3-Fatigues des conduites : VI-2-4- Description des phénomènes physiques VI-3-Protection de la conduite de refoulement contre le coup de bélier :	91 91 91 91 91 91 92 93
Chapitre VI : Protection des conduites contre le coup de bélier VII-1-Définition : VI-2-Les risques dus aux coups de bélier : VI-2-1-Risque de forte pression : VI-2-2-Pression négative : VI-2-3-Fatigues des conduites : VI-2-4- Description des phénomènes physiques VI-3-Protection de la conduite de refoulement contre le coup de bélier : VI-3-1/Calcul du réservoir d'air : VI-3-2/Calcul du volume de réservoir d'air :	91 91 91 91 91 91 92 93
Chapitre VI: Protection des conduites contre le coup de bélier VII-1-Définition: VI-2-Les risques dus aux coups de bélier: VI-2-1-Risque de forte pression: VI-2-2-Pression négative: VI-2-3-Fatigues des conduites: VI-2-4- Description des phénomènes physiques VI-3-Protection de la conduite de refoulement contre le coup de bélier: VI-3-1/Calcul du réservoir d'air: VI-3-2/Calcul du volume de réservoir d'air: VI-4/Conclusion: Chapitre VIII: Organisation de chantier	91 91 91 91 91 92 93 93
Chapitre VI: Protection des conduites contre le coup de bélier VII-1-Définition: VI-2-Les risques dus aux coups de bélier: VI-2-1-Risque de forte pression: VI-2-2-Pression négative: VI-2-3-Fatigues des conduites: VI-2-4- Description des phénomènes physiques VI-3-Protection de la conduite de refoulement contre le coup de bélier: VI-3-1/Calcul du réservoir d'air: VI-3-2/Calcul du volume de réservoir d'air: VI-4/Conclusion: Chapitre VIII: Organisation de chantier	91 91 91 91 91 92 93 93 93
Chapitre VI : Protection des conduites contre le coup de bélier VII-1-Définition : VI-2-Les risques dus aux coups de bélier : VI-2-1-Risque de forte pression : VI-2-2-Pression négative : VI-2-3-Fatigues des conduites : VI-2-4- Description des phénomènes physiques VI-3-Protection de la conduite de refoulement contre le coup de bélier : VI-3-1/Calcul du réservoir d'air : VI-3-2/Calcul du volume de réservoir d'air : VI-4/Conclusion : Chapitre VIII : Organisation de chantier INTRODUCTION VIII-1-Implantation du tracé sur le terrain:	91 91 91 91 91 92 93 93 98
Chapitre VI: Protection des conduites contre le coup de bélier VII-1-Définition: VI-2-Les risques dus aux coups de bélier: VI-2-1-Risque de forte pression: VI-2-3-Fatigues des conduites: VI-2-4- Description des phénomènes physiques VI-3-Protection de la conduite de refoulement contre le coup de bélier: VI-3-1/Calcul du réservoir d'air: VI-3-2/Calcul du volume de réservoir d'air: VI-4/Conclusion: Chapitre VIII: Organisation de chantier INTRODUCTION VIII-1-Implantation du tracé sur le terrain: VIII-2- Exécution des tranchés:	91 91 91 91 91 92 93 93 98
Chapitre VI: Protection des conduites contre le coup de bélier VII-1-Définition: VI-2-Les risques dus aux coups de bélier: VI-2-1-Risque de forte pression: VI-2-2-Pression négative: VI-2-3-Fatigues des conduites: VI-2-4- Description des phénomènes physiques VI-3-Protection de la conduite de refoulement contre le coup de bélier: VI-3-1/Calcul du réservoir d'air: VI-3-2/Calcul du volume de réservoir d'air: VI-4/Conclusion: Chapitre VIII: Organisation de chantier INTRODUCTION VIII-1-Implantation du tracé sur le terrain: VIII-2- Exécution des tranchés: VIII-2-1: Enlèvement de la couche végétale:	91 91 91 91 91 92 93 93 98
Chapitre VI: Protection des conduites contre le coup de bélier VII-1-Définition: VI-2-Les risques dus aux coups de bélier: VI-2-1-Risque de forte pression: VI-2-3-Fatigues des conduites: VI-2-4- Description des phénomènes physiques VI-3-Protection de la conduite de refoulement contre le coup de bélier: VI-3-1/Calcul du réservoir d'air: VI-3-2/Calcul du volume de réservoir d'air: VI-4/Conclusion: Chapitre VIII: Organisation de chantier INTRODUCTION VIII-1-Implantation du tracé sur le terrain: VIII-2- Exécution des tranchés: VIII-2-1: Enlèvement de la couche végétale: VIII-2-2: Excavation des tranchées:	91 91 91 91 91 92 93 93 98
Chapitre VI : Protection des conduites contre le coup de bélier VII-1-Définition: VI-2-Les risques dus aux coups de bélier: VI-2-1-Risque de forte pression: VI-2-2-Pression négative: VI-2-3-Fatigues des conduites: VI-2-4- Description des phénomènes physiques VI-3-Protection de la conduite de refoulement contre le coup de bélier: VI-3-1/Calcul du réservoir d'air: VI-3-2/Calcul du volume de réservoir d'air: VI-4/Conclusion: Chapitre VIII : Organisation de chantier INTRODUCTION VIII-1-Implantation du tracé sur le terrain: VIII-2- Exécution des tranchés: VIII-2-1: Enlèvement de la couche végétale: VIII-2-1 : La profondeur.	91 91 91 91 91 92 93 93 98
Chapitre VI: Protection des conduites contre le coup de bélier VII-1-Définition: VI-2-Les risques dus aux coups de bélier: VI-2-1-Risque de forte pression: VI-2-3-Fatigues des conduites: VI-2-4- Description des phénomènes physiques VI-3-Protection de la conduite de refoulement contre le coup de bélier: VI-3-1/Calcul du réservoir d'air: VI-3-2/Calcul du volume de réservoir d'air: VI-4/Conclusion: Chapitre VIII: Organisation de chantier INTRODUCTION VIII-1-Implantation du tracé sur le terrain: VIII-2- Exécution des tranchés: VIII-2-1: Enlèvement de la couche végétale: VIII-2-2: Excavation des tranchées:	91 91 91 91 91 92 93 93 98

VIII-3 : Pose de canalisation:	103
VIII-4 : Epreuve de joint et la canalisation :	103
VIII-5 : Remblaiement de la tranchée :	103
Conclusion:	105
Chapitre IX : Protection et sécurité de travail	
IX.1- Généralité :	106
IX.2- Analyse des actions et conditions dangereuses pendant:	106
L'organisation de la construction du système d'AEP :	106
	100
IX.2.1- Facteur matériel :	106
Les conditions dangereuses susceptibles d'évaluer au cours du travail :	106
IX.2.2- Facteur humain :	106
Les conditions d'origine humaine sont :	106
IX.3- Mesure préventives pour éviter les causes des accidents :	107
IX.3.1-protection collective :	107
IX.3.2- Autres protections :	107
IX.3.3- Protection individuelle :	108
IX.4- Organisation de la prévention des accidents du travail :	108
Conclusion générale:110	

liste des Tableaus

Tableau N 1-1: Nombre de jour pluvieux pour chaque mois	
Tableau N°I-2: Précipitation Moyennes pour chaque mois	4
Tableau N°I-3 : Température	
Tableau N°I-4 : Humidité	
Tableau II.1- Evaluation de la population pour la zone 01	
Tableau N°II.2- Evaluation de la population pour la zone 02	
Tableau N°II-3: Besoins domestiques :	
Tableau N°II-4 : Evaluation des besoins administratifs	
Tableau II-5: Evaluation des besoins scolaires.	
Tableau N°II-6 : Evaluation des besoins sanitaires	
Tableau N°II-7 : Evaluation des besoins socioculturels	
Tableau N°II-8: Evaluation des besoins commerciaux	
Tableau II-9: Besoins domestiques	13
Tableau N°II-10 : Evaluation des besoins scolaires	
Tableau N°II-11 : Récapitulation des besoins en eaux de la ville de DAMOUS (zone01)	
Tableau N°II-12 : Récapitulation des besoins en eaux de la ville de DAMOUS (zone02)	14
Tableau N°II-13 : β_{max} en fonction du nombre d'habitants	16
Tableau N° II -14 : Calcul Kmaxh	16
Tableau N° II -15 : β_{\min} en fonction du nombre d'habitants	
Tableau N° II-16 : calcul de K min,h :	10
Tableau N° II-10 : Calcul de K IIIII,II :	
Tableau N°II-18 : Evaluation des débits moyen et maximum horaire	
Tableau N° II -19: Répartition des débits horaires en fonction de nombre d'habitants	
Suite du tableau N°II-19: Répartition des débits horaires en fonction de nombre	10
d'habitants	19
Tableau N° II-20: Variation des débits horaires de la ville de DAMOUS pour la zone 01	
Suite du tableau N° IV -20 : Variation des débits horaires de la ville de DAMOUS	
Tableau N° II -21: Variation des débits horaires de la ville de DAMOUS pour la zone 02	
Suite du tableau N° IV -21 : Variation des débits horaires de la ville de DAMOUS	
Tableau N° III -1 : Liste des forages (source DHW de TIPAZA)	
Tableau N° III -2 : les caractéristiques des réservoirs.	
Tableau N° III -3: Etat actuels des ouvrages de stockage	25
Tableau N°III-4 : Etat du réseau de distribution de la ville de DAMOUS	26
Suite du tableau N°III-5 : Etat du réseau de distribution de la ville de DAMOUS	27
Suite du tableau N°III-5 : Etat du réseau de distribution de la ville de DAMOUS	
Suite du tableau N°III-5 : Etat du réseau de distribution de la ville de DAMOUS	
Tableau N°IV-1 : Évaluation du volume résiduel du réservoir de première zone01	
Suite du tableau N°IV-1 : Évaluation du volume résiduel du réservoir	
Tableau N°IV-2: Évaluation du volume résiduel du réservoir de première zone02	
Tableau N°V-1 : Détermination des débits spécifique de chaque zone	
Tableau N°V-2 : détermination des débits aux nœuds de la zone 01 (cas de pointe)	42

Suite du tableau V-2 : détermination des débits aux nœuds de la zone 01(ca01	43
Suite du tableau V-2 : détermination des débits aux nœuds de la zone	44.
Tableau V-3 : détermination des débits aux nœuds (cas de point+incendie)	
Suite du tableau V-3 : détermination des débits aux nœuds	
Tableau N°V-4 : Détermination des débits aux nœuds de la zone 02 (cas de pointe)	47
Suite du tableau N°V-4 : Détermination des débits aux nœuds de la zone 02	
Suite du tableau N°V-4 : Détermination des débits aux nœuds de la zone 02	
TableauN°V-5 : Calcul des débits nodaux en (cas de point+incendie de la zone 02)	49
Suite du tableau N°V-5 : Calcul des débits nodaux en (cas de point+incendie)	
Tableau N°V-6: Les caractéristiques des tronçons (cas de pointe) pour la zone01	
Suite du tableau N°V-6 : Les caractéristiques des tronçons (cas de pointe) pour	
Tableau N°V-7 : Calcul des pressions (cas de pointe) pour la zone 01	
Suite du tableau N°V-7 : Calcul des pressions (cas de pointe) pour la zone 01	
Tableau N°V-8: Les caractéristiques des tronçons (cas de point+incendie) pour la zone01	
Suite du tableau N°V-8 : Les caractéristiques des tronçons (cas de point+incendie)	
Tableau N°V-9 : Calcul des pressions (cas de point+incendie) pour la zone 01	
Suite du tableau N°V-9 : Calcul des pressions (cas de point+incendie) pour la zone 01	
Tableau N°V-10: Les caractéristiques des tronçons (cas de pointe) pour la zone02	59
Suite du tableau N°V-10 : Les caractéristiques des tronçons (cas de pointe)	
Tableau N°V-11 : Calcul des pressions (cas de pointe) pour la zone 02	
Tableau N°V-12 : Les caractéristiques des tronçons (cas de pointe+incendie) pour la	
zone02	61
Tableau N°V-13 : Calcul des pressions (cas de pointe +incendie) pour la zone 02	61
Suite du tableau N°V-13 : Calcul des pressions (cas de pointe +incendie)	
Tableau N°VI-1 : La valeur de M en fonction du matériau	70
Tableau N°VI-2 : Calcul des diamètres économiques et des vitesse	71
Tableau N°VI-3 : Les variations des HMT en fonction du diamètre	76
Tableau N°VI-4: Les dépenses d'exploitation	77
Tableau N°VI-5 : Variation des frais d'investissement en fonction du diamètre	77
Tableau N°VI-6: Bilan des frais d'investissement et d'exploitation	77
Tableau N° VI -7 : Les variantes pour le choix de la pompe du forage F1	
Tableau N°VI-8: Les variations pour le choix de la pompe du forage F2	78
Tableau N° VI-9 : Les variations pour le choix de la pompe du forage F2	79
Tableau N° VI-10 : Détermination de la courbe HC _A en fonction de Q1	84
Tableau N° VI-11 : Détermination de la courbe HC _A _{P2} en fonction de Q ₂	85
Tableau N° VI-12 : Détermination de la courbe HC _A ^{R2} en fonction de Q	86
Tableau N° VI-13 : Détermination de la courbe HC _{F3} ^{K1} en fonction de Q ₃	87
Tableau N° VI-14 : Détermination de la courbe pompe du forage F3	
Tableau N°VII-1 : Les caractéristiques de la conduiteF1-A	94
Tableau N°VII-2 : Les caractéristiques de la conduiteF2-A	96
Tableau N°VII-3 : Les caractéristiques de la conduiteF3-R3	97
Tableau N°VIII-1 : Calcul de volume à excaver	101
Tableau N°VIII-2 : Capacité du godet en fonction du volume terrassement	
Tableau N°VIII-3 : Volume de lit de sable	
Suite tableau N°VIII-3 : Volume de lit de sable	
Tableau N°VIII-4 : Volume total du remblai	
Tableau N°VIII-5 : Choix du bulldozer en fonction de capacité du godet	104

Liste des figures

Figure I-1 : Plan de situation géographique de la ville de DAMOUS	3
Figure II -1 : Graphique de consommation de la ville de DAMOUS pour zone 01	21
Figure II-2 : Graphique de consommation de la ville de DAMOUS pour zone 01	22
Figure II-4 : Graphique de consommation de la ville de DAMOUS pour zone 02	
Figure V-1: La variation de vitesse et de pression (cas de pointe) pour la zone 01	55
Figure V-2 : La variation de vitesse et de pression (cas de pointe +incendie) pour la	
zone 01	56
Figure V-3: La variation de vitesse et de pression (cas de pointe) pour la zone 02	63
Figure V-4 : La variation de vitesse et de pression (cas de pointe +incendie) pour la	
zone 01	64
Figure VI-1: Schémas générale de l'adduction à partir des deux forages vers le	
réservoir R2 de capacité 300 m ³	68
Figure VI-2: Schémas générale de l'adduction à partir de forage F3 vers le réservoir	
R1 de capacité 600 m ³	68
Figure VI-3 : Courbe caractéristique de la pompe E6S55/11A+MCH du forage F1	80
Figure VI-4 : Courbe caractéristique de la pompe E6S64 /15A+MCH640 du forage	
F2	81
Figure VI-5 : Courbe caractéristique de la pompe E10S /5CD+M8900 du forage	
F3	82
Figure VI-6 : Courbe caractéristique des conduites	88
Figure VI-7 : Point de fonctionnement des trois pompes F1et F2	89
Figure VI-8 : Point de fonctionnement des pompes F1	90

LISTE DES PLANCHES

Planche N° 1 : Plan de masse + réseau existant de la ville de DAMOUS W.TIPAZA.

Planche N° 2 : plan de masse + réseau projeté de la ville de DAMOUS W.TIPAZA

Planche N° 3 : Profil en long de réseau distribution de la ville de DAMOUS .W.TIPAZA

Planche N° 4: Profil en long de l'adduction par refoulement à partir d'un forge F3 le réservoir R1.

Planche N° 5 : Détails des nœuds de réseau distribution.

Planche N° 6 : Détails des nœuds de réseau distribution

Planche N° 7 :.. Détails des nœuds de réseau distribution.

Introduction général:

L'eau est une ressource utile et subtile pour la vie qui nous sert de maintes façons, nous rendant la vie plus facile et plus agréable

La gestion rationnelle de l'eau est l'une des plus importantes préoccupations universelles d'où des politiques de développement de plan stratégique sur l'eau, des plans qui mettraient en avant la valeur des ressources nationales en eau et définirait les allocations en eau.

A cet effet plusieurs régions de l'Algérie font état de l'insuffisance dans l'approvisionnement en eau potable, la ville de Damous ne fait exception à cette problématique, car souffrant des séquelles liés à la multiplicité des problèmes lié à la gestion et a l'état de son réseau d'AEP (raccordement vétuste, fuite permanente, inégalités de la répartition des débits).

Alors l'objet de notre étude consiste à faire une étude approfondie du système d'alimentation en eau potable pour améliorer l'approvisionnement en eau potable de la ville de Damous.

Pour cela nous allons procéder tout d'abord à :

- -La présentation du système actuel d'alimentation en eau potable.
- Son état et les problèmes rencontrés du point de vue hydraulique.

Et enfin proposer des solutions pour une bonne gestion et une exploitation judicieuse (correcte) du système.

1

PRINTATION DE LA ZONE D'ETUDE

Introduction:

Connaître la situation de la zone d'étude du point de vue géographique, topographique, géologique, climatique, démographique et hydraulique nous permet de mener à bien notre travail.

I.1. Situation administrative et géographie :


La ville de Damous est située dans le périphérique Ouest de la wilaya de Tipaza, elle constitue la limite entre les wilayas de Tipaza, Chelif et Ain Defla.

La commune de Damous est située à 75km de Tipaza (chef-lieu de wilaya) et à 145km d'Alger, elle couvre une superficie de 7458 Ha.

Les altitudes varient entre zéro (niveau de la mer) et 909m (au sud de la commune).

- Administrativement la commune de Damous est limitée par :
 - Au Nord par la mer méditerranée ;
 - Au sud par la commune de Beni Mileuk;
 - A l'Est par la commune de Larhat;
 - A l'Ouest par les communes de Beni Haoua et Breira (wilaya de chlef)

Situation de la commune au sein de la wilaya

LIMITE WILAYA

LIMITE DAIRA

LIMITE COMMUNALE

Figure I-1: Situation géographique de la ville de Damous

I.2 /Analyse physique du site :

I.2.1/Géomorphologie:

La ville de Damous est située au pied de montagne constituée de plusieurs montagnes dont on cite :

- ✓ La montagne Nador qui culmine à 905 m à Sidi Moulay Abdelkader.
- ✓ La montagne Er Rof qui atteint 851 m à Koudiat Lawa.

La commune se trouve dans un terrain accidenté ou le plus haut point au Sud est à

(909m) d'altitude et il diminue en allant vers le Nord (0 m)

I.2.2/ Climatologie et Hydrogéologie :

a) Climatologie:

a.1 Précipitations :

En matière de précipitation la zone d'étude est caractérisée par une décroissance des précipitations d'Ouest en Est et de l'intérieur vers le littoral

En ce qui concerne les variations saisonnières, les pluies d'hiver dominent avec 41½ suivies de celles de l'automne pour le littoral et les vallées et de printemps pour les zones montagneuses. Les pluies d'été ne représente que 3½ sous forme d'épisode orageux.

Le nombre moyen des jours pluvieux pour chaque mois sont représentés dans le tableau suivant

Tableau N° I-1: Nombre de jour pluvieux pour chaque mois

Mois	Jan	Fév	Mars	Avril	Mai	Juin	Juillé	Aout	Sep	Oct	Nov	Déc
jours	10	8	10	7	6	5	1	3	5	9	10	10
pluvieux		Ü		•			_	C			10	10

<u>Tableau N°I-2</u>: Précipitation moyenne pour chaque mois

Mois	Jan	Fév	Mars	Avril	Mai	Juin	Juillé	Aout	Sep	Oct	Nov	Déc
P(mm	70	54	44	34	27	10	1	2	18	56	61	70

D'après le tableau ci-dessus les pluies sont très irrégulières durant les saisons. Elles sont abondantes en automne et en hiver et se caractérisent souvent par des orages et des tempêtes de vent. Elles sont variables et incertaines au printemps, nulles et irrégulières à l'été.

a.2 Températures :

La température est un facteur très influent sur le milieu naturel, elle favorise notamment les phénomènes évapotranspiration et l'érosion éolienne.

<u>**Tableau N°I-3:**</u> Températures

Mois	Jan	Fév	Mars	Avril	Mai	Juin	Juillet	Aout	Sep	Oct.	Nov.	Déc.
Température	10,											
(C°)	8	11,2	12,3	14,4	17,3	21,4	24,4	24,5	22,5	17,1	14,2	11,5

La température moyenne annuelle pour les12 ans est de 16.8 °C, l'année peut se diviser en deux semestres : l'un est froid et l'autre est chaud. Les températures de la région varient du maximum =24.5 °C vers le minimum = 10.8 °C. Notons que des journées de gel peuvent affecter la région en hiver.

La proximité de la mer a une influence directe sur le climat, ainsi la forte chaleur est rafraîchie et humidifiée par la brise d'été et la mer réchauffe la terre pendant les hivers rigoureux.

a-3 Humidité:

Tableau N°I-4: Humidité

Mois	Jan	Fév	Mars	Avril	Mai	Juin	Juillé	Aout	Sep	Oct	Nov	Déc
Humidité												
relatif	66	66	70	65	69	72	72	66	67	73	65	66

Le taux d'humidité relative de l'air dans le Sahel varie entre 72 et 65 %. Il diminue en direction des montagnes. En outre, l'humidité est plus faible vers midi que le matin et le soir.

b) Hydrogéologie:

Du point de vue hydrogéologique, la région de Damous a une pluviométrie assez conséquente (400 à 600mm/an), de ce fais, la constitution géologique des sols de la commune : terrain du quaternaire composés de galets, d'argiles schisteuse, niveaux sablo graveleux le long de l'Oued Damous et de l'importante étendue du bassin versant de celui-ci

Cela devrait permettre une bonne alimentation de la nappe.

Aussi nous pouvons scinder la commune en deux zones :

a) Zone perméable : composée essentiellement de crétacé supérieur (argiles schisteuses du cénomanien (calcaires béchiques et poudingues), d'alluvions d'Oueds, (galets, Graviers sableux). Cette zone est

située au Sud et l'Est de l'agglomération chef-lieu, au centre de la commune et au Sud (djebel Boukerdes) les lits de Oued Damous et Harbil renferment également des potentialités aquifères.

b) Zone perméable : nous y trouvons des sols du crétacé supérieur (marnes et calc-marneux) et de l'albien (argiles schisteuses et schistes noir très compacts.

Cette zone est située au centre de la commune (douar Er roff au Sud Ouest et s'étend jusqu'au Nord Est du territoire communal Douar Beni Zioui en passant par Tahanoout).

Nous la trouvons également à l'extrémité Sud-Ouest de la commune.

b.1)Pentes:

C'est un paramètre dont il faut tenir compte vu la configuration des sols, hors de l'agglomération car elles influent sur l'urbanisation.

Pentes de 0 à 5 % : elle sont situées sur la frange littorale et dans la vallée des Oueds, d'autre parcelles sont éparpillées à travers la commune. Elles occupent

16 % du territoire.

Pente de 5 à 10 % : occupant près de 5% et une superficie de 371 Ha du territoire. Elles se situent au Sud du chef-lieu Damous.

- Pentes de 10 à 15 % : elles représentent près de 6% et sont éparses dans la commune surtout au Nord Est et au Sud-Ouest.
- Pentes de 15 à 20 % : occupant prés d 6%, elles sont également éparpillés à travers le territoire.
- pentes de 20 à 25 % : repasses sur toute la commune, elles représentent environ 6% d la superficie totale.
- Pentes > 25%: ces pentes couvrent environ 60% du territoire de la commune.

b.2)Sismicité:

C'est un paramètre qui, suite au dernier événement (Boumerdes), a pris une importance accrue et est devenu une obligation d'étude détaillée à envisager lors de toute construction (logement ou équipement)

La wilaya de Tipaza dans son ensemble est classée en zone 3 dans le RPA version 2003 revu et corrigé après le séisme de Boumerdes.

Des études de génie civil seront également entreprises lors de toute construction nouvelle (logement ou équipement) dans le RPA. Des formulations strictes sont édictées concernant les fouilles, la structure de construction, les détails (ferraillage, poteaux....) aussi est-il vivement recommandé aux autorités locales de n'approuver que les permis de construire dument établi selon la réglementation en vigueur.

La zone d'étude se trouve sur la chaine de l'atlas tellien dont le prolongement est le glissement alpin, sujet à une intense activité tectonique de nos jours encore (plaque tectonique eurasienne).

I.3) Potentialités de développement :

La commune de Damous dispose de potentialités qui peuvent lui permettre de jouer un rôle assez important mais qui nécessite une attention particulière de la part des autorités locales et des efforts considérables pour les mettre en valeur.

