Higher National School of Hydraulic The Library

Digital Repository of ENSH

المدرسة الوطنية العليا للري المكتبة المستودع الرقمي للمدرسة العليا للري

The title (العنوان):

Optimisation du fonctionnement du système d'AEP de la ville de Cherchel (w. Tipaza).

The paper document Shelf mark (الشفرة) : 1-0021-15

APA Citation (توثيق APA):

Boukra, Anis (2015). Optimisation du fonctionnement du système d'AEP de la ville de Cherchel (w. Tipaza)[Mem Ing, ENSH].

The digital repository of the Higher National School for Hydraulics "Digital Repository of ENSH" is a platform for valuing the scientific production of the school's teachers and researchers.

Digital Repository of ENSH aims to limit scientific production, whether published or unpublished (theses, pedagogical publications, periodical articles, books...) and broadcasting it online.

Digital Repository of ENSH is built on the open software platform and is managed by the Library of the National Higher School for Hydraulics. المستودع الرقمي للمدرسة الوطنية العليا للري هو منصة خاصة بتثمين الإنتاج العلمي لأساتذة و باحثي المدرسة.

يهدف المستودع الرقمي للمدرسة إلى حصر الإنتاج العلمي سواء كان منشورا أو غير منشور (أطروحات،مطبوعات بيداغوجية، مقالات الدوريات، كتب....) و بثه على الخط.

المستودع الرقمي للمدرسة مبني على المنصة المفتوحة و يتم إدارته من طرف مديرية المكتبة للمدرسة العليا للري.

كل الحقوق محفوظة للمدرسة الوطنية العليا للري.

REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE

وزآرة التعليم العالى و البحث العلمى

Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

DEPARTEMENT Hydraulique Urbaine

MEMOIRE DE FIN D'ETUDES

Pour l'obtention du diplôme d'Ingénieur d'Etat en Hydraulique

OPTION: Alimentation en eau potable

THEME:

Optimisation du fonctionnement du système d'AEP de la ville de Cherchell (W.Tipaza)

<u>Présenté par :</u> M^r : BOUKRA ANIS

DEVANT LES MEMBRES DU JURY

	Nom et Prénom		Grade	Qualité
M^{r}	KHETTAL	Tahar	M.C.A	Président
M^{r}	HEBBOUCHE	Abdelhamid	M.A.A	Examinateur
M^{me}	KADI	Latifa	M.A.B	Examinateur
M^{me}	TAFAT	Leila	M.A.A	Examinatrice
M^{r}	BERMAD	Abdelmalek	Professeur	Promoteur

Septembre 2015

Dédicaces

Je dédie ce modeste travail à :

Avant tout à mes chers parents, pour tous les sacrifices qu'ils ont consentis à mon égard et qui m'ont offert toujours un appui sûr par leurs soutiens et leurs encouragements durant toutes ces années de formation.

A ma très chère grand mère Ayé a qui je souhaite longue vie et prospérité.

A mon frére Mouhamed a qui je souhaite une réussite totale dans ses projets d'avenir,

A mes tentes et mes oncles qui ont toujours étés la pour moi

A mon cher ami Amine A tous mes amis et mes frères de l'ENSH Zaki , Djalil, Hichem ,Binjo , Merouane ,Yasser,Yahia, Mahrez

A toute ma grande famille

A ceux qui m'ont souhaité la réussite du fond de leur cœur.

Remerciements

Avant tout propos, nous remercions « Dieu » le tout puissant qui nous a donné sagesse et santé pour faire ce modeste travail.

C'est avec un grand plaisir que j'exprime ma profonde gratitude et mes sincères remerciements à mon promoteur: M^r BERMAD ABDELMALEK. Je lui exprime ma reconnaissance pour ses précieux conseils qui m'ont permis de bénéficier de son expérience et d'acquérir de nombreuses connaissances tout le long de ce travail.

Toute ma reconnaissance est adressée aussi a Mr Stéphane Buriand, Yacine Bouchaib ainsi que tous les employés de Sogreah Algérie pour m'avoir permis de réaliser ce modeste travail au sein de leurs locaux.

Également mes sincères remerciements à :

M^r:: M^r: T.KHETAL qui m'a fait l'honneur de présider mon jury.

Aux membres de jury:

 \mathcal{M}^{r} . A. HABOUCHE

 \mathcal{M}^{me} L.KADI

 \mathcal{M}^{me} : L. TAFAT

qui m'ont fait l'honneur d'apprécier et de juger ce travail.

ملخص:

تهدف هذه الدراسة إلى تسبير أمثل لنظام التزويد بالمياه الصالحة للشرب لمدينة شرشال (ولاية تيبازة) .

سمح انجاز نموذج هيدروليكي ، بتشخيص الشبكة و تحديد المناطق التي تواجه مشاكل.

و انطلاقا من هذا الوضع تم اقتراح عملية للتهيئة و مخطط للتجديد، تسمح التهيئة المقترحة، بضمان كمية المياه والضغط المطلوب في المناطق الصعبة في آفاق 2040.

يمكِّن تجديد الأنابيب الأكثر تدهورا من تجنب الانكسارات على هذه الأخيرة.

كما يسمح التقسيم بعد مراعاة قطاع الشبكة، بكشف التسربات غير المرئية بكل سرعة و سهولة.

Résumé:

L'objectif de la présente étude est d'optimiser le fonctionnement du système d'alimentation en eau de la ville de Cherchell (Wilaya de Tipaza).

La réalisation d'un modèle hydraulique nous a permis d'effectuer un diagnostic du réseau et d'identifier les zones à problèmes.

À partir de cet état des lieux, des aménagements et un plan de renouvellement, ont été proposés. Les aménagements suggérés permettront d'assurer la quantité d'eau ainsi que la pression demandée dans les zones difficiles pour l'horizon 2040.

Le renouvellement des canalisations les plus détériorées permettra d'éviter au maximum les ruptures sur ces dernières.

La sectorisation permettra, en tenant compte des disparités du réseau, de détecter plus facilement et plus rapidement les fuites non visibles.

Abstract:

The objective of this study is to optimize the operation of the water supply system of Cherchell city (Tipaza Province). The realization of a hydraulic model allowed us to perform network diagnostics and to identify problem areas. From this inventory arrangements and a renewal plan were proposed . The suggested improvements will ensure the amount of water and the pressure required in difficult areas by the year 2040. The renewal of the most deteriorated pipes makes it possible to avoid the ruptures on these last. Sectorization will allow, taking into account network disparities, to detect more easily and quickly non-visible leaks.

Sommaire

Introduction générale1
Chapitre I : Présentation de la zone d'étude
Introduction
I. 1 Présentation de la commune2
I.1.1. Situation géographique2
I.1.2. Accès routier3
I.1.3. Culture, patrimoine et tourisme3
I.2. Milieu physique4
I.2.1. Relief4
I.2.2 Pluviométrie4
I.2.3. Sismicité de la wilaya
I.3.1. Le plan directeur d'aménagement et d'urbanisme (PDAU)6
I.3.1. Le plan directeur d'aménagement et d'urbanisme (PDAU) :6
Conclusion9
Chapitre II : Situation hydraulique
Introduction
II.1. Présentation du système d'alimentation en eau potable10
II.1.1Gestion du système d'alimentation10
II.1.2Historique du système actuel11
II.1.3Taux de desserte et mode d'alimentation en eau potable11
II.1.4Plan d'ensemble des ouvrages et réseaux sur la commune :11
II.1.5Synoptiques Du Système
II.1.6Mise A Jour Du Schéma Vertical16

II.2. Ressour	ces en eau17
II.2.1Natur	re
II.2.2Mode	d'exploitation de la ressource
II.2.3Addu	ctions :
II.2.3	3.1Définition :
II.2.3	3.2Architecture des réseaux d'Adduction19
II.2.3	3.3Typologie Des Systèmes D'adduction D'eau19
II.2.4Réser	voirs:22
II.2.4	1.1Fonctions des réservoirs :
II.2.5Stati	ons de pompage27
II.2.6. Rés	seaux De Distribution29
Conclusion	30
Cl	napitre III : Diagnostic du système d'alimentation en eau potable
G	tic des ouvrages de production (forages)31
	s de réalisation de l'enquête de terrain31
	De L'enquête Et Du Diagnostic32
III.2.1.	Principales conclusions32
III.2.2.	RECOMMANDATIONS38
III.2.3.	Bilan39
III.3.Diagnosti	c des adductions41
III.4.Condition	s de réalisation de l'enquête41
III.5.Inventair	e des conduites41
III.6.Bilan du	diagnostic et recommandations44
III.7.Diagnosti	c des stations de pompage44
III.7.1.	Conditions de réalisation de l'enquête de terrain44
III.8.Résultats	de l'enquête et du diagnostic45
III.8.1.	Principales conclusions
III.9.Station de	e pompage Oued El Bellah (Ancienne)45

III.10.	Station de pompage Oued El Bellah (Nouvelle)47	
III.11.	Station de pompage Plateau Sud48	
III.12.	Station de pompage Bakora49	
III.13.	Station de pompage Oudai Ibrahim50	
III.14.	Station de pompage Oued El Hammam51	
III.14.	1. Recommandations52	
III.15.	Station de pompage Oued El Bellah (Ancienne)52	
III.16.	Station de pompage Oued El Bellah (Nouvelle)52	
III.17.	Station de pompage Plateau Sud53	
III.18.	Station de pompage Bakora53	
III.19.	Station de pompage Oued El Hammam53	
III.20.	Station de pompage Oudai Ibrahim53	
III.21.	Bilan53	
III.22.	Diagnostic des réservoirs54	
III.22.	1. Conditions de réalisation de l'enquête de terrain54	
III.23.	Résultats de l'enquête et du diagnostic54	
III.24.	Principales conclusions54	
III.24.	.1. Reservoir Tampon Hamdania (2x500m³)54	
III.24.	.2. Reservoir Sidi M'hamed Lamghit (250m³)55	
III.24.	3. Réservoir Sidi Cherif 250m ³ 56	
III.24.	4. Réservoir Ouest 2000m ³	
III.25.	Reservoir Tampon 1000m3 Sidi Yahia58	
III.26.	Reservoir Oued El Bellah 500m359	
III.27.	Reservoir Est 2000m ³ 60	
III.28.	Reservoir 250m³ Oued El Hammam Nord61	
III.28.	.2. Recommandations66	
III.29.	Bilan69	
III.30.	Diagnostic Des Réseaux De Distribution71	
III.30.	1. Conditions de réalisation de l'enquête71	
III.30.	.2. Inventaire des conduites	

III.31.	Situation Des Fuites Et Casses7	4	
III.32.	Qualité Du Service7	5	
III.33.	Conclusion et recommandations7	7	
III.33	3.1. Réseaux7	7	
III.33	3.2. Adduction7	7	
III.33	3.3. Distribution	7	
III.33	3.4. Réservoirs	7	
III.33	3.5. Stations de pompage7	7	
III.33	3.6. Forages	8	
	Chapitre IV : Calcul des besoins en eau potable		
IV.1. Intro	oduction		
IV.2. Eva	luation de la population 81		
IV.3.Les besoins en eau potable			
IV.4.Choix de la dotation83			
IV.5.Consommation journalière84			
IV.6.Cons	sommation des équipements85		
IV.7.Etud	le de la variation de la consommation		
IV.8. Bila	n des eaux		
IV.9. Calc	cul de la capacité des réservoirs98		
	Chapitre V : Modélisation du réseau de distribution		
Introduct	ion90		
V.1. Défin	nition et aspect descriptif90		
V.1.1 L	es conduites9	0	
V.1.2 L	es nœuds9	0	
V.2. Topo	V.2. Topologie du réseau91		

V.2.1. Les réseaux ramifiés	91
V.2.2. Les réseaux maillés	91
V.2.3. Réseau étagé	91
V.3 Conception du réseau	92
V.3.1 Principe du tracé du réseau	92
V.3.2. Choix du type de matériau	92
V.3.2.2. Les conduites à base de ciment :	94
V.3.2.3. Les conduites en plastiques (thermoplastiques)	95
V.4. Présentation du logiciel de calcul	98
V.4.1. qu'est-ce que Epanet ?	98
V.4.2. Capacités pour la Modélisation Hydraulique	98
V.5. Calcul hydraulique du réseau	99
V.5.1. Détermination des débits du réseau actuel	99
V.5.1.1. Débit en route	99
V.5.1.2. Débit spécifique	99
V.5.1.3. Les débits aux nœuds (nodaux)	99
V.5.2. Répartition arbitraire des débits	100
V.5.3. Calcul des paramètres hydrauliques	100
V.5.3.1. Cas de pointe	100
V.5.5. Interprétation des résultats	101
V.5.5.1. Cas de pointe	101
V.5.2. Détermination des débits du réseau projeté	102
V.5.2.1. Débit en route	102
V.5.2.2. Débit spécifique	102
V.5.3. Répartition arbitraire des débits	104
V.5.4. Calcul des paramètres hydrauliques	104
V.5.4.1. Cas de pointe	104
V.5.4.1.Cas de pointe plus incendie	104
V.5.5. Calcul des pressions de service du réseau (au sol)	105
V.5.5.1.Cas de pointe	105

v.5.5.2. Cas de pointe plus incendie	105
V.5.6. Interprétation des résultats	106
V.5.6.1. Cas de pointe	106
V.5.6.2. Cas de pointe plus incendie :	107
Conclusion	110
Chapitre VI : Gestion du système d'alimentation e	en eau potable
Introduction	111
VI.1 La gestion des forages	111
VI.1.1. Adapter la pompe au captage	111
VI.1.2. La connaissance des paramètres patrimoniaux	112
VI.1.3. Les équipements techniques	113
VI.2. Maintenance	113
VI.2.1. La maintenance préventive	114
VI.2.1.1. L'entretien courant	114
VI.2.1.2. L'entretien préventif systématique	114
VI.2.1.3. L'entretien préventif exceptionnel	114
VI.2.2. La maintenance curative	114
VI.3. Gestion technique et suivi général des installations (pour un c	aptage par forage)11
VI.4. Vieillissement et traitement des forages	116
VI.4.1. Phénomène de colmatage	110
VI.4.2.Phénomène de corrosion	110
VI.5. Gestion et exploitation des réservoirs	117
VI.5.1. Equipements des réservoirs	11
VI.5.2. Aspects lies à l'exploitation des réservoirs	118
VI.5.2.1. Opération de nettoyage	119
VI.5.2.2. Prévention des accidents (sécurité)	119
VI.5.2.3. Contrôle de la qualité de l'eau	119
VI.6. Gestion et exploitation des réseaux	119
VI.6.1. La surveillance et l'entretien courant des adductions et rése	eau de distribution.11º

Conclusion:	121
CHAPITRE VII : ACCESOIRES DU RESEAU DI	E DISTRIBUTION
Introduction	122
VII.1. Rôle des accessoires	122
VII.2. Organes accessoires utilisés dans le réseau	122
VII.2.1. Robinets vannes	122
VII.2.1.1. Vanne à coin (à opercule)	123
VII.2.1.2. Vannes papillons	123
VII.2.1.3. Vanne régulatrice de pression :	125
VII.2.1.4. Clapets anti retour :	125
VII.2.1.5. Vannes de décharge	126
VII.2.1.6. Robinets de branchement	126
VII.2.2. Ventouses	127
VII.2.3. Poteaux d'incendie	128
VII.2.4. Les raccordements	128
VII.2.4.1. Soudure bout à bout	128
VII.2.4.3. Les raccords mécaniques	130
VII.2.5. Organes de mesure	131
VII.2.5.1. Mesure de débit :	131
VII.2.5.2. Mesure de pression:	131
VII.2.6. By-pass	132

Chapitre VIII

POSE DE CANALIATION ET ORGANISATION DE CHANTIER

Introduction	133
VIII.1. Choix et type de pose de canalisation pour l'agglomération	133
VIII.1.1. Pose de canalisation enterre	133
VIII.1.2. Pose à proximité d'une conduite d'assainissement	134
VIII.1.3. Pose des conduites en traversée des routes	134
VIII.2. Utilisation des Butées et verrouillage	135
VIII.2.1. L'utilisation de massifs de butées en béton	135
VIII.2.2. Verrouillage	135
VII.3. Les différents travaux de mises en place des canalisations	137
VII.3.1. Implantation du tracé des tranchées sur le terrain	137
VII.3.1.1. Matérialisation	137
VII.3.1.2. Nivellement	137
VII.3.2. Excavation des tranchées	137
VII.3.2.1. Enlèvement de la couche végétale	137
VII.3.2.2. Réalisation des fouilles	137
VII.3.3. Pose des conduites	141
VII.3.4. Epreuve de joints et de la canalisation	141
VII.3.5. Remblayage des tranchées	141
VII.3.5.1. Le remblai d'enrobage	142
VII.3.5.2. Le remblai supérieur	142
VII.3.6. Nivellement et compactage	142
VII.3.7. Désinfection du réseau	143
VII.4. Définitions des engins de terrassement utilisés	144
VII.4.1. Pelle hydraulique	144
VII.4.2. Dozer	145
VII.4.3. Chargeur	145
VII.4.4. Compacteur (vibrateur de sol)	146
Conclusion	147
Conclusion générale	148

Liste des tableaux

Chapitre I : Présentation de la zone d'étude

Tableau 1 : Pop	ulation de la commune de Cherchell6
Tableau 2 : Rép	artition géographique de la population et projections selon PDAU (2008)7
	Chapitre II : Situation hydraulique
Tableau 1: Com	mune de Cherchell - Taux de desserte en AEP (RGPH 2008)11
Tableau 2 : List	e des forages de la commune de Cherchell17
Tableau 3: Liste	e des réservoirs de la commune de Cherchell25
Tableau 4 :Liste	e des stations de pompage de la commune de Cherchell28
Tableau 5: Lis	te des étages de distribution de la commune de Cherchell29
Chapitr	re III : Diagnostic du système d'alimentation en eau potable
•	
Tableau 1:	Fiche synthèse des forages de la commune de Cherchell40
Tableau 2:	Inventaire des conduites d'adduction de la commune de Cherchell42
Tableau 3:	Fiche synthèse des réservoirs de la commune de Cherchell70
Tableau 4:	Inventaire des conduites de distribution de la commune de Cherchell72
Tableau 5:	Commune de Cherchell - Fuites réparées en 2012 et 201375
Tableau 6:	Liste des zones de desserte selon la qualité de service76
	Chapitre IV : Calcul des besoins en eau potable
Tab IV.1 : Evolu	tion de la population de Cherchel82

Tab IV.2. : Typologie agglomération	83
TAB IV.3 Evolution des dotations unitaires domestiques en l/jour/ha	84
Tab IV.4 : Débits domestique	84
Tab IV.5 : Débit des équipements pour l'année 2015 et 2025	85
Tab IV.6 : Débit des équipements pour l'année 2030 et 2040	85
Tab IV.7 : Récapitulatif des débits des équipements	86
Tab IV.8 : Récapitulatif des débits de Cherchel	87
Tab IV.9 : Variation du coefficient β _{max}	89
Tab IV.10 : Valeurs de βmax à différents horizons	89
Tab IV.11 : Valeurs de K _{max,h} à différents horizons	90
Tab IV.12 : débits max et min journaliers	
Tab IV.13 : Débits moyen et max horaire	92
Tab IV.14 : Variation des débits horaire dans une agglomération selon la population	193
Tab IV.15 : Consommation horaire pour l'année 2015 et 2025	
Tab IV.16 : Consommation horaire pour l'année 2030 et 2040	95
Tab IV.17 : Débit de pointe	97
Tab IV.18 : Evolution du rendement du réseau	97
Tab IV.19 : Bilan général des eaux	98
Tab IV.20 : Calcul de la capacité des reservoirs	99
Chapitre V : Modélisation du réseau de distribution	
Tableau 1 : Récapitulatif des débits de calcul (cas de pointe)	100
Tableau 2: Récapitulatif des débits de calcul (cas de pointe)	103
Tableau 3 : Caractéristiques hydrauliques et géométriques des tronçons (cas de point incendie)	nte plus
Tableau 4 : Caractéristiques hydrauliques et géométriques des nœuds (cas de pointe	plus
incendie)	
Tableau 5 : Caractéristiques hydrauliques et géométriques des nœuds	107

Tableau 6 : Caractéristiques hydrauliques et géométriques des tronçons (cas de pointe plus incendie) avec bâche
Chapitre VI : Gestion du système d'alimentation en eau potable
Tableau 1: équipements des réservoirs117
Chapitre VIII POSE DE CANALIATION ET ORGANISATION DE CHANTIER
Tableau 1 : Calcul des volumes des tranchées138
Tableau 2 : calcul du volume des lits de sable140
Tableau 3 : Produits de désinfection (Doses et temps de contact)143
Tableau 4 : Devis estimatif du projet146
Tableau 5 : Devis estimatif du projet (suite)147

Liste des figures

Chapitre I : Présentation de la zone d'étude

Figure 1: Plan de localisation de la commune de Cherchell	3
Figure 2 : Carte de zonage sismique de l'Algérie	5
Chapitre II : Situation hydraulique	
Figure 1: Synoptique des infrastructures AEP de la localité Termelil	13
$Figure\ 2: Synoptique\ des\ infrastructures\ AEP\ de\ la\ localit\'e\ Sidi\ Bouathmane$	14
Figure 3 : Synoptique des infrastructures AEP de la localité Boumaaza	15
Figure 4 : Synoptique des infrastructures AEP de la localité Bordj El Ghoula	16
Figure 5 : Fig II.1.Coupe transversale d'un réservoir semi-enterré	25
Chapitre III : Diagnostic du système d'alimentation en eau pota	ıble
Figure 1 : Photo du forage F1	
Figure 2 : Photo du forage F10	
Figure 3: Photo du forage F1 Oued El Hachem	
Figure 4 : Photo du forage F1 Bis	
Figure 5: Photo du forage SAIDAL	
Figure 6: Photo du forage F1 Ben Saleh	
Figure 7: Photo du forage Bakora	
Figure 8 : Pourcentage des conduites d'adduction dans la commune de Cherchell	par type
de matériau	
Figure 9 : Pourcentage des conduites d'adduction dans la commune de Cherchell	selon leur
période de pose	
Figure 10 : Photo de l'ancienne station Oued El Bellah	45
Figure 11 : Photo de la nouvelle station Oued El Bellah	47
Figure 12 : Photo de la station de pompage Plateau Sud	48

Figure 13 : Pho	oto de la station de pompage Bakora	49
Figure 14 : Fig	III.1. Photo de la station de pompage Oudai Ibrahim	50
Figure 15:	Photo de la station de pompage Oued El Hammam	51
Figure 16:	Photo du réservoir Sidi M'Hamed Lamghit	55
Figure 17: Pho	oto du réservoir Sidi Cherif	56
Figure 18 : Pho	oto du réservoir Ouest Cherchell	57
Figure 19 : Pho	oto du réservoir Tampon Sidi Yahia 1000m3	58
Figure 20:	Photo des deux réservoirs hors service (6000+3000m3)	58
Figure 21:	Photo du réservoir Oued El Bellah	59
Figure 22 : Pho	oto illustrant l'éclatement du béton du réservoir	59
Figure 23:	Photo du réservoir Est Cherchell	60
Figure 24 : Pho	oto du réservoir Oued El Hammam Nord	61
Figure 25 : Pho	oto illustrant la clôture fissurée du site	62
Figure 26 :	Photo du réservoir Bakora	63
Figure 27:	Photo du réservoir Bordj El Ghoula	64
Figure 28:	Photo du réservoir Plateau Sud	65
Figure 29:	Photo du pylône téléphonique OOREDOO	65
Figure 30:	Pourcentage des conduites de distribution dans la commune	de Cherchell
par type de ma	tériau	73
Figure 31:	Pourcentage des conduites de distribution dans la commune	de Cherchell
selon leur pério	ode de pose	74
Figure 32:	Carte des zones de distribution selon qualité de service	76
	Chapitre IV : Calcul des besoins en eau potable	
Fig IV.1 : Evolu	ution de la population de Cherchel	82
Fig IV.2 : Débit	ts domestique a différents horizons	85
Fig IV.3 : Débit	ts des équipements	86
Fig IV.4 : Débit	t total de Cherchel	87
Fig IV.5 :: Var	iation du coefficient βmax en fonction de la population	89
Fig IV.6 : Débit	t max et min journaliers	91
Fig IV.7 : Débi	t moyen et max horaire	92
Fig IV.8 : Grap	hique de variation de la consommation horaire	96
Fig IV.9 : Cour	be de cumul	96

Time 1. With the second of the
Figure 1: Vitesses et pressions pour le cas de pointe
Figure 2: Simulation affichant les pressions au sol et les vitesses d'écoulements en cas de pointe plus incendie
incendie109
CHAPITRE VII: ACCESOIRES DU RESEAU DE DISTRIBUTION
Figure 1 : Robinets vanne à opercule (D'après document Pont-à-Mousson)123
Figure 2 : Robinets vanne papillon (D'après document Pont-à-Mousson124
Figure 3 : Clapet à double battant (D'après document DanfossSocla)124
Figure 4 : Vanne de régulation125
Figure 5 : Clapet à simple battant (D'après document DanfossSocla)126
Figure 6: Bouche d'incendie ou de lavage (D'après document Pont-à-Mousson)127
Figure7 : Bout à bout «bouteuse»
Figure8 : Raccordement par accessoires électro-soudables
Figure9 : Assemblages par électro soudage
Figure 10: Les coudes
Figure 11 : Le tés
Figure12 : Manomètre (d'après document BAMO)132
Chapitre VIII
POSE DE CANALIATION ET ORGANISATION DE CHANTIER
Figure 1 : Pose à proximité d'une conduite d'assainissement
Figure 2 :Traversée d'une route au moyen d'une gaine
Figure 3: Les butées
Figure 4: Verrouillage
Figure 5: Schéma d'une tranchée avec une conduite circulaire
Figure 6:Lit de pose

Figure 7: Appui des conduites	140
Figure 8: Remblayage des tranchées	
Figure 9: Pelle hydraulique	144
Figure 10: Bulldozer	145
Figure 11 :Chargeur	145

Liste des planches

Planche N°1 : PLAN DE MASSE DU CHEF LIEU DE CHERCHELL W.TIPAZA AVEC RESEAU DE DISTRIBUTION PROJETÉ

Planche N°2 : PROFIL EN LONG DU TRONCON RESERVOIR CHEF LIEU CHERCHELL W.TIPAZA VERS LE NOEUD 241

Planche N°3 : LES ACCESSOIRES DANS UN RESEAU D'ALIMENTATION EN EAU POTABLE

Introduction générale

La DRE (de Tipaza) et la SEAAL réalisent depuis quelques années un certain nombre de travaux de réhabilitation et de remplacements d'ouvrages (forages, conduites) et conduisent actuellement un important projet de transfert des eaux de la station de dessalement de Fouka à Menaceur (appelé projet 117 km).

En complément, la SEAAL a décidé de mener un schéma directeur d'eau potable qui vise, audelà des investissements complémentaires à réaliser, à définir les actions de sécurisation de l'alimentation en eau potable et de gestion patrimoniale de ces investissements. Ceci est l'objet du présent projet.

L'étude du Schéma Directeur de l'AEP (SDAEP) Tipaza a donc pour objet de définir les investissements et actions nécessaires à l'horizon 2040 pour assurer l'alimentation en eau potable sur l'ensemble de la Wilaya de Tipaza.

La commune de Cherchell constitue l'objet de notre étude.

Les résultats attendus sont :

- Une vision de la desserte en eau pour l'ensemble de la commune en 2040.
- Des perspectives à court (2025), moyen (2030) et long (2040) terme pour le développement des systèmes de production, adduction et distribution de l'eau.

L'étude du SDAEP Tipaza comprend 5 missions :

- Mission A: Etat des lieux des infrastructures existantes
- Mission B: Etude prospective des besoins en eau
- Mission C : Modélisation du réseau et dimensionnement
- Mission D : Sécurisation des ressources et de l'adduction
- Mission E : Synthèse des recommandations et programmation des aménagements

Le groupement Artelia Ville et transport / Sogreah Algerie / Bureau d'ingénierie Bourouba ont pour mission de mener a bien le présent projet.

Dans l'objet de ce mémoire notre travail consiste a établir une étude de diagnostic et d'optimisation du système d'alimentation en eau potable de la commune de Cherchell (Wilaya de Tipaza) afin d'avoir des perspectives à court (2025), moyen (2030) et long (2040) terme pour le développement des systèmes de production, adduction et distribution de l'eau.

Chapitre I : Présentation de la zone d'étude

Introduction

Ce chapitre a pour but de présenter le site d'étude du point de vue géographie, milieu physique et démographie et autres, afin d'avoir une vision globale sur la commune de Cherchell.

Toutes ces informations vont nous servir à déterminer d'autres paramètres par la suite.

I.1 Présentation de la commune

I.1.1. Situation géographique

La commune de Cherchell est située sur le littoral dans la région Nord centre de l'Algérie.

Elle est localisée dans la zone Ouest de la wilaya de Tipaza .Elle se trouve à 100Km d'Alger la capitale et à 28 Km de Tipaza chef lieu de wilaya.

Administrativement elle est chef lieu de daïra, les communes lui incombant sont (Sidi Ghiles, Hadjret Ennous et Sidi Semiane).

Le territoire de la commune de Cherchell s'étend sur environ 13000 hectares dont 85% située en zone montagneuse soit (11000 ha).

cinq (05) communes limitent le territoire communal :

- Tipaza et Nador à l'Est
- Sidi Ghiles à l'Ouest
- Menaceur au Sud
- Sidi Amar au Sud-Est
- Sidi Semiane au Sud-Ouest

Le plan de localisation de la commune de Cherchell est illustré sur la figure ci-après.

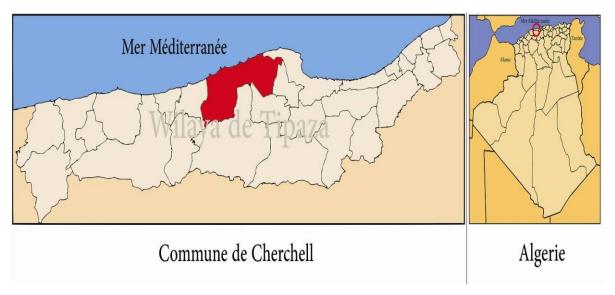


Figure 1: Plan de localisation de la commune de Cherchell

I.1.2. Accès routier

La commune de Cherchell se situe à 28 km de Tipaza et à 100 km d'Alger. Elle est traversée d'Est en Ouest par la Route Nationale RN11, voie de desserte touristique de toute la côte de la Wilaya jouant ainsi un rôle primordial à l'échelle régionale. Cet axe permet la liaison avec le chef-lieu de la Wilaya de Tipaza et Alger à l'Est et la Wilaya de Chlef à l'Ouest.

Une autre voie de communication routière existe : il s'agit du chemin de Wilaya CW 109 qui forme une boucle avec la RN11. Ce dernier assure la liaison avec la région du mont Chenoua.

I.1.3. Culture, patrimoine et tourisme

La ville compte deux musées consacrés aux vestiges romains laissés dans la ville (amphithéâtre, statues romaines, mosaïques, monuments architecturaux, etc.).

La ville constitue un pôle touristique de plus en plus important dans le pays, avec son port de pêche, ses plages et ses infrastructures en cours de réalisation ; elle est aussi caractérisée par ses nombreux artistes, qui perpétuent la tradition de la musique arabo-andalouse à travers un conservatoire dédié à cet effet.

I.2. Milieu physique

I.2.1. Relief

Etant partie intégrante du complexe montagneux de l'atlas tellien, la commune de Cherchell se

trouve sur un terrain accidenté qui couvre la majeure partie de sa superficie, soit 85% avec des

pentes supérieures à 20%.

I.2.2 Pluviométrie

La période de fortes pluies se situe entre les mois de novembre et décembre, la période la plus

sèche a lieu entre les mois de juin et juillet¹. La région de Cherchell présente des températures

moyennes variant entre 24.9°C au mois d'août à 13.2°C au mois de février. Les températures

minimales et maximales varient de 5.7°C pour les mois les plus froids (décembre à février) à

33°C pour les mois chauds de l'été (juillet et août).

I.2.3. Sismicité de la wilaya :

Le territoire national est divisé en cinq (5) zones de sismicité croissante, définies sur la carte

des zones de sismicité qui précise cette répartition par la wilaya et par commune, soit :

Zone 0 : Sismicité négligeable

Zone I : Sismicité faible

Zone IIa et IIb : Sismicité moyenne

Zone III : Sismicité élevée

La carte sismique de l'Algérie représente les zones sismiques globales des différentes wilayas.

Cette classification situe la wilaya de Tipaza dans la zone sismique III qui est d'une sis-

micité élevée.

¹ (Source Centre national de recherche appliquée en Génie Parasismique, 2005)

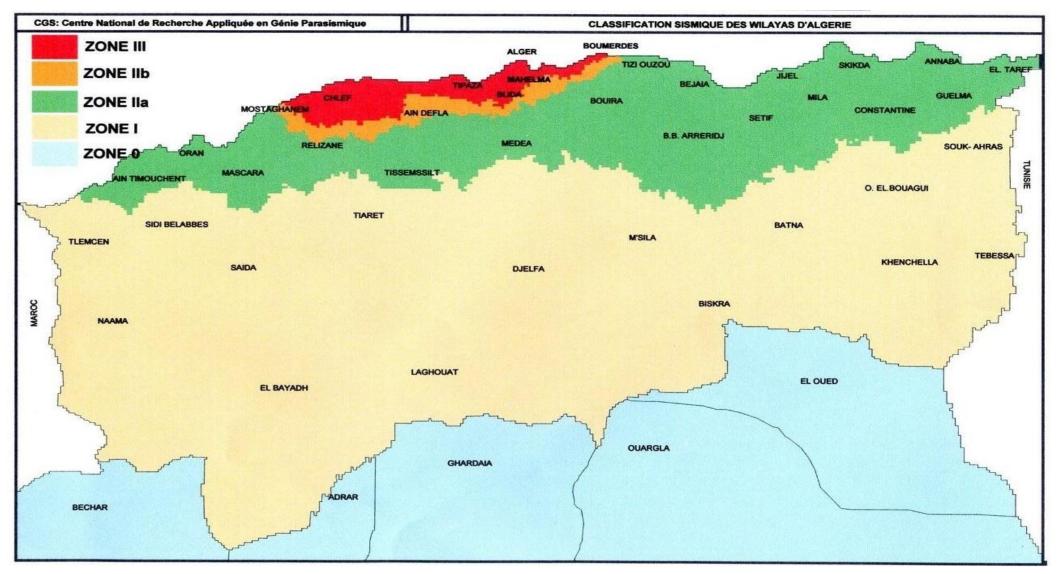


Figure 2 : Carte de zonage sismique de l'Algérie.

I.3. Démographie

Pour une superficie de 130 Km², la commune de Cherchell comptait 48 056 habitants au dernier recensement de 2008, avec un taux d'accroissement de 1'ordre de 1.7 % et une densité moyenne de 417 habitants / Km².

Tableau 1 : Population de la commune de Cherchell.

Population commune Cherchell (RGPH 2008)						
Masculin		Féminin		Total	Taux d'accroissement	
23 669	49.3%	24 387	50.7%	48 056	1.7	

I.3.1. Le plan directeur d'aménagement et d'urbanisme (PDAU) :

La répartition géographique de la population et les perspectives de croissance et de développement telles que présentées dans le PDAU sont illustrées ci-après.

Tableau 2 : Répartition géographique de la population et projections selon PDAU (2008)

Commune	Agglomérations		Population (2008)	Population (2013)	Population (2015)	Population (2025)	Population (2030)	Population (2040)
	Chef- Lieu	Chef-Lieu	28872	31411	32488	38453	41835	49516
		Hamdania	1618	1760	1821	2155	2344	2775
		Bakora	1512	1645	1701	2014	2191	2593
		Hamidia	2914	3170	3279	3881	4222	4998
	Agglomé	Oued El Ham- mam	1361	1481	1531	1813	1972	2334
Cherchell	Agglomérations Secondaire	Bordj El Ghola et Iguerbouché- ne	2835	3084	3190	3776	4108	4862
		Sidi Boulahrouz	1860	2024	2093	2477	2695	3190
		Benkheira	1372	1493	1544	1827	1988	2353
		Plateau Sud	805	876	906	1072	1166	1381
		Oued El Bellah	1114	1212	1254	1484	1614	1911
		Sidi Yahia	896	975	1008	1193	1298	1537
	Zones Eparse	Ichri- fiyine+Boumaaz a+Imoussayen	937	1019	1054	1248	1358	1607
		Thala n'Driouche	584	635	657	778	846	1002
		Oued Aîzer	320	348	360	426	464	549
		Oued Mazer	552	601	621	735	800	947
		Ben Saleh et	504	548	567	671	730	864
		Termelil						
		Total	48056	52282	54075	64004	69632	82417

Les orientations du PDAU en lien avec notre projet sont les suivantes :

A. Zone d'activités Oued El Bellah:

Quelques orientations d'aménagement :

- Réglementation du tissu existant.
- Amélioration et réaménagement des voies de distribution existantes.
- Aménagements de la zone d'extension de la micro zone d'activité.

B. Forêts et zones boisées dont le massif de Chenoua :

Quelques orientations d'aménagement :

- Protection et valorisation du tourisme climatique.
- Création de postes de travail.

C. Terres agricoles:

Quelques orientations d'aménagement :

- Développer, redynamiser et relancer cette ressource.
- Protéger les terres agricoles.
- Intensifier les cultures maraîchères dans les zones irriguées et l'arboriculture dans les zones non irriguées.
- Moderniser le secteur par l'introduction de nouvelles techniques.
- Encourager l'élevage.

Programme:

 Lancer un programme basé et soutenu par des actions d'infrastructures d'hydraulique et d'équipements.

D. Zone éparse de Talendriouch :

Orientations d'aménagement :

• Désenclavement de la zone.

• Aménagement des voies de desserte.

Programme:

- Injection d'équipements de proximité.
- Aménagement d'un parc récréatif.
- Injection d'équipements légers de restauration.
- Jeux et loisirs pour enfants.
- Logements.

Conclusion:

Dans ce premier chapitre on a présenté la zone d'étude qui est représentée par la commune de Cherchell tout en définissant les paramètres essentiels pour le bon déroulement de la suite de l'étude. On abordera la situation hydraulique de la commune, dans le chapitre qui suit.

Chapitre II: Situation hydraulique

Introduction

Ce chapitre fournit les résultats des investigations qui mettent en évidence la situation hydraulique de la commune de Cherchell.

On va ainsi présenter le système d'alimentation de la commune (Réservoirs, adduction, réseaux de distribution et stations de pompage) ainsi que les forages alimentant cette dernière et les résultats détaillés de l'inventaire diagnostic de ces ouvrages et réseaux.

Ces résultats permettront de justifier et de proposer un programme hiérarchisé de renouvellement des installations et réseaux de la commune.

.

Ces résultats permettront de justifier et de proposer un programme hiérarchisé de renouvellement des installations et réseaux de la commune.

II.1. Présentation du système d'alimentation en eau potable

II.1.1 Gestion du système d'alimentation

Le système d'alimentation de la commune de Cherchell est géré principalement par la SEAAL depuis fin 2011. A noter aussi que l'APC conserve la gestion de 2 forages (F1 Bensallah et F1 Bakora).

Les infrastructures d'AEP de la commune de Cherchell comprennent :

- 04 champs captant totalisant 09 forages en activité,
- 33.5 km de conduites d'adduction en propre (hors conduites sur grands systèmes et transferts) avec des diamètres variant de 150 à 500 mm,

- 20 réservoirs de capacité totale 19 850 m³, dont deux non encore opérationnels d'une capacité de 6000+3000 m³,
- 06 stations de pompage en refoulement,
- 57.1 km de réseaux de distribution avec des diamètres allant de 30 à 400 mm.

II.1.2 Historique du système actuel

La commune de Cherchell était gérée par les services de l'APC avant l'arrivée de la SEAAL fin 2011 à la Wilaya de Tipaza, date à laquelle le processus du transfert de la gestion du réseau d'AEP à la SEAAL a été engagé. Depuis, la SEAAL a repris à son compte l'essentiel de la gestion sauf la gestion des 2 forages F1 Bensallah et F1 Bakora.

II.1.3 Taux de desserte et mode d'alimentation en eau potable

En 2014, un volume total de 3 006 999 m³ a été mis en distribution (facturés) sur la commune (source SEAAL).

Selon les informations publiées par le recensement de 2008, le taux de desserte des habitants de la commune au réseau d'eau potable était de 83.38% en 2008.

l'ableau 1: Commune de Cherchell -	Taux de desserte en AEP	(KGPH 2008)

Raccordement	OUI		NON		ND		Total	
au réseau	Nombre	%	Nombre	%	Nombre	%	Nombre	%
Cherchell	7276	83.38	1223	14.1	227	2.6	8726	100
Moyenne Wilaya	74448	79	16898	17.9	2665	2.8	94011	100

II.1.4 Plan d'ensemble des ouvrages et réseaux sur la commune :

Le plan ci-dessous représente l'ensemble des ouvrages et réseaux du système d'AEP de la commune. (Voir annexe 1)

II.1.5 Synoptiques Du Système:

Les schémas synoptiques ci-dessous précisent les relations fonctionnelles des différents éléments du système et en fournit les principales caractéristiques (Voir annexe 2)

L'alimentation en eau se fait par le biais du barrage de Boukourdane via le réservoir tampon 2000m³ de Sidi Amar qui alimente gravitairement le réservoir Bellah 500m³ de Cherchell.

Le réservoir Bellah 500m³ alimente par refoulement, via l'ancienne station de pompage Oued el Bellah, les trois réservoirs suivants :

- Le réservoir 100m³ ANBT (Agence Nationale des Barrages et Transferts)
- Le réservoir 150m³ ANP (Armée Nationale Populaire)
- Le réservoir 2x500m³ Hamdania.

La nouvelle station de pompage Oued El Bellah, quant à elle, alimente le réservoir tampon Sidi Yahia 1000m³. Ce dernier alimente l'ensemble des ouvrages de stockage de la commune de Cherchell et est aussi relié au réservoir 1000m³ de Sidi Ghiles par une conduite d'adduction de 10km.

La figure ci-dessous représente le synoptique des infrastructures AEP de la localité Termelil

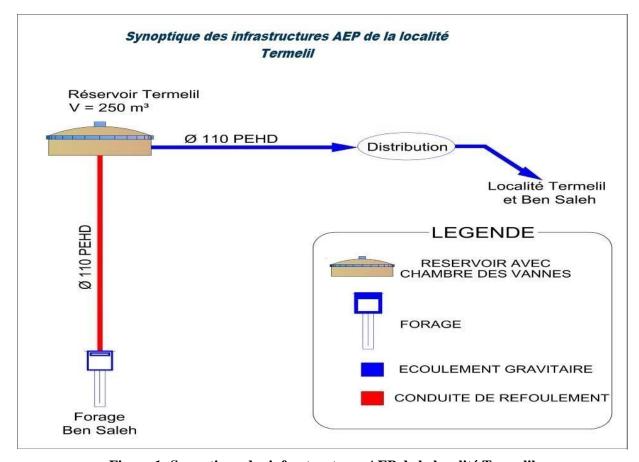


Figure 1: Synoptique des infrastructures AEP de la localité Termelil

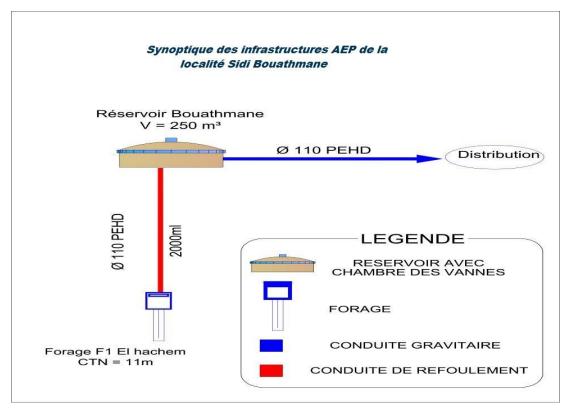


Figure 2 : Synoptique des infrastructures AEP de la localité Sidi Bouathmane

La figure ci-dessous représente le synoptique des infrastructures AEP de la localité Boumaaza.

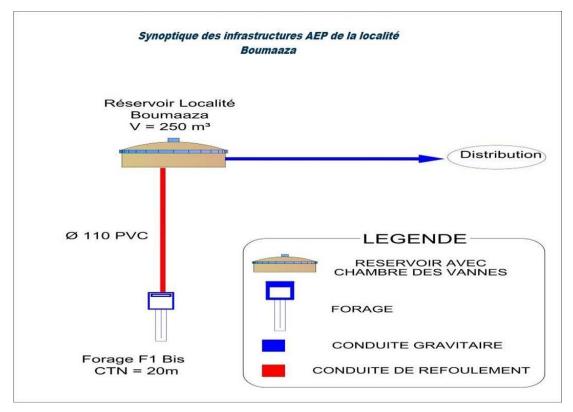


Figure 3 : Synoptique des infrastructures AEP de la localité Boumaaza

La figure ci-dessous représente le synoptique des infrastructures AEP de la localité Bordj el Ghoula.

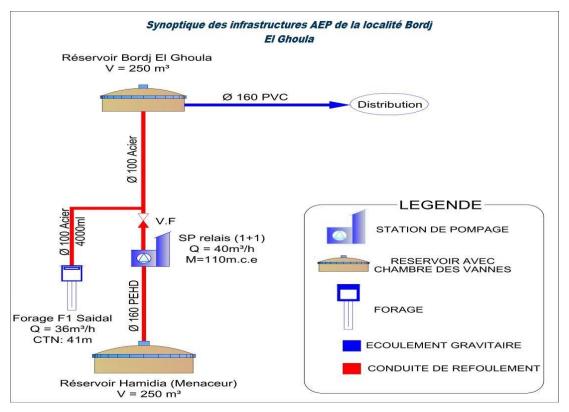


Figure 4 : Synoptique des infrastructures AEP de la localité Bordj El Ghoula

II.1.6 Mise A Jour Du Schéma Vertical

Il s'agit d'un extrait du schéma vertical d'ensemble transmis par la SEAAL et qui a été mis à jour par le groupement (Sogreah et Bureau Ingénierie Bourouba) dans le cadre de l'étude.

(Voir annexe 3)

II.2. Ressources en eau

II.2.1 Nature

La commune de Cherchell est alimentée en eau à partir du champ captant d'Oued El Hachem et du barrage de Boukourdane via la station de traitement de Sidi Amar.

La liste des forages de la commune de Cherchell est donnée dans le tableau suivant :

Tableau 2 : Liste des forages de la commune de Cherchell

Locali- sation des forages	Nom de Forage	Longitude	Latitude	Q Exp L/S	Q Exp m3/h	HMT (m)	P (kw)	profondeur (m)	Gestion- naire	Etat
	F1	36°35' 32,9"	002°16′ 09,7"	5.83	21	110	55	40		en ser- vice
	F1 Bis	36°35' 33,7"	002°16' 08,3"	12.50	45	140	45	40		en ser- vice
	F2	36°35' 03,3"	002°16' 46,7"	38.00	137	110	67	40		en ser- vice
	F8	36°35' 11,4"	002°16′ 44,5"	10.00	36	110	30	36	SEAAL	en ser- vice
Oued El Hachem	F10 Bakora	36°35' 26,6"	002°16' 20,1"	5.83	21	110	22	30		en ser- vice
chem	F1 Saidal	36°35' 41,6"	002°14' 35,7"	10	36	N/A	15	N/A		en ser- vice
	F1 Oued El Hachem	36°36' 12,4"	002°15' 20,0"	8.33	30	140	37	35		en ser- vice
	F1 Bensal-	N/A	N/A	1,95	7	N/A	N/A	N/A	APC	en ser- vice
	F1 Bakora	36°35' 21,7"	002°16′ 36,4"	11.11	40	N/A	22	45		en ser- vice

II.2.2 Mode d'exploitation de la ressource

Comme cité précédemment, sur les 9 forages alimentant la commune de Cherchell, 7 sont gérés par la SEAAL et les autres par l'APC.

Le barrage de Boukourdane est géré par l'ANBT, une partie des eaux est utilisée pour l'irrigation et l'autre pour l'AEP après traitement.

II.2.2.1 Description et capacité actuelle des installations de production

Pour l'alimentation à partir du barrage Boukourdane, le quota alloué à la commune dépend de la commission d'arbitrage qui se réunit chaque année au niveau du Ministère des Ressources en eau et de l'environnement.

La chaine de forages de Bakora, constituée de 05 forages (F01, F02, F08, F10, F01 Bis) refoule les eaux à l'aide des pompes immergées vers l'ancienne station de pompage d'Oued El Bellah, munie d'une bâche de capacité de 500 m 3. Le forage F01 Bis, quant à lui, refoule ses eaux vers le réservoir 250m³ de Boumaaza.

Le forage F1 Oued El hachem alimente le réservoir 250m³ de Sidi Bouthmane.

Le forage F1 Saidal alimente le réservoir 250m³ de Bordj El Ghoula.

II.2.3 Adductions:

II.2.3.1 Définition:

L'adduction D'eau Regroupe Les Techniques Permettant D'amener L'eau Depuis Sa Source A Travers Un Reseau De Conduites Ou D'ouvrages Architecturaux Vers Les Lieux De Consommation. Le Terme D'adduction Vient Etymologiquement Du Latin : Ad Ducere (Mener Ou Conduire Vers, Amener, Etc.).

II.2.3.2 Architecture des réseaux d'Adduction :

L'adduction d'eau potable (AEP) peut se diviser en divers éléments :

- la source peut être un forage équipé d'un système de pompage (cas le plus fréquent), un cours d'eau naturel ou un plan d'eau, notamment dans les premiers réseaux de l'histoire, par exemple chez les Romains;
- un réseau de transport constitué de canalisations souvent enterrées, d'ouvrages d'arts (pont, siphon, canal) et d'un système, automatisé ou non, de vannes et de pompes ;
- divers systèmes de stockage intermédiaires ;
- un réseau terminal de distribution amenant l'eau aux consommateurs finaux ou à des points de distribution collectifs (pompes, fontaines, etc.).

II.2.3.3 Typologie Des Systèmes D'adduction D'eau :

Il existe trois types d'adduction:

- Adduction gravitaire, où l'écoulement de l'eau à des pressions importantes est causé par la différence des niveaux hydrauliques : l'altitude de la source est supérieure à l'altitude du point de consommation, et se déplace donc grâce à la force de gravitation d'où son nom.
- Adduction par refoulement où la pression sur le réseau et l'acheminement de l'eau se fait à l'aide de pompes à l'intérieur de stations de pompage.

 Adduction mixte, où la conduite par refoulement se transforme en conduite gravitaire ou l'inverse. Le relais entre les deux types de conduite est assuré par un réservoir appelé réservoir tampon.

Les adductions présentées ici sont celles qui relient une ressource (forage ou station de traitement) sur le territoire communal à un ouvrage (station de reprise ou réservoir) situé sur le territoire communal. Les adductions traitées dans ce rapport sont :

Partie refoulement:

- Conduite de refoulement DN315 PEHD depuis les forages de Bakora alimentant la station de pompage Oued El Bellah.
- Conduite de refoulement DN110 PEHD depuis le forage de Ben Saleh vers le réservoir Termelil 250m³.
- Conduite de refoulement DN100 Acier depuis le forage F1 Saidal vers le réservoir Bordj El Ghoula 250m³.
- Conduite de refoulement DN110 PEHD depuis le forage F1 El Hachem vers le réservoir Bouathmane 250m³.
- Conduite de refoulement DN500 Fonte depuis la nouvelle station de pompage d'Oued El Bellah alimentant le réservoir Tampon Sidi Yahia 1000 m 3
- Conduite de refoulement DN100 Acier depuis l'ancienne station de pompage Oued El Bellah vers le réservoir ANB 150m³
- Conduite de refoulement DN110 PEHD depuis l'ancienne station de pompage Oued El Bellah vers le réservoir ANBT 100m³
- Conduite de refoulement DN150 PEHD depuis l'ancienne station de pompage Oued El Bellah vers le réservoir Hamdania 2x500m³
- Conduite de refoulement DN300 Fonte depuis la station de pompage Bakora vers le réservoir Hamdania 2x500m³
- Conduite de refoulement DN100 Acier depuis la station de pompage Plateau Sud vers le réservoir Plateau Sud 250m³
- Conduite de refoulement DN200 Acier depuis la station de pompage Plateau Sud vers le réservoir militaire.

- Conduite de refoulement DN100 Amiante Ciment depuis la station de pompage Oudai
 Ibrahim DNC vers le réservoir Sidi Cherif 250m³
- Conduite de refoulement DN160 PVC depuis la station de pompage Oued El Hammam vers le réservoir Oued El Hammam Sud 250m³

Partie Gravitaire:

- Conduite gravitaire DN400 AMC depuis le réservoir Tampon Sidi Ameur 2000m³ vers les 2 réservoirs Bakora 250m³ et Bellah 500m³.
- Conduite gravitaire DN200 Acier depuis le réservoir Hamdania 2x500m³ vers le réservoir Hamdania 250m³.
- Conduite gravitaire DN300 AMC depuis le réservoir Tampon Sidi Yahia 1000m³ vers le réservoir Est Douar Morsli 2000m³
- Conduite gravitaire DN200 AMC depuis le réservoir Tampon Sidi Yahia 1000m³ vers le réservoir 2x750m³.
- Conduite gravitaire DN300 AMC depuis le réservoir Tampon Sidi Yahia 1000m³ vers le réservoir Beau Lieu Ouest 2000m³.
- Conduite gravitaire DN400 Fonte depuis le réservoir Tampon Sidi Yahia 1000m³ vers le réservoir Sidi M'hamed Lemghit 250m³.
- Conduite gravitaire DN150 Fonte depuis le réservoir Sidi Cherif 250m³ vers le réservoir Sidi M'hamed Lemghit 250m³.
- Conduite gravitaire DN200 Acier depuis le réservoir Beau Lieu Ouest 2000m³ vers le réservoir Sidi Ghiles 1000m³ raccordé en cours de route à une conduite gravitaire DN300 Fonte alimentant le réservoir Oued El Hammam Nord 250m³.

