Higher National School of Hydraulic The Library

Digital Repository of ENSH

المدرسة الوطنية العليا للري المكتبة المستودع الرقمي للمدرسة العليا للري

The title (العنوان):

Etude du réseau d'alimentation en eau potable de la ville de Sfissifa (w. Naama).

The paper document Shelf mark (الشفرة) : 1-0002-18

APA Citation (توثيق APA):

Guessyere, Boudjemaa (2018). Etude du réseau d'alimentation en eau potable de la ville de Sfissifa (w. Naama)[Mem Ing, ENSH].

The digital repository of the Higher National School for Hydraulics "Digital Repository of ENSH" is a platform for valuing the scientific production of the school's teachers and researchers.

Digital Repository of ENSH aims to limit scientific production, whether published or unpublished (theses, pedagogical publications, periodical articles, books...) and broadcasting it online.

Digital Repository of ENSH is built on the open software platform and is managed by the Library of the National Higher School for Hydraulics.

المستودع الرقمي للمدرسة الوطنية العليا للري هو منصة خاصة بتثمين الإنتاج العلمي لأساتذة و باحثى المدرسة.

يهدف المستودع الرقمي للمدرسة إلى حصر الإنتاج العلمي سواءكان منشورا أو غير منشور (أطروحات،مطبوعات بيداغوجية، مقالات الدوريات، كتب....) و بثه على الخط.

المستودع الرقمي للمدرسة مبني على المنصة المفتوحة و يتم إدارته من طرف مديرية المكتبة للمدرسة العليا للري.

كل الحقوق محفوظة للمدرسة الوطنية العليا للري.

REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE

MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE **ECOLE NATIONALE SUPERIEURE D'HYDRAULIQUE -ARBAOUI Abdellah-**

DEPARTEMENT D'HYDRAULIQUE URBAINE

MEMOIRE DE FIN D'ETUDES

Pour l'obtention du diplôme d'Ingénieur d'Etat en Hydraulique

Option: ALIMENTATION EN EAU POTABLE

THEME:

Etude du réseau d'alimentation en eau potable de la ville de SFISSIFA (W. NAAMA)

Présenté Par :

M^r GUESSYERE BOUDJEMAA

Devant les membres du jury

Nom et Prénoms	Grade	Qualité
M ^r M.DJELLAB	M.C.A	Président
M ^r M.BOUKHELIFA	M.A.A	Examinateur
M ^{me} M.KAHLERRAS	M.A.A	Examinateur
M ^{me} L.TAFAT	M.A.A	Examinateur
M ^{me} S.SAADOUNE	M.C.B	Promotrice

Dédicace

Je dédie ce modeste travail en signe de respect et de reconnaissance à :

- > Ma Très Chère Mère Fatima zohra;
- > Mon Cher Père Abdelkader ;
- > Ma Très Cher Frère Mohamed;
- ➤ Ma deuxième famille Aidaoui bouamama, Ahmani brahim, Sendani toufik, Doumi rida;
- > Mes copains Zaida nassim, Zenenda abdelwahid, Kadri akram, Boubakeur farouk et tous
- ➤ Ma deuxième famille a l' Ensh ;
- > A Tous Ceux Qui Me Connaissent.

Guessyere boudjemaa,

Remerciements

- ➤ Tout d'abord, je remercie le bon **DIEU**, Notre créateur de m'avoir donné la force, la volonté et le courage afin d'accomplir ce travail modeste.
- ➤ J'adresse le grand remerciement à mon promotrice **Mme SAADOUNE SAMRA**, pour sa contribution, sa disponibilité et ses précieux conseils du début à la fin de ce travail.
- ➤ Je tiens également à remercier messieurs **les membres de jury** pour l'honneur qu'ils m'ont fait en acceptant de siéger à ma soutenance, tout particulièrement :
 - Je vous remercie pour l'intérêt que vous avez porté à ce travail et pour vos précieux conseils et remarques.
- Finalement, je tiens à exprimer ma profonde gratitude à :

- L'ensemble des **enseignants** qui ont contribué à ma formation durant toutes ces années d'études.
- Ma grande famille qui m'a toujours soutenue,
- L'ensemble de mes ami(e)s sans exception,
- L'ensemble de la **D**irection Du **R**essources En **E**au **D**e Naama , pour leur accueil et leur collaboration ,
- Aux membres de l'administration de l'ENSH.
- Tous ceux qui ont contribué de près ou de loin à l'aboutissement de ce travail,

紫

Merci à tous

Guessyere boudjemaa,

ملخص:

تعاني حاليا مدينة صفيصيفة من مشكل عويص من حيث التزويد بالمياه الصالحة للشرب وهذا يعود إلى قدم أنابيب شبكة التوزيع و صغر حجمها أين سجلنا نسبة تسرب عالية.
و من خلال دراستنا هذه التي تهدف إلى تجديد شبكة التوزيع بصفة شاملة . قدمنا أولا نظرة عامة على الوضعية الحالية لمختلف الينابيع المائية و شبكة التوزيع للمدينة , ثم انتقلنا الى دراسة و تقدير أقطار الأنابيب اللازمة لنقل المياه من الناحية التقنية و الاقتصادية مستخدمين شبكة حلقية من أجل ضمان توزيع منتظم دون توقف و بأحسن خدمة على كافة مدينة صفيصيفة.

Résumé:

La ville de sfissifa reconnaît actuellement un problème dans le domaine d'alimentation en eau potable. Ce problème est dû essentiellement à l'état vétuste du réseau de distribution sousdimenssionné où l'on note une mauvaise conception et un pourcentage élevé des fuites.

En vue d'une rénovation totale du réseau, Notre travail consiste d'abord à donner en premier lieu un aperçu général sur la situation actuelle des différentes ressources hydrauliques et réseau, ensuite, nous avons continué à calculé le diamètre nécessaire aux conduites en tenant compte du coté économique et technique pour transporter les eaux en optant pour un réseau à maille pour assurer une distribution uniforme et d'être le plus proche possible pour une alimentation continue en eau potable sur toute la ville de sfissifa.

Abstract:

The city of Sfissifa suffers a problem in the field of of drinking water supply. This problem is due essentially to the old state of the under-sized mains where a bad designing and a high percentage of leaks are observed. In order to renovate the whole mains, our work consists, at first, in giving a general survey about the current situation of the different hydraulic resources and distribution mains. After that, we evaluated the diameter of the needed canalization to transport water, taking into consideration both economic and technical conditions; we opted for using a mesh system in order to get as close as possible to a reliable and permanent supplying mode to the whole city of Sfissifa.

CHAPITRE I : Présentation de la zone d'étude

Introduction
I. 1. Situation géographique1
I. 2. Situation topographique
I. 3. Situation géologique
I. 4. Situation climatologique
I.4.1.Les températures
I.4.2•Les vents
I.4.3.La pluviométrie4
I. 5. Situation hydraulique5
I. 5.1.Ressources5
I. 5.2•Réservoir de 1000 m ³ 6
Conclusion6
CHAPITRE II : Estimation des besoins en eau
Introduction8
II 1.Estimation de la population future8
II 2.Normes unitaires de consommation9
II 3. Détermination de la consommation moyenne journalière
II 3.1. Estimation des besoins domestiques moyens
II 3.2. Estimation de débit de consommation moyenne d'équipements11
II 3.3. Les besoins moyens totaux

II 4. Variation des débits de consommation journaliers	12
II 4.1. Consommation maximale journalière	12
II 4.2.Consommation minimale journalière	13
II 5. Variation des débits moyens horaires	13
II 5.1. Débit moyen horaire	13
II 5.2. Débit maximal horaire	14
II 5.3•Débit minimum horaire	15
II 6. Régime de consommation de l'agglomération	16
Conclusion	20
CHAPITRE III : Etude des réservoirs	
Introduction	22
III .Etude des réservoirs	22
III 1. Rôles des reservoirs.	
III 2. Choix de la cote d'implantation et emplacement de reservoirs III 3. Prescriptions sanitaires	
III 4. Classification des reservoirs.	
III 5.Choix du reservoir.	
III 6. Equipements du reservoir	26
III 6.1. Conduite d'arrivée ou d'alimentation	26
III 6.2. Conduite de départ ou de distribution	27
III 6.3. Conduite de trop-plein	27
III 6.4. Conduite de vidange	
III 6.5. Conduite by-pass	28
III 6.6. Matérialisation de la réserve d'incendie	28
III 7. Emplacement Des Réservoirs.	29
III 8. Capacité des reservoirs	31
III 8.1. Cas d'une adduction par refoulement	
Conclusion.	

CHAPITRE IV : Le réseau de distribution

Introduction	38
IV 1.Les différents types de réseau	38
IV 1.1. Réseau ramifié	38
IV 1.2.Réseau maillé	38
IV 2. Conception d'un réseau	39
IV 3.Tracer le réseau	39
IV 4.Calcul du réseau maillé	39
IV 5.Choix de matériaux de la conduite	40
IV 6.Calcul hydraulique du réseau de distribution	41
IV 6.1. Détermination des débits	41
IV 6.1.1.Le débit en route	41
IV 6.1.2. Le débit spécifique	42
IV 6.1.3. Le débit au nœud	42
IV 6.2. Calcul des débits	43
IV 6.2.1.Cas de pointe	43
IV 6.2.2.Cas de pointe +incendie	45
IV 6.3.Répartition arbitraire des débits	46
IV 6.4.Détermination des diamètres et des vitesses	48
IV 7. Simulation par le logiciel EPANET	49
IV 7.1. Présentation du logiciel EPANET	49
IV 7.2. Méthode de calcul	49
IV 7.3. Paramètres d'entrée du réseau	50
IV 7.4.Les résultats de la simulation	51
IV 7.4.1. Cas de pointe	52

IV 7.4.2.Cas de pointe + incendie	54
IV 8. Équipement du réseau de distribution	58
IV 8.1.Type de matériau de canalisation	58
IV 8.2.Appareils et accessoires du réseau	58
Conclusion	60
CHAPITRE V : Etude d'adduction et de pompage	
Introduction	62
V Etude d'adduction	
V 1.Classification des adductions	
V 2.Critères de choix de tracé	62
V 3.Choix du matériau de la conduite	63
V 4.Etude des variantes	63
V 4.Site d'implantation de la station de pompage	65
V 5.Calcul hydraulique	66
V 5.1.Cas de refoulement (calcul du diamètre le plus économique)	66
A. Calcul des pertes de charge.	66
B. Calcul de la hauteur manométrique totale [HMT]	68
C. Frais d'exploitation	69
D. Frais de l'investissement amorti	70
E. Vérification de la vitesse d'écoulement	70
V 5.2.Cas gravitaire	71
V 6.Dimensionnement du réseau d'Adduction	72
V 6.1.Dimensionnement du réseau d'Adduction partie 1	72
V 6.2.Dimensionnement du réseau d'Adduction partie 2	75
V 6.3.Partie gravitaire	78
V 7.Etude de pompage	81
V 7.1.Définition	81
V 7.2.Couplage des pompes	81
V 7.3.Différents types de pompes	81
V 7.3.1.Pompes volumétriques	81

V 7.3.2.Les turbopompes	82
V 7.4.Choix du type de pompe	82
V 7.5.Choix du nombre de pompes	82
V 7.6.Courbe caractéristique d'une conduite de refoulement	83
V 7.7.Caractéristiques de la pompe	83
V 7.7.1.Point de fonctionnement des pompes	83
V 8.Choix des pompes	84
V 8.1.Choix de la pompe 1 pour le forage de sfissifa	84
V 8.1.1.Description de la pompe 1	85
V 8.1.2.Courbe caractéristique de la conduite de refoulement pour	pompe 1 85
V 8.1.3. Les frais annuels d'énergie pour la pompe 1	87
V 8.2.Choix de la pompe 2 pour le forage de belgrad	
V 8.2.1.Description de la pompe 2	
V 8.2.2.Courbe caractéristique de la conduite de refoulement pour	
V 8.2.3. Les frais annuels d'énergie pour la pompe 2	89
CHAPITRE VI : Management de projets	
ntroduction	92
VI 1. Pose de canalisation	92
VI 1.1.Pose de canalisation dans un terrain ordinaire	92
VI 1.2.Pose de canalisation dans un mauvais terrain	93
VI 1.2.1.Cas d'un terrain peu consistant	93
VI 1.2.2.Cas d'un terrain agressif	93
VI 1.2.3.Pose de canalisation en galerie	94
VI 2.Implantation du tracé des tranchées sur le terrain	94
VI 3.Nivellement de la plate-forme de pose	95
VI 4.Décapage de la couche de terre végétale	95

VI 5.Excavation des tranchées	95
VI 5.1.La profondeur (Htr)	96
VI 5.2.La largeur de la tranchée	96
VI 5.3.Choix du coefficient du talus.	96
VI 6.Le volume des déblais	97
VI 6.1.Section de la tranchée	97
VI 6.3.Détermination de la capacité du godé	98
VI 6.4.Rendement d'exploitation de la pelle choisie	99
VI 7.Le volume des remblais	99
VI 8.La durée d'excavation	100
VI 9.Le compactage	101
VI 10.Elaboration Du Planning D'exécution Des Travaux	101
VI 10.1.Planification des travaux	101
VI 11.Evaluation du projet	104
VI 11.1.Devis estimatif d'établissement du projet	105
VI 11.2.Devis global	106
Conclusion	106

LISTE DES TABLEAUX

CHAPITRE I : Présentation de la zone d'étude

Tab.I.1. Pluviométrie moyenne mensuelle de la station de Aïn Sefra	5
Tab.I.2. Caractéristiques physiques des forages de SFISSIFA	6
CHAPITRE II : Estimation des besoins en eau	
Tab.II.1. Estimation de la population future	9
Tab.II.3. Besoin domestiques moyens à l'horizon 2048	11
Tab.II.4. Besoins d'équipements	11
Tab.II.6. Récapitulation des besoins en eau	12
Tab.II.7. Récapitulation de consommation journalière maximale et minimale	13
Tab.II.8. Variation du coefficient βmax	14
Tab.II.9. Variation du coefficient βmin	15
Tab.II.10. Récapitulatif des débits horaires	16
Tab.II.11. Répartition des débits horaires en fonction du nombre d'habitants	17
Tab.II.12. Variation des débits horaires	18

CHAPITRE III : Etude des réservoirs

Tab . III.1. Evaluation du volume résiduel du réservoir surélevé à l'horizon d'étude 2048...35

CHAPITRE IV : Le réseau de distribution

Tab. IV.1. Recapitulation des débits	43
Tab. IV.2. Calcul des débits aux nœuds en cas de pointe	44
Tab. IV.3. Calcul de débits aux nœuds en cas de pointe +incendie	45
Tab. IV.4. Calcul Des Diamètres Et Des Vitesses (cas de pointe + incendie)	48
Tab. IV.5. Résultat Des Différents Tronçons Avec Leur Caractéristiques Hydrauliques Et Géométriques (Cas de pointe)	
Tab. IV.6. Résultat au niveau des nœuds (Cas de pointe)	53
Tab. IV.7. Résultat Des Différents Tronçons Avec Leurs Caractéristiques Hydrauliques E Géométriques (Cas de pointe + incendie)	
Tab. IV.8. Résultat au niveau des nœuds (Cas de pointe + incendie)	55
CHAPITRE V : Etude d'adduction et de pompage	
Tab.V.1 : Coefficients K', m, β pour différents types du tuyau	71
Tab.V.2 : Calcul de la hauteur manométrique totale HMT partie 1	72
Tab.V.3 : Calcul des frais d'exploitation de la station de pompage partie 1	73
Tab.V.4 : Calcul des frais d'investissement amorti partie 1	73
Tab.V.5: Bilan des frais d'exploitation et d'investissement amorti partie 1	73
Tab.V.6 : Calcul de la hauteur manométrique totale HMT partie 2	75
Tab.V.7 : Calcul des frais d'exploitation de la station de pompage partie 2	76
Tab.V.8 : Calcul des frais d'investissement amorti partie 2	76
Tab.V.9: Bilan des frais d'exploitation et d'investissement amorti partie 2	76
Tab.V.10. les paramètres hydrauliques Partie gravitaire	80
Tab.V.11. Les frais d'investissement de la conduite gravitaire	80
Tab.V.12. la pompe choisi pompe 1	85
Tab.V.13. Variation de la charge en fonction des debits pompe 1	86
Tab.V.14. la pompe choisi pompe 2	87
Tab.V.15. Variation de la charge en fonction des debits pompe 2	88

CHAPITRE VI : Management de projets

Tab.VI.1 : Choix du coefficient du talus	96
Tab.VI.2 : Calcul du volume du déblai	98
Tab.VI.3 : Capacité du godet en fonction du volume de terrassement	98
Tab.VI.4 : Calcul du volume du remblai	100
Tab.VI.4 : Détermination du délai de la réalisation	102
Tab.VI.5 : Planning des travaux (Diagramme de Gantt)	104
Tab.VI.6 : Devis estimatif de l'établissement du projet	105
Tab.VI.7 : Devis estimatif global	106

LISTE DES FIGURES

CHAPITRE I: Presentation de la zone d'étude	
Figure I.1. Situation Géographique de la Commune de SFISSIFA	
CHAPITRE II : Estimation des besoins en eau	
Figure II.1. Histogramme d'évolution du nombre d'habitants9	
Figure II.2. l'histogramme de la consommation d'eau journalière19	
Figure II.3. Courbe intégrale de la consommation totale	
CHAPITRE III : Etude des réservoirs	
CHAITIRE III. Etude des l'esel volls	
Figure III.1 : Coupe transversale d'un réservoir surélevé	
Figure III.2 : La courbe d'apport et la courbe de consommation totale	

CHAPITRE IV : Le réseau de distribution

Figure IV.1. Répartition préliminaire (Cas de pointe)	46	
Figure IV.2. Répartition préliminaire (Cas de pointe + incendie)	47	
Figure IV.3. résultats de la simulation Cas de Pointe	56	
Figure IV.3. résultats de la simulation Cas de Pointe + incendie	57	
CHAPITRE V : Etude d'adduction et de pompage		
Figure V.1. Schéma vertical de la variante N°1	64	
Figure V.2. Schéma de la variante N°2	65	
Figure V.3. Courbe d'optimisation du diamètre de refoulement partie 1	74	
Figure V.4. Courbe d'optimisation du diamètre de refoulement partie 2	77	
Figure V.5. Détermination du point de fonctionnement	84	
Figure V.6. Point de fonctionnement de la station de pompage pompe 1	86	
Figure V.7. Point de fonctionnement de la station de pompage pompe 2	89	
CHAPITRE VI : Management de projets	CHAPITRE VI : Management de projets	
Figure VI.1 : Pose de conduites dans un terrain peu consistant	93	
Figure VI.2 : Pose de canalisation en galerie	94	
Figure VI.3 : Pose de conduite en tranché dans un terrain ordinaire	97	
Figure VI.4 : Réseau à nœuds	103	

LISTE DES PLANCHES

- 1- Planche N°1: Plan de situation de la zone d'étude.
- 2- **Planche N°2 :** Plan de masse de la ville de sfissifa ,wilaya de naama.
- 3- Planche $N^{\circ}3$: Plan de masse et reseaux distribution projete .
- 4-**Planche** $N^{\circ}4$: Profil en long du réseau de distribution de la ville de sfissifa .
- 5-Planche $N^{\circ}5$: les accesoires dans un reseau d'AEP.

Introduction générale

L'eau demeure une source de vie des êtres vivants, élément essentiel dans leur subsistance et leur développement, et ce dans les différentes catégories telles que l'agriculture, la consommation humaine, l'industrie et la production d'énergie.

La multiplicité de ses usages a fait de l'eau une ressource fondamentale des activités humaines. Au cours du XXème siècle, la consommation de l'eau a augmentée deux fois plus vite que la population, résultat plus d'un milliard de personnes dans le monde n'ont pas accès à cette ressource si précieuse.

L'insuffisance de l'eau est due en particulier à son inégale répartition, à la pollution des nappes, leur rareté ou leur inexistence.

Le réseau d'alimentation en eau potable constitue un patrimoine qui vieillit et qu'il est nécessaire de renouveler quand il a atteint un seuil de vétusté limite. Ce seuil limite dépend de nombreux paramètres que se soit environnementaux, techniques, de gestion, économique ainsi que de la politique des gestionnaires. Ces dysfonctionnements se manifestent principalement à travers de trois symptômes caractéristiques :

- > Une multiplication des fuites et ruptures.
- Une diminution de capacité de portage hydraulique.
- > Une dégradation de la qualité de l'eau.

L'objet de notre étude consiste de faire une étude approfondie du système d'alimentation en eau potable pour améliorer l'approvisionnement en eau potable d'Sfissifa, Wilaya de Naama.

Pour cela nous procèderons comme suit :

- ✓ Présentation de la zone d'étude ;
- ✓ Estimation des besoins en eau :
- ✓ Etude des réservoirs :
- ✓ Le réseau de distribution :
- ✓ Etude d'adduction et de pompage ;
- ✓ Management de projets ;

L'étude est couronnée par une conclusion générale dans laquelle les principaux résultats et recommandations sont rappelés.

PRESENTATION DE LA ZONED'ETUDE

Introduction:

L'agglomération reconnait actuellement un problème majeur dans le domaine d'alimentation en eau potable vu l'accroissement démographique et le développement incessant des équipements sanitaires. Dans ce contexte l'actuel chapitre portera sur, l'étude de toutes les caractéristiques du lieu et les facteurs qui influent sur la conception du projet. Parmi ces facteurs, nous citons : les données relatives à l'agglomération, les données hydrauliques propres au réseau d'alimentation en eau potable et des ressources en eau, ainsi que la connaissance de la géologie et la topographie du site qui nous permettra de mener à bien notre travail.

I. 1. Situation géographique :

SFISSIFA est l'une des douze (12) communes de la Wilaya de Naâma. Elle est distante de 100 Km au Sud-ouest de la ville Naâma chef lieu de la Wilaya et à 30Km à l'Ouest de Aïn Sefra. La commune de SFISSIFA est limitée au Sud par la commune de Djenien Bourezg, à l'Ouest par le territoire marocain, au Nord par la commune de Aïn Ben Khelil et la l'Est par la commune de Aïn Sefra (Figure 01).