Les potentialités de la commune de Damous se limitent comme suit :

a) Potentiel naturel:

- Tourisme :

Damous est une commune touristique grâce à sa position géographique et ses potentialités naturelles (forets et littoral de 4.5 km)

- Agriculture :

C'est un potentiel non négligeable, la surface agricole utile SAU représente 32.51% de la surface totale de la commune, ce qui dénote l'importance du capital agricole à préserver.

b) Potentiel artificiel:

La commune est traversée d'Est en Ouest par le seul axe routier important c'est la RN11 qui relie Alger à la cote Ouest (Alger-Oran)

- La commune de Damous est actuellement chef-lieu de Daïra dont dépendent également les communes de Larhat et Beni Mileuk.
- La commune de Damous se situe dans la périphérique Ouest de la wilaya de Tipaza, elle constitue la limite entre les wilayas de Tipaza, Chlef, et de Ain Defla, c'est un lieu d'échange (marché de gros)
- Le barrage de « Kaf Eddir » c'est un facteur de développement de la commune dans les années à venir par son apport en eau potable et en irrigation (l'agriculture)

I.4/Occupation des sols au niveau de Damous :

Le territoire de la commune de Damous couvre une superficie de 7458 Ha qui s'étale sur trois zones différentes :

La plaine avec 21% du territoire communal, elle se situe au Sud du chef lieu de Damous, sur la frange littorale et dans la vallée des Oueds, d'autre parcelles sont éparpillées à travers le territoire communal, soit une superficie de 1566 Ha.

Le piémont occupe 6% du territoire communal, il se situe surtout au Nord Est es au Sud Ouest, d'une superficie de 448 Ha

La zone montagneuse de 73% du territoire de la commune soit une superficie de 5444 Ha

I.5/ SITUATION HYDRAULIQUE:

I.5.1) Ressources en eau :

L'infrastructure de mobilisation en eau de Damous est relativement réduite.

La ville tire ses ressources principalement des eaux souterraines de la nappe d'accompagnement d'Oued Damous et Oued Habile. Un apport appréciable sera tiré à partir des eaux de surfaces provenant du futur barrage de Kaf Eddir pour renforcer l'alimentation en eau potable de la ville.

I.5.2) Eaux Souterraines:

Les terrasses de l'oued Damous renferment un niveau d'alluvions grossières d'une épaisseur variant entre 10 et 20 d'épaisseur et se trouvant à quelques mètres de profondeur.

Cet aquifère est exploité par 3 forages d'une profondeur variant de 20 à 45 m. Le tableau suivant en donne les caractéristiques récentes de ceux alimentant l'aire d'étude

I.5.3)Les eaux de surface:

Elles se résument dans les eaux du futur barrage de Kaf Eddir qui est en cour de réalisation. Le barrage occupe une superficie de 14050 Ha, d'une hauteur de 61m, son volume retenu est de 186 millions de M³, son volume régularisé est de 60 millions de M³.

Et la réalisation de ce grand projet va permettre la couverture de tous les besoins d'alimentation de la population de la ville en eau potable ce qui va diminuer brusquement les problèmes de distribution.

Conclusion:

Ce chapitre nous a permis de cerner les difficultés que vivent les localités concernées, du point de vue alimentation en eau potable et d'autres difficultés d'ordre technique pouvant survenir au cours ou après réalisation du projet dans le cas où les précautions nécessaires ne sont pas prises.

Introduction:

L'évaluation des besoins élémentaires ou unitaire est délicate car elle dépend de la façon dont on se sert de l'eau.

Cette estimation en eau dépend de deux facteurs à savoir:

La croissance de la population dans la localité pour laquelle est réalisé le projet L'augmentation de la consommation en eau par usager.

II-1-Estimation de la population future de la ville de DAMOUS:

L'estimation de la population se fait pour l'horizon 2040, le calcul est établi à l'aide de la formule

suivante:

$$P = P_0(1+\tau)^n$$

Avec:

P: Population à l'horizon d'étude 2040 (hab)

P₀: Population de base 2008 (hab).

n : nombre d'années séparant les horizons considérée.

 τ : taux moyen annuel d'accroissement de la population en (%) qui dépend de plusieurs facteurs :

- Mode de vie.
- Education (planning familial).
- Le développement socioculturel.

D'après l'A.P.C, le taux d'accroissement de la ville DAMOUS est n=2%

$$\tau = 2\%$$
 $n = 32ans [2008 \div 2040]$

Les calculs seront établis pour l'horizon 2040. D'ici, nous pouvons avoir une idée approchée sur la population future par application de la relation précédente.

Le tableau suivant présente le nombre d'habitant pour les différents horizons :

Tableau II-1: Evaluation de la population:

a)Zone 01:

Années	Evaluation de la population [Hab]
2008	9167
2020	11626
2040	17276

Tableau II-2: Evaluation de la population:

b) Zone 02:

Années	Evaluation de la population [Hab]
2008	3126
2020	3965
2040	5891

II-2-Evaluation des besoins :

Pour le calcul des besoins, on a opté pour une dotation de 150 l/j/hab, suite aux informations recueillis auprès de la DHW de la wilaya de Tipaza.

II-2-1-Estimation des besoins journaliers(2040):

Les besoins journaliers sont calculés comme suit :

$$Q_{moyj} = \frac{\left(Qi * Ni\right)}{1000}$$

Avec:

• $Q_{moyj,j}$: consommation moyenne journalière en m^3/j ;

• Q_i : dotation journalière en l/j/hab ;

• N_i: nombre de consommateurs ;

II-2-2- Besoins en eau pour différentes catégorie :

L'estimation des besoins journaliers des autres catégories est faite à base des dotations fixées à partir de la capacité de la ressource présente.

a) Détermination les besoins en l'eau pour différent catégorie de la zone 01 :

II-2-3/ Besoins domestiques :

La consommation en eau dépend du confort et des habitudes de la population. Dans notre cas, nous prenons 150/1/j/ha.

Tableau N°II-3: Besoins domestiques:

Horizon	Population	Dotation (l/j/hab.)	Qmoyj
			$(\mathbf{m}^3/\mathbf{j})$
2008	9167	150	1375,05
2020	11626	150	1742,9
2040	17276	150	2591,4

II-2-4/ Besoins administratifs:

Tableau N°II-4: évaluation des besoins administratifs.

Equipement	Unité	Nombre	Dotation	Qmoyj
Equipement	Omte	Nombre	(l/j/unité)	(m^3/j)
Siège daïra	employé	50	25	1,25
PTT	employé	40	25	1
A.P.C	employé	90	25	2,25
Sudivision Hydraulique	employé	10	25	0,25
Gendarmerie	agent	20	25	0,5
Protéction civil	unité	1	25000	25
La police	agent	92	25	2,3
Total				32.55

II-2-5/ Besoins scolaires:

Tableau II-5 : évaluation des besoins scolaires

Equipement	Unité	Nombre	Dotation	Qmoyj
Equipement	Onic		(l/j/unité)	(m^3/j)
Ecole primaire	Elève	1180	15	17,7
C.E.M	Elève	2215	15	33,22
Lycée	Elève	1149	15	17,19
Crèche	enfant	170	15	2,55
Total				70,66

II-2-6/ Besoins sanitaires:

Tableau N°II-6 : évaluation des besoins sanitaires

Equipement	Unité	Nombre	Dotation	Qmoyj
Ециіретені	Onne		(l/j/unité)	(m^3/j)
Salle de soins	Patient	100	20	2
Total				2

II-2-7/ Besoins socioculturels:

Tableau N°II-7 : évaluation des besoins socioculturels

Equipoment	Unité	Namhua	Dotation	Qmoyj
Equipement	Omte	Nombre	(l/j/unité)	(m^3/j)
Mosquée	fidèle	975	25	24,37

Stade	vestiaire	1	10000	10
Total				34.37

II-2-8/ Besoins commerciaux:

Tableau N°II-8 : évaluation des besoins commerciaux

Equipement	Unité	Nombre	Dotation	Qmoyj
Equipement	Onic	TVOINDIC	(l/j/unité)	(m^3/j)
Marché	m ²	640	5	3,2
Restaurant	repas	560	30	16,8
Cafés	client	10	2000	20
Boulangerie	unité	2	400	0.8
Boucherie	unité	4	50	0.2
Douche publique	unité	3	10000	30
Toilette publique	unité	3	20	0,06
Station de lavage	unité	2	8000	16
Total				87.06

b) Détermination les besoins en l'eau pour différent catégorie de la zone 02 : II-2-9/ Besoins domestiques :

Tableau N°II-9: Besoins domestiques :

Horizon	Population	Dotation (l/j/hab.)	Qmoyj (m³/j)
2008	3126	150	468,6
2020	3965	150	594,75
2040	5891	150	883,65

II-2-10/ Besoins scolaires:

Tableau N°II-10 : évaluation des besoins scolaires

Equipement	Unité	Nombre	Dotation (l/j/unité)	Qmoyj (m³/j)
Ecole primaire	Elève	220	15	3,3
Crèche	enfant	74	15	1,11

II-3 : Récapitulation des besoins en eaux de la ville :

Les besoins totaux en eau de la ville de DAMOUS pour les deux zones sont donnés par les tableaux suivants :

a)Zone 01:

Tableau N°II-11 : Récapitulation des besoins en eau du la ville DAMOUS pour la zone 01:

Catégorie des besoins	Q _{moyj} (m ³ /j)
Domestiques	2591,4
Scolaires	70,66
Administratifs	32,55
socioculturels	32,37
Commerciaux	87,06
Sanitaires	2
Total	2816,44

Tableau N°II-12 : Récapitulation des besoins en eau du la ville DAMOUS pour la zone 02:

Catégorie des besoins	$\begin{array}{c} Q_{moyj} \\ (m^3/j) \end{array}$
Domestiques	883,65
Scolaires	4,41
Total	888,06

II.4/ Variation des débits de consommation dans le temps :

Le débit demandé par les différentes catégories est soumis à plusieurs variabilités en raison de l'irrégularité de la consommation dans le temps. Ces dernières sont annuelles, saisonnières, journalières ou horaires.

II.4.1/ Variation journalière:

La variation journalière se définit comme le rapport de la consommation maximale de la journée sur la consommation minimale de la journée de l'année.

Il existe donc deux rapports de consommation par rapport à la moyenne :

- coefficient minimal d'irrégularité journalière :

$$K_{minj} = Q_{maxj} / Q_{movj}$$

Avec

K_{mini} variant entre 0,7 et 0,9

coefficient maximal d'irrégularité journalière :

$$K_{\text{maxj}} = Q_{\text{minj}} / Q_{\text{moyj}}$$

Avec $K_{\text{max}j}$ variant entre 1,1 et 1,3.

Ce coefficient a pour but la majoration du débit moyen Q_{moyj} de 10 à 30%;

On prend $K_{\text{maxj}} = 1,3$.

II.4.2/ Variation horaire:

Au sein de la journée la plus chargée de l'année, il existe des variations importantes de la consommation d'une heure à une autre, d'où :

Il existe donc deux rapports de consommation par rapport à la moyenne :

- Coefficient d'irrégularité maximale horaire (Kmax,h) :

Ce coefficient représente l'augmentation de la consommation horaire pour la journée. Il tient compte de l'accroissement de la population ainsi que le degré du confort et du régime de travail de l'industrie :

$$K_{\text{maxh}} = Q_{\text{maxh}} / Q_{\text{moyh}}$$

D'une manière générale, Ce coefficient peut être décomposé en deux autres coefficients : α_{max} et β_{max} tel que :

$$\mathbf{K}_{\text{max,h}} = \alpha_{\text{max}} \cdot \beta_{\text{max}}$$

Avec:

- α_{max} : coefficient qui tient compte du développement industriel et des habitudes de la population, varie entre 1,2 à 1,5. Pour notre cas on prend $\alpha_{max} = 1,2$.
- β_{max} : c'est un coefficient qui est fonction du nombre d'habitant suivant le tableau ci-dessous :

Tableau N°II-13 : β_{max} en fonction du nombre d'habitants

Habitant	<1000	1500	2500	4000	6000	10000	20000	50000
B _{max}	2	1,8	1,6	1,5	1,4	1,3	1,2	1,15

Pour notre cas on a 2 agglomérations :

Tableau N°II-14 : Calcul de K maxh :

Agglomération	Population	α_{\max}	β_{max}	K _{maxh}
La zone 01	17276	1,2	1,25	1,5

La zone 02	5891	1,2	1,42	1,7
		,	,	, -

- Coefficient d'irrégularité minimale horaire (Kmin,h) :

Ce coefficient permet de déterminer le débit minimum horaire envisageant une sous consommation :

$$K_{min,h} = \alpha_{min} \cdot \beta_{min}$$

Avec:

- α_{min} : coefficient qui tient compte du développement industriel et des habitudes de la population, varie entre 0.4 à 0.6. Pour notre cas on prend $\alpha_{min} = 0.5$.
- β_{min} : coefficient étroitement lié à l'accroissement de la population.

Tableau N°II-15: β_{min} en fonction du nombre d'habitants

Habitant	<1000	1500	2500	4000	6000	10000	20000	50000
β_{min}	0,1	0,1	0,1	0,2	0,25	0,4	0,5	0,6

Pour notre cas on a 2 agglomérations :

Tableau N°II-16 : Calcul de K_{minh} :

Agglomération	Population	$\mathbf{A}_{\mathbf{min}}$	\mathbf{B}_{\min}	K _{min}
La zone 01	17276	0,5	0,45	0,23
La zone 02	5891	0,5	0,24	0,12

II.4.3/ Détermination des débits journalières :

II.4.3.1/ Consommation maximale journalière :

Le débit maximum journalier est défini comme étant le débit d'une journée de l'année ou la consommation est maximale. Il est utilisé comme élément de base dans les calculs de dimensionnement du réseau de distribution , l'adduction , le réservoir de stockage et la station de pompage .

Ce débit est donné par la formule :

$$Q_{\text{maxj}} = Q_{\text{moyj}} K_{\text{maxj}}$$

Avec:

- $Q_{max,j}$: débit maximum journalier en m^3/j ;
- Q_{mov,j}: débit moyen journalier en m³/j;
- K_{max,i}: coefficient d'irrégularité maximale journalière.

II.4.3.2/ Consommation minimale journalière :

Le débit minimum journalier est défini comme étant le débit d'une journée de l'année ou la consommation est minimale. Il est donné par la formule :

$$Q_{\text{max}j} = Q_{\text{moy}j} K_{\text{min.}j}$$

On prend $K_{min.j} = 0.8$.

Les résultats sont représentés dans le tableau suivant :

Tableau N°II-17 : Calcul du débit maximal et minimal journalière :

Agglomération	$Q_{moy,j}$ $(\mathbf{m}^3/\mathbf{j})$	$\mathbf{K}_{ ext{max.j}}$	Q _{max.j} (m ³ /j)	$\mathbf{K}_{ ext{min,j}}$	$\begin{array}{c} Q_{min,j} \\ (m^3/j) \end{array}$
La zone 01	2816,44	1,3	3661,37	0,8	2253,15
La zone 02	888,06	1,3	1154,47	0,8	710,45

II.4.4/ Détermination des débits horaires :

II.4.4.1/ Débit moyen horaire :

Le débit moyen horaire est donné par la relation suivante :

$$Q moy.h = \frac{Q_{maxj}}{24} \qquad (m^3/h)$$

Avec:

- Q_{mov.h}: débit moyen horaire en m³/h;

- $Q_{max,j}$: débit maximum journalier en m^3/j ;

II.4.4.2/ débit maximum horaire :

Ce débit joue un rôle très important dans les différents calculs du réseau de distribution, il est déterminé par la relation suivante :

$$Q_{\text{max,h}} = K_{\text{max,h}} \cdot Q_{\text{mov,h}}$$

Avec : - $Q_{moy,h}$: débit moyen horaire en m^3/h ;

- K_{max,h}: coefficient d'irrégularité maximale horaire;

Tableau N°II-18 : évaluation des débits moyen et maximum horaire :

Agglomération	Q _{max,j} (m ³ /j)	Q _{moy.h} (m ³ /h)	$\mathbf{K}_{\mathrm{max,h}}$	Q _{max.h} (m ³ /h)
La zone 01	3661,37	152,55	1,5	228,82
La zone 02	1154,47	48,10	1,7	81,77

II.4.5/ Evaluation de la consommation horaire en fonction du nombre d'habitant :

Le débit horaire d'une agglomération est variable selon l'importance de cette dernière. La variation des débits horaires d'une journée est représentée en fonction du nombre d'habitants dans le tableau suivant :

Tableau N°II-19: Répartition des débits horaires en fonction du nombre d'habitants:

Heures		Nombre d'habitants					
	Moins de	10001à	50001 à	Plus de	Agglomération		
(h)	10000	50000	100000	100000	de type rurale		
0-1	01	1.5	03	3.35	0.75		
1-2	01	1.5	3.2	3.25	0.75		
2-3	01	1.5	2.5	3.3	01		
3-4	01	1.5	2.6	3.2	01		
4-5	02	2.5	3.5	3.25	03		
5-6	03	3.5	4.1	3.4	5.5		
6-7	05	4.5	4.5	3.85	5.5		
7-8	6.5	5.5	4.9	4.45	5.5		
8-9	6.5	6.25	4.9	5.2	3.5		
9-10	5.5	6.25	4.6	5.05	3.5		

Suite du tableau N°II-19 : Répartition des débits horaires en fonction du nombre d'habitants :

10-11	4.5	6.25	4.8	4.85	06
11-12	5.5	6.25	4.7	4.6	8.5
12-13	07	05	4.4	4.6	8.5
13-14	07	05	4.1	4.55	06
14-15	5.5	5.5	4.2	4.75	05
15-16	4.5	06	4.4	4.7	05
16-17	05	06	4.3	4.65	3.5
17-18	6.5	5.5	4.1	4.35	3.5
18-19	6.5	05	4.5	4.4	06
19-20	5.0	4.5	4.5	4.3	06
20-21	4.5	04	4.5	4.3	06
21-22	03	03	4.8	3.75	03
22-23	02	02	4.6	3.75	02
23-24	01	1.5	3.3	3.7	01

Remarque : Cette variation des débits horaires est exprimée en pourcentage (%) par rapport au débit maximal journalier de l'agglomération.

Pour notre cas on choisit la répartition variant entre **10001**et **50000** hab. pour la zone 01. (Puisque le nombre d'habitants à l'année **2040** sera **17276** hab.) Et choisit la répartition moins de 10000 habitants pour la zone 02 parce le nombre d'habitants à l'année **2040** sera 5891 hab.

Dont la répartition est indiquée dans les tableaux suivants:

Tableau N°II-20: variation des débits horaires de la ville de DAMOUS pour la zone 01 :

Heures	Consomm	_	Courbe de la c	consommation
	Q max .j=3	661,37m ³ /J	Cumulée ((intégrale)
(h)	%	M^3/h	c %	M^3/h
0-1	1.5	54,92	1.5	54,92
1-2	1.5	54,92	3	109,84
2-3	1.5	54,92	4.5	164,76
3-4	1.5	54,92	6	219,68
4-5	2.5	91,53	8.25	311,22
5-6	3.5	128,15	11.75	439,36
6-7	4.5	164,76	16.25	604,13
7-8	5.5	201,38	21.75	805,50
8-9	6.25	228,84	28	1034,34

Suite du tableau II-20: variation des débits horaires de la ville de DAMOUS pour la zone 01 :

9-10	6.25	228,84	34.25	1263,17
10-11	6.25	228,84	40.5	1492,01
11-12	6.25	228,84	46.75	1720,84
12-13	05	183,07	51.75	1903,91
13-14	05	183,07	56.75	2086,98
14-15	5.5	201,38	62.25	2288,36
15-16	06	219,68	68.25	2508,04
16-17	06	219,68	74.25	2727,72
17-18	5.5	201,38	79.75	2929,10
18-19	05	183,07	84.75	3112,16
19-20	4.5	164,76	89.25	3276,93
20-21	04	146,45	93.50	3423,38
21-22	03	109,84	96.50	3533,22
22-23	02	73,23	98.50	3606,45
23-24	1.5	54,92	100	3661,37
total	100			

Tableau N° II-21: variation des débits horaires de la ville de DAMOUS pour la zone 02 :

Heures	Consommation total		Courbe de la consommation	
	Q max .j=1154,47m ³ /J		Cumulée (intégrale)	
(h)	%	M^3/h	%	M^3/h
0-1	1	11,54	1	11,54
1-2	1	11,54	2	23,09
2-3	1	11,54	3	34,63
3-4	1	11,54	4	46,18
4-5	2	23,09	6	69,27
5-6	3	34,63	9	103,90
6-7	5	57,72	14	161,63
7-8	6,5	75,04	20,5	236,67

8-9	6,5	75,04	27	311,71
9-10	5,5	63,50	32,5	375,20
10-11	4,5	51,95	37	427,15
11-12	5,5	63,50	42,5	490,65
12-13	7	80,81	49,5	571,46
13-14	7	80,81	56,5	652,28
14-15	5,5	63,50	62	715,77
15-16	4,5	51,95	66,5	767,72
16-17	5	57,72	71,5	825,45
17-18	6,5	75,04	78	900,49
18-19	6,5	75,04	84,5	975,53
19-20	5	57,72	89,5	1033,25
20-21	4,5	51,95	94	1085,20
21-22	3	34,63	97	1119,84
22-23	2	23,09	99	1142,93

Suite du tableau N°II-21: variation des débits horaires de la ville de DAMOUS pour la zone 02 :

23-24	1	11,54	100	1154,47
total	100			

Conclusion:

Pour l'agglomération de la ville de DAMOUS :

Pour la zone 01:

Qmax,h = 228,84 M^3/h = 63,561/s Qmoy,h = 152,55 M^3/h = 42,371/s Qmin,h = 54,92 M^3/h =15,25/s

Pour la zone 02:

Qmax,h = $80.81 \text{ M}^3/\text{h} = 22.45 \text{ l/s}$ Qmoy,h = $48.10 \text{ M}^3/\text{h} = 13.36 \text{l/s}$ Qmin,h 11.54 M3/h = 3.21 l/s

À partir des résultats du tableau on trace:

- Les graphiques de consommation ;
- La courbe intégrale

À partir des résultats du tableau on trace:

- Le graphique de consommation.
- La courbe intégrale.

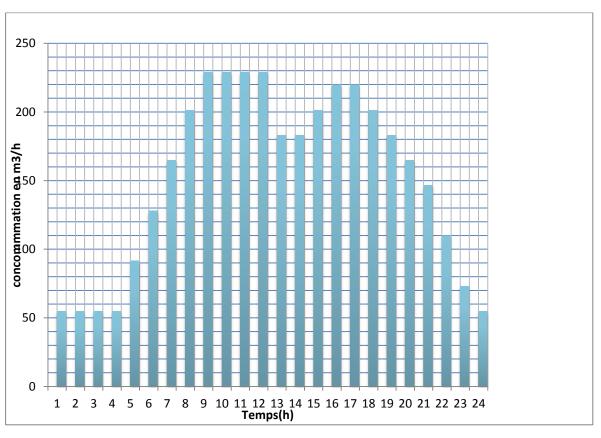


Figure II-1. Graphique de consommation de la ville de DAMOUS pour la zone 01.

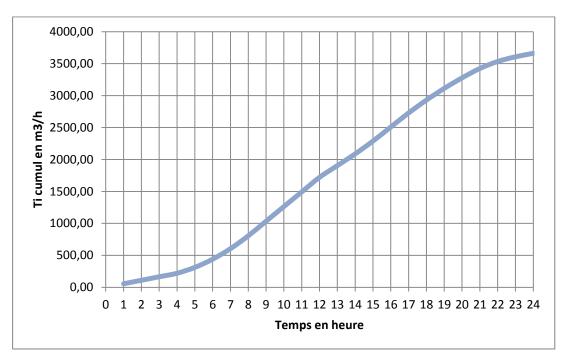


Figure II-2. Graphique de consommation de la ville de DAMOUS pour la zone 01.

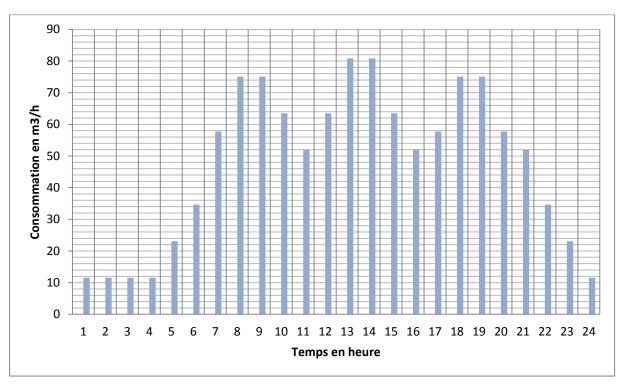


Figure II-3: Graphique de consommation de la ville de DAMOUS pour la zone 02.

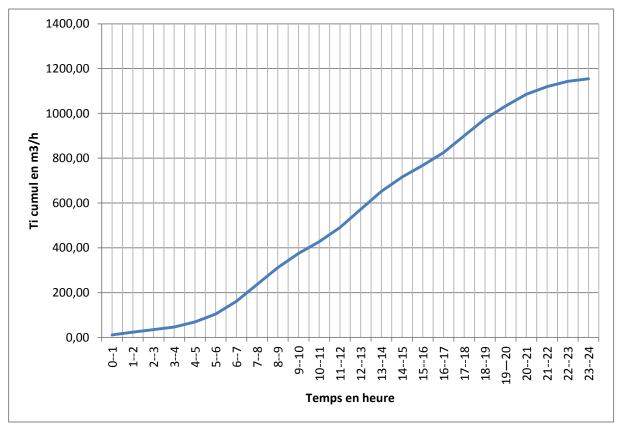


Figure II-4: Graphique de consommation de la ville de DAMOUS pour la zone 02.