NB : Les réservoirs Tampon Sidi Ameur 2000m³ et Sidi Ghiles 1000m³ ne font pas partie de la commune de Cherchell.

II.2.4 Réservoirs:

II.2.4.1 Fonctions des réservoirs :

Les réservoirs constituent les organes régulateurs de pression et de débit entre le régime de production et le régime de consommation.

Ils permettent d'emmagasiner l'eau lorsque la consommation est inférieure à la production, et la restituent lorsque la consommation devient supérieure à la production.

En milieu rural ou pour des villes de petite importance, avec une installation correctement conçue, la capacité du ou des réservoirs oscille aux alentours du volume moyen journalier d'eau consommée. Mais avec l'augmentation du nombre de consommateurs, le rapport entre la capacité et le volume moyen journalier diminue.

Ils servent à:

- Compenser l'écart entre les apports d'eau (par gravité ou pompage) et la consommation (débit de pointe et autres).
- Constituer une réserve pour les imprévus (rupture, panne, réparation, extension du réseau...).
- Offrir la possibilité de pomper la nuit, lorsque les tarifs d'électricité sont les plus bas.
- Régulariser le fonctionnement du pompage. Les pompes refoulent à un débit constant.
- Simplifier l'exploitation.
- Régulariser les pressions dans le réseau.
- Une partie du volume est réservé à la lutte contre l'incendie.

II.2.4.2 Prescriptions sanitaires:

En plus de leurs rôles précédemment cités, les réservoirs doivent répandre aux prescriptions sanitaires ci-après :

- Les ouvrages de stockage doivent être conçus et exploités de manière à éviter une stagnation prolongée de l'eau d'alimentation.
- Les réservoirs doivent être protégés contre toute pollution externe et contre les élévations importantes de température.
- Ils doivent être faciles d'accès et leur installation doit permettre de vérifier en tout temps leur étanchéité.

- Ils doivent être munis d'un dispositif permettant une prise d'échantillon d'eau à l'amont et à l'aval immédiat du réservoir.
- L'ensemble des matériaux constituant les réservoirs ne doit ni se désagréger ni communiquer à l'eau des saveurs ou des odeurs désagréables.
- Après chaque intervention susceptible de contaminer l'eau contenue dans les réservoirs au moins une fois par an, les réservoirs sont vidés, nettoyés et désinfectés.
- En plus des prescriptions citées ci-avant, les réservoirs à surface libre doivent être fermés par un dispositif amovible à joints étanches.
- Les orifices de ventilation sont protégés contre l'entrée des insectes et des petits animaux par un dispositif approprié (treillage métallique inoxydable à mailles d'un millimètre au maximum).

II.2.4.3 Classification des réservoirs :

Les réservoirs sont classés selon les critères suivants:

- ✓ D'après la nature des matériaux, on distingue :
 - Réservoirs métalliques.
 - > Réservoirs en maçonnerie.
 - Réservoirs en béton armé.
 - Réservoirs en plastique.
- ✓ D'après la situation des lieux, ils peuvent être:
 - Réservoirs enterrés.
 - > Réservoirs semi enterrés.
 - Réservoirs surélevés.
- ✓ D'après la forme de la cuve :
 - Réservoirs carrés.
 - Réservoirs circulaires.
 - > Réservoirs rectangulaires.

II.2.4.4 Équipement des réservoirs :

Les réservoirs sont constitués de différents équipements à savoir :

• Les orifices de ventilation sont protégés contre l'entrée des insectes et des petits animaux par un dispositif approprié (treillage métallique inoxydable à mailles d'un millimètre au maximum).

- La section de la canalisation de trop-plein doit pouvoir absorber la fourniture d'eau à plein régime. Cette canalisation est siphonnée avec une garde d'eau suffisante.
 - La canalisation de vidange doit être située au point le plus bas du fond du réservoir.
 - Les orifices d'évacuation du trop-plein et de la vidange sont protégés contre l'entrée des insectes et des petits animaux à l'aide d'une crépine.
 - L'installation des vannes sur les canalisations de départs des réservoirs, pour éviter de vider le réservoir en cas d'incident sur la canalisation.
 - Une fenêtre d'aération (entrée et sortie de l'air lors du remplissage et de la vidange).
 - Une fermeture par flotteur de l'alimentation.
 - Un enregistreur du niveau d'eau dans le réservoir et un by-pass entre l'adduction et la distribution (nettoyage, entretien, réparation).
 - Un by-pass pour assurer la distribution pendant la panne de l'un des réservoirs jumelée et relié la conduite d'amenée à la conduite de départ.

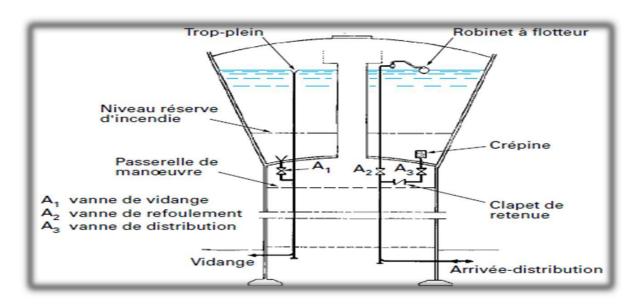


Fig II.1. Coupe transversale d'un réservoir surélevé.

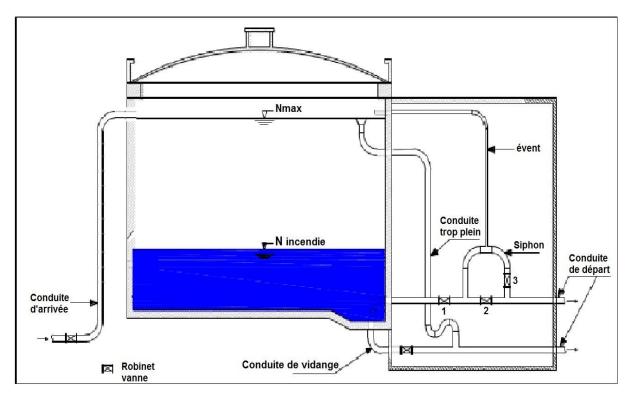


Figure 5 : Fig II.1. Coupe transversale d'un réservoir semi-enterré.

NB : Pour tout type de réservoir on préconise une arrivée d'eau par le haut afin d'assurer un bon brassage de l'eau à l'intérieur du réservoir.

Le tableau ci-dessous liste les réservoirs de la commune de Cherchell, leurs capacités et leurs coordonnées GPS.

Tableau 3: Liste des réservoirs de la commune de Cherchell

Nom	Туре	Capacité m³	CTN (m NGA)	Zones desservies	Gestion	X	Y	Année de réalisation
Réservoir Ouest	Semi enterré	2000	100	Cherchell Ouest	SEAAL	36°35' 46,75"	002°11′ 06,96"	1982
Réservoir Est	Semi enterré	2000	94	Cherchell Est, Lots Akil, Lots Bilmane	SEAAL	36°36' 23,40"	002°12'32,08"	1982
Réservoir Nord Oued El Hammam	Semi enterré	250	30	Douar Belasker	SEAAL	36°35' 18,58"	002°09′ 21,50"	2000

Nom	Туре	Capacité m³	CTN (m NGA)	Zones desservies	Gestion	X	Y	Année de réalisation
Réservoir Sud Oued El Hammam	Semi enterré	250	108	Douar Belasker	SEAAL	36°35' 00,53"	002°09' 24,96"	2000
Réservoir Sidi M'Hmamed Lamghit	Semi enterré	250	150	Sidi M'Hmamed Lamghit	SEAAL	36°35′ 21,6"	002°10′ 40,76"	2003
Réservoir Sidi Cherif	Semi enterré	250	183	Cité DNC	SEAAL	36°35'41,61"	002°11' 27,37"	1993
Réservoir Sidi Bouathmane	Semi enterré	250	98	Sidi Bouathmane	SEAAL	36°35' 25,3"	002°15°, 48,1"	-
Réservoir Hamdania	Semi enterré	250	69	El Hamdania	SEAAL	36°36' 25,3"	002°15' 48,1"	2001
Réservoir Bakora	Semi enterré	250	19	Localité Bakora	SEAAL	36°35' 22,5"	002°16' 31,6"	-
Réservoir Acadé- mie,ANP	Enterré	2x750	60	Chef lieu Cher- chell	SEAAL	36°36'6,71"	002°11'31,75"	années coloniales
Réservoir Bordj El Ghoula	Au sol	250	65	Quartier Bordj El Ghoula	SEAAL	36°36'31,86"	002°13′31,64"	1992
Réservoir Plateau Sud (Tchoupen)	Au sol	250	226	sidi boulahrouze et plateau sud	SEAAL	36°36'3,86"	002°12′30,35"	1995
Réservoir Tampon Sidi Yahia	Semi enterré	1000	220	Ecole militaire, Académie militaire	SEAAL	36°35'42,00"	002°11′ 59,38"	2000
Réservoir Oued El Bellah	Semi enterré	500	40	Oued El Bellah	SEAAL	36°35' 55,55"	002°14'48,87"	1989
Réservoir Tampon Hamdania	Semi enterré	2x500	130	El Hamdania	SEAAL	36°37' 13,95"	002°16′ 35,15"	2000
Réservoir ANBT	-	100	95	Oued El Bellah	SEAAL	36°36' 22,76"	002°14' 19,74"	-
Réservoir Termelil	Semi enterré	250	-	Localité Termelil	SEAAL	-	-	-

Nom	Туре	Capacité m³	CTN (m NGA)	Zones desservies	Gestion	X	Y	Année de réalisation
				et Ben Saleh				
Réservoir Boumaaza	Semi enterré	250	44	Localité Bou- maaza	SEAAL	36°35' 06,87"	002°16′ 21,41"	-
Réservoir Sidi Yahia 6000	Semi- enterré 6000 220		220	Ecole militaire, Académie mili- taire	SEAAL	36°35' 42,00"	002°11′ 59,38"	2014 - Non mis en service
Réservoir Sidi Yahia 3000	Semi- enterré	3000	220	Ecole militaire, Académie militaire	SEAAL	36°35' 42,00"	002°11' 59,38"	2014 - Non mis en service

II.2.5 Stations de pompage

Le tableau ci-dessous synthétise les principales caractéristiques des stations de pompage de la commune.

Tableau 4 :Liste des stations de pompage de la commune de Cherchell

Stations de Pompage	Destination	Nombre de pompes en service	Nombre de pompes de secours	Capacité actuelle (m³/j)	НМТ (т)	Volume bâche (m3)	CTN (m NGA)
Bakora	Hamdania et El Beldj	1	1	3352	120	50	23
Ancienne d'Oued El	Oued El Bal- lah (Réservoir ANBT)	1	1	500	17		46
Bellah	Hamdania	1	1	1000	51	500	
	Abane Ram- dane (Réser- voir ANP)	1	1	864	45		
Nouvelle d'Oued El Bellah	Cherchell	2	1	9288.8 par pompe	220	500	71
Plateau Sud	Tchoupen	1	1	864	30	50	NA
Oudai Ibra- him	Sidi Cherif et Sidi M'Hamed Lemghit	1	1	1123	125	80	NA
Oued El Hammam	Oued El Hammam Sud	1	1	1032	100	50	NA

II.2.6. Réseaux De Distribution

Au stade actuel de l'étude, il a été constaté que le réseau de Cherchell était divisé en plusieurs zones de distribution, tel que décrit ci-après. (Voir Annexe 4)

Le tableau suivant défini les secteurs de distribution et leurs réservoirs d'alimentation respectifs.

Tableau 5 : Liste des étages de distribution de la commune de Cherchell

Réservoir d'alimentation	Secteur de distribution
Réservoir Ouest	Cherchell Ouest
Réservoir Est	Cherchell Est, Lots Akil, Lots Bilmane
Réservoir Sud Oued El <u>Hammam</u>	Douar Belasker
Réservoir Sidi M'Hmamed Lamghit	Sidi M'Hmamed Lamghit
Réservoir Sidi Cherif	Cité DNC
Réservoir Sidi Bouathmane	Sidi Bouathmane
Réservoir Hamdania	El Hamdania
Réservoir Académie, ANP	Chef-lieu Cherchell
Réservoir Bordj El Ghoula	Quartier Bordj El Ghoula
Réservoir Plateau Sud (Tchoupen)	sidi boulahrouze et plateau sud
Réservoir ANBT	Oued El Bellah
Réservoir Termelil	Localité Termelil et Ben Saleh
Réservoir Boumaaza	Localité Boumaaza

Conclusion:

On a constaté que la ressource en eau provient principalement des champs captant de Bakora ainsi que d'autres forages de la zone, sans oublier l'apport du Barrage de Boukerdane qui renforce l'alimentation de la commune par le biais du réservoir tampon 2000m3 de Sidi Amar.

Sachant aussi qu'en 2014, un volume total de 3 006 999 m³ a été mis en distribution (facturés) sur la commune (source SEAAL).

Les principales caractéristiques des différents organes du système ont ainsi pu être déterminées dans ce chapitre.

Chapitre III : Diagnostic du système d'alimentation en eau potable

Introduction:

Ce chapitre a pour objet de déterminer l'aspect physique du système d'alimentation en eau potable de la commune de Cherchell.

Les enquêtes sur terrain et les données fournies la SEAAL nous ont permis d'établir un bilan de l'état des composantes du système d'AEP , a savoir Station de pompage ,Réservoirs, forages ,conduites d'adduction et de distribution

III. Diagnostic d es ouvrages de production (Forages)

III.1. Conditions de réalisation de l'enquête de terrain

Le diagnostic des forages a été réalisé selon une procédure en 3 étapes :

- Préparation d'une fiche forage descriptive et diagnostic (bureau)
- Renseignement de la fiche sur site (au cours des visites et des investigations de terrain)
- Saisie informatique des données de la fiche et traitement (bureau)

Les enquêtes ont été réalisées par une équipe de 2 ingénieurs du groupement (Sogreah et Bureau Ingénierie Bourouba).

III.2. Résultats de l'enquête et du diagnostic

III.2.1. Principales conclusions

III.2.1.1. Forage F1

Figure 1: Photo du forage F1

Le forage F1 fait partie du champ captant de Bakora. Il alimente le réservoir 500m³ Oued El Bellah.

Il est équipé d'une pompe dont les caractéristiques sont : $Q = 21 \text{m}^3/\text{h}$, HMT = 110m, et P = 55Kw.

Le forage est très difficile d'accès. Le génie civil de l'installation est dans un état moyen.

Le forage est sans abris.

L'ensemble est dans un état moyen.

III.2.1.2. Forage F10

Figure 2: Photo du forage F10

Le forage F10 fait partie du champ captant de Bakora. Il alimente le réservoir 500m³ Oued El Bellah.

Il est équipé d'une pompe dont les caractéristiques sont : $Q = 21 \text{ m}^3/\text{h}$,HMT = 110m, et P = 22Kw.

L'accès au forage se fait par une piste en terre (accessibilité difficile).

Absence de clôture.

L'ouvrage, le groupe de pompage et son alimentation sont dans un mauvais état.

Une fuite a été constate sur l'une des vannes.

Le forage est situé dans un regard et est dans un état moyen.

III.2.1.3. Forage F1 oued el hachem

Figure 3: Photo du forage F1 Oued El Hachem

Le forage F1 Oued El Hachem alimente le réservoir 250m³ Sidi Bouathmane.

Il est équipé d'un groupe électropompe d'une puissance de 37Kw, Q = 30 m³/h et d'une

HMT = 140m

L'accès au forage se fait par une piste en terre (accessibilité difficile).

Absence de clôture.

Absence de trappe d'accès au forage.

Le forage se trouve en plein milieu d'un champ agricole.

III.2.1.4. Forage F1 Bis

Figure 4 : Photo du forage F1 Bis

Le forage F1 Bis fait partie du champ captant de Bakora. Il alimente le réservoir 250m³

Boumaaza.

Il est équipé d'une pompe dont les caractéristiques sont : $Q = 45 \text{ m}^3/\text{h}$, HMT = 140m, et P = 45 Kw

L'accès au forage est difficile.

L'accès, les abords et le génie civil sont dans un très mauvais état.

Le forage est dans un très mauvais état.

III.2.1.5. Forage F2

Le forage F2 fait partie du champ captant de Bakora. Il alimente le réservoir 500m³ Oued El Bellah.

Il est équipé d'une pompe dont les caractéristiques sont : $Q = 137 \text{ m}^3/\text{h}$, HMT = 110m, et P = 67Kw.

L'accès au forage se fait par une piste en terre.

L'équipe du Groupement n'a pas pu accéder au forage car la porte d'entrée était soudée.

III.2.1.6. Forage F8

Le forage F8 fait partie du champ captant de Bakora. Il alimente le réservoir 500m³ Oued El Bellah.

Il est équipé d'une pompe dont les caractéristiques sont : $Q = 36 \text{ m}^3/\text{h}$, HMT = 110m, et P = 30Kw.

L'accès au forage se fait par une piste en terre (accessibilité facile).

Absence de clôture.

Le forage est dans un état dégradé.

III.2.1.7. Forage Saidal

Figure 5: Photo du forage SAIDAL

Le forage Saidal alimente le réservoir 250m³ Bordj El Ghoula.

Son débit est de $Q = 36m^3/h$. Les autres caractéristiques ne sont pas disponibles.

Voie revêtue et accès facile au forage.

Forage équipé d'une clôture.

L'ouvrage, le groupe de pompage et son alimentation sont dans un état moyen.

III.2.1.8. Forage F1 Ben Saleh

Figure 6: Photo du forage F1 Ben Saleh

Le forage F1 Ben Saleh alimente le réservoir 250m³ Termelil.

Son débit est de $Q = 7m^3/h$. Les autres caractéristiques ne sont pas disponibles.

III.2.1.9. Forage Bakora

Figure 7: Photo du forage Bakora

Le forage Bakora fait partie du champ captant de Bakora. Il alimente le réservoir 250m³ Bakora.

Il est équipé d'une pompe de $Q = 40 \text{m}^3/\text{h}$ et P = 22 Kw.

L'accès au forage se fait par une piste en terre.

Présence d'un local technique.

L'accès, les abords et le génie civil sont dans un bon état.

Le forage est dans un état moyen.

III.2.2. Recommandations

III.2.2.1. Forage F01

Réalisation d'une chambre pour les accessoires du forage.

III.2.2.2. Forage F02

Dessouder la porte de ce forage car l'accès est impossible.

III.2.2.3. Forage F08

Equiper le forage avec une piste d'accès et une porte.

III.2.2.4. Forage F10

Réalisation d'une chambre pour les accessoires du forage.

III.2.2.5. Forage F01 Bis

Equiper le forage avec une piste d'accès.

Réalisation d'une chambre pour ses accessoires.

III.2.2.6. Forage de Oued El Hachem

Réparation des fuites signalées sur ce forage.

Réalisation d'une chambre pour ses accessoires.

III.2.2.7. Forage de Saidal

Equiper le forage avec un manomètre.

Eliminer les piquages réalisés anarchiquement sur la conduite de refoulement du forage.

Réalisation d'une chambre pour ses accessoires.

III.2.2.8. Forage de Bakora

Equiper le forage avec un manomètre.

Réparation des fuites signalées sur ce forage.

III.2.2.9. Forage de Ben Saleh

Equiper le forage avec un capot en partie supérieure.

N.B: La majorité des forages doivent être équipées d'une clôture, d'éclairages et de gardiennage.

Les équipements doivent aussi être protégés contre la corrosion.

III.2.3. Bilan

Le tableau suivant est obtenu par agglomération des fiches diagnostic renseignées pour chaque ouvrage et fournit une synthèse des capacités et de l'état des forages sur la commune.

Tableau 1: Fiche synthèse des forages de la commune de Cherchell

								TELIA Breah Algé	RIE	B	Bureau Ingenierie Bourouba
Synthèse du	ı diagn	ostic d	es forages	de		CHERC	HELL		N	° d'ordre	
dentification et loca	lisation de	l'ouvrage									
Daira: CHERCHELL			Commune :	CHEF	CHELL						
Exploitant SEAAL	7		Exploitant APC		2						
Accès, abords et gén	ie civil										
Description et caractéri	istiques										
	voie revêtue	1	piste en terre	8							
Site et abords	clôture	5									
Description de l'ouvi	rage, du por	npage et d	e son alimentatio	n							
Alimentation élect	réseau BT	0	transfo MT/BT	8	sur poteau		groupe	électrogène	0		
Description et caractér	istiques					Eléments de	diagnostic				
Tubage du forage						ES / Bon état	2	mauvais / HS	7		
Crépine (type, matéria	u)					ES / Bon état	0	mauvais / HS	0		
Groupes électropom	pes										
		Nb de pomp	Jec.	9							
		dont secour		0							
Description et caractér	istiques					Eléments de	diagnostic				
Débit nominal (m3/h):	373					Bon état	3	mauvais	6		
Anti-bélier	oui (marque)	1	non	8		ES / Bon état	1	mauvais / HS	0		
Compteur	oui	6	non	3		ES / Bon état	4	mauvais / HS	2		
Asservissement	niveau bas	0	niveau haut	0		ES / Bon état	0	mauvais / HS	0		
élégestion	oui	0	non	9		ES / Bon état	0	mauvais / HS	0		

III.3. Diagnostic des adductions

Ce paragraphe traite de tous les types de conduites d'adduction. On entend par conduite d'adduction toute conduite sans distribution : refoulement de forage, refoulement de station de reprise, transfert entre 2 réservoirs sans distribution en route, adduction gravitaire sans distribution en route.

On distinguera:

- les adductions par refoulement, provenant d'un ou plusieurs forages vers un réservoir de tête ou de distribution, ou d'une station de pompage :
- ✓ les adductions gravitaires constituées d'un transfert entre 2 réservoirs.

III.4. Conditions de réalisation de l'enquête

Le tableau d'inventaire et de diagnostic présenté en annexe de ce chapitre a été préparé puis renseigné au cours des réunions soit avec le responsable de la production et les 3 responsables secteur de la SEAAL pour les communes exploitées par cette dernière, soit avec les subdivisionnaires de la DRE dans les Dairas comprenant des communes où les systèmes sont gérées par les APC.

En outre, une enquête de terrain a été réalisée par 2 ingénieurs hydrauliciens du groupement (Sogreah et Bureau Ingénierie Bourouba), avec comme base de travail : la base de données SIG de la SEAAL et différents documents de la SEAAL et des APC.

III.5. Inventaire des conduites

La première partie des investigations a consisté à recueillir les informations nécessaires de la base de données SIG de la SEAAL ; un travail d'extraction et de traitement a été effectué, qui permet de dresser l'inventaire des conduites selon :

- Le diamètre
- Le matériau
- Le type (refoulement ou gravitaire).

La 2^{ème} étape a consisté à mettre à jour les données de ce fichier sur la base des enquêtes et investigations de terrain, en complétant les données de base du premier tableau par les renouvellements effectués depuis l'établissement du plan.

Le tableau suivant regroupe ces informations :

Tableau 2 : Inventaire des conduites d'adduction de la commune de Cherchell

	duites	Linéaires selon diamètre et par matériau							Linéaires de conduites par période o pose				
DN	Li- néaire total	Am.	Acier	Fonte ductile	autres	PVC	PEHD	Avant 1970	1970-1980	1981-1990	1991-2000	2001-2010	2011-2015
(mm)	(ml)	(ml)	(ml)	(ml)	(ml)	(ml)	(ml)	(ml)	(ml)	(ml)	(ml)	(ml)	(ml)
100	713	/	713	/	/	/	/	/	/	/	713	/	/
150	1487	/	36,1	/	1451	/	/	/	/	36,1	/	1451	/
160	860	/	/	/	/	860	/	/	/	/	860	/	/
200	8339	/	1281,7	7025,3	32,1	/	/	/	/	7057	1282	/	/
250	367	/	/	/	367,4	/	/	/	/	367,4	/	/	/
300	9398	5921	3476,8	/	/	/	/	/	/	/	9398	/	/
400	8359	/	/	2692,6	3252	/	2 414	/	/	5945	2 414	/	/
500	4791	/	/	4791,2	/	/	/	/	/	/	/	4791	/
Total	34 314	5921	5507,6	14509	5102	860	2414	/	/	1340	14 667	6242	/

NB : Les cellules colorées représentent les conduites en refoulement.

La figure suivante donne la répartition des types de conduites d'adduction dans la commune de Cherchell :

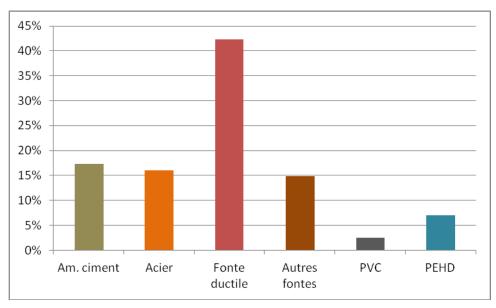


Figure 8 : Pourcentage des conduites d'adduction dans la commune de Cherchell par type de matériau

La figure suivante donne la répartition des conduites d'adduction selon leur période de pose :

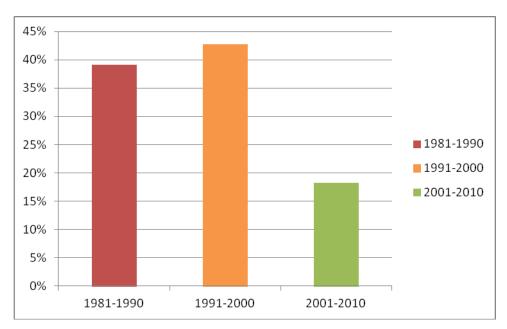


Figure 9 : Pourcentage des conduites d'adduction dans la commune de Cherchell selon leur période de pose

III.6. Bilan du diagnostic et recommandations

Les conduites d'adduction ont été installées entre 1982 et 2004.

• Conduites gravitaires :

Les diamètres varient entre 150 et 400mm. Le matériau majoritaire est la Fonte ductile avec 59%, en deuxième position, vient l'acier (21%), tandis que 10.6% du réseau est en PEHD, 7.7% en Fonte et enfin 1.75% en Fonte grise.

• Conduites en refoulement :

Les diamètres varient entre 100 et 500mm. Le matériau majoritaire est l'amiante ciment avec 51.8%, vient ensuite la fonte ductile (42%) alors que le reste du réseau est en Acier.

Etant donné que les statistiques des fuites et casses sur les adductions ne sont pas disponibles actuellement, seul le retour d'expérience de l'exploitant a été pris en considération pour l'instant pour avoir une idée sur l'état du réseau. Il en ressort que :

- ✓ Les réseaux en PEHD et Fonte sont en bon état (peu d'intervention sur ce matériau)
- ✓ Le réseau en amiante ciment doit être repris intégralement, vu la non-conformité de ce matériau via a vis des règles de sécurité de l'exploitant (matériau cancérigène)

III.7. Diagnostic des stations de pompage

III.7.1. Conditions de réalisation de l'enquête de terrain

Le diagnostic des stations a été réalisé selon une procédure en 3 étapes :

- Préparation d'une fiche station de pompage descriptive et diagnostic (bureau)
- Renseignement de la fiche sur site (au cours des visites et des investigations de terrain)
- Saisie informatique des données de la fiche et traitement (bureau)

Les enquêtes ont été réalisées par 2 équipes du groupement (Sogreah et BIB), constituées de 2 ingénieurs chacune, qui ont effectué cette mission de diagnostic et de récolte d'informations.

La fiche type d'enquête et de diagnostic ainsi que l'ensemble des fiches stations de pompage de la commune sont présentées en annexe 2.

III.8. Résultats de l'enquête et du diagnostic

III.8.1. Principales conclusions

Le système d'AEP de la commune de Cherchell est constitué de 6 stations de pompages dont les principaux éléments des fiches techniques et des entretiens effectués avec les exploitants sont synthétisés ci-après.

III.9. Station de pompage Oued El Bellah (Ancienne)

Figure 10: Photo de l'ancienne station Oued El Bellah

L'ancienne station de pompage de Oued el Bellah reçoit les eaux depuis le réservoir 500m³ Bellah. L'eau collectée est refoulée vers :

- le réservoir ANP 150m³ via une conduite en Acier DN100
- le réservoir ANBT 100m³ via une conduite en PEHD DN110
- le réservoir Hamdania 2x500m³ via une conduite en PEHD DN150

Le site est équipé d'une clôture détériorée. Il est accessible par une piste en terre.

Cette station de pompage comprend les éléments suivants :

- Bâche de reprise : de capacité de 500 m³ qui recueille les eaux provenant du réservoir 500m³ Bellah.
- Conduite d'aspiration : en acier et de diamètre DN100. Cette conduite aspire l'eau de la bâche de reprise vers les groupes électropompes.
- Groupes électropompes de la station :
 - For Groupe 1 (Destination Oued El Ballah) : $Q = 20.8 \text{ m}^3/\text{h}$ et HMT = 17m
 - For Groupe 2 (Destination Hamdania) : $Q = 41.6 \text{ m}^3/\text{h}$ et HMT = 45m
 - For Groupe 3 (Destination ANP) : $Q = 36 \text{ m}^3/\text{h}$ et HMT = 51m
- Conduite de refoulement et protection anti bélier :
- Une conduite de refoulement en Acier DN100 refoule l'eau de la station de pompage vers le réservoir 150m³ ANP.
- Une conduite de refoulement en PEHD DN110 refoule l'eau de la station de pompage vers le réservoir 100m³ ANBT.
- Une conduite de refoulement en PEHD DN150 refoule l'eau de la station de pompage vers le réservoir 2x500m³ Hamdania.
- Pas de protection anti-bélier

La station est dans un mauvais état (équipement et génie civil).

III.10. Station de pompage Oued El Bellah (Nouvelle)

Figure 11: Photo de la nouvelle station Oued El Bellah

La station de pompage Oued El Bellah reçoit les eaux depuis le barrage de Boukourdane et des forages F1, F2, F8 et F10. L'eau collectée est refoulée vers le réservoir tampon Sidi Yahia 1000m^3 via une conduite en Fonte DN500.

Le site est clôturé et accessible par une piste en terre.

Son éclairage est défectueux.

Cette station de pompage comprend les éléments suivants :

- Bâche de reprise : de capacité de 500 m³ qui recueille les eaux provenant du réservoir 500m³ Bellah.
- Conduite d'aspiration : en PEHD et de diamètre DN315. Cette conduite aspire l'eau de la bâche de reprise vers les groupes électropompes.
- Groupes électropompes de la station : 2 pompes équipent la station + 1 de secours : $Q = 387 \text{ m}^3/\text{h}$ / pompe et HMT = 220m
- Conduite de refoulement et protection anti bélier :

- La conduite de refoulement est en Fonte DN500. Elle refoule l'eau de la station de pompage vers le réservoir 1000m³ Sidi Yahia.
- Un réservoir anti-bélier de marque Charlatte et de volume 1.5m³ protège la station.

Dans l'ensemble, la station se trouve dans un bon état (équipement et génie civil)

III.11. Station de pompage Plateau Sud

Figure 12: Photo de la station de pompage Plateau Sud

La station de pompage Oued El Bellah reçoit les eaux depuis le réservoir tampon 1000m³.

L'eau reçue est refoulée vers le réservoir Tchoupen 250m³ via une conduite en Fonte DN100 Acier.

Son éclairage est défectueux.

Cette station de pompage comprend les éléments suivants :

- Bâche de reprise : de capacité de 50 m³ qui recueille les eaux provenant du réservoir tampon 1000m³ Sidi Yahia.
- Conduite d'aspiration : en Acier DN200. Cette conduite aspire l'eau de la bâche de reprise vers les groupes électropompes.

- Groupes électropompes de la station :
- 1 pompe équipe la station + 1 de secours : $Q = 36 \text{ m}^3/\text{h}$ / pompe et HMT = 30m
- Conduite de refoulement et protection anti bélier :
- La conduite de refoulement est en Acier DN100. Elle refoule l'eau de la station de pompage vers le réservoir 250m³ Tchoupen.
- Pas de protection anti bélier

La station est dans un état moyen (équipement et génie civil).

III.12. Station de pompage Bakora

Figure 13 : Photo de la station de pompage Bakora

La station de pompage Oued El Bellah reçoit les eaux depuis le réservoir Bakora 250m³ et F1 Bakora.

L'eau collectée est refoulée vers le réservoir Hamdania 2x500m³ via une conduite en Fonte DN300.

Cette station de pompage comprend les éléments suivants :

 Bâche de reprise : de capacité de 50 m³ qui recueille les eaux provenant du réservoir Bakora 250m³.

- Conduite d'aspiration : en Acier DN300. Cette conduite aspire l'eau du forage F1 Bakora vers les groupes électropompes.
- Groupes électropompes de la station :
- 1 pompe équipe la station + 1 de secours : $Q = 139,66 \text{ m}^3/\text{h}$ et HMT = 120m
- Conduite de refoulement et protection anti bélier :
- La conduite de refoulement est en Acier DN300. Elle refoule l'eau de la station de pompage vers le réservoir 2x500m³ Hamdania.
- Réservoir anti-bélier de marque Charlatte d'un volume de 500L

La station est dans un état moyen (équipement et génie civil).

III.13. Station de pompage Oudai Ibrahim

Figure 14 : Fig III.1. Photo de la station de pompage Oudai Ibrahim

Cette station est à l'arrêt.

Elle a été implantée dans le but de refouler les eaux du réservoir Beau lieu Ouest 2000m^3 vers le réservoir Sidi Cherif 250m^3 . Ses caractéristiques sont : $Q = 47 \text{ m}^3/\text{h}$ / pompe et HMT = 125m.

Mais actuellement, elle est à l'arrêt et le réservoir Sidi Cherif 250m³ est alimenté gravitairement par le réservoir tampon Sidi Yahia 1000m³.

Cet arrêt a pour objectif de réduire le coût énergétique.

III.14. Station de pompage Oued El Hammam

Figure 15: Photo de la station de pompage Oued El Hammam

La station de pompage Oued El Hammam reçoit les eaux depuis le réservoir Oued El Hammam Nord 250m³.

L'eau reçue est refoulée vers le réservoir 250m³ via une conduite en PVC DN160.

Cette station de pompage comprend les éléments suivants :

- Bâche de reprise : de capacité de 50 m³ qui recueille les eaux provenant du réservoir Oued El Hammam Nord 250m³.
- Conduite d'aspiration : en Fonte DN300. Cette conduite aspire l'eau de la bâche de reprise vers les groupes électropompes.
- Groupes électropompes de la station :

- 1 pompe équipe la station + 1 de secours : $Q = 43 \text{ m}^3/\text{h}$ et HMT = 100m
- Conduite de refoulement et protection anti bélier :
- La conduite de refoulement est en PVC DN160. Elle refoule l'eau de la station de pompage vers le réservoir 250m³ Oued el Hammam Sud.
- Pas de protection anti-bélier.

La station est dans un état moyen (équipement et génie civil).

III.14.1. Recommandations

III.15. Station de pompage Oued El Bellah (Ancienne)

Evacuer en urgence l'ancien transformateur Askarel qui se trouve à l'air libre.

Evacuation de l'ensemble du matériel et matériaux réformés.

Bâtis nécessitant des travaux de réfection.

Réparation des toitures.

Aménagement des accès (à bitumer) et de l'aspect extérieur.

Refaire la clôture et le portail et assurer l'éclairage de la station.

Réparer le réservoir anti-bélier qui est hors service.

III.16. Station de pompage Oued El Bellah (Nouvelle)

Possibilité d'extension.

Mettre en place des projecteurs pour éclairer la station.

Prise en charge de la voie d'accès.

Aménagement de voirie et des espaces verts.

III.17. Station de pompage Plateau Sud

Risque d'inondation, il faut prévoir un drainage des eaux pluviales efficace.

Réparation des fenêtres et travaux de peinture.

Mise en place d'un système d'éclairage.

Résoudre les problèmes électriques rencontrés à la station.

III.18. Station de pompage Bakora

Réparer l'éclairage.

Aménager la voirie.

Installer un détecteur d'incendie.

Installer un détecteur anti intrusion.

III.19. Station de pompage Oued El Hammam

Installer un système de manutention.

Entretenir et réparer les pompes.

III.20. Station de pompage Oudai Ibrahim

Réutiliser cette station à d'autres fins ou remplacer les équipements détériorés d'une autre station qui présente les mêmes caractéristiques que celle-ci par ses équipements neufs.

Réaménager le génie civil de la station en une loge gardien.

III.21. Bilan

A part la station ancienne d'Oued el Bellah qui demande une réhabilitation lourde, les autres stations de pompage de Cherchell sont dans un état généralement plus ou moins satisfaisant, mais nécessitant néanmoins des travaux d'amélioration et de mise aux standards : éclairage,

aménagement de voiries et du site, protection incendie, équipement ou vérification du fonctionnement de l'anti bélier.

III.22. Diagnostic des réservoirs

III.22.1. Conditions de réalisation de l'enquête de terrain

Le diagnostic des réservoirs a été réalisé selon une procédure en 3 étapes :

- Préparation d'une fiche réservoir descriptive et diagnostic (bureau)
- Renseignement de la fiche sur site (au cours des visites et des investigations de terrain)
- Saisie informatique des données de la fiche et traitement (bureau)

Les enquêtes ont été réalisées par deux équipes de 02 ingénieurs chacune.

III.23. Résultats de l'enquête et du diagnostic

III.24. Principales conclusions

III.24.1. Reservoir Tampon Hamdania (2x500m³)

Il existe deux réservoirs sur le site Hamdania de capacité 500m³ chacun (nouveau + ancien). Un seul est opérationnel.

La robinetterie est manuelle.

Absence de système d'injection de chlore.

Absence de réserve d'incendie.

Absence d'appareil de mesure de niveaux.

La clôture (2.5m de hauteur) est détruite.

Absence de matériel de sécurité tel que détecteur d'incendie et détecteur anti-intrusion.

Présence d'un local de vannage ainsi que d'espaces verts.

III.24.2. Reservoir Sidi M'hamed Lamghit (250m³)

Figure 16: Photo du réservoir Sidi M'Hamed Lamghit

Absence d'appareil de mesures de niveaux (régulation du niveau par vanne altimétrique).

Absence de système d'injection de chlore

La robinetterie est manuelle.

Matériel de sécurité inexistant.

Le génie civil de l'ouvrage est dans un état correct.

Absence de sanitaires et de voirie.

Absence d'éclairage extérieur et d'espaces verts.

Présence d'une pompe d'alimentation d'un chantier de construction (6.8l/s, 93m).

Présence d'un local de vannage en dur, d'une clôture en dur avec barbelé et d'un portail métallique, le tout en bon état.

L'ouvrage réservoir et ses ouvrages annexes sont dans un bon état (GC).

Les équipements sont dans un bon état.

III.24.3. Réservoir Sidi Cherif 250m³

Figure 17 : Photo du réservoir Sidi Cherif

La robinetterie est manuelle, compteur inexistant.

Absence de système d'injection de chlore.

La mesure de niveau se fait par une vanne altimétrique.

Ouvrage télé-surveillé.

Présence d'une clôture en dur avec barbelé et d'un portail métallique, le tout en bon état.

Absence de sanitaires et de voirie.

Absence d'éclairage extérieur et d'espace vert.

L'aspect extérieur est assez bon.

Réservoir et ouvrages annexes en bon état (GC).

Les équipements sont dans un bon état.

III.24.4. Réservoir Ouest 2000m³

Figure 18 : Photo du réservoir Ouest Cherchell

La robinetterie est manuelle.

Absence de système d'injection de chlore (la chloration est réalisée hors site).

La mesure de niveaux se fait par une vanne altimétrique.

Présence d'une clôture en dur avec barbelé et d'un portail métallique, le tout en bon état.

L'aspect extérieur est bon.

Absence de réserve d'incendie.

La station de pompage du site est à l'arrêt.

III.25. Reservoir Tampon 1000m3 Sidi Yahia

Figure 19 : Photo du réservoir Tampon Sidi Yahia 1000m3

Figure 20 : Photo des deux réservoirs hors service (6000+3000m3)

Clôture en dur neuve (parpaing et barreaudage en construction).

Espace vert aménagé.

Eclairage inexistant.

Site en cours de construction, VRD en cours de réalisation.

Extension existante.

Absence de réserve d'incendie.

02 nouvelles cuves d'une capacité de (6000+3000m³) ont été construites sur le site mais ne sont pas encore en service.

Les nouveaux ouvrages du site sont dans un bon état.

III.26. Reservoir Oued El Bellah 500m3

Figure 21: Photo du réservoir Oued El Bellah

Figure 22 : Photo illustrant l'éclatement du béton du réservoir

ENSH 2014/2015 5

Le réservoir de Oued el Bellah joue le rôle de réservoir d'aspiration pour les deux stations de pompage de Oued El Bellah (ancienne et nouvelle).

La salle des machines de l'ancienne station est dans un état dégradé. Eclatements du béton à divers endroits et présence de fissures longitudinales.

Nettoyage, VRD et éclairage inexistant.

Clôture détruite.

Le réservoir est en mauvais état.

III.27. Reservoir Est 2000m³

Figure 23: Photo du réservoir Est Cherchell

Le site n'a pas été inspecté à l'intérieur car fermé à clé.

Pour ce qui est de l'état extérieur, il est en assez bon état avec notamment une clôture et un portail.

Une grande quantité d'eau passait sous le portail. C'est probablement un débordement du réservoir.

III.28. Reservoir 250m³ Oued El Hammam Nord

Figure 24 : Photo du réservoir Oued El Hammam Nord

La robinetterie est manuelle.

Absence de réserve d'incendie.

Présence d'un transformateur.

Présence de système d'injection de chlore (cuve externe avec pompe et mélangeur).

Absence de mesure de niveau.

Présence d'une clôture en dur.

Les deux portails d'accès sont cassés.

Pas d'éclairage extérieur.

Le regard de vidange du réservoir et celui de la station sont bouchés.

III.28.1.1. Réservoir 250m3 oued el hammam sud

Figure 25 : Photo illustrant la clôture fissurée du site

Des réparations sur la clôture sont nécessaires.

Absence d'espace vert et d'éclairage.

Absence totale de matériel de sécurité (extincteurs, détecteur anti-intrusion, détecteur d'incendie).

III.28.1.2. Réservoir 250m3 sidi Bouathmane

La robinetterie est manuelle.

Absence de compteur et de mesure de niveau.

Absence de réserve d'incendie.

Absence de système d'injection de chlore.

Absence totale de matériel de sécurité.

Clôture fissurée et portail endommagé

Pas d'éclairage extérieur.

Le réservoir est dans un état moyen (GC et équipements).

III.28.1.3. Réservoir 250 m3 hamdania

Site non visité car l'accès au réservoir était impossible (porte fermée).

III.28.1.4. Réservoir 250m3 Bakora

Figure 26: Photo du réservoir Bakora

La robinetterie est manuelle.

Présence de transformateur sur le site.

Mesure de niveau de marque Schneider (Type Sofrel S5550) en très bon état.

Site télé-surveillé.

Tension électrique disponible sur le site 380V.

Présence de 06 extincteurs en cas d'incendie.

Fuite d'eau repérée sur l'une des vannes.

Le réservoir est dans un état moyen (GC et équipements).

III.28.1.5. Réservoir 2x750 m3 academie, anp

La robinetterie est manuelle.

Présence de transformateur sur le site.

Capteur de niveau télé-géré.

Aucune contrainte de voisinage.

Disponibilité d'extension.

Le génie civil est dans un état très dégradé.

Les ouvrages sont anciens (ils datent de l'Indépendance) et nécessitent une inspection approfondie.

III.28.1.6. Réservoir 250m3 bordj el ghoula

Figure 27: Photo du réservoir Bordj El Ghoula

Accès difficile au site (piste entre buissons).

Clôture dégradée.

Absence d'espace vert.

Lampadaires extérieurs défectueux.

Site extérieur abandonné.

Absence de télésurveillance.

Le site se trouve dans une forêt.

III.28.1.7. Réservoir 250m3 plateau sud

Figure 28 : Photo du réservoir Plateau Sud

Figure 29 : Photo du pylône téléphonique OOREDOO

Bâche à eau désaffectée.

L'extérieur du réservoir est en mauvais état.

Un pylône téléphonique OOREDOO est installé sur le site.

VRD inexistant.

Site télé-surveillé.

NB: Les réservoirs restants n'ont pas pu être visités car ils sont gérés par l'armée nationale populaire. Une visite est impossible.

III.28.2. Recommandations

III.28.2.1. Réservoir tampon Hamdania (2x500 m3)

Equiper le réservoir d'un système de mesures de niveaux.

Reconstruire la clôture.

Equiper le site d'un détecteur d'incendie et d'un détecteur anti-intrusion.

III.28.2.2. Réservoir sidi m'hamed lamghit (250 m3)

Equiper le site de matériels de sécurité et d'éclairage.

Réhabiliter la clôture.

Prévoir des sanitaires (WC, douche) et VRD.

Espaces verts et éclairage extérieur sont aussi à prévoir.

III.28.2.3. Réservoir sidi cherif 250m3

Equiper le site d'un système anti-intrusion.

Espaces verts et éclairage extérieur sont aussi à prévoir.

Prévoir des sanitaires (WC, douche) et VRD.

Le réservoir et ses ouvrages annexes nécessitent des travaux de réhabilitation dits "simples".

III.28.2.4. Réservoir ouest 2000m3

Le site nécessite des travaux d'aménagement (espace vert) et l'installation d'un éclairage.

Des travaux d'entretien ordinaires sont également à prévoir (peinture, nettoyage, ...).

III.28.2.5. Réservoir tampon 1000m3 sidi yahia

Prévoir un système d'éclairage.

Site en cours de construction, VRD en cours de réalisation.

III.28.2.6. Réservoir oued el bellah 500m3

Evacuation du transformateur Askarel et de l'ancien matériel.

Réparation ou reconstruction de la clôture.

Réhabiliter l'ancien réservoir et prévoir un nouveau.

Nettoyage, VRD et éclairage extérieur à installer.

III.28.2.7. Réservoir est 2000m3

Placer une vanne altimétrique sur la conduite d'arrivée du réservoir ou mettre en place un robinet flotteur à l'intérieur du réservoir.

III.28.2.8. Réservoir 250m3 oued el hammam nord

Réparer les deux portails d'accès.

Réhabiliter et renforcer la clôture.

Prévoir un système d'anti-intrusion et un éclairage extérieur.

Déboucher le regard de vidange.

Prévoir une loge gardien équipée de sanitaires.

III.28.2.9. Réservoir 250m3 oued el hammam sud

Des réparations localisées sur la clôture sont nécessaires.

Aménager des espaces verts et mettre un système d'éclairage.

Installer un matériel de sécurité (extincteurs, détecteur anti-intrusion, détecteur d'incendie).

III.28.2.10. Réservoir 250m3 sidi bouathmane

Installer un compteur et un appareil de mesure de niveau.

Installer le matériel de sécurité.

Réparer le portail et réhabiliter la clôture.

Installer un système d'éclairage extérieur.

III.28.2.11. Réservoir 250 m3 hamdania

Site non visité car l'accès au réservoir était impossible (porte fermée).

III.28.2.12. Réservoir 250m3 bakora

Réparer la fuite d'eau signalée sur l'une des vannes.

III.28.2.13. Réservoir 2x750 m3 academie, anp

Réhabiliter le génie civil de l'ouvrage qui est dans un état très dégradé.

Les ouvrages sont anciens (ils datent de l'Indépendance) nécessitent une inspection approfondie.

Une étude est en cours pour by-passer ces réservoirs anciens et très détériorés.

III.28.2.14. Réservoir 250m3 bordj el ghoula

Prévoir une route d'accès.

Réparer la clôture.

Aménager des espaces verts.

Mettre en place un système d'éclairage extérieur.

Nettoyer le site.

Mettre en place un système de télésurveillance.

III.28.2.15. Réservoir 250m3 plateau sud

Enlever 02 arbres qui présentent un risque pour la clôture.

Réhabiliter la structure du réservoir.

Prévoir des sanitaires et des travaux de nettoyage.

Mettre en place un VRD, un système anti-intrusion et assurer l'éclairage extérieur

III.29. Bilan

Le tableau suivant est obtenu par agglomération des fiches diagnostic renseignées pour chaque ouvrage et fournit une synthèse des capacités et de l'état des réservoirs sur la commune.

Tableau 3 : Fiche synthèse des réservoirs de la commune de Cherchell

								ELIA Algérie		5 Ingénierie Bourouba
Fiche synthése des réser	voi	irs de la com	nu	ne de Cherc	hell	000.		ALGERGE		
DairaCherchell		Commune		Cherchell						
A - Renseignements généraux										
<u> </u>	F	1								
Exploitant :	20	SEAAL	0	APC	0	Autre				
Volume total de stockage :	L	19850 m³								
Origine x,y, z	0	Levé topo NGA	15	Levé GPS visite	5	Référer	ncé S	SIG	0 Au	ıtre
Forme du reservoir :	0	Rectangulaire	H	Circulaire						
Materiaux de construction :	-	Béton	=	Métallique	-	ļ				
Type de reservoir:	10	Château d'eau	2	au sol	1	Enterré			17 Se	emi enterré
Réserve incendie:	3	Oui	17	Non						
Alimentation de l'ouvrage	6	Forage	9	Réservoir	5	Station	de p	ompage	0 St	ation de traitement
D. Descriptif of Livery of										
B - Descriptif et diagnostic										
Désignation		Caracté	risti	ques					Etat	
Robineterie	20	Manuelle	_	Motorisé	20	Bon	0	Moyen	0	Mauvais
Comptage	1	Oui	=	Non	1	Bon	0	Moyen	1	
Mesure de niveau	7	Oui	\leftarrow	Non	-	Bon	Ė	Moyen	1	
Télésurveillance	9	Oui	⇇	Non	#		Ť	.,		
Système d'injection de chlore	Ħ	Oui	늘	Non	+					
Raccordement au réseau(HT-MT-BT)	H	JOul	19	INOII	+					
	15	Oui	5	Non						
Matériel de sécurité	F		T							
Détecteur d'incendie	0	Oui	20	Non						
Détecteur anti-intrusion	0	Oui	20	Non						
Génie civil										
20 Ouvrage					4	Bon	13	Moyen	3	Mauvais
9 Local de vannage					8	Bon	0	Moyen	1	Mauvais
Sanitaire (WC, Douche)					0	Bon	0	Moyen	0	Mauvais
17 Clôture					13	Bon	1	Moyen	3	Mauvais
Portail	17	Oui	3	Non	-=	Bon	0	Moyen	3	Mauvais
Voirie	_	Revêtue	=	Piste		Bon	Ħ	Moyen		Mauvais
Espace vert		Oui		Non			T			
9 Éclairage extérieur	\vdash	J G I	Ť							
Inondabilité	0	Oui	20	Non						
	نا	100	-ت							

ENSH 2014/2015 7

III.30. Diagnostic des réseaux de distribution

III.30.1. Conditions de réalisation de l'enquête

Le tableau d'inventaire et de diagnostic présenté ci-dessous a été préparé au bureau puis renseigné au cours des réunions :

- avec le responsable de la distribution et les 3 responsables secteur de la SEAAL pour les communes exploitées par la SEAAL,
- avec les subdivisionnaires de la DRE dans les Dairas comprenant des communes où les systèmes sont gérés par les APC.

Cette enquête a été menée dans le but de collecter le maximum d'information concernant le réseau de distribution de Cherchell.

III.30.2. Inventaire des conduites

La première partie des investigations a consisté à recueillir les informations de la base de données SIG de la SEAAL; un travail d'extraction et de traitement a été effectué, qui permet de dresser l'inventaire des conduites selon :

- Le diamètre.
- Le matériau.

La 2^{ème} étape a consisté à mettre à jour les données de ce fichier sur la base des enquêtes et investigations de terrain, en complétant les données de base du premier tableau par les renouvellements effectués depuis l'établissement du plan.

Le tableau suivant regroupe ces informations.