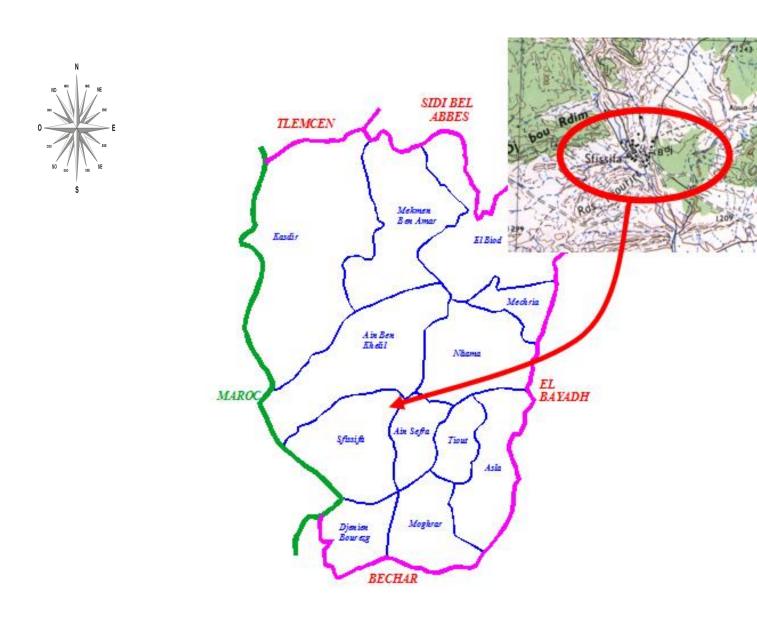


Figure I.1. Situation Géographique de la Commune de SFISSIFA à l'échelle 1 /200 00 $\,$.

(DRE NAAMA, 2016)

I. 2. Situation topographique:

Le centre de SFISSIFA est située sur une zone plane à pente moyenne en bordure des reliefs avec une altitude moyenne de 1220 m.

la commune de SFISSIFA se compose de quatre types d'ensemble, en l'occurrence :

- ❖ Un ensemble montagneux.
- ❖ Un ensemble steppique de pleine et plateaux.
- ❖ Un ensemble de colline.
- ❖ Un ensemble de lits d'Oueds et de depressions.

I. 3. Situation géologique :

La région de SFISSIFA appartient sur le plan géostructurel à l'Atlas Saharien. Celui-ci constitue un intermédiaire entre la plate forme saharien stable et le Tell du Nord. Il est séparé par rapport aux autres domaines par une succession de failles :

- ❖ Au Nord par la flexure Nord Atlassique .
- * Au Sud par la flexure Sud Atlassique.

Le domaine de l'Atlas Saharien est formé par de nombreuses chaînes montagneuses, parmi lesquels la chaîne d'El K'Sour, où se localise le secteur d'étude à son extrémité occidentale.

I. 4. Situation climatologique:

La région de SFISSIFA connaît des aspects climatiques variés, elle est d'un caractère climatique steppique exposé aux influences continentales semi-arides, accentuée par l'altitude et reçoit, par sa position, l'influence sub-saharienne.

I.4.1. La Température:

Le centre de SFISSIFA subit des températures à prépondérance climatique continentale sub-saharienne représentées par un hiver froid et sec, accentuées par de fréquentes périodes de gelée durant la nuit au cours des mois allant de décembre au février.

Quant-à l'été, il est caractérisé par un climat très chaud et sec avec de fortes amplitudes thermiques atteignant 21°C/An. Les mois les plus chauds sont ceux de juillet et août avec des températures dépassant souvent les 40°C.

I. 4.2. Les Vents:

Les vents sont l'un des éléments les plus caractérisant du climat de la région, avec une direction qui peut changer au cours d'une même journée.

Les vents habituels sont ceux de Sud-ouest qui tournent dans la journée du Sud-nord au Nord-ouest. Durant l'été, le sirocco et le vent du Sud soufflent de huit (08) à dix (10) jours par an. Les mois d'octobre et d'avril sont caractérisés par les vents de sable du Nord-est qui soufflent sur l'agglomération et virent progressivement à l'Est et au Sud-est.

I. 4.3. La pluviométrie :

Les précipitations sont irrégulières et sont essentiellement représentées par la pluie, plus fréquentes en périodes hivernales. Au printemps et surtout en été, les pluies tombent souvent sous forme d'orages violents.

La pluviométrie est localisée au-dessus de l'isohyète de 100 mm/An avec la moyenne annuelle des précipitations de 154.4 mm .

Selon les données enregistrées par l'ONM au niveau de la station de Aïn Sefra, la variation moyenne mensuelle sur une série d'années est résumé dans le tableau suivent :

Tab.I.1. Pluviométrie moyenne mensuelle de la station de Aïn Sefra (période 2013-2016)

Mois	Sep.	Oct.	Nov.	Dec.	Jan.	Fév.	Mar.	Avr.	Mai.	Juin	Juill.	Août	Total
P (mm)	13,1	17,1	14,1	7,3	15,4	12,1	23,0	19,7	16,7	7,8	3,3	4,9	154.4
Nbr. Jours	4	4	4	2	2	2	3	3	4	3	2	4	37

Source Agence Nationale des Ressources Hydrauliques d'Oran

I. 5. Situation hydraulique

I. 5.1. les Ressources :

Les ressources alimentant notre ville proviennent essentiellement de deux forages :

- Le premier, est le forge de Sfissifa Sa profondeur est de 60 m et il débite 21.7 l/s.
- Le second, est le forage de belgrad de 150 m de profondeur avec un débite 26.5 l/s.

Tab.I.2. Caractéristiques physiques des forages de SFISSIFA

Forage	Débit	Profondeur	Niveau Statique	Niveau Dynamique
F. SFISSIFA	21.7 L/S	60 M	8 M	102 M
F. belgrad	26.5 L/S	150 M	4.5 M	16

Source Direction Nationale des Ressources Hydrauliques d'Naama

I. 5.2. Réservoir de 1000 m³:

C'est l'ouvrage le plus important de l'agglomération. Il alimente pratiquement la totalité du réseau du la ville par les eaux qu'il reçoit du forages de sfissifa et belgrad, et la côte radier est à 1228.66 m.

Conclusion:

Ce chapitre sert à représenter la zone d'étude, connaître la topographie, le climat et toutes les informations disponibles concernant sfissifa.

Ces différentes informations représentent les premières données de base pour

l'élaboration de notre travail qui est le dimensionnement du réseau d'alimentation en eau potable.

ESTIMATION DES BESOINSENEAU

Introduction:

Dans ce chapitre on va essayer d'estimer les besoins en eau de notre agglomeration selon le nombre d'habitants de l'agglomération à l'horizon de 2048 et les différents équipements.

Le calcul des besoins en eau de consommation se base sur les normes de consommation unitaire.

Notre objectif est de vérifier les sources, le stockage et la demande à l'horizon d'étude 2048.

II 1. Estimation de la population future :

L'estimation de la population se fera pour l'horizon 2048, le calcul sera établi sur la base de la formule suivante :

$$P_n = p_0 (1+\tau)^n$$

Avec:

Pn: population à l'horizon d'étude

p₀: la population actuelle (2008)

τ : Le taux d'accroissement de la population en (%)

n : le nombre d'années à l'horizon 2048, pour notre projet

On prend n=30 ans

Selon le dernier recensement général de la population et de l'habitat de 2008 .la population de sfissifa a été 3966 habitants .

D'après la direction des ressources en eau de la wilaya De NAAMA, le taux d'accroissement est de 2,7%

Année	Taux d'accroissement (%)	Population
2008	2.7	3966
2018	2.7	5176
2048	2.7	8819

Tab.II.1. Estimation de la population future



Figure II.1. Histogramme d'évolution du nombre d'habitants

II 2. Normes unitaires de consommation :

La dotation est la quantité d'eau nécessaire à l'alimentation d'une agglomération, elle est généralement évaluée en litre par habitant par jour.

Cette quantité d'eau s'appelle la norme de consommation, c'est à dire la norme moyenne journalière de la consommation en litre par jour et par usager qui dépend de certains critères qui sont :

- Le niveau de vie de la population,
- **\Le nombre d'habitants,**
- ❖ Le développement urbain de la ville,
- * Ressources existantes.

Pour choisir la dotation:

la DRE de la wilaya de naama a adopté une dotation de 150 l/j/hab,

II 3. Détermination de la consommation moyenne journalière :

Le débit moyen journalier au cours de l'année est donné par la relation suivante :

$$Q_{moy.j} = \frac{N_i Q_i}{1000}$$

Q_{moy,j}: Consommation moyenne journalière [m³/j].

 N_i : Nombre de consommation ou le nombre des usagers dans chaque groupe de catégorie de consommateurs.

q_i: dotation en 1/j/hab.

II 3.1. Estimation des besoins domestiques moyens :

Après le choix de la dotation et pour un taux d'accroissement de 2.7 on calcul le débit moyen journalier à partir de la formule suivante :

$$Q_{moy.j} = \frac{N_i Q_i}{1000}$$

Les résultats sont du calcul se trouvent dans le tableau suivant :

Tab.II.3. Besoin domestiques moyens à l'horizon 2048

année	Population (hab.)	Dotation (1/j/hab)	$Q_{\text{moyj}}(m^3/j)$
2048	8819	150	1322

II 3.2. Estimation de débit de consommation moyenne d'équipements :

Les besoins d'équipements englobent toutes consommations non domestiques telles que la consommation industrielle (usine), scolaire (école.CEM. lycée),etc...

Le tableau ci-après récapitule les différents besoins de l'agglomération

Tab. II.4. Besoins d'équipements

Equipement	Unité	Nombre d'unité	Dotation 1/j/unité	Besoin moyens m³/j
Ecole primaire	élèves	280	20	5.6
lycée	élèves	700	20	14
Sale de soin	Patient	80	20	1.6
Caserne	soldat	800	50	40
C.E.M	élèves	600	15	9
Le tribunal	employé	65	10	0.65
Sureté de wilaya	Policier	250	50	12.5
Mosquée	fidèle	1000	5	5
Banque	Bureau	45	15	0.675
Protection civile	agent	100	20	2
Poste centrale	employé	130	15	1.95
SONELGAZ	Bureau	40	15	0.6

Donc la somme des besoins d'équipements est égale à 70 m³/j.

Tab. II.5. les besoins Socioculturels :

Désignations	Superficie (m²)	Dotation (1/j/m²)	Consommation moyenne Journalière (m³/j)
Complexe multifonctionnel	3320	10	33.2
Espace boisé	8980	5	44.9
E .N.FOOTBALL	900	30	27
Total			105.1

II 3.3. Les besoins moyens totaux :

On fait la somme des besoins domestiques, les besoins d'équipements et Socioculturels pour trouver les besoins moyens totaux. Les résultats sont indiqués dans le tableau II.6 suivant :

Tab. II.6. Récapitulation des besoins en eau

Catégorie de besoin	$Q_{\text{moy }j}(m^3/j)$
Domestique	1322
Publique	175.1
Total	1497.1

II 4. Variation des débits de consommation journaliers :

II 4.1. Consommation maximale journalière :

Pour calculer le débit maximal journalier il faut avoir le coefficient d'irrégularité de la consommation journalière qui représente la variation de la consommation journalière au cours de la semaine :

$$K_{\text{max,j}} = Q_{\text{max,j}} \ / \ Q_{\text{moy,j}}$$

Ce coefficient $K_{max,j}$ varie entre 1.1 et 1.3, il consiste à prévenir les fuites et les gaspillage au niveau du réseau en majorant la consommation moyenne de 10% à 30%.

II 4.2. Consommation minimale journalière :

Le débit minimal journalier est calculé à partir de la formule suivante :

$$Q_{\min,j} = K_{\min,j} * Q_{\max,j}$$

Et le Kmin, j défini comme étant le rapport de la consommation minimum par la consommation moyenne journalière, donné par la relation suivante :

$$\mathbf{K}_{\min,j} = \mathbf{Q}_{\min,j} / \mathbf{Q}_{\max,j}$$

Ce coefficient $K_{min,j}$ varie de 0,7 à 0,9.

Tab.II.7. Récapitulation de consommation journalière maximale et minimale .

$\mathbf{Q}_{\mathbf{moy}\mathbf{j}}(\mathbf{m}^3/\mathbf{j})$	$\mathbf{K}_{ ext{max,j}}$	$\mathbf{Q}_{\mathbf{max}\mathbf{j}}(\mathbf{m}^3/\mathbf{j})$	$\mathbf{K}_{\mathrm{min,j}}$	$\mathbf{Q}_{\mathbf{min}\mathbf{j}}(\mathbf{m}^3/\mathbf{j})$
1497.1	1.3	1946.33	0.8	1202.28

II 5. Variation des débits moyens horaires :

Généralement on détermine les débits horaires en fonction du développement, des habitudes de la population et du régime de consommation probable

II 5.1. Débit moyen horaire :

Le débit moyen horaire est donné par la relation suivante :

$$Q_{\text{moy}, h} = Q_{\text{max},j}/24 \quad (m^3/h)$$

Avec:

- ✓ Q_{moy, h}: débit moyen horaire en m³/h
- \checkmark Q_{max, j}: débit maximum journalier en m³/j;

Donc:
$$Q_{\text{moy, h}} = \frac{1946.33}{24} = 81.09 \text{ m}^3/\text{h}.$$

$$Q_{\text{moy,h}} = 81.09 \text{ m}^3/\text{h}$$

II 5.2. Débit maximal horaire :

Il représente le débit de pointe d'une agglomération et il dépend de coefficient d'irrégularité horaire maximale, Ce débit joue un rôle très important dans les différents calculs du réseau de distribution.

Le coefficient d'irrégularité maximale horaire représente l'augmentation de la consommation horaire pour la journée. Il tient compte de l'accroissement de la population ainsi que du degré du confort et du régime de travail de l'industrie.

D'une manière générale, ce coefficient peut être décomposé en deux autres coefficients : α_{max} et β_{max} ; tel que :

$$\mathbf{K}_{\text{max,h}} = \alpha_{\text{max}} \cdot \beta_{\text{max}}$$

Avec:

α_{max}: coefficient qui tient compte du confort des équipements de l'agglomération et du régime de travail, il varie de 1,2 à 1,5 et dépend du niveau de développement local. Pour notre cas on prend α_{max} = 1,3.
 βmax: coefficient étroitement lié à l'accroissement de la population. Le tableau II.8 nous donne sa variation en fonction du nombre d'habitants.

Tab.II.8. Variation du coefficient β_{max}

Habitant	<1000	1500	2500	4000	6000	10000	20000	50000
B _{max}	2	1,8	1,6	1,5	1,4	1,3	1,2	1,15

Source (B.SALAH 2013)

Pour notre cas on a un nombre d'habitants de 8819 alors :

$$\beta_{\text{max}} = 1.3$$

la valeur de $K_{max,h}$ sera :

$$K_{\text{max,h}} = 1,3*1,3 = 1,69$$

Le débit maximal horaire sera :

$$Q_{\text{max,h}} = K_{\text{max,h}} \cdot Q_{\text{moy,h}}$$

Avec:

Qmoy,h: débit moyen horaire en m3/h;

Kmax,h: coefficient d'irrégularité maximale horaire;

On trouve donc:

$$Q_{\text{max,h}} = 1,69*81.09 = 137.05 \text{m}^3/\text{h}$$

II 5.3. Débit minimum horaire :

Ce débit est déterminé à partir du coefficient d'irrégularité minimale horaire.

Le coefficient d'irrégularité horaire est calculé par la formule suivante :

$$\mathbf{K}_{\min,h} = \alpha_{\min} * \beta_{\min}$$

Avec:

 α_{min} : coefficient qui tient compte du confort des équipements de l'agglomération et du régime de travail. Il varie de 0,4 à 0,6. Pour notre cas on prend $\alpha_{min} = 0,5$.

 β_{min} : coefficient étroitement lié à l'accroissement de la population. Le Tableau II.9 suivant donne sa variation en fonction du nombre d'habitants.

Tab.II.9. Variation du coefficient βmin

Habitant	<1000	1500	2500	4000	6000	10000	20000	50000
β_{min}	0,1	0,1	0,1	0,2	0,25	0,4	0,5	0,6

Source (B.SALAH 2013)

Donc pour notre cas on prend $B_{minh=}$ 0,4

la valeur de $K_{min,h}$ sera alors :

$$K_{\text{min,h}} = 0.5*0.4 = 0.2$$

$$K_{min,h} = 0,2$$

Et le débit minimum horaire sera donc :

$$Q_{min,h} = K_{min,h} \cdot Q_{moy,h}$$

Avec:

- Q_{moy,h}: débit moyen horaire en m³/h;
- $K_{min,h}$: coefficient d'irrégularité minimale horaire ;

On a donc:

$$Q_{min,h} = 0.2*81.09 = 16.21 \text{m}^3/\text{h}$$

Tab.II.10. Récapitulatif des débits horaires :

Q _{moy,h}	K _{max,h}	Q _{max,h}	K _{min,h}	Q _{min,h}
82.55	1.69	137.05	0.2	16.21

II 6. Régime de consommation de l'agglomération :

Le régime de consommation diffère d'une agglomération a une autre selon le nombre d'habitants.

Tab.II.11. Répartition des débits horaires en fonction du nombre d'habitants

Heures	Nombre d'habitants								
(h)	Moins de 10000	10001à 50000	50001à 100000	Plus de 100000	Agglomération de type rurale				
0-1	1.00	1.5	03	3.35	0.75				
1-2	1.00	1.5	3.2	3.25	0.75				
2-3	1.00	1.5	2.5	3.3	01				
3-4	1.00	1.5	2.6	3.2	01				
4-5	2.00	2.5	3.5	3.25	03				
5-6	3.00	3.5	4.1	3.4	5.5				
6-7	5.00	4.5	4.5	3.85	5.5				
7-8	6.50	5.5	4.9	4.45	5.5				
8-9	6.50	6.25	4.9	5.2	3.5				
9-10	5.50	6.25	4.6	5.05	3.5				
10-11	4.50	6.25	4.8	4.85	06				
11-12	5.50	6.25	4.7	4.6	8.5				
12-13	7.00	5.00	4.4	4.6	8.5				
13-14	7.00	5.00	4.1	4.55	06				
14-15	5.50	5.50	4.2	4.75	05				
15-16	4.50	6.00	4.4	4.7	05				
16-17	5.00	6.00	4.3	4.65	3.5				
17-18	6.50	5.50	4.1	4.35	3.5				
18-19	6.50	5.00	4.5	4.4	06				
19-20	5.00	4.50	4.5	4.3	06				
20-21	4.50	4.00	4.5	4.3	06				
21-22	3.00	3.00	4.8	3.75	03				
22-23	2.00	2.00	4.6	3.75	02				
23-24	1,00	1.50	3.3	3.7	01				

Source (B.SALAH 2013)

Tab.II.12. Variation des débits horaires

Heures	Consommation totale $Q_{max,j} = \textbf{1946.33} m^3 / J$		Courbe de la consommation cumulée		
(h)	%	M^3/h	c%	M ³ /h	
0-1	1	19.81	1	19.81	
01-02	1	19.81	2	39.62	
02-03	1	19.81	3	59.43	
03-04	1	19.81	4	79.24	
04-05	2	39.62	6	118.86	
05-06	3	59.43	9	178.29	
06-07	5	99.06	14	277.35	
07-08	6.5	128.78	20.5	406.13	
08-09	6.5	128.78	27	534.91	
09-10	5.5	108.97	32.5	643.88	
10-11	4.5	89.15	37	733.03	
11-12	5.5	108.97	42.5	842	
12-13	7	138.69	49.5	980.69	
13-14	7	138.69	56.5	1119.38	
14-15	5.5	108.97	62	1228.35	
15-16	4.5	89.15	66.5	1317.5	
16-17	5	99.06	71.5	1416.56	
17-18	6.5	128.78	78	1545.34	
18-19	6.5	128.78	84.5	1674.12	
19-20	5	99.06	89.5	1773.18	
20-21	4.5	89.15	94	1862.33	
21-22	3	59.43	97	1921.76	
22-23	2	39.62	99	1961.38	
23-24	1	19.81	100	1981.33	
total	100%	1946.33			

 $^{ightharpoonup Q_{maxh} = 138.69 \text{ m}^3/\text{h soit } 38.52 \text{ l/s}}$.

 $^{ightharpoonup Q_{minh} = 19.81 \text{ m}^3/\text{h soit } 5.5 \text{ l/s} .}$

Les figures II.2 et II.3 suivantes récapitulent la consommation de notre agglomeration :

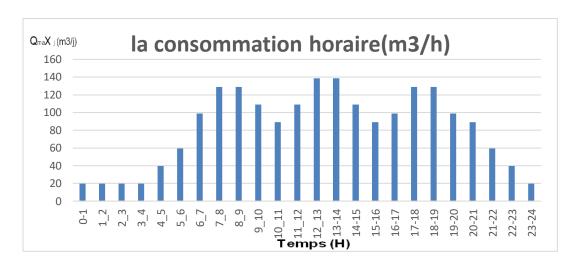


Figure II.2. l'histogramme de la consommation d'eau journalière

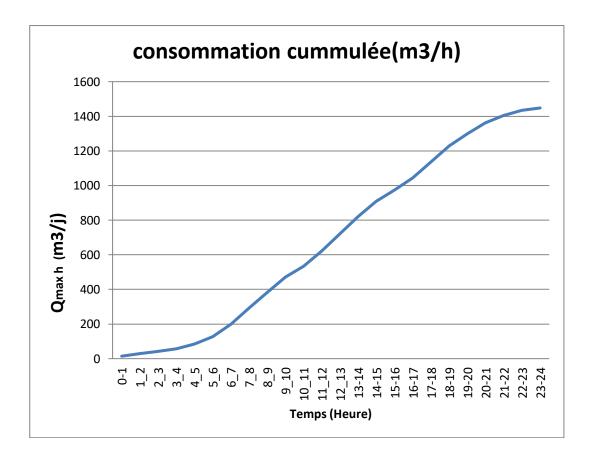


Figure II.3. Courbe intégrale de la consommation totale.

Chapitre II	Estimation des besoins en eau
r	

Cette courbe est nécessaire pour la détermination de régime de consummation.

Conclusion:

Dans ce chapitre on a pu avoir l'évaluation des besoins en eau de notre agglomeration . on opte pour la deuxieme methode pour la determination des débits maximum journalier 1981.33 m^3/j et débit minimum journalier 1219.28 m^3/j ainsi que le débit de pointe 138.69 m^3/h qui est entre midi et 14 h.

ETUDE DES RESERVOIRS

Introduction:

- Les réservoirs sont des ouvrages de stockage régulateurs de débit qui

Permet d'adapter la production à la consommation, donc ils représentent des

éléments indispensables nécessitant une étude approfondie afin qu'ils puissent
remplir le reservoir.