II.5- Analyse de la capacité de la ressource :

Dans le but de connaître si notre débit fourni par les forages existant satisfait les besoins calculés ou non, il faut comparer entre les besoins et ce débit disponible, et voir est ce qu'il y à un excès ou un déficit de débit.

Conclusion:

Comme nous avons déjà dit (dans le chapitre $N^{\circ}I$), la ville dispose de trois (3) forages donnant un débit actuel total de 72 l/s ou bien 6220,8 m^3/j ,

les besoins calculés est $4815,84 \text{ m}^3/j$ donc on constate que la ressource actuelle satisfait les besoins de notre agglomération.

CHAPITRE III

DIAGNOSTIQUE DE RESEAU DISTRUBUTION

III.1/ Introduction:

L'objet de ce chapitre est d'établir un constat sur les conditions du fonctionnement du système d'alimentation en eau de la ville de DAMOUS à l'état actuel, et la détermination des défaillances du réseau de distribution.

III-2- Ressources en eau:

La ville de Damous est alimentée actuellement par deux champs de captage des eaux souterraines de la nappe d'accompagnement d'Oued Damous et Oued Harbil située en Est et en ouest de la ville respectivement. En plus, un apport appréciable sera tiré à partir des eaux de surfaces provenant du futur barrage de Kaf Eddir qui est en plein construction, pour renforcer l'alimentation en eau potable de la ville.

III-2-1 / Eaux Souterraines:

Les terrasses de l'oued Damous renferment un niveau d'alluvions grossières d'une épaisseur variant entre 10 et 20 d'épaisseur et se trouvant à quelques mètres de profondeur.

Cet aquifère est exploité par 03 forages d'une profondeur variant de 20 à 45 m, dont les caractéristiques sont représentée dans le tableau suivant :

Tableau N° III-1: Liste des forages (source d'information : DHW de TIPAZA) :

T	NIC	NID	Débit	Débit	OI.
Forage	NS	ND mobilisé		exploité (1/s)	Obs
F1	4	8	20	15	En service
F2	6	12	16	12	En service
F3	4	10	52	42	En service

III.3/ Etat actuel des ouvrages de stockage :

Dans la ville de DAMOUS, il existe deux (02) réservoirs de type en sol, implantés dans les régions les plus élevés pour assurer le stockage et l'alimentation de la population, de régulariser la distribution en fonction de la demande des abonnés et aussi pour assurer une pression de service dans le réseau de distribution.

Réservoir	Capacité (m³)	C.R (m)	C.T.P (m)
R_1	600	77	81
R_2	300	120	124

Tableau N° III-2 : Caractéristiques des réservoirs:

L'état actuel des ouvrages de stockage de la ville de DAMOUS sont représentés dans le tableau suivant :

Tableau N° III-3 : Etat actuel des ouvrages de stockage :

Caractéristiques	R1(600m ³)	R2(300m ³)
Etanchéité du réservoir	Bonne	Bonne
Fuites dans les chambres de vannes	Existe	Existe
Peinture à l'intérieur et l'extérieur	Moyennement bonne	Moyennement bonne
Entretien des installations	Irrégulier	Irrégulier
Capteur de niveau	N'existe pas	N'existe pas

III.4/ Etat actuel du réseau de distribution :

Avant d'entamer le travail de terrain de procédé à la collecte de tous les plans des réseaux d'AEP existants et projetés de tous les lotissements, cités et des quartiers qui sont situés dans la limite du projet. Ces plans sont très utiles et serviront de guide en cas d'absence d'information. Après la collecte des données et le traitement général de l'information la DHW de TIPAZA a procédé à la partie réservée au terrain à savoir : le repérage sur site du tracé des conduites et le positionnement des vannes qui sont abritées dans des regards ou bien identifiées par leurs bouches à clef.

Après avoir reconstitué le réseau global de la ville il a été procédé à l'interprétation des données ainsi recueillies et les comparer au différents plans en notre possession. Une deuxième correction, du plan de recollement constitué, a été effectuée par les services de l'hydraulique afin d'avoir une meilleur coordination entre les différents services.

Des sondages de reconnaissance sont prévus dans cette phase de l'étude et serviront de moyen de control et de confirmation des caractéristiques réelles du réseau.

Tableau $N^{\circ}III-4$: Etat du réseau de distribution de la ville de DAMOUS:

Tronçon	Longueur	Diamètre	Matériau	Etat	Observation	
Tronçon	(m)	(mm)	Materiau	Liai	Observation	
R1-1	108,5	160	PVC	vétuste	A changer	
1-2	63,5	63	PVC	vétuste	A changer	
1-16	119,5	63	PVC	vétuste	A changer	
2-3	106,5	90	PVC	vétuste	A changer	
2-11	83	63	PVC	vétuste	A changer	
3-10	29,5	90	PVC	vétuste	A changer	
4-3	60,5	110	PVC	vétuste	A changer	
4-5	40	110	PVC	vétuste	A changer	
4-8	97	90	PVC	vétuste	A changer	
5-6	57,5	63	PVC	vétuste	A changer	
5-7	77,5	110	PVC	vétuste	A changer	
7-8	57,5	63	PVC	vétuste	A changer	
7-12	24,5	90	PVC	vétuste	A changer	
8-9	44,5	110	PVC	vétuste	A changer	
9-10	34,5	90	PVC	vétuste	A changer	
11-64	18	63	PVC	vétuste	A changer	
11-93	50	90	PVC	vétuste	A changer	
12-13	232	90	PVC	vétuste	A changer	
12-27	143,5	90	PVC	vétuste	A changer	
12-51	630	90	PVC	vétuste	A changer	
13-14	259	110	PVC	vétuste	A changer	
13-26	60,5	110	PVC	vétuste	A changer	
14-15	85,5	110	PVC	vétuste	A changer	
14-25	23,5	110	PVC	vétuste	A changer	
15-17	150	110	PVC	vétuste	A changer	
15-23	105	110	PVC	vétuste	A changer	
17-18	416	63	PVC	vétuste	A changer	
17-22	104	63	PVC	vétuste	A changer	

Suite du tableau $N^{\circ}III-4$: Etat du réseau de distribution de la ville de DAMOUS :

Twoman	Longueur	Diamètre	Matériau	Etat	Observation	
Tronçon	(m)	(mm)	Materiau	Etat	Observation	
18-19	5	40	PVC	vétuste	A changer	
19-20	235	40	PVC	vétuste	A changer	
21-9	199	63	PVC	vétuste	A changer	
21-63	148	63	PVC	vétuste	A changer	
22-23	147	110	AG	vétuste	A changer	
23-25	51	110	AG	vétuste	A changer	
23-24	73	63	AG	vétuste	A changer	
25-26	68	110	AG	vétuste	A changer	
26-27	88	90	AG	vétuste	A changer	
26-28	125	90	AG	vétuste	A changer	
27-34	164	90	PVC	vétuste	A changer	
28-30	120	60	AG	vétuste	A changer	
28-29	200	90	PVC	vétuste	A changer	
29-31	45	40	PVC	vétuste	A changer	
29-38	56	63	PVC	vétuste	A changer	
31-37	38	63	PVC	vétuste	A changer	
31-33	27	40	PVC	vétuste	A changer	
33-34	56	63	PVC	vétuste	A changer	
33-36	75	50	PVC	vétuste	A changer	
34-35	84	50	AG	vétuste	A changer	
38-39	85	40	PVC	vétuste	A changer	
38-44	63	50	PVC	vétuste	A changer	
39-40	78	40	PVC	vétuste	A changer	
39-41	45	40	PVC	vétuste	A changer	
41-42	60	63	PVC	vétuste	A changer	
41-43	72	63	PVC	vétuste	A changer	
44-45	96	40	PVC	vétuste	A changer	
44-49	130	40	PVC	vétuste	A changer	

Suite du tableau $N^{\circ}III-4$: Etat du réseau de distribution de la ville de DAMOUS:

Troncon	Longueur	Diamètre	Matériau	Etat	Observation	
Tronçon	(m)	(mm)	Materiau	Liai	Observation	
45-46	150	40	PVC	vétuste	A changer	
45-47	130	63	PVC	vétuste	A changer	
46-47	124	40	PVC	vétuste	A changer	
46-49	35	63	PVC	vétuste	A changer	
47-48	180	40	PVC	vétuste	A changer	
49-50	57	63	PVC	vétuste	A changer	
49-52	124	63	PVC	vétuste	A changer	
50-51	74	63	PVC	vétuste	A changer	
50-52	65	63	PVC	vétuste	A changer	
51-53	52	110	PVC	vétuste	A changer	
51-57	64	63	PVC	vétuste	A changer	
53-54	245	63	PVC	vétuste	A changer	
54-55	85	63	AG	vétuste	A changer	
54-56	123	63	AG	vétuste	A changer	
55-56	30	63	AG	vétuste	A changer	
56-59	25	63	AG	vétuste	A changer	
55-57	47	63	AG	vétuste	A changer	
55-62	134	63	AG	vétuste	A changer	
57-58	85	63	PVC	vétuste	A changer	
59-60	27	63	AG	vétuste	A changer	
60-61	210	63	PVC	vétuste	A changer	
59-61	134	63	PVC	vétuste	A changer	
61-62	24	63	PVC	vétuste	A changer	
63-64	87	110	PVC	vétuste	A changer	
63-66	321	90	PVC	vétuste	A changer	
64-65	47	90	PVC	vétuste	A changer	
64-66	54	90	PVC	vétuste	A changer	
56-67	125	110	PVC	vétuste	A changer	
67-94	284	60	AG	vétuste	A changer	

Suite du tableau N°III-4 : Etat du réseau de distribution de la ville de DAMOUS :

Tronçon	Longueur	Diamètre	Matériau	Etat	Observation
Tronçon	(m)	(mm)	Materiau	Diat	Obsci vation
67-70	125	110	PVC	vétuste	A changer
68-93	64	63	PVC	vétuste	A changer
69-93	74	63	PVC	vétuste	A changer
71-R2	46	60	AG	vétuste	A changer
71-73	34	90	PVC	vétuste	A changer
73-74	27	63	PVC	vétuste	A changer
73-76	132	63	PVC	vétuste	A changer
74-75	65	63	PVC	vétuste	A changer
75-79	55	110	PVC	vétuste	A changer
75-76	84	90	PVC	vétuste	A changer
76-77	36	100	PVC	vétuste	A changer
77-78	95	40	PVC	vétuste	A changer
79-90	125	75	AG	vétuste	A changer
79-80	132	110	PVC	vétuste	A changer
80-81	45	40	AG	vétuste	A changer
80-82	87	90	AG	vétuste	A changer
82-91	69	75	AG	vétuste	A changer
82-83	114	75	AG	vétuste	A changer
83-84	128	63	AG	vétuste	A changer
83-85	15	63	AG	vétuste	A changer
85-86	36	90	AG	vétuste	A changer
86-87	48	90	AG	vétuste	A changer
86-92	120	90	AG	vétuste	A changer
87-88	117	90	AG	vétuste	A changer
89-85	215	60	AG	vétuste	A changer
89-90	90	60	AG	vétuste	A changer
89-95	50	60	AG	vétuste	A changer

CONCLUSION:

En plus de l'état vétuste qui touche la totalité des tronçons du réseau de distribution de la ville de DAMOUS, On a remarqué que le réseau de distribution existant n'est pas économique, le dimensionnement ce dernier n'est pas efficace parce que il y a des places le réseau maillé est mieux au réseau ramifie.

D'après les problèmes qui rencontrent sur le réseau existant donc obligatoirement à projeter nouvelle réseau qui résoudre les défauts.

CHAPITRE IV

ETUDE DES RESERVOIR

Introduction:

Le réservoir est un ouvrage intermédiaire entre les réseaux d'adductions et les réseaux de distributions. C'est un ouvrage aménagé pour contenir de l'eau, soit destinée a la consommation publique, soit de l'eau a usage industrielle. Ces derniers possèdent des débits non uniformes durant la journée ; d'où le rôle du réservoir qui permet de gérer les débits selon la demande.

IV -1/ Rôles des Réservoirs : [3]

Le rôle du réservoir est :

- Emmagasinement d'eau pendant toute la durée de fonctionnement de la station de pompage
- Milieu où on peut traiter l'eau à l'aide de chlore
- Réducteur des dépenses d'énergie (stockage la nuit et distribution gravitaire pendant les heures de pointes)
- Assurer la continuité de la distribution pendant l'arrêt de la pompe
- Assure une réserve d'incendie
- •Ils peuvent également jouer le rôle de brise charge dans le cas d'une distribution étagée
- •Les réservoirs peuvent aussi jouer le rôle de relais il sont appelés dans ce cas réservoirs tampons.

•

IV.2/ Classification des réservoirs:[3]

On peut classer les réservoirs selon les critères suivants:

- ➤ D'après la nature des matériaux de construction, on distingue :
- Les réservoirs métalliques
- Les réservoirs en maçonnerie
- Les réservoirs en béton arme, ordinaire ou précontraint
- ➤ D'après la situation des lieux, ils peuvent être :
- Enterrées
- Semi-enterrés
- Surélevé
- ➤ D'après leurs formes :
- Circulaires
- Rectangulaires
- Ou d'une forme quelconque

IV.3/Les facteurs interviennent dans la détermination du type de réservoir :

- ✓ Conditions topographiques de la région à desservir.
- ✓ Conditions hydraulique de la distribution : volume du réservoir, pression à assurer.
- ✓ Type de décideur : maitre d'ouvrage, maitre d'œuvre ou d'exploitation.

✓

IV.4/ Les critères les plus souvent retenus pour les choix du type de réservoir :

- ✓ Les facteurs économiques.
- ✓ La sécurité d'approvisionnement et la facilité d'exploitation.
- ✓ Les possibilités d'adaptation au réseau.

✓

I V-5/: Emplacement des réservoirs : [2]

Il faut, évidemment, que l'emplacement choisi pour édifier le réservoir, soit compatible avec l'un des rôles qu'il doit jouer, c'est-à-dire donner aux abonnés une pression suffisantes, notamment au moment de pointe.

- fasse par gravité, ce qui implique qu'on puisse le placer à un niveau bas par rapport à la prise d'eau, cas de notre réservoir
- l'alimentation du réseau de distribution doit se faire par gravité, le réservoir doit être construit à un niveau supérieur à celui de l'agglomération; ce n'est pas vérifié dans notre car la hauteur importante des bâtiment
- lorsque plusieurs réservoirs sont nécessaires (comme dans notre cas), on doit les implanter de préférence en extrémité du réseau
- la cote radier doit être supérieure à la plus haute cote piézométrique exigée dans le réseau.
- l'emplacement du réservoir doit être aussi choisi de telle façon à pouvoir satisfaire les abonnés par un pression suffisante.

IV-6/ Construction des réservoirs:

- Exigence technique à satisfaire dans la Construction d'un réservoir :
- Résistance : le réservoir doit, dans toutes ses parties, équilibrer les efforts auxquels il est soumis.
- Etanchéité : Il doit constituer pour le liquide qu'il contient un volume clos sans fuite. Il doit donc être étanche.
- Durabilité :
- Le réservoir doit durer dans le temps, c'est à dire que le matériau :béton, dont il est

constitué, doit conserver ses propriétés initiales après un contact prolongé avec l'eau.

• Enfin le contact avec le béton du parement intérieur du réservoir ne doit pas altérer les qualités du liquide emmagasiné. Le revêtement intérieur, s'il protégé le béton sous-jacent doit aussi protéger le liquide de l'influence du béton.

IV-7/ Détermination de la capacité d'un réservoir :

Pour satisfaire au rôle qu'ils doivent jouer, les réservoirs doivent avoir une capacité suffisante.

La capacité du réservoir doit être estimée en tenant compte des variations des débits à l'entrée comme à la sortie ; c'est-à-dire d'une part du mode d'exploitation des ouvrages situés en amont et d'autre part de la variation de la demande. Le plus souvent, la capacité est calculée pour satisfaire aux variations journalières de débit de consommation en tenant compte bien entendu du jour de plus forte consommation et de la réserve d'eau destinée à l'incendie. Il est possible de réduire leur capacité en calculant le volume minimum pour assurer la continuité de la distribution. A la limite, le réservoir peut servir de simple régulateur de pression en fonction du rythme d'enclenchement de la pompe.

- Le réservoir doit stocker l'eau pendant les heures de faible consommation.
- -Le réservoir doit combler le déficit en eau pendant les heures de pointe

Pour notre projet et pour déterminer la capacité du réservoir on utilise la méthode analytique.

IV -7-1. Estimation de la capacité totale de stockage et transit de réservoir :

• Estimation de la capacité de stockage de la première zone.

Tableau N°IV-1 : Évaluation du volume résiduel du réservoir de première zone.

Heures	Apports	Distribution (%)	Surplus	Déficit (%)	Résidu (%)
00 - 01	0	1.5		1,5	8
01-02	0	1.5		1,5	6,5
02-03	0	1.5		1,5	5
03-04	0	1.5		1,5	3,5
04-05	5	2.5	2,5		6

Suite du tableau N°IV-1 : Évaluation du volume résiduel du réservoir de première zone.

05-06	5	3.5	1,5		7,5
06-07	5	4.5	0,5		8
07-08	5	5.5		0,5	7,5
08-09	5	6.25		1,25	6,25
09-10	5	6.25		1,25	5
10-11	5	6.25		1,25	5
11-12	5	6.25		1,25	3,75
12-13	5	05		0	3,75
13 - 14	5	05		0	3,75
14 - 15	5	5.5		0,5	3,25
15 - 16	5	06		1	3,25
16 - 17	5	06		1	3,25
17 - 18	5	5.5		0,5	2,75
18 - 19	5	05		0	2,75
19 - 20	5	4.5	0,5		0
20 - 21	5	04	1		1
21 - 22	5	03	2		3
22 - 23	5	02	3		6
23 - 24	5	1.5	3,5		9,5
Total	100	100%			

• Le volume résiduel sera :
$$V_r = \frac{9.5*3661,37}{100} \implies V_r = 347,83 \text{ m}^3$$

• La capacité totale sera : $V_t = 457,54 + 120 \implies V_t = 467,83 \text{ m}^3$

• La capacité normalisée sera : $V_n = 500 \text{ m}^3$.

• Estimation de la capacité de stockage de la deuxième zone.

Tableau $N^{\circ}IV$ -2 : Évaluation du volume résiduel du réservoir de deuxième zone

		Distribution	Carmlan	Déficit	Résidu
	Apports	(%)	Surplus	(%)	(%)
00 - 01	0	1	-	1	8,5
01-02	0	1	-	1	7,5
03-04	0	1	-	1	5,5
04-05	5	2	3		8,5
05-06	5	3	2		10,5
06-07	5	5	0		10,5
07-08	5	6.5	-	1,5	9
08-09	5	6.5	-	1,5	7,5
09-10	5	5.5	-	0,5	7
10-11	5	4.5	0,5		7,5
11-12	5	5.5	-	0,5	7
12-13	5	7	-	2	5
13 - 14	5	7	-	2	3
14 - 15	5	5.5	-	0,5	2,5
15 - 16	5	4.5	0,5		3
16 - 17	5	5	0		3
17 - 18	5	6.5	-	1,5	1,5
18 - 19	5	6.5	-	1,5	0
19 - 20	5	5	-	0	0
20 - 21	5	4.5	0,5		0,5
21 - 22	5	3	2		2,5
22 - 23	5	2	3		5,5
23 - 24	5	1	4		9,5
Total	100%	100%			-

• Le volume résiduel sera :
$$V_r = \frac{10,5*1154,47}{100} \implies V_r = 121,21 \text{ m}^3$$

• La capacité totale sera : $V_t = 121,21 + 120 \implies V_t = 241,21m^3$

• La capacité normalisée sera : $V_n = 250 \text{m}^3$.

IV-8 / Equipement de réservoir: [4]

IV.8.1 /Conduite d'arrivée :

L'arrivée dans le réservoir de la conduite de refoulement doit se faire par le bas et de côté opposé de la conduite de départ

Le réservoir est muni de robinet à flotteur qui sert à remplir le réservoir.

IV.8.2 / Conduite de distribution :

Pour faciliter le brassage de l'eau dans le réservoir, l'orifice de départ de la conduite de distribution devra être situé autant que possible à l'opposé de l'arrivée qui est vérifié pour notre cas.

La conduite de distribution est munie à son origine d'une crépine constituée d'un corps cylindrique terminé par un collet, d'une bride de serrage et de ses boulons.

La crépine se place à 0.15m au-dessus du fond du réservoir afin que les dépôts ne puissent pénètre dans la conduite

IV.8.3 /Conduite de décharge ou de vidange :

La conduite de vidange doit partir du point le plus bas de radier, afin de pouvoir évacuer les dépôts. A cet effet, le radier est réglé en pente vers l'orifice de la conduite.

Pour permettre l'inspection et le nettoyage du réservoir, ainsi que d'éventuelles réparations, il est nécessaire de pouvoir le vidanger, au moyen d'une conduite généralement raccordée à la conduite de trop-plein. Cette conduite peut utilement comporter un siphon servant de garde d'eau, pour éviter les émanations gazeuses désagréables en provenance de l'égout

Pour nos réservoirs ces conditions sont vérifiées

IV.8.4 /Conduite de trop-plein :

La conduite de trop-plein a pour but d'assurer sans déversement du réservoir l'évacuation du débit d'adduction, pour le cas où la pompe d'alimentation ne se serait pas arrêtée. Il doit être dimensionné pour ce débit, et conduire l'eau à l'égout en tenant compte des pertes de charge et

En limitant la vitesse dans la conduite de trop-plein à 3 ou 4m/s

IV.8.5/ By-pass:

Lorsqu'on désir assurer la distribution pendant la vidange d'un réservoir non compartiment, il suffit de disposer d'un by-pass .

Et utilisé en cas d'indisponibilité (nettoyage ou réparation du réservoir), il est bon de prévoir une communication entre ces deux conduites.

IV.8.6/Matérialisation d'une réserve d'incendie :

C'est une disposition spéciale de la tuyauterie qui permet d'interrompre l'écoulement, une fois le niveau de la réserve d'incendie est atteint, pour cela ; nous avons intérêt à équiper notre ouvrage, d'un système à siphon permettant de transiter l'eau du réservoir tout en préservant la quantité destinée pour l'incendie. Cette interdiction sera bien entendu, levée par une manœuvre manuelle, effectué sur place ou à distance en cas d'incendie. Autrement dit, un évent d'un siphon interdit l'utilisation de l'eau au-dessus d'un niveau défini au préalable.

Conclusion

La ville de DAMOUS est dotée de deux réservoirs de capacité totale de 900m³, qui peuvent assurer le fonctionnement hydraulique à l'horizon considérée, du fait que le volume nécessaire à l'agglomération de la premier zone était de 500m³, qui est inférieur à la capacité totale de réservoir existant (R1) et aussi le volume nécessaire à la l'agglomération de deuxième zone était de 250 m³, qui est inférieur à la capacité totale de réservoir existant (R2) de 300 m³.

Tout en supposant que l'état des réservoirs restera bon à cet horizon, alors on n'a intérêt à implanter un autre réservoir.

CHAPITRE V

LE RESEAU DE DISTRIBUTION

V-1/INTRODUCTION:

À partir du réservoir, l'eau est distribuée dans une canalisation sur laquelle des branchements seront piqués en vue de l'alimentation des abonnés.

Le but de la mise en place de ce dernier est de parvenir à satisfaire la demande des consommateurs en débit et en pression.

V-2/ Choix du matériau des conduites :

Le choix du matériau utilisé est en fonction de la pression supportée, de l'agressivité du sol et de l'ordre économique (coût et disponibilité sur le marché) ainsi que la bonne jonction de la conduite avec les équipements auxiliaires (joints, coudes, vannes...etc.).

a. Tuyaux en fonte

Les tuyaux en fonte présentent plusieurs avantages mais beaucoup plus des inconvénients.

Avantage

- 1. Bonne résistances aux sollicitations du fluide ;
- 2. Bonne résistance aux chocs et aux charges compressible ;
- 3. Longueur des conduites variant de 6 à 16m, ce qui réduit le nombre de joint, par conséquent, une réduction des risques de fuite
- 4. Facilité de pose.

Inconvénients

- 1. Sensible a la corrosion des sols agressifs, ce qui nécessite une protection cathodique et une maintenance rigoureuse ;
- 2. Risque de déformation des conduites pendant leur transport et un cout très élevé pendant la pose ;
- 3. Mauvaise résistance au cisaillement;
- 4. Une durée de vie d'environ 30 ans.

b. Tuyaux en acier

Les tuyaux en acier sont beaucoup plus léger que les tuyaux en fonte d'où l'économie sur le transport et la pose.

Avantage

- 1. Résistances aux contraintes (choc, écrasement.);
- 2. Les tuyaux en acier permettent aussi une pression élevée. Leur principal inconvénient est la corrosion.

c. Tuyaux en P.E.H.D

Avantages

1. Bonne résistance à la corrosion interne, externe, microbiologique et à l'entartage ;

- 2. Disponibilité sur le marché;
- 3. Facilité de pose (grande flexibilité), possibilité d'enroulement en couronne pour les petits diamètres ;
- 4. Fiabilité au niveau des branchements (réduction de risque de fuite) ;
- 5. Bonne caractéristique hydraulique (coefficient de rugosité très faible) ;
- 6. Durée de vie prouvée par l'expérience et le test de vieillissement théoriquement de 50 ans à une température de 20°c.

Inconvénient

1. Nécessite une grande technicité pour la jonction.

Dans notre cas, nous avons opté pour les tuyaux en polyéthylène, suite à des nombreux avantages qu'ils procurent.