Tableau 4: Inventaire des conduites de distribution de la commune de Cherchell

1.	Tableau 4 : Inventaire des conduites de distribution de la commune de Cherchell												
Con	duites	Liné	aires selon	diamè	tre et p	oar maté	riau	Linéa	ires d		uites pa	ar péric	ode de
DN	Li- néaire total	Acier	Fonte ductile	autres fontes	PVC	PEHD	AG	Avant 1970	1970-1980	1981-1990	1991-2000	2001-2010	2011-2015
(mm)	(ml)	(ml)	(ml)	(ml)	(ml)	(ml)	(ml)	(ml)	(ml)	(ml)	(ml)	(ml)	(ml)
30	108,3	/	/	/	/	/	108	/	108	/	/	/	/
33	258	/	/	/	/	/	258	/	258	/	/	/	/
40	1264	/	/	/	107	306	851	/	851	107	306	/	/
50	2 448	/	/	/	239	1317	893	/	893	239	1317	/	/
63	8 435	232	/	/	4454	3749	/	/	/	4454	3749	/	/
75	1 893	548	/	/	1264	/	81	/	81	1264	/	/	/
80	5046	4768	/	/	277	/	/	/	/	227	/	/	/
90	11 547	424	/	/	3129	6091	1 903	/	190	3129	6091	/	/
100	3 649	2481	453	548	/	/	167	/	715	453	/	/	/
110	6 912	/	/	/	3042	3870	/	/	/	3042	3870	/	/
125	1140	/	/	/	1140	/	/	/	/	1140	/	/	/
150	905	884	/	/	20	/	/	/	/	20	/	/	/
160	6 929	/	/	/	6371	558	/	/	/	6371	/	558	/
200	2661	1342	/	/	1319	/	/	/	/	1319	/	/	/

Cone	duites	Linéa	aires selon	ı diamè	tre et p	oar maté	riau	Linéaires de conduites par période de pose					
DN	Li- néaire total	Acier	Fonte ductile	autres fontes	PVC	PEHD	AG	Avant 1970	1970-1980	1981-1990	1991-2000	2001-2010	2011-2015
(mm)	(ml)	(ml)	(ml)	(ml)	(ml)	(ml)	(ml)	(ml)	(ml)	(ml)	(ml)	(ml)	(ml)
250	11,6	5	/	/	7	/	/	/	/	7	/	/	/
300	2 837	1072	/	/	904	860	/	/	/	904	/	860	/
400	1078	/	1078	/	/	/	/	/	/	1078	/	/	/
Total	57121	11756	1531	548	2227 4	16751	4261	/	444 3	2375 5	1533 3	1418	/

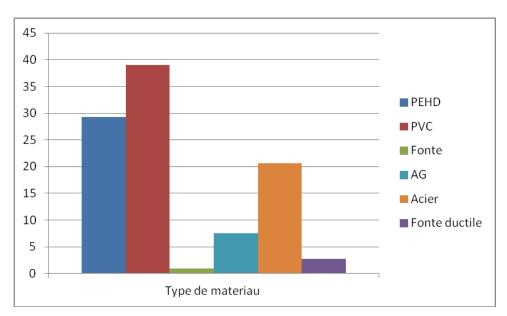


Figure 30 : Pourcentage des conduites de distribution dans la commune de Cherchell par type de matériau

On constate que le PVC est majoritaire avec 39% du linéaire. Vient ensuite le PEHD avec 29.3% et l'acier avec 20.6%. L'acier galvanisé, la fonte ductile et la fonte représentent respectivement : 7.5%, 2.68% et 0.96%.

La figure suivante donne la répartition des conduites de distribution selon leur période de pose :

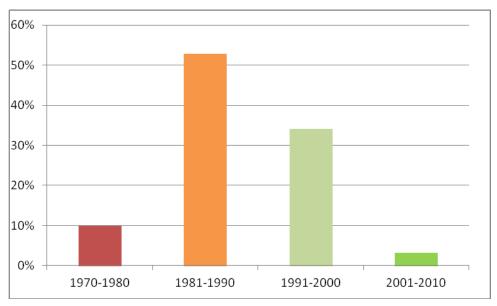


Figure 31 : Pourcentage des conduites de distribution dans la commune de Cherchell selon leur période de pose

Selon l'exploitant, les conduites en PVC posent de nombreux problèmes parce qu'il est peu résistant à l'usure et vieillit mal (jaunissement avec le temps).

Un programme de remplacement devrait être mise en place de même que pour les conduites en fonte et acier galvanisé.

III.31. Situation des fuites et casses

Les informations transmises par la SEAAL à propos des fuites sur la commune de Cherchell ont été traitées. La synthèse figure dans le tableau ci-dessous. A noter qu'il n'y a pas eu de distinction entre les conduites d'adduction et les conduites de distribution.

Tableau 5 : Commune de Cherchell - Fuites réparées en 2012 et 2013

	Etat des fuites réparées du 26/12/2011 au 25/12/2013												
Période	Réclamation sur fuite poste comptage	Fuite branche- ment	Fuite sur conduite <= 300	Fuite conduite > 300	Total général								
26/12/2011 au 25/12/2012	6	346	295		647								
26/12/2012 au 25/12/2013	57	451	391		899								

On constate que le nombre total de fuites réparées est passé de 647 fuites en 2012 à 899 en 2013. Cette augmentation est normale, car l'augmentation des volumes d'eau mis en distribution et l'amélioration de la qualité de service favorise l'apparition des fuites sur des réseaux vétustes ou lorsque la distribution n'est pas en H24. Cet état de fait donne une indication sur l'état dégradé du réseau d'adductions et de distribution.

Le ratio du nombre de fuites / an / km de réseau est de 3.79 (= 686/90.6/2), ce qui est relativement fort et laisse présager d'un réseau en état plutôt mauvais, ce qui est en accord avec le constat précédent.

III.32. Qualité du service

En marge du diagnostic sur les réseaux proprement dit, les enquêteurs ont tenté d'identifier les zones de la distribution selon la qualité de service, qui s'exprime en fonction du nombre d'heures d'interruption moyenne par jour ou du nombre de jours de distribution « normale » par semaine.

Les résultats obtenus sur la commune de Cherchell sont repris sur la figure ci-dessous et le tableau qui suit :

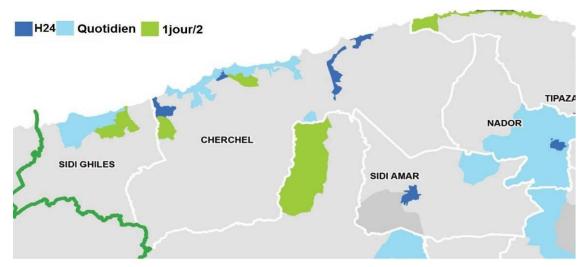


Figure 32 : Carte des zones de distribution selon qualité de service

Tableau 6 : Liste des zones de desserte selon la qualité de service

Diagnostic du niveau de service par zone de distribution											
Nom du quartier zone de des	serte		Qualité de la desserte								
			Excellente	Très bonne	Bonne	Médiocre	mauvaise				
			H24	quotid. > 12 h	quotid. < 12 h	1 jour /2	1 jour /3				
Hamdania											
Domaine Ben Khiera											
Sidi bouathmane											
Usine Oued El Belaah											
Quartier Bordj el Ghoula											
Lotissement Akil											
Lotissement Bilmane											
Ecole militaire de CHERCHEL	.L										
Plateau Sud Sidi Yahia											
Académie militaire de CHERO	CHELL										
Centre ville CHERCHELL											
Domaine Belhacane											
Douar Belasker											
Oued El Hammam Nord											
Cité DNC											
Cité Boulahrouz											
Domaine Sidi Cherif											
Logements ilicites											
Oued El Hammam Sud		<u></u>									

III.33. Conclusion et recommandations

III.33.1. Réseaux

III.33.2. Adduction

Il est constaté que l'état du réseau d'adduction est dans un état moyen et qu'une partie doit être remplacée.

- ✓ Le réseau en PEHD et Fonte est en bon état (peu d'intervention sur ce matériau)
- ✓ Le réseau en Amiante Ciment doit être remplacé

III.33.3. Distribution

Selon l'exploitant, les conduites en PVC posent de nombreux problèmes. Un programme de remplacement a été mis en place très récemment.

Des recommandations quant au remplacement des conduites seront données après avoir réalisé le diagnostic hydraulique.

III.33.4. Réservoirs

Il a été constaté que la plupart des réservoirs ne sont pas équipés de réserve d'incendie.

Les clôtures et portails sont détériorés et ont besoin d'être rénovés ou reconstruits.

Il y a peu de réservoirs munis de sanitaires et de système de sécurité ; il faudra donc les installer.

Les sites sont parfois laissés à l'abandon ; il faut donc les entretenir.

Il faut équiper l'ensemble des ouvrages de projecteurs pour l'éclairage extérieur.

Il faut aménager la voirie et faire quelques petits travaux généraux de réhabilitation.

III.33.5. Stations de pompage

Réparer l'anti-bélier de l'ancienne station Oued El Bellah

Equiper l'ensemble des stations de projecteurs pour l'éclairage extérieur.

III.33.6. Forages

Equiper la majorité des forages d'une clôture, d'éclairage extérieur et de loge gardiens.

Réparer les différentes fuites signalées au niveau de chaque forage.

Chapitre IV: Calcul des besoins en eau potable

IV.1. Introduction:

Afin d'estimer avec plus d'exactitude possible la quantité d'eau nécessaire à la consommation de notre agglomération, on procède, dans ce chapitre, à l'évaluation de ses besoins en eau

potable.

Cette évaluation varie considérablement en fonction de l'évolution démographique, des caractéristiques et des habitudes de la population, du climat de la région, de la taille de la

localité, ainsi que du rythme des activités humaines.

IV.2. Evaluation de la population :

L'objectif de notre étude est de satisfaire les besoins en eau potable à l'horizon 2040, ainsi

nous allons estimer la population future.

En Algérie il a été constaté que l'évolution démographique suit la loi des accroissements

géométriques qui donnée par la formule suivante :

$$P_n = P_0 [1 + \tau]^n$$

Avec:

P n : Population future prise à l'horizon quelconque (hab.) ;

P0 : Population de l'année de référence (hab.) ;

τ : Taux d 'accroissement annuel de la population

n : Nombres d'années séparant l'année de référence a l'horizon considéré.

D'après le RGPH 2008, la population de Cherchel est estimée a 28872 habitants. Le taux

d'accroissement est de 1.7%.

Le nombre d'habitants de la ville de Cherchel pour différents horizons est donné dans le

tableau ci-dessous:

81

Tab IV.1: Evolution de la population de Cherchel

Horizons	RGPH	Actuel	Court	Moyen	Long
Années	2008	2015	2025	2030	2040
Population	28872	32488	38453	41835	49516

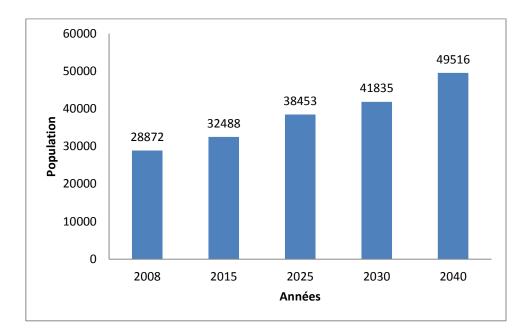


Fig IV.1: Evolution de la population de Cherchel

IV.3.Les besoins en eau potable :

L'évaluation de la quantité d'eau ne peut se faire avec grande certitude, chaque catégorie de besoins dépend de nombreux paramètres, dont l'évolution dans le temps est variable et change d'une agglomération à l'autre. Les besoins en eau nécessaire dépendent aussi du climat, des habitudes de la population, du type de l'agglomération, du degré d'équipement et de la catégorie du consommateur.

On distingue au sein de notre agglomération deux types de consommation : la consommation domestique et la consommation des équipements.

Consommation moyenne journalière

La consommation moyenne journalière est exprimée en mètre cube par jour et donnée par la relation suivante :

$$Q_{moyj} = \frac{(Qi \times Ni)}{1000} \quad \text{en } [\mathbf{m}^3/\mathbf{j}]$$

Avec:

 $\mathbf{Q}_{\mathbf{moy}, j}$: Consommation moyenne journalière en m³/j;

Qi: Dotation moyenne journalière en 1/j/hab;

Ni: Nombre de consommateurs.

IV.4.Choix de la dotation :

Elle est définie comme étant la quantité d'eau potable, par jour, que doit recevoir effectivement un habitant au niveau de son robinet pour couvrir ses besoins domestiques journaliers.

En suivant les hypothèses de calcul de la demande en eau de l'étude d'actualisation du Plan National de l'Eau de 2010 (PNE).

Tab IV.2.: Typologie agglomération

Typologie agglomération	n / Strates de population
Désignation	Caractéristique
les métropoles à statut particulier de délégatio n (SPE)	Alger; Oran; Constantine; Annaba
Les métropoles	villes de plus de 300.000 habitants
L'urbain dit «supérieur »	100.000 < pop < 300.000 habitants
L'urbain	20.000 < pop < 100.000 habitants
Semi urbain	5.000 < pop < 20.000 habitants
Semi rural	3.000 < pop < 5.000 habitants
Rural aggloméré	600 < pop < 3.000 habitants
Rural éparse	population inférieure à 600 habitants (100 unités d'habitation).

Compte tenu du nombre d'habitants, Cherchel occupe le statut urbain supérieur.

La dotation unitaire domestique varie dans le temps et selon la typologie de l'agglomération comme indiqué dans le tableau ci-dessous :

TAB IV.3 Evolution des dotations unitaires domestiques en l/jour/ha

HORIZON	2010	2015	2020	2025	2030
métropoles à statut particulier de délégation (SPE)	100	105	110	115	120
métropoles	90	95	100	110	120
urbain supérieur	85	85	90	100	110
urbain	80	85	90	100	110
Semi urbain	80	80	85	90	100
Semi rural	75	80	85	90	100
Rural aggloméré	70	75	80	85	90
Eparse	60	60	60	60	60

Une fois les dotations choisies, on peut ainsi calculer le débit moyen journalier, le tableau qui suit indique les valeurs de ce dernier pour différents horizons :

IV.5.Consommation journalière :

Tab IV.4: Débits domestique

Horizons	Actuel	Court	Moyen	Long
Années	2015	2025	2030	2040
Population	32488	38453	41835	49516
Dotation l/j/hab	85	100	110	120
Q (1/j)	2761480	3845300	4601850	5941920
Q (m3/j)	2761,48	3845,3	4601,85	5941,92
Q (1/s)	31,962	44,506	53,262	68,772

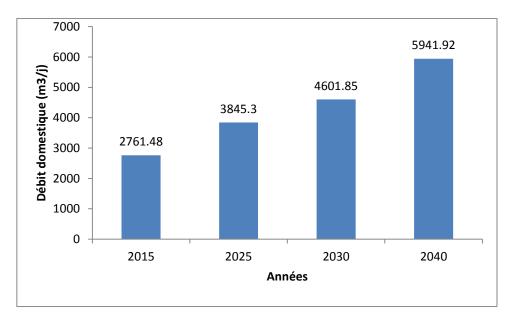


Fig IV.2 : Débits domestique a différents horizons

IV.6.Consommation des équipements :

Suivant le Plan Nationale de l'eau, les besoins des équipements seront majorés d'après la catégorie de ces derniers :

Tab IV.5 : Débit des équipements pour l'année 2015 et 2025

Besoins en eau des équipements %				2015			2025	
Catégorie	%		Q (1/j)	Q (m3/j)	Q (l/s)	Q (1/j)	Q (m3/j)	Q (1/s)
Administration	0,2	1,2	552296	552,296	6,392	769060	769,060	8,901
Commerce	0,1	1,1	276148	276,148	3,196	384530	384,530	4,451
Artisanat et petite usine	0,1	1,1	276148	276,148	3,196	384530	384,530	4,451
		Total	1104592	1104,592	12,785	1538120	1538,120	17,802

Tab IV.6: Débit des équipements pour l'année 2030 et 2040

Besoins en eau des équipements %				2030		2040			
Catégorie	%		Q (1/j)	Q (m3/j)	Q (1/s)	Q (1/j)	Q (m3/j)	Q (1/s)	
Administration	20%	1,2	920370	920,370	10,652	1188384	1188,384	13,754	
Commerce	10%	1,1	460185	460,185	5,326	594192	594,192	6,877	
Artisanat et petite usine	10%	1,1	460185	460,185	5,326	594192	594,192	6,877	
		Total	1840740	1840,740	21,305	2376768	2376,768	27,509	

Le tableau suivant récapitule les demandes en eau potable des équipements :

Tab IV.7: Récapitulatif des débits des équipements

Horizons	Actuel	Court	Moyen	Long
Années	2015	2025	2030	2040
Population	32488	38453	41835	49516
Q (1/j)	1104592	1538120	1840740	2376768
Q (m3/j)	1104,592	1538,12	1840,74	2376,768
Q (1/s)	12,78463	17,80231481	21,305	27,509

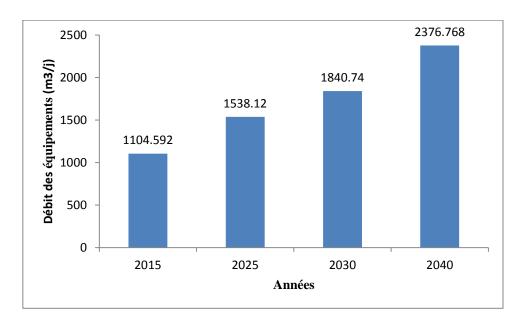


Fig IV.3 : Débits des équipements

Après une étude détaillée des différents besoins en eau, nous dressons un tableau récapitulatif des différentes catégories de consommations et le débit total demandé par l'agglomération à différents horizons.

Tab IV.8: Récapitulatif des débits de Cherchel

Horizons	Actuel	Court	Moyen	Long
Années	2015	2025	2030	2040
Population	32488	38453	41835	49516
Q dom m3/j	2761,48	3845,3	4601,85	5941,92
Q equi m3/j	1104,592	1538,12	1840,74	2376,768
Q dom+eq m3/j	3866,072	5383,42	6442,59	8318,688
Q dom+eq 1/j	3866072	5383420	6442590	8318688
Q dom+eq 1/s	44,746	62,308	74,567	96,281
Qtouristique m3/j	579,9108	807,513	966,3885	1247,8032
Qtouristique 1/j	579910,8	807513	966388,5	1247803,2
Qtouristique 1/s	6,7119306	9,3462153	11,185052	14,442167
Qtotal m3/j	4445,9828	6190,933	7408,9785	9566,4912
Qtotal l/j	4445983	6190933	7408979	9566491
Qtotal 1/s	51,458	71,654	85,752	110,723

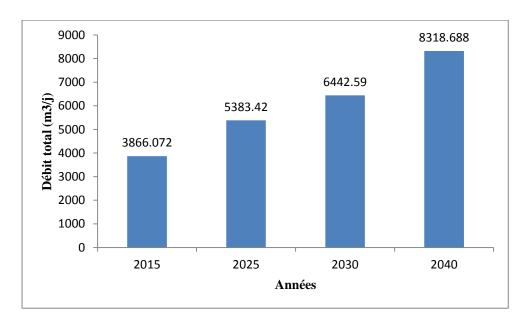


Fig IV.4 : Débit total de Cherchel

IV.7. Etude de la variation de la consommation :

• Coefficients d'irrégularité :

• Coefficient maximum d'irrégularité journalière (K_{max,j}):

Du fait de l'existence d'une irrégularité de la consommation journalière au cours de l'année, on doit tenir compte de cette variation en déterminant le rapport :

$$K_{\text{max, j}} = Q_{\text{max, j}} / Q_{\text{moy, j}}$$

Ce coefficient $K_{max,j}$ varie entre 1.1 et 1.3, il indique de combien de fois la consommation maximale dépasse la consommation moyenne.

Pour notre cas on prend $K_{\text{max } i} = 1,2$.

• Coefficient minimum d'irrégularité journalière (K_{min,j}) :

Il est défini comme étant le rapport de la consommation minimum par la consommation moyenne journalière, donné par la relation suivante :

$$K_{min,j} = Q_{min,j} / Q_{moy,j}$$

Ce coefficient varie de 0,7 à 0,9. Il indique de combien de fois la consommation minimale est inferieure a la consommation moyenne.

Pour notre cas on prend $K_{min j} = 0.8$.

• Coefficient maximum horaire (K_{max,h}):

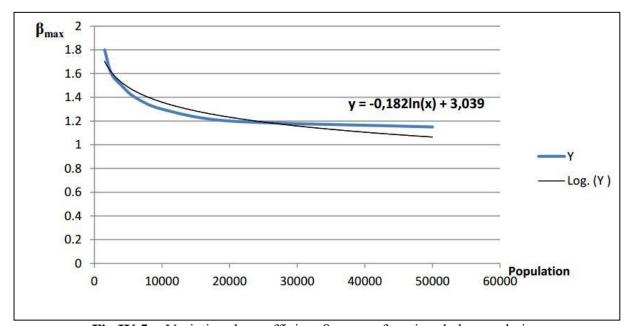
Ce coefficient représente l'augmentation de la consommation horaire pour la journée. Il tient compte de l'accroissement de la population ainsi que du degré de confort et du régime de travail de l'industrie.

Ce coefficient peut être décomposé en deux autres coefficients : α_{max} et β_{max} tel que :

$$K_{\text{max.h}} = \alpha_{\text{max}} * \beta_{\text{max}}$$

Avec:

 α_{max} : Coefficient qui tient compte du confort des équipements de l'agglomération et du régime de travail, varie de 1,2 à 1,4 et dépend du niveau de développement local.


Pour notre cas on prend $\alpha_{max} = 1,35$.

 β_{max} : Coefficient étroitement lié à l'accroissement de la population. Le tableau qui suit nous donne sa variation en fonction du nombre d'habitants.

Tab IV.9 : Variation du coefficient β_{max}

Habitant	<1000	1500	2500	4000	6000	10000	20000	50000
B _{max}	2	1,8	1,6	1,5	1,4	1,3	1,2	1,15

La figure ci-dessous représente la variation du coefficient β max en fonction du nombre d'habitants, nous remarquons que cette évolution n'est pas linéaire, elle est de type logarithmique.

Fig IV.5:: Variation du coefficient βmax en fonction de la population

Le paramètre β_{max} suit la loi suivante :

$$\beta$$
max= -0,182 ln (population) +3,039

Les valeurs de β_{max} pour différents horizons sont données par le tableau suivant :

Tab IV.10 : Valeurs de βmax à différents horizons

βmax=	2015	2020	2030	2040
	1,1482701	1,1175911	1,1022491	1,0715707

Et ainsi, on peut calculer le coefficient maximum horaire $(K_{max,h})$ qui sera donc :

Tab IV.11 : Valeurs de K_{max,h} à différents horizons

Kmax h	2015	2020	2030	2040
	1,5501646	1,5501646	1,4880363	1,4466204

• Calcul des débits journaliers :

• Débit maximal journalier (Qmax,j) :

C'est la consommation d'eau du jour le plus chargé de l'année : il s'obtient par la relation suivante :

$$Q_{\text{max},j} = K_{\text{max},j} * Q_{\text{moy},j} (m^3/j)$$

Avec:

Qmoy.j: Consommation moyenne journalière (m³/j)

Kmax,j: Coefficient d'irrégularité journalière maximum, Kmax,j= (1,2)

• Débit minimal journalier (Qmin,j) :

C'est la consommation d'eau du jour le moins chargé de l'année. Il s'obtient par la relation suivante :

$$Q_{\text{min},j} = K_{\text{min},j} * Q_{\text{moy},j} \quad (m^3/j)$$

Avec:

Qmoy.j : Consommation moyenne journalière (m³/j)

Kmin,j: Coefficient d'irrégularité journalière minimum, Kmin,j= (0,8)

Les consommations moyennes, maximales et minimales journalières sont représentées dans le tableau suivant :

Tab IV.12 : débits max et min journaliers

	Horizons	Actuel	Court	Moyen	Long
	Années	2015	2025	2030	2040
	Population	32488	38453	41835	49516
Journalière	Q moy j m3/j	4445,9828	6190,933	7408,9785	9566,4912
	Q max j m3/j	5335,179	7429,120	8890,774	11479,789
	Q min j m3/j	3556,786	4952,746	5927,183	7653,193

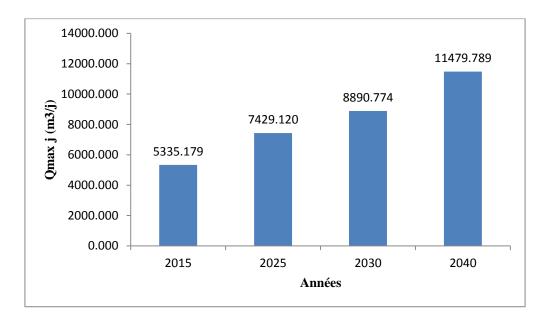


Fig IV.6: Débit max et min journaliers

- Calcul des débits horaires :
- Débit moyen horaire Q_{moy,h}:

Le débit moyen horaire est donné par la relation suivante :

$$Q_{\text{moy}, h} = Q_{\text{max}, j} / 24$$
 (m^3/h)

Avec:

 $Q_{\text{max},\,j}$: Débit maximum journalier en m^3/j

• Débit maximal horaire Q_{max,h}:

Ce débit joue un rôle très important dans les différents calculs du réseau de distribution, il est déterminé par la relation suivante :

$$Q_{\text{max},h} = K_{\text{max},h} * Q_{\text{moy},h} \ (m^3/h)$$

Avec:

Q_{moy,h}: Débit moyen horaire en m³/h

 $K_{\text{max},h}$: Coefficient d'irrégularité maximale horaire

Les consommations moyennes et maximales horaires sont représentées dans le tableau suivant :

Tab IV.13: Débits moyen et max horaire

	Horizons	Actuel	Court	Moyen	Long
	Années	2015	2025	2030	2040
	Population	32488	38453	41835	49516
Horaire	Q moy h m3/h	222,29914	309,54665	370,44893	478,32456
	Q max h m3/h	344,60025	479,84825	551,24143	691,95408

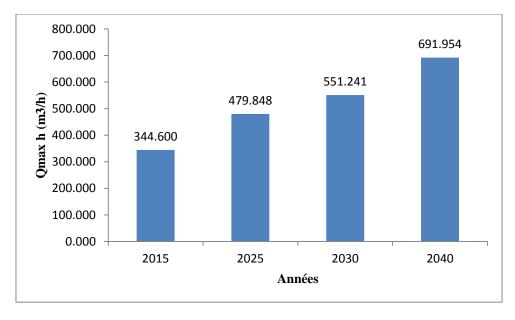


Fig IV.7 : Débit moyen et max horaire

• Etude de la consommation horaire :

Le débit horaire d'une agglomération est variable selon l'importance de cette dernière. La variation des débits horaires d'une journée est représentée en fonction du nombre d'habitants dans le tableau suivant :

Tab IV.14 : Variation des débits horaire dans une agglomération selon la population

Heures	Moins de	10001 à	50001 à	Plus de	Agglomération
	10000	50000	100000	100000	type rural
0-1	1	1.5	3	3.35	0.75
1-2	1	1.5	3.2	3.25	0.75
2-3	1	1.5	2.5	3.3	1
3-4	1	1.5	2.6	3.2	1
4-5	2	2.5	3.5	3.25	3
5-6	3	3.5	4.1	3.4	5.5
6-7	5	4.5	4.5	3.85	5.5
7-8	6	5.5	4.9	4.45	5.5
8-9	6	6.25	4.9	5.2	3.5
9-10	5	6.25	5.6	5.05	3.5
10-11	4	6.25	4.8	4.85	6
11-12	5	6.25	4.7	4.6	8.5
12-13	7	5	4.4	4.6	8.5
13-14	7	5	4.1	4.55	6
14-15	5	5	4.2	4.75	5
15-16	4	6	4.4	4.7	5
16-17	5	6	4.3	4.65	3.5
17-18	6	5.5	4.1	4.35	3.5
18-19	6	5	4.5	4.4	6
19-20	5	4.5	4.5	4.3	6
20-21	4.5	4	4.5	4.3	6
21-22	3	3	4.8	4.2	3
22-23	2	2	4.6	3.75	2
23-24	1	1.5	3.3	3.7	1
Total	100%	100%	100%	100%	100%

Nous allons procéder à l'étude de la variation de la consommation horaire à différents horizons, les résultats sont exprimés dans le tableau suivant :

Tab IV.15 : Consommation horaire pour l'année 2015 et 2025

Heures			2015		2025				
	_	max j = 35,17936 m3/j	Courbe	cumulée	Q max j = 7429,1196 m3/j		Courbe	Courbe cumulée	
h	Ch %	m3/h	Ch %	m3/h	Ch %	m3/h	Ch %	m3/h	
0-1	1,5	80,028	0	0	1,5	111,437	0	0	
1-2	1,5	80,028	1,5	80,03	1,5	111,437	1,5	111,44	
2-3	1,5	80,028	3	160,06	1,5	111,437	3	222,87	
3-4	1,5	80,028	4,5	240,08	1,5	111,437	4,5	334,31	
4-5	2,5	133,379	6	320,11	2,5	185,728	6	445,75	
5-6	3,5	186,731	8,5	453,49	3,5	260,019	8,5	631,48	
6-7	4,5	240,083	12	640,22	4,5	334,310	12	891,49	
7-8	5,5	293,435	16,4	874,97	5,5	408,602	16,4	1218,38	
8-9	6,25	333,449	21,9	1168,40	6,25	464,320	21,9	1626,98	
9-10	6,25	333,449	28,2	1504,52	6,25	464,320	28,2	2095,01	
10-11	6,25	333,449	34,5	1840,64	6,25	464,320	34,5	2563,05	
11-12	6,25	333,449	40,8	2176,75	6,25	464,320	40,8	3031,08	
12-13	5	266,759	47	2507,53	5	371,456	47	3491,69	
13-14	5	266,759	52	2774,29	5	371,456	52	3863,14	
14-15	5,5	293,435	56,9	3035,72	5,5	408,602	56,9	4227,17	
15-16	6	320,111	62,4	3329,15	6	445,747	62,4	4635,77	
16-17	6	320,111	68,4	3649,26	6	445,747	68,4	5081,52	
17-18	5,5	293,435	74,5	3974,71	5,5	408,602	74,5	5534,69	
18-19	5	266,759	80	4268,14	5	371,456	80	5943,30	
19-20	4,5	240,083	84,9	4529,57	4,5	334,310	84,9	6307,32	
20-21	4	213,407	89,4	4769,65	4	297,165	89,4	6641,63	
21-22	3	160,055	93,3	4977,72	3	222,874	93,3	6931,37	
22-23	2	106,704	96,4	5143,11	2	148,582	96,4	7161,67	
23-24	1,5	80,028	98,5	5255,15	1,5	111,437	98,5	7317,68	
Total	100	5335,179	100	5335,18	100	7429,120	100	7429,12	

Tab IV.16 : Consommation horaire pour l'année 2030 et 2040

Heures	2030					2040			
	_	max j = 7742 m3/j	Courbe	cumulée	Q max j =11479,78944 m3/j		Courbe cumulée		
h	Ch %	m3/h	Ch %	m3/h	Ch %	m3/h	Ch %	m3/h	
0-1	1,5	133,362	0	0	1,5	172,197	0	0	
1-2	1,5	133,362	1,5	133,362	1,5	172,197	1,5	172,197	
2-3	1,5	133,362	3	266,723	1,5	172,197	3	344,394	
3-4	1,5	133,362	4,5	400,085	1,5	172,197	4,5	516,591	
4-5	2,5	222,269	6	533,446	2,5	286,995	6	688,787	
5-6	3,5	311,177	8,5	755,716	3,5	401,793	8,5	975,782	
6-7	4,5	400,085	12	1066,893	4,5	516,591	12	1377,575	
7-8	5,5	488,993	16,4	1458,087	5,5	631,388	16,4	1882,685	
8-9	6,25	555,673	21,9	1947,080	6,25	717,487	21,9	2514,074	
9-10	6,25	555,673	28,2	2507,198	6,25	717,487	28,2	3237,301	
10-11	6,25	555,673	34,5	3067,317	6,25	717,487	34,5	3960,527	
11-12	6,25	555,673	40,8	3627,436	6,25	717,487	40,8	4683,754	
12-13	5	444,539	47	4178,664	5	573,989	47	5395,501	
13-14	5	444,539	52	4623,203	5	573,989	52	5969,491	
14-15	5,5	488,993	56,9	5058,851	5,5	631,388	56,9	6532,000	
15-16	6	533,446	62,4	5547,843	6	688,787	62,4	7163,389	
16-17	6	533,446	68,4	6081,290	6	688,787	68,4	7852,176	
17-18	5,5	488,993	74,5	6623,627	5,5	631,388	74,5	8552,443	
18-19	5	444,539	80	7112,619	5	573,989	80	9183,832	
19-20	4,5	400,085	84,9	7548,267	4,5	516,591	84,9	9746,341	
20-21	4	355,631	89,4	7948,352	4	459,192	89,4	10262,93	
21-22	3	266,723	93,3	8295,092	3	344,394	93,3	10710,64	
22-23	2	177,815	96,4	8570,706	2	229,596	96,4	11066,51	
23-24	1,5	133,362	98,5	8757,413	1,5	172,197	98,5	11307,59	
Total	100	8890,774	100	8890,774	100	11479,7	100	11479,78	

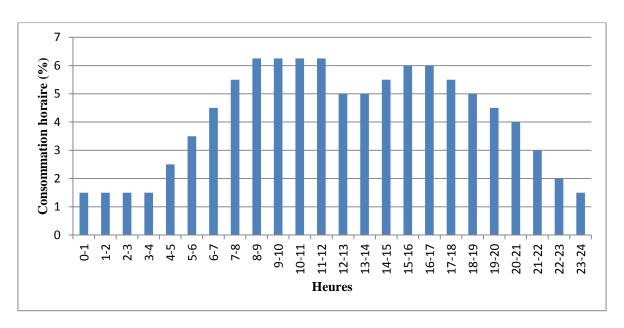


Fig IV.8: Graphique de variation de la consommation horaire

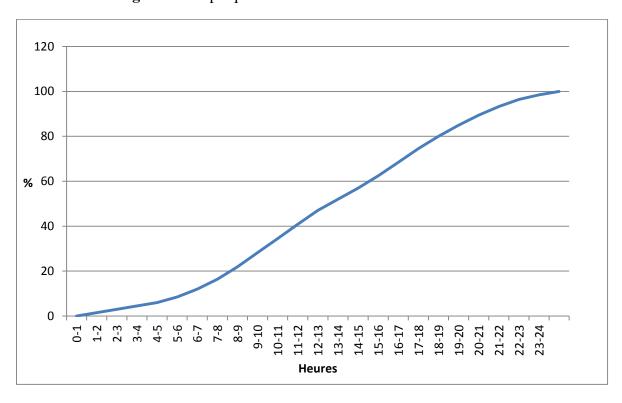


Fig IV.9 : Courbe de cumul

D'après l'étude de variation de la consommation horaire, le débit de pointe correspond aux heures de forte consommation entre 8h et 12h, le tableau suivant représente les débits de pointe à différents horizons :

Tab IV.17 : Débit de pointe

Horizons	Actuel	Court	Moyen	Long
Années	2015	2025	2030	2040
Population	32488	38453	41835	49516
Qpte (m3/h)	333,44871	464,319975	555,6733875	717,48684
Qpte (l/s)	92,625	128,978	154,354	199,302
Qpte (m3/j)	8002,76904	11143,6794	13336,1613	17219,6842

IV.8. Bilan des eaux :

Le facteur rendement des infrastructures hydrauliques représente la perte entre la ressource brute mobilisée en amont et le consommateur « au robinet », et doit prendre en compte les pertes sur réseau de distribution mais également les pertes au niveau des ouvrages de stockage, traitement et d'adduction. A cet effet, ce facteur a été introduit dans le calcul de la production totale pour plus d'exactitude.

Le tableau suivant indique les valeurs du rendement du réseau selon la nature de l'agglomération (Source PNE)

Tab IV.18: Evolution du rendement du réseau

EVOLUTION RENDEMENT (en %)	HYPOTHESE TENDANCIELLE						
HORIZON	2010	2015	2020	2025	2030		
métropoles	55	60	65	70	75		
urbain supérieur	55	60	65	70	75		
urbain	55	55	60	65	70		
Semi urbain	55	55	60	65	70		
Semi rural	55	55	60	65	70		
Rural aggloméré	50	55	60	65	70		
Agglomérations chef-lieu de Wilaya	55	70	80	85	85		

Comme il a été cité précédemment, Cherchel occupe le statut urbain supérieur.

Après introduction du facteur rendement du réseau, les résultats du bilan des eaux sont représentés dans le tableau suivant :

Tab IV.19 : Bilan général des eaux

Horizons	Actuel	Court	Moyen	Long
Années	2015	2025	2030	2040
Population	32488	38453	41835	49516
Qpte(m3/j)	8002,769	11143,679	13336,161	17219,684
Production(m3/j)	7644	7644	7644	7644
Bilan(m3/j)	-358,769	-3499,679	-5692,161	-9575,684
Deficit(m3/j)	358,76904	3499,6794	5692,1613	9575,6842

Un déficit de 9757.6842m3/j est enregistré d'ici l'année 2040

On pourra toutefois combler ce déficit par l'apport du barrage de Boukerdane.

IV.9. Calcul de la capacité des réservoirs :

Le réservoir est un ouvrage intermédiaire entre les réseaux d'adduction et les réseaux de distribution. C'est un ouvrage aménagé pour contenir de l'eau, soit destinée à la consommation publique, soit de l'eau a usage industriel. Ces derniers possèdent des débits non uniformes durant la journée ; d'où le rôle du réservoir qui permet de gérer les débits selon la demande.

Le calcul de la capacité des réservoirs est fait avec la méthode des coefficients comme suit :

Tab IV.20 : Calcul de la capacité des réservoirs

Heures	Consomation qc %	qa %	qa-qc%	qa-qc cumulée %	Reste %
0-1	1,5	4,167	2,667	2,667	8,5
1-2	1,5	4,167	2,667	5,333	7
2-3	1,5	4,167	2,667	8,000	5,5
3-4	1,5	4,167	2,667	10,667	4
4-5	2,5	4,167	1,667	12,333	6,5
5-6	3,5	4,167	0,667	13,000	8
6-7	4,5	4,167	-0,333	12,667	8,5
7-8	5,5	4,167	-1,333	11,333	8
8-9	6,25	4,167	-2,083	9,250	6,75
9-10	6,25	4,167	-2,083	7,167	5,5
10-11	6,25	4,167	-2,083	5,083	4,25
11-12	6,25	4,167	-2,083	3,000	3
12-13	5	4,167	-0,833	2,167	3
13-14	5	4,167	-0,833	1,333	3
14-15	5,5	4,167	-1,333	0,000	2,5
15-16	6	4,167	-1,833	-1,833	1,5
16-17	6	4,167	-1,833	-3,667	0,5
17-18	5,5	4,167	-1,333	-5,000	0
18-19	5	4,167	-0,833	-5,833	0
19-20	4,5	4,167	-0,333	-6,167	0,5
20-21	4	4,167	0,167	-6,000	1,5
21-22	3	4,167	1,167	-4,833	3,5
22-23	2	4,167	2,167	-2,667	6,5
23-24	1,5	4,167	2,667	0,000	10
Total	100	100			

D'après les calculs établis, il a été conclut ce qui suit :

• Pour l'année 2015 :

V = (Qmaxj * (13+6,167)/100 + Vincendie

V= 1382,576 m3

Pour l'année 2040 :

V = (Qmaxj * (13+6,167)/100 + Vincendie

La capacité totale des réservoirs existants est de 5500 m³, alors que le volume calculé est estimé à 2560 m³ à l'horizon 2040. La capacité existante alors est largement suffisante pour satisfaire les besoins de notre agglomération.

Conclusion:

D'après ce chapitre, on a pu constater que la population de Cherchel s'élève à 49 516 habitants à l'horizon 2040, cette évolution entraine une augmentation des besoins en eau qu'on a estimée en tenant compte de la dotation unitaire et du développement des équipements. L'étude des besoins nous a permis d'évaluer les quantités d'eau à fournir afin de satisfaire la demande exigée par une population en croissance.

Chapitre V : Modélisation du réseau de distribution

Introduction

La modélisation du réseau d'alimentation en eau potable a pour but d'étudier le comportement du réseau existant (année 2015).

En localisant les principaux problèmes et dysfonctionnement liées au sous-dimensionnement ou à la vétusté du réseau, et en s'appuyant sur le chapitre de diagnostic on pourra par la suite trouver des solutions adéquates afin d'optimiser son fonctionnement pour l'horizon 2040.

Le réseau projeté doit satisfaire l'alimentation du chef lieu de la ville de Cherchell jusqu'a l'an 2040 tout en assurant des pressions et des vitesses acceptables à l'ensemble des consommateurs.

V.1. Définition et aspect descriptif

Le réseau de distribution est un système de conduites connectées entre elles. Cet enchainement de conduites permet l'arrivée de l'eau vers les consommateurs, et cela à travers des branchements pratiqués sur ce dernier. Les réseaux de distribution sont constitués par :

V.1.1 Les conduites

Une conduite est un tronçon de tuyau permettant l'acheminement de l'eau d'un point à un autre point du réseau. Chaque conduite est caractérisée par :

- Une longueur donnée L.
- Un diamètre D.
- Un coefficient de rugosité ε traduisant la perte de charge
- Un sens d'écoulement.
- Un état : ouvert, fermé.

V.1.2 Les nœuds

Les nœuds représentent les points de jonction entre les conduites. Ils correspondent à des points d'entrée ou de sortie de débits d'eau. Il existe deux catégories de nœuds :

- Les nœuds à débit fixe : Ces nœuds se caractérisent par une cote au sol connue et un débit connu (demande), l'inconnue est la pression au nœud qui doit être calculée.
- Les nœuds à charge fixe : ce sont des nœuds où la charge est fixée ou dont la cote piézométrique est connue. Pour ces nœuds le débit doit être calculé.

V.2. Topologie du réseau

La topologie du réseau est la représentation schématique des différents nœuds d'un réseau et de leurs liaisons physiques (conduites). La disposition des nœuds et des conduites dépend de la localisation des abonnés, présence de routes, obstacles naturels, présence d'autres réseaux. En termes de topologie, nous distinguons :

V.2.1. Les réseaux ramifiés

Ce type de réseau se présente selon une structure arborescente à partir du nœud à charge fixée assurant la mise sous pression. Cette configuration est justifiée par la dispersion des abonnés.

Cependant, ce type de topologie réduit la fiabilité du réseau dans le cas d'une rupture d'une conduite, privant en eau les utilisateurs en aval du point de rupture. Elle caractérise généralement les réseaux de distribution d'eau en milieu rural.

V.2.2. Les réseaux maillés

Ce type de réseau est constitué d'une série de tronçons disposés de telle manière à décrire des boucles fermées. Cette configuration caractérise les réseaux de distribution d'eau en milieu urbain où il existe une concentration des abonnés.

Contrairement aux réseaux ramifiés, la présence de boucles ou de mailles dans les réseaux maillés réduisent les risques de coupure en cas de rupture de conduites, car ils assurent une distribution en retour en cas d'avarie.

Dans la réalité les deux configurations coexistent dans un même réseau. En milieu rural, le réseau sera formé par plus de ramifications, alors qu'en milieu urbain on constatera plus de mailles.

V.2.3. Réseau étagé

Si la topographie du territoire desservie accuse de trop fortes dénivellations, on provoque de fortes pressions aux points les plus bas dans le cas d'une distribution à partir d'un réservoir et, par conséquent les normes de pressions ne seront pas respectées.

En effet, on doit réduire la pression en installant des réservoirs intermédiaires, alimentés par le premier. Ces réservoirs permettent de créer diverses zones indépendantes les unes des autres en ce qui concerne le niveau de la pression.

NB: Dans notre cas nous avons un réseau maillé avec des ramifications (réseau mixte) divisé en trois secteurs ;

Secteur Est : Il est desservi par le réservoir Cherchell Est 2000m3

Secteur Ouest : Il est desservi par le réservoir Ouest 2000m3

Secteur Centre : Il est desservi par le réservoir Chef lieu 1500m3

V.3 Conception du réseau

V.3.1 Principe du tracé du réseau

Le tracé se fait comme suit :

- Tout d'abord, il faut repérer les consommateurs importants.
- repérer les quartiers ayant une densité de population importante ;
- déterminer l'itinéraire (sens) principal pour assurer la distribution à ces consommateurs
- suivant ce sens, tracer les conduites principales en parallèle ;
- Ces conduites principales doivent être bien reparties pour avoir une bonne distribution d'eau.
- Pour alimenter l'intérieur des quartiers, les conduites principales sont reliées entre elles par des conduites secondaires pour former des boucles (mailles).

V.3.2. Choix du type de matériau

Les conduites constituant l'élément principal du réseau, leur choix doit répondre à deux types d'exigences :

- Exigences techniques :
- Résistance aux attaques chimiques, aux pressions et à la résistance des charges mobiles ;
- Adaptation aux terrains de pose ;
- Bonne étanchéité;
- Facilité d'entretien et mise en service.
- Exigences économiques :
- le prix de la fourniture et du transport ;
- la disponibilité sur le marché local.

Les différents types de conduites qui peuvent être utilisées sont :

- Métalliques : fonte (grise ou ductile), acier.
- à base de ciment : béton armé, amiante ciment.
- En matière thermoplastiques : chlorure de polyvinyle (PVC), polyéthylène (PEHD, PEMD et PEBD).

V.3.2.1. Les conduites métalliques

V.3.2.1.a. Conduites en acier

L'acier est un constituant de fer combiné au carbone, le pourcentage de carbone est compris entre 0,1 % et 1,5 % .L'acier utilisé dans la fabrication des tubes et raccords est de l'acier doux, soudable.

Ces tuyaux peuvent être obtenus, soit par laminage à chaud sous soudure, à partir d'un bloc de métal transformé peu à peu par plusieurs laminages (jusqu'au diamètre 400 mm), soit à partir de tôles mises en forme à la machine et soudées longitudinalement à l'arc électrique (du diamètre 350 mm et au-dessus), soit encore à partir de bandes enroulées en hélices et soudées sur le bord à l'arc électrique (du diamètre 150 mm jusqu'au diamètre 600 mm).

- La pression de service dans ces tuyaux peut atteindre :
- 60 bars pour les diamètres compris entre 40 et 150mm.
- 50 bars pour les diamètres compris entre 180 et 270mm.
- 40 bars pour les diamètres compris entre 300 et 400mm.
- Les avantages des canalisations en acier :
- ils n'ont pas besoin comme les tuyaux en fonte de posséder des pièces spéciales (joints présentant une certaine élasticité).
- ils sont soudables.
- ils présentent une bonne étanchéité.
- ils peuvent supporter des pressions élevées.
- ils sont disponibles sur le marché.
- ils sont plus légers que les tuyaux en fonte, d'où l'économie sur le transport, mais ils sont plus lourds que les tuyaux en matières plastiques.
- par leur élasticité, ils s'adaptent aux reliefs plus ou moins accidentés.
- La longueur courante de ces tuyaux varie entre 6 à 16 mètre suivant les diamètres.
- Les inconvénients des tuyaux en acier :
- la sensibilité à la corrosion qui exige une protection extérieure et intérieure.
- la faible durée de vie estimée à 20 ans.

V.3.2.1.b. Les conduites en fonte ductile :

La fonte est un alliage de fer et de carbone, dont la proportion varie entre 2,2 à 4

%. La fonte ductile est obtenue en additionnant, au moment de la coulée, une très faible quantité de magnésium dont la présence au sein de la fonte, provoque la cristallisation de graphite sous une forme sphéroïdale au lieu de cristaux aplatés comme dans la fonte ordinaire.

- Les avantages des canalisations en fonte ductile :
- Résistance aux pressions élevées ;
- La fonte permet de supporter des pressions de service atteignant 50 bars pour les tuyaux ne dépassent 600mm de diamètre, et 40 bars pour les tuyaux de diamètre supérieur.
- Les longueurs courantes de ces tuyaux sont 6m pour les petits et moyens diamètres (jusqu'à 800mm) et 7m à 8,25 à partir de 800mm de diamètre.
- Très rigide et solide.
- Bonne résistance aux forces intérieures.
- Les inconvénients des canalisations en fonte ductile :
 - La sensibilité à la surcharge et aux mouvements du sous sol qui provoquent le déboîtement des conduites.
 - La fragilité.
 - La non disponibilité sur le marché.
 - La nécessité de pièces spéciales car les conduites sont généralement assemblées par raccords à emboîtement et à brides. Ces derniers sont réalisés au moyen de joints en plomb, de bague en caoutchouc ou de préparations spéciales.
 - Lourds et très chères.
 - Grande sensibilité à la corrosion.

V.3.2.2. Les conduites à base de ciment :

V.3.2.2.a. Tuyaux en amiante-ciment :

Des tuyaux constitués de ciment Portland de haute qualité, d'amiante (minérale cristallisé d'origine magmatique) et d'eau. Ces tuyaux sont reliés à laide d'un manchon coulissant, des raccords en amiante-ciment mobile aux deux extrémités également des raccords résistants à la traction. Lorsque les tuyaux en amiante-ciment sont exposés à une corrosion extérieure, il faut les protéger avec un enduit, selon les prescriptions du fournisseur. Comme l'amiante est un matériau cancérigène, nous observons une réserve concernant ce type de tuyaux.

V.3.2.2.b. Tuyaux en béton :

Tuyaux précontraints avec raccords spéciaux selon les prescriptions, des bagues sont utilisées d'étanchéité de section circulaire. Lors de l'introduction du tuyau dans le manchon, le centrage doit faire l'objet d'une attention particulière (socles en béton, dispositifs de guidage sont recommandés).

Lors de remblayage, Il faut éviter à tout prix un tassement inégal pour des tuyaux qui se suivent. Il est recommandé, immédiatement après l'essai d'étanchéité des raccords, de caler avec du béton les tuyaux assemblés.

V.3.2.3. Les conduites en plastiques (thermoplastiques)

La matière plastique est un nom collectif qui désigne un groupe de matières composées de gigantesques molécules que l'on appelle des macromoléculaires, obtenues par voie synthétique et qui ont été transformées plastiquement au cours d'une ou plusieurs phases de leurs compositions

Les conduites d'eau potable en matières thermoplastiques sont principalement réalisées :

- En chlorure de polyvinyle dur (PVC dur);
- En polyéthylène dur ou souple (PE dur, PE souple).

V.3.2.3.a. Les tuyaux en PVC (chlorure de polyvinyle)

Le PVC est un dérivé de l'éthylène. Le monomère est le chlorure de vinyle de formule : CH2CHCl. Le PVC est une poudre blanche, le point de fusion se situe à 150°C et le produit se ramollit à 75°C,

- Les avantages des tuyaux en PVC :
- Les tubes en PVC sont 5 à 8 fois plus légers que les tubes traditionnels
 (acier fonte);
- La finition des surfaces internes des tubes (lisses) réduit considérablement les pertes de charges comparativement à d'autres matériaux.
- Une faible rugosité qui se maintient au long des années.
- Une bonne résistance chimique à la solution saline, acide et solution oxydable.
- Le PVC ne subit ni entartrage ni corrosion grâce à son inertie chimique.
- Pose de canalisation facile.
- Les tuyaux ont une longueur de 4 à 6m.

- Les inconvénients des tuyaux en PVC :
- le risque de rupture.
- Une pression nominale inferieur à 20 m.
- Ils sont rigides.

V.3.2.3.b. Les tuyaux en polyéthylène (PE):

Le polyéthylène est issu des hydrocarbures, il résulte de l'association de nombreuses molécules simples (Ethylène) selon une réaction de polymérisation, qui à lieu dans un réacteur chimique sous une pression et une température donnée, en présence de catalyseurs et donnent ainsi naissance à des mélanges solides : résines de base appelées polymères. (Figure)

On distingue deux familles:

- Polyéthylène basse densité (PEBD) : 0,915g /cm3 < d < 0,930g/cm3 ;
 - Polyéthylène haute densité (PEHD) : 0,945g/cm3 < d < 0,960g/cm3. Les points de fusion pour les deux se situent respectivement à 115°C et 130°C
- Les avantages des tuyaux en polyéthylène :
- le PEHD résiste pratiquement à tous les liquides corrosifs tels que les solutions salines, les acides, les bases,...etc. Les tubes PEHD ont un excellent comportement en véhiculant des eaux très agressives et très chargées;
- l'élasticité et la flexibilité des tubes leur permettent d'absorber les affaissements de terrains éventuels dus à des mouvements du sous-sol, de supporter d'importantes surcharges inhérentes à la circulation routière, et de diminuer les effets provoqués par des ruptures accidentelles;
- l'excellente finition des surfaces internes des tubes (PEHD) permet de les définir comme étant « Hydrauliquement lisses » ; une telle caractéristique réduit considérablement les pertes de charge des conduites (PEHD), par rapport aux conduites conçues avec d'autres matériaux ;
- Ils sont faciles à poser, avec la possibilité d'enroulement pour les petits diamètres ;
- Ces tubes sont facilement manipulés et transportés grâce à leur légèreté ; Les tubes sont environ 4 fois plus légers que les tubes fabriqués avec des matériaux traditionnels ;
- Ils répondent parfaitement aux normes de potabilité ;
- Ils sont peu onéreux :

- Tous les appareils tels que les vannes, les ventouses et les pompes, se montent facilement sur les tubes en PEHD, grâce à des systèmes adéquats.
- Fiable au niveau des branchements, pas de fuites ;
- Se raccorde facilement aux réseaux existants (fonte, acier...etc.);
- Durée de vie théorique de 50 ans ;
- Résiste à l'entartrage et à la corrosion ;
- La longueur courante de ce type de conduites est : des tubes de 6 et 12 mètres pour les diamètres de 110 à 400 mm et des rouleaux de 50,100 et 200 mètres Du diamètre 20 à 90 mm [4].
- Les inconvénients des tuyaux en polyéthylène :

Toutefois, malgré les avantages cités, les tuyaux en PEHD résistent peu aux hautes pressions (pression nominales maximale 30 bars).

NB: Suite aux inconvénients que présentent les matériaux métalliques et à base de ciment :

- L'acier
- Sa grande sensibilité à la corrosion ;
- Une durée de vie moyennement de 20 ans.
- La fonte:
- Faible résistance aux surcharges et aux mouvements des sous sol qui provoquent le déboîtement des tuyaux.
- L'amiante ciment :
- Effet cancérogènes.
- Le béton :
- l'électrolyse.

Nous avons opté pour des canalisations en matériaux plastiques, et puisque le PEHD, présente plus d'avantages que le PVC (résiste mieux aux remblais et aux fortes pressions) nous l'avons choisi pour notre réseau.

V.4. Présentation du logiciel de calcul

Dans le domaine de l'AEP, les logiciels les plus utilisés dans notre pays sont : LOOP et PORTEAU. Au cours de ces dernières années, les possibilités nouvelles offertes par les ordinateurs, ont permis l'apparition de nouveaux logiciels plus performants et offrants une meilleure gestion des réseaux de distribution. Parmi ces logiciels : EPANET, WaterSAFE, WaterGEMS, StromCAD, WaterCAD...etc. Pour notre étude nous allons utiliser EPANET

V.4.1. Qu'est-ce que Epanet?