- Alors le but de ce chapitre est de déterminer le volume de stockage nécessaire et le projeté de telle façon à assurer le meilleur fonctionnement du réseau.

III . Etude des réservoirs :

III 1. Rôles des réservoirs :

Les réservoirs constituent les organes régulateurs de pression et de débit entre le régime de production et le régime de consommation, Ils permettent de :

- Emmagasiner l'eau pendant les heures creuses de consommation et restitution de l'eau pendant les autres heures ou la consommation devient importante.
- Assurer la continuité de la distribution pendant l'arrêt de la pompe.
- Constituer une réserve pour les imprévus (rupture, panne, réparation, extension du réseau...).
- Régulariser le fonctionnement du pompage, Les pompes refoulent à un débit constant.
- Simplifier l'exploitation.
- Assurer la réserve d'incendie.

• Ils peuvent également jouer le rôle de brise-charge dans le cas d'une distribution étagée.

• jouer le rôle de relai.

III 2. choix de la cote d'implantation et emplacement de réservoirs :

L'emplacement du réservoir tient compte du relief permettant d'obtenir des dépenses minimales des frais d'investissement et l'exploitation.

Dans notre étude, on va choisir l'emplacement du réservoir d'une façon qu'il soit compatible avec l'un des rôles qu'il doit jouer c.à.d. assurer aux abonnés une pression suffisante. En conséquence, l'altitude de la cuve et plus précisément son radier doit se situer à un niveau supérieur à la plus haute cote piézométrique exigée sur le réseau.

III 3. Prescriptions sanitaires :

Afin d'éviter les risques importants de dégradation de la qualité de l'eau dans ces ouvrages, certaines règles de conception doivent être prises en compte dès l'origine du projet :

❖ Renouvellement de l'eau :

le renouvellement de l'eau dans les réservoirs est une condition nécessaire à la préservation de la qualité de l'eau.

Le temps de séjour dépend directement des volumes de stockage, en pratique, on peut retenir les ordres de grandeur suivants pour le dimensionnement des

réservoirs:

- une journée de consommation en milieu rural.
- une demi-journée de consommation en milieu urbain.

❖ Brassage de l'eau : La forme des réservoirs ainsi que les dispositifs de remplissage et de vidange doivent permettre une circulation suffisante de l'eau pour éviter la formation de zones d'eau stagnante et donc empêcher la prolifération des germes.

- Choix des matériaux : On s'attachera à utiliser des matériaux adéquats en apportant un soin particulier au choix des joints et des enduits.
- ❖ Etanchéité de l'ouvrage et équipements divers : L'étanchéité des ouvrages de stockage est indispensable pour préserver la qualité de l'eau.
 L'attention se portera sur toutes les parties de l'ouvrage :
 - Murs, radier.
 - Capots et accès divers.

Il faut noter que la mauvaise étanchéité de la partie supérieure du réservoir est souvent la cause d'apport d'eaux de ruissellement parasites.

- ❖ Isolation thermique : Les variations importantes de la température (journalières ou saisonnières) peuvent favoriser la dégradation de la qualité de l'eau en particulier le développement d'algues et de mousse. À ce sujet, les réservoirs enterrés sont thermiquement bien isolés et permettent de conserver quasi-constante la température de l'eau.
 - ❖ Protection des entrées d'air : Le renouvellement de l'air dans les réservoirs est indispensable.

Il faut cependant protéger les entrées d'air contre la pénétration des poussières, des insectes voire de petits animaux.

A cet effet, les dispositifs d'aération comporteront des tamis à maille fine en acier inoxydable ou en matière plastique.

❖ Limitation de l'éclairage naturel : La lumière favorise la

croissance des algues dans l'eau, l'éclairage naturel permanent à l'intérieur du réservoir est donc à proscrire. L'ouvrage sera par contre équipé d'un éclairage artificiel permettant son exploitation et son entretien en toute sécurité.

4. Classification des reservoirs : III

On peut classer les réservoirs en plusieurs catégories selon :

Le matériau de construction, on distingue :

- Réservoir métalliques.
- Réservoir en maçonnerie.
- Réservoir en béton armé.

La situation des lieux, ils peuvent être :

- Enterrées.
- Semi-enterrés.
- Surélevé.

Selon l'usage:

- Réservoir principal d'accumulation et de stockage. (Réservoir d'eau traité).
- Réservoir terminal.
- Réservoir d'équilibre.
- Réservoir tampon.
- Bâche de reprise.
- Brise charge.

La forme géométrique :

- Réservoir cylindrique.
- Réservoir rectangulaire.
- Réservoir carré.

III 5. Choix du réservoir :

Ce sera bien entendu une question d'espèce pour chaque cas. Cependant à chaque fois que cela sera possible .Il sera préférable d'avoir recours au réservoir enterré, semi enterré ou au plus en élévation audessus du sol avec radier légèrement enterré.

Le choix du réservoir dépends des :

- -Conditions topographiques.
- -Conditions géotechniques.
- -Conditions hydrauliques.
- -Conditions économiques.

III 6. Equipements du réservoir :

Le réservoir doit être équipé de :

III 6.1. Conduite d'arrivée ou d'alimentation :

Cette conduite doit être à l'opposé de la conduite de départ pour provoquer le brassage et permettre le renouvellement d'eau par mélange en créant des perturbations et un écoulement par rouleaux.

- Cette conduite peut être installée de plusieurs manières :

III 6.1.1. Par Le haut :

5

Soit avec chute libre soit en plongeant la conduite de façon à ce que son extrémité soit toujours noyée, le premier cas provoque une oxygénation de l'eau mais il libère facilement le gaz carbonique dissous et par suite il favorise l'entartrage du réservoir et des conduites.

ENSH 2017/2018

III 6.1.2 : Par Le bas :

Soit par le bas à travers les parois du réservoir soit par le fond à travers le radier.

III 6.2. Conduite de départ ou de distribution :

Le départ de la conduite de distribution s'effectue à **0.15** ou **0.2** m au-dessus du radier en vue d'éviter d'introduire dans la distribution des boues ou des sables qui éventuellement pourrait se décompter dans la cuve.

On réserve au minimum **0.5 m** au-dessus de la génératrice supérieure de la conduite en cas d'abaissement maximal du plan d'eau.

L'extrémité de la conduite est munie d'une grille ou crépine courbée pour éviter le phénomène de vortex.

En cas de rupture de la conduite de distribution et dans l'hypothèse d'un grand réservoir, il faut avoir la possibilité de l'isoler rapidement pour éviter les pertes d'eau en cas de cassure de la conduite de distribution. Il pourra être envisagé de rendre automatique la fermeture du robinet en utilisant une vannepapillon qui se met en marche dès qu'une survitesse se manifestera dans la conduite.

III 6.3. Conduite de trop-plein :

Cette conduite a pour but d'évacuer l'excès d'eau arrivant au réservoir sans provoquer de déversement.

Elle ne comportera pas de robinet sur son parcours. Sa section transversale sera disposée selon un plan horizontal situé à une distance **H** au-dessous du niveau maximal susceptible d'être atteint dans la cuve.

La canalisation de trop-plein débouchera à un exutoire, mais on peut craindre par cet exutoire une pollution ou une introduction d'animaux ou de moustiques

qui pourraient ainsi pénétrer dans le réservoir, ainsi ménage —ton un joint hydraulique constitué par un siphon qui maintient en eau le tronçon.

Si le réservoir est compartimenté chaque cuve doit avoir une conduite de tropplein.

III 6.4. Conduite de vidange :

Elle est placée au point bas du réservoir permet une décharge complète vers l'égout pour permettre l'inspection et le nettoyage du réservoir, ainsi que d'éventuelles réparations.

Elle part du point bas du réservoir et se raccorde sur la canalisation de tropplein, Elle comporte un robinet vanne qui doit être nettoyé après chaque vidange pour éviter le dépôt de sable qui entraîne une difficulté de manoeuvre.

On peut installer des détecteurs de niveau dans le réservoir pour signaler les niveaux critiques, le niveau de débordement et le niveau bas notamment pour la protection des pompes.

III 6.5. Conduite by-pass:

5

On relie la conduite d'adduction à celle de la distribution par un de conduite appelé By-pass pour assurer la continuité de la distribution, en cas de travaux de maintenance ou dans le cas de vidange de la cuve.

III 6.6. Matérialisation de la réserve d'incendie :

C'est une disposition spéciale de la tuyauterie, qui permet d'interrompre l'écoulement, une fois le niveau de la réserve d'incendie est atteint.

Nous distinguons deux types de systèmes :

- Système à deux prises : dont la réserve n'est pas convenablement renouvelé.

- Système à siphon : qui a l'avantage de renouveler constamment la réserve d'incendie.

III 7. Emplacement Des Réservoirs :

L'emplacement des réservoirs pose souvent un problème délicat à résoudre, c'est le problème de la topographie, et pour des raisons d'économie, il est préférable que l'alimentation du réseau de distribution doive se faire par gravité, donc le réservoir doit donc être construit à un niveau supérieur à celui de l'agglomération.

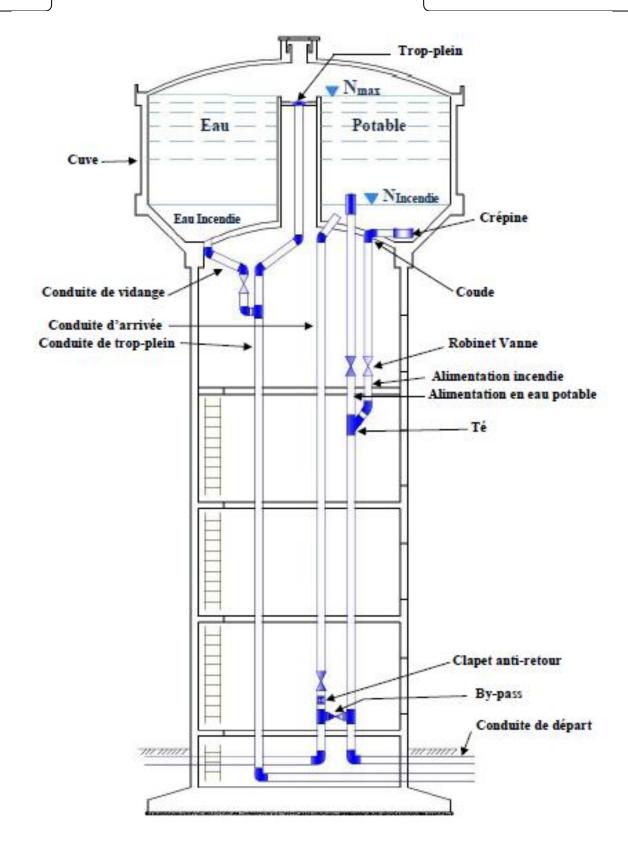


Figure III.1. Coupe transversale d'un réservoir surélevé (source NAH)

5 ENSH 2017/2018

Ш 8. Capacité des réservoirs :

Pour le calcul de la capacité du réservoir on doit tenir compte des variations de débit à l'entrée comme à la sortie c'est-à-dire d'une part du mode d'exploitation des ouvrages situés en amont et d'autre part de la variation de la demande.

La capacité est calculée pour satisfaire aux variations journalières de débit de consommation en tenant compte du jour de plus forte consommation et de la réserve d'eau destinée à l'incendie.

Il est possible de réduire leurs capacités en calculant le volume minimum pour assurer la continuité de la distribution.

III 8.1. Cas d'une adduction par refoulement :

Deux méthodes peuvent être appliquées pour la déterminer :

a. Méthode analytique :

La méthode analytique consiste à faire un calcul de résidus entre un régime d'alimentation qui est caractérisé par un débit constant avec un régime de consommation caractérisé par un débit variable (en fonction de la consommation des habitants).

On ressort le volume qui suit :

$$V_r = a(\%) \times Q_{max,j} / 100 [m_3]$$

Avec:

Vr: capacité résiduelle (m3).

a: fraction horaire du débit maximum journalier (%).

Q max.j: la consommation maximale journalière (m3/j).

5

ENSH 2017/2018

On détermine le volume total en ajoutant le volume d'incendie au volume résiduel : $V_T = V_r + V_{inc}[m_3]$

Avec:

• **VT**: capacité totale du réservoir (m3).

• **Vr** : capacité résiduelle (m3).

• Vinc: volume d'incendie estimé à 120 m3.

b. Méthode graphique :

la méthode graphique tient compte de la consommation totale déduite à partir des coefficients des variations horaires de la consommation et de la courbe d'apport du débit pompé en fonctionde la durée de pompage. La capacité est déduite à partir des extremums des cumuls de la consommationvis-à-vis de celle des apports.

Donc, Le volume total est calculé selon la formule suivante :

$$V_T = (Q_{max,j} \times R_{max}) / 100 + V_{inc} [m_3]$$

Avec:

• **V**T: volume total (m3).

• **Q** max.j: le débit maximum journalier (m3/j).

• R max : résidu maximal journalier (%).

Tel que:

$$Rmax = |d| + |d'| [\%]$$

d: Excès pendant les différentes heures de la journée.

d': Déficit pendant les différentes heures de la journée.

• Vinc: volume d'incendie estimé à 120 m3.

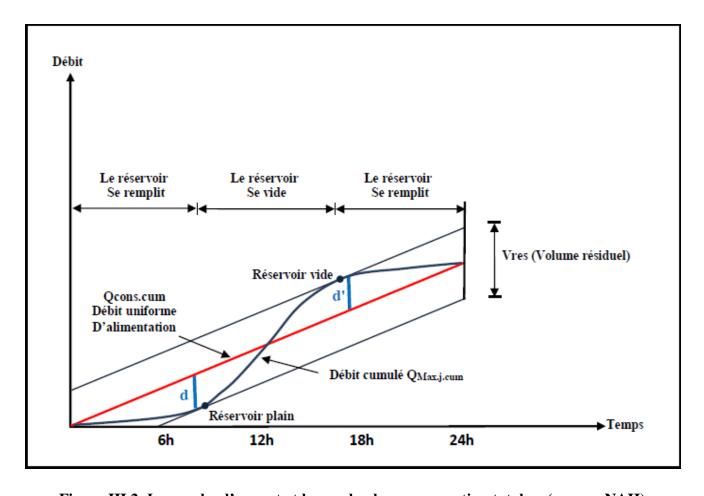


Figure III.2. La courbe d'apport et la courbe de consommation totale. (source NAH)

ENSH 2017/2018

33

Tab. III.1. Evaluation du volume résiduel du réservoir surélevé à l'horizon d'étude 2048.

Heur	Cons	<i>Ref</i> (%)	Surplus	Déficit	Reste ds le
Пеш	(%)	Kej (70)	Surpius	Dejicii	réservoir
0-01	1	0		1.00	0.00
0102	1	0		1.00	-1.00
0203	1	0		1.00	-2.00
0304	1	0		1.00	-3.00
0405	2	5	3.00		0.00
0506	3	5	2.00		2.00
0607	5	5	0.00	0.00	2.00
0708	6.5	5		1.50	0.50
0809	6.5	5		1.50	-1.00
0910	5.5	5		0.50	-1.50
1011	4.5	5	0.50		-1.00
1112	5.5	5		0.50	-1.50
1213	7	5		2.00	-3.50
13-14	7	5		2.00	-5.50
14-15	5.5	5		0.50	-6.00
15-16	4.5	5	0.50		-5.50
16-17	5	5	0.00	0.00	-5.50
17-18	6.5	5		1.50	-7.00
18-19	6.5	5		1.50	-8.50
19-20	5	5	0.00	0.00	-8.50
20-21	4.5	5	0.50		-8.00
21-22	3	5	2.00		-6.00
22-23	2	5	3.00		-3.00
23-24	1	5	4.00		1.00
	100				

D'après le tableau précédent, la fraction horaire pour le réservoir est de 10 %.

Donc : a = 10.5 %

Avec un débit maximum journalier est de 1981.33 m³/j

A.N:

$$Vr = \frac{10.50}{100} * 1981.33 = 208.03 \text{ m}^3$$

En ajutant le volume de la réserve d'incendie, le volume total sera :

$$Vt = Vr + Vinc = 208.03 + 120 = 328.03 \text{ m}3.$$

On prend un volume normalisé, qui est 400 m3.

Conclusion:

- La détermination de la capacité du réservoir nous a permis de vérifier s'il y a intérêt de projeter un réservoir, mais le calcul nous a amené à un volume de 400 m3 plus petit que les réservoirs existants de volume 1000 m3.
- On a jugé nécessaire de dire que le réservoir 1000 m3 est largement suffisant, comme réservoir d'arrivé, pour alimenter la commune à l'horizon étudié. Dans notre étude nous n'avons pas besoin de dimensionner un autre réservoir.

LERESEAU DE DISTRIBUTION

Introduction:

Le réseau de distribution est un moyen de satisfaire les consommateurs d'eau potable à partir de réserve stocké dans le réservoir .et après avoir déterminer les besoins en eau de notre agglomération on fait choisir le type de réseau qui convient de notre région d'étude ainsi que les diamètre de chaque tronçon de façon à assurer le débit maximal avec une pression égale à la pression de service.

IV 1. Les différents types de réseau :

Il existe deux types de réseaux :

- Réseau ramifié.
- Réseau maillé.

IV 1.1. Réseau ramifié :

Il est constitué par une conduite principale et des conduites secondaires (branches) branchées tout le long de la conduite principale, c'est un réseau arborescent.

Ainsi que ce réseau n'assure aucune distribution du retour, il suffit qu'une panne se produise sur la conduite principale et que toute la population à l'aval sera privée d'eau.il destiné généralement pour les petites agglomérations et les zones rurales, il est moins couteux que le maillé.

IV 1.2. Réseau maillé :

Les conduites de réseau maillé sont placé de tel manière qu'il soit possible de décrire une ou plusieurs boucles fermées en suivant son tracé. Contrairement aux réseaux ramifiés, le réseau maillé assure une distribution de retour en cas de panne d'un tronçon. Avec une simple manœuvre de robinets permet d'isoler le tronçon accidenté et de poursuivre néanmoins l'alimentation des abonnés à l'aval. Il est utilisé en général dans les zones

urbaines et tend à se généraliser dans les agglomérations rurales sous forme associé aux réseaux ramifiés (réseau combiné).

Remarque:

- ✓ Il existe un réseau combiné entre le maillé et le ramifie c'est réseau maillé contient des ramifications.
- ✓ En cas de nivellement important on sépare la zone haute et la zone base par un réservoir réducteur pression pour diminuer la pression aux points les plus bas.

IV 2. Conception d'un réseau :

Pour concevoir un réseau de distribution, il faut prendre en considération les facteurs influents sur notre réseau comme :

- L'emplacement des cartiers
- L'emplacement des grands consommateurs comme les usines
- La topographie du terrain
- Le souci d'assurer un service souple et précis.

IV 3. tracer le réseau :

Pour tracer le réseau il y a un certain nombre d'instruction à respecter :

- Choisir le lieu des consommateurs principaux.
- Déterminer le sens principal de l'écoulement d'eau ;
- Dans le sens principal, il faut tracer les conduites maîtresses ;
- Tracer les conduites maîtresses à travers les côtes géodésiques pour bien repartir l'eau ;
- Pour avoir des mailles, il faut raccorder les conduites maîtresses par des conduites secondaires ;

IV 4. Calcul du réseau maillé :

Le calcul d'un réseau maillé est conduit par approximations successives, selon la méthode de HARDY-CROSS basé sur deux lois à savoir :

IV 4.1. Loi des nœuds :

En un nœud quelconque de la conduite, la somme des débits qui arrive à ce nœud est égale à la somme des débits qui sortent.

IV 4.2. Loi des mailles :

Le long d'un parcours orienté et fermé, la somme algébrique des pertes de charges est nulle. Cette loi est appliquée au contour fermé où l'orientation positive est donnée par le sens du déplacement des aiguilles d'une montre.

IV 5. Choix de matériaux de la conduite :

Les facteurs de choix du type de matériau sont la pression supportée par la conduite, l'agressivité de l'eau et du sol, le cout de conduite et leurs accessoiresetc.

ils existent plusieurs types de conduite :

IV 5.1. Tuyau en fonte :

Le tuyau en fonte présente plusieurs avantages comme la bonne résistance à la sollicitation, la rigidité, la solidité, facilité de pose, ainsi que la bonne résistance à la corrosion. Mais il est lourd, cher, et il a une mauvaise résistance au cisaillement.

IV 5.2. Tuyau en acier :

Le tuyau en acier est plus léger que le tuyau en fonte, il résiste au contrainte au choc et a l'écrasement,

L'inconvénient major de ce tuyau est la corrosion.

IV 5.3. Tuyau en PVC (Polychlorure de vinyle non plastifié) :

Les avantages du tuyau en PVC sont :

- Bonne résistance a la corrosion.
- Disponibilité sur le marché
- Facilité de pose.

L'inconvénient du tuyau en pvc est le risque de rupture.

IV 5.4. Tuyau en PEHD :

Ce type de tuyau présente plusieurs avantages :

- ▶ Bonne résistance à la corrosion interne et externe.
- Disponible sur le marché
- Souplesse à l'utilisation.
- Légèreté et facilité d'utilisation.
- Facilité du transport et de stockage.
- Durée de vie plus de 50 ans.
- Bonne caractéristique hydraulique.

Leur seul inconvénient est la nécessité de technicité de la jonction.

Pour ces avantages on utilise un tuyau de type PEHD.

IV 6. Calcul hydraulique du réseau de distribution :

Pour calculer le réseau il faut déterminer d'abord les données de base suivantes :

- Les débits : commençant par le débit spécifique, les débits en route et les débits aux nœuds
- Les longueurs des tançons formant notre réseau.

IV 6.1. Détermination des débits :

IV 6.1.1. Le débit en route :

Il est défini comme étant le débit reparti uniformément le long d'un tronçon du réseau, il est donné par la relation suivante :

$$Qr = Qp - Qconc [l/s]$$

Avec:

 $\sum \mathbf{Qr}$: Le débit route global

 $Q_p\,$: le débit point

 \sum Q_{conc}: Somme de débits concentrés

IV 6.1.2. Le débit spécifique :

Le débit spécifique est le rapport du débit route sur la longueur totale des canalisations du réseau, Ce débit est reparti uniformément le long d'un réseau, il est déduit avec la relation Suivante :

$$Q_{sp} = \frac{\sum Qr}{\sum Li}$$

Avec:

Q_{sp} : débit spécifique (l/s/m).

 \sum Li : somme des longueurs des tronçons du réseau (m).