V.3- Les types de réseaux : [1]

On distingue trois types de réseaux :

- Réseau maillé.
- Réseau ramifié.
- Réseau étagé.

V.3.1- Les réseaux maillés : [1]

Un réseau maillé est constitué d'une série des tronçons disposés de telle manière qu'il soit possible de décrire une ou plusieurs boucles fermées en suivant son tracé. Contrairement aux réseaux ramifiés ; le réseau maillé assure une distribution de retour.

Ils sont utilisés généralement dans les zones urbanisées et tendent à se généraliser dans les agglomérations rurales, sous forme associés à des réseaux ramifiés (limitation de nombres de mailles en conservant certaines ramifications).

REMARQUE:

Pour notre étude, nous avons choisi un réseau maillé car c'est un réseau qui présente les avantages suivants :

-une alimentation de retour

-isolation du tronçon en cas d'une panne par un simple manœuvre robinetterie.

V.3.2- Réseaux ramifie : [1]

On les appelle ainsi grâce à leur structure arborisant fréquemment utilisés dans les petites agglomérations rurales leur inconvénient, c'est que dans les conduites il n'y a qu'un seul cheminement possible, en cas d'incident sur la conduite principale, toute la partie avale sera privé d'eau.

V.3.3- Réseaux étagés : [1]

Lors de l'étude d'un projet d'alimentation d'une ville en eau potable, il arrive que cette ville présente des différences de niveau importantes.

La distribution par le réservoir projeté donne de forte pressions aux points bas (normes des pressions ne sont pas respectées).

L'installation d'un réservoir intermédiaire alimente par le premier, régularisé la pression dans le réseau.

V-4 / Conception d'un réseau :

Plusieurs facteurs ont une influence sur la conception du réseau :

- L'emplacement des quartiers.
- L'emplacement des consommateurs principaux.
- Le relief

V-4-1/ Principe du tracé du réseau maillé :

Pour le tracé du réseau maillé nous devrons :

- repérer les consommateurs importants par exemple les usines et les zones de forte densité;
- -repérer les quartiers ayant une densité de population importante ;
- -déterminer l'itinéraire (sens) principal pour assurer la distribution à ces consommateurs
- -suivant ce sens, tracer les conduites principales en parallèle ;
- -Ces conduites principales doivent être bien reparties pour avoir une bonne distribution d'eau ;
- -pour alimenter l'intérieur des quartiers, ces conduites principales sont reliées entre elles par des conduites secondaires pour former des boucles (mailles).

V-5/ Calcul hydraulique du réseau de distribution :

Le calcul du réseau de distribution se fera pour les deux cas suivants :

- cas de pointe.
- cas de pointe plus incendie.

V-5-1/ Détermination des débits :

La détermination des débits dans un réseau maillé s'effectue de la manière suivante.

- On détermine la longueur de chaque tronçon du réseau maillé ;
- On calcul le débit en route pendant l'heure de pointe ;

- On détermine le débit spécifique en considérant le débit en route.

V-5-2/ Débit en route :

Le débit en route de chaque tronçon est le produit de débit spécifique par la longueur, il est donné par la formule suivante :

$$Q_r = Qspi*li$$
 [L/S]

Avec:

Q_r: débit en route.

- Qspi: débit spécifique

- li: la longueur du tronçon

V-5-3/débit spécifique :

Pour le calcul on admet l'hypothèse selon laquelle les besoins domestiques répartis régulièrement sur la longueur du réseau de distribution. En utilisant le débit spécifique en l/s/ml

Le débit spécifique qui est fonction du linéaire se calcule comme suit :

$$Qspi = \frac{Q_{pt}}{\sum L} \quad [L/s /ml]$$

Avec: Q_{pt} = débit de pointe [L/S] calculé au chapitre II

 \sum L= somme des longueurs du réseau de chaque zone .

Tableau N°V-1 : Détermination de débit spécifique de chaque zone :

	Q Pointe (l/s)	63,56
Zone 01	$\sum_{i=1}^{n=100} Li \text{ (m)}$	5715,51
	q_{sp} (l/s/m)	0,01112
	Q Pointe (1/s)	22,45
Zone 02	$\sum_{i=1}^{n=100} Li \text{ (m)}$	2973,5
	q _{sp} (l/s/m)	0,00755

V-5-4/ Détermination des débits nodaux:

C'est le débit concentré en chaque point de jonction des conduites du réseau, il est déterminé comme suit :

Où:

 $Q_{ni}=0.5 \Sigma Q_{ri-k} + \Sigma Q_{ci}$

Q_{ni}: débit au nœud i (l/s).

 ΣQ_{ri-k} : la somme des débits en route des tronçons reliés au nœud i (l/s).

ΣQ ci: la somme des débits concentrés au nœud i (l/s).

Dans le cas de pointe le débit concentré égale à 0.

Tableau N° V-2 : détermination des débits aux nœuds de la zone 01 (cas de pointe)

Nœud	tronçons	Distance	qs l/s	Qr l/s	$\sum Qr l/s$	Qn l/s
1	12	114,9	0,01112	1,28	3,76	1,88
1	14	222,84	0,01112	2,48	3,70	1,00
	23	137,4	0,01112	1,53		
2	21	114,9	0,01112	1,28	6,68	3,34
4	218	190,3	0,01112	2,12	0,08	3,34
	213	157,9	0,01112	1,76		
	32	137,4	0,01112	1,53		
3	311	49	0,01112	0,54	3,14	1,57
	34	96,2	0,01112	1,07		
	41	222,84	0,01112	2,48	5,49	
4	45	174,5	0,01112	1,94		2,74
	43	96,2	0,01112	1,07		
	54	174,5	0,01112	1,94	6,37	3,19
5	56	323	0,01112	3,59		
	59	75,4	0,01112	0,84		
6	65	323	0,01112	3,59	4,13	2,06
U	67	48,2	0,01112	0,54	4,13	2,00
7	76	48,2	0,01112	0,54	1,40	0,70
,	78	77,75	0,01112	0,86	1,40	0,70
	87	77,75	0,01112	0,86		
8	89	196,6	0,01112	2,19	4,02	2,01
	810	86,76	0,01112	0,96		
	98	196,6	0,01112	2,19		
9	95	75,4	0,01112	0,84	3,59	1,79
	936	50,6	0,01112	0,56		
10	108	86,76	0,01112	0,96	3,86	1,93
10	1036	260,2	0,01112	2,89	3,00	1,73

Suite du tableau $N^{\circ}V$ -2 : détermination des débits aux nœuds de la zone

Nœud	tronçons	Distance	qs l/s	Qr l/s	∑Qr l/s	Qn l/s
	1136	199,3	0,01112	2,22		
11	113	49	0,01112	0,54	3,31	1,65
	1112	112,2	0,01112	1,25		
12	1211	112,2	0,01112	1,25	4 22	2.17
12	1213	138,6	0,01112	1,54	4,33	2,17
	1312	138,6	0,01112	1,54		
13	1314	49,6	0,01112	0,55	3,85	1,92
	132	157,9	0,01112	1,76		
	1413	49,6	0,01112	0,55		
14	1416	138,7	0,01112	1,54	4,23	2,11
	1415	191,8	0,01112	2,13		
	1514	191,8	0,01112	2,13		
15	1516	145,6	0,01112	1,62	4,79	2,40
	1522	93,5	0,01112	1,04		
	1614	138,7	0,01112	1,54		
16	1617	63,65	0,01112	0,71	3,87	1,93
	1615	145,6	0,01112	1,62		
	1716	63,65	0,01112	0,71		
17	1718	124	0,01112	1,38	3,81	1,91
	1719	155,4	0,01112	1,73		
18	1817	124	0,01112	1,38	3,50	1 75
10	182	190,3	0,01112	2,12	3,30	1,75
19	1917	155,4	0,01112	1,73	2,59	1,30
19	1920	77,65	0,01112	0,86	2,39	1,30
	2019	77,65	0,01112	0,86		
20	2021	11,6	0,01112	0,13	2,55	1,27
	2022	140	0,01112	1,56		
	2120	11,6	0,01112	0,13		
21	2125	42	0,01112	0,47	2,26	1,13
	2127	149,45	0,01112	1,66		
	2215	93,5	0,01112	1,04		
22	2220	140	0,01112	1,56	2,93	1,47
	2223	30	0,01112	0,33		
23	2322	30	0,01112	0,33	1.07	0.54
23	2324	66,5	0,01112	0,74	1,07	0,54
24	2423	66,5	0,01112	0,74	1,77	0,88
∠ '1	2425	92,45	0,01112	1,03	1,//	0,00

Suite du tableau N° V-2 : détermination des débits aux nœuds

Nœud	tronçons	Distance	qs l/s	Qr l/s	∑Qr l/s	Qn l/s
	2524	92,45	0,01112	1,03		
25	2521	42	0,01112	0,47	2,91	1,45
	2526	126,8	0,01112	1,41		
	2625	126,8	0,01112	1,41		
26	2627	56,41	0,01112	0,63	3,84	1,92
	2628	162	0,01112	1,80		
	2726	56,41	0,01112	0,63		
27	2721	149,45	0,01112	1,66	3,06	1,53
	2735	69	0,01112	0,77		
	2826	162	0,01112	1,80		
28	2832	209,8	0,01112	2,33	4,75	2,37
	2829	55	0,01112	0,61		
29	2928	55	0,01112	0,61	2 22	1 12
29	2930	145,7	0,01112	1,62	2,23	1,12
30	3029	145,7	0,01112	1,62	2.41	1,21
30	3031	71,2	0,01112	0,79	2,41	1,21
	3130	71,2	0,01112	0,79		1,21
31	3132	23,8	0,01112	0,26	2,42	
	3133	123	0,01112	1,37		
	3231	23,8	0,01112	0,26		
32	3235	118,9	0,01112	1,32	3,92	1,96
	3228	209,8	0,01112	2,33		
33	3331	123	0,01112	1,37	2.16	1.50
33	3334	160,9	0,01112	1,79	3,16	1,58
34	3433	160,9	0,01112	1,79	2.56	1 20
34	3435	69	0,01112	0,77	2,56	1,28
	3527	69	0,01112	0,77		
35	3532	118,9	0,01112	1,32	2,86	1,43
	3534	69	0,01112	0,77		
	3611	199,3	0,01112	2,22		2,84
36	3610	260,2	0,01112	2,89	5,67	
	369	50,6	0,01112	0,56		

V-5-5/ Calcul du réseau de distribution (cas de pointe +Incendie) :

Dans ce cas le calcul se fait de la même manière que le cas précédent mais seulement on doit s'assurer que le débit d'incendie donné par le réservoir (17l/s) se trouve au point le plus défavorable qui est le nœud $n^{\circ}1$.

Tous les résultats du calcul sont récapitulés dans le tableau ci-dessous

Tableau N°V-3 : calcul des débits nodaux en cas de pointe+incendie

Nœud	tronçons	Distance	qs l/s	Qr l/s	$\sum Qr l/s$	$\sum Qc \ l/s$	Qn l/s
1	12	114,9	0,01112	1,28	3,76	17	18,88
1	14	222,84	0,01112	2,48	3,70	17	10,00
	23	137,4	0,01112	1,53			
2	21	114,9	0,01112	1,28	6.60	0	2 24
<u> </u>	218	190,3	0,01112	2,12	6,68	U	3,34
	213	157,9	0,01112	1,76			
	32	137,4	0,01112	1,53			
3	311	49	0,01112	0,54	3,14	0	1,57
	34	96,2	0,01112	1,07			
	41	222,84	0,01112	2,48			
4	45	174,5	0,01112	1,94	5,49	0	2,74
	43	96,2	0,01112	1,07			
	54	174,5	0,01112	1,94			
5	56	323	0,01112	3,59	6,37	0	3,19
	59	75,4	0,01112	0,84			
	65	323	0,01112	3,59	4.12	0	2.06
6	67	48,2	0,01112	0,54	4,13	0	2,06
7	76	48,2	0,01112	0,54	1.40	0	0,70
7	78	77,75	0,01112	0,86	1,40		
	87	77,75	0,01112	0,86			2,01
8	89	196,6	0,01112	2,19	4,02	0	
	810	86,76	0,01112	0,96			
	98	196,6	0,01112	2,19			
9	95	75,4	0,01112	0,84	3,59	0	1,79
	936	50,6	0,01112	0,56			
10	108	86,76	0,01112	0,96	2.06	0	1.02
10	1036	260,2	0,01112	2,89	3,86	0	1,93
	1136	199,3	0,01112	2,22			
11	113	49	0,01112	0,54	3,31	0	1,65
	1112	112,2	0,01112	1,25			
10	1211	112,2	0,01112	1,25	4.22	0	2.17
12	1213	138,6	0,01112	1,54	4,33	0	2,17
	1312	138,6	0,01112	1,54			1,92
13	1314	49,6	0,01112	0,55	3,85	0	
	132	157,9	0,01112	1,76			

Suite du tableau $N^{\circ}V$ -3 : détermination des débits aux nœuds

Næud	tronçons	Distance	qs l/s	Qr l/s	$\sum Qr l/s$	$\sum Qc \ l/s$	Qn l/s
	1413	49,6	0,01112	0,55			
14	1416	138,7	0,01112	1,54	4,23	0	2,11
	1415	191,8	0,01112	2,13			
	1514	191,8	0,01112	2,13			
15	1516	145,6	0,01112	1,62	4,79	0	2,40
	1522	93,5	0,01112	1,04			
	1614	138,7	0,01112	1,54			
16	1617	63,65	0,01112	0,71	3,87	0	1,93
	1615	145,6	0,01112	1,62			
	1716	63,65	0,01112	0,71			
17	1718	124	0,01112	1,38	3,81	0	1,91
	1719	155,4	0,01112	1,73			
1.0	1817	124	0,01112	1,38	2.50	0	1 75
18	182	190,3	0,01112	2,12	3,50	0	1,75
10	1917	155,4	0,01112	1,73	2.50	0	1.20
19	1920	77,65	0,01112	0,86	2,59	0	1,30
	2019	77,65	0,01112	0,86			
20	2021	11,6	0,01112	0,13	2,55	0	1,27
	2022	140	0,01112	1,56			
	2120	11,6	0,01112	0,13			1,13
21	2125	42	0,01112	0,47	2,26	0	
	2127	149,45	0,01112	1,66			
	2215	93,5	0,01112	1,04			
22	2220	140	0,01112	1,56	2,93	0	1,47
	2223	30	0,01112	0,33			
22	2322	30	0,01112	0,33	1.07	0	0.54
23	2324	66,5	0,01112	0,74	1,07	0	0,54
24	2423	66,5	0,01112	0,74	1 77	0	0.00
24	2425	92,45	0,01112	1,03	1,77	0	0,88
	2524	92,45	0,01112	1,03			
25	2521	42	0,01112	0,47	2,91	0	1,45
	2526	126,8	0,01112	1,41			,
	2625	126,8	0,01112	1,41		84 0	1,92
26	2627	56,41	0,01112	0,63	3,84		
	2628	162	0,01112	1,80			

Suite du tableau $N^{\circ}V$ -3 : détermination des débits aux nœuds

Nœud	tronçons	Distance	qs l/s	Qr l/s	$\sum Qr l/s$	$\sum Qc l/s$	Qn l/s
	2726	56,41	0,01112	0,63			
27	2721	149,45	0,01112	1,66	3,06	0	1,53
	2735	69	0,01112	0,77			
	2826	162	0,01112	1,80			
28	2832	209,8	0,01112	2,33	4,75	0	2,37
	2829	55	0,01112	0,61			
20	2928	55	0,01112	0,61	2.22	0	1 10
29	2930	145,7	0,01112	1,62	2,23	U	1,12
20	3029	145,7	0,01112	1,62	2.41	0	1 21
30	3031	71,2	0,01112	0,79	2,41	0	1,21
	3130	71,2	0,01112	0,79			
31	3132	23,8	0,01112	0,26	2,42	0	1,21
	3133	123	0,01112	1,37			
	3231	23,8	0,01112	0,26		0	1,96
32	3235	118,9	0,01112	1,32	3,92		
	3228	209,8	0,01112	2,33			
22	3331	123	0,01112	1,37	2.16	0	1.50
33	3334	160,9	0,01112	1,79	3,16	0	1,58
34	3433	160,9	0,01112	1,79	2.56	0	1 20
34	3435	69	0,01112	0,77	2,56	0	1,28
	3527	69	0,01112	0,77			
35	3532	118,9	0,01112	1,32	2,86	0	1,43
	3534	69	0,01112	0,77			
	3611	199,3	0,01112	2,22			
36	3610	260,2	0,01112	2,89	5,67	0	2,84
	369	50,6	0,01112	0,56]		

Tableau $N^{\circ}V$ -4 : détermination des débits aux nœuds de la zone 02 (cas de pointe)

Nœud	tronçons	Distance	qs l/s	Qr l/s	$\sum Qr l/s$	Qn l/s
1	114	105	0,00755	0,79	1,55	0,78
1	12	100,8	0,00755	0,76	1,33	
2	21	100,8	0,00755	0,76	1 45	0.72
2	23	91	0,00755	0,69	1,45	0,72

Suite du tableau N° V-4 : détermination des débits aux nœuds d

Nœud	Tronçons	Distance	qs l/s	Qr l/s	$\sum Qr l/s$	Qn l/s
3	3—4	144,73	0,00755	1,09	1,78	0,89
3	3—2	91	0,00755	0,69	1,70	0,07
4	4—3	144,73	0,00755	1,09	2,31	1,16
7	45	161,6	0,00755	1,22	2,31	1,10
	54	161,6	0,00755	1,22		
5	56	102	0,00755	0,77	2,73	1,36
	57	97,65	0,00755	0,74		
6	65	102	0,00755	0,77	2,43	1,22
U	613	219,9	0,00755	1,66	2,43	1,22
7	75	97,65	0,00755	0,74	1,50	0.75
/	78	100,7	0,00755	0,76	1,30	0,75
	87	100,7	0,00755	0,76		
8	089	22,6	0,00755	0,17	2,41	1,20
	811	195,66	0,00755	1,48		
9	98	22,6	0,00755	0,17	1,65	0,82
9	910	195,5	0,00755	1,48	1,03	0,62
10	109	195,5	0,00755	1,48	1,71	0,85
10	1011	30,9	0,00755	0,23	1,/1	0,65
	118	195,66	0,00755	1,48	2,07	1,04
11	1110	30,9	0,00755	0,23		
	1112	48	0,00755	0,36		
	1211	48	0,00755	0,36		
12	1213	34	0,00755	0,26	1,81	0,91
	1217	157,8	0,00755	1,19		
	1312	34	0,00755	0,26		
13	136	219,9	0,00755	1,66	2,25	1,13
	1314	44,7	0,00755	0,34		
	141	105	0,00755	0,79		
14	1413	44,7	0,00755	0,34	2,53	1,27
	1415	186	0,00755	1,40		
15	1514	186	0,00755	1,40	2,73	1,37
13	1516	175,75	0,00755	1,33	2,73	1,37
	1615	175,75	0,00755	1,33		
16	1617	19	0,00755	0,14	3,69	1,85
	1620	294,6	0,00755	2,22		
	1712	157,8	0,00755	1,19		
17	1716	19	0,00755	0,14	2,00	1,00
	1718	88,75	0,00755	0,67		

Suite du tableau V-4 : détermination des débits aux nœuds de la zone 02 (cas de pointe)

Nœud	tronçons	Distance	qs l/s	Qr l/s	$\sum Qr l/s$	Qn l/s
I 18 	1817	88,75	0,00755	0,67	2,57	1,28
	1819	251,1	0,00755	1,90	2,37	
19	1918	251,1	0,00755	1,90	2,67	1 24
19	1920	103	0,00755	0,78	2,07	1,34
20	2019	103	0,00755	0,78	3,00	1.50
20	2016	294,6	0,00755	2,22	3,00	1,50

V-5-6/Calcul du réseau de distribution (cas de pointe +Incendie) :

Dans ce cas le calcul se fait de la même manière que le cas précédent mais seulement on doit s'assurer que le débit d'incendie donné par le réservoir (17l/s) se trouve au point le plus défavorable qui est le nœud $n^{\circ}14$.

Tableau N°V-5 : calcul des débits nodaux en cas de pointe+incendie de la zone 02

Nœud	tronçons	Distance	qs l/s	Qr l/s	$\sum Qr l/s$	$\sum Qc l/s$	Qn l/s
1	114	105	0,00755	0,79	1,55		0,78
1	12	100,8	0,00755	0,76	1,33	0	0,78
2	21	100,8	0,00755	0,76	1 45		0.72
2	23	91	0,00755	0,69	1,45	0	0,72
3	34	144,73	0,00755	1,09	1,78		0,89
3	32	91	0,00755	0,69	1,70	0	0,89
4	43	144,73	0,00755	1,09	2.21		1 16
4	45	161,6	0,00755	1,22	2,31	0	1,16
	54	161,6	0,00755	1,22			
5	56	102	0,00755	0,77	2,73		1,36
	57	97,65	0,00755	0,74		0	
6	65	102	0,00755	0,77	2.42		1 22
0	613	219,9	0,00755	1,66	2,43	0	1,22
7	75	97,65	0,00755	0,74	1,50		0,75
/	78	100,7	0,00755	0,76	1,30	0	0,73
	87	100,7	0,00755	0,76			
8	089	22,6	0,00755	0,17	2,41		1,20
	811	195,66	0,00755	1,48		0	
9	98	22,6	0,00755	0,17	1 65		0.82
9	910	195,5	0,00755	1,48	1,65	0	0,82
10	109	195,5	0,00755	1,48	1.71		0.95
10	1011	30,9	0,00755	0,23	1,71	0	0,85

Suite du tableau N°V-5 : détermination des débits aux nœuds de la zone 02 (cas de pointe+incendie)

nœud	tronçons	Distance	qs l/s	Qr l/s	$\sum Qr l/s$	$\sum Qc l/s$	Qn l/s
	118	195,66	0,00755	1,48			
11	1110	30,9	0,00755	0,23	2,07		1,04
	1112	48	0,00755	0,36		0	
	1211	48	0,00755	0,36			
12	1213	34	0,00755	0,26	1,81		0,91
	1217	157,8	0,00755	1,19		0	
	1312	34	0,00755	0,26			
13	136	219,9	0,00755	1,66	2,25		1,13
	1314	44,7	0,00755	0,34		0	
	141	105	0,00755	0,79			
14	1413	44,7	0,00755	0,34	2,53		18,27
	1415	186	0,00755	1,40		17	
15	1514	186	0,00755	1,40	2.72		1,37
13	1516	175,75	0,00755	1,33	2,73	0	1,37
	1615	175,75	0,00755	1,33			
16	1617	19	0,00755	0,14	3,69		1,85
	1620	294,6	0,00755	2,22		0	
	1712	157,8	0,00755	1,19			
17	1716	19	0,00755	0,14	2,00		1,00
	1718	88,75	0,00755	0,67		0	
10	1817	88,75	0,00755	0,67	2.57		1.20
18	1819	251,1	0,00755	1,90	2,57	0	1,28
10	1918	251,1	0,00755	1,90	2.67		1.24
19	1920	103	0,00755	0,78	2,67	0	1,34
20	2019	103	0,00755	0,78	2.00		1.50
20	2016	294,6	0,00755	2,22	3,00	0	1,50

V -6 /Calcul hydraulique du réseau de distribution :

A partir de réservoir, l'eau est distribuée dans un réseau de canalisation, dans lesquelles les branchements seront piques, en vue de l'alimentation des abonnes ;

Les canalisations devront en conséquence présenter un diamètre suffisant, de façon à assurer le débit maximal avec une pression au sol compatible, avec la hauteur des immeubles.

V-6-1/ Méthode de calcul:

La méthode utilisée dans les calculs du réseau de distribution est celle de **HARDY CROSS** effectuée par le logiciel de simulation EPANET version 2.0 (Build2.00.10), il utilise l'algorithme **HARDY CROSS** pour déterminer les corrections des débits dans les conduites, la correction est basée sur deux hypothèses :

V-6-1-1 / La base de la méthode:

La méthode de HARDY CROSS repose sur deux lois :

❖ 1^{er} loi (équation de continuité 1ere de KIRCHOFF) :

En un nœud quelconque de conduites, la somme des débits qui y arrive est égale à la somme des débits qui y partent.

❖ 2^{eme} loi (loi des mailles):

Le long d'un parcours orienté et fermé, la somme des pertes de charges est nulle ⇒

$$\Sigma \Delta H_{I-K} = 0$$

Ou bien :
$$\Sigma \Delta H_{\text{I-K}} = \Sigma (R_{\text{I-K}}, Q^2_{\text{I-K}}) = 0$$

Où:

- R_{I-K} : la résistance d'un tronçon de maille ;
- Q_{I-K} : le débit du tronçon.
 - > Capacités pour la Modélisation Hydraulique :

Une modélisation hydraulique honnête et complète est la première condition pour pouvoir modéliser la qualité de l'eau de manière efficace.

EPANET contient un moteur de calcul hydraulique moderne ayant les caractéristiques suivantes:

- La taille du réseau étudié est illimitée.
- Pour calculer les pertes de charge dues à la friction, il dispose les formules suivantes :

Hazen-Williams, Darcy-Weisbach, et Chezy-Manning.