Epanet est un logiciel de simulation du comportement hydraulique et qualitatif de l'eau sur de longues durées dans les réseaux sous pression.

Epanet a pour objectif une meilleure compréhension de l'écoulement et de l'usage de l'eau dans les systèmes de distribution. Il peut être utilisé pour différents types d'application dans l'analyse des systèmes de distribution. En voici quelques exemples : définition d'un programme de prélèvement d'échantillons, calage d'un modèle hydraulique, simulation du chlore résiduel, et estimation de l'exposition de la population à une substance.

V.4.2. Capacités pour la Modélisation Hydraulique

Une modélisation hydraulique scrupuleuse et complète est la première condition pour pouvoir modéliser la qualité de l'eau de manière efficace. Epanet contient un moteur de calcul hydraulique moderne ayant les caractéristiques suivantes :

- Il inclut les pertes de charge singulières aux coudes, aux tés,...etc.
- Il peut modéliser des pompes à vitesse fixe ou variable
- Il peut calculer l'énergie consommée par une pompe.
- Il peut modéliser différents types de vannes, comme des vannes de contrôle de pression ou débit, des vannes d'arrêt, etc.
- Il peut y avoir différentes catégories de demandes aux nœuds chacune avec une caractéristique propre.
- Le fonctionnement de station de pompage peut être piloté par des commandes simples, (heures de marche/arrêt en fonction du niveau d'un réservoir).
- Pour calculer les pertes de charge dues à la friction, il dispose des formules de Hazen-Williams, Darcy-Weisbach, et Chezy-Manning.

NB: Dans le cadre du mémoire, nous utilisons pour le calcul des pertes de charge linéaires dans les conduites, la formule de Darcy-Weisbach.

V.5. Calcul hydraulique du réseau

Le calcul hydraulique du réseau actuel se fera pour le cas de pointe seulement, tandis que pour le réseau projeté il se fera pour les deux cas (pointe et pointe plus incendie).

V.5.1. Détermination des débits du réseau actuel

V.5.1.1. Débit en route

Il est défini comme étant le débit réparti uniformément le long d'un tronçon du réseau, il est donné par la formule suivante :

 $\Sigma Qr = Qcons - \Sigma Qconc....en [1/s]$

Avec:

 \sum Qr : débit route global.

Qcons : débit de consommation.

 \sum Qconc : Somme des débits concentrés.

V.5.1.2. Débit spécifique

Le débit spécifique est défini comme étant le rapport entre le débit route et la somme des longueurs de tous les tronçons assurant le service en route.

Q spi= $\sum Qr / \sum Li.....en[1/s/m1]$

Avec:

Qspi= débit spécifique (l/s/m)

 \sum Li= somme des longueurs des tronçons du réseau en mètre (m).

V.5.1.3. Les débits aux nœuds (nodaux)

Le débit au nœud est celui qui est concentré à chaque point de jonction des conduites du réseau, il doit être déterminé à partir de la relation suivante :

Qn, i = $0.5\sum Qri-k + \sum Qconc....en[1/s]$

Avec:

Qn, i: debit au nœud i (l/s)

Qri-k : somme des débits en route des tronçons reliés au nœud i (l/s)

Qconc : somme des débits concentrés au nœud (l/s) qui sont nuls.

Les résultats donnés par les deux formules précédentes sont récapitulés dans le tableauV.1 ciaprès :

ΣLi **Q**pointe Qconcentré **Q**route **Q**spécifique Heures de (m) (1/s/m)(1/s)(1/s) m^3/h (1/s)pointe 333,45 92,62 0 92,62 36206,118 0,002558

Tableau 1 : Récapitulatif des débits de calcul (cas de pointe)

V.5.1.3.a. Cas de pointe :

Les résultats des débits nodaux en cas de pointe sont représentés dans le tableau **Tableau V-2** (Voir annexe)

V.5.1.3.b. cas de pointe plus incendie :

Ce cas ne sera pas traité dans le réseau actuel mais plutôt dans le futur réseau a projeté.

V.5.2. Répartition arbitraire des débits

Il suffit d'injecter la longueur, le coefficient de rugosité des conduites, le débit et la côte du terrain naturel de chaque nœud, pour obtenir la répartition arbitraire des débits.

La répartition arbitraire des débits est faite selon les principes de la méthode de HARDY CROSS qui repose sur les deux lois suivantes :

1ère loi : pour le même nœud la somme des débits rentrants est égale à celle des débits sortants (équation de la continuité $\Sigma Q=0$).

2ème loi : la somme algébrique des pertes de charge dans la même maille est nulle (Σ HL=0).

V.5.3. Calcul des paramètres hydrauliques

Après avoir reporté le modèle sur Epanet en introduisant comme valeurs d'entrée ; diamètre et rugosité (dans chaque arc), altitude et débit nodal (dans chaque nœud) on obtient les résultats représentés respectivement dans les tableaux V.3 et V.5 ci-après

V.5.3.1. Cas de pointe

Tableau V-3 : Caractéristiques hydrauliques et géométriques des tronçons (cas de pointe) (voir annexe)

NB: On remarque qu'il y a beaucoup de vitesses d'écoulement < 0.3m/s

V.5.4. Calcul des pressions de service du réseau (au sol) :

V.5.4.1.Cas de pointe :

Tableau V-4 : Caractéristiques hydrauliques et géométriques des nœuds (cas de pointe) (voir annexe)

NB: On remarque qu'il y a beaucoup de pressions qui dépassent les 60m

Les caractéristiques hydrauliques et géométriques sont représentées dans la figure V.1 ci-après :

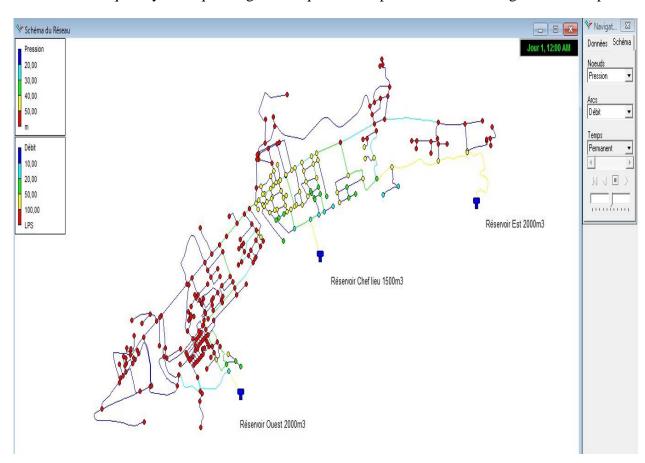


Figure 1: Vitesses et pressions pour le cas de pointe

V.5.5. Interprétation des résultats

V.5.5.1. Cas de pointe

• Les vitesses : Des vitesses faibles (inférieure à 0,50 m/s) ont été recensées pour la majorité des tronçons.

 Les pressions : La majorité des pressions au sol dépassent les 60 m aux nœuds de notre réseau.

Les fortes pressions peuvent endommager les accessoires de notre réseau, et peuvent aussi détériorer ce dernier tout en diminuant son rendement

Puisque les vitesses doivent être comprises entre 0.3m/s et 2m/s, et que les pressions au sol doivent être entre 10m et 60m, on conclue donc que notre réseau est en très mauvaise état.

V.5.2. Détermination des débits du réseau projeté

V.5.2.1. Débit en route

Il est défini comme étant le débit réparti uniformément le long d'un tronçon du réseau, il est donné par la formule suivante :

 $\sum Qr = Qcons - \sum Qconc....en [1/s]$

Avec:

 \sum Qr : débit route global.

Qcons : débit de consommation.

 Σ Qconc : Somme des débits concentrés.

V.5.2.2. Débit spécifique

Le débit spécifique est défini comme étant le rapport entre le débit route et la somme des longueurs de tous les tronçons assurant le service en route.

Q spi= $\sum Qr / \sum Li.....en[1/s/m1]$

Avec:

Qspi= débit spécifique (l/s/m)

∑Li= somme des longueurs des tronçons du réseau en mètre (m).

V.5.2.3. Les débits aux nœuds (nodaux)

Le débit au nœud est celui qui est concentré à chaque point de jonction des conduites du réseau, il doit être déterminé à partir de la relation suivante :

Qn, i = 0.5Σ Qri-k + Σ Qconc.....en[1/s]

Avec:

Qn, i: debit au nœud i (l/s)

Qri-k : somme des débits en route des tronçons reliés au nœud i (l/s)

Qconc : somme des débits concentrés au nœud (l/s) qui sont nuls.

Les résultats donnés par les deux formules précédentes sont récapitulés dans le **Tableau V-5**. ciaprès :

Tableau 2: Récapitulatif des débits de calcul (cas de pointe).

Heures de pointe	Qpoir m ³ /h	nte (l/s)	Qconcentré (l/s)	Qroute (1/s)	∑Li (m)	Qspécifique (1/s/m)
r	717,486	199,30	0	199,30	36437,258	0,005469

V.5.2.3.a. Cas de pointe :

Les résultats des débits nodaux en cas de pointe sont représentés dans le tableau **Tableau V-6** (Voir annexe)

Après avoir étudié le comportement du modèle on a effectué un remplacement total des conduites qui sont en PVC et Fonte avec des conduites en PEHD.

On a remarqué que les zones basses présentent de fortes pression pouvant aller jusqu'à plus de $60~\mathrm{m}$.

On préconise donc de placer 02 vannes stabilisatrices de pression aval entre les nœuds suivants :

- Entre le Noeud367_Noeud147 avec une consigne de 30m
- Entre le Noeud33_Noeud71 avec une consigne de 25m

On se doit aussi d'effectuer des manœuvres de vannes sur les conduites suivantes :

- Fermer les arcs (conduites) p71 p201 et p211
- Ouvrir les arcs (conduites) p8 et p38

Les conduites présentant des vitesses inacceptables sont à remplacer avec des conduites en PEHD avec les diamètres suivants :

- Remplacer la conduite p119 avec une conduite DN 250
- Remplacer la conduite p320 avec une conduite DN 250
- Remplacer la conduite p8 avec une conduite DN 200

V.5.2.3.b. Cas de pointe plus incendie :

Ce cas est homologue au cas de pointe mais seulement, mis à part le nœud 241 considéré comme le plus défavorable de l'étage desservi par le réservoir 2000m3 du chef lieu où l'on doit assurer un débit supplémentaire d'incendie (171/s).

V.5.3. Répartition arbitraire des débits

Il suffit d'injecter la longueur, le coefficient de rugosité des conduites, le débit et la côte du terrain naturel de chaque nœud, pour obtenir la répartition arbitraire des débits.

La répartition arbitraire des débits est faite selon les principes de la méthode de HARDY CROSS qui repose sur les deux lois suivantes :

1ère loi : pour le même nœud la somme des débits rentrants est égale à celle des débits sortants (équation de la continuité $\Sigma Q=0$).

2ème loi : la somme algébrique des pertes de charge dans la même maille est nulle (Σ HL=0).

V.5.4. Calcul des paramètres hydrauliques

V.5.4.1. Cas de pointe

Tableau V-8 : Caractéristiques hydrauliques et géométriques des tronçons (cas de pointe) du réseau projeté (voir annexe)

V.5.4.1.Cas de pointe plus incendie

Tableau 3 : Caractéristiques hydrauliques et géométriques des tronçons (cas de pointe plus incendie)

Turvou	Longueur	Diamètre	Rugosité	Débit	Vitesse	PDC Unit.	État
Tuyau	m	mm	mm	l/s	m/s	m/km	
Tuyau C7	133,78	80	0,01	19,83	3,94	154,7	Ouvert
Tuyau p105	153,1	147,6	0,01	-19,34	1,13	7,36	Ouvert
Tuyau p115	103,7	80	0,01	-17,62	3,51	124,05	Ouvert
Tuyau p117	3,059	147,6	0,01	-19,66	1,15	7,59	Ouvert
Tuyau p122	29,78	80	0,01	-8,07	1,6	29,29	Ouvert
Tuyau p170	414,3	80	0,01	18,13	3,61	130,85	Ouvert

Tuyau	Longueur	Diamètre	Rugosité	Débit	Vitesse	PDC Unit.	État
	m	mm	mm	1/s	m/s	m/km	
Tuyau p199	34,69	147,6	0,01	-26,43	1,54	13,05	Ouvert
Tuyau p216	39	184,6	0,02	1,55	0,06	0,03	Ouvert
Tuyau p272	187,8	101,6	0,01	-9,86	1,22	13,22	Ouvert
Tuyau p274	58,97	147,6	0,01	-20,35	1,19	8,08	Ouvert
Tuyau p276	95,21	80	0,01	-3,65	0,73	6,97	Ouvert
Tuyau p305	23,66	80	0,01	-17,97	3,57	128,66	Ouvert
Tuyau p387	83,29	80	0,01	-7,69	1,53	26,86	Ouvert
Tuyau p395	73,18	80	0,01	-0,72	0,14	0,4	Ouvert
Tuyau p396	76,93	80	0,01	2,43	0,48	3,37	Ouvert
Tuyau p84	111	184,6	0,02	8,92	0,33	0,63	Ouvert
Tuyau p86	16,22	80	0,01	11,68	2,32	57,85	Ouvert
Tuyau p98	137,1	80	0,01	0,4	0,08	0,14	Ouvert
Tuyau C3	367,44	230,8	0,02	17,67	0,42	0,73	Ouvert

NB: On remarque qu'il y a des vitesses < 0.3m/s et des vitesses > 2m/s

V.5.5. Calcul des pressions de service du réseau (au sol)

V.5.5.1.Cas de pointe

Tableau V-7 : Caractéristiques hydrauliques et géométriques des nœuds du réseau projeté (cas de pointe)

NB: On remarque qu'il y a beaucoup de pressions qui dépassent les 60m

V.5.5.2.Cas de pointe plus incendie

Les pressions au sol du tracé Réservoir chef lieu vers le nœud le plus défavorable n241 sont représentées dans le tableau suivant :

Tableau 4 : Caractéristiques hydrauliques et géométriques des nœuds (cas de pointe plus incendie)

ID Noeud	Altitude M	Demande Base 1/s	Charge m	Pression m
Réservoir Rv_chef_lieu	60	Sans Valeur	62	2
Noeud n162	41,53	1,04009618	61,93	20,4
Noeud n133	39,1	4,54446903	61,13	22,03
Noeud n60	26,67	0,51109141	61,09	34,42
Noeud n243	25,6	0,83025005	61,09	35,49
Noeud n216	27,16	1,11393751	61,13	33,97
Noeud n102	24,83	1,74555438	61,08	36,25
Noeud n154	23,71	0,65303086	61,17	37,46
Noeud n265	23,23	0,88024337	60,73	37,5
Noeud n182	22,88	0,69309388	60,25	37,37
Noeud n181	22,78	0,67982979	60,23	37,45
Noeud n275	17,73	0,79291916	58,05	40,32
Noeud n193	17,04	0,71623357	56,1	39,06
Noeud n169	15,28	0,91396424	55,54	40,26
Noeud n65	14,88	0,46273901	54,81	39,93
Noeud n136	14,5	0,54527721	54,05	39,55
Noeud n179	14	0,3483123	51,56	37,56
Noeud n131	10	1,022511	41,11	31,11
Noeud n240	0,78	1,69928048	22,32	21,54
Noeud n241	1,43	17,13	Négative	Négative

V.5.6. Interprétation des résultats

V.5.6.1. Cas de pointe

• Les vitesses : Des vitesses faibles (inférieure à 0,30 m/s) ont été recensées pour quelques tronçons, et ceci peut conduire à la formation des dépôts de nature minérale à l'intérieure de ces derniers. Mais ce problème ne peut être évité, dans tous les cas nous nous trouvons dans l'obligation de cibler des pressions au sol en relation avec le niveau de construction au détriment des vitesses. Tout ce qu'on peut faire c'est de recommander des curages périodiques et systématiques des conduites et ceci par l'ouverture, soit des vannes de vidanges, soit des poteaux d'incendie.

 Les pressions: Après avoir placé les deux régulateurs de pression, et mettre en place une stratégie de vannage on constate que les pressions au sol ne dépassent pas les 60m dans l'ensemble des nœuds du réseau.

V.5.6.2. Cas de pointe plus incendie :

On remarque que la pression au nœud n241 affiche une valeur négative.

Les vitesses d'écoulements ne rentrent pas dans la fourchette des vitesses acceptables entre (0,3m/s et 2m/s)

On préconise donc de placer une bâche à eau qui relie le nœud 240 au nœud 241 pour réguler les pressions et les vitesses en cas de pointe plus incendie avec une charge totale de 20m.

Les résultats des pressions au sol après avoir placés la bâche à eau sont représentées dans le tableau suivant :

Tableau 5 : Caractéristiques hydrauliques et géométriques des nœuds (cas de pointe plus incendie) avec bâche

	Altitude	Charge	Pression
ID Nœud	M	m	m
Réservoir chef_lieu	60	62	2
Noeud n162	41,53	61,93	20,4
Noeud n133	39,1	61,1	22
Noeud n60	26,67	61,06	34,39
Noeud n243	25,6	61,06	35,46
Noeud n216	27,16	61,09	33,93
Noeud n102	24,83	61,03	36,2
Noeud n154	23,71	61,11	37,4
Noeud n265	23,23	60,66	37,43
Noeud n182	22,88	60,17	37,29
Noeud n181	22,78	60,15	37,37
Noeud n275	17,73	57,9	40,17
Noeud n193	17,04	55,88	38,84
Noeud n169	15,28	55,3	40,02
Noeud n65	14,88	54,53	39,65
Noeud n136	14,5	53,72	39,22
Noeud n179	14	51,11	37,11

	Altitude	Charge	Pression
ID Nœud	M	m	m
Noeud n131	10	40,09	30,09
Noeud n240	0,78	20,16	19,38
Noeud n241	1,43	19,85	18,42

Les résultats des vitesses sont dans le tableau suivant :

Tableau 6 : Caractéristiques hydrauliques et géométriques des tronçons (cas de pointe plus incendie) avec bâche

	Longueur	Diamètre	Rugosité	Débit	Vitesse	Pdc Unit.	État
ID Arc	m	mm	mm	1/s	m/s	m/km	
Tuyau C3	367,44	230,8	0,02	11,46	0,3	0,33	Ouvert
Tuyau p105	153,1	147,6	0,01	16,11	0,94	5,28	Ouvert
Tuyau p84	111	184,6	0,02	10,02	0,37	0,38	Ouvert
Tuyau p216	39	184,6	0,02	8,5	0,32	0,01	Ouvert
Tuyau p395	73,18	83	0,01	1,65	0,31	0,06	Ouvert
Tuyau p396	76,93	83	0,01	2,5	0,46	1,15	Ouvert
Tuyau p98	137,1	83	0,01	6,1	1,13	0,38	Ouvert
Tuyau p199	34,69	147,6	0,01	23	1,34	10,1	Ouvert
Tuyau p274	58,97	147,6	0,01	17,94	1,05	6,42	Ouvert
Tuyau p117	3,059	147,6	0,01	17,24	1,01	5,97	Ouvert
Tuyau p272	187,8	101,6	0,01	7,78	0,96	8,59	Ouvert
Tuyau p387	83,29	83	0,01	5,9	1,17	16,58	Ouvert
Tuyau p276	95,21	83	0,01	2,6	0,52	3,78	Ouvert
Tuyau p122	29,78	83	0,01	5,7	1,13	15,55	Ouvert
Tuyau p86	16,22	83	0,01	7,97	1,59	28,65	Ouvert
Tuyau p305	23,66	83	0,01	11,2	2,07	63,3	Ouvert
Tuyau p115	103,7	83	0,01	11,5	2,15	60,02	Ouvert
Tuyau C7	133,78	83	0,01	12,05	2,12	61,25	Ouvert
Tuyau p170	414,3	83	0,01	1,65	0,31	0,5	Ouvert

Le résultat de la simulation est représenté dans la figure suivante :

Figure 2: Simulation affichant les pressions au sol et les vitesses d'écoulements en cas de pointe plus incendie

Constat:

Après avoir placé la bâche à eau au nœud le plus défavorable du réseau on a réussi à assurer une charge suffisante pour le nœud 241.

Les vitesses du tracé Réservoir chef lieu vers le nœud 241 varient entre 0.3m/s et 1.59m/s

On peut donc dire que le réseau est sécurisé en cas d'incendie.

Conclusion

A travers ce chapitre nous avons dimensionné notre réseau en utilisant le logiciel Epanet. Il a été obtenu des vitesses et des pressions conformes aux normes.

Ces résultats trouvés nous permettent de satisfaire la demande sans avoir des problèmes de fonctionnement du réseau.

Néanmoins deux autres bâches devraient être placées entre les nœuds n24 et n25 et entre n277 et n377 qui se trouvent être les nœuds les plus défavorables de leur secteur respectifs, et ce dans le but de sécuriser le réseau de chaque secteur en cas d'incendie.

Ces résultats nous permettent aussi de déduire que les conditions de pression et de débit fourni par l'ensemble des réservoirs du réseau sont très favorables.

Chapitre VI : Gestion du système d'alimentation en eau potable

Introduction

La gestion d'alimentation en eau potable nécessite d'accomplir avec exactitude un ensemble de taches. L'objectif est d'assurer le bon fonctionnement du réseau d'alimentation en eau potable et de garantir à chaque usager une desserte en continue et en toute circonstance, dans les bonnes conditions de qualité, de pression.

Dans l'optique d'assurer la gestion technique et économique des systèmes d'alimentation en eau potable, la notion de gestion, maintenance, et exploitation, et les opérations d'entretiens et de contrôles à effectuer sur les ouvrages et les installations du système d'alimentation en eau potable seront élaborés dans ce qui suit.

VI.1 La gestion des forages

Pour exploiter correctement un captage d'eau souterraine, on doit impérativement considérer que le captage et le pompage sont indissociablement liés. On ne peut en aucun cas gérer l'un sans l'autre.

Trois conditions essentielles doivent être assurées pour satisfaire la gestion de l'ensemble constitué du captage et de son pompage.

VI.1.1. Adapter la pompe au captage

Il est fondamental d'équiper l'ouvrage en fonction de ses propres caractéristiques,

Identifiées aux essais de pompage, et non en fonction des besoins à couvrir qui sont réalisés après le nettoyage, ou le développement d'un ouvrage.

La surexploitation d'un captage entraînera immanquablement des phénomènes graves d'ensablement, de corrosion, de colmatage, etc.

Il convient soit de réaliser d'autres ouvrages d'appoint, auxquels on pourra fixer les consignes d'exploitation après avoir réalisé des essais, soit d'augmenter les capacités de stockage par la création d'un réservoir.

La pompe est un élément essentiel du captage. Elle doit être dimensionnée en fonction de nombreux critères :

• Caractéristiques du réseau d'exhaure (forage directement connecté au réseau après une simple chloration, ou forage alimentant en eau brute une installation de traitement);

- Equipements de l'ouvrage, position de la crépine, localisation de la chambre de pompage, diamètre des équipements, etc.
- Caractéristiques hydrogéologiques locales, position du niveau piézométrique et dynamique
- Caractéristiques du régime de pompage prévisible ;
- NPSH de la pompe, en particulier pour les ouvrages dont le niveau dynamique est très bas (aquifère peu épais, risque de vortex);
- Risque d'interférence avec d'autres forages au sein d'un champ captant ;
- Position géographique du captage par rapport aux unités de traitement ; l'installation de limiteurs de débit permet notamment de minimiser les oscillations du niveau de la nappe en exploitation.

Le pompage d'essai permet de déterminer :

• La courbe caractéristique S= f (Q)

Tel que:

S : est le rabattement (m) Q : le débit (m3/s)

 Les paramètres hydrodynamiques, S et T, calculés par des pompages d'essai de longue durée

S: coefficient d'emmagasinement

T: transmissivité.

- Les conditions d'exploitation de l'ouvrage.
- L'évolution des rabattements en fonction du débit et du temps pour une exploitation de longue durée.

VI.1.2. La connaissance des paramètres patrimoniaux

La connaissance des données patrimoniales est un élément essentiel à une bonne gestion du réseau d'alimentation.

Les paramètres d'exploitation de l'ouvrage doivent absolument être mis à la disposition des exploitants. Dans ce cas, des sorties sur terrain s'imposent afin d'assurer une pérennité à l'ensemble des forages d'un champ captant.

Ces données regroupent essentiellement :

- La coupe technique de l'ouvrage,
- Les principales caractéristiques physico-chimiques de l'eau,
- La position du niveau statique et du niveau dynamique à différents débits (courbe caractéristique),
- Le débit spécifique de l'ouvrage,
- La position de la pompe et ses caractéristiques,

• Le débit d'exploitation maximum à ne pas dépasser, etc.

Un exploitant ne peut pas gérer correctement ces captages sans avoir connaissances de ces informations patrimoniales. A défaut de cette information de base, aucune surveillance n'est possible et il n'en résulte par la suite aucun entretien préventif.

VI.1.3. Les équipements techniques

Pour juger le bon fonctionnement d'un captage d'eau souterraine et déceler une anomalie, il est nécessaire que l'installation soit pourvue d'un minimum d'équipements techniques. Conformément aux recommandations des agences de l'eau, ces appareils sont;

Pour les équipements de pompage :

- un compteur d'eau.
- Un compteur horaire par pompe.
- Un ampèremètre par pompe.
- Un voltmètre.
- Un manomètre.
- Un dispositif de protection des pompes contre le désamorçage.
- Une prise d'échantillon pour analyses.

La pratique montre également qu'il est nécessaire que le captage soit équipé, au refoulement de la pompe, d'un piquage permettant d'évacuer l'eau pompée sans passer par le réseau. Ce dispositif permet notamment de faire des essais de pompage divers, de stériliser le puits et évacuer l'eau.

Pour le captage lui-même

- Un tube piézométrique permettant (à condition de disposer d'une sonde de niveau) de vérifier les différents niveaux de la nappe (statique et dynamique).
- Eventuellement, un capteur de pression qui transmettra les mêmes indications citées cidessus, pour une exploitation informatisée de la donnée.

Il convient également que le captage soit nivelé de manière à pouvoir obtenir des cotes piézométriques dans un ensemble cohérent de données.

VI.2. Maintenance

La maintenance est un ensemble de mesures servant à préserver l'état initial des dispositifs techniques, afin de faire évoluer l'état réel d'un système d'alimentation en eau potable, en procédant régulièrement aux opérations d'entretien, d'inspection et de remise en état. On distingue deux types de maintenance.

VI.2.1. La maintenance préventive

Elle comporte toutes les opérations de contrôles et d'entretien que l'on effectue sur les ouvrages ou leurs équipements, pour les maintenir en bon état de fonctionnement.

On distingue trois concepts principaux :

VI.2.1.1. L'entretien courant

L'entretien courant consiste à prendre quotidiennement des mesures de surveillance, de contrôle, et de détections des anomalies (bruit, fuites etc....)

VI.2.1.2. L'entretien préventif systématique

Il s'agit d'un programme mis en place pour assurer l'entretien systématique du système d'alimentation, sur la base d'un planning.

Sa mise en œuvre est indispensable pour assurer aux équipements une longue durée de vie.

Néanmoins, le coût des interventions doit être inférieur aux dépenses de dépannage ou de renouvellement.

VI.2.1.3. L'entretien préventif exceptionnel

A l'inverse de l'entretien préventif systématique, l'entretien préventif exceptionnel ne se fait pas suivant un programme ou un planning établi à l'avance, mais consiste surtout a intervenir sur le système d'alimentation on effectuant des opérations dites exceptionnelles tel que démonter une pompe d'un forage à la suite d'une baisse significative des performances de ce dernier.

VI.2.2. La maintenance curative

Elle consiste à remettre en état un équipement ou une installation suite à une défaillance ou à une mise hors service accidentelle totale ou partielle.

Ces interventions sont généralement caractérisées par un haut degré d'urgence. Les pannes peuvent être dues :

- A un défaut d'entretien sur l'ouvrage.
- A la vétusté du matériel, ou réseau, au quel cas l'entretien préventif peut s'avérer inutile.
- A une défaillance des systèmes et organes de protection des appareils.

La mise en œuvre d'une maintenance curative efficace nécessite :

- Une parfaite connaissance des installations à dépanner (plan à jour des installations, fiches techniques du matériel, catalogues des pièces de rechange, etc.
- Un personnel qualifié.

VI.3. Gestion technique et suivi général des installations (pour un captage par forage)

La gestion d'un forage où d'un champ captant nécessite un suivi général des installations et des équipements qui les composent pour les maintenir en bon état le plus longtemps possible.

Les opérations de contrôles, de suivi et d'inspection sont décrites ci-dessous :

- Contrôles hebdomadaires :
 - Contrôle de l'étanchéité de la fermeture des trappes
 - Contrôle de l'étanchéité de la fermeture de la tête du puits
 - Mesure des niveaux statique et dynamique.
- Contrôles semestriels :
 - Comparaison du niveau de forage et du niveau d'eau et du piézomètre de contrôle.
 - Affaissement de terrain contournant les forages.
 - Mesure des prélèvements.
 - Analyser l'état de fonctionnement de l'installation.
 - Contrôler l'état des grilles d'aération
 - conduites et robinetteries : étanchéité, corrosion, peinture, fonctionnement des organes de robinetterie.

Les opérations de contrôle et inspection pour les machines tournantes et installations électriques sont :

- Contrôle hebdomadaires :
- Etanchéité des pompes, vannes, robinetterie, presse étoupe et conduite,
- Remplissage d'air des réservoirs anti-bélier
- Fonctionnement des réservoirs électriques.
- Contrôles mensuels:
- Essai de fonctionnement des équipements de secours et auxiliaires, fonctionnement des organes de robinetterie tel que réducteur de pression, soupape de sécurité et clapet.
- Fonctionnement et indication de l'installation de télécommande et télétransmission.
- Contrôles annuels :
 - Révision générale de l'ensemble de l'installation électrique, en particulier l'appareillage de commande. L'isolement des enroulements des moteurs et de la mise à la terre.
 - Installation de mesure selon la sensibilité et les instructions du constructeur,
 - Compteurs généraux.

_

VI.4. Vieillissement et traitement des forages

Malgré toutes les protections et tous les contrôles réguliers dont peut bénéficier un ouvrage de captage, il est impossible de le maintenir éternellement en bon état.

Le vieillissement est donc inéluctable, et est surtout causé par les phénomènes de corrosion et de colmatage.

VI.4.1. Phénomène de colmatage

Le colmatage des forages se traduit par une baisse progressive du rendement de l'ouvrage. C'est généralement le premier symptôme caractéristique du vieillissement.

Les origines du colmatage peuvent variés, mais le résultat est toujours le même, c.à.d. baisse de la perméabilité du milieu environnant immédiat (massif de graviers filtrant ou formation ellemême), ou bien accroissement des pertes de charges dû à la diminution du pourcentage de vide de la crépine (concrétions ou incrustations).

Il existe trois types de colmatage :

- Colmatage mécanique : des particules fines (sable, argiles, colloïde) peuvent être entraînées sous l'effet de pompage et venir boucher l'ouvrage ou colmater le massif filtrant
- Colmatage chimique : les deux phénomènes susceptibles de déclencher un colmatage chimique sont le dégagement de CO2 et l'apport d'O2.
- Colmatage biologique : Il se caractérise généralement par la présence d'élément filamenteux dans l'eau pompée, de flocons ou de bloc gélatineux, parfois bien avant que la perte de productivité de l'ouvrage ne se manifeste.

VI.4.2.Phénomène de corrosion

Il existe deux types de corrosion :

- Corrosion électrochimique
- Corrosion bactérienne.

Elle est causé par :

- La présence de l'eau corrosive à l'intérieur d'un forage
- Existence de bactéries sidérolites ou sulfatés ductiles
- Effet galvanique entre les diverses parties de même ensemble métallique au contact d'eau de composition différente.

Pour lutter contre ce phénomène en procède comme suit :

• Protection active

Utilisation des effets électrochimiques (cathodiques) afin de stopper les phénomènes de corrosion qui sont directement liés à la corrosivité du sol et à l'influence des courants électriques parasites (courants vagabonds).

• Protection passive:

- Appliquer une couche de peinture protectrice.
- Appliquer un revêtement tout autour de la conduite.

La corrosion des captages d'eau souterraine est un phénomène beaucoup plus dangereux que le colmatage, car ses effets sont souvent indétectables. En revanche, ses conséquences présentent un grand risque pour la pérennité de l'ouvrage.

VI.5. Gestion et exploitation des réservoirs

Les réservoirs sont des ouvrages de stockage dont la durée de vie est généralement longue (50 ans minimum), les problèmes d'exploitation où d'entretien peuvent concerner les réservoirs trouvent le plus souvent leur origine dans les insuffisances au niveau de la conception.

Les fonctions générales assurées par les réservoirs d'eau potable sont multiples et de nature à la fois technique et économique.

Au niveau de la conception des équipements, il convient bien entendu d'étudier de façon correcte les problèmes hydrauliques du réservoir mais également les problèmes liés à l'exploitation, en prévoyant les équipements permettant à l'exploitant d'être informé sur les conditions de fonctionnement (télégestion).

Il est nécessaire aussi d'intervenir sur le réservoir au moins une fois par an pour effectuer son nettoyage, et aussi plusieurs fois dans la vie de l'ouvrage pour des opérations d'entretien (génie civil, équipement hydrauliques...).

VI.5.1. Equipements des réservoirs

La liste des équipements susceptibles d'être installés dans un réservoir est représentée dans le

Tableau suivant:

Tableau 1: équipements des réservoirs

Fonction	équipements				
	-Vanne diverses - Clapet - Equipements de trop plein -Vidange - Siphon pour réserve d'incendie				
Hydraulique	-Canalisation de liaison - Compteur Clapet à rentre d'air -Purgeur d'air				

Exploitation	-Capteur de niveau -Poste de liaison électrique -Débitmètre - Equipements de télétransmission					
Nettoyage	-Trappes de visite pour les personnels et le matériel -Equipements spéciaux pour le nettoyage -Pompe d'alimentation en eau					
Entretien	-Appareils de manutention -Joints de montage -Eclairage -Trappes de visite pour le personnel et le matériel					
Qualité de l'eau	-Equipement ou disposition pour le renouvellement de l'eau -Equipement ou disposition pour le renouvellement de l'air -Robinet de prélèvement -Equipement de désinfection, analyseurs -Dispositif de protection contre les actes de malveillance et - les intrusions					
Fonction	équipements					
Sécurité lors des interventions	-Passerelle -Echelle à crinoline -Garde –corps -Ancrage pour harnais de sécurité -Eclairage					
Divers	-Suivant le réservoir : compresseur d'air, protection thermique des équipements, alarmes diverses					

VI.5.2. Aspects lies à l'exploitation des réservoirs

Les réservoirs sont des ouvrages qui nécessitent des interventions régulières (opérations courantes de surveillance, entretien et nettoyage) ou occasionnelles.

VI.5.2.1. Opération de nettoyage

Le vidange et le nettoyage des réservoirs doit se faire au moins une fois par an. Ces opérations doivent être suivies d'une désinfection de l'ouvrage et d'un contrôle de la qualité de l'eau après remise en eau de l'ouvrage.

VI.5.2.2. Prévention des accidents (sécurité)

Un réservoir est un ouvrage qui présente un certaine nombre de risques (chutes, noyades, asphyxie,...) pour le personnel d'exploitation et donc des précautions particulières doivent être prises.

Les premières dispositions sont bien entendu à prendre au moment de la conception de façon à ménager des moyens d'accès et de circulation commodes et conformes aux règles de sécurité.

Ces dispositions doivent comprendre la mise en place des garde-corps, mains-courantes, portillons ou chaîne de sécurité, escalier, échelles, crinolines, crosses,...etc.

VI.5.2.3. Contrôle de la qualité de l'eau

Afin d'éviter une dégradation de la qualité de l'eau lors de la traversée d'un réservoir, il convient:

- d'assurer l'étanchéité de l'ouvrage : terrasse, radier et parois pour les réservoirs au sol ou semi enterrés.
- De veiller est ce que les entrées d'air (ventilations, trop-plein...) soient correctement protégées contre les entrées de poussière, d'insectes et d'animaux ;
- De limiter l'éclairage naturel de l'intérieur du réservoir ;
- De procéder à un nettoyage au moins annuel du réservoir.

VI.6. Gestion et exploitation des réseaux

Afin d'assurer une bonne gestion de réseau d'adduction et de distribution il faut que le réseau soit bien conçu, et cela se fait en respectant les normes techniques, tout en adaptant les matériaux appropriés.

Il faut s'assurer que le choix de tracé des conduites soit en dehors des zones sensibles, tout en respectant les conditions de pose canalisation.

Il faut aussi équiper le réseau de différents organes et accessoires qui facilitent sa gestion et son entretien.

VI.6.1. La surveillance et l'entretien courant des adductions et réseau de distribution

Les opérations d'inspection et d'entretien qui doivent être effectuées au niveau du réseau sont :

• Contrôles mensuels:

- Contrôle des conduites vis-à-vis de l'affaissement
- Vérifier l'étanchéité de la fermeture des trappes de regard pour les ouvrage en ligne et de croisement

• Contrôles semestriels:

- Vérifier l'étanchéité de la fermeture des trappes de regard pour les ouvrages en ligne
- Contrôler les dysfonctionnements des réducteurs de pression, soupape de sécurité et d'aération.
- Visiter les organes de robinetterie à l'intérieur des regards

Contrôles annuels :

- Vérifier l'état de marche des organes de sectionnement et des dispositifs de protection contre les ruptures de canalisations.
- Bouche d'incendie : fonctionnement, état, vidange, plaques indicatrices, présence de clé et de tuyaux de prise,
- Nettoyage des conduites, en particulier des tronçons secondaires et ceux en bout de réseau,
- Capacité de transit des conduites d'adduction (mesure de débit et pression)

Conclusion:

Dans ce contexte, les gestionnaires doivent toujours prendre des décisions, argumentées et pertinentes, ce qui nécessite une stratégie d'étude efficace basée, d'une part sur la connaissance du comportement du système de distribution d'eau potable et d'autre part sur l'utilisation d'indicateur appropriés sur l'évaluation des performances de fonctionnement du système. Ces indicateurs sont établis par le gestionnaire selon ces propriétés de gestion mais aussi à partir des directives et normes des documents officiels.

CHAPITRE VII: ACCESOIRES DU RESEAU DE DISTRIBUTION

Introduction

Dans ce chapitre, nous allons présenter quelques accessoires complétant l'ossature et la conception d'un nouveau réseau de distribution projeté pour l'agglomération. Un réseau sans accessoires ne pourra jamais fonctionner à son bon rendement maximum notamment quand il est vétuste. C'est dans ce sens que les pièces et les appareils accessoires sont nécessairement utiles notamment pour mieux gérer un système d'alimentation en eau potable en général.

VII.1. Rôle des accessoires

Les organes et les accessoires jouent un rôle prépondérant dans le bon fonctionnement du réseau, ils sont installés pour:

- Assurer un bon écoulement d'eau.
- Protéger les canalisations.
- Changer la direction des conduites.
- Raccordement des conduites.
- Changer le diamètre.
- Soutirer les débits.
- Régulariser les pressions et mesurer les débits.

VII.2. Organes accessoires utilisés dans le réseau

Les accessoires qui seront mis en place sont:

VII.2.1. ROBINETS VANNES

Ce sont des appareils de sectionnement permettant l'isolement des différents tronçons du réseau lors d'une réparation sur l'un d'entre eux. Ils permettent aussi le réglage des débits, leur manœuvre s'effectue :

- manuellement à partir du sol au moyen d'une clé dite « béquille »celle-ci est introduite

dans une bouche à clé placée sur le trottoir (facilement accessible).

- électriquement pour des robinets de grande dimension,
- commandes hydrauliques et pneumatiques par vérin ou moteur à air. On distingue plusieurs types de vannes qui satisfont à des besoins variés :

VII.2.1.1. Vanne à coin (à opercule)

Ce sont des appareils de sectionnement fonctionnant soit en ouverture totale, soit en fermeture totale. La vanne est une sorte de lentille épaisse qui s'abaisse ou s'élève verticalement à l'aide d'une vis tournant dans un écran fixé à la vanne. Les diamètres varient entre 40 à 300 mm

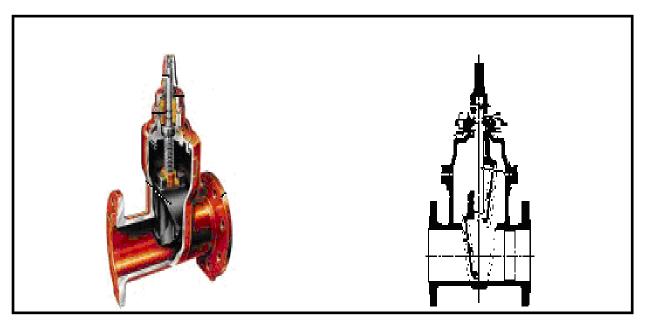


Figure 1 : Robinets vanne à opercule (D'après document Pont-à-Mousson)

VII.2.1.2. Vannes papillons

Ce sont des appareils de réglage de débit et de sectionnement et dont l'encombrement est faible. Il s'agit d'un élément de conduite traversé par un axe déporté entraînant, en rotation, un disque obturateur appelé papillon. Ce type de robinet permet un arrêt automatique et rapide en cas de rupture de conduite. Les diamètres sont plus importants, lis varient de 100 à 2500 mm parfois plus, cette vanne occasionne une faible perte de charge

Figure 2 : Robinets vanne papillon (D'après document Pont-à-Mousson

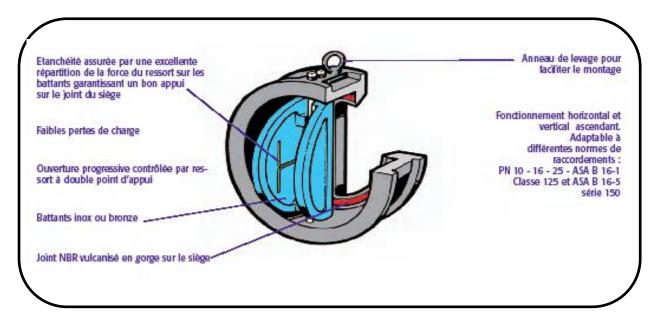


Figure 3 : Clapet à double battant (D'après document DanfossSocla)

NB: Pour notre réseau, on place ce type de robinet au niveau du point de piquage.

VII.2.1.3. Vanne régulatrice de pression :

Les vannes de régulation ont pour fonction de réguler une pression ou un débit. Elles sont utilisées dans une boucle de régulation qui prévoit en général un capteur.

Un régulateur et une vanne de régulation. La vanne de régulation est capable d'adapter en permanence son ouverture à la variation du signal du capteur.

Figure 4 : Vanne de régulation

VII.2.1.4. Clapets anti retour:

Le clapet anti retour est, en apparence, un appareil simple. Schématiquement, il fonctionne comme une porte. C'est un accessoire permettant l'écoulement du liquide dans un seul sens. On trouve des clapets à double battant, papillon, à contrepoids, tuyère......etc.

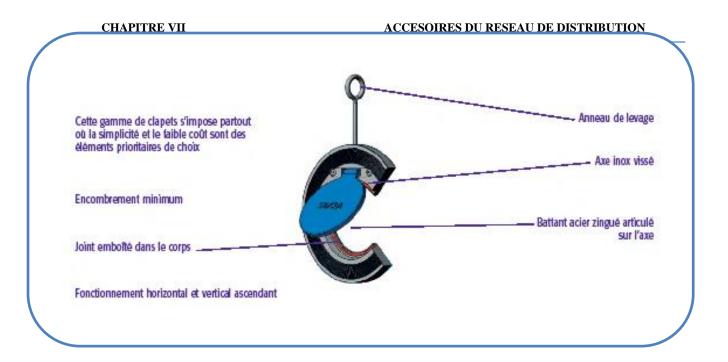


Figure 5 : Clapet à simple battant (D'après document DanfossSocla)

NB: Dans notre cas, on prévoit l'installation d'un clapet anti retour là ou sont installés les compteurs a un seul sens obligeant ainsi l'écoulement dans le sens indiqué par le compteur.

VII.2.1.5. Vannes de décharge

C'est un robinet disposé au point bas du tracé en vue de la vidange de la conduite. La vidange se fait soit dans un égout (cas d'un réseau urbain), soit dans un fossé ou en plein air (cas d'une conduite compagne). Ce robinet sera posé dans un regard en maçonnerie facilement accessible.

NB: Dans notre cas on prévoit ces vannes aux points bas des conduites formant les mailles et au niveau des nœuds 23, 25 et 26 qui représentent les extrémités aval des ramifications. pour vidanger, nettoyer et réparer ces dernières.

VII.2.1.6. Robinets de branchement

On distingue:

- -les robinets d'arrêt qui sont placés à l'aval des points de raccordement des branchements. Leur rôle est d'isoler le particulier du réseau
- -Les robinets de prise pour soutirer les débits, ils joueront également le rôle de dégazage

VII.2.2. VENTOUSES

Ce sont des appareils de dégazage mis en place aux points hauts de la canalisation et servant à l'évacuation de l'air occlus. L'évacuation de l'air se fait par l'intermédiaire d'une ventouse qui peut être manuelle ou automatique.

NB: Pour le cas d'un réseau de distribution, ils sont remplacés par des robinets de prise ils ne sont donc pas nécessaires au niveau du réseau de distribution.

VII.2.3. POTEAUX D'INCENDIE

Les poteaux d'incendie sont plus nombreux et rapprochés lorsque les débits d'incendie sont plus élevés. Les poteaux d'incendie doivent comporter au moins deux prises latérales de 65mm de diamètre auxquelles on ajoute une prise frontale de 100 mm si le débit d'incendie dépasse 500 l/min ou si la pression de l'eau est faible. Les poteaux d'incendie doivent être reliés aux conduites du réseau par des conduites de racc ordement d'au moins 150 mm de diamètres dotées d'une vanne d'isolement. La distance qui sépare deux poteaux d'incendie est de 50m à 200m.

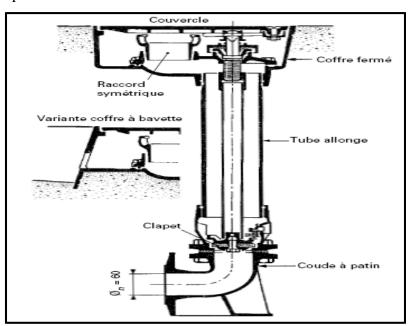


Figure 6: Bouche d'incendie ou de lavage (D'après document Pont-à-Mousson).

NB: Dans notre cas, on prévoit l'installation de poteaux d'incendie chaque 200m, au niveau des conduites véhiculant au minimum un débit 17 l/s sous une pression minimale de1bar. On veille à choisir le coté de la rue de façon à minimiser la longueur de leurs branchement à la

conduite de distribution

VII.2.4. LES RACCORDEMENTS

Notre réseau est en PEHD, pour ce type de matériau il existe trois types de raccordements:

VII.2.4.1. Soudure bout à bout

Le soudage bout à bout par élément chauffant est utilisé pour assembler les tubes et raccords en PE d'épaisseur identique. Ce procédé consiste à porter à la température T=230°C de soudage, par un outil chauffant (miroir), les extrémités des tubes et/ou raccords pendant six minutes.

Après avoir retiré l'outil chauffant, les extrémités plastifiées sont mises en contact et sont maintenues en pression de 50bars l'une contre l'autre jusqu'à un cycle complet de refroidissement qui est de 43 minutes.

Une bonne soudure bout à bout, reconstitue parfaitement la continuité de la canalisation avec une résistance mécanique identique. Le soudage bout à bout ne peut être effectué qu'à partir du diamètre 90 mm.

Figure7: Bout à bout «bouteuse»

VII.2.4.2. Les raccords électro-soudables:

Les raccords électro soudables sont équipés d'un fil résistant intègre au voisinage de la surface qui , après assemblage ,se trouvera au contact du tube. Des bornes situées à l'extérieur de la

zone de soudage permettent le raccordement de cette résistance à une source d'énergie.

Après grattage, nettoyage et positionnement des pièces à raccords, la tension est appliquée aux bornes du raccord et la puissance électrique provoque une fusion de surface des deux pièces à assembler . Ce type de raccordement est très recommandé.

Selon les statistiques mondiales ,ce nouveau système assure zéro fuite ,néanmoins, il demande certaines précautions à prendre lors de montage.

Figure8: Raccordement par accessoires électro-soudables

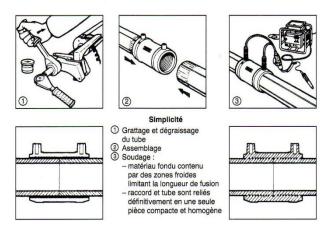


Figure9 : Assemblages par électro soudage

VII.2.4.3. Les raccords mécaniques

Ces raccords sont soit en matière plastique, soit métallique, ils sont couramment utilisés jusqu'au DN 63 mm et existe à des diamètres supérieurs à 90 mm maximum.

Après coupe, ébavurage et chaufreinage des tubes, le montage s'effectue tout simplement par emboitement et serrage de raccord.

Il existe donc une gamme de raccords en polyéthylène destinés à :

- La déviation d'une partie d'écoulement.
- L'introduction dans la conduite d'un débit supplémentaire ou son soutirage.
- Le changement de diamètre de la conduite.
- Le changement de direction de la conduite.
- L'assemblage des tubes.

Pour notre réseau on aura besoin de :

Les coudes :

Les coudes sont des accessoires utiles surtout pour les réseaux maillés et ramifiés, lorsque la conduite change de direction. Généralement, les coudes sont maintenus par des massifs de butées, convenablement dimensionnés.

On y distingue des coudes à deux emboîtements ou bien à emboîtements et à bout lisse ;

Les deux types de coude se présentent avec un angle de : 1/4 (90°), 1/8(45°), 1/16 (22°30'),

1/32(11°15').

Figure 10: Les coudes

Les tés :

Les tés sont utilisés dans le but de soutirer un débit d'une canalisation ou d'ajouter un débit complémentaire. Ils sont rencontrés au niveau des réseaux maillés, ramifiés et des canalisations d'adduction en cas de piquage. Les tés se présentent soit à trois emboîtements, soit à deux emboîtements et brides.



Figure11 : Le tés

Les croix de jonction:

Elles sont utilisées au niveau des nœuds pour le croisement des deux conduites perpendiculaires.

> les manchons :

Ce sont des morceaux de 25 à 50 cm, qui sont utilisés pour le raccordement des accessoires et appareillages.

VII.2.5. ORGANES DE MESURE

VII.2.5.1. Mesure de débit :

Le réseau de distribution nécessite l'emplacement des appareils de mesure de débit, qui seront installés en des points adéquats, et servent à l'évaluation du rendement du réseau de distribution et le contrôle de la consommation.

On distingue des appareils traditionnels tel que le diaphragme, le venturi et la tuyère, et d'autres modernes qui sont les plus utilisés comme les débits mètre et les compteurs.

NB: On prévoit pour notre cas, l'installation des compteurs à double sens au niveau des mailles, et des compteurs à un seul sens au point de piquage et au niveau des ramifications.

VII.2.5.2. Mesure de pression:

Les appareils les plus utilisés sont:

Manomètres à aiguilles: Dans les manomètres à aiguille, le mouvement est transmisàl'aiguillesoitparunsecteurdentésoitparunleviersoitparunemembrane.

L'avantagedecettetransmissionestlafacilitéd'étalonnageetsoninconvénientrésidedans

usure rapide de la denture surtout si le manomètre subit des vibrations (figure 4.11).

➤ Manomètres à soufflet: Ce sont des manomètres dont l'organe actif est un élément élastique en forme de soufflet. Sous l'effet de la pression, le soufflet se déformedans la directio-

naxiale.Lesmanomètres à soufflet présentent l'avantage d'éliminer le danger de gel et leur inconvénient réside dans leur sensibilité aux vibrations et au sur chauffage

Figure 12: Manomètre (d'après document BAMO)

NB: Dans notre cas on prévoit un manomètre au point de piquage et au niveau des conduites quelque soit leur diamètre.

VII.2.6. BY-PASS

Le by-pass est utilisé pour :

- -Faciliter la manœuvre de la vanne à fermeture lente ;
- -Remplir à débit réduit, la conduite avant sa mise en service ;
- -Relier la conduite d'arrivée à la conduite de départ du réservoir.

Conclusion

Afin d'assurer un bon fonctionnement du réseau, les accessoires doivent être installés soigneusement, pour cela les raccordements seront effectués par des personnes qualifiées et compétentes. Pour assurer la longévité de ces appareils un entretien périodique et une bonne gestion sont nécessaires.

Chapitre VIII: POSE DE CANALIATION ET ORGANISATION DE CHANTIER

Introduction

La pose de canalisation joue un rôle très important dans leur stabilisation, et leur durabilité, et par conséquent dans la durée de vie du réseau et son bon fonctionnement. Dans ce contexte, et dans le but d'obtenir une meilleure coordination des travaux sur terrain, nous allons exposer la pose de canalisation en général, à effectuer dans notre agglomération, une chronologie des travaux à entreprendre, ainsi que les engins de terrassement qui vont être utilisés pour la mise en place des conduites.