IV 6.1.3. Le débit au nœud :

Le débit au nœud est celui qui est concentré à chaque point de jonction des conduites du réseau, le calcul de ce débit s'effectuera après avoir calculé les débits en route pour chaque tronçon il doit être déterminé à partir de la relation suivante :

$$Q_{n,\,i}~=~0.5 \sum Q_{ri\text{-}k}~+\sum Q_{conc}$$

Avec:

Q_{n, i}: débit au nœud (i).

 $\sum Q_{ri-k}$: somme des débits route des tronçons reliés au nœud (i).

 $\sum Q_{conc}$: somme des débits concentrés au nœud.

Remarque:

Le dimensionnement de réseau de distribution se fait en deux cas : cas de pointe et cas de pointe +incendie.

IV 6.2. Calcul des débits :

IV 6.2.1. Cas de pointe :

Le débit de pointe est déterminé à partir du tableau de variation des débits horaires entre 12h et 14h.

Nous avons:

Q_{cons} = 138.69 m³/h=38.52 l/s et Q_{conc}=0(pas de débit concentré₎

Donc $Q_{route} = Q_{cons} = 38.52 \text{ l/s}$

 $\sum\!Li = 4127.27m; \quad donc: Q_{sp}\!\!=\!\!38.52/4127.27=\!0,\!009333045/s/m$

Finalement on a donc: $Q_{sp} = 0.009333045 \text{s/m}$

Tab. IV.1. Récapitulation des débits :

	Q _{cons} (l/s)	38.52
	Q _{conc} (l/s)	0 (pas d'usine)
Heure de pointe	Q _{route} (1/s)	38.52
(12 heures	ΣLi (m)	4127.27
à14heures)	Q _{sp} (l/s/m)	0,009333

A partir de débit spécifique on calcule le débit route de chaque tronçon ainsi que le débit de chaque nœud du réseau :

Tab. IV.2. Calcul des débits aux nœuds en cas de pointe :

			Débit sp	Débit route	∑Qr	0.5*∑Qr
Nœuds	Tronçons	log (m)	(1/s)	(1/s)	(1/s)	(1/s)
	Tuyau 01-02	157.36	0,009333	1,46		, ,
1	Tuyau 01-04	441.42	0,009333	4,11	5.57	2.78
	Tuyau 02-01	157.36	0,009333	1,46		
	Tuyau 02-03	187.01	0,009333	1,74		
2	Tuyau 02-05	444.74	0,009333	4,15	7.35	3.67
	Tuyau 03-02	187.01	0,009333	1,74		
3	Tuyau 03-06	454.41	0,009333	4,24	5.98	2.99
	Tuyau 04-01	441.42	0,009333	4,11		
	Tuyau 04-05	168.23	0,009333	1,57		
	Tuyau 04-07	510.4	0,009333	4,76		
4	Tuyau 04-08	287.08	0,009333	2,67	13.11	6.55
	Tuyau 05-02	444.74	0,009333	4,15		
	Tuyau 05-04	168.23	0,009333	1,57		
	Tuyau 05-06	188.13	0,009333	1,75		
5	Tuyau 05-09	287.96	0,009333	2,68	10.15	5.07
	Tuyau 06-03	454.41	0,009333	4,24		
6	Tuyau 06-05	188.13	0,009333	1,75	5.99	2.99
	Tuyau 07-04	510.4	0,009333	4,76		
	Tuyau 07-08	80.49	0,009333	0,75		
7	Tuyau 07-10	429.13	0,009333	4	9.51	4.75
	Tuyau 08-04	287.08	0,009333	2,67		
	Tuyau 08-07	80.49	0,009333	0,75		
8	Tuyau 08-09	169.78	0,009333	1,58	5	2.5
	Tuyau 09-05	287.96	0,009333	2,68		
	Tuyau09-08	169.78	0,009333	1,58		
9	Tuyau 09-10	320.73	0,009333	2,99	7.25	3.62
	Tuyau 10-07	429.13	0,009333	4		
10	Tuyau 10-09	320.73	0,009333	2.99	6.99	3.49

IV 6.2.2. Cas de pointe +incendie :

Dans ce cas les résultats des débits reste les mêmes sauf que le débit d'incendie (17 l/s) est ajouter comme un débit concentré au point défavorable, qui est dans notre cas le nœud n° 7.

Tab. IV.3. Calcul de débits aux nœuds en cas de pointe +incendie :

			Débit sp	Débit route	∑Qr	0.5*∑Qr
Nœuds	Tronçons	log (m)	(1/s)	(1/s)	(1/s)	(1/s)
	Tuyau 01-02	157.36	0,009333	1,46	(1.2)	(1.2)
1	Tuyau 01-04	441.42	0,009333	4,11	5.57	2.78
	Tuyau 02-01	157.36	0,009333	1,46		
	Tuyau 02-03	187.01	0,009333	1,74		
2	Tuyau 02-05	444.74	0,009333	4,15	7.35	3.67
	Tuyau 03-02	187.01	0,009333	1,74		
3	Tuyau 03-06	454.41	0,009333	4,24	5.98	2.99
	Tuyau 04-01	441.42	0,009333	4,11		
	Tuyau 04-05	168.23	0,009333	1,57		
	Tuyau 04-07	510.4	0,009333	4,76		
4	Tuyau 04-08	287.08	0,009333	2,67	13.11	6.55
	Tuyau 05-02	444.74	0,009333	4,15		
	Tuyau 05-04	168.23	0,009333	1,57		
	Tuyau 05-06	188.13	0,009333	1,75		
5	Tuyau 05-09	287.96	0,009333	2,68	10.15	5.07
	Tuyau 06-03	454.41	0,009333	4,24		
6	Tuyau 06-05	188.13	0,009333	1,75	5.99	2.99
	Tuyau 07-04	510.4	0,009333	4,76		
	Tuyau 07-08	80.49	0,009333	0,75		
7	Tuyau 07-10	429.13	0,009333	4	9.51	21.75
	Tuyau 08-04	287.08	0,009333	2,67		
	Tuyau 08-07	80.49	0,009333	0,75		
8	Tuyau 08-09	169.78	0,009333	1,58	5	2.5
_	Tuyau 09-05	287.96	0,009333	2,68		
	Tuyau09-08	169.78	0,009333	1,58		
9	Tuyau 09-10	320.73	0,009333	2,99	7.25	3.62
	Tuyau 10-07	429.13	0,009333	4		
10	Tuyau 10-09	320.73	0,009333	2.99	6.99	3,49

IV 6.3. Répartition arbitraire des débits :

Apres avoir calculé les débits aux nœuds de notre réseau on fait une répartition arbitraire des débits pour déterminer les diamètres avantageux de chaque tronçon. (Voir les schémas suivants) :

- Cas point -

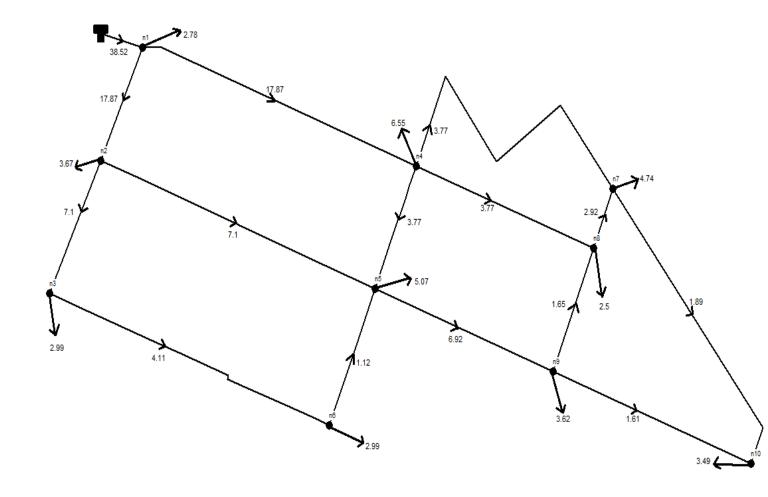


Figure IV.1. Répartition préliminaire (Cas de pointe).

- <u>Cas de pointe + incendie</u> -



Figure IV.2. Répartition préliminaire (Cas de pointe + incendie).

IV 6.4. Détermination des diamètres et des vitesses :

On peut déterminer les diamètres avantageux pour chaque tronçon du réseau en connaissant le débit arbitraire à travers les abaques de (Débits en fonctions des diamètres de PEHD), (Voir **annexe IV.1**, **IV.2** et **V.1**).

Et avec la formule de continuité nous déterminons la vitesse :

$$V = Q / S = 4 \times Q / \pi D^2 [m/s]$$

Avec:

• **Q**: Débit arbitraire de tronçon (m3/s).

• **D**: Le diamètre du tronçon (m).

Le calcul est récapitulé dans le tableau ci-dessous :

Tab. IV.4. Calcul Des Diamètres Et Des Vitesses (cas de pointe + incendie).

Tronçons	Cas de Pte	Cas de Pte	Qmax	DINT	DEXT	Vitesse
	Débit (l/s)	+inc Débit (l/s)	(l/s)	(mm)	(mm)	(m/s)
R-1	38.52	55.52	55.52	277.6	315	0.90
1-2	17.87	26.37	26.37	141	160	1.70
1-4	17.87	26.37	26.37	141	160	1.70
2-3	7.1	11.35	11.35	110.2	125	1.20
2-5	7.1	11.35	11.35	110.2	125	1.20
3-6	4.11	8.36	8.36	79.2	90	1.70
4-5	3.77	6.6	6.6	96.8	110	0.90
4-7	3.77	6.6	6.6	96.8	110	0.90
4-8	3.77	6.6	6.6	96.8	110	0.90
5-6	1.12	5.37	5.37	66	75	1.60
5-9	6.92	18.25	18.25	141	160	1.20
7-8	2.92	11.415	11.415	110.2	125	1.20
7-10	1.94	3.82	3.82	110.2	125	1.61
8-9	1.65	7.315	7.315	96.8	110	1.00
9-10	1.65	7.315	7.315	96.8	110	1.00

IV 7. Simulation par le logiciel EPANET :

Elle fait partie des étapes les plus importantes dans la conception du réseau.

C'est à ce niveau que l'on peut apprécier son comportement dans le temps.

EPANET version 2.0 est le logiciel qu'on va l'utiliser.

IV 7.1. Présentation du logiciel EPANET :

EPANET version 2.0 est un logiciel de simulation du comportement des systèmes de distributiond'eau, d'un point de vue hydraulique mais également d'un point de vue qualité de l'eau. Il est distribué gratuitement par l'E.P.A depuis le mois de septembre 1993. Il sera largement utilisé dans le monde.

IV 7.2. Méthode de calcul :

La méthode utilisée par le logiciel pour calculer les équations de pertes de charges et de conversion de masse qui caractérisent l'état hydraulique du réseau est décrite par l'approche de Todini ou encore la méthode du gradient.

Cette méthode commence par une estimation initiale des débits dans chaque tuyaux qui peut ou non répondre à l'équation de conversion de la masse. A chaque itération de la méthode, les nouvelles charges aux noeuds sont obtenues en résolvant l'équation matérielle suivante :

$$\mathbf{A} * \mathbf{H} = \mathbf{F}$$

Avec:

- A : Une matrice jacobienne (N×N).
- H : Un vecteur (N×1) représente les charges inconnues aux noeuds.
- F : Un vecteur (N×1) contenant les termes du côté droit, dus au déséquilibre de flux en un noeud et à un facteur de correction.

Ainsi Epanet calcule le débit dans chaque tuyau, la pression à chaque noeud, le niveau de l'eau dans les réservoirs, et la concentration en substances chimiques dans les différentes parties du réseau, au cours d'une durée de simulation divisée en plusieurs étapes.

IV 7.3. Paramètres d'entrée du réseau :

EPANET modélise un système de distribution d'eau comme un ensemble d'arcs reliés à des noeuds. Les arcs représentent des tuyaux, des pompes et des vannes de contrôle. Les noeuds représentent des noeuds de demande, des réservoirs et des bâches.

IV 7.3.1. Les noeuds de demande :

Les noeuds de demande sont des points du réseau où les arcs se rejoignent. Ce sont des points d'entrée ou de sortie d'eau et peuvent également ne pas avoir de débit. Les données d'entrée minimales exigées pour les noeuds de demande sont :

- L'altitude du noeud.
- La demande en eau (qui peut varier dans le temps).

Les résultats calculés aux noeuds de demande, à chacun des intervalles de temps d'une simulation sont :

- L'altitude du noeud.
- La charge hydraulique (ou hauteur piézométrique).
- La pression au niveau du noeud.
- On peut aussi voir le graphique d'évolution de la pression au noeud de la demande.

IV 7.3.2. Les réservoirs :

Les réservoirs sont des noeuds avec une capacité de stockage, dont le volume d'eau stocké peut varier au cours du temps. Les données de base sont :

- L'altitude du noeud.
- L'altitude du radier.
- Le diamètre.
- Les niveaux initial, minimal et maximal de l'eau.

Les principaux éléments calculés dans la simulation sont :

- La charge hydraulique (altitude de l'eau).
- La pression (niveau de l'eau).
- Courbe d'évolution du niveau de l'eau.

Le niveau d'eau dans les réservoirs doit rester entre les niveaux minimal et maximal. EPANET arrête la sortie d'eau si le réservoir est atteint son niveau minimal.

IV 7.3.3. Les conduites :

Les conduites sont des arcs qui transportent l'eau d'un point du réseau à un autre. EPANET suppose que tous les tuyaux sont pleins à tout instant. L'eau s'écoule de l'extrémité qui a la charge hydraulique la plus élevée à celle qui a la charge la plus faible.

Les données de base pour les conduites sont :

- Les noeuds initial et final.
- Le diamètre.
- La longueur.
- Le coefficient de rugosité (pour déterminer la perte de charge).
- L'état (ouvert, fermé ou avec un clapet anti-retour).

Les principales valeurs calculées dans la simulation son :

- Le débit.
- La vitesse d'écoulement.
- La perte de charge.

IV 7.4. Les résultats de la simulation :

Après plusieurs essais de la simulation pour pouvoir respecter les normes des pressions et des vitesses.

Pour notre cas on a des immeubles de R+5 (R : signifie Rez de chaussée) donc on prévoit des pressions admissibles de 29 à 32m. D'une façon générale, pour un bâtiment, la pression varie en fonction du nombre d'étage, on peut écrire :

$$H = 10 + 4*n [m.c.e]$$

Avec:

• **n**: Nombre d'étages.

Les résultats de la répartition définitive des débits et des pressions ainsi que les autres paramètres sont donnés sous forme de tableau. Nous allons présenter ces résultats à l'heure qui fait partie des heures les plus critiques c'est-à-dire les pointes.

IV 7.4.1. Cas de pointe :

Les résultats des différents tronçons du notre zone d'étude [cas de pointe] sont données dans les tableaux suivants :

Tab. IV.5. Résultat Des Différents Tronçons Avec Leur Caractéristiques Hydrauliques Et Géométriques (Cas de pointe).

ID arc	Longueur (m)	DINT (mm)	Epaisseur (mm)	DEXT (mm)	Débit (l/s)	Vitesse (m/s)	Pert, de charge (m.c.e)
Tuyau R-1	10.70	220.40	14.80	250.00	38.52	1.01	3.59
Tuyau 1-2	157.36	141.00	9.50	160.00	10.76	0.69	3.10
Tuyau 1-4	441.42	176.20	11.90	200.00	24.87	1.02	4.81
Tuyau 2-3	187.01	96.80	6.60	110.00	4.79	0.65	4.43
Tuyau 2-5	444.74	66.00	4.50	75.00	2.29	0.67	7.47
Tuyau 3-6	454.41	53.60	4.70	63.00	1.80	0.80	13.14
Tuyau 4-5	168.23	96.80	6.60	110.00	7.57	1.03	10.03
Tuyau 4-7	510.40	96.80	6.60	110.00	4.68	0.64	4.25
Tuyau 4-8	287.08	96.80	6.60	110.00	6.08	0.83	6.78
Tuyau 5-6	188.13	42.60	3.70	50.00	1.19	0.83	18.82
Tuyau 5-9	287.96	66.00	4.50	75.00	3.60	1.05	16.66
Tuyau 7-8	80.49	79.20	5.40	90.00	2.13	0.51	2.74
Tuyau 7-10	429.13	53.60	4.70	63.00	2.06	0.91	16.63
Tuyau 8-9	169.78	42.60	3.70	50.00	4.79	1.02	16.79
Tuyau 9-10	320.73	53.60	4.70	63.00	1.43	0.63	8.76

Les résultats au niveau des du notre zone d'étude [cas de pointe] sont données dans les tableaux suivant :

Tab. IV.6. Résultat au niveau des nœuds (Cas de pointe) :

ID Nœud	Altitude (m)	Demande de base (l/s)	Charge (m.c.e)	Pression au sol (m.c.e)
Nœud N1	1209.57	2.78	1230.62	21.05
Nœud N2	1205.27	3.67	1230.13	24.86
Nœud N3	1197.50	2.99	1229.30	31.80
Nœud N4	1191.11	6.55	1228.50	37.39
Nœud N5	1193.56	5.07	1226.81	33.25
Nœud N6	1190.70	2.99	1223.27	32.57
Nœud N7	1181.31	4.75	1226.33	45.02
Nœud N8	1184.33	2.50	1226.55	42.22
Nœud N9	1184.00	3.62	1222.01	38.01
Nœud N10	1179.78	3.49	1219.20	39.42
Réservoir R1000	1228.66	38.52	1230.66	2.00

IV 7.4.2. Cas de pointe + incendie :

Les résultats des différents tronçons du notre zone d'étude [cas de pointe + incendie] sont données dans les tableaux suivants :

Tab. IV.7. Résultat Des Différents Tronçons Avec Leurs Caractéristiques Hydrauliques Et Géométriques (Cas de pointe + incendie).

ID arc	Longueur (m)	DINT (mm)	Epaisseur (mm)	DEXT (mm)	Débit (l/s)	Vitesse (m/s)	Pert, de charge (m.c.e)
Tuyau R-1	10.70	220.40	14.80	250.00	55.52	1.45	6.98
Tuyau 1-2	157.36	141.00	9.50	160.00	12.01	0.77	3.78
Tuyau 1-4	441.42	176.20	11.90	200.00	40.62	1.67	11.68
Tuyau 2-3	187.01	96.80	6.60	110.00	5.05	0.69	4.87
Tuyau 2-5	444.74	66.00	4.50	75.00	3.29	0.96	14.14
Tuyau 3-6	454.41	53.60	4.70	63.00	2.06	0.91	16.70
Tuyau 4-5	168.23	96.80	6.60	110.00	7.67	1.04	10.27
Tuyau 4-7	510.40	96.80	6.60	110.00	12.46	1.69	9.61
Tuyau 4-8	287.08	96.80	6.60	110.00	13.94	1.89	13.13
Tuyau 5-6	188.13	42.60	3.70	50.00	0.93	0.65	12.16
Tuyau 5-9	287.96	66.00	4.50	75.00	4.96	1.45	11.50
Tuyau 7-8	80.49	79.20	5.40	90.00	10.64	2.02	18.57
Tuyau 7-10	429.13	53.60	4.70	63.00	1.35	0.60	7.91
Tuyau 8-9	169.78	42.60	3.70	50.00	0.80	0.56	9.38
Tuyau 9-10	320.73	53.60	4.70	63.00	2.14	0.95	17.80

Les résultats au niveau des nœuds du notre zone d'étude [cas de pointe + incendie] sont données dans les tableaux suivant :

Tab. IV.8. Résultat au niveau des nœuds (Cas de pointe + incendie).

ID Nœud	Altitude (m)	Demande de base (l/s)	Charge (m.c.e)	Pression au sol (m.c.e)
Nœud N1	1209.57	2.78	1230.66	20.36
Nœud N2	1205.27	3.67	1230.65	24.06
Nœud N3	1197.50	2.99	1230.64	30.91
Nœud N4	1191.11	6.55	1230.58	33.66
Nœud N5	1193.56	5.07	1230.55	29.47
Nœud N6	1190.70	2.99	1230.52	30.05
Nœud N7	1181.31	21.75	1230.37	30.90
Nœud N8	1184.33	2.50	230.44	31.79
Nœud N9	1184.00	3.62	1230.41	30.53
Nœud N10	1179.78	3.49	1230.32	29.04
Réservoir R1000	1228.66	38.52	1230.66	2.00

- Les résultats de la simulation sous forme des figures :

Les résultats pour le cas de pointe sont représentés dans la figure suivante :

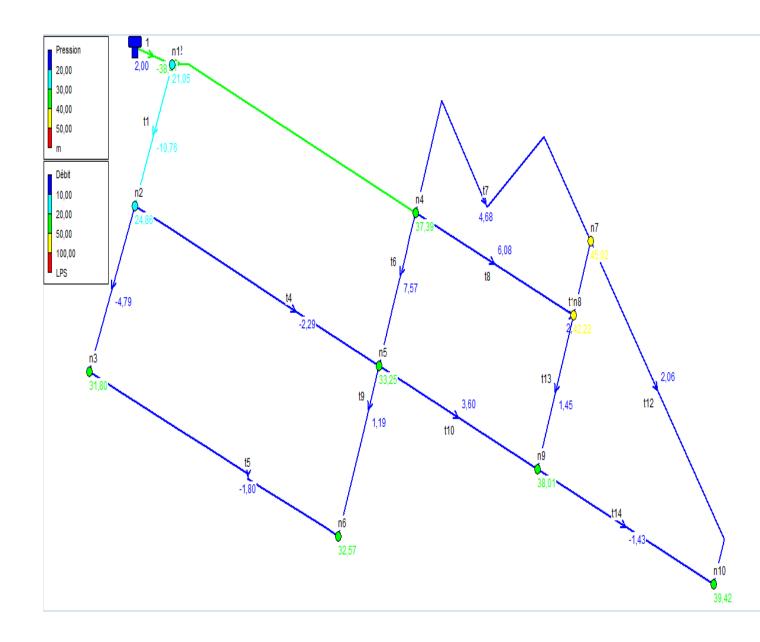


Figure IV.3. résultats de la simulation Cas de Pointe.