- Il inclut les pertes de charge singulières aux coudes, aux tés, etc.
- Il peut modéliser des pompes à vitesse fixe ou variable.
- Il peut calculer l'énergie consommée par une pompe et son coût.
- Il peut modéliser différents types de vannes, comme des clapets anti-retour, des vannes de contrôle de pression ou débit, des vannes d'arrêt, etc.
- Les réservoirs peuvent avoir des formes variées (le diamètre peut varier avec la hauteur).
- Il peut y avoir différentes catégories de demandes aux nœuds, chacune avec une modulation propre.
- Il peut modéliser des consommations dépendantes de la pression (rapaces par exemple).
- Le fonctionnement de station de pompage peut être piloté par des commandes simples, (heures de marche/arrêt en fonction du niveau d'un réservoir) ou des commandes élaborées plus complexes.

V-6-2/ Les résultats du calcul :

Les résultats de calcul de réseau se indiquées dans des tableaux selon les cas :

Tableau N^{\bullet} V-6- les caractéristiques des tronçons (cas de pointe) pour la zone01

Nom	Longueur (m)	Diamètre (mm)	Débit (l/s)	Vitesse (m/s)	PdC linéaire (m/km)
N1 -N2	114,9	250	55,4	1,13	4,63
N1 -N4	222,24	90	6,29	0,99	12,75
N2 -N3	137,4	110	10,4	1,09	12,02
N2 -N13	161,9	200	31,41	1	4,83
N2 -N18	190,3	110	10,25	1,08	11,69
N3 -N4	96,2	90	4,77	0,75	7,55
N3 -N11	49	90	4,05	0,64	5,55
N4 -N5	174,5	110	8,3	0,87	7,82
N5 -N6	353,3	50	1,2	0,61	10,76
N5 –N9	75,4	90	3,91	0,61	5,19
N6 -N7	48,2	50	0,86	0,44	5,86
N7 –N8	77,75	63	1,56	0,5	5,57
N8 –N9	196,6	75	4,02	0,91	13,71
N8 –N10	86,76	50	0,45	0,23	1,8
N9 -N36	50,6	50	1,9	0,97	25,79
N10 -N36	260,2	50	1,48	0,75	15,97
N11 -N12	112,2	90	3,82	0,6	4,96
N11 -N36	199,3	110	6,22	0,65	4,54
N12 -N13	138,6	110	5,99	0,63	4,22
N13 -N14	49,61	160	23,5	1,17	8,57
N14 –N15	191,8	125	12,6	1,03	9,08
N14 -N16	138,7	110	8,8	0,93	8,74
N15 -N16	145,6	110	5,53	0,58	3,63
N15 -N22	93,5	160	15,72	0,78	3,99
N16 -N17	63,65	63	1,34	0,47	5,34
N17 -N18	124,35	125	8,5	0,69	4,3
N17 -N19	155,4	125	7,93	0,65	3,78
N19 -N20	77,65	110	6,63	0,7	5,11
N20 -N21	11,6	160	5,96	0,3	0,65
N20 -N22	140	50	0,6	0,31	3,02
N21 -N25	92,45	110	2,05	0,22	0,58
N21 -N27	149,65	110	5,26	0,55	3,31
N22 -N23	30,41	200	11,36	0,36	0,71
N23 -N24	66,5	160	13,11	0,65	2,83

Suite du tableau N° V-6- les caractéristiques des tronçons (cas de pointe) pour la zone01

N24 -N25	92,45	200	10,18	0,32	0,58
N25 -N26	126,8	160	10,35	0,51	1,81
N26 -N27	56,42	50	1	0,51	7,66
N26 -N28	162	110	7,43	0,78	6,35
N27 -N35	100	90	4,73	0,74	7,41
N28 -N32	209,8	50	1,12	0,57	9,43
N28 -N29	55,4	90	3,95	0,62	5,28
N29 -N30	145,7	90	2,83	0,44	2,83
N30 -N31	71,2	50	1,62	0,82	18,91
N31 -N32	23,76	50	0,61	0,31	3,06
N31 -N33	123,1	50	1,01	0,52	7,87
N32 -N35	118,9	50	1,45	0,74	15,42
N33 -N34	160,9	50	0,57	0,29	2,72
N34 -N35	69	50	1,85	0,94	24,36

 $Tableau N^{\circ}\ V\text{-7: Calcul des pressions (cas de pointe) pour la zone \ 01.$

Nœud	Altitude (m)	Débit demandé (l/s)	Cote de charge (m)	pression (m)
N1	51,6	1,88	80,4	28,8
N2	43,5	3,34	79,86	36,36
N3	42,3	1,57	78,21	35,91
N4	47,6	2,77	77,49	29,89
N5	50,65	3,19	76,12	25,47
N6	49,7	2,06	72,32	22,62
N7	46,8	0,7	72,6	25,8
N8	46	2,01	73,04	27,04
N9	40,2	1,79	75,73	35,53
N10	35,62	1,93	72,88	37,26
N11	39	1,65	77,94	38,94
N12	32,45	2,17	78,5	46,05
N13	34,75	1,92	79,08	44,33
N14	34,5	2,11	78,66	44,16
N15	34,5	2,11	78,66	44,16
N16	43,6	1,93	77,44	33,84
N17	37,3	1,91	77,1	39,8
N18	40	1,75	77,64	37,64

Suite du tableau V-7: Calcul des pressions (cas de pointe) pour la zone 01

N19	32,5	1,3	76,52	44,02
N20	44,9	1,27	76,12	31,22
N21	44,02	1,13	76,11	32,09
N22	48,6	1,47	76,54	27,94
N23	41,3	0,54	76,52	35,22
N24	43,4	0,88	76,33	32,93
N25	42,5	1,45	76,28	33,78
N26	36,42	1,92	76,05	39,63
N27	36,5	1,53	75,62	39,12
N28	31,3	2,37	75,02	43,72
N29	25,6	1,12	74,73	49,13
N30	26,62	1,21	74,32	47,7
N31	29	1,21	72,97	43,97
N32	32,2	1,96	73,04	40,84
N33	29,7	1,58	72	42,3
N34	33,2	1,28	72,44	39,24
N35	32,74	1,43	74,88	42,14
N36	40	2,84	77,04	37,04
R1	77	63,57	81	4

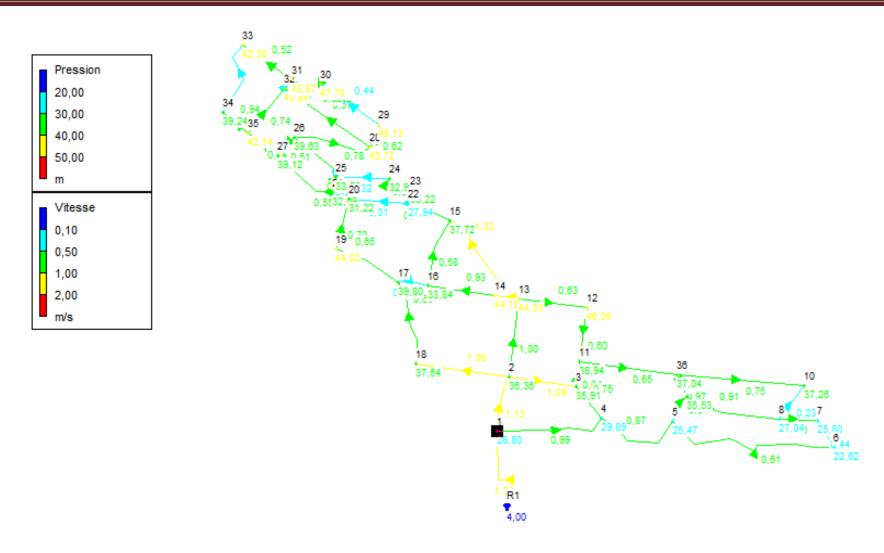


Fig V-1 :la variation de vitesse et de pression dans le réseau de la zone 1 (cas de point).

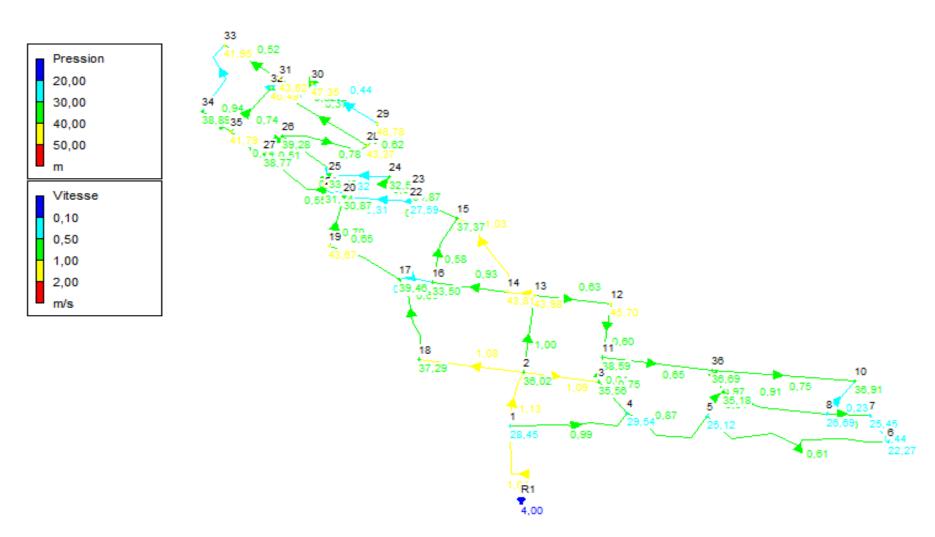


Fig V-2 la variation de vitesse et de pression dans le réseau de zone 1 (cas de point+incendie)

Tableau N^{\bullet} V-8 les caractéristiques des tronçons (cas de pointe +incendie) pour la zone 01

Nom	Longueur (m)	Diamètre (mm)	Débit (l/s)	Vitesse (m/s)	PdC linéaire (m/km)
N1 -N2	114,9	250	72,03	1,47	7,67
N1 -N4	228,24	90	6,66	1,05	14,2
N2 -N3	137,4	110	10,6	1,11	12,46
N2 -N13	161,9	200	38,4	1,22	7,1
N2 -N18	190,3	110	19,69	2,07	41,15
N3 -N4	96,2	90	4,49	0,71	6,72
N3 -N11	49	90	4,54	0,71	6,86
N4 -N5	174,5	110	8,38	0,88	7,96
N5 -N6	353,3	50	1,2	0,61	10,82
N5 -N9	75,4	90	3,99	0,63	5,37
N6 -N7	48,2	50	0,86	0,44	5,81
N7 -N8	77,75	63	1,56	0,5	5,54
N8 -N9	196,6	75	4,03	0,91	13,76
N8 -N10	86,76	50	0,46	0,24	1,89
N9 -N36	50,6	50	1,84	0,94	24,13
N10 -N36	260,2	50	1,47	0,75	15,72
N11 -N12	112,2	90	3,26	0,51	3,68
N11 -N36	199,3	110	6,14	0,65	4,43
N12 –N13	138,6	110	5,43	0,57	3,51
N13 -N14	49,61	160	31,06	1,54	14,65
N14 -N15	191,8	125	16,52	1,35	15,26
N14 -N16	138,7	110	12,42	1,31	16,9
N15 -N16	145,6	110	5,82	0,61	4
N15 –N22	93,5	160	19,94	0,99	6,26
N16 -N17	63,65	60	4,68	1,65	56,86
N17 -N18	124,35	125	0,94	0,08	0,08
N17 -N19	155,4	125	3,71	0,3	0,92
N19 -N20	77,65	110	2,41	0,25	0,79
N20 -N21	11,6	160	2,76	0,14	0,16
N20 -N22	140	50	1,62	0,82	18,97
N21 -N25	92,45	110	2,59	0,27	0,89
N21 -N27	149,65	110	3,41	0,36	1,48
N22 -N23	92,45	200	12,83	0,41	0,89
N23 -N24	66,5	160	16,31	0,81	4,27
N24 -N25	30,41	200	14,01	0,45	1,05
N25 -N26	126,8	160	10,35	0,51	1,81
N26 -N27	56,42	50	2,35	1,2	38,4
N26 -N28	162	110	7,94	0,84	7,19
N27 -N35	100	90	4,22	0,66	5,99
N28 –N32	209,8	50	1,31	0,67	12,74

Suite du tableau N^{\bullet} V-8 les caractéristiques des tronçons (cas de pointe +incendie) pour la zone 01

N29 -N30	145,7	90	3,14	0,49	3,43
N30 -N31	71,2	50	1,93	0,98	26,35
N31 -N32	23,76	50	0,61	0,31	3,06
N31 -N33	123,1	50	1,16	0,59	10,06
N32 -N35	118,9	50	1,09	0,55	9,01
N33 -N34	160,9	50	0,57	0,29	2,72
N34 -N35	69	50	1,85	0,94	24,36

 $TableauN^{\circ}\ V\text{-9: Calcul des pressions (cas de pointe+incendie) pour la zone\ 01.$

Nœud	Altitude (m)	Débit demandé (l/s)	Cote de charge (m)	pression (m)
N 1	51,6	1,88	81,4	29,8
N2	43,5	3,34	80,86	37,36
N3	42,3	1,57	79,21	36,91
N4	47,6	2,77	78,49	30,89
N5	50,65	3,19	77,12	26,47
N6	49,7	2,06	73,32	23,62
N7	46,8	0,7	73,6	26,8
N8	46	2,01	74,04	28,04
N9	40,2	1,79	76,73	36,53
N10	35,62	1,93	73,88	38,26
N11	39	1,65	78,94	39,94
N12	32,45	2,17	79,5	47,05
N13	34,75	1,92	80,08	45,33
N14	34,5	2,11	79,66	45,16
N15	39,2	2,4	77,92	38,72
N16	43,6	1,93	78,44	34,84
N17	37,3	1,91	78,1	40,8
N18	40	1,75	78,64	38,64
N19	32,5	1,3	77,52	45,02
N20	44,9	1,27	77,12	32,22
N21	44,02	1,13	77,11	33,09
N22	48,6	1,47	77,54	28,94
N23	41,3	0,54	77,52	36,22
N24	43,4	0,88	77,33	33,93

Suite du tableau V-9: Calcul des pressions (cas de pointe+incendie) pour la zone 1

N25	42,5	1,45	77,28	34,78
N26	36,42	1,92	77,05	40,63
N27	36,5	1,53	76,62	40,12
N28	31,3	2,37	76,02	44,72
N29	25,6	1,12	75,73	50,13
N30	26,62	1,21	75,32	48,7
N31	29	1,21	73,97	44,97
N32	32,2	1,96	74,04	41,84
N33	29,7	1,58	73	43,3
N34	33,2	1,28	73,44	40,24
N35	32,74	1,43	75,88	43,14
N36	40	2,84	78,04	38,04
R1	77	80,56	81	4

Tableau N^{\bullet} V-10 les caractéristiques des tronçons (cas de pointe) pour la zone02

Nom	Longueur (m)	Diamètre (mm)	Débit (l/s)	Vitesse (m/s)	PdC linéaire (m/km)
N1 -N2	100,8	63	2,43	0,78	12,75
N1 -N14	105,1	160	19,23	0,96	5,84
N2 -N3	91,1	50	1,71	0,87	21,11
N3 -N4	144,73	50	0,82	0,42	5,37
N4 -N5	161,6	50	0,34	0,27	3,17
N5 -N6	102,1	75	2,21	0,5	4,45
N5 -N7	97,65	50	0,51	0,26	2,28
N6 -N13	219,9	75	3,43	0,78	10,13
N7 –N8	100,7	50	0,24	0,19	1,66
N8 –N9	22,6	50	0,76	0,39	4,61
N8 -N11	195,7	50	0,68	0,34	3,75
N9 -N10	195,5	75	1,58	0,36	2,38
N10 -N11	30,92	75	2,43	0,55	5,29
N11 -N12	48,16	75	4,15	0,94	14,49
N12 -N13	34,17	90	11,16	1,75	38,23
N13 -N14	44,63	160	15,72	0,78	3,98
N14 -N15	186	75	2,24	0,51	4,56
N15 -N16	175,7	50	0,87	0,44	5,95
N16 -N17	19	110	5,05	0,53	3,07
N16 -N20	294,7	90	4,07	0,64	5,59
N17 -N12	157,8	125	6,1	0,5	2,31

Suite du tableau N° V-10 les caractéristiques des tronçons (cas de pointe) pour la zone02

N17 -N18	88,75	50	0,05	0,66	104,12
N18 -N19	251,5	50	1,23	0,63	11,28
N19 -N20	103	50	2,57	1,31	45,62
R2-N1	155	160	22,44	1,12	7,85

Tableau N° V-11: Calcul des pressions (cas de pointe) pour la zone 02.

Nœud	Altitude (m)	Débit demandé (l/s)	Cote de charge (m)	pression (m)
N1	97,58	0,78	122,78	25,2
N2	96,8	0,72	121,5	24,7
N3	92,7	0,89	119,58	26,88
N4	76,8	1,16	118,8	42
N5	70,6	1,36	119,31	48,71
N6	75	1,22	119,76	44,76
N7	61,2	0,75	119,09	57,89
N8	61,3	1,2	119,25	57,95
N9	54,27	0,82	119,36	65,09
N10	62,2	0,85	119,82	57,62
N11	68,45	1,04	119,99	51,54
N12	68,8	0,91	120,69	51,89
N13	79,5	1,13	121,99	42,49
N14	84,3	1,27	122,17	37,87
N15	84,38	1,37	121,31	36,93
N16	81,1	1,85	120,26	39,16
N17	77,5	1	120,32	42,82
N18	66,2	1,28	111,08	44,88
N19	66,8	1,34	113,92	47,12
N20	91,1	1,5	118,62	27,52

Tableau N^{\bullet} V-12- les caractéristiques des tronçons (cas de pointe +incendie) pour la zone 2

Nom	Longueur (m)	Diamètre (mm)	Débit (l/s)	Vitesse (m/s)	PdC linéaire (m/km)
N1 -N2	100,8	63	2,61	0,84	14,51
N1 -N14	105,1	160	36,05	1,79	19,55
N2 -N3	91,1	50	1,89	0,96	25,31
N3 -N4	144,73	50	1	0,51	7,63
N4 -N5	161,6	50	0,16	0,13	0,88
N5 -N6	102,1	75	2,1	0,47	4,03
N5 -N7	97,65	50	0,57	0,29	2,77
N6 -N13	219,9	75	3,32	0,75	9,51
N7 –N8	100,7	50	0,18	0,14	1
N8 -N9	22,6	50	0,72	0,37	4,18
N8 -N11	195,7	50	0,66	0,34	3,57
N9 -N10	195,5	75	1,54	0,35	2,27
N10 -N11	30,92	75	2,39	0,54	5,13
N11 -N12	48,16	75	4,09	0,93	14,11
N12 -N13	34,17	90	11,1	1,75	37,88
N13 -N14	44,63	160	15,55	0,77	3,9
N14 -N15	186	75	2,23	0,51	4,54
N15 -N16	175,7	50	0,86	0,44	5,88
N16 -N17	19	110	5,05	0,53	3,07
N16 -N20	294,7	90	4,07	0,64	5,59
N17 -N12	157,8	125	6,11	0,5	2,31
N17 –N18	88,75	63	0,05	0,66	104,12
N18 -N19	251,5	50	1,23	0,63	11,28
N19 -N20	103	50	2,57	1,31	45,62
R2-N1	155	160	39,44	1,96	23,26

Tableau $N^{\circ}V$ -13: Calcul des pressions (cas de pointe+incendie) pour la zone 2.

Nœud	Altitude (m)	Débit demandé (l/s)	Cote de charge (m)	pression (m)
N1	97,58	0,78	120,39	22,81
N2	96,8	0,72	118,93	22,13
N3	92,7	0,89	116,63	23,93
N4	76,8	1,16	115,52	38,72
N5	70,6	1,36	115,66	45,06
N6	75	1,22	116,08	41,08
N7	61,2	0,75	115,39	54,19
N8	61,3	1,2	115,49	54,19
N9	54,27	0,82	115,59	61,32
N10	62,2	0,85	116,03	53,83

Suite du tableau V-13: Calcul des pressions (cas de pointe+incendie) pour la zone 02.

N11	68,45	1,04	116,19	47,74
N12	68,8	0,91	116,87	48,07
N13	79,5	1,13	118,17	38,67
N14	84,3	18,27	118,34	34,04
N15	84,38	1,37	117,48	33,1
N16	81,1	1,85	116,45	35,35
N17	77,5	1	116,51	39,01
N18	66,2	1,28	107,27	41,07
N19	66,8	1,34	110,1	43,3
N20	91,1	1,5	114,8	23,7

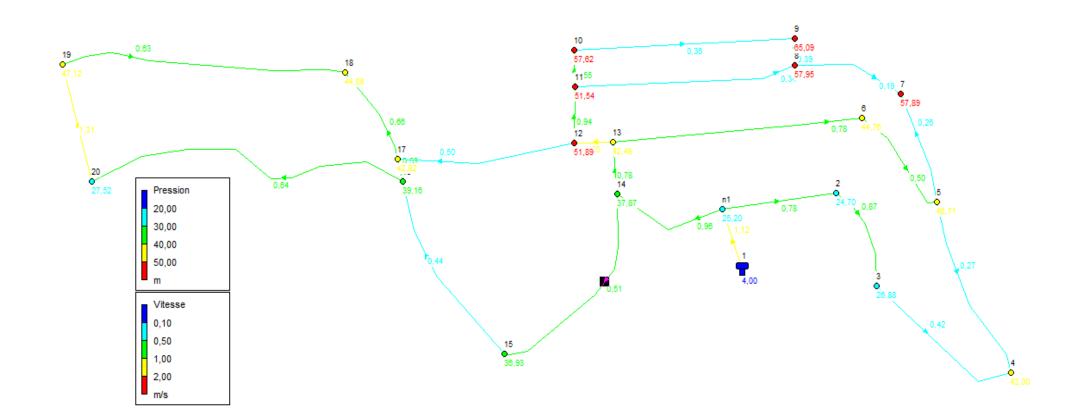


Fig VI-3 : la variation de vitesse et de pression (cas de point) dans le réseau de zone 02.

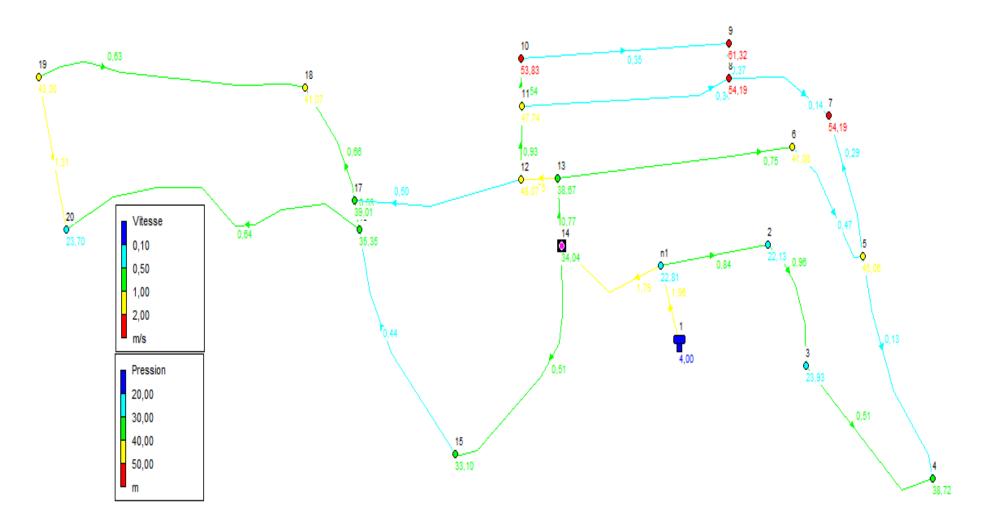


Fig VI-4 la variation de vitesse et de pression (cas de pointe+incendie) dans le réseau de zone 02.

V-7/ Equipement du réseau de distribution :

V-7-1/ Appareils et accessoires du réseau :

Les accessoires qui devront être utilisé pour l'équipement du réseau de distribution sont les suivants :

V-7-1-1/Robinets vannes:

Ils sont placés au niveau de chaque nœud, et permettent l'isolement des différents tronçons du réseau lors d'une réparation sur l'un d'entre eux.

Ils permettent ainsi de régler les débits, leur manœuvre s'effectue à partir du sol au moyen d'une clé dite « béquille »

Celle ci est introduite dans une bouche à clé placée sur le trottoir (facilement accessible).

V-7-1-2/Bouches ou poteau d'incendie :

Les bouches ou les poteaux d'incendie doivent être raccordés sur les conduites capables d'assurer un débit minimum 17 (l/s) avec une pression de 10 m (1 bar).

Ces derniers seront installés en bordure des trottoirs espacés de 50à 200 m et répartis suivant l'importance des risques imprévus.

V-7-1-3/ Clapets :

Les clapets ont un rôle d'empêcher l'eau en sens contraire de l'écoulement prévu.

On peut utiliser comme soupape pour éviter le choc à la forte pression.

V-7-1-4/ Ventouses:

Les ventouses sont des organes qui sont placés aux points le plus hauts du réseau pour réduire la formation du vide dans les installations hydraulique. Les ventouses ont pour formation spéciale l'alimentation des poches d'air dans la canalisation des conduites en cas de vidange par pénétration d'air.

V-7-1-5/ Robinets de vidange :

Ce sont des robinets placés aux endroits des points les plus bas du réseau de distribution pour permettre la vidange qui sera posé à l'intérieur d'un regard en maçonnerie.

V-7-1-6/Bouche d'arrosage:

Ce sont des bouches situées aux alentours des jardins.