VIII.1. Choix et type de pose de canalisation pour l'agglomération

Afin de répondre au critère de bonne mise en œuvre, il existe plusieurs variantes de pose de conduites:

- -la Pose en terre:
- -la Pose en mauvais terrains;
- -la Pose en galerie;
- -la Pose en pentes;
- -la Pose des conduites traversées des routes et voies ferrées
- -la Pose en immersion (cours d'eau);
- -la Pose à proximité d'une conduite d'assainissement
- -la Passage de ponts
- -la Pose sans tranchée ouverte

Le choix s'effectue en fonction de : la topographie du terrain et sa nature, la disposition des lieux et des différents obstacles qui peuvent être rencontrés. Selon ces facteurs on opte pour les poses suivantes:

VIII.1.1. Pose de canalisation enterre

Ce choix est justifié par la présence du réseau dans un terrain ordinaire en sa totalité. Dans ce type de pose on procède à l'enfouissement des canalisations dans une tranchée de largeur et profondeur suffisante (détaillé ci-après) avec établissement des niches, et ce la va nous permettre de les protéger contre les dégradations extérieures, de conserver la fraîcheur de l'eau et de les mettre à l'abri du gel.

NB: tous les tronçons seront posés en terre d'une façon ordinaire sauf quelques-uns, dont on a

suggéré les poses citées ci-dessous.

VIII.1.2. POSE A PROXIMITE D'UNE CONDUITE D'ASSAINISSEMENT

Dans ce cas il faut veiller à ce que les tuyaux d'eau potable soient posés au-dessus des tuyaux d'eau usée sur un rayon de 30m afin d'éviter une contamination au réseau d'eau potable, comme l'indique **la figure (VII.1)**ci-après :

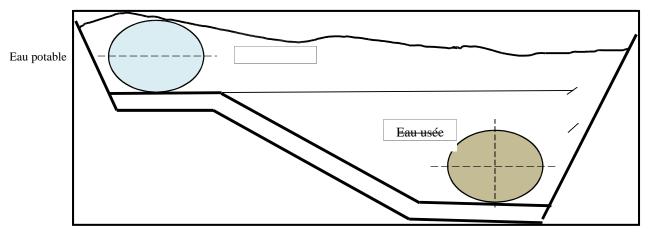


Figure 1 : Pose à proximité d'une conduite d'assainissement.

VIII.1.3. POSE DES CONDUITES EN TRAVERSEE DES ROUTES

Pour qu'il n'y ait plus de transmission des vibrations dues aux charges et pour amortir les chocs qui peuvent nuire aux conduites et causer des ruptures, par suite des infiltrations nuisibles, il faut prévoir dans ce cas-là les solutions suivantes :

- Des gaines : ce sont des buses de diamètre supérieur dans lesquelles les conduites sont introduites.
- Par enrobage dans le béton : dans ce cas les conduites sont couvertes de béton.

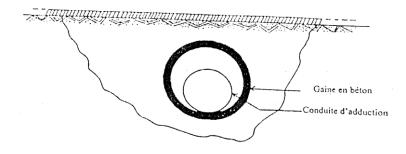


Figure 2 : Traversée d'une route au moyen d'une gaine.

VIII.2. Utilisation des Butées et verrouillage

Tout système de canalisation véhiculant un fluide sous pression subit d'importantes contraintes: des forces de poussées apparaissent aux changements de direction par exemple.

Pour éviter tout risque de déboîtement, il convient essentiellement de rééquilibrer ces efforts, soit en réalisant des massifs de butée en béton, soit en verrouillant le système de canalisations

VIII.2.1. L'UTILISATION DE MASSIFS DE BUTEES EN BETON

Est la technique la plus communément utilisée pour reprendre les efforts de poussée hydraulique d'une canalisation à emboîtement sous pression, différents types de massifs en béton peuvent être conçus selon la configuration de la canalisation, la résistance de la nature de sol, la prés en ce ou non de nappe phréatique. Le massif reprend les efforts dus à une poussée hydraulique soit par :

- -Frottement sur le sol (massif poids);
- -Appui sur le terrain en place (massif butée).

En pratique, les massifs en béton sont calculés en tenant compte des forces de frottement et de la résistance d'appui sur le terrain.

VIII.2.2. VERROUILLAGE

Le verrouillage des joints à emboîtement est une technique alternative aux massifs en béton pour reprendre les efforts de poussées hydrauliques. Elle est essentiellement employée lorsqu'il existe des contraintes d'encombrement.

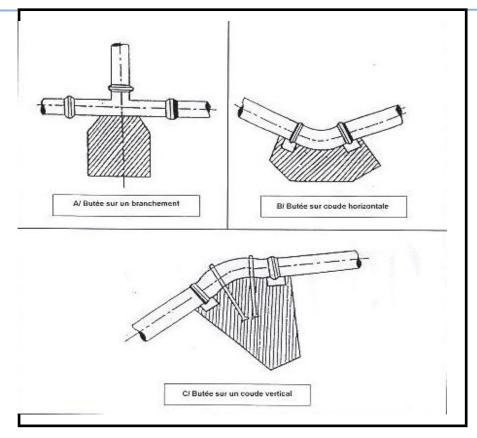


Figure 3: Les butées.

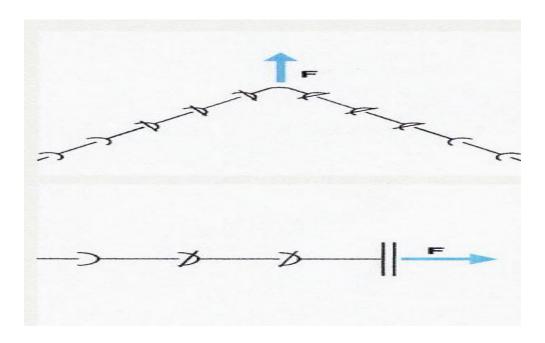


Figure 4: Verrouillage.

VII.3. Les différents travaux de mises en place des canalisations

VII.3.1. IMPLANTATION DU TRACE DES TRANCHEES SUR LE TERRAIN

VII.3.1.1. Matérialisation

On matérialise l'axe de la tranchée sur le terrain avec des jalons placés enligne droite et espacées de 50m. On effectue ce travail en mesurant sur le plan leurs distances par des repères fixés où des bornes. La direction des axes et leurs extrémités son tain si bien déterminée.

VII.3.1.2. Nivellement

Le nivellement est la mesure des différences d'altitudes entre deux où plusieurs point situés sur une pente uniforme. Lorsque le terrain compte des obstacles on procède au nivellement par cheminement et par un simple calcul, on détermine la hauteur de chaque point ainsi la profondeur de tranchée en point.

VII.3.2. Excavation des tranchées

Cette opération se divise en deux étapes:

VII.3.2.1. Enlèvement de la couche végétale

Pour la réalisation de cette opération, on opte pour un dozer (voir Figure VIII-10).

VII.3.2.2. Réalisation des fouilles

La réalisation de la tranchée et le remblaiement dépendent des paramètres suivants:

- -Environnement;
- -Caractéristiques de la conduite (type de joint et diamètre);
- -Nature du terrain (avec ou sans eau);
- -Profondeur de pose.

NB: On choisit d'utiliser la pelle hydraulique pour la réalisation des fouilles

a. Largeur de la tranchée:

Elle doit être au minimum 0.60 m pour faciliter les travaux. Elle sera calculée en fonction du

diamètre de la conduite, en laissant 0.30m d'espace de chaque coté de celle-ci. (**Figure 5:**).La largeur de la tranchée est donnée par la formule suivante:

$$B = D + (2 \times 0.30)$$
.....en (m)

Avec:

- B: largeur de la tranchée (m);
- D : diamètre de la conduite (m).

b. La profondeur de la tranchée :

La profondeur doit être suffisante. Elle varie de 0.60 m à 1.20 m pour assurer la protection de la conduite contre les variations de la température et le risque d'écrasement sous l'effet des charges et des surcharges (**Figure VIII-5:**).

On peut calculer la profondeur de la tranchée en utilisant la formule suivante :

$$H=D + H1 + H2....en (m)$$

Avec:

- H: la profondeur de la tranchée (m); H1:profondeur du lit de pose prise égale à 0.2 m;
- H2:distance verticale séparant la génératrice supérieure de la conduite à la surface du sol
 (m)
- D : diamètre de la conduite (mm).

Tableau 1 : Calcul des volumes des tranchées

Diamètre	Longueur (m)	Profondeur	Largeur de	Volume de la
		de la tranchée	la tranchée	tranchée
(mm)		(m)	(m)	(m3)
50	1360,82	0,95	0,65	840,31
75	3531,46	0,975	0,675	2324,14
90	11445,886	0,99	0,69	7818,68
110	4822,026	1,01	0,71	3457,87
125	1134,86	1,025	0,725	843,34
160	3876,649	1,06	0,76	3123,03
200	1512,06	1,1	0,8	1330,61
250	990,04	1,15	0,85	967,76
315	2602,417	1,215	0,915	2893,17
total	31276,218			23598,93

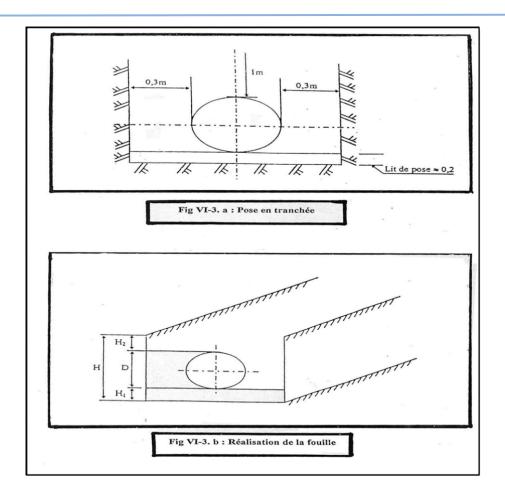
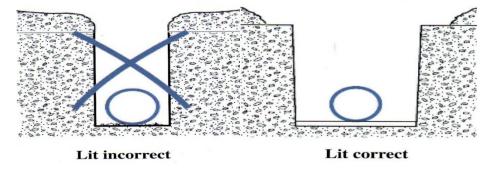
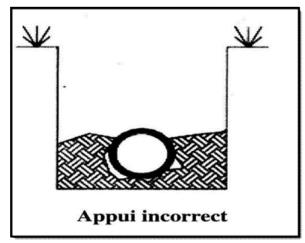


Figure 5: Schéma d'une tranchée avec une conduite circulaire

c. Lit de pose :

Avant la pose de conduite, nous procédons à la pose d'un lit de sable de 0,1 m à 0,2md'épaisseur nivelée suivant les côtes du profil en long




Figure 6:Lit de pose.

lit de pose	Longueur (m)	Largeur de la tranchée (m)	Epaisseur (m)	Volume (m3)
	1360,82	0,65	0,1	88,45
	3531,46	0,675	0,1	238,37
	11445,886	0,69	0,1	789,77
	4822,026	0,71	0,1	342,36
	1134,86	0,725	0,1	82,28
	3876,649	0,76	0,1	294,63
	1512,06	0,8	0,1	120,96
	990,04	0,85	0,1	84,15
	2602,417	0,915	0,1	238,12
total	31276,218			2279,10

Tableau 2 : calcul du volume des lits de sable

d. L'assise:

Au-dessus du lit de pose et jusqu'à la hauteur de l'axe de la canalisation, le matériau de remblai est poussé sous les flancs de la canalisation et compacté de façon à éviter tout mouvement de celle-ci et lui constituer l'assise prévue. L'ensemble du lit de pose et l'assise constituent l'appui [9].

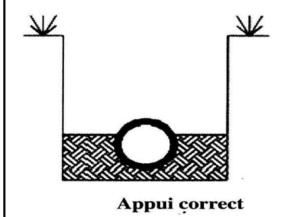


Figure 7: Appui des conduites.

VII.3.3. POSE DES CONDUITES

- **1**-Avant la descente des conduites aux fouilles, on procède à un triage des conduites de façon à écarter celles qui ont subi des chocs
- **2**-la descente des tuyaux doit être manipulée avec soin, ils seront posés lentement soit manuellement soit mécaniquement à l'aide d'un pose tube dans le fond de la fouille.
- 3-Chaque élément posé dans la tranchée doit être présenté dans l'axe de l'élément précédemment posé, et au cours de la pose, il faut vérifier régulièrement l'alignement des tuyaux afin d'avoir une pente régulière entre deux regards, pour y opérer correctement on effectue des visées à l'aide des nivelettes tous les 80 m environ
- **4-** Tous les débris liés à la pose doivent être retirés de l'intérieur du tuyau avant ou juste après la réalisation d'un emboîtement. Ceci peut être effectué en faisant passer un goupillon le long du tuyau ou à la main, selon le diamètre.
- **5** A chaque arrêt de travail un bouchon temporaire doit être solidement appliqué sur l'extrémité ouverte de la canalisation pour éviter l'introduction des corps étrangers. Cela peut faire flotter les tuyaux en cas d'inondation de la tranchée, auquel cas les tuyaux doivent être maintenus au sol par un remplissage partiel de la tranchée ou par étayage temporaire.

NB: Pour les petits diamètres (inferieur a 250mm) on va faire descendre les conduites manuellement.

VII.3.4. EPREUVE DE JOINTS ET DE LA CANALISATION

Pour plus de sécurité l'essai de pression des conduites et des joints se fait avant le remblaiement, on l'effectue à l'aide d'une pompe d'essai (pompe d'épreuve), qui consiste au remplissage en eau de la conduite sous pression de 1,5 fois la pression de service à laquelle sera soumise la conduite en cours de fonctionnement. Cette épreuve doit durer 30 minutes environ où la variation ne doit pas excéder 0,2 bar.

VII.3.5. REMBLAYAGE DES TRANCHEES

Le remblai une fois les épreuves réussies, la mise en place du remblai bien tassé est effectuée manuellement en utilisant la terre des déblais, (tout élément indésirable étant exclu). Le remblaiement doit être fait par couche de 20 à 30 cm.

Sachant que le remblayage des tranchées comporte en général deux phases principales :

VII.3.5.1. Le remblai d'enrobage

Comprend le lit de pose, l'assise, le remblai de protection. Le remblai directement en contact avec la canalisation, jusqu'à une hauteur uniforme de 10cm au-dessus de sa génératrice supérieure, doit être constitué du même matériau que celui de lit de pose.

VII.3.5.2. Le remblai supérieur

L'exécution du remblai supérieur peut comporter la réutilisation des déblais d'extraction de la fouille, si le maître de l'ouvrage l'autorise.

Ceux-ci seront toutefois expurgés des éléments de dimension supérieure à 10 cm, des débris végétaux et animaux, des vestiges de maçonnerie et tout élément pouvant porter atteinte à la canalisation [9].

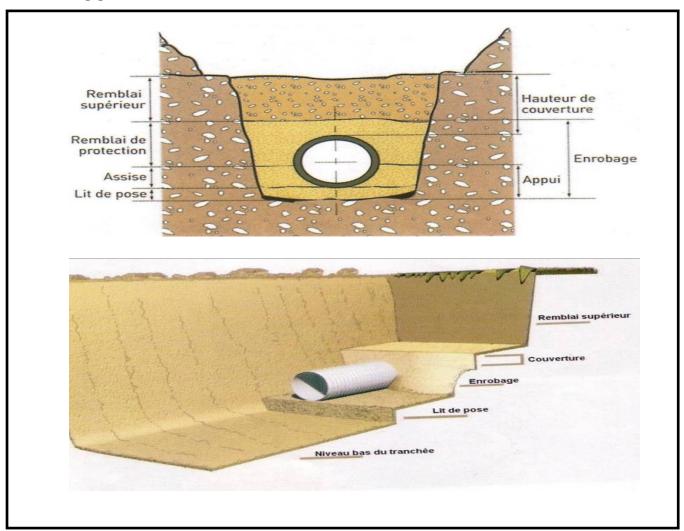


Figure 8: Remblayage des tranchées.

NB: nous utiliserons un chargeur pour le remblayage(voir **Figure 11**).

VII.3.6. NIVELLEMENT ET COMPACTAGE

Une fois le remblai fait, on procède au nivellement qui consiste à étaler les terres qui sont en monticule, ensuite au compactage pour augmenter la densité des terres et éviter le tassement par la suite.

NB: Nous optons pour un compacteur (vibrateur de sol)pour le compactage

VII.3.7. DESINFECTION DU RESEAU

Lors de la pose, la terre ou les poussières peuvent être introduites à l'intérieur des conduites, pour éliminer ces corps étrangers, il est indispensable de procéder à un nettoyage et un rinçage du réseau avant de livrer l'eau à la consommation publique. Les principaux produits susceptibles d'être utilisés comme désinfectants sont :

- Le permanganate de potassium (KMnO4);
- Hypochlorite de calcium (ClOCa);
- L'hypochlorite de sodium (ClONa ou eau de javel).

Avec un temps de contact qui dépend du produit utilisé et de sa dose introduite ; en fin on procède au rinçage à l'eau claire.

Tableau 3 : Produits de désinfection (Doses et temps de contact).

Désinfectants	Temps de contact	Dose de désinfectant	Defacutions	
utilisés	minimum en heurs	(mg / l)	Précautions	
Eau de Javel	24	90 à150	-Se dégrade rapidement à la lumièreNeutraliser le chlore avant le rejet pour les grandes quantités	
Hypochlorite de calcium	24 – 1,2 – 0,5 – instantané	10 – 50 – 150 – 10.000	-Ne pas utiliser en milieu confiné -Neutraliser le chlore avant le rejet pour les grandes quantités	
Permanganate de potassium	24	50	-A préparer au moins 24 heuresd'avance -Ne pas rejeté directement dans les eaux de surface (forte coloration)	

Remarque: Lorsque le réseau désinfecté a été convenablement rincé à l'eau claire, des prélèvements de contrôles ont faits immédiatement par le laboratoire agréé chargé de la surveillance des eaux, et si les résultats sont défavorables, l'opération est renouvelée dans les mêmes conditions.

VII.4. Définitions des engins de terrassement utilisés

Le matériel utilisé est le matériel classique des chantiers de travaux publics. L'utilisation de gros engins mécaniques va réduire considérablement le prix et le temps des terrassements dont l'incidence, dans la construction des chantiers, se trouve ainsi sensiblement diminuée.

Les engins que nous allons utiliser sont :

- -Une pelle hydraulique;
- -Un dozer;
- -Un chargeur;
- -Un vibrateur du sol pour le compactage des fouilles et des tranchées.

VII.4.1. PELLE HYDRAULIQUE

Les pelles sont des engins de terrassement qui conviennent à tous les terrains même durs.

La pelle peut porter divers équipement qui en font un engin de travail à plusieurs fins: Godet normal pour travail en butée. Godet rétro pour travail en fouille et en tranché. Godet niveleur pour travail de décapage ou de nivelage. Benne preneuse pour terrassement en fouille ou déchargement de matériaux (sable, pierres...). Dragline pour travail en fouille.

Pour une pelle équipée en rétro ou pelle hydraulique le gode test porté par un bras simplement articulé et actionner par des vérins hydraulique.

Figure 9: Pelle hydraulique

VII.4.2. DOZER

Le bulldozer est une pelle niveleuse montée sur un tracteur à chenille ou à pneus L'outil de terrassement est une lame profilée portée par deux bras articulés qu'un mécanisme hydraulique permet d'abaisser ou de lever.

Si la lame est en position basse l'engin fait des terrassements par raclage avec une profondeur de coupe de 20 à 30cm.

En mettant la lame en position intermédiaire, on peut régaler des tas de déblai sen couche d'épaisseur de 20 à 30cm également.

La position haute est une position de transport (hauteur de la lame au-dessus du sol de (75cm à 1m).

Figure 10: Bulldozer.

VII.4.3. CHARGEUR

C'est un tracteur à pneus muni de godet de chargement et de déchargement à l'avant, on l'utilisera pour remblayer les fouilles, les casiers et la tranchée après pose de la conduite.

Figure 11 : Chargeur

VII.4.4. COMPACTEUR (VIBRATEUR DE SOL)

C'est un engin peu encombrant, composé de deux petits cylindres d'environ 30 cm de diamètre muni d'un guidon. Cet engin sert au compactage des remblais des surfaces étroites telles que les fouilles des semelles, les casiers entre ceintures inférieures du bâtiment et les tranchées.

Devis estimatif du projet :

A présent, nous allons estimer le cout de réalisation du projet. Ce devis récapitule tous les travaux de pose de canalisation et du prix d'achat des conduites, les différents accessoires du réseau ne sont pas pris en compte. Les prix unitaires se référent au bordereau des prix se trouvant en annexe XIII

Le tableau suivant donne les différents calculs du coût de revient de notre projet :

Tableau 1 : Devis estimatif du projet

N°	Travaux	unité	quantité	prix uni- taire DA	montant DA
1	Fouilles en tranchées exécuté en terrain de toutes nature excepté terrain rocheux	m3	23598,93	380	8967592,73
2	fourniture et mise en œuvre de lit de pose et enrobage en sable	m3	2279,10	1700	3874468,06
3	Remblaiement des terres provenant des déblais expurgés de pierres y compris compactage, arrosage par couche successives de 20 cm	m3	23598,93	350	8259624,89
4	Fourniture et mise en place de grillage avertisseur de couleur bleue	ML	49476,9553	150	7421543,30
5	Prix conduites				
	50	ML	1360,82	276,37	680410,00
	75	ML	3531,46	629,2	2221994,63
	90	ML	11445,886	719,43	8234513,76
	110	ML	4822,026	1067,44	5147223,43
	125	ML	1134,86	1381,98	1568353,82
	160	ML	3876,649	2258,69	8756148,33
	200	ML	1512,06	3546,97	5363231,46
	250	ML	990,04	5487,44	5432785,10
	315	ML	2602,417	8700,12	22641340,19

Tableau 5 : Devis estimatif du projet (suite)

N°	Travaux	unité	quantité	prix uni- taire DA	montant DA
	Pose et raccordement de				
6	tuyaux posé en fond de fouille				
	y compris pièces spéciales				
	avec raccordement				
	50	ML	1360,82	500	680410,00
	75	ML	3531,46	1200	4237752,00
	90	ML	11445,886	1350	15451946,10
	110	ML	4822,026	2000	9644052,00
	125	ML	1134,86	2600	2950636,00
	160	ML	3876,649	4200	16281925,80
	200	ML	1512,06	6600	9979596,00
	250	ML	990,04	11 000	10890440,00
	315	ML	2602,417	16 000	41638672,00
	Montant total hors taxes (DA)				
	T.V.A 17% (DA)				34055192,13
	Montant T.T.C (DA)				234379851,75

Conclusion

A travers ce chapitre, nous avons défini tous les travaux qui vont avoir lieu sur chantier, et la manière dont il faut procéder. Mais cela ne suffit pas parce que le levage, la manutention de tuyaux, et les travaux dans les tranchées, sont des opérations dangereuses. Donc ces opérations doivent être réalisées par un professionnel maîtrisant les procédures, Pour que la qualité des tuyaux et raccords ne soient pas détériorés lors de la pose et l'emboîtement, et pour que la procédure d'emboîtement ne soit pas compromise.

Un devis quantitatif et estimatif a été établi, le cout du projet s'élève a 234 379 851 DA.

CONCLUSION GENERALE

Au cours de ce présent travail, nous estimons avoir cerné les différentes phases de réalisation d'une étude d'optimisation d'un système d'alimentation en eau potable, ceci dans le but d'atteindre certains objectifs à savoir:

- L'alimentation en eau potable répondant aux besoins de la population de la commune de Cherchell de la wilaya de Tipaza jusqu'à l'horizon 2040 .
- L'augmentation du rendement des réseaux de distribution et d'adduction en les remplaçant par des réseaux neufs.
- La sécurisation des réseaux de distribution contre un éventuel incendie en cas de pointe
- La réhabilitation des ouvrages de production et de stockage pour une meilleure exploitation de ces derniers.

Cette étude d'approvisionnement en eau potable est faite pour l'horizon **2040**, dont la population de toute la zone d'étude atteindra **82417** habitants.

L'importance des besoins en eau estimés pour les localités concernées par l'étude, par rapport aux sources existantes, a donné la nécessite de prévoir un transfert de **9575.684 m³/j** des eaux du barrage de Boukerdane.

Les ouvrages de la commune peuvent assurer la continuité de stockage jusqu'à l'horizon d'étude.

La grande différence d'altitude entre les réservoirs du chef lieu et les points les plus bas du réseau nous ont contraint a placer deux régulateurs de pression dans le réseau afin de stabiliser les pressions et protéger les conduites et leurs accessoires contre la cassure en limitant les fuites dans le réseau.

Pour terminer nous avons décidé de placer des bâches a eau au niveau des points les plus bas du réseau de distribution afin d'assurer l'alimentation en eau potable aux abonnés en heures de pointe et incendie.

La pose des conduites du réseau de distribution est estimé à 234379851,75DA

Références bibliographiques

- (1) **Hugh GODART**, Alimentation en eau potable, besoins et ressources.
- (2) F.VALIRON: Gestion des eaux, Ecole Nationale des Ponts et Chaussées.
- (3) Yahia STERRAHMANE: Etude de l'adduction à partir du barrage Z'hor pour l'alimentation en eau potable de cinq communes de la wilaya de Skikda, ENSH 2015.
- **(4) Tarik CHIBANE**: Diagnostic et réhabilitation du réseau d'alimentation en eau potable de la commune de Hassi R'Mel, ENP 2015.
- **(5) Hamza AYADI**: Diagnostic du réseau d'alimentation en eau potable de la ville de SIDI AICH (W. BEJAIA), ENSH 2009.
- **(6) Boualem SALAH,** Alimentation en eau potable des agglomérations, ENSH, septembre 2014.
- (7) Plan Directeur d'Architecture et d'Urbanisme (PDAU) de Tipaza.
- (8) Recensement général de la population et de l'habitat (RGPH) 2008.
- (9) Etude d'actualisation du plan nationale de l'eau (PNE), Aout 2010
- (10) Catalogue technique des tubes en polyéthylène, STPM Chiali.

Annexe

Annexe I:

Plan d'ensemble des ouvrages et réseaux sur la commune

Annexe II : Synoptique du système

Annexe III : Schéma vertical

Annexe VI : Réseaux de distribution

Annexe VII:

Tableau V-2 : Calcul des débits aux nœuds (cas de pointe)

Nœud	Tuyau	Longueur(m)	Qsp(l/s/m)	Qroute (1/s)	Qnodal (l/s)
	p6	39,98	0,00255826	0,10227921	
Noeud10	p328	219,2	0,00255826	0,56077046	0,55651096
Nocuato	p42	36,79	0,00255826	0,09411836	0,33031090
	p189	139,1	0,00255826	0,35585388	
	p56	15,57	0,00255826	0,0398321	
Noeud100	p189	139,1	0,00255826	0,35585388	
	p101	158,1	0,00255826	0,40446081	0,4000734
	p58	105,1	0,00255826	0,26887306	
Nœud102	p98	137,1	0,00255826	0,35073736	
	p396	76,93	0,00255826	0,1968069	0,81641732
	p59	47,62	0,00255826	0,12182431	
Nœud104	p136	80,7	0,00255826	0,20645153	
Nœud104	p347	96,4	0,00255826	0,24661621	
	p303	42,51	0,00255826	0,10875161	0,34182183
Noeud103	p58	105,1	0,00255826	0,26887306	0,13443653
	p123	215,6	0,00255826	0,55156073	
Noeud105	p240	37,64	0,00255826	0,09629288	
	p59	47,62	0,00255826	0,12182431	0,38483896
	p60	4,979	0,00255826	0,01273757	
Noeud106	p286	49,1	0,00255826	0,12561054	
	p335	207,4	0,00255826	0,530583	0,33446555
Noeud107	p60	4,979	0,00255826	0,01273757	0,00636879
	p61	14,5	0,00255826	0,03709476	
Noeud108	p104	93,82	0,00255826	0,2400159	
	p401	22,01	0,00255826	0,05630729	0,16670897
Noeud109	p309	119,9	0,00255826	0,3067353	
Nocuu109	p61	14,5	0,00255826	0,03709476	0,17191503
	C5	103,11	0,00255826	0,26378213	
Noeud11	p6	39,98	0,00255826	0,10227921	
	C4	253,17	0,00255826	0,64767453	0,50686793
Noeud110	p62	193,4	0,00255826	0,49476737	
	p301	176,7	0,00255826	0,45204444	
	p394	182	0,00255826	0,46560321	0,70620751
	p145	159,5	0,00255826	0,40804237	
Noeud111	p146	281,5	0,00255826	0,72015002	
	p63	149	0,00255826	0,38118065	0,75468652
Noeud112	p65	84,26	0,00255826	0,21555894	0,25216763
			l .		

Nœud	Tuyau	Longueur(m)	Qsp(l/s/m)	Qroute (l/s)	Qnodal (1/s)
	p66	51,64	0,00255826	0,13210852	
	p357	61,24	0,00255826	0,15666781	
	p142	14,16	0,00255826	0,03622495	
Noeud113	p65	84,26	0,00255826	0,21555894	
	p236	58,79	0,00255826	0,15040007	0,20109198
	p67	54,55	0,00255826	0,13955305	
Noeud114	p89	86,57	0,00255826	0,22146852	
	p244	82,72	0,00255826	0,21161922	0,28632039
	p211	66,45	0,00255826	0,16999634	
Noeud115	p67	54,55	0,00255826	0,13955305	
	p196	188,1	0,00255826	0,48120859	0,39537899
	p238	51,24	0,00255826	0,13108521	
Noeud116	C9	142,2	0,00255826	0,36378449	
	p68	55,58	0,00255826	0,14218806	0,31852888
	p69	58,55	0,00255826	0,14978609	
Noeud117	p362	279	0,00255826	0,71375437	
	p143	283,27	0,00255826	0,72467814	0,7941093
	p380	187,1	0,00255826	0,47865033	
Noeud118	p70	67,09	0,00255826	0,17163362	
	p204	57,33	0,00255826	0,14666501	0,39847448
	p72	39,54	0,00255826	0,10115358	
Noeud119	p307	156,1	0,00255826	0,39934429	
	p253	49,5	0,00255826	0,12663384	0,31356585
	p56	15,57	0,00255826	0,0398321	
Noeud12	p7	93,6	0,00255826	0,23945308	
	p190	52,29	0,00255826	0,13377138	0,20652828
	p75	18,49	0,00255826	0,04730222	
Noeud122	p365	41,2	0,00255826	0,10540029	
	p257	20,76	0,00255826	0,05310947	0,10290598
Noeud120	p73	105,7	0,00255826	0,27040802	0,13520401
Noeud121	p74	30,59	0,00255826	0,07825716	0,03912858
	p157	61,68	0,00255826	0,15779344	
Nœud 123	p256	42,04	0,00255826	0,10754923	
	p75	18,49	0,00255826	0,04730222	0,15632244
Noeud124	p76	63,33	0,00255826	0,16201457	0,08100728
	p265	94,56	0,00255826	0,24190901	
Noeud125	p143	283,27	0,00255826	0,72467814	
	p77	335,8	0,00255826	0,85906351	0,91282533
	p285	22,72	0,00255826	0,05812365	
Noeud126	p308	48,9	0,00255826	0,12509888	
	p77	335,8	0,00255826	0,85906351	0,52114302
Noeud128	C5	103,11	0,00255826	0,26378213	0,13189106
	p270	95,68	0,00255826	0,24477426	
Noeud129					

Nœud	Tuyau	Longueur(m)	Qsp(l/s/m)	Qroute (l/s)	Qnodal (l/s)
	p88	69,24	0,00255826	0,17713388	
	p115	103,7	0,00255826	0,2652915	
Noeud131	C7	133,78	0,00255826	0,34224394	
	p82	136,4	0,00255826	0,34894658	0,47824101
Noeud13	p7	93,6	0,00255826	0,23945308	0,11972654
	p84	111	0,00255826	0,28396679	
Noeud133	p105	153,1	0,00255826	0,39166951	
	p250	199,3	0,00255826	0,5098611	1,18549741
Noeud132	p83	98,54	0,00255826	0,25209088	0,12604544
	p380	187,1	0,00255826	0,47865033	
Noeud134	C16	285	0,00255826	0,72910393	
	p85	15,52	0,00255826	0,03970419	0,62372922
	p409	36,5	0,00255826	0,09337647	
Noeud135	C11	158,6	0,00255826	0,40573994	
	p85	15,52	0,00255826	0,03970419	0,2694103
	p86	16,22	0,00255826	0,04149497	
Noeud136	p305	23,66	0,00255826	0,06052842	
	p215	159,5	0,00255826	0,40804237	0,25503288
	p87	79,23	0,00255826	0,20269089	
Noeud137	p203	116,6	0,00255826	0,29829305	
	p258	47,19	0,00255826	0,12072426	0,3108541
Noeud138	p87	79,23	0,00255826	0,20269089	0,10134545
	p106	58,2	0,00255826	0,1488907	
Noeud139	p364	35,81	0,00255826	0,09161127	
	p88	69,24	0,00255826	0,17713388	0,20881792
	p281	47,19	0,00255826	0,12072426	
Noeud14	p8	227,8	0,00255826	0,58277149	
	p240	37,64	0,00255826	0,09629288	0,39989432
	p89	86,57	0,00255826	0,22146852	
Noeud140	p112	134,2	0,00255826	0,34331841	
	p262	52,05	0,00255826	0,1331574	0,34897216
	p90	71,83	0,00255826	0,18375977	
Noeud141	p224	41,8	0,00255826	0,10693524	
	p278	19,99	0,00255826	0,05113961	0,17091731
	p263	15,93	0,00255826	0,04075307	
Noeud142	p313	68,76	0,00255826	0,17590592	
	p90	71,83	0,00255826	0,18375977	0,20020938
Noeud143	p91	70,54	0,00255826	0,18045962	0,09022981
	p92	57,25	0,00255826	0,14646035	
Noeud144	p332	105,5	0,00255826	0,26989637	
	p180	39,22	0,00255826	0,10033493	0,25834583
Noeud145	p92	57,25	0,00255826	0,14646035	0,07323018
Noeud146	p93	140,5	0,00255826	0,35943545	_
110044140	p127	56,48	0,00255826	0,14449049	0,3578877

Nœud	Tuyau	Longueur(m)	Qsp(l/s/m)	Qroute (l/s)	Qnodal (l/s)
	p345	82,81	0,00255826	0,21184946	
	p93	140,5	0,00255826	0,35943545	
Noeud147	p410	76,2	0,00255826	0,19493937	
	p403	70,94	0,00255826	0,18148292	0,36792887
	p94	111,7	0,00255826	0,28575757	
Noeud148	p241	36,64	0,00255826	0,09373462	
	p286	49,1	0,00255826	0,12561054	0,25255137
Noeud149	p94	111,7	0,00255826	0,28575757	0,14287879
	p8	227,8	0,00255826	0,58277149	
Noeud15	p62	193,4	0,00255826	0,49476737	
	p13	329	0,00255826	0,84166734	0,9596031
Noeud152	p96	44,31	0,00255826	0,11335647	0,05667824
	p188	79,72	0,00255826	0,20394444	
Noeud153	p343	27,67	0,00255826	0,07078704	
	p97	93,67	0,00255826	0,23963216	0,25718182
	p98	137,1	0,00255826	0,35073736	
Noeud154	p199	34,69	0,00255826	0,08874602	
	p304	66,99	0,00255826	0,1713778	0,30543059
	p137	45,99	0,00255826	0,11765435	
Noeud155	p304	66,99	0,00255826	0,1713778	
	p99	95,96	0,00255826	0,24549057	0,26726136
	p281	47,19	0,00255826	0,12072426	
Noeud156	p303	42,51	0,00255826	0,10875161	
	p99	95,96	0,00255826	0,24549057	0,23748322
Noeud157	p100	43,99	0,00255826	0,11253783	0,05626892
	p101	158,1	0,00255826	0,40446081	
Noeud158	p243	39,56		0,10120474	
	p310	50,24	0,00255826	0,12852695	0,31709625
	p103	42,43	0,00255826	0,10854695	
Noeud159	p374	46,59	0,00255826	0,11918931	
	p370	45,14	0,00255826	0,11547983	0,17160804
	p97	93,67	0,00255826	0,23963216	
Noeud16	p119	445,6	0,00255826	1,13996039	
14004410	p353	283,9	0,00255826	0,72628984	
	p9	174,3	0,00255826	0,44590461	1,2758935
	p103	42,43	0,00255826	0,10854695	
Noeud160	p191	19,36	0,00255826	0,0495279	
	p168	41,88	0,00255826	0,1071399	0,13260738
Noeud161	p104	93,82	0,00255826	0,2400159	0,12000795
	p148	145,9	0,00255826	0,37325005	
Noeud162	p198	81,31	0,00255826	0,20801207	
	p105	153,1	0,00255826	0,39166951	0,48646582
Nogud162	p106	58,2	0,00255826	0,1488907	
Noeud157 Noeud158 Noeud159 Noeud16 Noeud160 Noeud161	p363	12,68	0,00255826	0,03243873	0,1812271

Nœud	Tuyau	Longueur(m)	Qsp(l/s/m)	Qroute (l/s)	Qnodal (l/s)
	p269	70,8	0,00255826	0,18112477	
	p107	41,58	0,00255826	0,10637243	
Noeud164	p205	18,83	0,00255826	0,04817202	
	p309	119,9	0,00255826	0,3067353	0,23063988
	p109	209,2	0,00255826	0,53518787	
Noeud168	p381	228,2	0,00255826	0,58379479	
	p214	18,84	0,00255826	0,04819761	0,58359013
Noeud165	p107	41,58	0,00255826	0,10637243	0,05318621
	p109	209,2	0,00255826	0,53518787	
Noeud169	p122	29,78	0,00255826	0,07618496	
	p276	95,21	0,00255826	0,24357188	0,42747235
Noeud17	p9	174,3	0,00255826	0,44590461	0,22295231
Nooud170	p268	72,87	0,00255826	0,18642036	
Noeuu170	p376	23,89	0,00255826	0,06111682	0,12376859
	p207	60,15	0,00255826	0,1538793	
Noeud171	p110	46,23	0,00255826	0,11826833	
	p369	70,42	0,00255826	0,18015263	0,22615013
	p111	40,12	0,00255826	0,10263737	
Noeud172	p164	127,7	0,00255826	0,32668973	
	p313	68,76	0,00255826	0,17590592	0,3026165
	p113	55,03	0,00255826	0,14078101	
Noeud175	p375	19,65	0,00255826	0,0502698	
	p379	40,26	0,00255826	0,10299552	0,14702317
Noeud173	p111	40,12	0,00255826	0,10263737	0,05131868
Noeud174	p112	134,2	0,00255826	0,34331841	0,17165921
Noeud176	p113	55,03	0,00255826	0,14078101	0,07039051
Noeud177	p114	87,77	0,00255826	0,22453843	0,11226921
	p114	87,77	0,00255826	0,22453843	
Noeud178	C6	52,5	0,00255826	0,13430862	
	p169	73,26	0,00255826	0,18741808	0,27313256
Noeud179	p115	103,7	0,00255826	0,2652915	
110000179	p305	23,66	0,00255826	0,06052842	0,16290996
	p10	7,917	0,00255826	0,02025374	
Noeud18	p335	207,4	0,00255826	0,530583	
	p102	147,5	0,00255826	0,37734326	0,46409
Noeud180	p116	68,57	0,00255826	0,17541985	0,08770992
	p117	3,059	0,00255826	0,00782572	
Noeud181	p121	57,72	0,00255826	0,14766273	
	p272	187,8	0,00255826	0,48044112	0,31796478
	p172	191,4	0,00255826	0,48965085	
Noeud182	p274	58,97	0,00255826	0,15086056	
	p117	3,059	0,00255826	0,00782572	0,32416856
Noeud183	p118	109	0,00255826	0,27885027	
Noeud169 Noeud170 Noeud171 Noeud171 Noeud175 Noeud173 Noeud174 Noeud176 Noeud177 Noeud178 Noeud178 Noeud180 Noeud180 Noeud181	p161	87,69	0,00255826	0,22433377	0,57542929

Nœud	Tuyau	Longueur(m)	Qsp(l/s/m)	Qroute (l/s)	Qnodal (l/s)
	C4	253,17	0,00255826	0,64767453	
	p118	109	0,00255826	0,27885027	
Noeud184	p201	133,6	0,00255826	0,34178346	
	p318	68,74	0,00255826	0,17585475	0,39824424
	p119	445,6	0,00255826	1,13996039	
Noeud185	p321	150,3	0,00255826	0,38450639	
	p320	177	0,00255826	0,45281191	0,98863934
	p120	156,7	0,00255826	0,40087925	
Noeud186	p171	150,5	0,00255826	0,38501804	
	p321	150,3	0,00255826	0,38450639	0,58520184
Noeud187	p120	156,7	0,00255826	0,40087925	0,20043962
	p121	57,72	0,00255826	0,14766273	
Noeud188	p322	87,09	0,00255826	0,22279881	
	p142	14,16	0,00255826	0,03622495	0,20334325
Noeud189	p123	215,6	0,00255826	0,55156073	0,27578036
	p10	7,917	0,00255826	0,02025374	
Noeud19	p194	576,5	0,00255826	1,47483654	
	p353	283,9	0,00255826	0,72628984	1,11069006
	p124	50,6	0,00255826	0,12944793	
Nooud100	p221	31,87	0,00255826	0,08153173	
Noeuu190	p326	191,4	0,00255826	0,48965085	
	p173	25,75	0,00255826	0,06587518	0,38325284
	p125	66,05	0,00255826	0,16897303	
Noeud191	p277	22,78	0,00255826	0,05827715	
	p124	50,6	0,00255826	0,12944793	0,17834905
Noeud192	p125	66,05	0,00255826	0,16897303	0,08448652
	p126	83,39	0,00255826	0,21333325	
Noeud193	p387	83,29	0,00255826	0,21307743	
	p276	109 0,00255826 0,27885027 133,6 0,00255826 0,34178346 68,74 0,00255826 0,17585475 (445,6 0,00255826 1,13996039 150,3 0,00255826 0,38450639 177 0,00255826 0,45281191 (156,7 0,00255826 0,40087925 150,5 0,00255826 0,38501804 150,3 0,00255826 0,38501804 150,3 0,00255826 0,38501804 150,3 0,00255826 0,40087925 (57,72 0,00255826 0,40087925 (57,72 0,00255826 0,40087925 (57,72 0,00255826 0,40087925 (215,6 0,00255826 0,03622495 (215,6 0,00255826 0,03622495 (215,6 0,00255826 0,03622495 (215,6 0,00255826 0,02025374 576,5 0,00255826 0,72628984 (50,6 0,00255826 0,72628984 (50,6 0,00255826 0,72628984 (50,6 0,00255826 0,12944793 (57,72 0,00255826 0,08153173 (57,917 0,00255826 0,08153173 (57,917 0,00255826 0,08153173 (57,917 0,00255826 0,08153173 (50,6 0,00255826 0,12944793 (50,6 0,00255826 0,12944793 (50,6 0,00255826 0,12944793 (50,6 0,00255826 0,12944793 (50,6 0,00255826 0,16897303 (50,6 0,00258	0,33499128		
	p128	44,17	0,00255826	0,11299832	
Noeud194	p228	14,96	0,00255826	0,03827156	
	p389	20,82	0,00255826	0,05326296	0,10226642
Nooud105	p128	44,17	0,00255826	0,11299832	
Noeuu193	p229	19,96	0,00255826	0,05106286	0,08203059
Noeud196	p129	52,63	0,00255826	0,13464119	0,0673206
Noeud198	p131	7,683	0,00255826	0,01965511	0,00982755
	p131	7,683	0,00255826	0,01965511	
Noeud199	p336	39,96	0,00255826	0,10222805	
	p392	30,36	0,00255826	0,07766876	0,09977595
	p242	145	0,00255826	0,37094761	
Noeud20	p11	60	0,00255826	0,15349556	
	p295	107,8	0,00255826	0,27578036	0,40011177
Noov d201	p134	81,72	0,00255826	0,20906096	
Noeud192 Noeud193 Noeud194 Noeud195 Noeud196 Noeud198 Noeud199	p339	267,8	0,00255826	0,68510187	0,52892013

Nœud	Tuyau	Longueur(m)	Qsp(l/s/m)	Qroute (l/s)	Qnodal (l/s)
	p185	63,98	0,00255826	0,16367744	
	p137	45,99	0,00255826	0,11765435	
Noeud202	p296	65,48	0,00255826	0,16751483	
	p347	96,4	0,00255826	0,24661621	0,26589269
	p138	97,78	0,00255826	0,2501466	
Noeud203	p220	63,13	0,00255826	0,16150292	
Nocuazos	p279	135,7	0,00255826	0,3471558	
	p296	65,48	0,00255826	0,16751483	0,46316007
	p294	115,6	0,00255826	0,29573479	
Noeud204	p139	118,1	0,00255826	0,30213043	
	p188	79,72	0,00255826	0,20394444	0,40090483
Noeud205	p139	118,1	0,00255826	0,30213043	0,15106522
	p140	86,81	0,00255826	0,2220825	
Noeud206	p219	149,5	0,00255826	0,38245978	
	p384	301,3	0,00255826	0,77080356	0,68767292
	p176	65,53	0,00255826	0,16764274	
Noeud207	p275	214,6	0,00255826	0,54900247	
Nocuazor	p140	86,81	0,00255826	0,2220825	
	p330	57,76	0,00255826	0,14776506	0,54324638
	p141	20,93	0,00255826	0,05354437	
Noeud208	p196	188,1	0,00255826	0,48120859	
	p351	37,51	0,00255826	0,09596031	0,31535664
	p262	52,05	0,00255826	0,1331574	
Noeud209	p372	172,2	0,00255826	0,44053227	
	p141	20,93	0,00255826	0,05354437	0,31361702
Noeud212	C12	94,58	0,00255826	0,24196017	0,12098009
	p145	159,5	0,00255826	0,40804237	
Noeud213	p402	621,6	0,00255826	1,59021404	
Noeud205 Noeud206 Noeud207 Noeud208 Noeud209 Noeud212	C2	20,016	0,00255826	0,05120612	1,02473127
Noeud214	p146	281,5	0,00255826	0,72015002	0,36007501
	p350	496,4	0,00255826	1,26991997	
Noeud215	p147	243,9	0,00255826	0,62395947	
	p249	106	0,00255826	0,2711755	1,08252746
	p148	145,9	0,00255826	0,37325005	
Noeud216	p178	111,3	0,00255826	0,28473427	
110000210	p395	73,18	0,00255826	0,18721342	
	p396	76,93	0,00255826	0,1968069	0,52100232
Noeud22	p13	329	0,00255826	0,84166734	
	p12	42,7	0,00255826	0,10923768	
11000022	p68	55,58	0,00255826	0,14218806	
	p300	92,9	0,00255826	0,2376623	0,66537769
	p159	166,9	0,00255826	0,42697349	
Noeud218	p258	47,19	0,00255826	0,12072426	
	p149	50,557	0,00255826	0,12933792	0,33851784

Nœud	Tuyau	Longueur(m)	Qsp(l/s/m)	Qroute (l/s)	Qnodal (l/s)
Noeud220	p151	240,9	0,00255826	0,61628469	0,30814234
	p363	12,68	0,00255826	0,03243873	
Noeud221	p151	240,9	0,00255826	0,61628469	
	p383	26,85	0,00255826	0,06868926	0,45950184
	p152	132,7	0,00255826	0,33948102	
No. 20 4222	p287	126,6	0,00255826	0,32387564	
Noeud222	p398	90,93	0,00255826	0,23262253	
	p183	49,24	0,00255826	0,12596869	0,51097394
	p152	132,7	0,00255826	0,33948102	
Noeud223	p184	103,4	0,00255826	0,26452402	
	p399	83,12	0,00255826	0,21264252	0,40832378
	p153	133,7	0,00255826	0,34203928	
No. 20 4224	p345	82,81	0,00255826	0,21184946	
Noeud224	p400	102,3	0,00255826	0,26170994	
	p401	22,01	0,00255826	0,05630729	0,43595298
	p154	21,49	0,00255826	0,05497699	
Noeud225	p252	111,5	0,00255826	0,28524592	
	p253	49,5	0,00255826	0,12663384	0,23342838
	p155	34,54	0,00255826	0,08836228	
Noeud226	p379	40,26	0,00255826	0,10299552	
	p255	75,65	0,00255826	0,19353232	0,19244506
	p156	59,91	0,00255826	0,15326532	
Noeud227	p261	74,69	0,00255826	0,19107639	
	p364	35,81	0,00255826	0,09161127	0,21797649
	p37	99,95	0,00255826	0,25569803	
Noeud23	p317	183,3	0,00255826	0,46892895	
	p12	42,7	0,00255826	0,10923768	0,41693233
	p383	26,85	0,00255826	0,06868926	
Noeud228	p156	59,91	0,00255826	0,15326532	
	p328	219,2	0,00255826	0,56077046	0,39136252
Noeud229	p157	61,68	0,00255826	0,15779344	0,07889672
	p159	166,9	0,00255826	0,42697349	
Noeud230	p158	189	0,00255826	0,48351103	
	p200	50,31	0,00255826	0,12870603	0,51959528
	p160	40,66	0,00255826	0,10401883	
Noeud231	p257	20,76	0,00255826	0,05310947	
	p205	18,83	0,00255826	0,04817202	0,10265016
Noeud232	p160	40,66	0,00255826	0,10401883	0,05200941
Noeud233	p161	87,69	0,00255826	0,22433377	0,11216688
Noeud234	p162	60,59	0,00255826	0,15500494	0,07750247
	p372	172,2	0,00255826	0,44053227	
Noeud235	p163	72,69	0,00255826	0,18595988	
	p336	39,96	0,00255826	0,10222805	0,36436009
Noeud236	p164	127,7	0,00255826	0,32668973	0,16334486

Nœud	Tuyau	Longueur(m)	Qsp(l/s/m)	Qroute (l/s)	Qnodal (l/s)
	p167	65,35	0,00255826	0,16718225	
Noeud238	p168	41,88	0,00255826	0,1071399	
	p412	31,99	0,00255826	0,08183872	0,17808044
	p357	61,24	0,00255826	0,15666781	
Noeud239	p167	65,35	0,00255826	0,16718225	
Noeud238	p374	46,59	0,00255826	0,11918931	0,22151968
	p14	177,4	0,00255826	0,45383522	
Noeud24	C12	94,58	0,00255826	0,24196017	
	p15	74,22	0,00255826	0,18987401	0,4428347
	p170	414,3	0,00255826	1,05988687	
Noeud240	p169	73,26	0,00255826	0,18741808	
	C7	133,78	0,00255826	0,34224394	0,79477445
Noeud241	p170	414,3	0,00255826	1,05988687	0,52994343
Noeud242	p171	150,5	0,00255826	0,38501804	0,19250902
	p172	191,4	0,00255826	0,48965085	
Noeud243	p216	39	0,00255826	0,09977212	
	p395	73,18	0,00255826	0,18721342	0,38831819
	p327	35,52	0,00255826	0,09086937	
Noeud244	p385	126	0,00255826	0,32234068	
	p174	6,177	0,00255826	0,01580237	0,21450621
Noeud245	p176	65,53	0,00255826	0,16764274	0,08382137
	p177	151,9	0,00255826	0,3885996	
Noeud246	p330	57,76	0,00255826	0,14776506	
	p219	149,5	0,00255826	0,38245978	0,45941222
	p177	151,9	0,00255826	0,3885996	
Noeud247	p301	176,7	0,00255826	0,45204444	
Noeud243 Noeud244 Noeud245 Noeud246 Noeud247 Noeud248 Noeud249	p382	190,9	0,00255826	0,48837172	0,66450788
	p178	111,3	0,00255826	0,28473427	
Noeud248	p227	16,47	0,00255826	0,04213453	
	p220	63,13	0,00255826	0,16150292	0,24418586
	p179	86,6	0,00255826	0,22154526	
Noeud249	p280	92,82	0,00255826	0,23745764	
	p226	11,84	0,00255826	0,03028979	0,24464635
Noeud25	p14	177,4	0,00255826	0,45383522	0,22691761
Noeud250	p179	86,6	0,00255826	0,22154526	0,11077263
	p181	46,74	0,00255826	0,11957304	
Noeud251	p282	48,62	0,00255826	0,12438257	
	p332	105,5	0,00255826	0,26989637	0,25692599
	p181	46,74	0,00255826	0,11957304	
Noeud252	p215	159,5	0,00255826	0,40804237	
	p289	84,93	0,00255826	0,21727297	0,37244419
	p287	126,6	0,00255826	0,32387564	
Noeud254	p184	103,4	0,00255826	0,26452402	
	p414	35,73	0,00255826	0,09140661	0,33990314

Nœud	Tuyau	Longueur(m)	Qsp(l/s/m)	Qroute (l/s)	Qnodal (l/s)
	p190	52,29	0,00255826	0,13377138	
Noeud257	p326	191,4	0,00255826	0,48965085	
	p237	49,64	0,00255826	0,126992	0,37520711
	p207	60,15	0,00255826	0,1538793	
Noeud258	p191	19,36	0,00255826	0,0495279	
Noeud257	p192	291,7	0,00255826	0,74624427	0,47482574
Noeud259	p192	291,7	0,00255826	0,74624427	0,37312213
	p15	74,22	0,00255826	0,18987401	
Noeud26	p63	149	0,00255826	0,38118065	
	p409	36,5	0,00255826	0,09337647	0,33221557
	p297	86,66	0,00255826	0,22169876	
Noeud262	p200	50,31	0,00255826	0,12870603	
	p388	77,22	0,00255826	0,19754879	0,27397679
	p325	53,07	0,00255826	0,13576683	
Noeud264	p198	81,31	0,00255826	0,20801207	
	p280	92,82	0,00255826	0,23745764	0,29061827
	p199	34,69	0,00255826	0,08874602	
Noeud265	p274	58,97	0,00255826	0,15086056	
	p381	228,2	0,00255826	0,58379479	0,41170069
	p201	133,6	0,00255826	0,34178346	
Noeud266	p397	52,57	0,00255826	0,1344877	
	p414	35,73	0,00255826	0,09140661	0,28383888
	p16	12,5	0,00255826	0,03197824	
Noeud27	p66	51,64	0,00255826	0,13210852	
	p64	86,61	0,00255826	0,22157085	0,1928288
Noeud267	p202	126,7	0,00255826	0,32413147	0,16206573
Noeud268	p203	116,6	0,00255826	0,29829305	0,14914652
Noeud272	p210	101,8	0,00255826	0,26043081	0,1302154
	p211	66,45	0,00255826	0,16999634	
Nooud272	p289	84,93	0,00255826	0,21727297	
Noeud2/3	p411	37,83	0,00255826	0,09677895	
	p412	31,99	0,00255826	0,08183872	0,28294349
	p213	37,38	0,00255826	0,09562774	
Noeud274	p212	76,39	0,00255826	0,19542544	
	p346	44,74	0,00255826	0,11445653	0,20275485
	p214	18,84	0,00255826	0,04819761	
Noeud275	p272	187,8	0,00255826	0,48044112	
	p387	83,29	0,00255826	0,21307743	0,37085807
	p217	207,5	0,00255826	0,53083883	
Noeud276	p218	162,4	0,00255826	0,41546133	
	C10	59,48	0,00255826	0,15216527	0,54923271
	p323	32,27	0,00255826	0,08255503	
Noeud277	p324	29,56	0,00255826	0,07562215	
	p218	162,4	0,00255826	0,41546133	0,28681925