Les résultats pour le cas de pointe sont représentés dans la figure suivante :

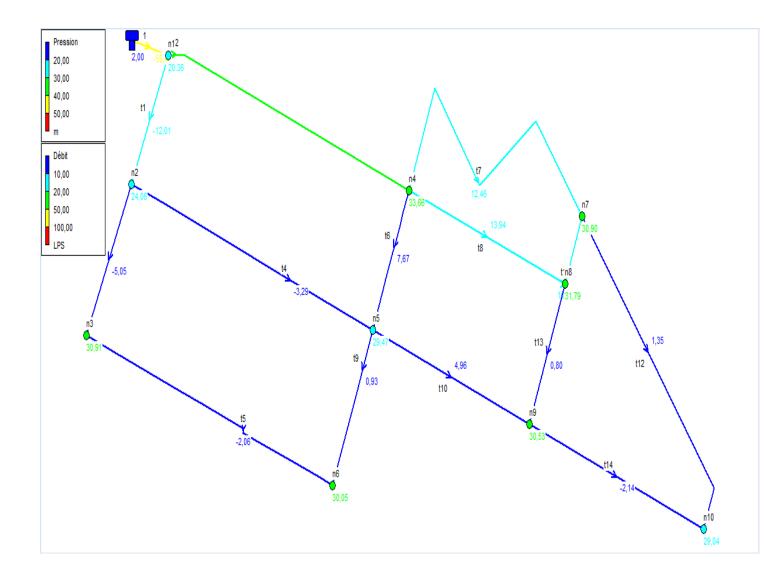


Figure IV.4. résultats de la simulation Cas de Pointe + incendie .

IV 8. Équipement du réseau de distribution :

IV 8.1. Type de matériau de canalisation :

Le réseau de distribution sera constitué d'un assemblage de tuyaux en PEHD qui résiste à une pression nominale de 10 bars (PN=10bar), les diamètres utilisés varient entre 50 mm et 250 mm.

IV 8.2. Appareils et accessoires du réseau :

Les accessoires qui devront être utilisés pour l'équipement du réseau de distribution sont pour but de:

- Assurer un bon écoulement.
- Régulariser les pressions et mesurer les débits.
- Protéger la canalisation.
- Vidanger une conduite.
- Chasser où faire pénétrer l'air dans une conduite.

IV 8.2.1. Robinets Vannes:

Ils sont placés au niveau de chaque noeud, et permettent l'isolement des différents tronçons du réseau lors d'une réparation sur l'un d'entre eux.

Celle-ci est introduite dans une bouche à clé placée sur le trottoir (facilement accessible).

IV 8.2.2. Robinets de Vidange :

Ce sont des robinets placés aux points les plus bas du réseau de distribution pour permettre la vidange de la conduite. Ces robinets seront posés à l'intérieur d'un regard en maçonnerie.

IV 8.2.3. Bouches d'arrosage :

Ce sont des bouches situées aux alentours des jardins.

IV 8.2.4. Bouches ou Poteau d'incendie :

Les bouches ou les poteaux d'incendie doivent être raccordés sur les conduites capables d'assurer un débit minimum 17(l/s) avec une pression de 10 m (1 bar).

Ces derniers seront installés en bordure des trottoirs espacés de 50 à 200 m et répartis suivant l'importance des risques imprévus.

IV 8.2.5. Clapets:

Les clapets ont un rôle d'empêcher l'eau en sens contraire de l'écoulement prévu.

IV 8.2.6. Ventouses:

Les ventouses sont des organes qui sont placés aux points les plus hauts du réseau pour réduire la formation du vide dans les installations hydraulique. Elles permettent de chasser et pénétrer l'air dans la conduite ainsi que la limitation de la dépression.

IV 8.2.7. Pièces spéciale de raccordement :

- a. Les Tés: ils sont utilisés au niveau d'un réseau pour soutirer ou ajouter un débit.
- **b.** Les Coudes : ils sont utilisés pour le changement de direction.
- c. Les Cônes : ils sont utilisés pour raccorder deux conduites de diamètres différents.
- **d.** Les Croix De Jonction : ils sont utilisés au niveau des noeuds pour le croisement des deux conduites perpendiculaires.
- **e.** Les Manchons : ce sont des morceaux de 25 à 50 cm, qui sont utilisés pour le raccordement des accessoires et appareillages.
- **f.** Les Compteurs : Le réseau de distribution nécessite l'emplacement des compteurs qui seront installés dans points adéquats, et servent à l'évaluation du rendement du réseau de distribution et le contrôle de la consommation.

g. Les joints:

- Joint à brides : On l'utilise uniquement à la présence des appareils.
- Joint Standard: résiste en cas d'une forte cavitation.
- Joint rapide : commandé pour les fortes pressions.
- *Joint Gibault*: pour raccorder deux conduites de même diamètre (boue lisse boue lisse) soit de même matière ou de matière différente, on l'utilise pour annuler les contrainte annulaires. (2)

Conclusion:

Nous nous sommes penchés dans ce chapitre au tracé du réseau de telle façon à couvrir toute la zone. Suite à quoi, nous avons porté le réseau sur le logiciel Epanet pour faire une simulation pour vérifier les pressions et les vitesses.

Suite aux résultats obtenus nous avons optimisé notre réseau en termes de dimension pour satisfaire toutes les conditions.

On a trouvé que les diamètres utilisés pour notre réseau varient entre DN 50 mm et DN 250 mm avec des pressions varient entre 21 m et 50 m qui sont admissibles pour nos immeubles.

ETUDED'ADDUCTION ETDEPOMPAGE

Introduction:

Le but de ce chapitre est de faire une étude techno-économique pour dimensionner les deux conduite de refoulement dans laquelle va transiter tout le débit pompé depuis les deux station de pompage vers l'ouvrage d'arrivé 'Réservoir surélevé 1000 m³.

V Etude d'adduction :

V 1. Classification des adductions :

D'après leur fonctionnement, les adductions peuvent être classées en trois groupes :

a) Adduction gravitaire:

C'est une adduction où l'écoulement se fait sous l'action d'aucune force extérieure qui lui sera appliquée (conditionnée par la pente et la pesanteur). On rencontre ce type d'adduction dans le cas où la source se situe à une côte supérieure à la côte piézométrique de l'ouvrage d'arrivée.

b) Adduction par refoulement :

C'est une adduction où l'écoulement se fait sous pression à l'aide des machines hydroénergétiques. Dans ce cas la source se situe à une côte inférieure à la côte piézométrique de l'ouvrage d'arrivée.

c) Adduction mixte:

C'est une adduction composée d'une partie par refoulement une autre gravitaire. Le relais entre les deux types de conduite est assuré par un réservoir appelé réservoir tampon.

V 2. Critères de choix de tracé :

D'une manière générale, le tracé de l'adduction doit :

- Avoir un itinéraire aussi direct que possible et chercher un profil en long aussi régulier que possible, pour éliminer les contre pentes.
- Eviter la multiplication des ouvrages coûteux ou fragiles (traversés de rivière, route, chemin de fer etc....).
- En raison d'économie, le tracé doit être le plus court possible.

- Le choix d'un tracé en bordure des routes et chemins présente un certain nombre d'avantages :
 - Travaux de terrassement et approvisionnement des tuyaux souvent moins onéreux.
 - Accès facile aux regards contenant des appareils de robinetterie.

V 4. Etude des variantes :

V 4.1. La première variante :

L'adduction se décompose en deux parties.

V 4.1.1. Liaison (2 forages - Réservoir tampon) :

C'est la conduite de refoulement à partir des forages (sfissifa et belgrad) jusqu'au réservoir tampon projeté environ 2255 m pour forage de sfissifa et 2484.78 pour forage de belgrad ,voir figure n°III.1

V 4.1.2. Liaison (Réservoir tampon – réservoirs d'alimentation) :

La conduite gravitaire part du réservoir tampon projeté vers le réservoir d'alimentation existant de la ville de sfissifa (1000 m3) avec longueur de 1837.79m voir figure ci-après



Figure V.1. Schéma vertical de la variante N°1

V 4.2. La deuxième variante :

Il s'agit de refouler les eaux des forages (02forages) de notre champ de captage directement vers le réservoir d'alimentation de la ville de sfissifa a une Côte du trop plein du de reservoir (1233.66m) et avec distance de 4458.35m pour forage de sfissifa et 4192.52 m pour forage de belgrad voir le figure ci-après

refoulement 4192 .52 m forage

belgrad

Figure V.2. Schéma de la variante N°2

D'après les critères de choix de tracé qu'on a parlé ci-dessus on aura opté pour la suite de notre projet la 1ère variante car elle est la plus techniquement économique, donc elle est la plus fiable.

V 4. Site d'implantation de la station de pompage :

Tout enlacement d'usine de pompage doit répondre aux critères suivants :

- Ils sont disponibles sur le marché
- Rapprocher les ouvrages d'adduction le plus possible afin d'avoir un tracé le plus économique.
- Doit être installée dans une zone stable (géologie et inondation).
- Doit tenir compte des variations du plan d'eau d'aspiration.
- Doit être installée de sorte que les travaux de terrassement soient minimes.
- Une plateforme doit être prévue, élevée par rapport à la chaussé de 15 à 30 cm.

V 5. Calcul hydraulique:

V 5.1. Cas de refoulement (calcul du diamètre le plus économique) :

Pour le calcul des diamètres économiques des conduites de refoulement, une étude technico économique s'impose.

A. Calcul des pertes de charge :

- Calcul des pertes de charge linéaires :

Pour un tronçon donné, les pertes de charge linéaires dépendent de :

- Diamètre D de la conduite en (m).
- Débit Q en (m3/s).
- La rugosité absolue ε exprimée en (mm).
- la longueur du tronçon L en (m).

Les pertes de charge linéaires sont données par la formule universelle de Darcy-Weisbach :

$$\Delta H_{lin} = L \times j = \lambda \times \frac{L \times V^2}{D \times 2g} \ [m]$$

- ΔHlin: Pertes de charge linéaires en (m).
- L: Longueur de la conduite de refoulement en (m).
- **j**: Gradient hydraulique en (m/m).
- V: Vitesse moyenne d'écoulement en (m/s).
- **D**: Diamètre de la conduite de refoulement en (m).
- g: Accélération de la pesanteur, soit approximativement 9,81 m.s⁻² ou 9,81 N/Kg.
- λ: Coefficient de frottement adimensionnel qui dépend du régime d'écoulement. Il est obtenu par les formules suivantes :

- Formule de NIKURADZE :

$$\lambda = [1, 14 - 0, 86 \times Ln (E/D)]^{-2}$$

Avec:

- E: Rugosité de la conduite en (mm).
- **D** : Diamètre de la conduite en (m).

- Formule de COLEBROOK :

$$\frac{1}{\sqrt{\lambda}} = -2 \times Log\left(\frac{\epsilon}{3.7 \times D} + \frac{2.52}{Re \times \sqrt{\lambda}}\right)$$

Avec:

- E: Rugosité de la conduite en (mm).
- **D** : Diamètre de la conduite en (m).
- **Re**: Nombre de Reynolds.

On vérifie le régime d'écoulement à l'aide de la formule de Nombre de Reynolds qui s'exprime comme suit :

$$Re = \frac{V \times D}{v}$$
.

Avec:

- : Viscosité cinématique de l'eau en (m^2/s) , soit $v=1,03\times10-6$ m^2/s à une température de 20° C.
- : Vitesse de l'écoulement dans la conduite en (m/s).
- : Diamètre de la conduite en (m).

- Calcul des pertes de charge singulières :

Elles sont occasionnées par les singularités des différents accessoires de la conduite (Coude, vannes, clapets, Té,.....etc.). Elles sont estimées à 10 % des pertes de charge linéaires :

$$\Delta \mathbf{H_{sing}} = 0.10 \times \Delta \mathbf{H_{lin}}$$
 [m]

- Calcul des pertes de charges Totales :

Ce sont la somme des pertes de charge linéaires et les pertes de charge singulières, on écrit :

$$\begin{split} \Delta H_t &= \Delta H_{lin} + \Delta H_{sing} = 0,\!10 \times \Delta H_{lin} + \Delta H_{lin} \\ \Delta H_t &= 1,\!10 \times \Delta H_{lin} \text{ [m]} \end{split}$$

Avec:

- Δ Ht: Perte de charge totale en (m).
- **ΔHlin** : Perte de charge linéaire en (m).
- **ΔHsing** : Perte de charge singulière en (m).

B. Calcul de la hauteur manométrique totale [HMT] :

La hauteur manométrique totale sera calculée de la manière suivante :

$$HMT = Hg + \Delta H_{asp} + \Delta H_{ref}$$

Donc HMT= Hg +
$$\Delta$$
Ht [m]

Avec:

• **H**g: Différence de niveau entre le plan d'aspiration et le plan de refoulement en (m).

On écrit : Hg = Tp - ND.

Avec Tp: Trop plein du réservoir.

ND : Niveau dans le réservoir d'aspiration.

- $\Delta Hasp$: Pertes de charge à l'aspiration en (m).
- Δ Href: Pertes de charge au refoulement en (m).
- ΔHt : Perte de charge totale en (m).

C. Frais d'exploitation:

Les frais d'exploitation en (DA) sont définis par la formule suivante :

$$Fex = E \times e [DA]$$

Avec:

- **Fex**: Frais d'exploitation en (DA).
- E: Energie consommée par la pompe en (KWh).
- **e**: Prix unitaire d'un KWh imposé par la SONELGAZ (e=4,2DA).

- L'Energie annuelle consommée par la pompe :

L'énergie annuelle consommée par la station de pompage est donnée par la formule suivante :

$$E = P \times T \times 365 \text{ [KWh]}$$

Avec:

- **E**: Énergie totale consommée par la pompe pendant une année (kWh).
- **P**: Puissance absorbée (KW).
- T: Temps de pompage en (heure), dans notre cas T = 20h.

- Puissance de la pompe :

La puissance absorbée par la pompe est donnée par la formule suivante :

$$P_{abs} = \frac{\rho \times g \times H_{MT} \times Q}{\eta_{sp} \times 1000} \text{ [KW]}$$

Avec:

- **Pabs** : Puissance absorbée par la pompe en (kW).
- ρ : La masse volumique de l'eau (1000 kg/m³).
- **g**: Accélération de la pesanteur (9.81 m/s²).
- **HMT**: Hauteur manométrique totale en (m).
- **Q**: Débit à refouler (m^3/s) .
- ŋsp : Rendement de la pompe.

D. Frais de l'investissement amorti :

Les frais d'investissement amorti en (DA) sont donnés par la formule suivante :

$$Famor = Prc \times A [DA]$$

Avec:

- **Prc**: Le prix de la conduite en (DA).
- **A** : Amortissement annuel en (%), il est donné par la formule suivante :

$$\mathbf{A} = \left(\frac{\mathbf{i}}{(\mathbf{i}+\mathbf{1})^{\mathbf{n}}-\mathbf{1}} + \mathbf{i}\right) \times \mathbf{100}$$

Avec:

- i: Le taux d'anuité annuel, (en Algérie i = 8 %).
- \mathbf{n} : Nombre d'années d'amortissement, on prend $\mathbf{n} = 30$ ans.

Donc, l'amortissement annuel sera égal :

$$A = \left(\frac{0,08}{(0,08+1)^{30}-1} + 0,08\right) \times 100 = 8,88 \%$$

E. Vérification de la vitesse d'écoulement :

Les vitesses admises dans les canalisations ne doivent pas être ni trop faibles face au risque de sédimentation, ni trop élevées pour la bonne tenue des conduites et éviter le phénomène d'érosion de la paroi des canalisations, d'une manière générale on constate que les vitesses correspondantes aux diamètres optimums répondent à ces critères :

$$0.5 \le V \le 2.5 \text{ [m/s]}$$

$$V = Q / S$$
 [m/s]

Avec:

- •Q: Le débit véhiculé par la conduite en (m³/s).
- •S: La section de la conduite en (m²), elle est déterminée par la formule suivante :

$$S = (\pi \times D^2) / 4 [m^2]$$

D: Le diamètre de la conduite en (m).

V 5.2. Cas gravitaire:

Le calcul sera effectué par la formule **Darcy-Weisbakh** :

$$\Delta H = rac{\mathbf{k}' imes \mathrm{leq} imes Q^{\beta}}{D^{m}}$$
 [m]

On tire le diamètre avantageux :

$$\mathbf{D} = \sqrt[m]{rac{\mathbf{k}\prime imes \mathbf{leq} imes \mathbf{Q}^{eta}}{\Delta \mathbf{H}}}$$
 [m]

Avec:

• Leq: Longueur équivalente de la conduite (m).

Dans le cas des adductions, les pertes de charge singulières sont estimées à 10% des pertes de charge linéaires. Donc on peut écrire :

$$L_{eq}$$
 = 1,10 \times L_g [m] .

Avec:

Lg: Longueur géométrique de la conduite en (m).

ΔH: La charge disponible en (m).

Q: Débit véhiculé par la conduite (m³/s).

K', β, m: Coefficients qui dépendent du type de la tuyauterie et de régime d'écoulement.

Les coefficients K', m et β sont donnés dans le tableau suivant selon le type de matériau :

Tab.V.1. Coefficients K', m, β pour différents types du tuyau. (Salah ,2014)

Tuyau	К'	m	β
Acier	0,00179 à 0,001735	5,1 à 5,3	1,9 à 2
Fonte	0,00179à 0,001735	5,1 à 5,3	1,9 à 2
PEHD	0,001052	4,774	1,77

V 6. Dimensionnement du réseau d'Adduction :

V 6.1. Dimensionnement du réseau d'Adduction partie 1 (forage sfissifa – reservoir tampon):

Pour notre projet on a une adduction par refoulement.

Données:

La cote du point de départ : 1210.54 m. La cote du point d'arrivée : 1258.23 m.

La hauteur géométrique : 47.69 m

La longueur de la conduite de refoulement : 2255 ml.

Le débit refoulé : 64.8 m3/h durant 20h qui correspond à 181/s.

λ sera calculé par la formule de Colebrook.

Les résultats trouvés pour le calcul du diamètre économique de notre conduite

sont regroupés dans les tableaux suivants :

Tab.V.2. Calcul de la hauteur manométrique totale HMT partie 1.

D _{int} (mm)	Vitesse (m/s)	Nbr de Reynolds	λ Colebrook	longueur (m)	Hg (m)	ΔHT (m)	HMT (m)
57,2	8,41	480803,74	0,016020495	2255	47,69	2501,86	2549,55
73,6	5,08	373668,13	0,015900754	2255	47,69	704,04	751,73
84	3,90	327404,45	0,01592214	2255	47,69	364,06	411,75
124,2	1,78	221432,96	0,016304727	2255	47,69	52,76	100,45
149,2	1,24	184329,59	0,016632616	2255	47,69	21,51	69,20
204,6	0,66	134418,25	0,017386039	2255	47,69	4,64	52,33
257,8	0,41	106679,50	0,018070288	2255	47,69	1,52	49,21

- Le pompage se fait durant toute l'année (365j), et pour le prix moyen unitaire de KWh on a 4.179 DA (Source : Sonalgaz).
 - On peut calculer le prix de l'énergie en utilisant les formules ci-dessus.

Tab.V.3. Calcul des frais d'exploitation de la station de pompage partie 1.

D _{extérieur} (mm)	HMT (m)	P (KW)	E (KWh)	Prix du KWh (DA)	Frais d'exploitation
90	2549,55	14,23	2077685,32	4,179	8682646,97
110	751,73	4,20	612599,61	4,179	2560053,76
125	411,75	2,30	335543,74	4,179	1402237,29
160	100,45	0,56	81855,72	4,179	342075,05
200	69,20	0,39	56394,31	4,179	235671,82
250	52,33	0,29	42642,40	4,179	178202,59

On calcule l'Annuité (le frais de l'investissement amorti) en connaissant le prix du mètre linéaire de conduite (voir :**ANNEXE V.1**).

Tab.V.4. Calcul des frais d'investissement amorti partie 1.

D _{extérieur} (mm)	Prix de mL (DA)	longueur (m)	Annuité (%)	Frais d'ammortissement
90	597,53	2255	8,88	119651,80
110	888,91	2255	8,88	177998,89
125	1132,44	2255	8,88	226764,32
160	2278,88	2255	8,88	456332,05
200	2892,94	2255	8,88	579293,88
250	4463,55	942	8,88	373374,17

Le tableau qui va suivre c'est le tableau des bilans qui nous permet de déterminer le diamètre le plus économique qui correspond au total le plus faible.

Tab.V.5. Bilan des frais d'exploitation et d'investissement amorti partie 1.

D _{extérieur} (mm)	Frais d'ammortissement	Frais d'exploitation	Bilan
90	119651,80	8682646,97	8802298,77
110	177998,89	2560053,76	2738052,65
125	226764,32	1402237,29	1629001,61
160	456332,05	342075,05	798407,09
200	579293,88	235671,82	814965,70
250	373374,17	178202,59	551576,77

D'après les résultats obtenus de ce dernier tableau (**Tab.V.5**), on peut dresser la courbe d'optimisation .

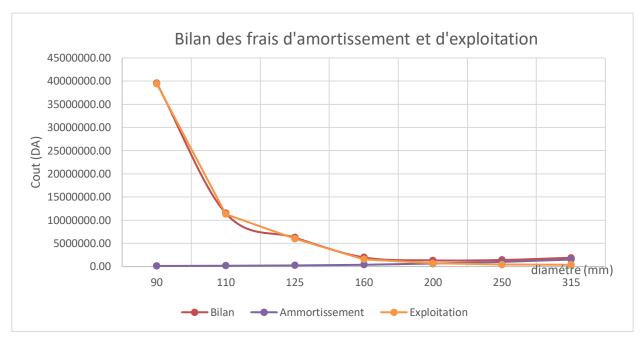


Figure V.3. Courbe d'optimisation du diamètre de refoulement partie 1.

Nous remarquons que le diamètre économique du tronçon de refoulement est de **204.6** mm (**DEXT = 250** mm) avec une vitesse d'écoulement de **V=0.66m/s**.

V 6.2. Dimensionnement du réseau d'Adduction partie 2 (forage belgrad - reservoir tampon):

Pour notre projet on a une adduction par refoulement.

Données:

La cote du point de départ : 1220.52 m. La cote du point d'arrivée : 1258.23 m. La hauteur géométrique : 37.71 m.

La longueur de la conduite de refoulement :2484.78 ml.

Le débit refoulé: 79.2 m3/h durant 20h qui correspond à 22 1/s.

 λ sera calculé par la formule de Colebrook .

Les résultats trouvés pour le calcul du diamètre économique de notre conduite sont regroupés dans les tableaux suivants :

Tab.V.6. Calcul de la hauteur manométrique totale HMT partie 2.

D _{int} (mm)	Vitesse (m/s)	Nbr de Reynolds	λ Colebrook	longueur (m)	Hg (m)	ΔHT (m)	HMT (m)
57,2	10,27	587649,02	0,015787555	2484,78	37,71	4058,30	4096,01
73,6	6,21	456705,49	0,015594126	2484,78	37,71	1136,53	1174,24
84	4,76	400161,00	0,015574648	2484,78	37,71	586,18	623,89
114,6	2,56	293311,73	0,015744839	2484,78	37,71	125,38	163,09
149,2	1,51	225291,72	0,016108746	2484,78	37,71	34,29	72,00
204,6	0,80	164288,97	0,016772032	2484,78	37,71	7,36	45,07
257,8	0,51	130386,05	0,017392531	2484,78	37,71	2,40	40,11

- On peut calculer le prix de l'énergie en utilisant les formules ci-dessus.