V-7-1-7/ pièces spéciales de raccord :

- a) **les Tés** : on envisage des tés à deux ou trois emboîtements permettant le raccordement des conduites présentant des diamètres différents. Il est nécessaire de prévoir un cône de réduction pour les placer.
 - b) les coudes : utilisés en cas de changement de direction.

- c) les cônes de réduction : ce sont des organes de raccord en cas de déférents diamètres.
- d) Les bouts d'extrémités : pour la mise en place d'appareils hydrauliques.

Toutes les vannes de réseau sont représentées dans l'annexe III

Conclusion:

Dans ce chapitre, on a déterminé les diamètres des tronçons en vérifiant les vitesses et les pressions au niveau des tronçons et nœuds; pour un bon fonctionnement du système d'alimentation.

CHAPITRE VI

ADDUCTION ET POMPAGE

Introduction:

On entend par adduction de refoulement ,tout canalisation en charge permettant d'amener l'eau de l'installation de pompage à un autre ouvrage.

Le captage s'effectue à un niveau inférieur à celui du réservoir.

VI.1. Types d'adduction :

D'après leur fonctionnement, les adductions peuvent être classées en trois groupes :

- ➤ Adduction gravitaire;
- > Adduction par refoulement;
- > Adduction mixte.

VI-2 Le choix de tracé :

Pour le choix du tracé de la conduite de refoulement sera tenu compte de certain impératif que l'on s'efforcera dans la mesure du possible de respecter

Il est important de chercher un profil en long aussi régulier que possible pour éliminer les contres pentes ;

- Dans le but d'économie du projet, le tracé doit être le plus court possible.
- Éviter les forêts, bois et zones marécageuses
- Éviter autant que possible la traversée des obstacles (routes, voies ferrées, canaux, oueds,...).

VI-3 Choix du type de matériau:

Le choix du type de tuyaux est basé sur des critères d'ordre technique à savoir le diamètre ; la pression, la condition de pose et de critères d'ordre économique qui reposent sur le prix de fourniture et de transport.

VI-4 schéma générale de l'adduction de la ville de DAMOUS :

La ville de DAMOUS est dispose à partir des trois forage telle que F1et F2 qui donne des débits 12l/s et 15l/s respectivement sont situé au niveau de oued harbil qui refoule vers le réservoir R2 de capacité 300m³ et l'autre forage qui donne un débits de 45l/s est situé au niveau de oued DAMOUS qui refoule vers le réservoir de capacité 600m³.

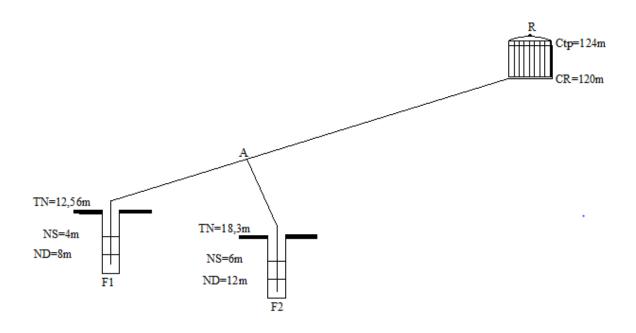


Figure VI-1 : schémas générale de l'adduction à partir des deux forages vers le réservoir R2 de capacité 300m³

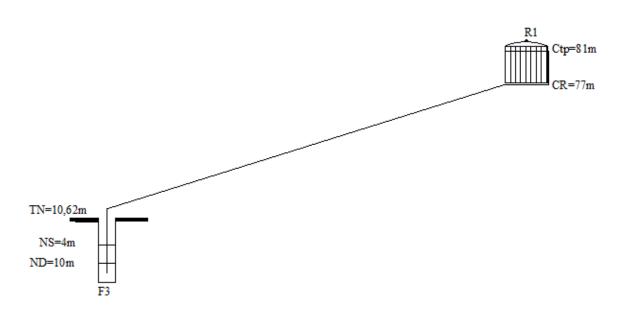


Figure VI-2 : schémas générale de l'adduction a partir de forageF3 vers le réservoir R1 de capacité 600m³

I-4-1 Adduction à partir des forages :

La ville de DAMOUS est disposé deux champs de captage telle que le premier champ est situé au niveau de oued HARBIL qui ayant deux forages F1et F2 qui donne des débits 12l/s et 15l/s respectivement.

Le deuxième champ de captage qui se trouve au niveau d'oued DAMOUS un forage F3 qui donne un débit de 451/s.

VI-4-1-1 calcul du diamètre économique :[5]

Notre étude consiste a déterminé le diamètre économique à partir deux forages F1,F2 vers le réservoir R2 du capacité 300 m³et forage F3 vers le réservoir R1 du capacité 600 m³.

La détermination du diamètre économique est basée sur l'étude technico-économique.

Il y'a plusieurs formule qui donnes le diamètre économique qui sont :

1/ Formule de BRESSE:

$$D_{ec} = 1.5 \sqrt{Q}$$
(VI-1)

2/ Formule de BONNIN:

$$\mathbf{D}_{ec} = \sqrt{Q}$$
(VI-2)

3/ Formule de MUNIER:

$$D_{\text{\'ec}} = (1+0.02n) \sqrt{Q}$$

Avec:

n = nombre d'heures de pompage.

 $Q = d\acute{e}bit en m^3/s$.

4/ Formule de VIBERT (conduites en fonte):

$$D_{ec} = 1.547 (e/f)^{0.154} Q^{0.46}$$
 (pompage continu)

$$\mathbf{D_{ec}} = 1.35 \ (e/f)^{0.154} \ \mathbf{Q}^{0.46} \ (pompage \ de \ 10^{h}/24^{h}) \ Avec :$$

e= prix du kWh d'énergie;

f= prix de 1kg de fonte en DA.

5/ autre formule :

$$D_{\acute{e}con} = E^{\left(\frac{1}{\alpha+m}\right)} * Q^{\left(\frac{B+1}{\alpha+m}\right)}$$

E : facteur économique incluant les caractéristiques économiques y compris certain exposant hydraulique

$$E = 10*M*\delta*\sigma$$

M : facteur tenant compte du matériau de la canalisation

Tableau N° VI -1 :la valeur de M en fonction du matériau

Tuyau	M
Acier	0,92
Fonte	0,43
Amiante ciment	0,24
plastique	0,13

 σ : Prix de KWh

 δ : Coefficient dépendant de l'irrégularité de la consommation et le régime de travail de la station de pompage

Le coefficient δ est donné par la relation suivante :

$$\bullet \quad \delta = \frac{1}{(K_0 * K_j * K_h)^3}$$

 K_0 : coefficient d'augmentation annuelle de la consommation d'eau : $K_0\!\!=\!\!1.03$ a 1.04

 $K_{\rm j}$: coefficient de variation journalière de la consommation : 1.1 a 1.3

 K_h : coefficient de variation horaire de la consommation qui dépend de la courbe de consommation

Donc:
$$\delta = \frac{1}{(1.03*1.3*1.5)^3} = 0.123$$

$$\delta = 0.123$$

Dans notre cas nous avons pris : $\alpha = 1,95$; $\beta = 1,77$; m = 4,77.

Ce qui donne:

$$D_{\acute{e}co} = E^{0.15} * Q^{0.41}$$

Sachant que le prix d'énergie (d'après SONALGASE) est de :

 σ = **4.67kwh** on aura : **E** = **10*4,67*0,123*0,13**

$$D_{\acute{e}co} = 0.96 * Q^{0.41}$$

D'où:

En utilisant la formule précédente, on trouve les résultats donnés dans le tableau suivant :

Tableau N° VI -2: calcul des Diamètres économique et des vitesse

Tronçon	Débit l/s	D _{cal} (m)	D _{nor} (mm)	V m/s
F1-A	12	0,156	160	0,89
F2-A	15	0,172	160	1,12
A-R2	27	0,218	200	1,28

D'après le tableau N°VI-2 en remarque que les vitesses sont acceptables.

VI-4-1-2 Calcul de la hauteur manométrique pour les trois forages :

> Forage F1-R2

$$HMT = Hg + \sum_{r=0}^{lin} hp + \sum_{r=0}^{sin} hp$$

HMT : la hauteur manométrique totale

Hg: la hauteur géométrique

 $\sum_{i=1}^{lin} hp$: La somme des pertes de charge linéaires

 $\sum_{i=1}^{\sin} hp$: La somme des pertes de charge singuliers

Avec:
$$\sum_{ref}^{\sin} hp = 15\% \sum_{ref}^{\lim} hp$$
 donc: $\sum_{ref}^{\sin} hp = \sum_{ref}^{\lim} hp$

$$HMT = Hg + \sum_{ref}^{lin} hp$$

a. Calcule la hauteur géométrique Hg:

$$H_g = C_{tp} - C_{ND}$$

Avec : Ctp : cote de trop plein du réservoir R2 = 124m

 C_{ND} : cote du niveau dynamique du forage

C_{ND}= Cote au sole du forage (F1) –Niveau dynamique du forage (F1)

Donc:

$$C_{ND}$$
=12.56-8=4,56m C_{ND} =4.56m

 $Hg = 124 - 4.56 = 119,44m$

$$H_{g} = 119,44m$$

b- La perte de charge linéaire

$$\sum_{ref}^{lin} hp = \frac{K' * L * Q^B}{D^m}$$

Avec:

K'=0.001052 (pour l'PHED)

β: Exposant tenant compte du régime d'écoulement =1,77

m: Exposant tenant compte du type du matériau =4,774

$$\sum_{ref}^{lin} hp = \sum_{ref}^{lin} hp \text{ (F1-A)} + \sum_{ref}^{lin} hp \text{ (A-R2)}$$

Donc:

$$\sum_{ref}^{lin} hp = 0.001052*\left(\frac{140*(0,012)^{1,77}}{0.16^{4.77}} + \frac{2000*(0,027)^{1,77}}{0.2^{4.77}}\right)$$

$$\sum_{ref}^{lin} hp = 0.37 + 7.59 \text{ m}$$

$$\sum_{ref}^{lin} hp = 7,96 \text{ m}$$

HMT = 119,44 + 7.96

$$HMT_{F1-R2} = 127,4m$$

> Forage F2-R2:

$$HMT = Hg + \sum_{ref}^{lin} hp + \sum_{ref}^{sin} hp$$

HMT : la hauteur manométrique totale

b. Calcule de la hauteur géométrique Hg

$$H_{g} = C_{tp} - C_{ND}$$

Avec : Ctp : cote de trop plein du réservoir R2 = 124m

 C_{ND} : cote du niveau dynamique du forage

C_{ND}= Cote au sole du forage (F2) –Niveau dynamique du forage (F2)

Donc:

$$C_{ND}=18,3-12=6,3m$$
 $C_{ND}=6.3m$

$$Hg = 124 - 6, 3 = 117, 7m$$

$$\sum_{ref}^{lin} hp = \sum_{ref}^{lin} hp \,(F2-A) + \sum_{ref}^{lin} hp \,(A-R2)$$

Donc:

$$\sum_{ref}^{lin} hp = 0.001052*\left(\frac{200*(0,015)^{1,77}}{0.16^{4.77}} + \frac{2000*(0,027)^{1,77}}{0.2^{4.77}}\right)$$

$$\sum_{ref}^{lin} hp = 0.78 + 7.59 = 8.37 \text{m}$$

Donc la perte de charge totale est :

$$\sum_{ref}^{lin} hp = \sum_{total}^{lin} hp = 8,37m$$

$$HMT_{F2-R2} = 126,07m$$

REMARQUE:

Pour le tracé le profil en long de cette adduction il faut déterminer la cote piézométrique de le point A.

a) Calcul la cote piézométrique au point A:

•
$$\mathbf{CP_{A}} = \mathbf{CTP_{R2}} + \sum_{ref}^{lin} hp \text{ (A-R2)}$$

✓ CTP_{R2}: cote de trop plein du réservoir R2

$$\checkmark \sum_{r=f}^{lin} hp$$
 (A-R2) la perte de charge totale entre le point A et le

réservoir R2

$$\sum_{n=0}^{lin} hp \text{ (A-R2)=0.001052*} \frac{2000*(0,027)^{1.77}}{0.200^{4.774}} = 7,59$$

$$\sum_{ref}^{lin} hp \text{ (A-R2)}_{total} = 1,15*7,59=8,73\text{m}$$

$$\mathbf{CP_A} = 124 + 8,73 = 132,73 \,\mathrm{m}$$

$$CP_A = 132.73m$$

▶ Forage F3-R1 :

Cette partie de l'adduction de forage F3 vers le réservoir existant R1 de capacité 600m³ consiste à détermination le diamètre économique à partir de calcul des frais d'exploitation et les frais d'amortissement .

Le choix de la gamme des diamètres sur laquelle portera notre étude sera donnée par les formules (VI-1) et (VI-2)

* Hauteur manométrique totale :

La hauteur manométrique totale sera calculée de la manière suivante :

$$H_{mt} = H_g + \sum \Delta h$$

 H_g : Différence de niveau entre le plan d'aspiration et le plan de refoulement (m);

 $\sum \Delta h$: Somme des pertes de charge linéaires et singulières (m).

Dans le cas des adductions, les pertes de charge singulières sont estimées à 15% des pertes de charge linéaires.

$$\sum \Delta h = \Delta h_p^{lin}$$

 Δh_p^{lin} : Pertes de charge linéaires (m).

$$\sum_{ref}^{lin} hp = \frac{K' * L * Q^B}{D^m}$$

Avec:

K'=0.001052 (pour l'PHED)

 β : Exposant tenant compte du régime d'écoulement =1,77

m: Exposant tenant compte du type du matériau =4,774

* Puissance de pompage :

$$P = \frac{1000 * g * Hmt * Q}{\eta}$$

P: puissance absorbée par la pompe (Kw);

g: Accélération de la pesanteur (m/s²);

Hmt: Hauteur manométrique totale (m);

Q: Débit à refouler (m³/s);

 η : rendement de la station de pompage (72 %).

* Energie consommée par le pompage :

L'énergie consommée par la station de pompage le long d'une année est le produit de la puissance de pompage et d'heures de pompage par année.

$$E = P * t* 365$$

E: énergie consommée pendant une année (Kwh);

P: puissance de pompage (Kw);

t: temps de pompage par jour (h).

*Frais d'exploitation :

Les frais d'exploitation sont définis comme suit :

$$F_{ex} = E * e [DA]$$

Avec E: énergie consommée par la pompe en (Kw H))

e: prix unitaire d'un Kw H imposé par la SONELGAZ

*Frais d'amortissement :

Les frais d'amortissement sont en fonction de la durée d'amortissement de la conduite et du taux d'annuité. Il est déterminé par la relation suivante :

$$A = \frac{i}{\left(1+i\right)^{n}-1}+i$$

A: Frais d'amortissement (DA);

i: Taux d'annuité; i = 8 %;

 \boldsymbol{n} : Durée de l'amortissement de la conduite, $\boldsymbol{n}=32$ ans.

A.N:
$$A = \frac{0.08}{(1+0.08)^{32}-1} + 0.08 \implies \mathbf{A} = \mathbf{0.0888}$$

D'après la formule (VI-2) :

$$D_{ec} = \sqrt{0,045} = 0,212m$$

Conclusion:

Le calcul technico-économique du diamètre économique sera pour la gamme de diamètres compris entre **160 et 315mm**

> Calcul des frais d'exploitation :

Les frais d'exploitation sont calculés sur la base de l'énergie électrique consommée lors du pompage et ce pour la gamme de diamètres obtenue. Il est entendu que la hauteur manométrique totale varie selon le diamètre.

<u>Tableau N°VI.3:</u> Variation des HMT en fonction du diamètre

Diamètre	Longueur	Débit	ΔH_{lin}	ΔH_{totale}	Hg	НМТ
(mm)	(m)	(l/s)	(m)	(m)	(m)	(m)
160	2600	45	71,24	81,92	76,38	158,30
200	2600	45	24,55	28,23	76,38	104,61
250	2600	45	8,46	9,73	76,38	86,11
315	2600	45	2,81	3,23	76,38	79,61
400	2600	45	0,90	1,03	76,38	77,41

Les dépenses d'exploitation correspondant aux différents diamètres sont présentées dans le tableau VI.4.

Diamètre en	P (K Watt)	E (KWh)	Prix du Kwh	F _{exploi} (DA)
(mm)			(DA)	
160	75,49	551081,40	4,67	2573550,117
200	49,89	364177,21	4,67	1700707,560
250	41,06	299764,64	4,67	1399900,856
300	37,96	277130,50	4,67	1294199,449
400	36,92	269485,35	4,67	1258496,573

> Calcul des frais d'investissement

Les dépenses d'investissement correspondant aux différents diamètres sont présentées dans le tableau VI.5.

<u>TableauN° VI.5:</u> Variation des frais d'investissement en fonction du diamètre

Diamètre	Prix du ml	Longueur	Prix total	Annuité	Investissement
(mm)	(DA)	(m)	(DA)	(DA)	(DA)
160	1500	2600	3900000	0,0888	346320
200	2340	2600	6084000	0,0888	540259,2
250	3672	2600	9547200	0,0888	847791,36
300	5881,51	2600	15291926	0,0888	1357923,03
400	9500,9	2600	24702340	0,0888	2193567,79

> Bilan des coûts (Exploitation - Investissement)

Le bilan des coûts de l'exploitation et de l'investissement figure dans le tableau N°VI.6 **Tableau N°VI.6:** Bilan des frais d'investissement et d'exploitation

Diamètre en	E (DA)	F _{inves} (DA)	Bilan (DA)
(mm)	F _{exploi} (DA)		
160	2573550,117	346320	2919870,12
200	1700707,56	540259,2	2240966,76
250	1399900,856	847791,36	2247692,22
300	1294199,449	1357923,03	2652122,48
400	1258496,573	2193567,79	3452064,36

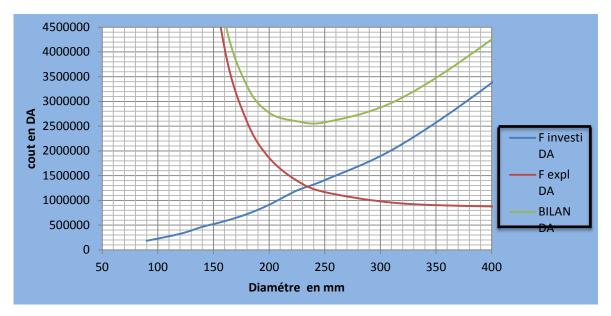


Figure V-2: Bilan des frais d'amortissement et d'exploitation

Conclusion

Selon la combinaison des frais d'investissement et d'exploitation, le bénéfice va au profit du diamètre **DN200mm** dont la vitesse est de **1,11 m/s**.

VI-4-1-3-Choix des pompes

Pour le meilleur choix de la pompe il faut que

- Un meilleur rendement
- Puissance absorbée minimale

\rightarrow *Forage(F1)*:

$$Q = 12L/s$$
 , $HMT = 126,07m$

D'après le logiciel caprari en a choisi les pompes immergées suivantes :

Tableau N [•] VI	.7 I es	variantes	nour le	choix a	lo la	nomne du	forage	(F1)
Tuvieuu IV VI	-/ Les	vai annes .	voui ie	CHULL U	ie iu	Dombe au	iviage	(<i>I'I)</i>

Type de la pompe	Rendement %	Puissance kW	Nombre de tour (tr/min)	fréquence
E6S55/11A+MCH630	$\eta = 73,6\%$	22	N=2900 tour/min	50HZ
E6S55/12A+MCH630	$\eta = 73,4\%$	22	N=2900 tour/min	50HZ
E8R40/7+MCB835	$\eta = 72,8\%$	26	N=2900 tour/min	50HZ

D'après ce tableau on choisit la pompe **E6S55/11A+MCH630** à cause de son rendement $\eta = 73,6\%$

Qui est meilleur par rapport aux autres pompes

Les courbes caractéristiques sont représentées dans la figure VI-3

Forage 2 : Forage 2 :

$$Q = 15L/s$$
, $HMT = 127,4m$

D'après le logiciel caprari en a choisi les pompes immergées suivantes :

Tableau N° VI -8 Les variantes pour le choix de la pompe du forage (F2)

Type de la pompe	Rendement %	Puissance kW	Nombre de tour (tr/min)	Fréquence
E6S64/15A+MCH640	$\eta = 76,3\%$	30	N=2900 tour/min	50HZ
E10R30/5+MCB840	$\eta = 74,5\%$	30	N=2900 tour/min	50HZ
E8S50- 6/8A+MCH635	$\eta = 73,9\%$	26	N=2900 tour/min	50HZ

D'après ce tableau on choisit la pompe **E6S64/15A+MCH640** à cause de son rendement $\eta = 76,3\%$

Qui est le meilleur par rapport aux autres pompes

Les courbes caractéristiques sont représentées dans la figure VI-4

> ForageF3:

$$Q = 45l / s$$
, $HMT = 104,61m$

D'après le logiciel caprari en a choisi les pompes immergées suivantes

Tableau N° VI -9 LES VARIANTES POUR LE CHOIX DE LA POMPE DU FORAGE (F3)

Type de la pompe	Rendement %	Puissance kW	Nombre de tour (tr/min)	Fréquence
E12S50/3A+MC890	$\eta = 75,8\%$	66	N=2900 tour/min	50HZ

E10S55/3A+M9890	$\eta = 77,7\%$	66	N=2900 tour/min	50HZ
E10S50/5CD+M890	$\eta = 78,9\%$	66	N=2900 tour/min	50HZ

D'après ce tableau on choisit la pompe **E10S50/5CD+M890** à cause de son rendement $\eta = 78,9\%$

Qui est meilleur par rapport aux autres pompes

V-5) Les courbes caractéristiques des pompes :

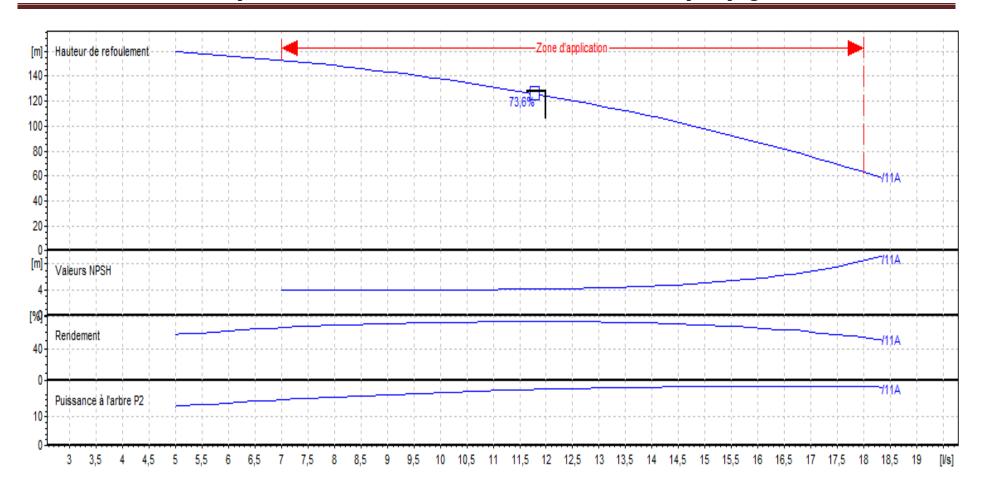


Figure VI-3 : Courbe caractéristique de la pompe E6S55/11A+MCH630 du forage F1

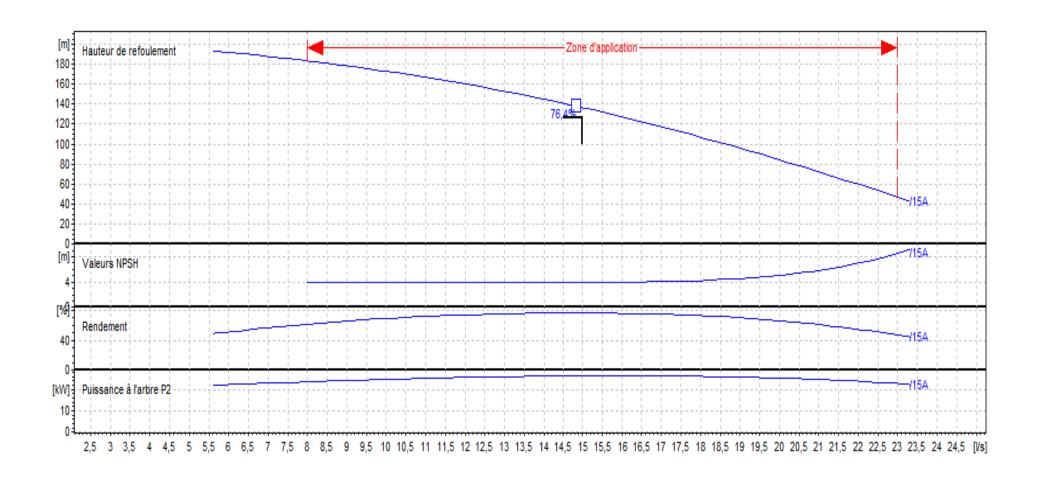


Figure VI-4 : Courbe caractéristique de la pompe E6S64/15A+MCH640du forage F2.