Nœud	Tuyau	Longueur(m)	Qsp(l/s/m)	Qroute (l/s)	Qnodal (l/s)
	p222	122,2	0,00255826	0,3126193	
Noeud278	p386	176	0,00255826	0,45025365	
	p388	77,22	0,00255826	0,19754879	0,48021087
	p244	82,72	0,00255826	0,21161922	
Noeud279	p302	101,9	0,00255826	0,26068663	
Noeud278	p222	122,2	0,00255826	0,3126193	0,39246257
	p268	72,87	0,00255826	0,18642036	
Noeud28	p370	45,14	0,00255826	0,11547983	
	p16	12,5	0,00255826	0,03197824	0,16693922
Noeud281	p224	41,8	0,00255826	0,10693524	0,05346762
Noeud282	p225	136,3	0,00255826	0,34869076	0,17434538
Noeud283	p225	136,3	0,00255826	0,34869076	0,17434538
Noeud284	p228	14,96	0,00255826	0,03827156	0,01913578
	p229	19,96	0,00255826	0,05106286	
Noeud285	p230	44,38	0,00255826	0,11353555	
	p390	18,59	0,00255826	0,04755804	0,10607823
	p333	61,27	0,00255826	0,15674455	
Noeud286	p230	44,38	0,00255826	0,11353555	
	p389	20,82	0,00255826	0,05326296	0,16177153
Noeud288	p232	28,68	0,00255826	0,07337088	0,03668544
	p413	38,39	0,00255826	0,09821158	
Noeud29	p17	142,2	0,00255826	0,36378449	
	p270	95,68	0,00255826	0,24477426	0,35338516
Noeud291	p235	45,56	0,00255826	0,1165543	0,05827715
Noeud292	p237	49,64	0,00255826	0,126992	0,063496
Noeud293	p241	36,64	0,00255826	0,09373462	0,04686731
	p249	106	0,00255826	0,2711755	
Noeud299	p342	65,07	0,00255826	0,16646594	
Noeud279 Noeud281 Noeud282 Noeud283 Noeud284 Noeud285 Noeud286 Noeud288 Noeud299 Noeud291 Noeud292 Noeud293 Noeud290 Noeud300 Noeud300 Noeud301 Noeud301 Noeud303	p343	27,67	0,00255826	0,07078704	0,25421424
Noeud30	p17	142,2	0,00255826	0,36378449	0,18189224
	p250	199,3	0,00255826	0,5098611	
Noeud300	p369	70,42	0,00255826	0,18015263	
	p377	27,04	0,00255826	0,06917533	0,37959453
Noeud301	p252	111,5	0,00255826	0,28524592	0,14262296
	p308	48,9	0,00255826	0,12509888	
Noeud302	p254	29,28	0,00255826	0,07490584	
	C13	16,93	0,00255826	0,04331133	0,12165803
Noeud303	p256	42,04	0,00255826	0,10754923	0,05377461
	p264	22,09	0,00255826	0,05651195	_
Noeud306	p329	40,01	0,00255826	0,10235596	
	p263	15,93	0,00255826	0,04075307	0,09981049
Noeud307	p264	22,09	0,00255826	0,05651195	0,02825598
Nogud200	p402	621,6	0,00255826	1,59021404	
1100000000	p265	94,56	0,00255826	0,24190901	1,38179265

Nœud	Tuyau	Longueur(m)	Qsp(l/s/m)	Qroute (l/s)	Qnodal (l/s)
	p378	364,1	0,00255826	0,93146225	
	p300	92,9	0,00255826	0,2376623	
Noeud31	p18	131,6	0,00255826	0,33666694	
	p350	496,4	0,00255826	1,26991997	0,9221246
	p269	70,8	0,00255826	0,18112477	
Noeud310	p413	38,39	0,00255826	0,09821158	
	C8	56,36	0,00255826	0,1441835	0,21175992
Noeud311	p271	31,31	0,00255826	0,0800991	0,04004955
Noeud312	p273	37,65	0,00255826	0,09631847	0,04815923
Noeud313	p275	214,6	0,00255826	0,54900247	0,27450123
Noeud314	p277	22,78	0,00255826	0,05827715	0,02913857
Noeud315	p279	135,7	0,00255826	0,3471558	0,1735779
Noeud316	p282	48,62	0,00255826	0,12438257	0,06219129
	p390	18,59	0,00255826	0,04755804	
Noeud317	p283	20,26	0,00255826	0,05183034	
	p333	61,27	0,00255826	0,15674455	0,12806647
Noeud319	p285	22,72	0,00255826	0,05812365	0,02906183
	p18	131,6	0,00255826	0,33666694	
Noeud32	p239	70,26	0,00255826	0,17974331	
	C10	59,48	0,00255826	0,15216527	0,33428776
	p398	90,93	0,00255826	0,23262253	
Noeud320	p288	85,93	0,00255826	0,21983123	
	p393	53,15	0,00255826	0,13597149	0,29421262
Noeud321	p288	85,93	0,00255826	0,21983123	0,10991562
Noeud326	p294	115,6	0,00255826	0,29573479	0,14786739
	p361	79,77	0,00255826	0,20407235	
Noeud327	p297	86,66	0,00255826	0,22169876	
	p344	180,6	0,00255826	0,46202165	0,44389638
	p71	81,22	0,00255826	0,20778183	
Noeud33	p19	357,8	0,00255826	0,91534521	
Noeud311 Noeud312 Noeud313 Noeud314 Noeud315 Noeud316 Noeud317 Noeud319 Noeud320 Noeud320 Noeud321 Noeud321 Noeud327	p153	133,7	0,00255826	0,34203928	0,73258316
Noeud330	p302	101,9	0,00255826	0,26068663	0,13034332
Noeud331	p307	156,1	0,00255826	0,39934429	0,19967215
	p310	50,24	0,00255826	0,12852695	
Noeud332	p354	13,39	0,00255826	0,03425509	
	p318	68,74	0,00255826	0,17585475	0,1693184
Noeud333	p311	82,02	0,00255826	0,20982844	0,10491422
Noeud335	p319	136,1	0,00255826	0,3481791	0,17408955
Noeud336	p322	87,09	0,00255826	0,22279881	0,11139941
Noeud337	p323	32,27	0,00255826	0,08255503	0,04127752
Noeud338	p324	29,56	0,00255826	0,07562215	0,03781107
Noeud339	p327	35,52	0,00255826	0,09086937	0,04543469
No 10 4	p19	357,8	0,00255826	0,91534521	
Noeud34	C1	238,6	0,00255826	0,61040069	0,8258573

Nœud	Tuyau	Longueur(m)	Qsp(1/s/m)	Qroute (1/s)	Qnodal (l/s)
	p183	49,24	0,00255826	0,12596869	
Noeud340	p329	40,01	0,00255826	0,10235596	0,05117798
Noeud341	p331	60,15	0,00255826	0,1538793	0,07693965
	p20	508,9	0,00255826	1,30189821	
Noeud35	p361	79,77	0,00255826	0,20407235	
Noeuuss	p242	145	0,00255826	0,37094761	
	p149	50,557	0,00255826	0,12933792	1,00312805
	p20	508,9	0,00255826	1,30189821	
Noeud36	p11	60	0,00255826	0,15349556	
	C16	285	0,00255826	0,72910393	1,09224885
Noeud343	C13	16,93	0,00255826	0,04331133	0,02165567
Noeud344	p337	34,65	0,00255826	0,08864369	0,04432184
Noeud345	p339	267,8	0,00255826	0,68510187	0,34255093
Noeud346	p341	31,98	0,00255826	0,08181314	0,04090657
Noeud347	p344	180,6	0,00255826	0,46202165	0,23101082
	p354	13,39	0,00255826	0,03425509	
Noeud351	p403	70,94	0,00255826	0,18148292	
1100000331	p405	43,04	0,00255826	0,11010748	
	C15	108,3	0,00255826	0,27705949	0,3014525
Noeud349	p351	37,51	0,00255826	0,09596031	0,04798016
Noeud354	C11	158,6	0,00255826	0,40573994	0,20286997
Noeud355	p358	82,49	0,00255826	0,21103082	0,10551541
Noeud356	p365	41,2	0,00255826	0,10540029	0,05270014
Noeud361	p384	301,3	0,00255826	0,77080356	0,38540178
Noeud362	p385	126	0,00255826	0,32234068	0,16117034
Noeud363	p386	176	0,00255826	0,45025365	0,22512683
Noeud364	p392	30,36	0,00255826	0,07766876	0,03883438
Noeud365	p393	53,15	0,00255826	0,13597149	0,06798574
Noeud366	p394	182	0,00255826	0,46560321	0,23280161
	p397	52,57	0,00255826	0,1344877	
Noeud367	p410	76,2	0,00255826	0,19493937	
	p399	83,12	0,00255826	0,21264252	0,27103479
Noeud368	p400	102,3	0,00255826	0,26170994	0,13085497
	C2	20,016	0,00255826	0,05120612	
Noeud37	p21	15,14	0,00255826	0,03873205	
11004437	p73	105,7	0,00255826	0,27040802	
	p162	60,59	0,00255826	0,15500494	0,25767556
	p405	43,04	0,00255826	0,11010748	
Noeud370	C15	108,3	0,00255826	0,27705949	
	p406	70	0,00255826	0,17907816	0,28312257
Noeud373	p411	37,83	0,00255826	0,09677895	0,04838948
Noeud372	C14	572,9	0,00255826	1,46562681	0,7328134
Noeud38	p21	15,14	0,00255826	0,03873205	0,01936602
Noeud39	p375	19,65	0,00255826	0,0502698	0,15995517

Nœud	Tuyau	Longueur(m)	Qsp(l/s/m)	Qroute (l/s)	Qnodal (l/s)
	p22	74,09	0,00255826	0,18954144	
	p271	31,31	0,00255826	0,0800991	
	p22	74,09	0,00255826	0,18954144	
Noeud40	p254	29,28	0,00255826	0,07490584	
	p255	75,65	0,00255826	0,19353232	0,2289898
	p23	42,27	0,00255826	0,10813762	
Noeud41	p74	30,59	0,00255826	0,07825716	
	p346	44,74	0,00255826	0,11445653	0,15042565
	p64	86,61	0,00255826	0,22157085	
Noeud42	p236	58,79	0,00255826	0,15040007	
	p23	42,27	0,00255826	0,10813762	0,24005427
	p406	70	0,00255826	0,17907816	
Noeud43	p24	285,7	0,00255826	0,73089471	
	p185	63,98	0,00255826	0,16367744	0,53682515
	p24	285,7	0,00255826	0,73089471	
Noeud44	p204	57,33	0,00255826	0,14666501	
	p319	136,1	0,00255826	0,3481791	0,61286941
	p72	39,54	0,00255826	0,10115358	
Noeud45	p25	42,81	0,00255826	0,10951908	
	p76	63,33	0,00255826	0,16201457	0,18634361
	p202	126,7	0,00255826	0,32413147	
Noeud46	p311	82,02	0,00255826	0,20982844	
	p25	42,81	0,00255826	0,10951908	0,32173949
	p155	34,54	0,00255826	0,08836228	
Noeud47	p26	30,22	0,00255826	0,0773106	
	p33	69,01	0,00255826	0,17654548	0,17110918
Noeud48	p26	30,22	0,00255826	0,0773106	0,0386553
	p378	364,1	0,00255826	0,93146225	
Noeud49	C14	572,9	0,00255826	1,46562681	
	p27	228	0,00255826	0,58328314	1,4901861
Noeud50	p27	228	0,00255826	0,58328314	0,29164157
	p135	12,05	0,00255826	0,03082703	
Noeud51	p28	51,86	0,00255826	0,13267133	
	p210	101,8	0,00255826	0,26043081	0,21196458
	p28	51,86	0,00255826	0,13267133	
Noeud52	p173	25,75	0,00255826	0,06587518	
	p174	6,177	0,00255826	0,01580237	0,10717444
Noeud55	p30	95,4	0,00255826	0,24405795	0,12202897
	p30	95,4	0,00255826	0,24405795	
Noeud56	p80	52,67	0,00255826	0,13474352	
	p197	31,33	0,00255826	0,08015027	0,22947587
	p212	76,39	0,00255826	0,19542544	
Noeud57	p31	48,61	0,00255826	0,12435699	
	p376	23,89	0,00255826	0,06111682	0,19044962

Nœud	Tuyau	Longueur(m)	Qsp(l/s/m)	Qroute (l/s)	Qnodal (l/s)
	p31	48,61	0,00255826	0,12435699	
Noeud58	p80	52,67	0,00255826	0,13474352	
	p377	27,04	0,00255826	0,06917533	0,16413792
	p197	31,33	0,00255826	0,08015027	
Noeud59	p32	36,88	0,00255826	0,09434861	
	p213	37,38	0,00255826	0,09562774	0,1350633
	p32	36,88	0,00255826	0,09434861	
Noeud60	p84	111	0,00255826	0,28396679	
	p216	39	0,00255826	0,09977212	0,23904376
Noeud61	p33	69,01	0,00255826	0,17654548	0,08827274
	p34	195,9	0,00255826	0,50116302	
Noeud62	p39	256,4	0,00255826	0,65593771	
	p69	58,55	0,00255826	0,14978609	0,65344341
	p34	195,9	0,00255826	0,50116302	
Noeud63	p362	279	0,00255826	0,71375437	
	p70	67,09	0,00255826	0,17163362	0,69327551
	p126	83,39	0,00255826	0,21333325	
Noeud64	p35	123,2	0,00255826	0,31517756	
	p315	48,4	0,00255826	0,12381975	0,32616528
	p35	123,2	0,00255826	0,31517756	
Noeud65	p86	16,22	0,00255826	0,04149497	
	p122	29,78	0,00255826	0,07618496	0,21642875
	p36	153	0,00255826	0,39141369	
Noeud66	p83	98,54	0,00255826	0,25209088	
	p317	183,3	0,00255826	0,46892895	0,55621676
	p36	153	0,00255826	0,39141369	
Noeud67	p320	177	0,00255826	0,45281191	
	p382	190,9	0,00255826	0,48837172	0,66629866
	p37	99,95	0,00255826	0,25569803	
Noeud68	p116	68,57	0,00255826	0,17541985	
	p273	37,65	0,00255826	0,09631847	0,26371817
	p238	51,24	0,00255826	0,13108521	
Noeud69	p348	45,09	0,00255826	0,11535192	
	p38	1038	0,00255826	2,65547326	1,45095519
	p38	1038	0,00255826	2,65547326	
Noeud70	p82	136,4	0,00255826	0,34894658	
	C6	52,5	0,00255826	0,13430862	1,56936423
	p39	256,4	0,00255826	0,65593771	
Noeud71	p71	81,22	0,00255826	0,20778183	
	p154	21,49	0,00255826	0,05497699	0,45934827
Noeud72	p40	82,14	0,00255826	0,21013543	0,10506771
	p40	82,14	0,00255826	0,21013543	•
Noeud73	p41	89,82	0,00255826	0,22978286	
Noeua/3	p175	126,5	0,00255826	0,32361981	0,38176905

Nœud	Tuyau	Longueur(m)	Qsp(l/s/m)	Qroute (l/s)	Qnodal (l/s)
Noeud74	p41	89,82	0,00255826	0,22978286	0,11489143
	p42	36,79	0,00255826	0,09411836	
Noeud75	p158	189	0,00255826	0,48351103	
	p175	126,5	0,00255826	0,32361981	0,4506246
	p239	70,26	0,00255826	0,17974331	
Noeud76	C9	142,2	0,00255826	0,36378449	
	p43	59,54	0,00255826	0,15231876	0,34792328
	p43	59,54	0,00255826	0,15231876	
Noeud77	p217	207,5	0,00255826	0,53083883	
	p348	45,09	0,00255826	0,11535192	0,39925475
	p44	157,9	0,00255826	0,40394916	
Noeud78	p102	147,5	0,00255826	0,37734326	
	p147	243,9	0,00255826	0,62395947	0,70262594
Noeud79	p44	157,9	0,00255826	0,40394916	0,20197458
	p221	31,87	0,00255826	0,08153173	
Noeud8	p5	108,3	0,00255826	0,27705949	
	p295	107,8	0,00255826	0,27578036	0,31718579
	p136	80,7	0,00255826	0,20645153	
Noeud80	p138	97,78	0,00255826	0,2501466	
	p45	198,4	0,00255826	0,50755866	0,4820784
	p45	198,4	0,00255826	0,50755866	
Noeud81	p325	53,07	0,00255826	0,13576683	
	p358	82,49	0,00255826	0,21103082	0,42717815
	p227	16,47	0,00255826	0,04213453	
Noeud82	p46	33,69	0,00255826	0,08618776	
	p91	70,54	0,00255826	0,18045962	0,15439095
	p46	33,69	0,00255826	0,08618776	
Noeud83	p226	11,84	0,00255826	0,03028979	
	p331	60,15	0,00255826	0,1538793	0,13517843
	p315	48,4	0,00255826	0,12381975	
Noeud84	p47	65,96	0,00255826	0,16874279	
	p180	39,22	0,00255826	0,10033493	0,19644874
Noeud85	p47	65,96	0,00255826	0,16874279	0,08437139
	p48	21,76	0,00255826	0,05566772	
Noeud86	p127	56,48	0,00255826	0,14449049	
	p283	20,26	0,00255826	0,05183034	0,12599428
	p48	21,76	0,00255826	0,05566772	
Noeud87	p129	52,63	0,00255826	0,13464119	
	p278	19,99	0,00255826	0,05113961	0,12072426
Noeud9	p5	108,3	0,00255826	0,27705949	0,13852975
	p163	72,69	0,00255826	0,18595988	
Noeud90	p261	74,69	0,00255826	0,19107639	
	p50	31,72	0,00255826	0,08114799	0,22909213
Noeud91	p50	31,72	0,00255826	0,08114799	0,04057399

Nœud	Tuyau	Longueur(m)	Qsp(l/s/m)	Qroute (1/s)	Qnodal (l/s)
	p52	15,37	0,00255826	0,03932045	
Noeud93	p96	44,31	0,00255826	0,11335647	
	p134	81,72	0,00255826	0,20906096	0,18086894
	p52	15,37	0,00255826	0,03932045	
Noeud94	p232	28,68	0,00255826	0,07337088	
	p337	34,65	0,00255826	0,08864369	0,10066751
	p243	39,56	0,00255826	0,10120474	
Noeud96	p54	77,49	0,00255826	0,19823952	
	p135	12,05	0,00255826	0,03082703	0,16513564
Noeud97	p54	77,49	0,00255826	0,19823952	0,09911976
	p55	134,2	0,00255826	0,34331841	
Noeud98	p341	31,98	0,00255826	0,08181314	
	p342	65,07	0,00255826	0,16646594	0,29579874
	p55	134,2	0,00255826	0,34331841	
Noeud99	p100	43,99	0,00255826	0,11253783	
	p235	45,56	0,00255826	0,1165543	0,28620527

Annexe VIII:

	Longueur	Diamètre	Rugosité	Vitesse	Pdc Unit.	État
ID Arc	m	mm	mm	m/s	m/km	
Tuyau p5	108,3	30	0,015	0,2	2,41	Ouvert
Tuyau p6	39,98	100	0,015	0,06	0,07	Ouvert
Tuyau p7	93,6	50	0,015	0,06	0,13	Ouvert
Tuyau p8	227,8	160	0,015	2,22	23,69	Ouvert
Tuyau p10	7,917	300	0,022	0,09	0,03	Ouvert
Tuyau p12	42,7	160	0,015	0,85	4,06	Ouvert
Tuyau p13	329	160	0,015	0,91	4,55	Ouvert
Tuyau p14	177,4	50	0,015	0,12	0,5	Ouvert
Tuyau p15	74,22	50	0,015	0,4	4,4	Ouvert
Tuyau p16	12,5	63	0,015	0,09	0,23	Ouvert
Tuyau p18	131,6	90	0,015	0,51	3,23	Ouvert
Tuyau p19	357,8	300	0,022	0,24	0,19	Ouvert
Tuyau p20	508,9	75	0,015	0,34	2	Ouvert
Tuyau p21	15,14	90	0,015	0	0	Ouvert
Tuyau p22	74,09	63	0,01	0,09	0,22	Ouvert
Tuyau p23	42,27	90	0,015	0,51	3,19	Ouvert
Tuyau p24	285,7	200	0,015	0,25	0,34	Ouvert
Tuyau p26	30,22	90	0,01	0,01	0	Ouvert
Tuyau p27	228	101,6	0,01	0,04	0,03	Ouvert
Tuyau p28	51,86	110	0,015	0,76	5,18	Ouvert
Tuyau p31	48,61	80	0,015	0,47	3,23	Ouvert
Tuyau p32	36,88	80	0,015	1,04	13,53	Ouvert
Tuyau p33	69,01	63	0,01	0,03	0,02	Ouvert
Tuyau p34	195,9	90	0,01	0,14	0,34	Ouvert
Tuyau p35	123,2	80	0,015	0,11	0,25	Ouvert
Tuyau p36	153	160	0,015	0,93	4,73	Ouvert
Tuyau p37	99,95	101,6	0,01	0,05	0,05	Ouvert
Tuyau p38	1038	90	0,015	0,72	6,05	Ouvert
Tuyau p39	256,4	160	0,015	0,55	1,82	Ouvert
Tuyau p40	82,14	36	0,01	0,1	0,6	Ouvert
Tuyau p41	89,82	83	0,01	0,02	0,01	Ouvert
Tuyau p42	36,79	150	0,015	1,41	10,96	Ouvert
Tuyau p43	59,54	90	0,015	0,26	0,97	Ouvert
Tuyau p44	157,9	63	0,015	0,06	0,14	Ouvert
Tuyau p45	198,4	160	0,015	1,33	9,17	Ouvert
Tuyau p46	33,69	80	0,015	1,04	13,45	Ouvert

	Longueur	Diamètre	Rugosité	Vitesse	Pdc Unit.	État
ID Arc	m	mm	mm	m/s	m/km	
Tuyau p47	65,96	80	0,015	0,02	0,01	Ouvert
Tuyau p48	21,76	90	0,01	0,21	0,64	Ouvert
Tuyau p50	31,72	83	0,01	0,01	0	Ouvert
Tuyau p52	15,37	90	0,01	0,03	0,01	Ouvert
Tuyau p54	77,49	50	0,015	0,05	0,08	Ouvert
Tuyau p55	134,2	83	0,01	0,07	0,12	Ouvert
Tuyau p56	15,57	75	0,015	0,59	5,21	Ouvert
Tuyau p58	105,1	63	0,015	0,04	0,05	Ouvert
Tuyau p59	47,62	63	0,015	1,09	19,63	Ouvert
Tuyau p60	4,979	100	0,015	0	0	Ouvert
Tuyau p61	14,5	90	0,01	0,17	0,44	Ouvert
Tuyau p62	193,4	160	0,015	1,36	9,53	Ouvert
Tuyau p63	149	90	0,015	0,04	0,04	Ouvert
Tuyau p64	86,61	63	0,015	0,46	4,25	Ouvert
Tuyau p65	84,26	160	0,015	1,04	5,77	Ouvert
Tuyau p66	51,64	63	0,015	0,44	3,86	Ouvert
Tuyau p67	54,55	110	0,015	3,5	86,92	Ouvert
Tuyau p68	55,58	90	0,015	0,81	7,35	Ouvert
Tuyau p69	58,55	160	0,015	0,47	1,38	Ouvert
Tuyau p70	67,09	90	0,01	0,01	0,01	Ouvert
Tuyau p71	81,22	160	0,015	0,61	2,2	Ouvert
Tuyau p73	105,7	90	0,015	0,02	0,01	Ouvert
Tuyau p74	30,59	63	0,015	0,01	0,01	Ouvert
Tuyau p75	18,49	90	0,01	0,05	0,05	Ouvert
Tuyau p77	335,8	160	0,015	0,09	0,07	Ouvert
Tuyau p80	52,67	80	0,015	0,37	2,1	Ouvert
Tuyau p82	136,4	80	0,015	0,55	4,26	Ouvert
Tuyau p83	98,54	83	0,01	0,02	0,01	Ouvert
Tuyau p84	111	200	0,015	1,02	4,32	Ouvert
Tuyau p85	15,52	90	0,015	0,29	1,2	Ouvert
Tuyau p86	16,22	80	0,015	0,75	7,54	Ouvert
Tuyau p87	79,23	57	0,01	0,04	0,04	Ouvert
Tuyau p88	69,24	83	0,01	0,53	3,75	Ouvert
Tuyau p89	86,57	80	0,015	0,82	8,76	Ouvert
Tuyau p90	71,83	90	0,01	0,14	0,33	Ouvert
Tuyau p91	70,54	80	0,015	0,02	0,01	Ouvert
Tuyau p92	57,25	80	0,015	0,01	0,01	Ouvert
Tuyau p93	140,5	90	0,01	0,05	0,06	Ouvert
Tuyau p94	111,7	45,2	0,015	0,09	0,37	Ouvert
Tuyau p96	44,31	63	0,01	0,02	0,02	Ouvert
Tuyau p97	93,67	101,6	0,01	1,18	12,58	Ouvert
Tuyau p98	137,1	80	0,015	0,56	4,41	Ouvert

	Longueur	Diamètre	Rugosité	Vitesse	Pdc Unit.	État
ID Arc	m	mm	mm	m/s	m/km	
Tuyau p99	95,96	160	0,015	0,76	3,3	Ouvert
Tuyau p100	43,99	57	0,01	0,02	0,02	Ouvert
Tuyau p101	158,1	300	0,022	0,63	1,09	Ouvert
Tuyau p102	147,5	160	0,015	0,25	0,46	Ouvert
Tuyau p103	42,43	63	0,015	0,29	1,89	Ouvert
Tuyau p104	93,82	90	0,01	0,02	0,01	Ouvert
Tuyau p105	153,1	160	0,015	1,83	16,58	Ouvert
Tuyau p106	58,2	83	0,01	0,81	8,18	Ouvert
Tuyau p107	41,58	90	0,01	0,01	0	Ouvert
Tuyau p109	209,2	80	0,015	0,33	1,7	Ouvert
Tuyau p110	46,23	80	0,015	0,36	2,04	Ouvert
Tuyau p111	40,12	36	0,01	0,05	0,13	Ouvert
Tuyau p112	134,2	83	0,01	0,03	0,02	Ouvert
Tuyau p113	55,03	63	0,01	0,02	0,02	Ouvert
Tuyau p115	103,7	80	0,015	0,19	0,65	Ouvert
Tuyau p116	68,57	101,6	0,01	0,01	0	Ouvert
Tuyau p117	3,059	160	0,015	1,02	5,56	Ouvert
Tuyau p118	109	90	0,015	0,28	1,13	Ouvert
Tuyau p119	445,6	200	0,015	1,65	10,42	Ouvert
Tuyau p121	57,72	160	0,015	0,91	4,55	Ouvert
Tuyau p122	29,78	80	0,015	0,6	5,02	Ouvert
Tuyau p123	215,6	80	0,015	0,05	0,08	Ouvert
Tuyau p124	50,6	110	0,015	0,03	0,02	Ouvert
Tuyau p125	66,05	110	0,015	0,01	0	Ouvert
Tuyau p126	83,39	80	0,015	0,38	2,16	Ouvert
Tuyau p127	56,48	57	0,01	0,8	12,49	Ouvert
Tuyau p128	44,17	57	0,01	0,03	0,04	Ouvert
Tuyau p129	52,63	90	0,01	0,01	0	Ouvert
Tuyau p131	7,683	57	0,01	0	0	Ouvert
Tuyau p134	81,72	90	0,01	0,07	0,09	Ouvert
Tuyau p135	12,05	110	0,015	0,8	5,63	Ouvert
Tuyau p136	80,7	160	0,015	1,33	9,13	Ouvert
Tuyau p137	45,99	90	0,015	0,66	5,08	Ouvert
Tuyau p138	97,78	63	0,015	0,18	0,76	Ouvert
Tuyau p140	86,81	100	0,015	0,02	0,01	Ouvert
Tuyau p141	20,93	80	0,015	1,64	31,21	Ouvert
Tuyau p142	14,16	160	0,015	0,92	4,69	Ouvert
Tuyau p145	159,5	90	0,015	0,13	0,3	Ouvert
Tuyau p146	281,5	90	0,01	0,06	0,07	Ouvert
Tuyau p147	243,9	75	0,015	0,95	12,48	Ouvert
Tuyau p152	132,7	300	0,022	0,47	0,64	Ouvert
Tuyau p153	133,7	125	0,015	0,32	0,95	Ouvert

	Longueur	Diamètre	Rugosité	Vitesse	Pdc Unit.	État
ID Arc	m	mm	mm	m/s	m/km	
Tuyau p154	21,49	63	0,015	0,24	1,32	Ouvert
Tuyau p155	34,54	90	0,01	0,05	0,05	Ouvert
Tuyau p156	59,91	83	0,01	1,32	19,67	Ouvert
Tuyau p157	61,68	90	0,01	0,01	0,01	Ouvert
Tuyau p158	189	150	0,015	1,35	10,12	Ouvert
Tuyau p159	166,9	100	0,5	0,17	0,51	Ouvert
Tuyau p160	40,66	90	0,01	0,01	0	Ouvert
Tuyau p161	87,69	75	0,015	0,03	0,02	Ouvert
Tuyau p162	60,59	90	0,015	0,01	0,01	Ouvert
Tuyau p163	72,69	83	0,01	2,54	65,03	Ouvert
Tuyau p164	127,7	90	0,015	0,03	0,01	Ouvert
Tuyau p167	65,35	160	0,015	1,2	7,56	Ouvert
Tuyau p168	41,88	100	0,015	1,26	14,62	Ouvert
Tuyau p170	414,3	80	0,015	0,11	0,23	Ouvert
Tuyau p171	150,5	57	0,01	0,08	0,2	Ouvert
Tuyau p172	191,4	200	0,015	0,9	3,39	Ouvert
Tuyau p173	25,75	110	0,015	0,7	4,51	Ouvert
Tuyau p174	6,177	63	0,015	0,14	0,49	Ouvert
Tuyau p175	126,5	83	0,01	0,11	0,24	Ouvert
Tuyau p176	65,53	100	0,015	0,01	0	Ouvert
Tuyau p177	151,9	100	0,015	0,23	0,66	Ouvert
Tuyau p178	111,3	80	0,015	0,39	2,33	Ouvert
Tuyau p180	39,22	80	0,015	0,39	2,28	Ouvert
Tuyau p181	46,74	80	0,015	0,52	3,82	Ouvert
Tuyau p183	49,24	300	0,022	0,96	2,41	Ouvert
Tuyau p184	103,4	83	0,01	0,03	0,01	Ouvert
Tuyau p185	63,98	150	0,015	0,07	0,06	Ouvert
Tuyau p188	79,72	83	0,01	0,07	0,12	Ouvert
Tuyau p189	139,1	300	0,022	0,58	0,96	Ouvert
Tuyau p190	52,29	75	0,015	0,51	4,09	Ouvert
Tuyau p191	19,36	100	0,015	1,13	11,9	Ouvert
Tuyau p192	291,7	80	0,015	0,07	0,13	Ouvert
Tuyau p196	188,1	80	0,015	1,57	28,73	Ouvert
Tuyau p197	31,33	80	0,015	0,32	1,66	Ouvert
Tuyau p198	81,31	160	0,015	1,53	11,81	Ouvert
Tuyau p199	34,69	160	0,015	0,39	0,96	Ouvert
Tuyau p201	133,6	300	0,022	0,46	0,63	Ouvert
Tuyau p203	116,6	100	0,5	0,02	0,01	Ouvert
Tuyau p204	57,33	110	0,015	0,74	4,95	Ouvert
Tuyau p205	18,83	90	0,01	0,09	0,16	Ouvert
Tuyau p207	60,15	100	0,015	1,02	9,9	Ouvert
Tuyau p210	101,8	63	0,015	0,04	0,04	Ouvert

	Longueur	Diamètre	Rugosité	Vitesse	Pdc Unit.	État
ID Arc	m	mm	mm	m/s	m/km	
Tuyau p211	66,45	160	0,015	2,03	19,94	Ouvert
Tuyau p212	76,39	80	0,015	0,18	0,59	Ouvert
Tuyau p213	37,38	80	0,015	0,74	7,35	Ouvert
Tuyau p214	18,84	80	0,015	0,06	0,1	Ouvert
Tuyau p215	159,5	90	0,015	0,51	3,24	Ouvert
Tuyau p216	39	200	0,015	0,86	3,17	Ouvert
Tuyau p217	207,5	90	0,015	0,17	0,48	Ouvert
Tuyau p218	162,4	45,2	0,01	0,23	1,83	Ouvert
Tuyau p219	149,5	100	0,015	0,06	0,07	Ouvert
Tuyau p220	63,13	80	0,015	0,74	7,34	Ouvert
Tuyau p221	31,87	110	0,015	0,83	6,02	Ouvert
Tuyau p222	122,2	110	0,015	3,15	71,36	Ouvert
Tuyau p224	41,8	90	0,01	0,01	0	Ouvert
Tuyau p226	11,84	80	0,015	1	12,47	Ouvert
Tuyau p227	16,47	80	0,015	1,09	14,63	Ouvert
Tuyau p228	14,96	57	0,01	0,01	0,01	Ouvert
Tuyau p229	19,96	90	0,01	0,03	0,01	Ouvert
Tuyau p230	44,38	57	0,01	0,04	0,04	Ouvert
Tuyau p232	28,68	90	0,01	0,01	0	Ouvert
Tuyau p235	45,56	57	0,01	0,02	0,02	Ouvert
Tuyau p236	58,79	90	0,015	0,32	1,38	Ouvert
Tuyau p237	49,64	50	0,015	0,03	0,04	Ouvert
Tuyau p238	51,24	90	0,015	0,58	4,07	Ouvert
Tuyau p239	70,26	63	0,015	0,28	1,78	Ouvert
Tuyau p240	37,64	80	0,015	0,81	8,5	Ouvert
Tuyau p241	36,64	50	0,015	0,02	0,03	Ouvert
Tuyau p242	145	110	0,015	0,89	6,9	Ouvert
Tuyau p243	39,56	110	0,015	0,82	6	Ouvert
Tuyau p244	82,72	110	0,015	3,09	69,04	Ouvert
Tuyau p249	106	101,6	0,01	0,98	8,93	Ouvert
Tuyau p250	199,3	100	0,015	0,75	5,71	Ouvert
Tuyau p253	49,5	63	0,015	0,16	0,69	Ouvert
Tuyau p254	29,28	90	0,01	0,18	0,5	Ouvert
Tuyau p255	75,65	90	0,01	0,1	0,19	Ouvert
Tuyau p256	42,04	90	0,01	0,01	0	Ouvert
Tuyau p257	20,76	90	0,01	0,07	0,1	Ouvert
Tuyau p258	47,19	100	0,015	0,07	0,09	Ouvert
Tuyau p261	74,69	83	0,01	2,59	67,41	Ouvert
Tuyau p262	52,05	80	0,01	0,92	10,71	Ouvert
Tuyau p263	15,93	57	0,01	0,07	0,18	Ouvert
Tuyau p264	22,09	57	0,01	0,01	0,01	Ouvert
Tuyau p265	94,56	125	0,015	0,51	2,15	Ouvert

	Longueur	Diamètre	Rugosité	Vitesse	Pdc Unit.	État
ID Arc	m	mm	mm	m/s	m/km	
Tuyau p268	72,87	63	0,015	0,56	6	Ouvert
Tuyau p269	70,8	200	0,015	0,12	0,09	Ouvert
Tuyau p270	95,68	83	0,01	0,39	2,18	Ouvert
Tuyau p271	31,31	63	0,01	0,01	0,01	Ouvert
Tuyau p272	187,8	110	0,015	0,26	0,74	Ouvert
Tuyau p273	37,65	101,6	0,01	0,01	0	Ouvert
Tuyau p274	58,97	160	0,015	0,4	1,04	Ouvert
Tuyau p276	95,21	80	0,015	0,19	0,64	Ouvert
Tuyau p277	22,78	110	0,015	0	0	Ouvert
Tuyau p278	19,99	90	0,01	0,18	0,49	Ouvert
Tuyau p279	135,7	63	0,015	0,06	0,1	Ouvert
Tuyau p280	92,82	80	0,015	0,95	11,39	Ouvert
Tuyau p281	47,19	160	0,015	2	19,48	Ouvert
Tuyau p282	48,62	80	0,015	0,01	0,01	Ouvert
Tuyau p283	20,26	90	0,01	0,09	0,16	Ouvert
Tuyau p285	22,72	90	0,01	0	0	Ouvert
Tuyau p286	49,1	50	0,015	0,23	1,59	Ouvert
Tuyau p287	126,6	300	0,022	0,48	0,68	Ouvert
Tuyau p288	85,93	83	0,01	0,02	0,01	Ouvert
Tuyau p289	84,93	90	0,015	0,98	10,46	Ouvert
Tuyau p295	107,8	110	0,015	0,78	5,4	Ouvert
Tuyau p296	65,48	90	0,015	0,77	6,83	Ouvert
Tuyau p297	86,66	110	0,015	0,64	3,8	Ouvert
Tuyau p300	92,9	160	0,015	0,34	0,78	Ouvert
Tuyau p301	176,7	200	0,015	0,9	3,41	Ouvert
Tuyau p302	101,9	63	0,015	0,04	0,04	Ouvert
Tuyau p303	42,51	160	0,015	1,23	7,88	Ouvert
Tuyau p304	66,99	160	0,015	0,54	1,77	Ouvert
Tuyau p305	23,66	80	0,015	0,16	0,47	Ouvert
Tuyau p307	156,1	50	0,015	0,1	0,4	Ouvert
Tuyau p308	48,9	90	0,01	0,2	0,62	Ouvert
Tuyau p309	119,9	90	0,01	0,14	0,32	Ouvert
Tuyau p310	50,24	300	0,022	0,74	1,49	Ouvert
Tuyau p313	68,76	90	0,015	0,08	0,13	Ouvert
Tuyau p315	48,4	80	0,015	0,33	1,73	Ouvert
Tuyau p317	183,3	160	0,015	0,89	4,42	Ouvert
Tuyau p318	68,74	300	0,022	0,43	0,55	Ouvert
Tuyau p319	136,1	110	0,015	0,02	0,01	Ouvert
Tuyau p320	177	200	0,02	1,59	9,93	Ouvert
Tuyau p321	150,3	83	0,01	0,14	0,38	Ouvert
Tuyau p322	87,09	80	0,015	0,02	0,01	Ouvert
Tuyau p323	32,27	45,2	0,01	0,03	0,04	Ouvert

	Longueur	Diamètre	Rugosité	Vitesse	Pdc Unit.	État
ID Arc	m	mm	mm	m/s	m/km	
Tuyau p324	29,56	45,2	0,01	0,02	0,04	Ouvert
Tuyau p325	53,07	160	0,015	1,31	8,83	Ouvert
Tuyau p326	191,4	90	0,015	0,29	1,16	Ouvert
Tuyau p327	35,52	50	0,015	0,02	0,03	Ouvert
Tuyau p328	219,2	200	0,015	0,52	1,25	Ouvert
Tuyau p329	40,01	57	0,01	0,02	0,02	Ouvert
Tuyau p330	57,76	100	0,015	0,1	0,17	Ouvert
Tuyau p331	60,15	80	0,015	0,02	0,01	Ouvert
Tuyau p332	105,5	80	0,015	0,45	3,02	Ouvert
Tuyau p333	61,27	57	0,01	0,04	0,05	Ouvert
Tuyau p335	207,4	100	0,5	0,1	0,19	Ouvert
Tuyau p336	39,96	57	0,01	0,06	0,11	Ouvert
Tuyau p337	34,65	63	0,01	0,01	0,01	Ouvert
Tuyau p339	267,8	150	0,015	0,02	0	Ouvert
Tuyau p341	31,98	83	0,01	0,01	0	Ouvert
Tuyau p342	65,07	83	0,01	0,14	0,35	Ouvert
Tuyau p343	27,67	101,6	0,01	1,1	11,05	Ouvert
Tuyau p344	180,6	50	0,015	0,12	0,52	Ouvert
Tuyau p345	82,81	90	0,01	0,32	1,41	Ouvert
Tuyau p346	44,74	90	0,015	0,48	2,87	Ouvert
Tuyau p347	96,4	63	0,015	0,32	2,23	Ouvert
Tuyau p348	45,09	90	0,015	0,37	1,83	Ouvert
Tuyau p350	496,4	110	0,015	1,17	11,29	Ouvert
Tuyau p351	37,51	80	0,015	0,01	0	Ouvert
Tuyau p353	283,9	290,8	0,02	0,94	2,4	Ouvert
Tuyau p354	13,39	300	0,022	0,31	0,31	Ouvert
Tuyau p357	61,24	160	0,015	1,12	6,62	Ouvert
Tuyau p358	82,49	160	0,015	0,01	0	Ouvert
Tuyau p361	79,77	110	0,015	0,71	4,59	Ouvert
Tuyau p362	279	90	0,01	0,05	0,05	Ouvert
Tuyau p363	12,68	200	0,015	0,26	0,37	Ouvert
Tuyau p364	35,81	83	0,01	1,3	19,17	Ouvert
Tuyau p365	41,2	90	0,01	0,01	0	Ouvert
Tuyau p369	70,42	100	0,015	0,76	5,78	Ouvert
Tuyau p370	45,14	63	0,015	0,7	8,94	Ouvert
Tuyau p372	172,2	83	0,01	2,44	60,6	Ouvert
Tuyau p374	46,59	63	0,015	0,47	4,26	Ouvert
Tuyau p375	19,65	63	0,01	0,02	0,02	Ouvert
Tuyau p376	23,89	80	0,015	0,69	6,39	Ouvert
Tuyau p377	27,04	80	0,015	0,07	0,11	Ouvert
Tuyau p378	364,1	110	0,01	0,26	0,78	Ouvert
Tuyau p379	40,26	63	0,01	0,05	0,06	Ouvert

	Longueur	Diamètre	Rugosité	Vitesse	Pdc Unit.	État
ID Arc	m	mm	mm	m/s	m/km	
Tuyau p380	187,1	110	0,01	0,69	4,31	Ouvert
Tuyau p381	228,2	80	0,015	0,15	0,43	Ouvert
Tuyau p382	190,9	200	0,015	0,98	3,97	Ouvert
Tuyau p383	26,85	200	0,015	0,28	0,41	Ouvert
Tuyau p385	126	63	0,015	0,05	0,08	Ouvert
Tuyau p387	83,29	80	0,015	0,5	3,57	Ouvert
Tuyau p389	20,82	57	0,01	0,01	0,01	Ouvert
Tuyau p390	18,59	90	0,01	0,06	0,07	Ouvert
Tuyau p392	30,36	57	0,01	0,02	0,02	Ouvert
Tuyau p393	53,15	57	0,01	0,03	0,03	Ouvert
Tuyau p394	182	160	0,015	0,01	0	Ouvert
Tuyau p395	73,18	80	0,015	0,12	0,31	Ouvert
Tuyau p396	76,93	80	0,015	0,37	2,11	Ouvert
Tuyau p397	52,57	83	0,01	0,17	0,49	Ouvert
Tuyau p398	90,93	83	0,01	0,09	0,16	Ouvert
Tuyau p399	83,12	300	0,022	0,46	0,62	Ouvert
Tuyau p400	102,3	90	0,01	0,02	0,01	Ouvert
Tuyau p401	22,01	90	0,01	0,21	0,67	Ouvert
Tuyau p402	621,6	125	0,015	0,19	0,38	Ouvert
Tuyau p403	70,94	300	0,022	0,46	0,61	Ouvert
Tuyau p405	43,04	200	0,015	0,3	0,48	Ouvert
Tuyau p406	70	200	0,015	0,31	0,49	Ouvert
Tuyau p409	36,5	90	0,015	0,22	0,72	Ouvert
Tuyau p410	76,2	300	0,022	0,47	0,64	Ouvert
Tuyau p411	37,83	90	0,015	0,01	0	Ouvert
Tuyau p412	31,99	160	0,015	1,7	14,4	Ouvert
Tuyau p413	38,39	200	0,015	0,08	0,04	Ouvert
Tuyau p414	35,73	300	0,022	0,48	0,67	Ouvert
Tuyau C1	238,6	300	0,022	1,21	3,7	Ouvert
Tuyau p194	576,5	290,8	0,02	1,06	2,96	Ouvert
Tuyau p200	50,31	150	0,015	1,39	10,75	Ouvert
Tuyau p388	77,22	110	0,015	3,2	73,53	Ouvert
Tuyau p11	60	110	0,015	0,15	0,3	Ouvert
Tuyau p143	283,27	160	0,015	0,45	1,26	Ouvert
Tuyau C2	20,016	90	0,015	0,08	0,12	Ouvert
Tuyau p149	50,557	100	0,5	0,28	1,38	Ouvert
Tuyau C4	253,17	75	0,015	0,25	1,16	Ouvert
Tuyau C5	103,11	100	0,015	0,02	0,01	Ouvert
Tuyau C6	52,5	80	0,015	0,05	0,08	Ouvert
Tuyau C7	133,78	80	0,015	0,26	1,15	Ouvert
Tuyau C8	56,36	57	0,01	0,4	3,73	Ouvert
Tuyau C9	142,2	90	0,015	0,17	0,48	Ouvert

ID Arc	Longueur m	Diamètre mm	Rugosité mm	Vitesse m/s	Pdc Unit. m/km	État
Tuyau C10	59,48	90	0,015	0,32	1,39	Ouvert
Tuyau C11	158,6	63	0,015	0,07	0,14	Ouvert
Tuyau C12	94,58	50	0,015	0,06	0,13	Ouvert
Tuyau C13	16,93	90	0,01	0	0	Ouvert
Tuyau C14	572,9	110	0,01	0,08	0,09	Ouvert
Tuyau C15	108,3	75	0,015	0,09	0,19	Ouvert
Tuyau C16	285	125	0,015	0,33	1	Ouvert
Tuyau C3	367,44	250	0,5	1,37	9,18	Ouvert

Annexe IX:

Tableau V-4:

	Altitude	Demande	Charge	Pression
ID Noeud	m	1/s	m	m
Noeud n8	27	0,32	99,81	72,81
Noeud n9	24	0,14	99,55	75,55
Noeud n10	34	0,56	100,39	66,39
Noeud n11	36	0,51	100,39	64,39
Noeud n12	33	0,21	100,44	67,44
Noeud n13	37	0,12	100,43	63,43
Noeud n14	22,07	0,4	70,61	48,54
Noeud n15	23,76	0,96	76,01	52,25
Noeud n16	44,03	1,28	85,61	41,58
Noeud n18	36,74	0,46	86,29	49,55
Noeud n19	37,65	1,11	86,29	48,64
Noeud n20	19,5	0,4	99,23	79,73
Noeud n22	22,96	0,67	77,51	54,55
Noeud n23	25,07	0,42	77,68	52,61
Noeud n24	7,5	0,44	99,16	91,66
Noeud n25	5	0,23	99,07	94,07
Noeud n26	10,5	0,33	99,49	88,99
Noeud n27	25,26	0,19	69,8	44,54
Noeud n28	25	0,17	69,8	44,8
Noeud n29	32,32	0,35	100,09	67,77
Noeud n31	23,08	0,92	77,58	54,5
Noeud n32	20,92	0,33	77,15	56,23
Noeud n33	45,5	0,73	101,05	55,55
Noeud n34	72	0,83	101,12	29,12
Noeud n35	18,5	1	98,23	79,73
Noeud n36	20,5	1,09	99,25	78,75
Noeud n37	16,5	0,26	99,52	83,02
Noeud n38	16	0,02	99,52	83,52
Noeud n39	20	0,16	99,88	79,88
Noeud n40	21,5	0,23	99,9	78,4
Noeud n41	24,82	0,15	69,29	44,47
Noeud n42	24,28	0,24	69,43	45,15
Noeud n43	34,5	0,54	100,72	66,22
Noeud n44	29	0,61	100,62	71,62
Noeud n47	22,5	0,17	99,88	77,38
Noeud n48	23	0,04	99,88	76,88

	Altitude	Demande	Charge	Pression
ID Noeud	m	1/s	m	m
Noeud n49	30,5	1,49	99,48	68,98
Noeud n50	23	0,29	99,47	76,47
Noeud n51	34	0,21	100,39	66,39
Noeud n52	31,2	0,11	100,12	68,92
Noeud n56	29	0,23	68,94	39,94
Noeud n57	28	0,19	69,21	41,21
Noeud n58	30,4	0,16	69,05	38,65
Noeud n59	28	0,14	68,89	40,89
Noeud n60	26,67	0,24	68,39	41,72
Noeud n61	21	0,09	99,88	78,88
Noeud n62	30	0,65	100,4	70,4
Noeud n63	18	0,69	100,34	82,34
Noeud n64	19,48	0,33	69,8	50,32
Noeud n65	14,88	0,22	69,83	54,95
Noeud n66	33,26	0,56	78,49	45,23
Noeud n67	39,79	0,67	79,21	39,42
Noeud n68	24	0,26	77,67	53,67
Noeud n69	19,79	1,45	76,89	57,1
Noeud n70	3,74	1,57	70,61	66,87
Noeud n71	46	0,46	100,87	54,87
Noeud n72	27	0,11	99,9	72,9
Noeud n73	27,5	0,38	99,95	72,45
Noeud n74	28	0,11	99,95	71,95
Noeud n75	31	0,45	99,98	68,98
Noeud n76	19,53	0,35	77,03	57,5
Noeud n77	19,44	0,4	76,97	57,53
Noeud n78	25,83	0,7	86,23	60,4
Noeud n79	22,025	0,2	86,21	64,18
Noeud n80	27,3	0,48	68,62	41,32
Noeud n81	37,24	0,43	66,8	29,56
Noeud n82	28,85	0,15	67,99	39,14
Noeud n83	30,63	0,14	67,54	36,91
Noeud n84	20,85	0,2	69,88	49,03
Noeud n85	22,23	0,08	69,88	47,65
Noeud n86	44	0,13	100,1	56,1
Noeud n87	43,5	0,12	100,09	56,59
Noeud n90	27,47	0,23	93,9	66,43
Noeud n91	26,43	0,04	93,9	67,47
Noeud n93	29	0,18	100,71	71,71
Noeud n94	28	0,1	100,7	72,7
Noeud n96	35	0,17	100,45	65,45
Noeud n97	32	0,1	100,45	68,45
Noeud n98	27	0,3	84,11	57,11

	Altitude	Demande	Charge	Pression
ID Noeud	m	1/s	m	m
Noeud n99	26	0,29	84,09	58,09
Noeud n100	34	0,4	100,52	66,52
Noeud n102	24,83	0,82	68,65	43,82
Noeud n103	25	0,13	68,65	43,65
Noeud n104	23,81	0,34	69,36	45,55
Noeud n105	23,76	0,38	70,29	46,53
Noeud n106	35,61	0,33	86,25	50,64
Noeud n107	34	0,01	86,25	52,25
Noeud n108	35	0,17	100,91	65,91
Noeud n109	34	0,17	100,9	66,9
Noeud n110	34,24	0,71	77,85	43,61
Noeud n111	15	0,75	99,48	84,48
Noeud n112	22,42	0,25	69,99	47,57
Noeud n113	23,23	0,2	69,51	46,28
Noeud n114	22	0,29	77,42	55,42
Noeud n115	21,65	0,4	72,68	51,03
Noeud n116	21,97	0,32	77,1	55,13
Noeud n117	19,5	0,79	100,32	80,82
Noeud n118	24,5	0,4	100,34	75,84
Noeud n119	49	0,31	100,81	51,81
Noeud n120	15,5	0,14	99,52	84,02
Noeud n121	24,5	0,04	69,29	44,79
Noeud n122	36	0,1	100,86	64,86
Noeud n123	37	0,16	100,86	63,86
Noeud n125	31	0,91	99,97	68,97
Noeud n126	20	0,52	99,94	79,94
Noeud n128	35,5	0,13	100,39	64,89
Noeud n129	30,98	0,28	99,88	68,9
Noeud n131	10	0,48	70,03	60,03
Noeud n132	32	0,13	78,49	46,49
Noeud n133	39,1	1,19	67,91	28,81
Noeud n134	12,5	0,62	99,53	87,03
Noeud n135	11	0,27	99,51	88,51
Noeud n136	14,5	0,26	69,95	55,45
Noeud n137	21	0,31	98,15	77,15
Noeud n138	22	0,1	98,15	76,15
Noeud n139	30	0,21	99,62	69,62
Noeud n140	24,74	0,35	78,18	53,44
Noeud n141	43	0,17	100,08	57,08
Noeud n142	45	0,2	100,05	55,05
Noeud n143	29,25	0,09	67,99	38,74
Noeud n144	21,81	0,26	69,97	48,16
Noeud n145	22,7	0,07	69,97	47,27