Tab.V.7. Calcul des frais d'exploitation de la station de pompage partie 2.

D _{extérieur} (mm)	HMT (m)	P (KW)	E (KWh)	Prix du KWh (DA)	Frais d'exploitation
90	4096,01	1293,66	9443723,34	4,179	39465319,84
110	1174,24	370,87	2707319,77	4,179	11313889,33
125	623,89	197,05	1438435,78	4,179	6011223,11
160	163,09	51,51	376016,29	4,179	1571372,08
200	72,00	22,74	166013,32	4,179	693769,68
250	45,07	14,24	103920,31	4,179	434282,98
315	40,11	12,67	92486,71	4,179	386501,95

On calcule l'Annuité (le frais de l'investissement amorti) en connaissant le prix du mètre linéaire de conduite (voir : ANNEXE V.1).

Tab.V.8. Calcul des frais d'investissement amorti partie 2.

D _{extérieur} (mm)	Prix de mL (DA)	longueur (m)	Annuité (%)	Frais d'amortissement
90	597,53	2484,78	8,88	131844,08
110	888,91	2484,78	8,88	196136,63
125	1132,44	2484,78	8,88	249871,15
160	1828,30	2484,78	8,88	403411,59
200	2892,94	2484,78	8,88	638322,77
250	4463,55	2484,78	8,88	984875,45
315	6844,50	2484,78	8,88	1510228,41

Le tableau qui va suivre c'est le tableau des bilans qui nous permet de déterminer le diamètre le plus économique qui correspond au total le plus faible.

Tab.V.9. Bilan des frais d'exploitation et d'investissement amorti partie 2.

D _{extérieur} (mm)	Frais d'ammortissement	Frais d'exploitation	Bilan
90	131844,08	39465319,84	39597163,92
110	196136,63	11313889,33	11510025,96
125	249871,15	6011223,11	6261094,26
160	403411,59	1571372,08	1974783,66
200	638322,77	693769,68	1332092,45
250	984875,45	434282,98	1419158,43
315	1510228,41	386501,95	1896730,36

D'après les résultats obtenus de ce dernier tableau (**Tab.V.5**), on peut dresser la courbe d'optimisation .

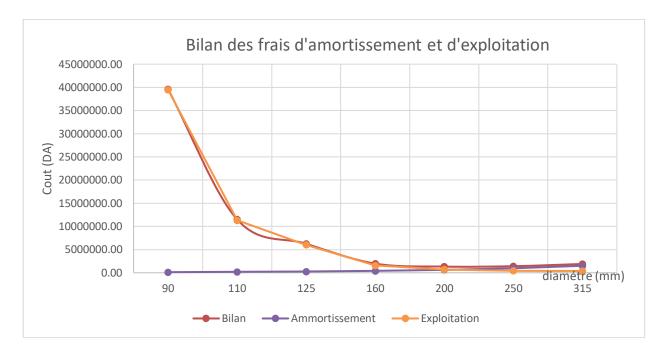


Figure V.4. Courbe d'optimisation du diamètre de refoulement partie 2.

Nous remarquons que le diamètre économique du tronçon de refoulement est de **204.6 mm** (**DEXT = 250 mm**) avec une vitesse d'écoulement de **V=0.8 m/s**.

V 6.3. Partie gravitaire (réservoir tampon - réservoir de distribution de 1000 m³ :

V 6.3.1. Détermination du diamètre avantageux :

Le calcul du tronçon réservoir tampon- réservoir projeté se fait de telle façon que le tronçon véhicule en 20 heures la totalité du débit refoulé par les pompes installées au niveau des forages, qui fonctionne 20h. Puisque le tronçon fonctionne en gravitaire, il s'agit de déterminer le diamètre avantageux, Sachant que la côte de trop plein du réservoir de distribution est :

$$CTp = 1233.66 \text{ m}.$$

V 6.3.2. La charge disponible :

• Hd=CR-RT-CTp

avec:

- Hd : La charge disponible.
- CR-RT: Côte du radier du réservoir tampon (1258.23m)
- CTp: Côte du trop plein du de réservoir (1233.66m)
- $\Delta H_d = 1258.23-1233.66 = 24.57 \text{ m}$

La longueur de la conduite gravitaire :

$$L = 1837.79 m$$

La longueur équivalente de la conduite gravitaire :

Détermination du gradient moyen

•
$$J_{moy} = \Delta H_d/L$$

 $J_{moy} = 24.57/2113.45 = 0.0116$

Détermination du diamètre :

$$J=\Delta H/L=K'Q^B/D^m$$

$$\mathbf{D} = \sqrt[m]{rac{\mathbf{k}\prime imes \mathbf{leq} imes \mathbf{Q}^{eta}}{\Delta \mathbf{H}}}$$
 [m]

Sachant que : K' = 0.001052; $\beta = 1.77$; m = 4.774

$$\checkmark$$
 D cal =0.183m =183 mm

Le diamètre normalisé de la conduite gravitaire est de DN=160 mm à DN=200 mm.

Calcul la perte de charge pour le diamètre 160 mm

$$\Delta H = \frac{k' \times leq \times Q^{\beta}}{D^{m}}$$

 $\Delta H = 47.01 \text{ m}$

➤ Calcul la perte de charge pour le diamètre 200 mm

$$\Delta H=16.2 \text{ m}$$

la perte de charge diminuée donc il faut connaître sur quelle distance on place le diamètre

Le diamètre le plus avantageux calculé auparavant est de 0.183 m, il est compris entre les diamètres normalisés 160 mm et 200 mm, donc on va adopter une adduction à deux conduites en série composé de Ø160 et Ø200.

La perte de charge engendrée s'écrit :

$$\Delta H t = K'^* Q^{\beta} * ((L1/D1^m) + (L2/D2^m))$$

Avec L1 = L-L2

- DL2 = 200mm
- DI.1 = 160 mm

Et on a:

• L = 2113.45 m

Alors l'équation précédente se transforme en une équation à un seul inconnu (L2).

$$24.57 = 0.001052*0.04^{2}(2113.45-L2)/0.16^{5} + (L2/0.2^{5})$$

Après résolution on trouve :

- L2 equi = 1425.41 m.
- L1 equi =688.04m

Alors on va avoir deux tançons:

- Premier tronçon (L2) de Ø160mm sur une longueur de1239.48 m
- Deuxième tronçon(L1) de Ø200 mm sur une longueur de 598.29 m

Tab.V.10. les paramètres hydrauliques Partie gravitaire :

Diamètre (mm)	V (m/s)	I(m/m)	L _{equi} (m)	Δ Ht(m)
160	1.99	0.0114	1425.41	47.01
200	1.27	0.00432	688.04	16.2

Les frais d'investissement de la conduite gravitaire figurent dans le tableau suivant:

Tab.V.11. Les frais d'investissement de la conduite gravitaire

Diametre(mm)	Prix de ml(DA)	L (m)	F investissement (DA)
160	1336.43	1425.41	1904960.686
200	1931.48	688.04	1328935.499
Total			3233896.185

V 7. Etude de pompage :

V 7.1. Définition :

Une pompe est un système d'élévation d'eau, d'autre sens c'est la transformation d'énergie mécanique en énergie hydraulique composée par des organes différents. La pompe est entrainée par un moteur électrique. Elle peut être une pompe à axe :

- Horizontal.
- Vertical.
- Oblique.

V 7.2. Couplage des pompes :

Dans le cas où la pompe placée dans une station de pompage ne fournit pas le débit ou la charge nécessaire pour l'élévation d'eau au point voulu on fait appel au couplage des pompes.

Le couplage des pompes se fait soit en série soit en parallèle, selon la nécessité comme suit :

- Le couplage en parallèle : ce type de couplage est utilisé en vue d'augmenter le débit refoulé par les pompes.
- Le couplage en série : ce type de couplage est utilisé en vue d'augmenter la hauteur d'élévation (la charge) des pompes

V 7.3. Différents types de pompes :

V 7.3.1. Pompes volumétriques :

Elles sont caractérisées par un déplacement de liquide du point d'aspiration vers le point de refoulement qui se fait par un mouvement de :

- Translation.
- Rotation.
- Mixte (translation et rotation).

Elles sont adaptées aux fortes viscosités, elles élèvent de faibles débits à des pressions élevées (adaptées aux pressions élevées à très élevées), on distingue :

- Les pompes volumétriques rotatives.
- Les pompes alternatives (à piston).
- Les pompes à rotor excentré, à rotor oscillant, à palettes, à engrenage.

V 7.3.2. Les turbopompes :

Une turbopompe est constituée par un organe mobile ou une roue munie d'aubes ou d'ailettes animées d'un mouvement de rotation qui permet l'augmentation de l'énergie de fluide. Elle est précédée d'une entrée et suivie le plus souvent d'un diffuseur dans lequel une partie de l'énergie cinétique du fluide se transforme en pression, on distingue :

- Les pompes centrifuges.
- Les pompes à hélices.
- Les pompes hélico-centrifuges.

Les pompes centrifuges sont plus utilisées en hydraulique urbaine à cause de la large gamme d'utilisation qu'elles peuvent couvrir, de leur simplicité et de leur faible coût ainsi que leur bon rendement.

V 7.4. Choix du type de pompe :

Le choix d'une pompe se fait en fonction du débit à refouler et la hauteur à laquelle ce débit doit être élevé, autrement appelée, la hauteur manométrique totale d'élévation.

En effet, le choix consiste de déterminer à l'aide des catalogues, les types de pompe qui donneront pour les débits et les hauteurs manométriques désirées des rendements optimums.

On opte pour les pompes Italiennes de marque Caprari : En plus de ses avantages technique et mécanique, ce type de pompe nous assure le débit et la hauteur manométrique totale appelés avec une vitesse de rotation élevée.

V 7.5. Choix du nombre de pompes :

Pour la robustesse de l'installation, des pompes supplémentaires seront installées et serviront de secours. Le nombre de pompes de secours dépendra du nombre de pompes choisis de la sorte :

n < 4 1 pompe de secours. 4 < n < 6 2 pompes de secours. n > 6 3 pompes de secours.

Avec **n** : nombre de pompes utiles.

Les critères de choix de pompes sont :

- Assurer le débit et l'Hmt visé dans le projet.
- Avoir un nombre minimal de pompes.
- Avoir un meilleur rendement
- Puissance absorbée minimale.
- Vitesse de rotation élevée.
- Charge net d'aspiration requise (NPSH)r minimale, (anti-cavitationel)

V 7.6. Courbe caractéristique d'une conduite de refoulement :

On appelle courbe caractéristique d'une conduite la courbe qui représente pour une canalisation de diamètre D et de longueur L, les variations de la perte de charge total en fonction de débit. Cette courbe est donnée par la formule :

$$Hc = Hg + RQ_2 [m.c.e]$$

Avec:

- **Prc**: Le prix de la conduite en (DA).
- **Hg**: Hauteur géométrique (m).
- **R** : Résistance de la conduite (s².m⁻⁵) elle est donnée par :

$$\mathbf{R} = \mathbf{1}, \mathbf{1} \times [\mathbf{8} \times \lambda \times \mathbf{L}/(\mathbf{g} \times \mathbf{\pi}_2 \times \mathbf{D}_5)]$$

Avec:

- λ : Coefficient de perte de charge.
- L : Longueur de la conduite en (m).
- **g** : Accélération de la pesanteur (9,81 m.s-2)
- **D** : Diamètre de la conduite en (m).

V 7.6. Caractéristiques de la pompe :

V 7.6.1. Point de fonctionnement des pompes :

Afin d'orienter notre choix, nous devons satisfaire les conditions mécaniques et hydrauliques, et tracer la courbe de la conduite de refoulement et celle de la pompe qui est donnée par le constructeur sur le catalogue.

Le point de fonctionnement d'une pompe (**PF**) est donné par l'intersection de la courbe caractéristique de la pompe (fournée par le constructeur) et la courbe caractéristique de la conduite de refoulement (fournie par l'installateur).

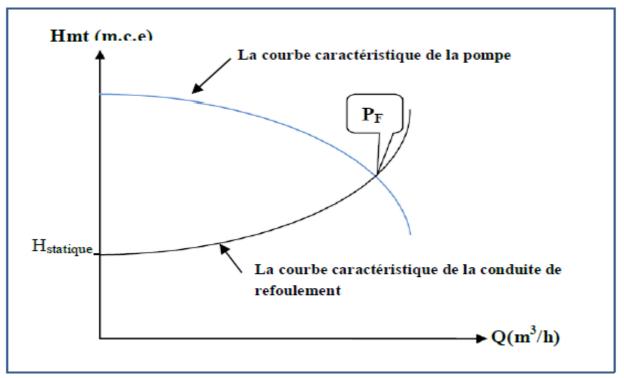


Figure V.5. Détermination du point de fonctionnement.

V 8. Choix des pompes :

V 8.1. Choix de la pompe 1 pour le forage de sfissifa :

Le choix des pompes se fera à l'aide de catalogue du constructeur de pompe Caprari.

Les données injectées dans le logiciel : Q = 18 l/s, HMT = 52,33 m.c.e.

Nous allons trouver:

Tab.V.12. la pompe choisi pompe 1 :

Nombre des pompes	Q disp. (l/s)	HMT (m.c.e)	Туре	η (%)	Vitesse (tr/mn)	Pabs (Kw)	(NPSH)r (m)
1	18	52.33	E8S50/4A + MC617	76.2	2900	13	3.17

V 8.1.1. Description de la pompe 1 choisie :

Pompe E8S50/4A + MC617 :

- Pompe immergée semi-axiale.
- Corps d'aspiration, de refoulement et diffuseurs : en fonte.
- Roues : en fonte.
- Arbre: en acier inoxydable.
- Accouplement, visserie, crépine et gouttière de protection des câbles en acier inoxydable.
- La fiche technique de la pompe 1 choisie est représentée dans l'Annexe V.2.1.
- Les dimensions géométriques de la pompe 1 choisie sont représentées dans l'Annexe V.2.2
- Les courbes caractéristiques de la pompe 1 choisie sont représentées dans l'Annexe V.2.3

V 8.1.2. Courbe caractéristique de la conduite de refoulement pour pompe 1 :

Données:

Q = 18 l/s

L = 2255 m.

HMT = 52.33 m.

Hg = 47.49 m.

D = 204.6 mm.

 $\lambda = 0.0173$

On a: $\mathbf{Hc} = \mathbf{Hg} + (\mathbf{R} \times \mathbf{Q2})$

Avec:

 $\mathbf{R} = 1,1x \ [\mathbf{8} \times \mathbf{\lambda} \times \mathbf{L}/(\mathbf{g} \times \mathbf{\pi}^2 \times \mathbf{D}^5)] = 1,1 \ x \ [8 \times 0.0173 \times 2255/(9,81 \times \mathbf{\pi}^2 \times 0,2046^5)]$

Chapitre V

R = 9899.62

Donc **Hc** = $47.49 + (9899.62 \times Q^2)$.

Q	H pompe (m.c.e)	H _C (m.c.e)
(l/s)	(m.c.e)	
0	77	47,49
10	68.2	48,47
20	49.33	51,44
30	36 11	56.58

Tab.V.13. Variation de la charge en fonction des debits pompe 1.

- En utilisant les résultats ci-dessus on peut trouver le point de fonctionnement qui sera présenté dans le graphique qui va suivre :

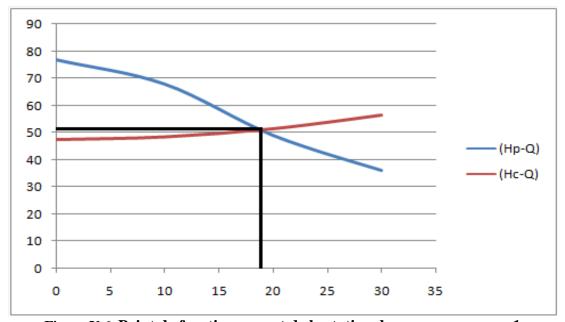


Figure V.6. Point de fonctionnement de la station de pompage pompe 1

- Le point de fonctionnement est représenté par l'intersection de la courbe caractéristique de la pompe et la courbe caractéristique de la conduite de refoulement.

V 8.1.3. Les frais annuels d'énergie pour la pompe 1 :

Fr.a.e =
$$np \times P \times t \times 365 \times e$$
 [DA]

Avec:

np: Nombre des pompes.

 \mathbf{P} : puissance de la pompe en (kW), on a trouvé $\mathbf{P} = 13$ kw.

t : c'est le temps de pompage par jour en (heure); dans notre cas t =20h.

e: prix moyen unitaire d'un KW imposé par la SONELGAZ, (e=4,179DA).

Fr.a.e = $1 \times 13 \times 20 \times 365 \times 4{,}179$

Fr.a.e = 3'965'87,1 DA.

V 8.2. Choix de la pompe 2 pour le forage de belgrad :

Les données injectées dans le logiciel : Q = 22 l/s, HMT = 45.07 m.c.e.

Nous allons trouver:

Tab.V.14. la pompe choisi pompe 2 :

Nombre des pompes	Q disp. (l/s)	HMT (m.c.e)	Туре	η (%)	Vitesse (tr/mn)	Pabs (Kw)	(NPSH)r (m)
1	22	45.07	E9S50/3Q + MC620	77.8	2900	14.5	3.89

V 8.2.1. Description de la pompe 2 choisie :

Pompe E9S50/3Q + MC620

- Pompe immergée semi-axiale.
- Corps d'aspiration, de refoulement et diffuseurs : en fonte.
- Roues: en fonte
- Arbre: en acier inoxydable
- Accouplement, visserie, crépine et gouttière de protection des câbles en acier inoxydable.

- La fiche technique de la pompe 2 choisie est représentée dans l'Annexe V.3.1.
- Les dimensions géométriques de la pompe 2 choisie sont représentées dans l'Annexe V.3.2
- Les courbes caractéristiques de la pompe 2 choisie sont représentées dans l'Annexe V.3.3

V 8.2.2. Courbe caractéristique de la conduite de refoulement pour pompe 2 :

Données:

Q = 22 l/s

L = 2484.78 m.

HMT = 45.07 m.

Hg = 37.01m.

D = 204.6mm.

 $\lambda = 0.0167$

On a :
$$Hc = Hg + (R \times Q2)$$

Avec:

$$\mathbf{R} = 1.1 \text{x} \left[\mathbf{8} \times \lambda \times \mathbf{L} / (\mathbf{g} \times \mathbf{\pi}^2 \times \mathbf{D}^5) \right] = 1.1 \text{ x} \left[8 \times 0.0167 \times 2484.78 / (9.81 \times \mathbf{\pi}^2 \times 0.2046^5) \right]$$

R = 10740.09

Donc $\mathbf{Hc} = 37.01 + (10740.09 \times Q^2)$.

Tab.V.15. Variation de la charge en fonction des debits pompe 2.

Q (1/s)	H pompe (m.c.e)	H _c (m.c.e)
0	60	37,01
10	55.28	38,08
20	44,5	43.65
30	36.36	47.25

En utilisant les résultats ci-dessus on peut trouver le point de fonctionnement qui sera présenté dans le graphique qui va suivre :

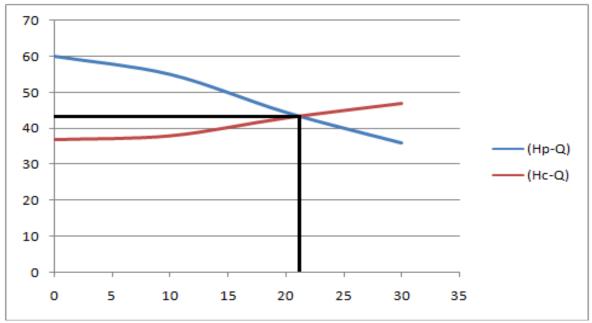


Figure V.7. Point de fonctionnement de la station de pompage pompe 2

Le point de fonctionnement est représenté par l'intersection de la courbe caractéristique de la pompe et la courbe caractéristique de la conduite de refoulement.

V 8.2.3. Les frais annuels d'énergie pour la pompe 2 :

Fr.a.e =
$$np \times P \times t \times 365 \times e$$
 [DA]

Avec:

np: Nombre des pompes.

P: puissance de la pompe en (kW), on a trouvé P = 14.5 kw.

 \mathbf{t} : c'est le temps de pompage par jour en (heure); dans notre cas \mathbf{t} =20h.

e: prix moyen unitaire d'un KW imposé par la SONELGAZ, (e=4,179DA).

Fr.a.e =
$$1 \times 14.5 \times 20 \times 365 \times 4{,}179$$

Fr.a.e = 4'423'47,15 DA.

Conclusion

Le calcul de l'adduction a été présenté de la façon la plus économique et technique possible afin d'avoir le coût minimale tout en respectant les consigne de sécurité de longévité de l'adduction.

En effet nous avons décomposé l'adduction en deux tronçons distincts, le premier qui se compose des conduites de refoulement qui fonctionnent grâce à des pompes immergées, et le deuxième tronçon gravitaire.

On a choisis les pompes tout en respectant un nombre de critères du choix.

MANAGEMENT DE PROJETS

Introduction:

L'importance économique de l'ensemble des ouvrages hydrauliques sera pour une part, fonction d'une organisation qui consiste à la détermination, la coordination et à la mise en oeuvre des moyens nécessaires pour la réalisation et l'exécution des travaux dans les meilleures conditions et dans les plus brefs délais.

Les étapes des différents travaux sur des chantiers de réalisation des adductions pour l'A.E.P sont :

- Implantation des tracés des tranchées sur le terrain.
- Nivellement de la plate-forme de pose.
- Excavation des tranchées.
- Pose des conduites.
- Epreuve de joint et de canalisation.
- Remblaiement des tranchées.

VI 1. Pose de canalisation :

VI 1.1. Pose de canalisation dans un terrain ordinaire :

La canalisation est posée dans une tranchée ayant une largeur minimale de 60 cm. Le fond de la tranchée est recouvert d'un lit de sable d'une épaisseur de 15 à 20 cm convenablement nivelé. Avant la mise en fouille, on possède à un triage de conduite de façon à écarter celles qui ont subies des chocs, des fissures, ..., après cela on pratique la décente en lit soit manuellement soit mécaniquement d'une façon lente. Dans le cas d'un soudage de joints, cette opération doit être faite de préférence en fond de tranchée en calant la canalisation soit avec des butées de terre soit avec des tronçons de madriers en bois disposés dans le sens de la longueur de la tranchée.