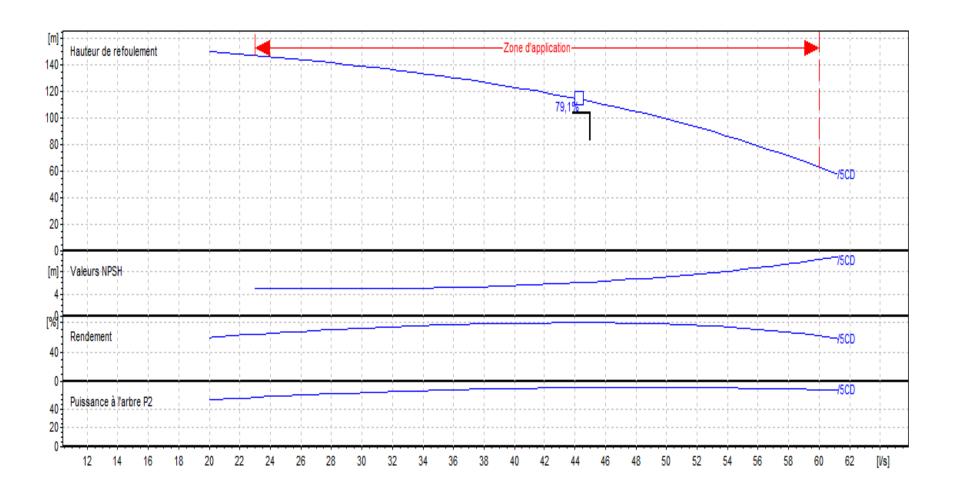


Figure VI-5 : Courbe caractéristique de la pompe E10S50/5CD+M890du forage F3.

VI-4-1-4 /détermination de point de fonctionnement des trois pompes :

a)Détermination de point de fonctionnement deux pompes des forges (F1-F2) :

Il s'agit d'un couplage des pompes fonctionnant en parallèles, pour la détermination du point de fonctionnement de chacune des pompes graphiquement, on procéder comme suit :

- 1 .Tracer les courbes donnant la hauteur en fonction du débit (H=f(Q)) pour chacune des pompes $((H-Q)_{F1}^{F1}, (H-Q)_{F2}^{F2})$
- 2. Tracer les courbes donnant la perte de charge en fonction du débit pour chaque conduite $(J_{F1-A},J_{F2-A},J_{A-R2})$.
- 3. pour le tronçon F2-A les courbes $(H-Q)_{F1}^{F1}$ et $(H-Q)_{F2}^{F2}$ deviennent à l'extrémité A $(H-Q)_A^{F1}$ et $(H-Q)_A^{F2}$, après les avoir diminuées avec les ordonnées de J_{F1-A} et J_{F2-A} respectivement.
- 4. Au nœud A, les deux conduites F1-A et F2-A débitent en parallèle, les débits s'ajoutent pour une même hauteur. Par addition des abscisses des courbes $(H-Q)_A^{F1}$ et $(H-Q)_A^{F2}$ on obtient $(H-Q)_A^{F1+F2}$.
- 5. Enfin, de la courbe précédent on retranche les ordonnées de J_{A-R2} , pour obtenir la caractéristique finale de l'énergie de l'eau au point d'arrivée R2, et c'est la courbe $(H-Q)_{R2}^{F1+F2}$.

La détermination du point de fonctionnement de chaque pompe se fait sens inverse, en suivant ces étapes :

- 1. sur la figure 4, on trace une horizontale à la hauteur 128,6 m qui correspondant à la cote du trop-plein de réservoir par rapport au plan de référence .cette horizontale coupe la courbe $(H-Q)_{R2}^{F1+F2}$ au point D, qui rappelé en E sur la courbe $(H-Q)_{A}^{F1+F2}$
- 2. L'horizontal passant par E, coupe $(H-Q)_A^{F1}$ et $(H-Q)_A^{F2}$ en Fet G respectivement, rappelé en J et K sur $(H-Q)_{F1}^{F1}$ et $(H-Q)_{F2}^{F2}$ respectivement et correspondant au point de fonctionnement de la pompe F1 et la pompe F2.

Pour tracer la courbe Hc en fonction de Q il faut calculer la perte de charge totale qui est égale à :

$$\sum_{ref}^{lin} hp = \frac{K' * L * Q^B}{D^m}$$

Avec: K'=0.00179 pour l'acier

L : longueur de la conduite

D : Diamètre de la conduite

$$H_C = Hg + 1.15 * \sum_{ref}^{lin} hp$$

• F1-A (Pour la conduite Hc- Q_1):

K'=0.001052

L=140m , D=160mm

Hg_{F1-A}=CP_A- C_{NDF1}

Hg_{F1-A}=132,73-4,56=127,8m

 $Hc=127,27+1067,51*Q^{1,77}$

Tableau N^{\bullet} VI -10 DETERMINATION DE LA COURBE HC_A^{F1} EN FONCTION DE Q_1

		lin	lin	$H_c = Hg + 1.15*$
Q l/min	Hg	$\sum_{ref}^{lin} hp$	$1.15* \sum_{ref}^{lin} hp$	$\sum_{ref}^{lin} hp$
0	127,8	0	0	127,8
400	127,8	0,13	0,15	127,95
450	127,8	0,16	0,19	127,99
500	127,8	0,19	0,22	128,02
550	127,8	0,23	0,26	128,06
600	127,8	0,27	0,31	128,11
650	127,8	0,31	0,35	128,15
700	127,8	0,35	0,40	128,20
750	127,8	0,40	0,46	128,26
800	127,8	0,45	0,51	128,31
850	127,8	0,50	0,57	128,37
900	127,8	0,55	0,63	128,43
950	127,8	0,60	0,69	128,49
1000	127,8	0,66	0,76	128,56

• F2-A (Pour la conduite $Hc-Q_1$):

K'=0.001052

L=200m , D=160mm

Hg_{F1-A}=CP_A- C_{NDF1}

Hg_{F1-A}=132,73-6,3=126,43m

Hc=126,43+1525,02*Q^{1,77}

Tableau N^{\bullet} VI -11 DETERMINATION DE LA COURBE HC_A^{F2} EN FONCTION DE Q_2

Q l/min	Hg	$\sum^{lin} hp$	$1.15*\sum_{i}^{lin}hp$	$H_c = Hg + 1.15*$
Q 2 mm	118	ref	ref	$\sum_{ref}^{lin} hp$
0	126,43	0	0	126,43
400	126,43	0,19	0,21	126,64
450	126,43	0,23	0,26	126,69
500	126,43	0,28	0,32	126,75
550	126,43	0,33	0,38	126,81
600	126,43	0,38	0,44	126,87
650	126,43	0,44	0,51	126,94
700	126,43	0,50	0,58	127,01
750	126,43	0,57	0,65	127,08
800	126,43	0,64	0,73	127,16
850	126,43	0,71	0,81	127,24
900	126,43	0,78	0,90	127,33
950	126,43	0,86	0,99	127,42
1000	126,43	0,94	1,09	127,52

• A-R2 (Pour la conduite Hc- Q_1):

K'=0.001052

L=2000m , D=200mm

 $Hg_{A-R2}=CP_A-C_{TPR2}$

Hg_{A-R2}=132,73-124=8,73m

Hc=8,73+5255,65*Q^{1,77}

Tableau N^{\bullet} VI -13 DETERMINATION DE LA COURBE HC_{F3}^{R1} EN FONCTION DE Q_3 :

Q l/min	Hg	$\sum_{ref}^{lin} hp$	$1.15*\sum_{ref}^{lin}hp$	$H_c = Hg + 1.15*$ $\sum_{ref}^{lin} hp$
0	76,38	0	0	76,38
1000	76,38	4,23	4,87	81,25
1200	76,38	4,50	5,17	81,55
1400	76,38	5,91	6,79	83,17
1600	76,38	7,48	8,60	84,98
1800	76,38	9,21	10,60	86,98
2000	76,38	11,10	12,77	89,15
2200	76,38	13,14	15,11	91,49
2400	76,38	15,33	17,63	94,01
2600	76,38	17,66	20,31	96,69
2700	76,38	18,88	21,72	98,10
3000	76,38	22,76	26,17	102,55
3300	76,38	26,94	30,98	107,36
3600	76,38	4,23	36,14	112,52

Tableau N° VI-14 DETRMINATION DE LA COURBE DE POMPE DU FORAGE F3 :

H(m)	Q(l/s)	Q(l/min)
150	20	1200
145	25	1500
139	30	1800
132	35	2100
124	40	2400
113	45	2700
90,5	52	3120
83,4	55	3300
62,7	60	3600

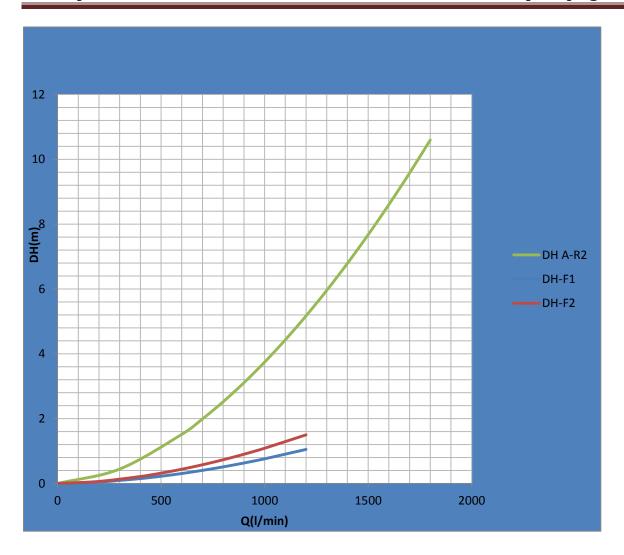


Figure VI-6 : courbe caractéristiques des conduites

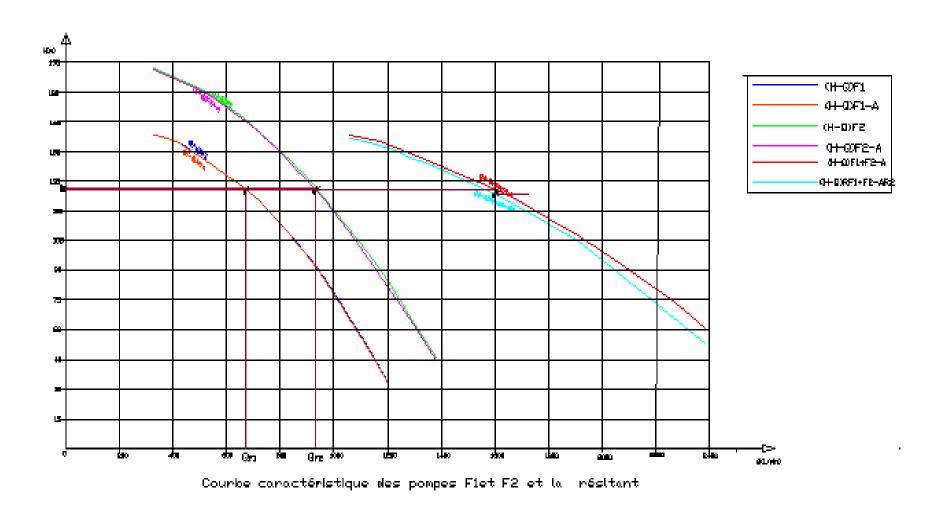


Figure VI-7: point de fonctionnement des pompes F1 et F2.

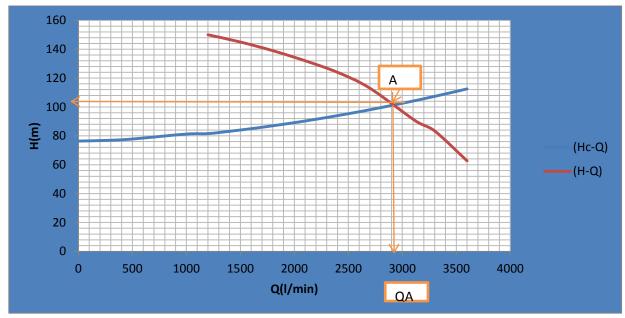


Figure VI-8: point de fonctionnement de pompe F3.

D'après les figures précédentes Le débit et la hauteur manométrique totale correspondant au point de fonctionnement (Pf) pour les trois forages sont comme suit :

F1:
$$\begin{cases} Q_{Pf} = 11.20l / s \le Q_{app} = 15l / s \\ H_{Pf} = 129m < H_{app} = 129.6m \end{cases}$$

F2:
$$\begin{cases} Q_{Pf} = 15.5l/s > Q_{app} = 15l/s \\ H_{Pf} = 131, 6m > H_{app} = 127, 33m \end{cases}$$

F3:
$$\begin{cases} Q_{Pf} = 48l / s > Q_{app} = 45l / s \\ H_{Pf} = 105m > H_{app} = 104,61m \end{cases}$$

Conclusion:

D'après notre étude nous avons abouti le type des pompes correspondant à chaque forage à partir de détermination de la hauteur manométrique voilà les résultats :.

F1:
$$\begin{cases} Q_{Pf} = 11.20l / s \\ H_{Pf} = 129m \end{cases}$$

F2:
$$\begin{cases} Q_{Pf} = 15.5l/s \\ H_{Pf} = 131,6m \end{cases}$$
F3:
$$\begin{cases} Q_{Pf} = 48l/s \\ H_{Pf} = 105m \end{cases}$$

F3:
$$\begin{cases} Q_{Pf} = 48l / s \\ H_{Pf} = 105m \end{cases}$$

CHAPTREVII

PROTECTION DES CONDUITES CONTRE LE COUP DE BELLER

VII-1-Définition:

Le coup de bélier est un phénomène instationnaire de transport d'information liant les champs des vitesses et de pression au sein d'un écoulement en conduite.

On entend aussi sous le terme le coup de bélier est un phénomène transitoire oscillatoire dont les causes les plus fréquentes sont les suivantes

- Arrêt brutal d'un ou de plusieurs groupes électropompes. alimentant une conduite de refoulement débutant en un réservoir.
- démarrage d'un pompe.
- Fermeture instantanée ou trop rapide d'une vanne de sectionnement.

VII-2-Les risques dus aux coups de bélier :

En pratique les risques dus au coup de bélier sont importants

VII-2-1-Risque de forte pression :

Les surpressions dues aux coups de bélier peuvent être engendrées aux plus de la pression initiale si leur somme dépasse la pression maximale admissible de la conduite il peut y avoir fissuration de cette dernière et dislocation des points.

VII-2-2-Pression négative :

Cette pression peut apparaître soit après une forte surpression, soit à la suite d'un arrêt instantanée d'une pompe si cette pression devient inférieure à -10 m.c.e il se produit une poche de cavitation. Des conséquences néfastes peuvent être criées dans la conduite à la suite de cette pression négative, telle que l'implosion de la conduite, l'aspiration des joints et le décollement de l'enduit de protection interne.

VII-2-3-Fatigues des conduites :

Le passage successif d'une surpression à une dépression et inversement peut Provoquer la fatigue des conduites ce phénomène est très compliquée dans le cas ou les conduites sont enterrées.

VII.2.4. Description des phénomènes physiques :

a) État d'équilibre d'un système hydraulique :

Les phénomènes transitoires hydrauliques apparaissent lorsque l'équilibre des forces agissant sur un système est modifié. Quand un liquide est en mouvement dans une conduite et que ce mouvement ne varie pas dans le temps, il y a un état d'équilibre permanent. En fait, il y a équilibre entre l'énergie disponible (ou potentielle) et les énergies dues au mouvement (cinétique) et perdues par le frottement, ce qui définit un mouvement permanent. Cette vision est macroscopique car, à une échelle plus petite, on observe que les vitesses fluctuent constamment autour d'une valeur moyenne, c'est une manifestation de la turbulence.

b) Onde élastique et oscillation en masse :

Les variations de régime dans un système sous pression peuvent adopter deux comportements différents. Si le système est fermé, c'est-à-dire qu'il ne contient pas d'endroit où il est possible d'accumuler de l'eau en grande quantité, on observe une variation locale importante de la pression; c'est le coup de bélier par onde élastique. Dans le cas où l'eau peut être accumulée dans un réservoir ou une cheminée d'équilibre on parle plutôt d'oscillation en masse.

c) Perturbation de l'équilibre, effet sur les pressions :

Si on considère la conduite dans laquelle coule un liquide en régime permanent, le niveau de la pression est fort raisonnable, soit inférieur à celui de la pression hydrostatique dans des conditions d'écoulement nulles. Qu'advient-il lorsque, pour une raison ou une autre, il y a une modification temporelle de l'écoulement par accélération ou décélération? La réponse du physicien se base sur les principes de la mécanique newtonienne.

VII-3 : Protection de la conduite de refoulement contre le coup de bélier :

Ils existent différents moyens de protection des installations contre le coup de bélier :

1. Réservoirs d'air : L'alimentation continue de la veine liquide après disjonction du groupe peut être effectuée à l'aide d'une réserve d'eau accumulée sous pression dans une capacité métallique disposée à la station immédiatement à l'aval du clapet. Cette capacité contient de l'eau et de l'air.

Ce dispositif est le plus simple et protègera les installations aussi bien contre les surpressions que contre les dépressions.

- **2.** Cheminée d'équilibre : A la place d'un réservoir d'air sous pression, il peut être établi, à la station de pompage, un réservoir à l'air libre appelé cheminée d'équilibre. Cette cheminée jouera le même rôle que ce premier mais, dans le cas de hauteur de refoulement même moyenne, on arrive rapidement à des ouvrages d'art de hauteurs importantes.
- **3. Soupape de décharge :** Ces appareils font intervenir un organe mécanique, un ressort à boudin ordinairement, qui, par sa compression, obture, en exploitation normale, un orifice placé sur la conduite au point à protéger, c'est-à-dire où la surpression à craindre est maximale et libère, le cas échéant, le débit de retour de conduite correspondant à la valeur de la surpression admissible. Il y a lieu de prévoir l'évacuation vers l'extérieur, de l'eau ainsi libérée.
- **4.Volant d'inertie :** calé sur l'arbre du groupe, il constitue un moyen assurant l'alimentation de veine liquide, malgré l'arrêt du moteur actionnant la pompe grâce à l'énergie qu'il accumule pendant la marche normale. Le volant la restitue au moment de la disjonction et permet ainsi d'allonger le temps d'arrêt de l'ensemble, donc de diminuer l'intensité du coup de bélier. Au démarrage, le groupe électropompe, avec le volant d'inertie, consomme plus d'énergie.

On propose comme moyen de protection des installations, le réservoir d'air.

VII-3-1: Calcul des réservoirs d'air :

Le calcul du réservoir d'air permet de déterminer les valeurs de la surpression et de la dépression maximales dans les conduites de refoulement et le volume du réservoir d'air.

parmi autant d'autres méthodes de calcul, figure celle de VIBERT qui donne des bons résultats notamment pour les petites installations.

Détermination de la célérité d'onde

Dans le cas d'une conduite en PEHD

$$c = \frac{1240}{\sqrt{1 + K \cdot \frac{D}{e}}}$$

Avec:

c: Vitesse de propagation de l'onde de choc [m/s],

e : Épaisseur de la conduite [m],

K : Coefficient dépendant de la nature du matériau de la conduite K =0.66

1. La charge tenant compte du coup de bélier:

$$Z = Hg + \frac{C * V_0}{g}$$

Avec V_0 : vitesse moyenne de refoulement en (m/s).

g: l'accélération de pesanteur.

2. La charge statique absolue:

$$Z_0 = Hg + 10$$

3. La charge maximal absolue:

$$Z_{\text{max}} = Z_0 + \frac{C * V_0}{g}$$

$$U_0 * Z_0 = U_{\text{max}} * Z_{\text{min}} \Rightarrow U_{\text{max}} = \frac{U_0}{\frac{Z_{\text{min}}}{Z_0}}$$

On fait le calcul pour les conduites de refoulement des trois des forages.

Les résultats de calcul sont représentés dans le tableau suivant :

VII-3-2 : Calcul du volume de réservoir d'air :(partie refoulement)

a) Calcul pour le Tronçon F₁-point A:

Tab N°VII-1 : caractéristiques de la conduite F1-A:

$Q (m^3/s)$	DN (mm)	V ₀ (m/s)	Lref (m)	e (mm)	Hg (m)	Hmt (m)
0,012	160	0,6	140	14.6	128,17	128,6

Calcul de

la célérité "c":

$$c = \frac{1240}{\sqrt{1 + 0.66 * \frac{160}{14.6}}} = 432.16 \text{ m/s}$$

$$\frac{cV_0}{g} = \frac{432,16*0,6}{9.81} = 26,43 \text{ m}$$

L'expression donnant U₀ est la suivante :

$$U_0 = \frac{V_0^2}{2gZ_0} \cdot \frac{LS}{f(Z/Z_0)}$$

Avec:

U₀: volume de l'air en m³.

V₀.: Vitesse d'écoulement m /s.

L : longueur de la conduite en m.

S: section de la conduite en m².

Pour notre cas : S=0.020m².

La charge tenant compte du coup de bélier :

$$Hg + \frac{cV_0}{g} = 154,6 \text{ m}.$$

La charge statique absolue :

La charge maximale absolue : (la surpression)

Zmax= Hg+
$$\frac{cV_0}{g}$$
+10=164,6 m.

$$\frac{Z\max}{Z_0} = \frac{164,6}{138,17} = 1,19$$

$$h_0 = \frac{V_0^2}{2g} = 0,0183$$

$$\frac{h_0}{Z_0} = \frac{0,0183}{138,17} = 1,32*10^{-4}.$$

A l'aide de l'abaque de VIBERT :

$$\frac{Z \max}{Z_0} = 1{,}19 \qquad \frac{h_0}{Z_0} = 1{,}32*10^{-4}$$

On trouve que:

$$\frac{U_0}{LS} = 8.5 * 10^{-3}$$

$$\Rightarrow U_0 = LS * 8.5 * 10^{-3} = 140 * 0.02 * 8.5 * 10^{-3} = 0.024 m^3$$

Et la dépression sera:

$$\frac{Z\min}{Z_0} = 0.84$$

 \Rightarrow Z min = 116,06m

 $On.a: U_0Z_0 = U \max Z \min$

$$\Rightarrow U \max = \frac{U_0 Z_0}{Z \min} = \frac{0.024 * 138,17}{116,06} = 0.028 m^3$$

En tenant compte de la sécurité : U_f=128 litres.

b) Calcul pour le Tronçon F₂-point A:

De même manière que le calcul de Tronçon F₁-point A on calcule le volume de réservoir d'air pour le Tronçon F₂-point A

Tab N°/VII-2: caractéristiques de la conduite F2-A:

$Q (m^3/s)$	DN (mm)	V_0 (m/s)	Lref (m)	e (mm)	Hg (m)	Hmt (m)	Calcul
0,015	160	0,75	200	14,6	126,43	127,33	Carcar

ıl de

la

célérité "c":

$$c = \frac{1240}{\sqrt{1 + 0.66 * \frac{160}{14.6}}} = 432,16m$$

Z₀: pression absolue (hauteur géométrique de refoulement +10 m).

Zmin : pression absolue relative à la dépression.

Zmax : pression absolue relative à la surpression.

$$\frac{cV_0}{g} = \frac{432,16*0,75}{9.81} = 33,04 \text{ m}$$

La charge tenant compte du coup de bélier :

$$Hg + \frac{cV_0}{g} = 159,47 \text{ m}.$$

La charge statique absolue :

$$Z_0=Hg+10=136,43 \text{ m}.$$

La charge maximale absolue : (la surpression)

Zmax= Hg+
$$\frac{cV_0}{g}$$
+10=169,47 m.

$$\frac{Z \max}{Z_0} = \frac{169,47}{136,43} = 1,24$$

$$h_0 = \frac{V_0^2}{2g} = 0,0286$$

$$\frac{h_0}{Z_0} = \frac{0.0286}{136,43} = 2.1*10^{-4}$$

A l'aide de l'abaque de VIBERT :

$$\frac{Z \max}{Z_0} = 1,24$$

$$\frac{h_0}{Z_0} = 2.1*10^{-4} ,$$

On trouve que:

$$\frac{U_0}{LS} = 10^{-2}$$

$$\Rightarrow U_0 = LS * 10^{-2} = 200 * 0.02 * 10^{-2} = 0,04m^3$$

Et la dépression sera:

$$\frac{Z\min}{Z_0} = 0.817$$

$$\Rightarrow$$
 Z min = 111,46m

$$On.a: U_0Z_0 = U \max Z \min$$

$$\Rightarrow U \max = \frac{U_0 Z_0}{Z \min} = \frac{0.04 * 136.43}{111.46} = 0.049 m^3$$

En tenant compte de la sécurité : U_f=149 litres

c) Calcul pour le Tronçon A-R2:

on calcule le volume de réservoir d'air pour le Tronçon F₃-R1.

Tab N°VII-3: caractéristiques de la conduite F3-R1:

$Q (m^3/s)$	DN (mm)	V_0 (m/s)	Lref (m)	e (mm)
0,027	200	1,28	2200	18,2

$$c = \frac{1240}{\sqrt{1 + 0.66 * \frac{200}{18.2}}} = 431,64m$$

$$\Rightarrow U \max = \frac{U_0 Z_0}{Z \min} = \frac{0.62 * 94}{62.98} = 0.925 m^3$$

En tenant compte de la sécurité : U_f=1026 litres

c) Calcul pour le Tronçon F₃-R1:

on calcule le volume de réservoir d'air pour le Tronçon F₃-R1.

Tab N°VII-3: caractéristiques de la conduite F3-R1:

$Q (m^3/s)$	DN (mm)	V ₀ (m/s)	Lref (m)	e (mm)	Hg (m)	Hmt (m)
0,045	200	1,43	2600	18,2	76,38	104,61

Calcul de

la

célérité "c":

$$c = \frac{1240}{\sqrt{1 + 0,66 * \frac{200}{18,2}}} = 431,64m$$

 Z_0 : pression absolue (hauteur géométrique de refoulement +10 m).