	Altitude	Demande	Charge	Pression
ID Noeud	m	1/s	m	m
Noeud n146	37	0,36	100,81	63,81
Noeud n147	41	0,37	100,81	59,81
Noeud n148	32	0,25	86,18	54,18
Noeud n149	30,46	0,14	86,14	55,68
Noeud n152	28	0,06	100,7	72,7
Noeud n153	29	0,26	84,43	55,43
Noeud n154	23,71	0,31	69,26	45,55
Noeud n155	23,32	0,27	69,38	46,06
Noeud n156	22,32	0,24	69,69	47,37
Noeud n157	25	0,06	84,09	59,09
Noeud n158	35,5	0,32	100,69	65,19
Noeud n159	24,2	0,17	70,2	46
Noeud n160	23,36	0,13	70,28	46,92
Noeud n161	36	0,12	100,91	64,91
Noeud n162	41,53	0,49	65,37	23,84
Noeud n163	32,8	0,18	100,1	67,3
Noeud n164	35,5	0,23	100,86	65,36
Noeud n165	39,3	0,05	100,86	61,56
Noeud n168	16,69	0,58	69,32	52,63
Noeud n169	15,28	0,43	69,68	54,4
Noeud n170	27,5	0,12	69,36	41,86
Noeud n171	27,58	0,23	69,46	41,88
Noeud n172	48	0,3	100,04	52,04
Noeud n173	46,5	0,05	100,04	53,54
Noeud n174	26,09	0,17	78,18	52,09
Noeud n175	21	0,15	99,88	78,88
Noeud n176	20	0,07	99,88	79,88
Noeud n178	1,23	0,27	70,6	69,37
Noeud n179	14	0,16	69,96	55,96
Noeud n180	29	0,09	77,67	48,67
Noeud n181	22,78	0,32	69,18	46,4
Noeud n182	22,88	0,32	69,16	46,28
Noeud n183	38,5	0,58	100,68	62,18
Noeud n184	40	0,4	100,8	60,8
Noeud n185	39,45	0,99	80,97	41,52
Noeud n186	52,23	0,59	80,91	28,68
Noeud n188	22,05	0,2	69,44	47,39
Noeud n189	31,38	0,28	70,28	38,9
Noeud n190	29	0,38	100	71
Noeud n191	28	0,18	100	72
Noeud n192	27	0,08	100	73
Noeud n193	17,04	0,33	69,62	52,58
Noeud n194	36,5	0,1	100,09	63,59

	Altitude	Demande	Charge	Pression
ID Noeud	m	1/s	m	m
Noeud n195	41,5	0,08	100,1	58,6
Noeud n196	39	0,07	100,09	61,09
Noeud n198	26,92	0,01	89,17	62,25
Noeud n199	26,5	0,1	89,17	62,67
Noeud n201	30,5	0,53	100,71	70,21
Noeud n202	23,86	0,27	69,14	45,28
Noeud n203	26,51	0,46	68,7	42,19
Noeud n204	30	0,4	84,42	54,42
Noeud n206	38,32	0,69	78,34	40,02
Noeud n207	40,8	0,54	78,34	37,54
Noeud n208	28,77	0,32	78,08	49,31
Noeud n209	27,5	0,31	78,74	51,24
Noeud n212	8	0,12	99,15	91,15
Noeud n213	17	1,02	99,53	82,53
Noeud n214	31	0,36	99,46	68,46
Noeud n215	24,23	1,08	83,18	58,95
Noeud n216	27,16	0,52	68,49	41,33
Noeud n218	19	0,34	98,16	79,16
Noeud n221	33	0,46	100,1	67,1
Noeud n222	65,5	0,51	101	35,5
Noeud n223	52	0,41	100,91	48,91
Noeud n224	36,5	0,44	100,92	64,42
Noeud n225	46,5	0,23	100,84	54,34
Noeud n226	22	0,19	99,88	77,88
Noeud n227	29,29	0,22	98,93	69,64
Noeud n228	34	0,39	100,11	66,11
Noeud n229	40,6	0,08	100,86	60,26
Noeud n230	19,5	0,52	98,07	78,57
Noeud n231	35,8	0,1	100,86	65,06
Noeud n232	39,5	0,05	100,86	61,36
Noeud n233	37,5	0,11	100,68	63,18
Noeud n234	15	0,08	99,52	84,52
Noeud n235	26,6	0,36	89,17	62,57
Noeud n236	47	0,16	100,04	53,04
Noeud n238	21,4	0,18	70,89	49,49
Noeud n239	22,2	0,22	70,4	48,2
Noeud n240	0,78	0,79	69,87	69,09
Noeud n241	1,43	0,53	69,78	68,35
Noeud n242	51,67	0,19	80,88	29,21
Noeud n243	25,6	0,39	68,51	42,91
Noeud n244	31	0,21	100,12	69,12
Noeud n245	42,6	0,08	78,34	35,74
Noeud n246	39,35	0,46	78,35	39

	Altitude	Demande	Charge	Pression
ID Noeud	m	1/s	m	m
Noeud n247	38,44	0,66	78,45	40,01
Noeud n248	28,29	0,24	68,23	39,94
Noeud n249	31,56	0,24	67,39	35,83
Noeud n251	21,02	0,26	70,29	49,27
Noeud n252	19,71	0,37	70,47	50,76
Noeud n254	49,5	0,34	100,91	51,41
Noeud n257	28	0,38	100,22	72,22
Noeud n258	24,8	0,47	70,05	45,25
Noeud n259	39,36	0,37	70,01	30,65
Noeud n262	19	0,27	97,53	78,53
Noeud n264	38,55	0,29	66,33	27,78
Noeud n265	23,23	0,41	69,22	45,99
Noeud n266	48	0,28	100,89	52,89
Noeud n268	26	0,15	98,15	72,15
Noeud n272	36	0,13	100,38	64,38
Noeud n273	21,85	0,28	71,35	49,5
Noeud n274	26,15	0,2	69,16	43,01
Noeud n275	17,73	0,37	69,32	51,59
Noeud n276	20,54	0,55	77,07	56,53
Noeud n277	12	0,29	76,77	64,77
Noeud n278	20	0,48	91,85	71,85
Noeud n279	21,68	0,39	83,13	61,45
Noeud n281	42	0,05	100,08	58,08
Noeud n284	36	0,02	100,09	64,09
Noeud n285	42	0,11	100,1	58,1
Noeud n286	40	0,16	100,09	60,09
Noeud n288	27	0,04	100,7	73,7
Noeud n291	27	0,06	84,09	57,09
Noeud n292	30	0,06	100,22	70,22
Noeud n293	31	0,05	86,17	55,17
Noeud n299	26	0,25	84,13	58,13
Noeud n300	31	0,38	69,05	38,05
Noeud n302	20,5	0,12	99,91	79,41
Noeud n303	40,3	0,05	100,86	60,56
Noeud n306	44	0,1	100,05	56,05
Noeud n307	42	0,03	100,05	58,05
Noeud n308	32	1,38	99,76	67,76
Noeud n310	33,03	0,21	100,09	67,06
Noeud n311	19	0,04	99,88	80,88
Noeud n312	26	0,05	77,67	51,67
Noeud n314	26	0,03	100	74
Noeud n315	26,18	0,17	68,68	42,5
Noeud n316	22	0,06	70,29	48,29

	Altitude	Demande	Charge	Pression
ID Noeud	m	1/s	m	m
Noeud n317	43	0,13	100,1	57,1
Noeud n319	18	0,03	99,94	81,94
Noeud n320	66	0,29	100,98	34,98
Noeud n321	54,5	0,11	100,98	46,48
Noeud n327	18,7	0,44	97,86	79,16
Noeud n330	20	0,13	83,13	63,13
Noeud n331	35	0,2	100,74	65,74
Noeud n332	36	0,17	100,77	64,77
Noeud n335	31,5	0,17	100,62	69,12
Noeud n336	21,02	0,11	69,44	48,42
Noeud n337	8	0,04	76,77	68,77
Noeud n338	10	0,04	76,77	66,77
Noeud n339	30	0,05	100,11	70,11
Noeud n340	42	0,05	100,05	58,05
Noeud n341	31,34	0,08	67,54	36,2
Noeud n343	20	0,02	99,91	79,91
Noeud n344	31	0,04	100,7	69,7
Noeud n345	21,5	0,34	100,71	79,21
Noeud n346	28	0,04	84,11	56,11
Noeud n347	17	0,23	97,77	80,77
Noeud n349	30,7	0,05	78,08	47,38
Noeud n351	35,8	0,3	100,77	64,97
Noeud n354	13	0,2	99,49	86,49
Noeud n355	37,69	0,11	66,8	29,11
Noeud n356	40	0,05	100,86	60,86
Noeud n362	30	0,16	100,11	70,11
Noeud n364	26	0,04	89,17	63,17
Noeud n365	68	0,07	100,98	32,98
Noeud n366	35,27	0,23	77,85	42,58
Noeud n367	45,5	0,27	100,86	55,36
Noeud n368	34,5	0,13	100,92	66,42
Noeud n370	36	0,28	100,75	64,75
Noeud n372	43	0,73	99,43	56,43
Noeud n373	23,21	0,05	71,35	48,14
Réservoir Ouest	100	-	102	2
Réservoir Est	86	-	88	2
Réservoir chef lieu	60	-	62	2

Annexe X:

Tableau V-6 : Calcul des débits aux nœuds (cas de pointe)

Nœud	Тиуон	Longueur	Qsp	Qroute	Qnodal
Nœud	Tuyau	(m)	(1/s/m)	(1/s)	(1/s)
	p6	39,98	0,00546973	0,21867974	
Noeud10	p328	219,2	0,00546973	1,19896444	1,18985734
Noeudio	p42	36,79	0,00546973	0,2012313	1,16963734
	p189	139,1	0,00546973	0,7608392	
	p56	15,57	0,00546973	0,08516367	
Noeud100	p189	139,1	0,00546973	0,7608392	
	p101	158,1	0,00546973	0,86476404	0,85538345
	p58	105,1	0,00546973	0,57486844	
Nœud102	p98	137,1	0,00546973	0,74989975	
	p396	76,93	0,00546973	0,4207862	1,74555438
	p59	47,62	0,00546973	0,26046846	
Naud104	p136	80,7	0,00546973	0,44140707	
Nœud104	p347	96,4	0,00546973	0,5272818	
	p303	42,51	0,00546973	0,23251815	0,73083774
Noeud103	p58	105,1	0,00546973	0,57486844	0,28743422
	p123	215,6	0,00546973	1,17927341	
Noeud105	p240	37,64	0,00546973	0,20588057	
	p59	47,62	0,00546973	0,26046846	0,82281122
	p60	4,979	0,00546973	0,02723378	
Noeud106	p286	49,1	0,00546973	0,26856366	
	p335	207,4	0,00546973	1,13442164	0,71510954
Noeud107	p60	4,979	0,00546973	0,02723378	0,01361689
	p61	14,5	0,00546973	0,07931106	
Noeud108	p104	93,82	0,00546973	0,51316991	
	p401	22,01	0,00546973	0,12038872	0,35643484
Noeud109	p309	119,9	0,00546973	0,65582042	
	p61	14,5	0,00546973	0,07931106	0,36756574
Noeud11	C5	103,11	0,00546973	0,56398368	
	p6	39,98	0,00546973	0,21867974	
	C4	253,17	0,00546973	1,3847711	1,08371726
Noeud110	p62	193,4	0,00546973	1,05784545	1,50991849

Manud	Т	Longueur	Qsp	Qroute	Qnodal
Nœud	Tuyau	(m)	(1/s/m)	(1/s)	(1/s)
	p301	176,7	0,00546973	0,96650098	
	p394	182	0,00546973	0,99549054	
	p145	159,5	0,00546973	0,87242166	
Noeud111	p146	281,5	0,00546973	1,53972851	
	p63	149	0,00546973	0,81498951	1,61356984
	p65	84,26	0,00546973	0,4608793	
Noeud112	p66	51,64	0,00546973	0,28245677	
	p357	61,24	0,00546973	0,33496616	0,53915112
	p142	14,16	0,00546973	0,07745135	
Noeud113	p65	84,26	0,00546973	0,4608793	
	p236	58,79	0,00546973	0,32156532	0,42994799
	p67	54,55	0,00546973	0,29837368	
Noeud114	p89	86,57	0,00546973	0,47351438	
	p244	82,72	0,00546973	0,45245592	0,61217199
	p211	66,45	0,00546973	0,36346344	
Noeud115	p67	54,55	0,00546973	0,29837368	
	p196	188,1	0,00546973	1,02885589	0,8453465
	p238	51,24	0,00546973	0,28026888	
Noeud116	C9	142,2	0,00546973	0,77779536	
	p68	55,58	0,00546973	0,3040075	0,68103587
	p69	58,55	0,00546973	0,32025259	
Noeud117	p362	279	0,00546973	1,52605419	
	p143	283,27	0,00546973	1,54940993	1,69785835
	p380	187,1	0,00546973	1,02338616	
Noeud118	p70	67,09	0,00546973	0,36696407	
	p204	57,33	0,00546973	0,31357952	0,85196487
	p72	39,54	0,00546973	0,21627306	
Noeud119	p307	156,1	0,00546973	0,85382458	
Noeud113 Noeud114 Noeud115 Noeud116 Noeud117 Noeud118	p253	49,5	0,00546973	0,27075155	0,67042459
	p56	15,57	0,00546973	0,08516367	
Noeud12	p7	93,6	0,00546973	0,51196657	
	p190	52,29	0,00546973	0,28601209	0,44157116
	p75	18,49	0,00546973	0,10113528	
Noeud122	p365	41,2	0,00546973	0,2253528	
	p257	20,76	0,00546973	0,11355156	0,22001982
Noeud120	p73	105,7	0,00546973	0,57815028	0,28907514
Noeud121	p74	30,59	0,00546973	0,16731899	0,08365949
	p157	61,68	0,00546973	0,33737284	
Nœud 123	p256	42,04	0,00546973	0,22994738	
	p75	18,49	0,00546973	0,10113528	0,33422775
Noeud124	p76	63,33	0,00546973	0,34639789	0,17319895
Noeud125	p265	94,56	0,00546973	0,5172175	_
110001123	p143	283,27	0,00546973	1,54940993	1,95168109

N T 1		Longueur	Qsp	Qroute	Qnodal
Nœud	Tuyau	(m)	(1/s/m)	(1/s)	(1/s)
	p77	335,8	0,00546973	1,83673475	
	p285	22,72	0,00546973	0,12427223	
Noeud126	p308	48,9	0,00546973	0,26746971	
	p77	335,8	0,00546973	1,83673475	1,11423834
Noeud128	C5	103,11	0,00546973	0,56398368	0,28199184
	p270	95,68	0,00546973	0,5233436	
Noeud129	C8	56,36	0,00546973	0,30827389	
	p88	69,24	0,00546973	0,37872399	0,60517074
	p115	103,7	0,00546973	0,56721082	
Noeud131	C7	133,78	0,00546973	0,73174025	
	p82	136,4	0,00546973	0,74607094	1,022511
Noeud13	p7	93,6	0,00546973	0,51196657	0,25598328
	p84	111	0,00546973	0,60713984	
Noeud133	p105	153,1	0,00546973	0,8374154	
Nocuu133	p250	199,3	0,00546973	1,09011684	
	C3	367,44	0,00546973	2,00979695	4,54446903
Noeud132	p83	98,54	0,00546973	0,53898702	0,26949351
	p380	187,1	0,00546973	1,02338616	
Noeud134	C16	285	0,00546973	1,55887256	
	p85	15,52	0,00546973	0,08489018	1,33357445
	p409	36,5	0,00546973	0,19964508	
Noeud135	C11	158,6	0,00546973	0,8674989	
	p85	15,52	0,00546973	0,08489018	0,57601708
	p86	16,22	0,00546973	0,08871899	
Noeud136	p305	23,66	0,00546973	0,12941377	
Noeud135 Noeud136	p215	159,5		0,87242166	0,54527721
	p87	79,23	0,00546973	0,43336657	
Noeud137	p203	116,6	0,00546973	0,63777032	
	p258	47,19	0,00546973	0,25811648	0,66462668
Noeud138	p87	79,23	0,00546973	0,43336657	0,21668329
	p106	58,2	0,00546973	0,31833819	
Noeud139	p364	35,81	0,00546973	0,19587097	
	p88	69,24	0,00546973	0,37872399	0,44646657
	p281	47,19	0,00546973	0,25811648	
Noeud14	p8	227,8	0,00546973	1,2460041	
	p240	37,64	0,00546973	0,20588057	0,85500057
	p89	86,57	0,00546973	0,47351438	
Noeud140	p112	134,2	0,00546973	0,73403753	
	p262	52,05	0,00546973	0,28469936	0,74612563
	p90	71,83	0,00546973	0,39289058	
Noeud141	p224	41,8	0,00546973	0,22863464	
	p278	19,99	0,00546973	0,10933987	0,36543255
Noeud142	p263	15,93	0,00546973	0,08713277	0,42806093

NI d	Т	Longueur	Qsp	Qroute	Qnodal
Nœud	Tuyau	(m)	(1/s/m)	(l/s)	(1/s)
	p313	68,76	0,00546973	0,37609852	
	p90	71,83	0,00546973	0,39289058	
Noeud143	p91	70,54	0,00546973	0,38583463	0,19291732
	p92	57,25	0,00546973	0,31314194	
Noeud144	p332	105,5	0,00546973	0,57705633	
	p180	39,22	0,00546973	0,21452274	0,55236051
Noeud145	p92	57,25	0,00546973	0,31314194	0,15657097
	p93	140,5	0,00546973	0,76849682	
Noeud146	p127	56,48	0,00546973	0,30893025	
	p345	82,81	0,00546973	0,4529482	0,76518764
	p93	140,5	0,00546973	0,76849682	
Noeud147	p410	76,2	0,00546973	0,41679329	
	p403	70,94	0,00546973	0,38802252	0,78665632
	p94	111,7	0,00546973	0,61096865	
Noeud148	p241	36,64	0,00546973	0,20041084	
	p286	49,1	0,00546973	0,26856366	0,53997157
Noeud149	p94	111,7	0,00546973	0,61096865	0,30548432
	p8	227,8	0,00546973	1,2460041	
Noeud15	p62	193,4	0,00546973	1,05784545	
	p13	329	0,00546973	1,7995406	2,05169507
Noeud152	p96	44,31	0,00546973	0,24236366	0,12118183
	p188	79,72	0,00546973	0,43604674	
Noeud153	p343	27,67	0,00546973	0,15134738	
	p97	93,67	0,00546973	0,51234945	0,54987178
	p98	137,1	0,00546973	0,74989975	
Noeud154	p199	34,69	0,00546973	0,18974487	
	p304	66,99	0,00546973	0,3664171	0,65303086
	p137	45,99	0,00546973	0,2515528	
Noeud155	p304	66,99	0,00546973	0,3664171	
	p99	95,96	0,00546973	0,52487512	0,57142251
	p281	47,19	0,00546973	0,25811648	
Noeud156	p303	42,51	0,00546973	0,23251815	
	p99	95,96	0,00546973	0,52487512	0,50775487
Noeud157	p100	43,99	0,00546973	0,24061335	0,12030667
	p101	158,1	0,00546973	0,86476404	
Noeud158	p243	39,56	0,00546973	0,21638245	
	p310	50,24	0,00546973	0,27479915	0,67797282
	p103	42,43	0,00546973	0,23208057	
Noeud159	p374	46,59	0,00546973	0,25483464	
	p370	45,14	0,00546973	0,24690353	0,36690937
	p97	93,67	0,00546973	0,51234945	_
Noeud16	p119	445,6	0,00546973	2,43731092	
	p353	283,9	0,00546973	1,55285585	2,72794493

Nœud	Tuyau	Longueur	Qsp	Qroute	Qnodal
Nœud	Tuyau	(m)	(l/s/m)	(1/s)	(1/s)
	p9	174,3	0,00546973	0,95337364	
	p103	42,43	0,00546973	0,23208057	
Noeud160	p191	19,36	0,00546973	0,10589394	
	p168	41,88	0,00546973	0,22907222	0,28352336
Noeud161	p104	93,82	0,00546973	0,51316991	0,25658495
	p148	145,9	0,00546973	0,79803335	
Noeud162	p198	81,31	0,00546973	0,44474361	
	p105	153,1	0,00546973	0,8374154	1,04009618
	p106	58,2	0,00546973	0,31833819	
Noeud163	p363	12,68	0,00546973	0,06935615	
	p269	70,8	0,00546973	0,38725676	0,38747555
	p107	41,58	0,00546973	0,2274313	
Noeud164	p205	18,83	0,00546973	0,10299498	
	p309	119,9	0,00546973	0,65582042	0,49312335
	p109	209,2	0,00546973	1,14426715	
Noeud168	p381	228,2	0,00546973	1,24819199	
	p214	18,84	0,00546973	0,10304968	1,24775441
Noeud165	p107	41,58	0,00546973	0,2274313	0,11371565
	p109	209,2	0,00546973	1,14426715	
Noeud169	p122	29,78	0,00546973	0,16288851	
	p276	95,21	0,00546973	0,52077283	0,91396424
Noeud17	p9	174,3	0,00546973	0,95337364	0,47668682
Noeud170	p268	72,87	0,00546973	0,3985791	
Nocuu170	p376	23,89	0,00546973	0,13067181	0,26462545
	p207	60,15	0,00546973	0,32900416	
Noeud171	p110	46,23	0,00546973	0,25286554	
	p369	70,42	0,00546973	0,38517826	0,48352398
	p111	40,12	0,00546973	0,2194455	
Noeud172	p164	127,7	0,00546973	0,6984843	
	p313	68,76	0,00546973	0,37609852	0,64701416
	p113	55,03	0,00546973	0,30099915	
Noeud175	p375	19,65	0,00546973	0,10748016	
	p379	40,26	0,00546973	0,22021126	0,31434528
Noeud173	p111	40,12	0,00546973	0,2194455	0,10972275
Noeud174	p112	134,2	0,00546973	0,73403753	0,36701877
Noeud176	p113	55,03	0,00546973	0,30099915	0,15049957
Noeud177	p114	87,77	0,00546973	0,48007805	0,24003902
	p114	87,77	0,00546973	0,48007805	
Noeud178	C6	52,5	0,00546973	0,28716073	
	p169	73,26	0,00546973	0,40071229	0,58397554
Noeud179	p115	103,7	0,00546973	0,56721082	
inocual/9	p305	23,66	0,00546973	0,12941377	0,3483123
Noeud18	p10	7,917	0,00546973	0,04330384	0,9922552

N 1	Т	Longueur	Qsp	Qroute	Qnodal
Nœud	Tuyau	(m)	(1/s/m)	(1/s)	(1/s)
	p335	207,4	0,00546973	1,13442164	
	p102	147,5	0,00546973	0,80678492	
Noeud180	p116	68,57	0,00546973	0,37505927	0,18752963
	p117	3,059	0,00546973	0,0167319	
Noeud181	p121	57,72	0,00546973	0,31571272	
	p272	187,8	0,00546973	1,02721497	0,67982979
	p172	191,4	0,00546973	1,04690599	
Noeud182	p274	58,97	0,00546973	0,32254988	
	p117	3,059	0,00546973	0,0167319	0,69309388
	p118	109	0,00546973	0,59620038	
Noeud183	p161	87,69	0,00546973	0,47964047	
	C4	253,17	0,00546973	1,3847711	1,23030598
	p118	109	0,00546973	0,59620038	
Noeud184	p201	133,6	0,00546973	0,7307557	
	p318	68,74	0,00546973	0,37598912	0,8514726
	p119	445,6	0,00546973	2,43731092	
Noeud185	p321	150,3	0,00546973	0,82210016	
	p320	177	0,00546973	0,9681419	2,11377649
	p120	156,7	0,00546973	0,85710642	
Noeud186	p171	150,5	0,00546973	0,8231941	
	p321	150,3	0,00546973	0,82210016	1,25120034
Noeud187	p120	156,7	0,00546973	0,85710642	0,42855321
	p121	57,72	0,00546973	0,31571272	
Noeud188	p322	87,09	0,00546973	0,47635863	
	p142	14,16	0,00546973	0,07745135	0,43476135
Noeud189	p123	215,6	0,00546973	1,17927341	0,58963671
	p10	7,917	0,00546973	0,04330384	
Noeud19	p194	576,5	0,00546973	3,15329835	
	p353	283,9	0,00546973	1,55285585	2,37472902
	p124	50,6	0,00546973	0,27676825	
Noeud190	p221	31,87	0,00546973	0,17432024	
110000170	p326	191,4	0,00546973	1,04690599	
	p173	25,75	0,00546973	0,1408455	0,81941999
	p125	66,05	0,00546973	0,36127555	
Noeud191	p277	22,78	0,00546973	0,12460041	
	p124	50,6	0,00546973	0,27676825	0,38132211
Noeud192	p125	66,05	0,00546973	0,36127555	0,18063778
Noeud193	p126	83,39	0,00546973	0,45612064	
	p387	83,29	0,00546973	0,45557367	
	p276	95,21	0,00546973	0,52077283	0,71623357
	p128	44,17	0,00546973	0,2415979	
Noeud194	p228	14,96	0,00546973	0,08182713	
	p389	20,82	0,00546973	0,11387974	0,21865239

Manud	Т	Longueur	Qsp	Qroute	Qnodal
Nœud	Tuyau	(m)	(1/s/m)	(1/s)	(1/s)
Noeud195	p128	44,17	0,00546973	0,2415979	
Noeud193	p229	19,96	0,00546973	0,10917578	0,17538684
Noeud196	p129	52,63	0,00546973	0,2878718	0,1439359
Noeud198	p131	7,683	0,00546973	0,04202392	0,02101196
	p131	7,683	0,00546973	0,04202392	
Noeud199	p336	39,96	0,00546973	0,21857034	
	p392	30,36	0,00546973	0,16606095	0,21332761
	p242	145	0,00546973	0,7931106	
Noeud20	p11	60	0,00546973	0,3281837	
	p295	107,8	0,00546973	0,58963671	0,8554655
	p134	81,72	0,00546973	0,44698619	
Noeud201	p339	267,8	0,00546973	1,46479323	
	p185	63,98	0,00546973	0,34995321	1,13086632
	p137	45,99	0,00546973	0,2515528	
Noeud202	p296	65,48	0,00546973	0,35815781	
	p347	96,4	0,00546973	0,5272818	0,56849621
	p138	97,78	0,00546973	0,53483003	
Noeud203	p220	63,13	0,00546973	0,34530395	
110000203	p279	135,7	0,00546973	0,74224213	
	p296	65,48	0,00546973	0,35815781	0,99026695
	p294	115,6	0,00546973	0,63230059	
Noeud204	p139	118,1	0,00546973	0,64597491	
	p188	79,72	0,00546973	0,43604674	0,85716112
Noeud205	p139	118,1	0,00546973	0,64597491	0,32298745
	p140	86,81	0,00546973	0,47482711	
Noeud206	p219	149,5	0,00546973	0,81772438	
	p384	301,3	0,00546973	1,64802913	1,47029031
	p176	65,53	0,00546973	0,35843129	
Noeud207	p275	214,6	0,00546973	1,17380369	
110000207	p140	86,81	0,00546973	0,47482711	
	p330	57,76	0,00546973	0,3159315	1,1614968
	p141	20,93	0,00546973	0,11448141	
Noeud208	p196	188,1	0,00546973	1,02885589	
	p351	37,51	0,00546973	0,20516951	0,6742534
	p262	52,05	0,00546973	0,28469936	
Noeud209	p372	172,2	0,00546973	0,94188721	
	p141	20,93	0,00546973	0,11448141	0,67053399
Noeud212	C12	94,58	0,00546973	0,5173269	0,25866345
	p145	159,5	0,00546973	0,87242166	
Noeud213	p402	621,6	0,00546973	3,39998309	
	C2	20,016	0,00546973	0,10948208	2,19094341
Noeud214	p146	281,5	0,00546973	1,53972851	0,76986425
Noeud215	p350	496,4	0,00546973	2,71517311	2,31451552

N. 1	TD.	Longueur	Qsp	Qroute	Qnodal
Nœud	Tuyau	(m)	(l/s/m)	(1/s)	(1/s)
	p147	243,9	0,00546973	1,33406672	
	p249	106	0,00546973	0,5797912	
	p148	145,9	0,00546973	0,79803335	
No au 4016	p178	111,3	0,00546973	0,60878076	
Noeud216	p395	73,18	0,00546973	0,40027471	
	p396	76,93	0,00546973	0,4207862	1,11393751
	p13	329	0,00546973	1,7995406	
Noeud22	p12	42,7	0,00546973	0,2335574	
Noeuu22	p68	55,58	0,00546973	0,3040075	
	p300	92,9	0,00546973	0,50813776	1,42262162
	p159	166,9	0,00546973	0,91289765	
Noeud218	p258	47,19	0,00546973	0,25811648	
	p149	50,557	0,00546973	0,27653305	0,72377359
Noeud220	p151	240,9	0,00546973	1,31765754	0,65882877
	p363	12,68	0,00546973	0,06935615	
Noeud221	p151	240,9	0,00546973	1,31765754	
	p383	26,85	0,00546973	0,1468622	0,45950184
	p152	132,7	0,00546973	0,72583294	
Noeud222	p287	126,6	0,00546973	0,6924676	
NOCUUZZZ	p398	90,93	0,00546973	0,49736239	
	p183	49,24	0,00546973	0,26932942	1,09249618
	p152	132,7	0,00546973	0,72583294	
Noeud223	p184	103,4	0,00546973	0,5655699	
	p399	83,12	0,00546973	0,45464381	0,87302333
	p153	133,7	0,00546973	0,73130267	
Noeud224	p345	82,81	0,00546973	0,4529482	
110000224	p400	102,3	0,00546973	0,5595532	
	p401	22,01	0,00546973	0,12038872	0,93209639
	p154	21,49	0,00546973	0,11754446	
Noeud225	p252	111,5	0,00546973	0,6098747	
	p253	49,5	0,00546973	0,27075155	0,49908536
	p155	34,54	0,00546973	0,18892441	
Noeud226	p379	40,26	0,00546973	0,22021126	
	p255	75,65	0,00546973	0,41378494	0,41146031
	p156	59,91	0,00546973	0,32769142	
Noeud227	p261	74,69	0,00546973	0,408534	
	p364	35,81	0,00546973	0,19587097	0,4660482
	p37	99,95	0,00546973	0,54669934	
Noeud23	p317	183,3	0,00546973	1,00260119	
	p12	42,7	0,00546973	0,2335574	0,89142896
	p383	26,85	0,00546973	0,1468622	
Noeud228	p156	59,91	0,00546973	0,32769142	
	p328	219,2	0,00546973	1,19896444	0,83675903

Navid	Тууулу	Longueur	Qsp	Qroute	Qnodal
Nœud	Tuyau	(m)	(1/s/m)	(1/s)	(1/s)
Noeud229	p157	61,68	0,00546973	0,33737284	0,16868642
	p159	166,9	0,00546973	0,91289765	
Noeud230	p158	189	0,00546973	1,03377864	
	p200	50,31	0,00546973	0,27518203	1,11092916
	p160	40,66	0,00546973	0,22239915	
Noeud231	p257	20,76	0,00546973	0,11355156	
	p205	18,83	0,00546973	0,10299498	0,21947285
Noeud232	p160	40,66	0,00546973	0,22239915	0,11119958
Noeud233	p161	87,69	0,00546973	0,47964047	0,23982024
Noeud234	p162	60,59	0,00546973	0,33141084	0,16570542
	p372	172,2	0,00546973	0,94188721	
Noeud235	p163	72,69	0,00546973	0,39759455	
	p336	39,96	0,00546973	0,21857034	0,77902605
Noeud236	p164	127,7	0,00546973	0,6984843	0,34924215
	p167	65,35	0,00546973	0,35744674	
Noeud238	p168	41,88	0,00546973	0,22907222	
	p412	31,99	0,00546973	0,17497661	0,38074778
	p357	61,24	0,00546973	0,33496616	
Noeud239	p167	65,35	0,00546973	0,35744674	
	p374	46,59	0,00546973	0,25483464	0,47362377
	p14	177,4	0,00546973	0,97032979	
Noeud24	C12	94,58	0,00546973	0,5173269	
	p15	74,22	0,00546973	0,40596323	0,94680996
	p170	414,3	0,00546973	2,26610842	
Noeud240	p169	73,26	0,00546973	0,40071229	
	C7	133,78	0,00546973	0,73174025	1,69928048
Noeud241	p170	414,3	0,00546973	2,26610842	1,13305421
Noeud242	p171	150,5	0,00546973	0,8231941	0,41159705
	p172	191,4	0,00546973	1,04690599	
Noeud243	p216	39	0,00546973	0,2133194	
	p395	73,18	0,00546973	0,40027471	0,83025005
	p327	35,52	0,00546973	0,19428475	
Noeud244	p385	126	0,00546973	0,68918576	
	p174	6,177	0,00546973	0,03378651	0,45862851
Noeud245	p176	65,53	0,00546973	0,35843129	0,17921565
	p177	151,9	0,00546973	0,83085172	
Noeud246	p330	57,76	0,00546973	0,3159315	
	p219	149,5	0,00546973	0,81772438	0,9822538
	p177	151,9	0,00546973	0,83085172	
Noeud247	p301	176,7	0,00546973	0,96650098	
	p382	190,9	0,00546973	1,04417113	1,42076192
N 12.12	p178	111,3	0,00546973	0,60878076	
Noeud248	p227	16,47	0,00546973	0,09008642	0,52208556
		~,.,	,	,	, .,

Nœud	Turron	Longueur	Qsp	Qroute	Qnodal
Nœud	Tuyau	(m)	(l/s/m)	(1/s)	(1/s)
	p220	63,13	0,00546973	0,34530395	
	p179	86,6	0,00546973	0,47367847	
Noeud249	p280	92,82	0,00546973	0,50770018	
	p226	11,84	0,00546973	0,06476158	0,52307011
Noeud25	p14	177,4	0,00546973	0,97032979	0,4851649
Noeud250	p179	86,6	0,00546973	0,47367847	0,23683923
	p181	46,74	0,00546973	0,2556551	
Noeud251	p282	48,62	0,00546973	0,26593819	
	p332	105,5	0,00546973	0,57705633	0,54932481
	p181	46,74	0,00546973	0,2556551	
Noeud252	p215	159,5	0,00546973	0,87242166	
	p289	84,93	0,00546973	0,46454402	0,79631039
	p287	126,6	0,00546973	0,6924676	
Noeud254	p184	103,4	0,00546973	0,5655699	
	p414	35,73	0,00546973	0,19543339	0,72673545
	p190	52,29	0,00546973	0,28601209	
Noeud257	p326	191,4	0,00546973	1,04690599	
	p237	49,64	0,00546973	0,27151731	0,8022177
	p207	60,15	0,00546973	0,32900416	
Noeud258	p191	19,36	0,00546973	0,10589394	
	p192	291,7	0,00546973	1,59551974	1,01520891
Noeud259	p192	291,7	0,00546973	1,59551974	0,79775987
	p15	74,22	0,00546973	0,40596323	
Noeud26	p63	149	0,00546973	0,81498951	
	p409	36,5	0,00546973	0,19964508	0,71029891
	p297	86,66	0,00546973	0,47400665	
Noeud262	p200	50,31	0,00546973	0,27518203	
	p388	77,22	0,00546973	0,42237242	0,58578055
	p325	53,07	0,00546973	0,29027848	
Noeud264	p198	81,31	0,00546973	0,44474361	
	p280	92,82	0,00546973	0,50770018	0,62136113
	p199	34,69	0,00546973	0,18974487	
Noeud265	p274	58,97	0,00546973	0,32254988	
	p381	228,2	0,00546973	1,24819199	0,88024337
	p201	133,6	0,00546973	0,7307557	
Noeud266	p397	52,57	0,00546973	0,28754361	
	p414	35,73	0,00546973	0,19543339	0,60686635
	p16	12,5	0,00546973	0,0683716	
Noeud27	p66	51,64	0,00546973	0,28245677	
	p64	86,61	0,00546973	0,47373317	0,41228077
Noeud267	p202	126,7	0,00546973	0,69301457	0,34650729
Noeud268	p203	116,6	0,00546973	0,63777032	0,31888516
Noeud272	p210	101,8	0,00546973	0,55681834	0,27840917

N. 1	TD.	Longueur	Qsp	Qroute	Qnodal
Nœud	Tuyau	(m)	(l/s/m)	(l/s)	(1/s)
	p211	66,45	0,00546973	0,36346344	
No au 4072	p289	84,93	0,00546973	0,46454402	
Noeud273	p411	37,83	0,00546973	0,20691982	
	p412	31,99	0,00546973	0,17497661	0,60495195
	p213	37,38	0,00546973	0,20445844	
Noeud274	p212	76,39	0,00546973	0,41783254	
	p346	44,74	0,00546973	0,24471564	0,43350331
	p214	18,84	0,00546973	0,10304968	
Noeud275	p272	187,8	0,00546973	1,02721497	
	p387	83,29	0,00546973	0,45557367	0,79291916
	p217	207,5	0,00546973	1,13496862	
Noeud276	p218	162,4	0,00546973	0,88828387	
	C10	59,48	0,00546973	0,32533944	1,17429596
	p323	32,27	0,00546973	0,17650813	
Noeud277	p324	29,56	0,00546973	0,16168517	
	p218	162,4	0,00546973	0,88828387	0,61323858
	p222	122,2	0,00546973	0,66840079	
Noeud278	p386	176	0,00546973	0,96267217	
	p388	77,22	0,00546973	0,42237242	1,02672269
	p244	82,72	0,00546973	0,45245592	
Noeud279	p302	101,9	0,00546973	0,55736531	
	p222	122,2	0,00546973	0,66840079	0,83911101
	p268	72,87	0,00546973	0,3985791	
Noeud28	p370	45,14	0,00546973	0,24690353	
	p16	12,5	0,00546973	0,0683716	0,35692712
Noeud281	p224	41,8	0,00546973	0,22863464	0,11431732
Noeud284	p228	14,96	0,00546973	0,08182713	0,04091357
	p229	19,96	0,00546973	0,10917578	
Noeud285	p230	44,38	0,00546973	0,24274654	
	p390	18,59	0,00546973	0,10168225	0,22680228
	p333	61,27	0,00546973	0,33513025	
Noeud286	p230	44,38	0,00546973	0,24274654	
	p389	20,82	0,00546973	0,11387974	0,34587827
Noeud288	p232	28,68	0,00546973	0,15687181	0,0784359
	p413	38,39	0,00546973	0,20998287	
Noeud29	p17	142,2	0,00546973	0,77779536	
	p270	95,68	0,00546973	0,5233436	0,75556091
Noeud291	p235	45,56	0,00546973	0,24920082	0,12460041
Noeud292	p237	49,64	0,00546973	0,27151731	0,13575866
Noeud293	p241	36,64	0,00546973	0,20041084	0,10020542
	p249	106	0,00546973	0,5797912	
Noeud299	p342	65,07	0,00546973	0,35591522	
	p343	27,67	0,00546973	0,15134738	0,5435269

NI d	Т	Longueur	Qsp	Qroute	Qnodal
Nœud	Tuyau	(m)	(1/s/m)	(1/s)	(1/s)
Noeud30	p17	142,2	0,00546973	0,77779536	0,38889768
	p250	199,3	0,00546973	1,09011684	
Noeud300	p369	70,42	0,00546973	0,38517826	
	p377	27,04	0,00546973	0,14790145	0,81159828
Noeud301	p252	111,5	0,00546973	0,6098747	0,30493735
	p308	48,9	0,00546973	0,26746971	
Noeud302	p254	29,28	0,00546973	0,16015364	
	C13	16,93	0,00546973	0,0926025	0,26011293
Noeud303	p256	42,04	0,00546973	0,22994738	0,11497369
	p264	22,09	0,00546973	0,1208263	
Noeud306	p329	40,01	0,00546973	0,21884383	
	p263	15,93	0,00546973	0,08713277	0,21340145
Noeud307	p264	22,09	0,00546973	0,1208263	0,06041315
	p402	621,6	0,00546973	3,39998309	
Noeud308	p265	94,56	0,00546973	0,5172175	
	p378	364,1	0,00546973	1,99152806	2,95436433
	p300	92,9	0,00546973	0,50813776	
Noeud31	p18	131,6	0,00546973	0,71981624	
	p350	496,4	0,00546973	2,71517311	1,97156355
	p269	70,8	0,00546973	0,38725676	
Noeud310	p413	38,39	0,00546973	0,20998287	
	C8	56,36	0,00546973	0,30827389	0,45275676
Noeud311	p271	31,31	0,00546973	0,17125719	0,0856286
Noeud312	p273	37,65	0,00546973	0,20593527	0,10296763
Noeud313	p275	214,6	0,00546973	1,17380369	0,58690184
Noeud314	p277	22,78	0,00546973	0,12460041	0,0623002
Noeud315	p279	135,7	0,00546973	0,74224213	0,37112106
Noeud316	p282	48,62	0,00546973	0,26593819	0,13296909
	p390	18,59	0,00546973	0,10168225	
Noeud317	p283	20,26	0,00546973	0,11081669	
	p333	61,27	0,00546973	0,33513025	0,2738146
Noeud319	p285	22,72	0,00546973	0,12427223	0,06213611
	p18	131,6	0,00546973	0,71981624	
Noeud32	p239	70,26	0,00546973	0,38430311	
	C10	59,48	0,00546973	0,32533944	0,71472939
	p398	90,93	0,00546973	0,49736239	
Noeud320	p288	85,93	0,00546973	0,47001375	
	p393	53,15	0,00546973	0,29071606	0,6290461
Noeud321	p288	85,93	0,00546973	0,47001375	0,23500687
Noeud326	p294	115,6	0,00546973	0,63230059	0,31615029
	p361	79,77	0,00546973	0,43632022	
Noeud327	p297	86,66	0,00546973	0,47400665	
	p344	180,6	0,00546973	0,98783292	0,9490799

27 1		Longueur	Qsp	Qroute	Qnodal
Nœud	Tuyau	(m)	(1/s/m)	(1/s)	(1/s)
	p71	81,22	0,00546973	0,44425133	
Noeud33	p19	357,8	0,00546973	1,95706877	
	p153	133,7	0,00546973	0,73130267	1,56631139
Noeud330	p302	101,9	0,00546973	0,55736531	0,27868266
Noeud331	p307	156,1	0,00546973	0,85382458	0,42691229
	p310	50,24	0,00546973	0,27479915	
Noeud332	p354	13,39	0,00546973	0,07323966	
	p318	68,74	0,00546973	0,37598912	0,36201397
Noeud333	p311	82,02	0,00546973	0,44862711	0,22431356
Noeud335	p319	136,1	0,00546973	0,74443002	0,37221501
Noeud336	p322	87,09	0,00546973	0,47635863	0,23817932
Noeud337	p323	32,27	0,00546973	0,17650813	0,08825407
Noeud338	p324	29,56	0,00546973	0,16168517	0,08084258
Noeud339	p327	35,52	0,00546973	0,19428475	0,09714237
	p19	357,8	0,00546973	1,95706877	
Noeud34	C1	238,6	0,00546973	1,30507716	
	p183	49,24	0,00546973	0,26932942	1,76573768
Noeud340	p329	40,01	0,00546973	0,21884383	0,10942191
Noeud341	p331	60,15	0,00546973	0,32900416	0,16450208
	p20	508,9	0,00546973	2,78354471	
Noeud35	p361	79,77	0,00546973	0,43632022	
Nocuuss	p242	145	0,00546973	0,7931106	
	p149	50,557	0,00546973	0,27653305	2,27549014
	p20	508,9	0,00546973	2,78354471	
Noeud36	p11	60	0,00546973	0,3281837	
	C16	285	0,00546973	1,55887256	2,46603633
Noeud343	C13	16,93	0,00546973	0,0926025	0,04630125
Noeud344	p337	34,65	0,00546973	0,18952608	0,09476304
Noeud345	p339	267,8	0,00546973	1,46479323	0,73239661
Noeud346	p341	31,98	0,00546973	0,17492191	0,08746095
Noeud347	p344	180,6	0,00546973	0,98783292	0,49391646
	p354	13,39	0,00546973	0,07323966	
Noeud351	p403	70,94	0,00546973	0,38802252	
Nocudssi	p405	43,04	0,00546973	0,2354171	
	C15	108,3	0,00546973	0,59237157	0,64452543
Noeud349	p351	37,51	0,00546973	0,20516951	0,10258475
Noeud354	C11	158,6	0,00546973	0,8674989	0,43374945
Noeud355	p358	82,49	0,00546973	0,45119788	0,22559894
Noeud356	p365	41,2	0,00546973	0,2253528	0,1126764
Noeud361	p384	301,3	0,00546973	1,64802913	0,82401456
Noeud362	p385	126	0,00546973	0,68918576	0,34459288
Noeud363	p386	176	0,00546973	0,96267217	0,48133609
Noeud364	p392	30,36	0,00546973	0,16606095	0,08303048

Nœud	Tuyau	Longueur	Qsp	Qroute	Qnodal
Ivada	Tuyau	(m)	(1/s/m)	(l/s)	(1/s)
Noeud365	p393	53,15	0,00546973	0,29071606	0,14535803
Noeud366	p394	182	0,00546973	0,99549054	0,49774527
	p397	52,57	0,00546973	0,28754361	
Noeud367	p410	76,2	0,00546973	0,41679329	
	p399	83,12	0,00546973	0,45464381	0,57949036
Noeud368	p400	102,3	0,00546973	0,5595532	0,2797766
	C2	20,016	0,00546973	0,10948208	
Noeud37	p21	15,14	0,00546973	0,08281169	
Nocuus	p73	105,7	0,00546973	0,57815028	
	p162	60,59	0,00546973	0,33141084	0,55092744
	p405	43,04	0,00546973	0,2354171	
Noeud370	C15	108,3	0,00546973	0,59237157	
	p406	70	0,00546973	0,38288098	0,60533483
Noeud373	p411	37,83	0,00546973	0,20691982	0,10345991
Noeud372	C14	572,9	0,00546973	3,13360732	1,56680366
Noeud38	p21	15,14	0,00546973	0,08281169	0,04140584
	p375	19,65	0,00546973	0,10748016	
Noeud39	p22	74,09	0,00546973	0,40525217	
	p271	31,31	0,00546973	0,17125719	0,34199476
	p22	74,09	0,00546973	0,40525217	
Noeud40	p254	29,28	0,00546973	0,16015364	
	p255	75,65	0,00546973	0,41378494	0,48959538
	p23	42,27	0,00546973	0,23120541	
Noeud41	p74	30,59	0,00546973	0,16731899	
	p346	44,74	0,00546973	0,24471564	0,32162002
	p64	86,61	0,00546973	0,47373317	
Noeud42	p236	58,79	0,00546973	0,32156532	
	p23	42,27	0,00546973	0,23120541	0,51325195
	p406	70	0,00546973	0,38288098	
Noeud43	p24	285,7	0,00546973	1,56270137	
	p185	63,98	0,00546973	0,34995321	1,14776778
	p24	285,7	0,00546973	1,56270137	
Noeud44	p204	57,33	0,00546973	0,31357952	
	p319	136,1	0,00546973	0,74443002	1,31035545
	p72	39,54	0,00546973	0,21627306	
Noeud45	p25	42,81	0,00546973	0,23415907	
	p76	63,33	0,00546973	0,34639789	0,39841501
	p202	126,7	0,00546973	0,69301457	
Noeud46	p311	82,02	0,00546973	0,44862711	
	p25	42,81	0,00546973	0,23415907	0,68790038
	p155	34,54	0,00546973	0,18892441	
Noeud47	p26	30,22	0,00546973	0,16529519	
	p33	69,01	0,00546973	0,37746595	0,36584278

Nœud	Tuyau	Longueur	Qsp	Qroute	Qnodal
	•	(m)	(1/s/m)	(1/s)	(1/s)
Noeud48	p26	30,22	0,00546973	0,16529519	0,08264759
	p378	364,1	0,00546973	1,99152806	
Noeud49	C14	572,9	0,00546973	3,13360732	
	p27	228	0,00546973	1,24709804	3,18611671
Noeud50	p27	228	0,00546973	1,24709804	0,62354902
	p135	12,05	0,00546973	0,06591023	
Noeud51	p28	51,86	0,00546973	0,28366011	
	p210	101,8	0,00546973	0,55681834	0,45319434
	p28	51,86	0,00546973	0,28366011	
Noeud52	p173	25,75	0,00546973	0,1408455	
	p174	6,177	0,00546973	0,03378651	0,22914606
Noeud55	p30	95,4	0,00546973	0,52181208	0,26090604
	p30	95,4	0,00546973	0,52181208	
Noeud56	p80	52,67	0,00546973	0,28809059	
	p197	31,33	0,00546973	0,17136659	0,49063463
	p212	76,39	0,00546973	0,41783254	
Noeud57	p31	48,61	0,00546973	0,26588349	
	p376	23,89	0,00546973	0,13067181	0,40719392
	p31	48,61	0,00546973	0,26588349	
Noeud58	p80	52,67	0,00546973	0,28809059	
	p377	27,04	0,00546973	0,14790145	0,35093777
	p197	31,33	0,00546973	0,17136659	
Noeud59	p32	36,88	0,00546973	0,20172358	
	p213	37,38	0,00546973	0,20445844	0,2887743
	p32	36,88	0,00546973	0,20172358	
Noeud60	p84	111	0,00546973	0,60713984	
	p216	39	0,00546973	0,2133194	0,51109141
Noeud61	p33	69,01	0,00546973	0,37746595	0,18873297
	p34	195,9	0,00546973	1,07151977	
Noeud62	p39	256,4	0,00546973	1,40243833	
	p69	58,55	0,00546973	0,32025259	1,52784119
	p34	195,9	0,00546973	1,07151977	
Noeud63	p362	279	0,00546973	1,52605419	
	p70	67,09	0,00546973	0,36696407	1,48226901
	p126	83,39	0,00546973	0,45612064	
Noeud64	p35	123,2	0,00546973	0,67387052	
	p315	48,4	0,00546973	0,26473485	0,69736301
	p35	123,2	0,00546973	0,67387052	
Noeud65	p86	16,22	0,00546973	0,08871899	
	p122	29,78	0,00546973	0,16288851	0,46273901
	p36	153	0,00546973	0,83686842	
Noeud66	p83	98,54	0,00546973	0,53898702	
	p317	183,3	0,00546973	1,00260119	1,18922832

Novid	Tuyou	Longueur	Qsp	Qroute	Qnodal
Nœud	Tuyau	(m)	(1/s/m)	(1/s)	(l/s)
	p36	153	0,00546973	0,83686842	
Noeud67	p320	177	0,00546973	0,9681419	
	p382	190,9	0,00546973	1,04417113	1,42459073
	p37	99,95	0,00546973	0,54669934	
Noeud68	p116	68,57	0,00546973	0,37505927	
	p273	37,65	0,00546973	0,20593527	0,56384694
	p238	51,24	0,00546973	0,28026888	
Noeud69	p348	45,09	0,00546973	0,24663005	
	p38	1038	0,00546973	5,67757794	3,23297428
	p38	1038	0,00546973	5,67757794	
Noeud70	p82	136,4	0,00546973	0,74607094	
	C6	52,5	0,00546973	0,28716073	3,3554048
	p39	256,4	0,00546973	1,40243833	
Noeud71	p71	81,22	0,00546973	0,44425133	
	p154	21,49	0,00546973	0,11754446	0,98211706
Noeud72	p40	82,14	0,00546973	0,44928348	0,22464174
	p40	82,14	0,00546973	0,44928348	
Noeud73	p41	89,82	0,00546973	0,49129099	
	p175	126,5	0,00546973	0,69192063	0,81624755
Noeud74	p41	89,82	0,00546973	0,49129099	0,2456455
	p42	36,79	0,00546973	0,2012313	
Noeud75	p158	189	0,00546973	1,03377864	
	p175	126,5	0,00546973	0,69192063	0,96346529
	p239	70,26	0,00546973	0,38430311	
Noeud76	C9	142,2	0,00546973	0,77779536	
	p43	59,54	0,00546973	0,32566762	0,74388304
	p43	59,54	0,00546973	0,32566762	
Noeud77	p217	207,5	0,00546973	1,13496862	
	p348	45,09	0,00546973	0,24663005	0,85363314
	p44	157,9	0,00546973	0,86367009	
Noeud78	p102	147,5	0,00546973	0,80678492	
	p147	243,9	0,00546973	1,33406672	1,50226087
Noeud79	p44	157,9	0,00546973	0,86367009	0,43183505
	p221	31,87	0,00546973	0,17432024	
Noeud8	p5	108,3	0,00546973	0,59237157	
	p295	107,8	0,00546973	0,58963671	0,67816426
	p136	80,7	0,00546973	0,44140707	
Noeud80	p138	97,78	0,00546973	0,53483003	
	p45	198,4	0,00546973	1,08519409	1,03071559
	p45	198,4	0,00546973	1,08519409	
Noeud81	p325	53,07	0,00546973	0,29027848	
	p358	82,49	0,00546973	0,45119788	0,91333523
Noeud82	p227	16,47	0,00546973	0,09008642	0,3300981