Pour plus de sécurité, l'essai de pression des conduites et des joints doit toujours avoir lieu avec remblaiement. L'essai consiste au remplissage de la conduite par l'eau sous une pression de 1,5 fois la pression de service à laquelle sera soumise la conduite en cours de fonctionnement. Cette épreuve doit durer 30 min environ, la diminution de la pression ne doit pas excéder 0,2 Bars.

Le remblaiement doit être fait par couche de 20 à 30 cm exempts de pierre et bien pilonné et sera par la suite achevé avec des engins.

VI 1.2. Pose de canalisation dans un mauvais terrain :

Si le terrain est de mauvaise qualité on peut envisager quelques solutions :

VI 1.2.1. Cas d'un terrain peu consistant :

Pour éviter tout mouvement de la canalisation ultérieurement, celle-ci doit être posée sur une semelle en béton armé ou non avec interposition d'un lit de sable. La semelle peut être continue ou non en fonction de la nature du sol. Dans le cas où la canalisation repose sur des tasseaux, ces derniers doivent être placés plus proches des joints et soutenus par des pieux enfoncés jusqu'au bon sol.

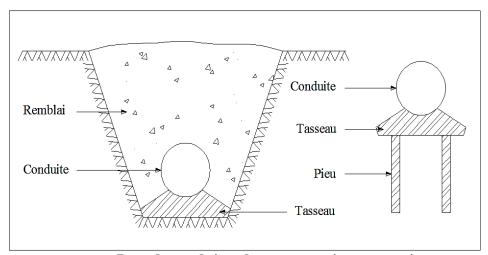


Figure VI.1. Pose de conduites dans un terrain peu consistant.

VI 1.2.2. Cas d'un terrain agressif :

La protection des conduites enterrées en fonte, contre les phénomènes de corrosion, est à réaliser par une manche en film de polyéthylène, lorsque le terrain présente une résistivité inférieure à 1500 □.cm ou lorsqu'il y a présence de sulfures, de sulfates ou de chlorures.

La manche en polyéthylène d'une certaine ampleur drape la canalisation et doit la plaquer au maximum. La totalité du pli, dont l'extrémité est toujours dirigée vers le bas, se situe dans la partie supérieure de la canalisation. La manche est maintenue par des bandes adhésives ou des colliers souples à agrafage automatique à raison de 4 par tuyau. Les manches successives sont posées avec un recouvrement minimal de 0,30 m.

VI 1.2.3. Pose de canalisation en galerie :

Dans certains cas le tracé de la canalisation peut rencontrer des obstacles qui nous oblige à placer la conduite dans une en galerie.

Les conduites de diamètre important (sauf aqueducs) doivent être placées sur des madriers (bois de chêne) et calées de part et d'autre pour éviter leur mouvement.

Les canalisations de petit diamètre peuvent être placées dans un fourreau de diamètre supérieur et reposant sur des tasseaux en béton. Les robinets vannes sont placés dans des regards implantés de part et d'autre de la route.

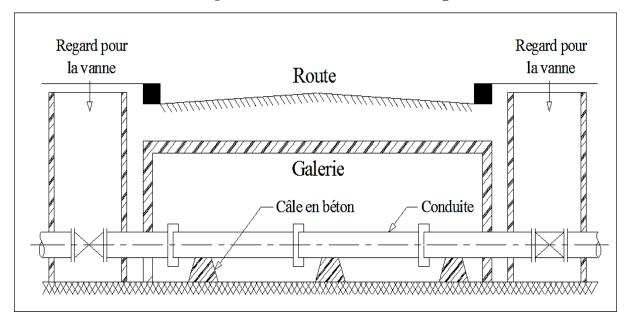


Figure VI.2. Pose de canalisation en galerie.

VI 2. Implantation du tracé des tranchées sur le terrain :

On matérialise l'axe de la tranchée sur le terrain avec des jalons placés en distances par des repères fixés où des bornes. La direction des axes et leurs extrémités sont ainsi bien déterminées.

VI 3. Nivellement de la plate-forme de pose :

Le nivellement est la mesure des différences d'altitudes entre deux où plusieurs points situés sur une pente uniforme. Le nivellement a pour but de définir le relief d'un terrain en fixant l'altitude d'un certain nombre de points toutes les côtes sont données par rapport à un niveau de base appelé plan de comparaison Lorsque le terrain compte des obstacles on procède au nivellement par cheminement et par un simple calcul. On détermine la hauteur de chaque point ainsi la profondeur de tranchée en point.

VI 4. Décapage de la couche de terre végétale :

Avant d'entamer l'excavation des tranchées, on doit tout d'abord commencer toujours par l'opération de décapage des terres végétales sur des faibles profondeurs. Le volume de la couche à décaper est donné par la formule suivant :

$$Vcv = L. b. e [m^3]$$

Avec:

- Vcv : volume de la terre décapée en (m3).
- L : longueur totale des tranchées en (m).
- **b** : largeur de la couche végétale en (m).
- e : épaisseur de la couche en (m), e = 10 cm.

Pour la réalisation de cette opération, On opte un bulldozer ou un angledozer.

VI 5. Excavation des tranchées :

Selon les caractéristiques du terrain l'excavation sera réalisée mécaniquement ou manuellement, la profondeur minimale de la tranchée à excaver atteint 1 m pour :

- Garder la fraîcheur de l'eau pendant les grandes chaleurs.
- Ne pas gêner le travail de la terre (exploitation).
- Protéger la canalisation contre le gel.

L'excavation des tranchées s'effectue par tronçon successive en commençant par les points hauts pour assurer s'il y lieu l'écoulement naturel des eaux d'infiltrations.

Pour la réalisation de cette opération, on opte pour une pelle mécanique. Donc l'excavation nécessite la détermination de plusieurs paramètres tels que :

- La profondeur de la tranchée (Htr).
- La largeur de la tranchée (b).

VI 5.1. La profondeur (Htr):

La profondeur de la tranchée dépend du diamètre de la conduite, des charges roulantes (extérieurs) et de la température, elle est donnée par la relation suivante :

$$Htr = D + h + h1 [m]$$

Avec:

Htr: Profondeur de la tranchée (m).

D : Diamètre de la conduite (m).

 \mathbf{h} : Hauteur de la génératrice supérieure de la conduite elle est entre 80 et 120 cm, on prend $\mathbf{h} = \mathbf{0.85} \, \mathbf{m}$.

h1: Epaisseur du lit de pose, on prend h1 = 0.2 m.

$$\Rightarrow$$
 Htr = 0.250+ 1 = 1.3 m, on prend **1.5m**

VI 5.2. La largeur de la tranchée :

La largeur de la tranchée doit être telle qu'un homme puisse travailler sans difficulté et elle augmente avec les diamètres des conduites à mettre en place. Elle doit permettre une pose correcte ; facilite-la Tache et aussi permettre le compactage du remblai.

La largeur de la tranchée sera calculée en fonction du diamètre de la conduite. On laisse 30 cm d'espace de chaque côté de la conduite.

$$b = D + 0.6 [m]$$

Avec:

• **b** : largeur de la tranchée (m).

• **D** : diamètre de la conduite (m).

VI 5.3. Choix du coefficient du talus :

Pour garder la stabilité du talus de la trachée durant les travaux de pose des conduites on définit le coefficient du talus. Qui est en fonction de la profondeur de la tranchée et de la nature du sol.

Sols	Profondeur de la tranchée					
Sols	jusqu'à1,5 m	jusqu'à 3m				
Sable	m=0,5	m=1				
Limon sableux	m=0,25	m=0,67				
Limon argileux	m=0	m=0,5				

Tab.VI.1. Choix du coefficient du talus.

Choix du coefficient du talus.

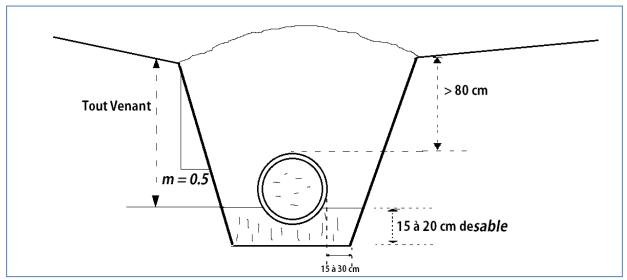


Figure VI.3. Pose de conduite en tranché dans un terrain ordinaire.

VI 6. Le volume des déblais :

VI 6.1. Section de la tranchée :

Les sections des trachées sont de forme trapézoïdale dont l'aire est :

$$Str = Htr \times b + m \times Htr^{2}[m^{2}]....(VI.4)$$

Avec:

- **Htr**: profondeur totale de la tranchée (m).
- **b** : largeur du fond de la tranchée (m).
- **m** : coefficient du talus.

VI 6.2. Volume à excaver :

Le volume d'excavation est :

$$VD = Str \times L = (b \times Htr) \times L [m^3]$$

Avec:

- **VD** : Volume du déblai (m³).
- **Str** : La section du tranché (m²).
- L: La longueur du tranché (m).
- **b** : La largeur du tranché (m).
- **Htr** : La hauteur de la tranchée (m).

Tab.VI.2. Calcul du volume du déblai.

Conduite	D (mm)	L	b	H _{tr}	S_D	V Déblai	V Décapage
Conduite	$D_{\text{exterieur}}(\text{mm})$	(m)	(m)	(m)	(m ²)	(m ³)	(m ³)
Conduite refoulement	250	4739.78	0.85	1,5	2,66	12 619,66	592,4725
(f_1-R) et (f_2-R)							
Conduit gravitaire	160	1239.48	0.76	1	1,26	1 561,74	143,77968
$(R-R1000 \text{ m}^3)$	200	598.29	0.80	1.5	2,55	1 525,64	71,7948
Conduite réseau Ø50	50	357.91	0.65	1	1,15	411,60	37,58055
Conduite réseau Ø63	63	1204.27	0.66	1	1,16	1 396,95	128,013901
Conduite réseau Ø75	75	732.7	0.67	1	1,17	857,26	78,76525
Conduite réseau Ø90	90	80.49	0.69	1	1,19	95,78	8,77341
Conduite réseau Ø110	110	1152.72	0.71	1	1,21	1 394,79	127,95192
Conduite réseau Ø160	160	157.36	0.76	1	1,26	198,27	18,25376
Conduite réseau Ø200	200	441.42	0.80	1.5	2,55	1 125,62	52,9704
Conduite réseau Ø250	250	10.70	0.85	1.5	2,66	28,49	1,3375
	21 215,81	1261,69367					

VI 6.3. Détermination de la capacité du godé :

Volume du terrassement par une pelle (m³)	≤10000	≥10000	>20000	>100000
Capacité du godet (m ³)	0.25-0.35	0.5-0.65	1-1.25	1.5

Tab.VI.3. Capacité du godet en fonction du volume de terrassement.

A travers le volume calculé ci-dessous, nous déterminons la capacité du godet pour notre pelle.

Comme le volume total est supérieur à 20 000 m3, on opte pour une pelle avec une capacité du gobet égale à 1 m^3 .

VI 6.4. Rendement d'exploitation de la pelle choisie :

Le rendement de la pelle est donné par la relation :

$$R_p = \frac{3600 \times q \times K_R \times K_t}{T_c \times K_f} \quad (m^3/h) \quad [\%]$$

Avec:

- q : Capacité du gobet 1 m³.
- **Kr**: Coefficient de remplissage du gobet $Kr = (0.8 \div 0.9)$, on prend Kr = 0.8.
- **Kt**: Coefficient d'utilisation du temps dépend de la nature du sol et de l'habilité du Conducteur, varie entre $(0,7 \div 0,9)$, on prend **Kt** = **0.8**.
- \mathbf{Kf} : Coefficient de foisonnement du sol $\mathbf{Kf} = 1,2$.
- Tc: La durée d'un cycle de remplissage du gobet $Tc = (15 \div 30)$ s, on prend Tc = 25 s.

AN:

$$R_{p} = \frac{3600 \times 1 \times 0.8 \times 0.8}{25 \times 1.2} = 76.8 \ m^{3} / h$$

Si on prend une durée de travail de 8 heures par jour **Rp** = **614.4 m3/j.**

VI 7. Le volume des remblais :

Le volume des remblais est :

$$VR=SR .L [m^3]$$

Avec:

- L : La longueur du tranché en (m).
- SR: La surface de remblai, égale à : $SR = SD Sc Ss [m^2]$

Avec:

- **SD** : surface du déblai en (m²).
- **Sc**: surface de la conduite en (m²).
- **Ss**: surface du lit de sable en (m²).

Le calcule de volume de remblai est représenter dans le tableau suivant :

Tab.VI.4. Calcul du volume du remblai.

D _{EXT} (mm)	L (m)	Sc (m ²)	Ss (m ²)	$S_D(m^2)$	$S_R(m^2)$	$V_{R}(m^{3})$
250	4739.78	0,0490	0,125	0,85	0,675	3203,79
160	1239.48	0,0200	0,116	0,76	0,623	773,31
200	598.29	0,0314	0,12	0,8	0,648	388,05
50	357.91	0,0019	0,105	0,65	0,543	194,35
63	1204.27	0,0031	0,1063	0,66	0,550	663,05
75	732.7	0,0044	0,1075	0,67	0,558	408,90
90	80.49	0,0063	0,109	0,69	0,574	46,25
110	1152.72	0,0094	0,111	0,71	0,589	679,53
160	157.36	0,0200	0,116	0,76	0,623	98,17
200	441.42	0,0314	0,12	0,8	0,648	286,30
250	10.70	0,0490	0,125	0,85	0,675	7,23
	6748,97					

N.B: D'après ce tableau, le volume total du remblai est de 6748,97 m³.

VI 8. La durée d'excavation :

Connaissant le volume de terre à excaver et le rendement de l'engin le temps d'exploitation sera :

$$T = V / Rp [jours]$$

Avec:

• V : Volume du sol excavé en (m3).

• **RP** : Capacité du godet en (m3/jour).

 $A.N : T = 21\ 215,81/\ 614.4 = 34\ jours.$

VI 9. Le compactage :

Le compactage ou tassement des sols est l'augmentation de leur densité apparente résultant de l'application d'une charge sur ces derniers.

Pour cette opération on utilise un compacteur à rouleau lisse.

VI 10. Elaboration Du Planning D'exécution Des Travaux :

Un projet comporte un nombre de tâches plus ou moins grand à réaliser dans les délais impartis et selon un agencement bien déterminé.

Le diagramme de GRANTT est un planning présentant une liste de tâches en colonne et en abscisse l'échelle de temps retenue.

La mise en oeuvre de technique de planification nécessite que :

- Les tâches soient identifiées.
- Les tâches soient quantifiées en termes de délais, de charges ou de ressources.
- La logique de l'ensemble des tâches ait été analysée.

On peut aussi suivre les étapes suivantes :

- La collecte des informations.
- La décomposition du projet.
- La définition des relations entre les tâches.
- Attribution des durées.
- Construction du diagramme.

VI 10.1. Planification des travaux :

Les principales opérations à exécuter sont :

- A. Décapage de la couche de terre végétale.
- **B**. Piquetage.
- C. Exécution des tranchées et des fouilles pour les vannes.
- **D**. Aménagement du lit de pose.
- E. La mise en place des canalisations en tranchée.
- **F**. Assemblage des tuyaux.
- G. Faire les essais d'étanchéité pour les conduites et joints.
- H. Remblai des tranchées.
- I. Travaux de finition.

La détermination du délai de la réalisation est représentée dans le tableau suivant :

Tab.VI.5. Détermination du délai de la réalisation.

OPERATION	T- (iours)	DP		DPP	MT	
OFERATION	T_R (jours)	DCP	DFP	DCPP	DFPP	1V1 1
A	20	0	20	0	20	0
В	10	20	30	20	30	0
С	38	30	68	30	68	0
D	45	68	113	68	113	0
Е	30	68	98	83	113	15
F	10	68	78	103	113	35
G	15	68	83	98	113	30
Н	12	113	125	113	125	0
I	25	125	150	125	150	0

Avec:

• **TR** : temps de réalisation.

• MT : marge totale.

• **DCP** : date de commencement au plutôt.

• **DFP**: date de finition au plutôt.

• DCPP : date de commencement au plus tard

• **DFPP**: date de finition au plus tard.

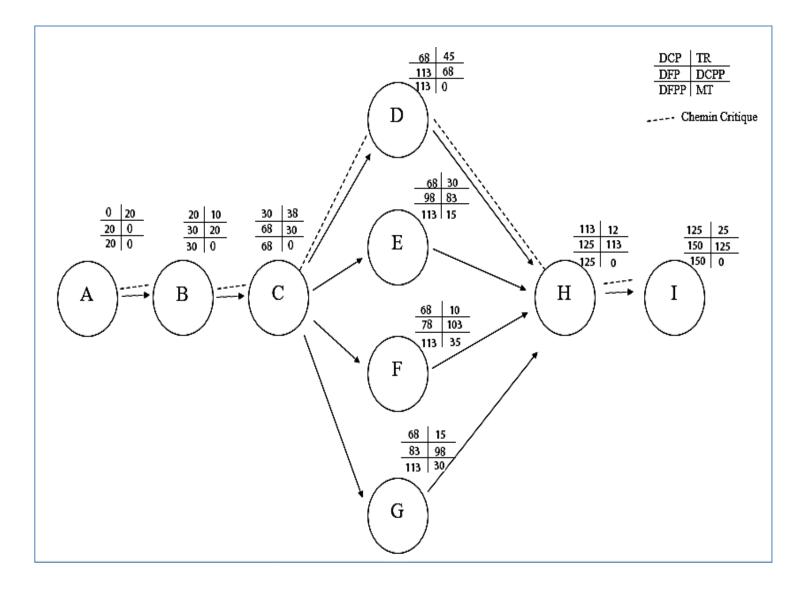


Figure VI.4. Réseau à noeuds.

25

Observation Jours 0 25 50 75 125 150 Opération 100 Décapage de la couche 20 Α de terre végétale Piquetage В 38 Exécution des tranchés C Aménagement du lit de 45 D pose La mise en place des 30 E conduites 10 Assemblage des tuyaux F 15 G Les essais d'étanchéité 12 Remblaiement des Η tranchés

Tab.VI.5: Planning des travaux (Diagramme de Gantt).

D'après la **Figure VI.5** et la table ci-dessus :

Travaux de finition

Ι

Le chemin critique sera : A-B-C-D -H-I avec : Σ TR= 150 jours.

N.B: La durée totale du projet est de 150 jours, cette durée peut être diminuée si on utilise plusieurs engins en même temps.

VI 11. Evaluation du projet :

Cette évaluation consiste à déterminer les quantités de toutes les opérations effectuées sur le terrain pour la réalisation du projet, ensuite les multiplier par le prix unitaire correspondant, et enfin, on trouve le coût total du projet.

VI 11.1. Devis estimatif d'établissement du projet :

Tab.VI.6: Devis estimatif de l'établissement du projet

Tab.VI.6 : Devis estimatif de l'établissement du projet								
Désignation	Unité	Quantité	Prix unitaire (DA)	Montant (DA)				
1- Terrassement								
Décapage	m3	1157,6	300	198 750,00				
Déblais	m3	10 263,53	300	40 737 000,00				
Pose de lit du sable	m3	1 157,56	1 200	27 030 000,00				
Remblaiement des tranchées avec du tout venant	m3	6748,97	300	7 121 759,20				
Évacuation des déblais excédentaires	m3	450,00	200	370 000,00				
2- Transport et pose o	le canal	isations						
Conduite ø 250	ml	4750,48	3 036,15	14 423 169,85				
Conduite ø 200	ml	1 039,71	1 931,48	2 008 179,07				
Conduite ø 160	ml	1396,84	1 336,43	1 866 778,88				
Conduite ø 110	ml	1152,72	632,39	728 968,60				
Conduite ø 90	ml	80,49	420,14	33 817,07				
Conduite ø 75	ml	732,70	351,59	257 609,99				
Conduite ø 63	ml	1 204,27	245,34	295 455,60				
Conduite ø 50	ml	357,91	158,28	56 649,99				
Equipements	-	-	-	1 492 250,00				

Chapitre VI Management de projets

VI 11.2. Devis global:

Tab.VI.6. Devis estimatif global.

Nature des charges	Charges en DA
Terrassement	75 457 509,20
Conduites	21 162 879,06
Totale HT	96 620 388,26
TVA 17%	16 425 466.00
TOTALE TTC	96 620 388,26

Conclusion:

Pour une réussite totale du projet, l'organisation du chantier ne doit subir aucune défaillance à la fois technique ou humaine.

Nous avons pu, grâce au diagramme établi et par les formules, déduire une durée de réalisation de la conduite d'amenée et de refoulement de 150 jours.

Le cout total s'élève à quatre-vingt-seize millions six cent vingt-trois cent quatre- vingt-huit dinars algériens et vingt six centimes.

Conclusion générale

A travers ce mémoire, nous avons traité une étude de réseau de distribution l'alimentation en eau potable de localité Sfissifa , Wilaya de Naama , à partir de station de deux forages (forage sfissifa et belgrad) afin d'améliorer la situation hydraulique de cette région.

Dans un premier temps, un important travail de collecte des données sur les caractéristiques de la population a été réalisé sur place avec l'aide des différentes administrations concernées.

La simulation de réseau est faite par le logiciel EPANET qui est relativement facile d'accès et il permet d'effectuer des simulations assez aisément.

Pour le dimensionnement du réseau de distribution, nous avons choisi le P.E.H.D, PN10 pour différents diamètres.

Nous avons dimensionné les ouvrages de l'adduction d'eau à partir des deux forages (sfissifa et belgrad) et arrivant au réservoir de distribution à l'amont de la ville Sfissifa .

Les forages sont équipés de groupes électropompes immergés CAPRRARI de type : E8S50/4A + MC617 et E9S50/3Q + MC620 .

Les deux conduites refoulants au réservoir tampon a partir de deux forages sont en PEHD et de 250 mm de diamètre.

Une conduite gravitaire de 160 et 200 mm relie ce dernier au réservoir de distribution existant de 1000 m3.

En dernier lieu, pour la réalisation de notre projet on a développé dans un chapitre management de projets avec quelque conseil et recommandations pour la réalisation de notre projet dans les meilleures conditions technique et economique.

En fin de ce projet on espère qu'on a trouvé les meilleures solutions pour résoudre le problème de l'eau potable d'SFISSIFA.