Zmin: pression absolue relative à la dépression.

Zmax : pression absolue relative à la surpression.

$$\frac{cV_0}{g} = \frac{431,64*1,43}{9.81} = 62,92 \text{ m}$$

La charge tenant compte du coup de bélier :

$$Hg + \frac{cV_0}{g} = 139,3 \text{ m}.$$

La charge statique absolue :

$$Z_0=Hg+10=86,38 \text{ m}.$$

La charge maximale absolue : (la surpression)

Zmax= Hg+
$$\frac{cV_0}{g}$$
 +10=149,3m.

$$\frac{Z \max}{Z_0} = \frac{149,3}{86,38} = 1,73$$

$$h_0 = \frac{V_0^2}{2g} = 0.104$$

$$\frac{h_0}{Z_0} = \frac{0.104}{86,38} = 1.2 \times 10^{-3}$$

A l'aide de l'abaque de **VIBERT** :

$$\frac{Z \max}{Z_0} = 1,73$$

$$\frac{h_0}{Z_0} = 1.2*10^{-3} ,$$

On trouve que:

$$\begin{aligned} &\frac{U_0}{LS} = 10^{-2} \\ &\Rightarrow U_0 = LS * 10^{-2} = 2600 * 0,0314 * 10^{-2} = 0,816m^3 \end{aligned}$$

Et la dépression sera:

$$\frac{Z\min}{Z_0} = 0,635$$

$$\Rightarrow Z\min = 54,85m$$

$$On.a: U_0Z_0 = U \max Z \min$$

$$\Rightarrow U \max = \frac{U_0 Z_0}{Z \min} = \frac{0.816 * 86.38}{54.85} = 1.28 m^3$$

En tenant compte de la sécurité : U_f =1380 litres

VII-4: Conclusion:

Pour éviter et limiter un peu le risque du coup de bélier sur la conduite de refoulement, il faut bien dimensionner le réservoir anti- bélier, ainsi que le dimensionnement correct de la conduite de refoulement c'est à dire :

Tenir compte de la valeur majore du coup de bélier.

ORGANISATION DE CHANTIER

Introduction:

L'organisation d'un chantier consiste à déterminer et coordonner la mise en œuvre des moyens nécessaires pour la réalisation et l'exécution des travaux dans les meilleures conditions et dans les plus brefs délais.

Les étapes à utiliser sur les chantiers pour la réalisation d'un réseau d'alimentation en eau potable (A.E.P) sont :

- -Implantation des traces des tranchées sur le terrain.
- -Excavation des tranchées.
- -Pose des conduites.
- -Epreuve de joint et de canalisation.
- -Remblaiement des tranchées.

VIII.1.Implantation du tracé des tranchées sur le terrain :

a) Matérialisation:

On matérialise l'axe de la tranchée sur le terrain avec des jalons placés en ligne droite et espacées de 50 m. On effectue ce travail en mesurant sur le plan leurs distances par des repères fixés où des bornes.

La direction des axes et leurs extrémités est ainsi bien déterminée.

b) Nivellement:[6]

Le nivellement est la mesure des différences d'altitudes entre deux où plusieurs points situés sur une pente uniforme. Lorsque le terrain compte des obstacles on procède au nivellement par cheminement et par un simple calcul, on détermine la hauteur de chaque point ainsi la profondeur de tranchée en point.

VIII.2. Excavation des tranchées :

Cette opération se divise en deux étapes :

VIII.2.1.Enlèvement de la couche végétale :

Pour la réalisation de cette opération, on opte pour un bulldozer ou un angledozer.

VIII.2.2.Excavation:

Selon les caractéristiques du terrain ; l'excavation sera réalisée mécaniquement. La profondeur minimale de la tranchée a excavée doit atteindre 1 m pour les raisons suivantes :

- -Pour garder la fraîcheur de l'eau pendant les grandes chaleurs.
- -Pour protéger la canalisation contre le gel.

La largeur de la tranchée doit être grande pour qu'un homme puisse travailler sans difficulté et elle augmente avec les diamètres des conduites à mettre en place.

L'excavation des tranchées s'effectue par tronçon successive en commençant par les points hauts pour assurer s'il y lieu l'écoulement naturel des eau d'infiltrations.

Donc l'excavation nécessite la détermination de plusieurs paramètres tels que :

La profondeur de la tranchée « H_{tr} »

La largeur de la tranchée « b »

VIII.2.2.1.La profondeur (H_{tr}):

La profondeur de la tranchée dépend du diamètre de la conduite.

Elle est donnée par la relation suivante : $H_{tr} = D + h + h_1$

H_{tr}: profondeur de la tranchée (m).

D: diamètre de la conduite (m).

h: hauteur de la génératrice supérieur de la conduite à la surface du sol.

On prend: h=1 m.

 h_1 : épaisseur du lit de pose $h_1 = 0,1$ m.

D'où: $H_{tr} = 1,1 + D$ (m).

VIII.2.2.2.Largueur de la tranchée :

La largeur de la tranchée sera calculée en fonction du diamètre de la conduite on laisse 30 cm d'espace de chaque côté de la conduite.

b = D + 0.6 m.

b : largeur de la tranchée (m) et D : diamètre de la conduite (m).

VIII.2.3. Choix de l'excavateur et le procédé d'excavation :

Comme il a été mentionné précédemment l'excavation sera réalisée mécaniquement alors le choix de l'engin (pelle mécanique équipée en rétro où en butée) se base sur leur champ d'application et l'exigence du chantier.

VIII.2.3.1.Pelle équipée en rétro :

Les aptitudes de la pelle en rétro sont :

- -Creuser en dessous de la surface d'appui à son niveau.
- -Peut excaver dans la direction de la machine.
- -Creuser avec grande précision et rapidité des tranchées à talus verticaux.

VIII.2.3.2.Pelle équipée en butée :

Les caractéristiques de la pelle en butée sont :

- -Excavation en hauteur au dessus de l'assise de la machine.
- -Ramassage des matériaux.

Connaissant la nature des travaux demandés et comparant le champ d'application ainsi que les caractéristiques de chacune des deux types de pelle, on opte pour une pelle équipée en rétro à roue pneumatique pour atteindre un rendement optimal.

Pour déterminer les caractéristiques de la pelle, nous devons calculer le volume total à excaver pour notre réseau.

Tableau N°VIII.1: calcul du volume à excaver

D (mm)	L (m)	b (m)	h (m)	s (m ²)	v (m ³)
250	247,3	0,85	1,35	1,18	291,81
200	284,76	0,80	1,30	1,04	296,15
160	652,74	0,76	1,26	0,96	626,63
125	629,35	0,73	1,23	0,88	553,83
110	1625,15	0,71	1,21	0,86	1397,63
90	1185,01	0,69	1,19	0,82	971,71
75	979,18	0,68	1,18	0,80	783,34
63	330,85	0,66	1,16	0,77	254,75
50	3116,42	0,65	1,15	0,75	2337,32
	,	Volume total			7513,17

D'après ce tableau, le volume total du réseau est de 7513,17 m³.

A travers ce volume calculé, nous déterminons la capacité du godet pour notre pelle en rétro.

Tableau N°VIII.2 : Capacité du godet en fonction du volume de terrassement

volume du terrassement par une pelle	≤10000	≥10000	>20000	>100000
(m^3)				
capacité du godet (m3)	0.25-0.35	0.5-0.65	1-1.25	1.5

Comme le volume total est inférieur à 10000 m³, on opte pour une pelle avec une capacité du gobet égale à 0,35 m³.

VIII.2.3.3. Rendement d'exploitation de la pelle choisie :

Le rendement de la pelle est donné par la relation :

$$R_p = \frac{3600 \times q \times K_R \times K_t}{T_c \times K_f} \quad (m^3/h)$$

Avec : q : capacité du gobet 0,35 m³.

 K_r : coefficient de remplissage du gobet $K_r = 0.8 - 0.9$ on prend $K_r = 0.8$

 K_t : coefficient d'utilisation du temps dépend de la nature du sol et de l'habilité du Conducteur: $K_t = 0,7$ -

0,9 prenons $K_t = 0.8$

 K_f : coefficient de foisonnement du sol $K_f = 1,2$.

 T_c : la duré d'un cycle de remplissage du gobet T_c = (15-30) s, on prend

 $T_c = 20 \text{ s.}$

AN:
$$R_P = \frac{3600 \times 0.35 \times 0.8 \times 0.8}{20 \times 1.2} = 33,60 m^3 / h$$

Si on prend une durée de travail de 8 heure par jour R_p=268,8 m³/j.

VIII.2.3.4.La duré d'excavation:

Connaissant le volume de terre à excaver et le rendement de l'engin le temps d'exploitation sera :

$$T = \frac{V}{R_P} = jours$$

V : volume du sol excavé (m³) et R_P : capacité du godet en jour (m³/jour)

AN:
$$T = \frac{7513,17}{268.8} = 28 jours$$

VIII.2.3.5. Aménagement du lit de pose des conduites :

Avant la pose des conduites, on procèdera aux opérations suivantes :

- Eliminer les grosses pierres des déblais placés sur les côtes de la tranchée de façon à éviter leurs chutes accidentelles sur la canalisation une fois posée.
- Niveler soigneusement le fond de la fouille pour que la pression soit constante entre les points de changement de pentes prévues.
- Etablir en suite le niveau du fond de la tranchée en confectionnant un lit de pose bien damé avec la terre meuble du sable, ce lit de sable est à une épaisseur d'environ 20 cm (pour notre cas nous avons pris 10 cm).

Le volume total du sable pour le lit de pose est calculé d'après le tableau suivant :

Tableau N°VIII.3 : Volume total du lit de sable :

D	L	b	S=0,1×b	Vs=S×L
mm	m	m	m ²	m ³
250	247,3	0,85	0,085	21,02
200	284,76	0,80	0,08	22,76
160	652,74	0,76	0,076	49,6

Suite du tableau N°VIII.3: Volume total du lit de sable

D	L	b	S=0,1×b	Vs=S×L		
mm	m	m	m ²	m ³		
125	629,35	0,73	0,073	45,94		
110	1625,15	0,71	0,071	115,39		
90	1185,01	0,69	0,069	81,76		
75	979,18	0,68	0,068	66,58		
63	330,85	0,66	0,066	21,84		
50	3116,42	0,65	0,065	202,57		
	V_{T}					

VIII.3. Pose des conduites :

Avant la descente des conduites dans la fouille, on procède à un triage des conduites de façon à écarter celles qui ont subies des chocs ; et on les descend lentement à l'aide d'un engin de levage, dans le fond de la fouille.

Au cours de pose, on vérifie régulièrement l'alignement des tuyaux pour opérer correctement.

VIII.4. Epreuve de joint et de la canalisation :

Pour plus de sécurité, l'essai de pression des conduites et des joints se fait avant le remblaiement, on l'effectue l'aide d'une pompe d'essai qui consiste au remplissage en eau de la conduite sous une pression de 1,5 fois la pression de service à laquelle sera soumise la conduite en cours de fonctionnement. Cette épreuve doit durer 30 minutes environ où la variation ne doit pas excéder 0.2 bar.

VIII.5. Remblaiement de la tranchée :

Une fois les épreuves réussies, la mise en place du remblai est effectuée à l'aide d'un bulldozer.

Le volume total du remblai donné par la relation suivante :

$$V_r = V_d - V_C - V_s \qquad (m^3)$$

Ou: V_d: volume des déblais ;

V_c: volume occupé par les conduites.

V_s: volume du lit du sable.

D L V_d V_c $\mathbf{V}_{\mathbf{r}}$ V_s $\overline{\mathbf{m}^3}$ \mathbf{m}^3 \mathbf{m}^3 \mathbf{m}^3 m mm 250 247,3 291,81 12,14 21,02 258,64 200 284,76 296,15 8,95 22,76 264,44 160 13,12 49,6 652,74 626,63 563,91 125 629,35 553,83 7,72 45,94 500,17 15,44 115,39 110 1625,15 1397,63 1266,8 90 971,71 1185,01 7,54 81,76 882,41 75 979,18 783,34 4,33 66,58 712,43 63 330,85 254,75 1,03 21,84 231,88 50 3116,42 2337,32 6,12 202,57 2128,63 V_{T} 7513,17 76,39 627,46 6809,31

Tableau N°VIII-4: Volume total du remblai:

Choix du bulldozer:

Le choix du bulldozer se fait en fonction de la capacité du godet de l'excavateur. Le bulldozer est utilisé pour le remblaiement de la tranchée après la pose des conduites.

Tableau N°VIII-5 : Choix du bulldozer en fonction de la capacité du godet :

Capacité du godet de la pelle (m ³)	0,3-0,65	0,75-1,0	1,25-1,5	2,0-3,0
Classe du bulldozer d'après la puissance du tracteur (KW)	40-60	70-118	120-140	150-300

Pour une capacité du godet de la pelle égale à 0,35 m³ ,nous prenons un bulldozer ayant les caractéristiques suivantes:

- Puissance Pb = 60 KW.

- Largeur de la lame : $b_L = (2 \div 3)$ m.

- Hauteur de la lame : $H_L = (1 \div 1,5)$ m

Conclusion:

Ce chapitre nous a permis de savoir comment faire les travaux pour réaliser un réseau d'alimentation en eau potable sur un chantier dans les meilleures conditions et le bon fonctionnement.

CHAPITRE IX

PROTECTION ET SECURITE DE TRAVAIL

IX.1- Généralité :

Les accidents du travail et les problèmes qui en découlent ont une grande importance sur les plans financiers ; production et surtout humain.

L'objectif sera donc de diminuer la fréquence et la gravité des accidents dans l'entreprise.

Dans ce contexte qu'un certain nombre de dispositifs de consignes et de règlements dits (sécurité) est mis à la disposition des chantiers.

Ces règlements sont incotés stablement appliquées. Car ils contribueront à évité au maximum les accidents et dégagement enfin la responsabilité des dirigeant du chantier.

Le domaine hydraulique, couvre un large éventail d'activité qui est différent par leur nature et leur importance tout en présentant des caractéristiques communes.

- travaux d'excavation et de terrassement.
- Creusement de puits.
- Construction en bois, brique, pierres, béton ou en éléments préfabriqués.

Ce qui distingue ces différentes activités des autres branches de l'industrie ce sont :

- L'instabilité des lieux de travail et la variation des durées des chantiers.
- Les modifications intervenant au fur et à mesure de l'avancement des travaux.
- L'utilisation d'une importante main-d'œuvre sans qualification.

IX.2- Analyse des actions et conditions dangereuses pendant [6]

L'organisation de la construction du système d'AEP : [6]

Les enquêtes effectuées après toutes les accidents montre que ces derniers sont dus à plusieurs causes qui engendrent plusieurs facteurs classés en deux catégories.

IX.2.1- Facteur matériel :

Les conditions dangereuses susceptibles d'évaluer au cours du travail.

Les causes d'accidents d'origine matériel proviennent de :

- la profession en général et du poste de travail en particulier.
- La nature et la forme des matériaux mis en œuvre.
- Des outils et machines utilisés : implantation et entretient.
- L'exécution du travail : l'éclairage et conditions climatiques.
- Conditions d'hygiène et de sécurité : ventilation, protection....etc.

IX.2.2- Facteur humain:

Les conditions d'origine humaine sont :

- intervenir sans précaution sur des machines en mouvement.

-

- Agir sans prévenir ou sans autorisation.
- N'avoir pas utiliser l'équipement de protection individuelle.
- Imprudence durant les opérations de stockage et manutention.
- Adapté une position peu sure.
- Suivre un rythme de travail inadapté.

IX.3- Mesure préventives pour éviter les causes des accidents : [6]

IX.3.1-protection collective:

a-Engin de levage:

La grue, pipelayers et d'autres engins par leurs précisions et possibilités de manutention variées constituent le poste de travail ou la sécurité n'admet pas moindre négligence alors le technicien responsable veillera à :

- affecter des personnels compétents.
- Remblayer le plus rapidement possible les pentes de talus, des fouilles longeant la voie, dès que l'ouvrage sort de la terre.
- Procéder aux vérifications périodiques des engins selon la notice du constructeur.
- Délimiter une zone de sécurité autour des engins de levage et en particulier à éviter tout stationnement sous une charge levée.

b- Equipement de mise en œuvre du béton :

Pour cet équipement vu son rôle important, le responsable en ce poste doit mettre en évidence les points suivants :

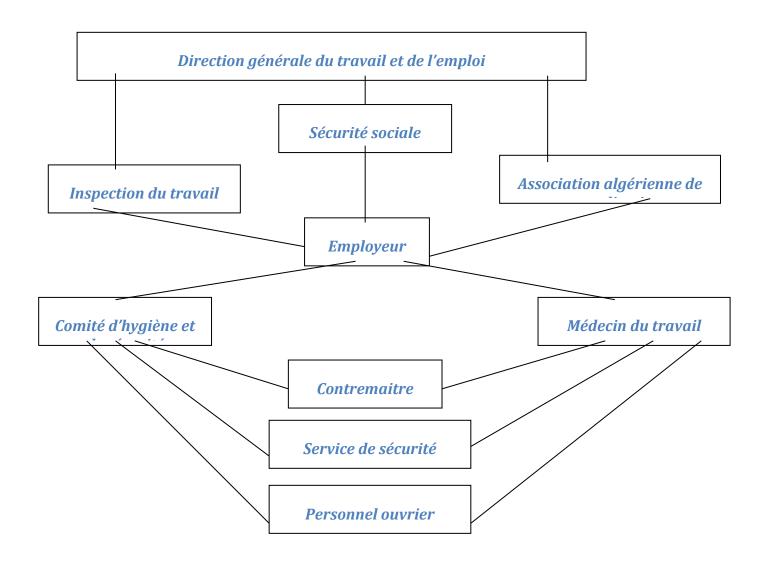
- Orientation rationnelle de la bétonnière.
- Implantation sérieuse et précise de tout équipements (silo, goulettes...etc.)
- Affectation rigoureuse du personnel aux commandes des points clés d'une installation moderne.
- Application stricte des règlements de sécurité.

c- Appareillages électriques :

Pour limiter, si non éviter les risques des appareils électriques, il faut absolument proscrire le bricolage, car une ligne ou une installation électrique ne doivent être que par des électriciens qualifiés.

IX.3.2- Autres protections:

- Toute tranchée creusée en agglomération ou sur route sera protégée par une clôture visiblement signalée de jour comme de nuit (chutes de personnes et d'engins).


- Eliminer les surcharges en bordures des fouilles.
- Les travailleurs oeuvrent à la pioche ou à la pelle sont tenus à laisser une distance suffisante entre eux.

IX.3.3- Protection individuelle:

Les dispositifs de protection individuelle (casque, gant, chaussures, lunettes protectrices,...etc.) sont indispensables pour la protection contre les dangers pendant l'exercice de centaines professions.

IX.4- Organisation de la prévention des accidents du travail

Les dispositifs l'organisation de la prévention se présente à travers les activités professionnelles du pays comme une immense chaîne de solidarité, composées de multiples maillons, correspondant chacun aux différents service ou personnes intéressées figurés dans l'organigramme suivant :

Conclusion Senerale

CONCLUSION GENERALE:

A travers cette étude, nous avons établis tout d'abord un aperçu général sur les problèmes que contient le système d'alimentation en eau potable de la ville de Damous.

Dans ce cadre nous avons cité quelques anomalies existantes au niveau des adductions, des ouvrages de stockage et du réseau de distribution.

Les remèdes contre ces insuffisances imposent la rénovation du réseau de distribution en eau potable de cette ville.

Pour cela et en tenant compte de nos constatations qui sont :

- un excédent de débit de 1404,96 m³/J.
- la pompe installée dans le forage F1 de type E6S55/11A+MCH630 (Q=12l/s, HMT=126,07m).
- la pompe installée dans le forage F2 de type E6S64/15A+MCH640 (Q=15l/s, HMT=127,4 m).
- la pompe installée dans le forage F3 de type E10S50/5CD+M890 (Q=45l/s, HMT=104,61 m).
- le type de matériau utilisée eu niveau de projet est le PEHD.

Enfin pour assurer l'alimentation en eau potable de la ville de Damous on fera un transfert à partir de barrage de Kaf Eddir qui est en cours de réalisation qui a pour but de renforcer la capacité d'adduction de cette ville

ANNEXE

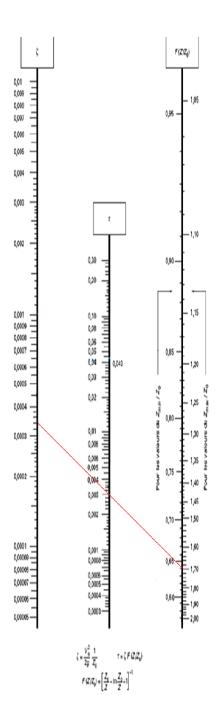

ANNEXE N°1

Tableau 2 : Débits en fonction des diamètres et gradients de perte de charge

Q (I/s)	0.4	0.7	1.0	1.5	2.0	2.2	2.2	2.5	3.0	3.5
D (mm)	50	50	5.0	50	50	50	75	75	75	75
1000i	1.43	3.97	7.61	160	27.3	32.6	4.51	5.77	7.97	10.7
Q (I/s)	4.00	4.5	5.0	5.2	5.2	5.5	6.00	7.00	8.0	9.1
D (mm)	75	75	75	75	100	100	100	100	100	100
1000i	13.60	16.9	20.5	22.0	5.40	6.00	7.03	12.0	12.0	15.2
Q (I/s)	9.1	10	11	12	13	13.8	13.8	16	18	20
D (mm)	125	125	125	125	125	125	150	150	150	150
1000i	6.49	7.72	9.21	10.8	12.6	14.0	6.02	8.05	10.0	12.2
Q (I/s)	22	23.6	23.6	25	30	35	40	44	44	50
D (mm)	150	150	200	200	200	200	200	250	250	250
1000i	14.5	16.5	3.94	4.38	6.14	8.18	10.5	12.5	4.29	5.45
Q (I/s)	55	60	65	71	71	80	90	100	103	103
D (mm)	250	250	250	250	300	300	300	300	300	350
1000i	6.50	7.64	8.88	10.5	4.50	5.63	7.00	8.53	9.01	4.29
Q (I/s)	110	120	130	140	144	144	150	160	170	180
D (mm)	350	350	350	350	350	400	400	400	400	400
1000i	5.03	5.92	6.87	7.89	8.31	4.31	4.65	5.24	5.87	6.53
Q (I/s)	190	200	217	217	220	240	260	280	300	320
D (mm)	400	400	400	500	500	500	500	500	500	500
1000i	7.23	7.96	9.20	3.20	3.30	3.89	4.52	5.19	5.93	6.66
Q (I/s)	340	360	380	400	420	440	460	480	500	505
D (mm)	500	500	500	500	500	500	500	500	500	500
1000i	7.47	8.31	9.21	9.21	11.1	13.2	13.2	14.3	15.5	15.8

J=∆H/L=gradient de perte de charge

(Extrait de l'ouvrage d'alimentation en eau potable d'ABRAMOV, édition 1982)

ANNAXE II: L'abaque de VEBERT

ANNEXE III:

accessoires	rôle	image	commentaire
Ventouse	purge des poches, entrée et sortie rapide d'air		Utilisable au niveau de l'adduction et les réseaux d'AEP.
Vanne de vidange	La vidange des tronçons		Utilisable au niveau de l'adduction et les réseaux d'AEP.
Coude	Changement De direction	1	Les coudes sont placés au niveau du changement de direction
Té (réduit) PEHD	Organe pour ajouter ou soutirer un débit		Relier les deux conduites, fonte et PEHD aux conduites de raccordement
Butée en béton	Les butée servent à fixer les coude et les protéger contre le déboitement		Les butés sont placés dans chaque coude .
By pass	pour l'avarie de système		Utilisable dans le cas de la réparation des tronçons (avarie)

ANNAXE II: L'abaque de VEBERT

accessoire	rôle	image	commentaire
Butée D'amarrage	Rendre la conduite n'est pas solidaire avec le sol Réduire les contrainte d'amenée		Les butées d'amarrage sont placés au niveau des grandes pentes
Vanne de sectionnement	Servent à l'isolement des tronçons		Chaque 200m à 300m et également avant la venteuse et après le robinet de sectionnement
conduite de raccordement	Raccorder entre deux conduites d'adduction		Dans le cas d'avarie (isolement d'un tronçon) la conduite s'alimentera par la deuxième conduite par le biais de la conduite de raccordement
Robinet de garde	Fermeture de by pass et les conduites de raccordement	TIVAL V	

BIBLIOGRAPHIE

- [1]: **LYONNAISE DES EAUX** Memento du Gestionnaire de l'Alimentation en eau et de Et de l'Assainissement .Edition TECHNIQUE ET DOCUMENTATION LAVOISIER, 1994 ,Pages 228-231,
- [2]: MOUNIR BOUSLIM . ESIER-Alimentation en Eau Potable , Page 10,62-64.
- [3]: **A.GURRIN** et **R.C.LAVAURE** .TRAITE DE BETON ARME. Edition: DUNOD PARIS 1972, page 5-10.
- [4]: **J. BONNIN** : Editions Eyrolles par 1986 (Hydraulique urbaine appliquée en agglomération de petite et moyenne Importance), page 64.
- [5]: **MICHEL CARLIER**. Hydraulique générale et appliqué .Edition EYROLLES 1972 ,Page 175 .
- [6] **ANDRE DUPONT**. Hydraulique urbaines (exercices et projet) .Edition Eyrolles Paris 1980 ,page 72.