Noved	Turran	Longueur	Qsp	Qroute	Qnodal
Nœud	Tuyau	(m)	(1/s/m)	(1/s)	(1/s)
	p46	33,69	0,00546973	0,18427515	
	p91	70,54	0,00546973	0,38583463	
	p46	33,69	0,00546973	0,18427515	
Noeud83	p226	11,84	0,00546973	0,06476158	
	p331	60,15	0,00546973	0,32900416	0,28902044
	p315	48,4	0,00546973	0,26473485	
Noeud84	p47	65,96	0,00546973	0,36078328	
	p180	39,22	0,00546973	0,21452274	0,42002043
Noeud85	p47	65,96	0,00546973	0,36078328	0,18039164
	p48	21,76	0,00546973	0,11902129	
Noeud86	p127	56,48	0,00546973	0,30893025	
	p283	20,26	0,00546973	0,11081669	0,26938412
	p48	21,76	0,00546973	0,11902129	
Noeud87	p129	52,63	0,00546973	0,2878718	
	p278	19,99	0,00546973	0,10933987	0,25811648
Noeud9	p5	108,3	0,00546973	0,59237157	0,29618579
	p163	72,69	0,00546973	0,39759455	
Noeud90	p261	74,69	0,00546973	0,408534	
	p50	31,72	0,00546973	0,17349978	0,48981417
Noeud91	p50	31,72	0,00546973	0,17349978	0,08674989
	p52	15,37	0,00546973	0,08406972	
Noeud93	p96	44,31	0,00546973	0,24236366	
	p134	81,72	0,00546973	0,44698619	0,38670979
	p52	15,37	0,00546973	0,08406972	
Noeud94	p232	28,68	0,00546973	0,15687181	
	p337	34,65	0,00546973	0,18952608	0,21523381
	p243	39,56	0,00546973	0,21638245	
Noeud96	p54	77,49	0,00546973	0,42384924	
	p135	12,05	0,00546973	0,06591023	0,35307096
Noeud97	p54	77,49	0,00546973	0,42384924	0,21192462
	p55	134,2	0,00546973	0,73403753	
Noeud98	p341	31,98	0,00546973	0,17492191	
	p342	65,07	0,00546973	0,35591522	0,63243733
	p55	134,2	0,00546973	0,73403753	
Noeud99	p100	43,99	0,00546973	0,24061335	
	p235	45,56	0,00546973	0,24920082	0,61192585

Annexe XI:

Tableau V-7 : Caractéristiques hydrauliques et géométriques des nœuds du réseau projeté (cas de pointe)

ID Noeud	Altitude m	Demande de base 1/s	Charge m	Pression m
Noeud n8	27	0,67816426	69,83	42,83
Noeud n9	24	0,29618579	68,86	44,86
Noeud n10	34	1,18985734	70,66	36,66
Noeud n11	36	1,08371726	70,64	34,64
Noeud n12	33	0,44157116	70,54	37,54
Noeud n13	37	0,25598328	70,45	33,45
Noeud n14	22,07	0,85500057	66,25	44,18
Noeud n15	23,76	2,05169507	69,6	45,84
Noeud n16	44,03	2,72794493	83,67	39,64
Noeud n18	36,74	0,9922552	84,7	47,96
Noeud n19	37,65	2,37472902	84,7	47,05
Noeud n20	19,5	0,8554655	69,51	50,01
Noeud n22	22,96	1,42262162	71,78	48,82
Noeud n23	25,07	0,89142896	72,31	47,24
Noeud n24	7,5	0,94680996	66,29	58,79
Noeud n25	5	0,4851649	65,76	59,76
Noeud n26	10,5	0,71029891	68,33	57,83
Noeud n27	25,26	0,41228077	61,62	36,36
Noeud n28	25	0,35692712	61,61	36,61
Noeud n29	32,32	0,75556091	70,53	38,21
Noeud n31	23,08	1,97156355	71,79	48,71
Noeud n32	20,92	0,71472939	70,45	49,53
Noeud n33	45,5	1,56631139	100,69	55,19
Noeud n34	72	1,76573768	100,82	28,82
Noeud n35	18,5	2,27549014	69,54	51,04
Noeud n36	20,5	2,46603633	69,33	48,83
Noeud n37	16,5	0,55092744	67,28	50,78
Noeud n38	16	0,04140584	67,28	51,28
Noeud n39	20	0,34199476	67,42	47,42
Noeud n40	21,5	0,48959538	67,51	46,01
Noeud n41	24,82	0,32162002	61,67	36,85
Noeud n42	24,28	0,51325195	61,7	37,42
Noeud n43	34,5	1,14776778	70,76	36,26
Noeud n44	29	1,31035545	70,59	41,59

	Altitude	Demande	Charge	Pression
ID Noeud	m	de base 1/s	m	m
Noeud n47	22,5	0,36584278	67,42	44,92
Noeud n48	23	0,08264759	67,42	44,42
Noeud n49	30,5	3,18611671	66,84	36,34
Noeud n51	34	0,45319434	70,39	36,39
Noeud n52	31,2	0,22914606	70,08	38,88
Noeud n56	29	0,49063463	61,65	32,65
Noeud n57	28	0,40719392	61,62	33,62
Noeud n58	30,4	0,35093777	61,62	31,22
Noeud n59	28	0,2887743	61,68	33,68
Noeud n60	26,67	0,51109141	61,79	35,12
Noeud n61	21	0,18873297	67,41	46,41
Noeud n62	30	1,52784119	69,29	39,29
Noeud n63	18	1,48226901	69,01	51,01
Noeud n64	19,48	0,69736301	60,77	41,29
Noeud n65	14,88	0,46273901	60,74	45,86
Noeud n66	33,26	1,18922832	74,88	41,62
Noeud n67	39,79	1,42459073	77,23	37,44
Noeud n68	24	0,56384694	72,29	48,29
Noeud n69	19,79	3,23297428	69,86	50,07
Noeud n70	3,74	3,3554048	60,1	56,36
Noeud n71	46	0,98211706	71	25
Noeud n72	27	0,22464174	70,19	43,19
Noeud n73	27,5	0,81624755	70,38	42,88
Noeud n74	28	0,2456455	70,38	42,38
Noeud n75	31	0,96346529	70,5	39,5
Noeud n76	19,53	0,74388304	70,17	50,64
Noeud n77	19,44		70,01	50,57
Noeud n78	25,83	1,50226087	83,87	58,04
Noeud n79	22,025	0,43183505	83,75	59,72
Noeud n80	27,3	1,03071559	63,71	36,41
Noeud n81	37,24	0,91333523	62,62	25,38
Noeud n82	28,85	0,3300981	62,34	33,49
Noeud n83	30,63	0,28902044	62,34	31,71
Noeud n84	20,85	0,42002043	60,76	39,91
Noeud n85	22,23	0,18039164	60,76	38,53
Noeud n86	44	0,26938412	63,84	19,84
Noeud n87	43,5	0,25811648	63,76	20,26
Noeud n90	27,47	0,48981417	69,99	42,52
Noeud n91	26,43	0,08674989	69,99	43,56
Noeud n93	29	0,38670979	70,71	41,71
Noeud n94	28	0,21523381	70,71	42,71
Noeud n96	35	0,35307096	70,48	35,48

	Altitude	Demande	Charge	Pression
ID Noeud	m	de base	m	m
N 1 07	22	1/s	70.40	20.42
Noeud n97	32	0,21192462	70,42	38,42
Noeud n98	27	0,63243733	76,88	49,88
Noeud n99	26	0,61192585	76,82	50,82
Noeud n100	34	0,85538345	70,72	36,72
Noeud n102	24,83	1,74555438	62,01	37,18
Noeud n103	25	0,28743422	61,97	36,97
Noeud n104	23,81	0,73083774	64,29	40,48
Noeud n105	23,76	0,82281122	65,81	42,05
Noeud n106	35,61	0,71510954	84,57	48,96
Noeud n107	34	0,01361689	84,57	50,57
Noeud n108	35	0,35643484	65,95	30,95
Noeud n109	34	0,36756574	65,92	31,92
Noeud n110	34,24	1,50991849	73,8	39,56
Noeud n111	15	1,61356984	67,44	52,44
Noeud n112	22,42	0,53915112	61,69	39,27
Noeud n113	23,23	0,42994799	61,81	38,58
Noeud n114	22	0,61217199	69,4	47,4
Noeud n115	21,65	0,8453465	69,39	47,74
Noeud n116	21,97	0,68103587	70,45	48,48
Noeud n117	19,5	1,69785835	69,01	49,51
Noeud n118	24,5	0,85196487	70,19	45,69
Noeud n119	49	0,67042459	70,62	21,62
Noeud n121	24,5	0,08365949	61,67	37,17
Noeud n122	36	0,22001982	65,68	29,68
Noeud n123	37	0,33422775	65,67	28,67
Noeud n125	31	1,95168109	67,9	36,9
Noeud n126	20	1,11423834	67,76	47,76
Noeud n128	35,5	0,28199184	70,64	35,14
Noeud n129	30,98	0,60517074	70,49	39,51
Noeud n131	10	1,022511	60,03	50,03
Noeud n132	32	0,26949351	74,87	42,87
Noeud n133	39,1	4,54446903	61,79	22,69
Noeud n134	12,5	1,33357445	69,17	56,67
Noeud n135	11	0,57601708	68,87	57,87
Noeud n136	14,5	0,54527721	60,69	46,19
Noeud n137	21	0,66462668	69,55	48,55
Noeud n138	22	0,21668329	69,53	47,53
Noeud n139	30	0,44646657	70,46	40,46
Noeud n140	24,74	0,74612563	69,39	44,65
Noeud n141	43	0,36543255	63,7	20,7
Noeud n142	45	0,42806093	63,57	18,57
Noeud n143	29,25	0,19291732	62,34	33,09
110044 11173	29,23	0,17271132	02,34	33,07

	Altitude	Demande	Charge	Pression
ID Noeud	m	de base 1/s	m	m
Noeud n144	21,81	0,55236051	60,77	38,96
Noeud n145	22,7	0,15657097	60,77	38,07
Noeud n146	37	0,76518764	66,63	29,63
Noeud n147	41	0,78665632	71	30
Noeud n148	32	0,78003032	84,1	52,1
Noeud n149	30,46	0,30548432	83,95	53,49
Noeud n152	28	0,30348432	70,71	42,71
Noeud n153	29	0,54987178	76,71	47,95
Noeud n154	23,71	0,65303086	·	
Noeud n154		0,63303080	62,6	38,89
Noeud n156	23,32	-	63,32	40
Noeud n156 Noeud n157	22,32	0,50775487	64,57	42,25
Noeud n157 Noeud n158	25	0,12030667	76,81	51,81
Noeud n158 Noeud n159	35,5	0,67797282	70,81	35,31
	24,2	0,36690937	61,59	37,39
Noeud n160	23,36	0,28352336	61,57	38,21
Noeud n161	36	0,25658495	65,95	29,95
Noeud n162	41,53	1,04009618	62,03	20,5
Noeud n163	32,8	0,38747555	70,54	37,74
Noeud n164	35,5	0,49312335	65,7	30,2
Noeud n165	39,3	0,11371565	65,7	26,4
Noeud n168	16,69	1,24775441	61,35	44,66
Noeud n169	15,28	0,91396424	60,82	45,54
Noeud n170	27,5		61,61	34,11
Noeud n171	27,58	0,48352398	61,6	34,02
Noeud n172	48	0,64701416	63,52	15,52
Noeud n173		0,10972275	63,49	16,99
Noeud n175	21	0,31434528	67,41	46,41
Noeud n176	20	0,15049957	67,41	47,41
Noeud n178	1,23	0,58397554	60,09	58,86
Noeud n179	14	0,3483123	60,55	46,55
Noeud n180	29	0,18752963	72,29	43,29
Noeud n181	22,78	0,67982979	61,98	39,2
Noeud n182	22,88	0,69309388	62	39,12
Noeud n183	38,5	1,23030598	70,69	32,19
Noeud n184	40	0,8514726	70,86	30,86
Noeud n185	39,45	2,11377649	78,94	39,49
Noeud n186	52,23	1,25120034	78,72	26,49
Noeud n188	22,05	0,43476135	61,84	39,79
Noeud n189	31,38	0,58963671	65,75	34,37
Noeud n190	29	0,81941999	69,97	40,97
Noeud n191	28	0,38132211	69,96	41,96
Noeud n192	27	0,18063778	69,96	42,96

	Altitude	Demande	Charge	Pression
ID Noeud	m	de base 1/s	m	m
Noeud n193	17,04	0,71623357	60,89	43,85
Noeud n194	36,5	0,21865239	63,8	27,3
Noeud n195	41,5	0,17538684	63,81	22,31
Noeud n196	39	0,1439359	63,76	24,76
Noeud n198	26,92	0,02101196	69,68	42,76
Noeud n199	26,5	0,21332761	69,68	43,18
Noeud n201	30,5	1,13086632	70,75	40,25
Noeud n202	23,86	0,56849621	63,21	39,35
Noeud n203	26,51	0,99026695	62,84	36,33
Noeud n204	30	0,85716112	76,92	46,92
Noeud n206	38,32	1,47029031	74,81	36,49
Noeud n207	40,8	1,1614968	74,82	34,02
Noeud n208	28,77	0,6742534	69,39	40,62
Noeud n209	27,5	0,67053399	69,4	41,9
Noeud n212	8	0,25866345	66,2	58,2
Noeud n213	17	2,19094341	67,29	50,29
Noeud n214	31	0,76986425	67,33	36,33
Noeud n215	24,23	2,31451552	77,18	52,95
Noeud n216	27,16	1,11393751	61,98	34,82
Noeud n218	19	0,72377359	69,57	50,57
Noeud n221	33	0,45950184	70,54	37,54
Noeud n222	65,5	1,09249618	100,68	35,18
Noeud n223	52	0,87302333	100,41	48,41
Noeud n224	36,5	0,93209639	66,04	29,54
Noeud n225	46,5	0,49908536	70,83	24,33
Noeud n226	22	0,41146031	67,43	45,43
Noeud n227	29,29	0,4660482	70,4	41,11
Noeud n228	34	0,83675903	70,54	36,54
Noeud n229	40,6	0,16868642	65,67	25,07
Noeud n230	19,5	1,11092916	69,9	50,4
Noeud n231	35,8	0,21947285	65,69	29,89
Noeud n232	39,5	0,11119958	65,69	26,19
Noeud n233	37,5	-	70,68	33,18
Noeud n234	15	0,16570542	67,28	52,28
Noeud n235	26,6	0,77902605	69,7	43,1
Noeud n236	47	0,34924215	63,51	16,51
Noeud n238	21,4	0,38074778	61,58	40,18
Noeud n239	22,2	0,47362377	61,63	39,43
Noeud n240	0,78	1,69928048	59,44	58,66
Noeud n241	1,43	1,13	59,08	57,65
Noeud n242	51,67	0,41159705	78,61	26,94
Noeud n243	25,6	0,83025005	61,79	36,19
1,0000 11273	25,0	0,03023003	01,77	50,17

	Altitude	Demande	Charge	Pression
ID Noeud	m	de base 1/s	m	m
Noeud n244	31	0,45862851	70,06	39,06
Noeud n245	42,6	0,17921565	74,82	32,22
Noeud n246	39,35	0,9822538	74,85	35,5
Noeud n247	38,44	1,42076192	75,24	36,8
Noeud n248	28,29	0,52208556	62,35	34,06
Noeud n249	31,56	0,52307011	62,34	30,78
Noeud n251	21,02	0,54932481	60,84	39,82
Noeud n252	19,71	0,79631039	60,93	41,22
Noeud n254	49,5	0,72673545	100,67	51,17
Noeud n257	28	0,8022177	70,17	42,17
Noeud n258	24,8	1,01520891	61,57	36,77
Noeud n259	39,36	0,79775987	61,43	22,07
Noeud n262	19	0,58578055	69,83	50,83
Noeud n264	38,55	0,62136113	62,36	23,81
Noeud n265	23,23	0,88024337	62,32	39,09
Noeud n266	48	0,60686635	100,67	52,67
Noeud n268	26	0,31888516	69,55	43,55
Noeud n272	36	0,27840917	70,35	34,35
Noeud n273	21,85	0,60495195	61,56	39,71
Noeud n274	26,15	0,43350331	61,66	35,51
Noeud n275	17,73	0,79291916	61,36	43,63
Noeud n276	20,45	1,17429596	70,18	49,73
Noeud n277	12	0,61323858	69,06	57,06
Noeud n278	20	1,02672269	69,63	49,63
Noeud n279	21,68	0,83911101	69,45	47,77
Noeud n281	42	0,11431732	63,7	21,7
Noeud n284	36	0,04091357	63,8	27,8
Noeud n285	42	0,22680228	63,81	21,81
Noeud n286	40	0,34587827	63,8	23,8
Noeud n288	27	0,0784359	70,71	43,71
Noeud n291	27	0,12460041	76,81	49,81
Noeud n292	30	0,13575866	70,16	40,16
Noeud n293	31	0,10020542	84,09	53,09
Noeud n299	26	0,5435269	76,96	50,96
Noeud n300	31	0,81159828	61,62	30,62
Noeud n302	20,5	0,26011293	67,59	47,09
Noeud n303	40,3	0,11497369	65,67	25,37
Noeud n306	44	0,21340145	63,56	19,56
Noeud n307	42	0,06041315	63,56	21,56
Noeud n308	32	2,95436433	67,47	35,47
Noeud n310	33,03	0,45275676	70,53	37,5
Noeud n311	19	0,0856286	67,41	48,41

	Altitude	Demande de base	Charge	Pression
ID Noeud	m	1/s	m	m
Noeud n312	26	0,10296763	72,29	46,29
Noeud n314	26	0,0623002	69,96	43,96
Noeud n315	26,18	0,37112106	62,76	36,58
Noeud n316	22	0,13296909	60,84	38,84
Noeud n317	43	0,2738146	63,82	20,82
Noeud n319	18	0,06213611	67,76	49,76
Noeud n320	66	0,6290461	100,63	34,63
Noeud n321	54,5	0,23500687	100,62	46,12
Noeud n327	18,7	0,9490799	69,62	50,92
Noeud n330	20	0,27868266	69,41	49,41
Noeud n331	35	0,42691229	70,25	35,25
Noeud n332	36	0,36201397	70,86	34,86
Noeud n335	31,5	0,37221501	70,58	39,08
Noeud n336	21,02	0,23817932	61,83	40,81
Noeud n337	8	0,08825407	69,05	61,05
Noeud n338	10	0,08084258	69,05	59,05
Noeud n339	30	0,09714237	70,05	40,05
Noeud n340	42	0,10942191	63,56	21,56
Noeud n341	31,34	0,16450208	62,34	31
Noeud n343	20	0,04630125	67,59	47,59
Noeud n344	31	0,09476304	70,71	39,71
Noeud n346	28	0,08746095	76,88	48,88
Noeud n347	17	0,49391646	69,07	52,07
Noeud n349	30,7	0,10258475	69,39	38,69
Noeud n351	35,8	0,64452543	70,87	35,07
Noeud n354	13	0,43374945	68,74	55,74
Noeud n355	37,69	0,22559894	62,62	24,93
Noeud n356	40	0,1126764	65,67	25,67
Noeud n362	30	0,34459288	69,99	39,99
Noeud n364	26	0,08303048	69,68	43,68
Noeud n365	68	0,14535803	100,62	32,62
Noeud n367	45,5	0,57949036	100,22	54,72
Noeud n368	34,5	0,2797766	66,03	31,53
Noeud n370	36	0,60533483	70,83	34,83
		Sans		
Réservoir Rv_Ouest	100	Valeur	102	2
D		Sans	0.0	
Réservoir Rv_Est	86	Valeur	88	2
Réservoir	60	Sans	60	2
Rv_chef_lieu	60	Valeur	62	2

Annexe XII:

Tableau V.8 : Caractéristiques hydrauliques et géométriques des tronçons (cas de pointe) du réseau projeté

ID Arc	Longueur m	Diamètre mm	Rugosité mm	Débit 1/s	Vitesse m/s	Pdc Unit. m/km	État
Tuyau p5	108,3	30	0,01	0,3	0,42	8,92	Ouvert
Tuyau p6	39,98	100	0,01	4,09	0,52	0,28	Ouvert
Tuyau p7	93,6	45,2	0,01	0,8	0,49	0,99	Ouvert
Tuyau p8	227,8	184,6	0,01	-51,06	1,91	14,73	Ouvert
Tuyau p10	7,917	290,8	0,02	-19,3	0,29	0,28	Ouvert
Tuyau p12	42,7	147,6	0,01	-25,73	1,5	12,42	Ouvert
Tuyau p13	329	147,6	0,01	-18,24	1,07	6,62	Ouvert
Tuyau p14	177,4	45,2	0,01	0,49	0,3	3	Ouvert
Tuyau p15	74,22	45,2	0,01	1,69	1,05	27,44	Ouvert
Tuyau p16	12,5	57	0,01	0,81	0,31	1,39	Ouvert
Tuyau p18	131,6	83	0,01	4,97	0,92	10,16	Ouvert
Tuyau p19	357,8	290,8	0,02	-22,49	0,34	0,37	Ouvert
Tuyau p20	508,9	67,8	0,01	1,22	0,34	0,42	Ouvert
Tuyau p21	15,14	83	0,01	1,51	0,27	0,41	Ouvert
Tuyau p22	74,09	57	0,01	0,83	0,32	1,3	Ouvert
Tuyau p23	42,27	83	0,01	-1,82	0,33	0,56	Ouvert
Tuyau p24	285,7	184,6	0,02	8,59	0,32	0,58	Ouvert

ID Arc	Longueur m	Diamètre mm	Rugosité mm	Débit 1/s	Vitesse m/s	Pdc Unit.	État
Tuyau p26	30,22	83	0,01	1,91	0,35	0,01	Ouvert
Tuyau p28	51,86	101,6	0,01	6,41	0,79	6,05	Ouvert
Tuyau p28 Tuyau p31	48,61	83	0,01	-2,11	0,79	0,03	Ouvert
Tuyau p31 Tuyau p32	36,88	83	0,01	-2,11	0,38	3,01	Ouvert
Tuyau p32 Tuyau p33	69,01	57	0,01	1,02	0,43	0,2	Ouvert
Tuyau p33 Tuyau p34	195,9	83	0,01	1,64	0,4	1,4	Ouvert
Tuyau p34 Tuyau p35	123,2	83	0,01	1,04	0,31	0,23	Ouvert
• •	153	147,6	0,01	-28,93	1,69	15,41	Ouvert
Tuyau p36	99,95			0,85	-	0,35	
Tuyau p37	1038	101,6	0,01		2,83		Ouvert
Tuyau p38			0,01	4,76	0,88	9,4	Ouvert
Tuyau p39	256,4	147,6	0,01	-18,34	1,07	6,69	Ouvert
Tuyau p40	82,14	36	0,01	-0,22	0,41	0,39	Ouvert
Tuyau p41	89,82	83	0,01	2,5	0,46	0,05	Ouvert
Tuyau p42	36,79	150	0,01	-14,95	0,85	4,26	
Tuyau p43	59,54	83	0,01	2,33	0,43	2,6	Ouvert
Tuyau p44	157,9	57	0,01	1,01	0,39	0,81	Ouvert
Tuyau p45	198,4	147,6	0,01	16,44	0,96	5,48	Ouvert
Tuyau p46	33,69	83	0,01	2,01	0,37	0,14	Ouvert
Tuyau p47	65,96	83	0,01	2,5	0,46	0,03	Ouvert
Tuyau p48	21,76	83	0,01	2,8	0,52	3,62	Ouvert
Tuyau p50	31,72	83	0,01	1,65	0,31	0,01	Ouvert
Tuyau p52	15,37	83	0,01	2,11	0,37	0,11	Ouvert
Tuyau p54	77,49	45,2	0,01	0,62	0,38	0,72	Ouvert
Tuyau p55	134,2	83	0,01	1,66	0,31	0,45	Ouvert
Tuyau p56	15,57	67,8	0,01	3,06	0,85	11,24	Ouvert
Tuyau p58	105,1	57	0,01	0,8	0,31	0,4	
Tuyau p59	47,62	57	0,01	-3,42	1,34	31,94	Ouvert
Tuyau p60	4,979	100	0,01	0	0	0	Fermé
Tuyau p61	14,5	83	0,01	2,26	0,42	2,46	Ouvert
Tuyau p62	193,4	147,6	0,01	34,87	2,04	21,73	Ouvert
Tuyau p63	149	83	0,01	3,7	0,68	5,98	Ouvert
Tuyau p64	86,61	57	0,01	3,41	1,33	0,83	Ouvert
Tuyau p65	84,26	147,6	0,01	-7,61	0,44	1,36	Ouvert
Tuyau p66	51,64	57	0,01	0,8	0,31	1,29	Ouvert
Tuyau p67	54,55	101,6	0,01	2,83	0,35	0,17	Ouvert
Tuyau p68	55,58	83	0,01	7,97	1,47	23,98	Ouvert
Tuyau p69	58,55	147,6	0,01	-15,18	0,89	4,74	Ouvert
Tuyau p70	67,09	83	0,01	0	0	0	Fermé
Tuyau p71	81,22	147,6	0,01	0	0	0	Fermé
Tuyau p74	30,59	57	0,01	0,8	0,31	0,03	Ouvert
Tuyau p75	18,49	83	0,01	1,65	0,32	0,25	Ouvert
Tuyau p77	335,8	147,6	0,01	6,4	0,37	0,42	Ouvert

ID Arc	Longueur	Diamètre	Rugosité	Débit l/s	Vitesse m/s	Pdc Unit.	État
	m	mm	mm				
Tuyau p80	52,67	83	0,01	2,5	0,46	0,43	Ouvert
Tuyau p82	136,4	83	0,01	1,66	0,31	0,5	Ouvert
Tuyau p83	98,54	83	0,01	3,7	0,68	0,06	Ouvert
Tuyau p84	111	184,6	0,02	9,6	0,36	0,03	Ouvert
Tuyau p85	15,52	83	0,01	7,11	1,31	19,47	Ouvert
Tuyau p86	16,22	83	0,01	2,24	0,45	2,9	Ouvert
Tuyau p87	79,23	57	0,01	1,3	0,51	0,25	Ouvert
Tuyau p88	69,24	83	0,01	2,01	0,37	0,32	Ouvert
Tuyau p89	86,57	80	0,01	-1,65	0,31	0,1	Ouvert
Tuyau p90	71,83	83	0,01	1,92	0,35	1,85	Ouvert
Tuyau p91	70,54	83	0,01	2,5	0,46	0,03	Ouvert
Tuyau p92	57,25	83	0,01	2,7	0,55	0,02	Ouvert
Tuyau p93	140,5	83	0,01	-9,2	1,7	31,12	Ouvert
Tuyau p94	111,7	45,2	0,01	0,83	0,52	1,34	Ouvert
Tuyau p96	44,31	57	0,01	0,8	0,31	0,06	Ouvert
Tuyau p97	93,67	101,6	0,01	0	0	0	Fermé
Tuyau p98	137,1	80	0,01	-2,8	0,56	4,31	Ouvert
Tuyau p99	95,96	147,6	0,01	-26,49	1,55	13,1	Ouvert
Tuyau p100	43,99	57	0,01	1,9	0,32	0,06	Ouvert
Tuyau p101	158,1	290,8	0,02	29,09	0,44	0,59	Ouvert
Tuyau p102	147,5	147,6	0,01	-16,63	0,97	5,59	Ouvert
Tuyau p103	42,43	57	0,01	2,01	0,33	0,44	Ouvert
Tuyau p104	93,82	83	0,01	2,17	0,43	0,06	Ouvert
Tuyau p105	153,1	147,6	0,01	-8,13	0,47	1,53	Ouvert
Tuyau p106	58,2	83	0,01	-1,54	0,29	1,26	Ouvert
Tuyau p107	41,58	83	0,01	1,7	0,31	0,2	Ouvert
Tuyau p109	209,2	83	0,01	2,08	0,41	2,54	Ouvert
Tuyau p110	46,23	83	0,01	4,97	0,92	0,23	Ouvert
Tuyau p111	40,12	36	0,01	0,42	0,41	0,67	Ouvert
Tuyau p113	55,03	57	0,01	1,91	0,31	0,11	Ouvert
Tuyau p115	103,7	83	0,01	-3,03	0,6	4,98	Ouvert
Tuyau p116	68,57	101,6	0,01	2,83	0,35	0,01	Ouvert
Tuyau p117	3,059	147,6	0,01	-15,9	0,93	5,16	
Tuyau p118	109	83	0,01	-1,75	0,32	1,57	Ouvert
Tuyau p119	445,6	230,8	0,02	-75,73	1,81	10,61	Ouvert
Tuyau p121	57,72	147,6	0,01	-10,63	0,62	2,49	Ouvert
Tuyau p122	29,78	83	0,01	-2,17	0,43	2,76	Ouvert
Tuyau p123	215,6	83	0,01	2,32	0,42	0,28	Ouvert
Tuyau p124	50,6	101,6	0,01	2,83	0,35	0,1	Ouvert
Tuyau p125	66,05	101,6	0,01	3,5	0,43	0,01	Ouvert
Tuyau p126	83,39	80	0,01	1,52	0,3	1,46	Ouvert
Tuyau p127	56,48	57	0,01	4,35	1,7	49,42	Ouvert

ID Arc	Longueur	Diamètre mm	Rugosité mm	Débit 1/s	Vitesse m/s	Pdc Unit.	État
							_
Tuyau p128	44,17	57	0,01	-0,8	0,31	0,18	Ouvert
Tuyau p129	52,63	83	0,01	2,11	0,37	0,01	Ouvert
Tuyau p131	7,683	57	0,01	-1,3	0,51	0,01	Ouvert
Tuyau p134	81,72	83	0,01	2,01	0,37	0,49	Ouvert
Tuyau p135	12,05	101,6	0,01	7,14	0,88	7,35	Ouvert
Tuyau p136	80,7	147,6	0,01	19,15	1,12	7,23	Ouvert
Tuyau p137	45,99	83	0,01	-2,22	0,41	2,39	Ouvert
Tuyau p138	97,78	57	0,01	-1,68	0,66	8,83	Ouvert
Tuyau p140	86,81	100	0,01	-2,83	0,35	0,05	Ouvert
Tuyau p141	20,93	83	0,01	-2,5	0,46	0,45	Ouvert
Tuyau p142	14,16	147,6	0,01	-9,96	0,58	2,21	Ouvert
Tuyau p145	159,5	83	0,01	1,32	0,24	0,96	Ouvert
Tuyau p146	281,5	83	0,01	1,65	0,31	0,37	Ouvert
Tuyau p147	243,9	101,6	0,01	-14,7	1,81	27,43	Ouvert
Tuyau p152	132,7	290,8	0,02	58,04	0,87	2,08	Ouvert
Tuyau p153	133,7	115,4	0,01	0	0	0	Fermé
Tuyau p154	21,49	57	0,01	1,6	0,63	8,09	Ouvert
Tuyau p155	34,54	83	0,01	6,1	1,13	0,27	Ouvert
Tuyau p156	59,91	83	0,01	-2,2	0,41	2,35	Ouvert
Tuyau p157	61,68	83	0,01	2,01	0,37	0,02	Ouvert
Tuyau p158	189	150	0,01	-12,7	0,72	3,17	Ouvert
Tuyau p159	166,9	100	0,01	-3,31	0,42	1,99	Ouvert
Tuyau p160	40,66	83	0,01	2,5	0,46	0,01	Ouvert
Tuyau p161	87,69	67,8	0,01	1,83	0,51	0,13	Ouvert
Tuyau p162	60,59	83	0,01	1,65	0,31	0,02	Ouvert
Tuyau p163	72,69	83	0,01	-2,96	0,55	4	Ouvert
Tuyau p164	127,7	83	0,01	1,99	0,37	0,1	Ouvert
Tuyau p167	65,35	147,6	0,01	-5,61	0,33	0,79	Ouvert
Tuyau p168	41,88	101,6	0,01	-2,83	0,35	0,06	Ouvert
Tuyau p170	414,3	83	0,01	2,5	0,46	0,87	Ouvert
Tuyau p171	150,5	57	0,01	0,8	0,31	0,75	Ouvert
Tuyau p173	25,75	101,6	0,01	5,28	0,65	4,27	Ouvert
Tuyau p174	6,177	57	0,01	0,9	0,35	2,93	Ouvert
Tuyau p175	126,5	83	0,01	-2,5	0,46	0,91	Ouvert
Tuyau p176	65,53	101,6	0,01	2,83	0,35	0,01	Ouvert
Tuyau p177	151,9	100	0,01	-3,79	0,48	2,55	Ouvert
Tuyau p178	111,3	83	0,01	2,44	0,48	3,38	Ouvert
Tuyau p180	39,22	83	0,01	-2,01	0,37	0,09	Ouvert
Tuyau p181	46,74	83	0,01	-1,7	0,34	1,78	Ouvert
Tuyau p183	49,24	290,8	0,02	68,32	1,03	2,81	Ouvert
Tuyau p184	103,4	83	0,01	2,32	0,43	2,6	Ouvert
Tuyau p185	63,98	147,6	0,01	6,4	0,37	0,12	Ouvert

ID Arro	Longueur	Diamètre	Rugosité	Débit l/s	Vitesse	Pdc Unit.	État
ID Arc	m	mm	mm		m/s	III/KIII	
Tuyau p188	79,72	83	0,01	-1,28	0,24	0,45	Ouvert
Tuyau p189	139,1	290,8	0,02	25,18	0,38	0,45	Ouvert
Tuyau p190	52,29	67,8	0,01	2,36	0,65	7,06	Ouvert
Tuyau p191	19,36	101,6	0,01	-2,51	0,3	0,07	Ouvert
Tuyau p192	291,7	83	0,01	2,5	0,46	0,47	Ouvert
Tuyau p197	31,33	83	0,01	-1,24	0,25	1,02	Ouvert
Tuyau p198	81,31	147,6	0,01	-14,1	0,82	4,14	Ouvert
Tuyau p199	34,69	147,6	0,01	-20,25	1,18	8,01	Ouvert
Tuyau p201	133,6	290,8	0,02	0	0	0	Fermé
Tuyau p203	116,6	101,6	0,01	3,5	0,43	0,3	Ouvert
Tuyau p204	57,33	101,6	0,01	6,91	0,85	6,93	Ouvert
Tuyau p205	18,83	83	0,01	1,28	0,24	0,91	Ouvert
Tuyau p207	60,15	101,6	0,01	2,5	0,3	0,41	Ouvert
Tuyau p210	101,8	57	0,01	1,3	0,51	0,38	Ouvert
Tuyau p211	66,45	147,6	0,01	0	0	0	Fermé
Tuyau p212	76,39	83	0,01	3,17	0,59	0,57	Ouvert
Tuyau p213	37,38	83	0,01	1,93	0,36	0,43	Ouvert
Tuyau p214	18,84	83	0,01	2,01	0,37	0,25	Ouvert
Tuyau p215	159,5	83	0,01	-1,68	0,31	1,47	Ouvert
Tuyau p216	39	184,6	0,02	-9,6	0,36	0,02	Ouvert
Tuyau p217	207,5	83	0,01	2,7	0,55	0,83	Ouvert
Tuyau p218	162,4	45,2	0,01	0,78	0,49	6,94	Ouvert
Tuyau p219	149,5	100	0,01	-3,5	0,43	0,27	Ouvert
Tuyau p220	63,13	83	0,01	3,88	0,77	7,76	Ouvert
Tuyau p221	31,87	101,6	0,01	5,26	0,65	4,23	Ouvert
Tuyau p222	122,2	101,6	0,01	2,91	0,36	1,47	Ouvert
Tuyau p224	41,8	83	0,01	2,5	0,46	0,01	Ouvert
Tuyau p226	11,84	83	0,01	2,11	0,37	0,01	Ouvert
Tuyau p227	16,47	83	0,01	2,43	0,45	0,6	
Tuyau p228	14,96	57	0,01	1,3	0,51	0,02	Ouvert
Tuyau p229	19,96	83	0,01	-4,18	0,77	0,1	Ouvert
Tuyau p230	44,38	57	0,01	-1,9	0,74	0,21	Ouvert
Tuyau p232	28,68	83	0,01	1,66	0,31	0,01	Ouvert
Tuyau p235	45,56	57	0,01	1,1	0,43	0,06	Ouvert
Tuyau p236	58,79	83	0,01	-1,93	0,36	1,86	
Tuyau p237	49,64	45,2	0,01	0,83	0,52	0,33	Ouvert
Tuyau p238	51,24	83	0,01	5,31	0,98	11,44	Ouvert
Tuyau p239	70,26	57	0,01	1,08	0,42	4,07	Ouvert
Tuyau p240	37,64	80	0,01	4,84	0,96	11,55	Ouvert
Tuyau p240 Tuyau p241	36,64	45,2	0,01	0,75	0,46	0,14	Ouvert
Tuyau p241 Tuyau p242	145	101,6	0,01	-2,5	0,40	0,14	Ouvert
Tuyau p242 Tuyau p243	39,56	101,6	0,01	7,71	0,95	8,44	Ouvert
1 uyau p243	39,30	101,0	0,01	/,/1	0,93	0,44	Juvert

	Longueur	Diamètre	Rugosité	Débit	Vitesse	Pdc Unit.	État
ID Arc	m	mm	mm	1/s	m/s	m/km	
Tuyau p244	82,72	101,6	0,01	3,5	0,43	0,62	Ouvert
Tuyau p249	106	101,6	0,01	3,53	0,44	2,07	Ouvert
Tuyau p250	199,3	100	0,01	-2,04	0,26	0,85	Ouvert
Tuyau p253	49,5	57	0,01	1,1	0,43	4,16	Ouvert
Tuyau p254	29,28	83	0,01	2,43	0,45	2,82	Ouvert
Tuyau p255	75,65	83	0,01	1,38	0,25	1,03	Ouvert
Tuyau p256	42,04	83	0,01	2,5	0,46	0,01	Ouvert
Tuyau p257	20,76	83	0,01	1,93	0,36	0,54	Ouvert
Tuyau p258	47,19	101,6	0,01	2,83	0,35	0,33	Ouvert
Tuyau p261	74,69	83	0,01	3,54	0,65	5,5	Ouvert
Tuyau p262	52,05	83	0,01	1,65	0,31	0,15	Ouvert
Tuyau p263	15,93	57	0,01	0,83	0,32	0,66	Ouvert
Tuyau p264	22,09	57	0,01	0,8	0,31	0,02	Ouvert
Tuyau p265	94,56	115,4	0,01	-7,77	0,74	4,63	Ouvert
Tuyau p268	72,87	57	0,01	-2,01	0,79	0,01	Ouvert
Tuyau p269	70,8	184,6	0,02	9,6	0,36	0,07	Ouvert
Tuyau p270	95,68	83	0,01	1,93	0,36	0,47	Ouvert
Tuyau p271	31,31	57	0,01	0,83	0,32	0,03	Ouvert
Tuyau p272	187,8	101,6	0,01	-4,59	0,57	3,31	Ouvert
Tuyau p273	37,65	101,6	0,01	3,5	0,43	1,2	Ouvert
Tuyau p274	58,97	147,6	0,01	-16,6	0,97	5,57	Ouvert
Tuyau p276	95,21	83	0,01	-2,26	0,42	0,71	Ouvert
Tuyau p277	22,78	101,6	0,01	2,83	0,35	0,42	Ouvert
Tuyau p278	19,99	83	0,01	2,4	0,44	2,75	Ouvert
Tuyau p279	135,7	57	0,01	2,01	0,79	0,63	Ouvert
Tuyau p280	92,82	83	0,01	-1,65	0,31	0,27	Ouvert
Tuyau p281	47,19	147,6	0,01	-45,37	2,65	35,4	Ouvert
Tuyau p282	48,62	83	0,01	2,5	0,46	0,01	Ouvert
Tuyau p283	20,26	83	0,01	-1,28	0,24	0,91	Ouvert
Tuyau p285	22,72	83	0,01	2,5	0,46	0,01	Ouvert
Tuyau p286	49,1	45,2	0,01	0,95	0,59	9,71	Ouvert
Tuyau p287	126,6	290,8	0,02	22,14	0,33	0,06	Ouvert
Tuyau p288	85,93	83	0,01	1,86	0,34	0,05	Ouvert
Tuyau p289	84,93	83	0,01	-4,18	0,77	7,43	Ouvert
Tuyau p295	107,8	101,6	0,01	4,28	0,53	2,93	Ouvert
Tuyau p296	65,48	83	0,01	-3,56	0,66	5,58	Ouvert
Tuyau p297	86,66	101,6	0,01	-3,77	0,46	2,33	Ouvert
Tuyau p300	92,9	147,6	0,01	-3,51	0,34	0,12	Ouvert
Tuyau p301	176,7	184,6	0,02	-36,38	1,36	8,14	Ouvert
Tuyau p302	101,9	57	0,01	0,8	0,31	0,38	Ouvert
Tuyau p303	42,51	147,6	0,01	18,38	1,07	6,71	Ouvert
Tuyau p304	66,99	147,6	0,01	-23,7	1,39	10,68	Ouvert

ID Arro	Longueur	Diamètre	Rugosité	Débit	Vitesse	Pdc Unit.	État
ID Arc	m	mm	mm	1/s	m/s	m/km	
Tuyau p305	23,66	80	0,01	-3,38	0,67	6,05	Ouvert
Tuyau p307	156,1	45,2	0,01	0,43	0,27	2,4	Ouvert
Tuyau p308	48,9	83	0,01	2,74	0,51	3,48	Ouvert
Tuyau p309	119,9	83	0,01	1,89	0,35	1,8	Ouvert
Tuyau p310	50,24	290,8	0,02	37,47	0,56	0,93	Ouvert
Tuyau p313	68,76	83	0,01	2,4	0,44	0,7	Ouvert
Tuyau p315	48,4	83	0,01	4,08	0,75	0,08	Ouvert
Tuyau p317	183,3	147,6	0,01	-27,47	1,61	14,01	Ouvert
Tuyau p318	68,74	290,8	0,02	-20,5	0,3	0,01	Ouvert
Tuyau p319	136,1	101,6	0,01	3,5	0,43	0,04	Ouvert
Tuyau p320	177	230,8	0,02	-71,95	1,72	9,64	Ouvert
Tuyau p321	150,3	83	0,01	1,66	0,31	1,44	Ouvert
Tuyau p322	87,09	83	0,01	1,81	0,33	0,06	Ouvert
Tuyau p323	32,27	45,2	0,01	0,95	0,59	0,1	Ouvert
Tuyau p324	29,56	45,2	0,01	0,83	0,52	0,08	Ouvert
Tuyau p325	53,07	147,6	0,01	-15,31	0,89	4,81	Ouvert
Tuyau p326	191,4	83	0,01	-1,42	0,26	1,09	Ouvert
Tuyau p327	35,52	45,2	0,01	0,62	0,38	0,12	Ouvert
Tuyau p328	219,2	184,6	0,02	7,95	0,3	0,51	Ouvert
Tuyau p329	40,01	57	0,01	1,92	0,75	0,05	Ouvert
Tuyau p330	57,76	101,6	0,01	3,5	0,43	0,64	Ouvert
Tuyau p331	60,15	83	0,01	2,01	0,37	0,02	Ouvert
Tuyau p332	105,5	83	0,01	1,65	0,31	0,72	Ouvert
Tuyau p333	61,27	57	0,01	1,9	0,74	0,27	Ouvert
Tuyau p335	207,4	101,6	0,01	4,28	0,53	0,6	Ouvert
Tuyau p336	39,96	57	0,01	2,01	0,79	0,48	Ouvert
Tuyau p337	34,65	57	0,01	0,83	0,32	0,04	Ouvert
Tuyau p341	31,98	83	0,01	2,5	0,46	0,01	Ouvert
Tuyau p342	65,07	83	0,01	-1,58	0,29	1,31	Ouvert
Tuyau p343	27,67	101,6	0,01	1,41	0,17	0,41	Ouvert
Tuyau p344	180,6	45,2	0,01	0,49	0,31	3,09	Ouvert
Tuyau p345	82,81	83	0,01	4,08	0,75	7,12	Ouvert
Tuyau p346	44,74	83	0,01	-1,81	0,33	0,22	Ouvert
Tuyau p347	96,4	57	0,01	1,92	0,75	11,22	Ouvert
Tuyau p348	45,09	83	0,01	2,69	0,5	3,37	Ouvert
Tuyau p350	496,4	101,6	0,01	-8,85	1,09	10,86	
Tuyau p351	37,51	80	0,01	-3,17	0,59	0,01	Ouvert
Tuyau p353	283,9	290,8	0,02	78,45	1,18	3,64	Ouvert
Tuyau p354	13,39	290,8	0,02	-40,43	0,61	1,07	Ouvert
Tuyau p357	61,24	147,6	0,01	-6,5	0,38	1,03	Ouvert
Tuyau p358	82,49	147,6	0,01	6,4	0,37	0,21	Ouvert
Tuyau p361	79,77	101,6	0,01	-2,32	0,29	0,99	Ouvert

	Longueur	Diamètre	Rugosité	Débit	Vitesse	Pdc Unit.	État
ID Arc	m	mm	mm	1/s	m/s	m/km	
Tuyau p362	279	83	0,01	-2,78	0,55	0,01	Ouvert
Tuyau p363	12,68	184,6	0,02	10,02	0,37	0,18	Ouvert
Tuyau p364	35,81	83	0,01	1,81	0,33	1,66	Ouvert
Tuyau p365	41,2	83	0,01	1,65	0,31	0,01	Ouvert
Tuyau p369	70,42	101,6	0,01	2,83	0,35	0,38	Ouvert
Tuyau p370	45,14	57	0,01	1,3	0,51	0,32	Ouvert
Tuyau p372	172,2	83	0,01	-1,86	0,34	1,76	Ouvert
Tuyau p374	46,59	57	0,01	-2,01	0,79	0,76	Ouvert
Tuyau p375	19,65	57	0,01	-0,83	0,32	0,09	Ouvert
Tuyau p376	23,89	83	0,01	2,01	0,37	0,49	Ouvert
Tuyau p377	27,04	83	0,01	2,5	0,46	0,01	Ouvert
Tuyau p378	364,1	101,6	0,01	3,19	0,39	1,73	Ouvert
Tuyau p379	40,26	57	0,01	0,83	0,32	0,5	Ouvert
Tuyau p380	187,1	101,6	0,01	6,05	0,75	5,46	Ouvert
Tuyau p381	228,2	83	0,01	-2,78	0,55	4,26	Ouvert
Tuyau p382	190,9	184,6	0,02	41,59	1,55	10,44	Ouvert
Tuyau p383	26,85	184,6	0,02	9,6	0,36	0,22	Ouvert
Tuyau p385	126	57	0,01	1,9	0,74	0,55	Ouvert
Tuyau p387	83,29	83	0,01	-3,24	0,65	5,63	Ouvert
Tuyau p389	20,82	57	0,01	2,01	0,79	0,03	Ouvert
Tuyau p390	18,59	83	0,01	-2,11	0,43	0,38	Ouvert
Tuyau p392	30,36	57	0,01	1,9	0,74	0,03	Ouvert
Tuyau p393	53,15	57	0,01	0,8	0,31	0,1	Ouvert
Tuyau p395	73,18	83	0,01	2,09	0,42	2,56	Ouvert
Tuyau p396	76,93	83	0,01	-1,65	0,31	0,44	Ouvert
Tuyau p397	52,57	83	0,01	-4,52	0,83	8,54	Ouvert
Tuyau p398	90,93	83	0,01	2,5	0,46	0,6	Ouvert
Tuyau p399	83,12	290,8	0,02	59,49	0,9	2,18	Ouvert
Tuyau p400	102,3	83	0,01	2,01	0,37	0,07	Ouvert
Tuyau p401	22,01	83	0,01	2,87	0,53	3,78	Ouvert
Tuyau p402	621,6	115,4	0,01	-3,51	0,34	0,29	Ouvert
Tuyau p403	70,94	290,8	0,02	53,45	0,8	1,79	Ouvert
Tuyau p405	43,04	184,6	0,02	11,9	0,44	1,05	Ouvert
Tuyau p406	70	184,6	0,02	11,76	0,44	1,03	Ouvert
Tuyau p409	36,5	83	0,01	6,1	1,13	14,74	Ouvert
Tuyau p410	76,2	290,8	0,02	0	0	0	Fermé
Tuyau p412	31,99	147,6	0,01	-7,02	0,41	0,59	Ouvert
Tuyau p413	38,39	184,6	0,02	9,6	0,36	0,03	Ouvert
Tuyau p414	35,73	290,8	0,02	22,14	0,33	0,03	Ouvert
Tuyau C1	238,6	290,8	0,02	92,57	1,39	4,94	Ouvert
Tuyau p194	576,5	290,8	0,02	100,13	1,51	5,72	Ouvert
Tuyau p200	50,31	150	0,01	8,28	0,47	1,47	Ouvert

ID Arc	Longueur m	Diamètre mm	Rugosité mm	Débit l/s	Vitesse m/s	Pdc Unit. m/km	État
Tuyau p388	77,22	101,6	0,01	-3,93	0,49	2,52	Ouvert
Tuyau p11	60	101,6	0,01	4,38	0,54	3,06	Ouvert
Tuyau p143	283,27	147,6	0,01	13,64	0,8	3,9	Ouvert
Tuyau C2	20,016	83	0,01	2,01	0,37	0,36	Ouvert
Tuyau p149	50,557	101,6	0,01	2,5	0,3	0,43	Ouvert
Tuyau C4	253,17	67,8	0,01	1,63	0,45	0,17	Ouvert
Tuyau C5	103,11	101,6	0,01	2,83	0,35	0,03	Ouvert
Tuyau C6	52,5	83	0,01	2,5	0,46	0,28	Ouvert
Tuyau C7	133,78	83	0,01	2,83	0,56	4,41	Ouvert
Tuyau C8	56,36	57	0,01	1,3	0,51	0,82	Ouvert
Tuyau C9	142,2	83	0,01	1,99	0,37	1,96	Ouvert
Tuyau C10	59,48	83	0,01	3,17	0,59	4,53	Ouvert
Tuyau C11	158,6	57	0,01	0,8	0,31	0,82	Ouvert
Tuyau C12	94,58	45,2	0,01	0,83	0,52	1,01	Ouvert
Tuyau C13	16,93	83	0,01	2,01	0,37	0,2	Ouvert
Tuyau C15	108,3	57	0,01	1,32	0,52	0,42	Ouvert
Tuyau C16	285	115,4	0,01	2,39	0,23	0,57	Ouvert
Tuyau C3	367,44	290,8	0,02	-25,06	0,38	0,07	Ouvert
	Sans		Sans				
Vanne V2	Valeur	300	Valeur	63,43	0,9	29,22	Actif
	Sans		Sans				
Vanne V1	Valeur	160	Valeur	7,02	0,41	29,69	Actif

Annexe XIII

BORDEREAU DES PRIX UNITAIRES 2012

	LOT N° 3 : ALIMENTATION EN EAU POTABLE		
Nº	DÉSIGNATION DES DUVRAGE		PRIX UNITAIRE
3-1	Fouilles en tranchées exécuté en terrain de toutes nature excepté terrain rocheux dur par engins mécanique, selon les côtes portées sur plan y compris toutes sujétions de bonne exécution.	мз	380,00
3-2	Plus value au prix 3-1 pour les fouilles exécutes en terrain rocheux dur nécessitant l'emploie du brise roche	МЗ	4 000,00
3-3	Fourniture et mise en place de grillage avertisseur en P.V.C de couleur bleu placé à 30 cm au dessus de la canalisation y compris toutes sujétion de bonne exécution	ML	150,00
3-4	Remblaiement des terres provenant des déblais expurgés de pierres y compris compactage, arrosage par couche successives de 20 cm	МЗ	350,00
3-5	Évacuation des terres excédentaire à la décharge public y compris foisonnement	m3	600,00
3-6	Fourniture et mise en œuvre de lit de pose et enrobage en sable	m3	1 700,00
3-7	Fourniture, pose et raccordement de tuyaux en fonte ductile posé en fond de fouille y compris pièces spéciales tel que coude ,tés, avec raccordement etc. et toutes sujétions de bonne exécution		
3-7-1	Ø 80	ML	3 200,00
3-7-2	Ø 100	ML	3 700,00
3-7-3	Ø 125	ML	4 300,00
3-7-4	0 150	ML	7 300,00
3-7-5	0 200	ML	9 000,00
3-7-6 3-7-7	Ø 250 Ø 300	ML ML	11 700,00 14 500,00
3-7-8	0 350 0 350	ML ML	14 500,00 18 000,00
3-7-9	0 400	ML	20 000,00
3-7-10	D 450	ML	24 000,00
3-7-11	Ø 500	ML	28 000,00
3-7-12	Ø 600	ML	32 000,00
3-7-13	0 700	ML	42 000,00
3-7-14	Ø 800	ML	49 000,00

BORDEREAU DES PRIX UNITAIRES 2012

	LOT № 3 : ALIMENTATION EN EAU POTABLE								
Nº	DÉSIGNATION DES DUVRAGE.		PRIX UNITAIRE						
3-8	Fourniture, pose et raccordement de tuyaux en PEHD PN 16 posé en fond de fouille y compris pièces spéciales avec raccordement etc. et toutes sujétions de bonne exécution								
3-8-1	Ø20	ML	90,00						
3-8-2	Ø25	ML	140,00						
3-8-3	Ø32	ML	210,00						
3-8-4	040	ML	320,00						
3-8-5	Ø50	ML	500,00						
3-8-6	Ø63	ML	790,00						
3-8-7	Ø75	ML	1 200,00						
3-8-8	Ø90	ML	1 350,00						
3-8-9	DIIO	ML	2 000,00						
3-8-10	D125	ML	2 600,00						
3-8-11	Ø160	ML	4 200,00						
3-8-12	Ø200	ML	6 600,00						
3-8-13	Ø250	ML	11 000,00						
3-8-14	D315	ML	16 000,00						
3-8-15	0400	ML	26 000,00						
3-8-16	Ø500	ML	42 000,00						
3-8-17	Ø630	ML	65 000,00						