REFERENCES BIBLIOGRAPHIQUES

- **1- Control technique de construction hydraulique** (CTH). Commune De Mecheria Wilaya De Namma.
- **2- Mr B.SALAH** « polycopie d'Alimentation en Eau Potable des Agglomérations», E.N.S.H.BLIDA.2014.p112.
- **3-** Mr DUPONT, A. « Hydraulique urbaine », Tome I et II, Edition Eyrolles.Paris.France.1988.
- **4-** Mr M. CARLIER « Hydraulique générale et appliquée », Edition Eyrolles, Paris 1972.
- **5-** Mr K.KHODJATE: cours de Pompe et station de pompage, E.N.S.H. Blida, (2015/2016).
- **6- Mme W.MOKRANE**: Turbo machine et station de pompage E.N.S.H. Blida, (2014/2015).

Mémoire de fin d'étude présenté par **Mr DIOUF.PM.O** « Conception et dimensionnement d'un réseau d'alimentation en eau potable de la nouvelle ville de DIAMNIA DIO » Université Cheikh Diop de Dakar. SENEGAL Juillet 2005.

ANNEXE IV.1:

Débit en fonction des diamètres et gradient de perte de charge et la vitesse.

 $Tableau\ de\ pertes\ de\ charge\ K=0,015\ mm\ pour\ les\ tubes\ PE100,\ PN10\ selon\ la\ formule\ Colebrook-white$

:	D=75 mm S=4,5 mm Di=66 mm	1		D=90 mm S=5,4 mm bi=79,2 m	ı	D=110 mm D=125 mi S=6,6 mm S=7,4 mr Di=96,8 mm Di=110,2 r		n			
Vitesse (m/s)	débit (l/sec)	J(m/100 Om)	Vitesse (m/s)	débit (l/sec)	J(m/100 Om)	Vitesse (m/s)	débit (l/sec)	J(m/100 0m)	Vitesse (m/s)	débit (l/sec)	J(m/100 0m)
0.20	0.68	0.92	0.20	0.98	0.73	0.20	1.47	0.58	0.20	1.91	0.47
0.30	1.03	1.75	0.30	1.48	1.50	0.30	2.21	1.13	0.30	2.86	0.93
0.40	1.37	3.19	0.40	1.97	2.51	0.40	2.94	1.97	0.40	3.81	1.61
0.50	1.71	4.51	0.50	2.46	3.47	0.50	3.68	2.87	0.50	4.77	2.45
0.60	2.05	6.03	0.60	2.95	4.87	0.60	4.41	3.92	0.60	5.72	3.24
0.70	2.39	8.37	0.70	3.45	6.49	0.70	5.15	5.30	0.70	6.67	4.35
0.80	2.74	10.35	0.80	3.94	8.32	0.80	5.88	6.66	0.80	7.63	5.62
0.90	3.08	13.28	0.90	4.43	10.35	0.90	6.62	8.39	0.90	8.58	7.04
1.00	3.42	15.71	1.00	4.92	12.80	1.00	7.36	10.05	1.00	9.53	8.44
1.10	3.76	18.32	1.10	5.42	15.02	1.10	8.09	11.85	1.10	10.49	10.13
1.20	4.10	22.08	1.20	5.91	17.65	1.20	8.83	14.08	1.20	11.44	11.77
1.30	4.45	25.12	1.30	6.40	20.48	1.30	9.56	16.17	1.30	12.39	13.53
1.40	4.79	29.46	1.40	6.89	23.51	1.40	10.30	18.73	1.40	13.35	15.62
1.50	5.13	32.92	1.50	7.39	26.07	1.50	11.03	21.11	1.50	14.30	17.62
1.60	5.47	36.56	1.60	7.88	29.45	1.60	11.77	23.62	1.60	15.25	19.97
1.70	5.81	41.69	1.70	8.37	33.02	1.70	12.50	26.62	1.70	16.21	22.20
1.80	6.16	45.75	1.80	8.86	36.78	1.80	13.24	29.46	1.80	17.16	24.82
1.90	6.50	51.44	1.90	9.36	40.73	1.90	13.98	32.82	1.90	18.11	27.29
2.00	6.84	55.91	2.00	9.85	44.87	2.00	14.71	35.91	2.00	19.07	30.17
2.10	7.18	60.56	2.10	10.34	49.20	2.10	15.45	39.12	2.10	20.02	32.87
2.20	7.52	67.03	2.20	10.83	53.00	2.20	16.18	42.95	2.20	20.97	36.00
2.30	7.86	72.09	2.30	11.33	57.20	2.30	16.92	46.44	2.30	21.93	38.94
2.40	8.21	79.10	2.40	11.82	58.43	2.40	17.65	50.59	2.40	22.88	42.33
2.50	8.55	84.56	2.50	12.31	63.32	2.50	18.39	54.36	2.50	23.83	45.85
2.60	8.89	90.20	2.60	12.80	67.37	2.60	19.12	58.25	2.60	24.79	49.14
2.70	9.23	97.98	2.70	13.29	72.60	2.70	19.86	62.86	2.70	25.74	52.92
2.80	9.57	104.03	2.80	13.79	78.02	2.80	20.60	67.04	2.80	26.69	56.44
2.90	9.92	112.36	2.90	14.28	83.63	2.90	21.33	71.96	2.90	27.65	60.06
3.00	10.26	118.78	3.00	14.77	89.42	3.00	22.07	76.41	3.00	28.60	64.21

ANNEXE IV.2

Débit en fonction des diamètres et gradient de perte de charge et la vitesse.

3

Conception du réseau en PEhd

Tableau de pertes de charge K=0,015 mm pour les tubes PE100, PN10 selon la formule Colebrook-white

5	D=160 mm S=9,5 mm Di=141 mm		D=200 mm S=11,9 mm Di=176,2 mm			D=250 mm S=14,8 mm Di=220,4 mm			S=11,9 mm S=14,8 mm S=18,7 mm			n
Vitesse (m/s)	débit (l/sec)	J(m/100 0m)	Vitesse (m/s)	débit (l/sec)	J(m/100 0m)	Vitesse (m/s)	débit (l/sec)	J(m/100 0m)	Vitesse (m/s)	débit (l/sec)	J(m/100 0m)	
0.20	3.12	0.34	0.20	4.87	0.27	0.20	7.63	0.20	0.20	12.10	0.15	
0.30	4.68	0.72	0.30	7.31	0.54	0.30	11.44	0.42	0.30	18.15	0.31	
0.40	6.24	1.18	0.40	9.75	0.92	0.40	15.25	0.70	0.40	24.20	0.53	
0.50	7.80	1.79	0.50	12.19	1.37	0.50	19.07	1.04	0.50	30.25	0.78	
0.60	9.36	2.51	0.60	14.62	1.89	0.60	22.88	1.45	0.60	36.30	1.10	
0.70	10.92	3.28	0.70	17.06	2.52	0.70	26.69	1.92	0.70	42.35	1.45	
0.80	12.49	4.20	0.80	19.50	3.20	0.80	30.51	2.46	0.80	48.39	1.85	
0.90	14.05	5.16	0.90	21.93	3.99	0.90	34.32	3.04	0.90	54.44	2.30	
1.00	15.61	6.29	1.00	24.37	4.82	1.00	38.13	3.69	1.00	60.49	2.79	
1.10	17.17	7.52	1.10	26.81	5.73	1.10	41.95	4.39	1.10	66.54	3.32	
1.20	18.73	8.77	1.20	29.25	6.71	1.20	45.76	5.15	1.20	72.59	3.90	
1.30	20.29	10.19	1.30	31.68	7.80	1.30	49.57	5.98	1.30	78.64	4.52	
1.40	21.85	11.62	1.40	34.12	8.97	1.40	53.39	6.85	1.40	84.69	5.18	
1.50	23.41	13.24	1.50	36.56	10.16	1.50	57.20	7.78	1.50	90.74	5.89	
1.60	24.97	14.96	1.60	38.99	11.42	1.60	61.01	8.76	1.60	96.79	6.63	
1.70	26.53	16.66	1.70	41.43	12.82	1.70	64.82	9.80	1.70	102.84	7.42	
1.80	28.09	18.57	1.80	43.87	14.22	1.80	68.64	10.92	1.80	108.89	8.26	
1.90	29.65	20.45	1.90	46.31	15.75	1.90	72.45	12.06	1.90	114.94	9.12	
2.00	31.21	22.55	2.00	48.74	17.31	2.00	76.26	13.26	2.00	120.99	10.04	
2.10	32.77	24.74	2.10	51.18	18.93	2.10	80.08	14.52	2.10	127.04	10.99	
2.20	34.33	26.89	2.20	53.62	20.68	2.20	83.89	15.82	2.20	133.09	12.00	
2.30	35.90	29.27	2.30	56.05	22.44	2.30	87.70	17.22	2.30	139.14	13.03	
2.40	37.46	31.59	2.40	58.49	24.34	2.40	91.52	18.64	2.40	145.18	14.11	
2.50	39.02	34.16	2.50	60.93	26.23	2.50	95.33	20.11	2.50	151.23	15.23	
2.60	40.58	26.82	2.60	63.37	28.20	2.60	99.14	21.63	2.60	157.28	16.40	
2.70	42.14	39.40	2.70	65.80	30.31	2.70	102.96	23.21	2.70	163.33	17.59	
2.80	43.70	42.25	2.80	68.24	32.41	2.80	106.77	24.88	2.80	169.38	18.84	
2.90	45.26	45.01	2.90	70.68	34.67	2.90	110.58	26.56	2.90	175.43	20.11	
3.00	46.82	48.04	3.00	73.11	36.91	3.00	114.40	28.30	3.00	181.48	21.45	

UNITETUBE

GAMME DE PRIX TUBES PEHD EAU (PE80 & PE100)

(Prix Valable à compter du : 01 AVRIL 2010) Selon la Norme ISO 4427

	TUE	BES PEH	D : PN 06		
C0DE	Diam Ext	EP(mm)	Prix HT (DA/ML)	PrixTTC (DA/ML)	
-	Ø20	-			PE80
P3513001	Ø25	-	38,22	42,48	PE80
P3513006	Ø32	-	48,28	68,87	PE80
P3513009	Ø40	2	94,6	78,88	PE80
P3513012	Ø50	2,4	98,25	114,95	PE80
P3513015	Ø63	3	100,25	137,49	PE80
P3513018	Ø75	3,6	225,21	263,49	PE80
P3513022	Ø90	4,3	296,03	346,36	PE100
P3513025	Ø110	4,9	357,86	418,7	PE100
P3513040	Ø125	-	473,08	553,5	PE100
P3513030	Ø160	5,8	770,35	901,89	PE100
P3513044	Ø200	7,2	1163,39	1361,17	PE100
P3513059	Ø250	9,1	1950	2231,5	PE100
P3513042	Ø315	11,4	3080	3603,6	PE100
P3513039	Ø400	14,5	5134,24	6007,06	PE100
P3513051	Ø500	19,1	6938,13	8117,61	PE100
P3513052	Ø630	24,1	12682,5	14038,83	PE100

	TUE	SES PEH	D : PN 10		
CODE	Diam Ext	EP(mm)	Prix HT (DA/ML)	PrixTTC (DA/ML)	
P3513000	Ø20		28,07	34,01	PE80
P3513004	Ø25	2,5	38,28	44,79	PE80
P3513007	Ø32	2,5	55,48	64,91	PE80
P3513010	Ø40	3	94,1	98,48	PE80
P3513013	Ø50	3,7	138,26	158,28	PE80
P3513016	Ø63	4,7	209,68	245,34	PE80
P3513019	Ø75	5,6	300,5	351,59	PE80
P3513023	Ø90	5,4	359,09	420,14	PE100
P3513026	Ø110	6,6	540,5	632,39	PE100
P3513028	Ø125	7,4	680,13	772,36	PE100
P3513031	Ø160	9,5	1142,25	1336,43	PE100
P3513033	Ø200	11,9	1650,84	1931,48	PE100
P3513035	Ø250	14,8	2590	3036,15	PE100
P3513041	Ø315	18,7	4093,57	4789,47	PE100
P3513038	Ø400	23,7	6098,74	7837,53	PE100
P3513049	Ø500	29,7	10152,51	11878,44	PE100
P3513048	Ø630	37,7	15733,76	18411,38	PE100

	TUBE	S PEH	D : PN 16		
CODE	Diam Ext	EP(m m)	Prix HT (DA/ML)	Prix TTC (DA/ML)	
P3513002	Ø20	2,3	32,12	37,65	PE80
P3513003	Ø25	2,8	50,65	58,49	PE80
P3513005	Ø32	3,6	78,51	91,88	PE80
P3513008	Ø40	4,5	120,95	141,51	PE80
P3513011	Ø50	5,6	188,28	220,29	PE80
P3513014	Ø63	7,1	297,95	348,5	PE80
P3513017	Ø75	8,4	407,8	477,13	PE80
P3513020	Ø90	8,2	610,71	597,53	PE100
P3513021	Ø110	10	767,19	888,91	PE100
P3513024	Ø125	11,4	967	1132,44	PE100
P3513027	Ø160	14,6	1550	1828,3	PE100
P3513029	Ø200	18,2	2472	2892,94	PE100
P3513032	Ø250	22,7	3915	4463,55	PE100
P3513034	Ø315	28,6	5850	6844,5	PE100
P3513036	Ø400	36,3	9320	10904,4	PE100
P3513037	Ø500	45,4	14911	17445,87	PE100
P3513043	Ø630	57,2	23123,5	27054,5	PE100

	TUE	ES PEH			
C0DE	Diam Ext	EP(mm)	Prix HT (DA/ML)	Prix TTC (DA/ML)	
P3513101	Ø20	2,3	38,01	44,47	PEM0
P3513102	Ø25	3	53,29	62,35	PE100
P3513103	Ø32	3,6	82,22	96,2	PE100
P3513104	Ø40	4,5	128,15	149,94	PE100
P3513105	Ø50	5,6	200,7	234,82	PE100
P3513106	Ø63	7,1	338,73	396,31	PE100
P3513107	Ø75	8,4	447,36	623,4	PE100
P3513108	Ø90	10,1	637,09	733,7	PE100
P3513109	Ø110	12,3	948	1110,17	PE100
P3513110	Ø125	14	1202,75	1407,22	PE100
P3513111	Ø160	17,9	1947,58	2278,88	PE100
P3513112	Ø200	22,4	3121,79	3952,3	PE100
P3513113	Ø250	27,9	4846,33	5579,21	PE100
P3513114	Ø315	35,2	7588,88	8875,48	PE100
P3513115	Ø400	44,7	12110,03	14158,74	PE100
P3513054	Ø500	55,8	19053,81	22304,68	PE100
-	Ø630	-			PE100

ANNEXE V.2.1:

La fiche technique de la pompe 1 choisie.

E8S50/4A + MC617	E8S50/4A + MC617					
Caractéristiques requises Débit Hauteur de refoulement Fluide Température Type d'installation N.be de pompes	18 l/s 52,3 m Eau potable 290 K Pompe seule 1					
Caractéristiques de la pompe Débit Hauteur de refoulement Puissance absorbée Rendement Hauteur manométrique H(Q=0 Orif. de refoulement	18,4 l/s 52,5 m 12,4 kW 76,2%					
Caractéristiques moteur Fréquence Tension nominale Vitesse nominale Nombre de pôles Puissance nominale P2 Courant nominal Type de moteur Classe d'isolation Degré de protection Limites opérationnelles Démarrages / h max. Température maxi. du liquide p Teneur maximum en matières Densité max. Viscosité maxi. Caractéristiques générales						
Poids	126 kg					
Matériaux CONSTRUCTION POMPE Corps du clapet Clapet Corps d'aspiration Corps d'étage Arbre Roue Bague d'usure Crépine Gouttière protection câbles Accouplement CONSTRUCTION MOTEUR Support supérieur Support inférieur Chemise stator Arbre Anneau d'étanchéité Para-sable Bobinage Butée	Fonte Fonte/Acier inox Fonte Fonte Acier inox Fonte Caoutchouc Acier inox Acier inox - Fonte Fonte Acier inox - Caoutchouc Caoutchouc Caoutchouc Caoutchouc Caoutchouc Cuivre isolé Type Michell					

[Source : Catalogue (PumpTutor Caprari)]

ANNEXE V.2.2:

Les dimensions géométriques de la pompe 1 choisie.

Dimensions mm

A = 1723

B = 930

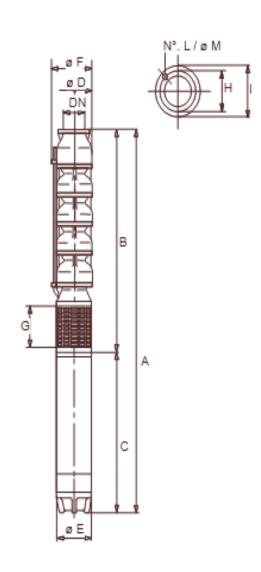
C = 793

D = 168

DN = 100

E = 143

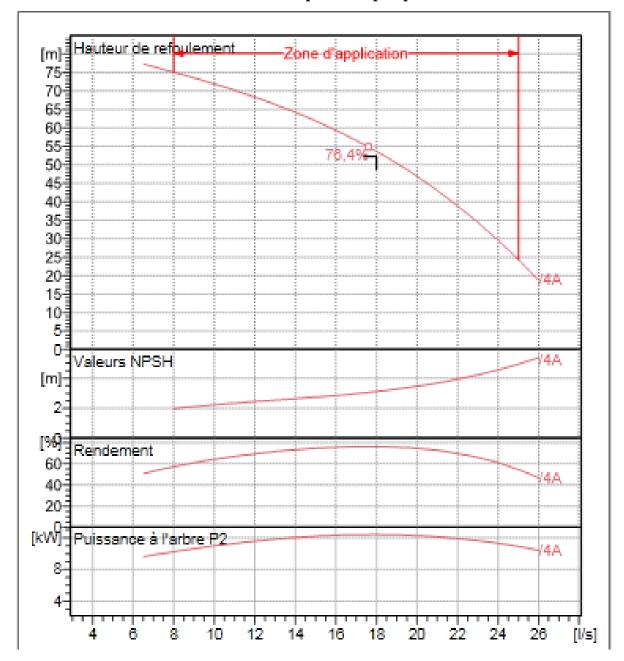
F = 181


G = 160

H = 145

I = 166

L = 6


M = 11,5

[Source : Outil informatique (PumpTutor Caprari)]

ANNEXE V.2.3:

Les courbes caractéristiques de la pompe 1 choisie.

[Source : Outil informatique (PumpTutor Caprari)]

ANNEXE V.3.1:

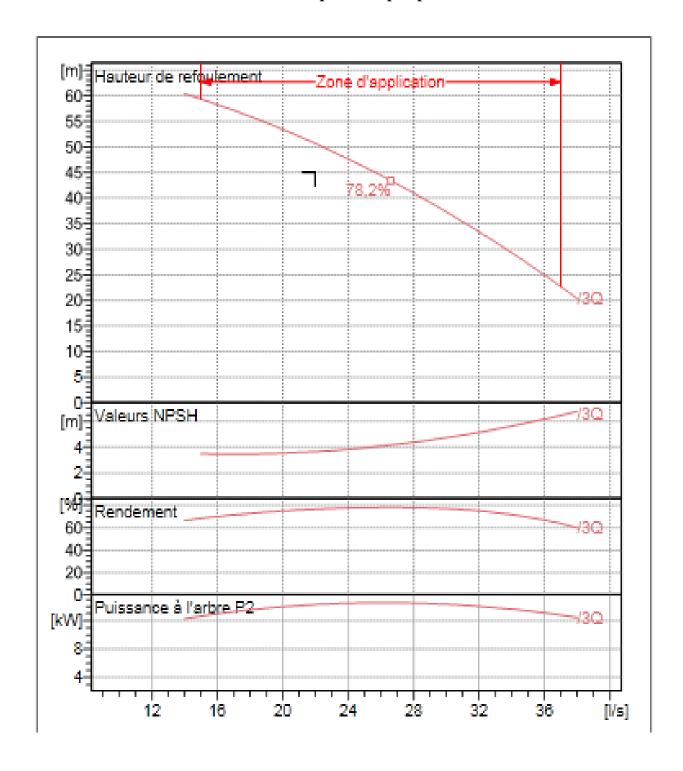
La fiche technique de la pompe 2 choisie.

E9S50/3Q + MC620	
Caractéristiques requises	
Débit Hauteur de refoulement	22 l/s 45,1 m
Fluide	Eau potable
Température	290 K
Type d'installation N.be de pompes	Pompe seule
N.De de pompes	1
Caractéristiques de la pompe	
Débit	24,5 l/s
Hauteur de refoulement Puissance absorbée	46,8 m
Rendement	14,5 kW
Hauteur manométrique H(Q=0)	77,8% 68.8 m
Orif. de refoulement	125 mm
Caractéristiques moteur	
Fréquence	50 Hz
Tension nominale Vitesse nominale	400 V
Nombre de pôles	2900 1/min 2
Puissance nominale P2	15 kW
Courant nominal	34.5 A
Type de moteur	3~
Classe d'isolation	Y
Degré de protection	IP 68
Limites opérationnelles	
Démarrages / h max.	15
Température maxi. du liquide pompé	
Teneur maximum en matières solides	40 g/m³
Densité max.	998 kg/m³
Viscosité maxi.	1 mm²/s
Caractéristiques générales	
Poids	128 kg
	.25 kg

Matériaux				
CONSTRUCTION POMPE Corps du clapet Clapet Corps d'aspiration Corps d'étage Arbre Roue Bague d'usure Crépine Gouttière protection câbles Accouplement CONSTRUCTION MOTEUR Support supérieur Support supérieur Support inférieur Chemise stator Arbre Anneau d'étanchéité Para-sable Bobinage	Fonte Fonte/Acier inox Fonte Fonte Acier inox Fonte Caoutchouc Acier inox Acier inox Acier inox Acier inox Acier inox Acier inox Caoutchouc Acier inox Coutchouc Acier inox			
Bobinage Butée	Cuivre isolé Type Michell			

 $[\textbf{Source} : \textbf{Outil informatique} \ (\textbf{PumpTutor Caprari})]$

ANNEXE V.3.2:


Les dimensions géométriques de la pompe 2 choisie.

Dimensions mmA = 1650N°. L/øM B = 828C = 822D = 188DN = 125 E = 143 F = 200G = 160H = 167I = 190В L=6 M = 13.5C

[Source : Outil informatique (PumpTutor Caprari)]

ANNEXE V.3.3:

Les courbes caractéristiques de la pompe 2 choisie.

[Source : Outil informatique (PumpTutor Caprari)]