Higher National School of Hydraulic The Library

Digital Repository of ENSH

المدرسة الوطنية العليا للري المكتبة المستودع الرقمي للمدرسة العليا للري

The title (العنوان):

Réhabilitation du réseau d'AEP de la ville de Larbaatache (w. Boumerdes).

The paper document Shelf mark (الشفرة) : 1-0019-20

<u>APA Citation</u> (توثيق APA):

Djerroumi, Mohamed Amine (2020). Réhabilitation du réseau d'AEP de la ville de Larbaatache (w. Boumerdes)[Mem Ing, ENSH].

The digital repository of the Higher National School for Hydraulics "Digital Repository of ENSH" is a platform for valuing the scientific production of the school's teachers and researchers.

Digital Repository of ENSH aims to limit scientific production, whether published or unpublished (theses, pedagogical publications, periodical articles, books...) and broadcasting it online.

Digital Repository of ENSH is built on the open software platform and is managed by the Library of the National Higher School for Hydraulics. المستودع الرقمي للمدرسة الوطنية العليا للري هو منصة خاصة بتثمين الإنتاج العلمي لأساتذة و ماحثر المدرسة.

يهدف المستودع الرقمي للمدرسة إلى حصر الإنتاج العلمي سواءكان منشورا أو غير منشور (أطروحات،مطبوعات بيداغوجية، مقالات الدوريات، كتب....) و بثه على الخط.

المستودع الرقمي للمدرسة مبني على المنصة المفتوحة و يتم إدارته من طرف مديرية المكتبة للمدرسة العليا للري.

كل الحقوق محفوظة للمدرسة الوطنية العليا للري.

الجمهورية الجزائرية الديمقراطية الشعبية وزارة التعليم العالي و البحث العلمي

NATIONAL HIGHER SCHOOL FOR HYDRAULICS

"The MujahidAbdellah ARBAOUI"

MEMOIRE DE FIN D'ETUDES

Pour l'obtention du diplôme d'Ingénieur d'Etat en Hydraulique

Option: ALIMENTATION EN EAU POTABLE

THEME:

REHABILITATION DU RESEAU D'AEP DE LA VILLE DE LARBAATACHE (W. BOUMERDES)

Présenté par :

MOHAMED AMINE DJERROUMI

Devant les membres du jury

Nom et Prénoms	Grade	Qualité		
MEDDI Hind	M.C.A	Président		
KAHLERRAS Djilali	M.C.B	Membre		
KHALED/HOULI Samia	M.A.A	Membre		
KAHLERAS Malika	M.C.B	Promotrice		

Session Septembre 2020

الملخص:

تعاني مدينة الاربعطاش من شح المياه و عدم الانتضام في توزيعه ، لذلك تهدف الدراسة التي قمنا بها الى استخراج مختلف المشاكل التي تعاني منها شبكة التوزيع عن طريق التشخيص الفيزيائي و التقني ، و انطلاقا من تقدير الحاجيات على مدى يقدر بثلاثين سنة قمنا بوضع شبكة جديدة تتوافق مع متطلبات السكان.

اضافة الى ذلك قمنا بفحص قدرة التخزين الحالية و الحاجة الى اضافة خزان جديد ان تطلب الامر و اخيرا قمنا بحساب حجوم الاعمال اللازمة و التقييم المالي للمشروع.

Résumé:

La ville de LARBAATACHE souffre d'un manque d'eau et d'irrégularité dans leur distribution , pour cela l'objectif de notre étude est d'identifier les différent problème présent dans le réseau de distribution par le biais d'un diagnostic physique et hydraulique et à partir de l'estimation des besoins à l'horizon 2050 on a projeté un nouveau réseau qui répond aux besoins de l'agglomération jusqu'à l'horizon de calcul , on a aussi vérifier la capacité de stockage de l'agglomération et la nécessite de la projection d'un nouveau ouvrage de stockage , finalement on a calculé le quantité de travaille et on a finalisé notre étude par un devis quantitatif et estimatif du projet.

Abstract:

the city of LARBAATACHE suffers from water scarcity and lack of alignment in its distribution. Therefore, this study aims to extract the various problems that the distribution network suffers from through physical and technical diagnostics. Based on estimating the needs over a period of thirty years, we have developed a new network that corresponds to the requirements of the population.

In addition to that, we examined the current storage capacity and the need to add a new tank if required. Finally, we calculated the required volumes of work and the financial evaluation of the project.

Sommaire:

Introductio	on:	10
	Chapitre I : Présentation de la zone d'étude	
I.1 Int	troduction :	12
I.2 Sit	tuation géographique de la commune de LARBATACHE:	12
	Accessibilité de la commune :	
I.3 Sit	tuation physique et naturelles du site :	14
I.3.1	Topographies et reliefs :	14
I.3.2	Le climat :	14
I.3.3	Les températures :	15
I.3.4	Les vents :	15
I.3.5	Séismicité:	15
I.4 Sit	tuation hydraulique :	16
I.4.1	Les ressources en eau :	16
I.4.2	Les ouvrages de stockages :	17
I.4.3	Les stations de pompages :	17
I.4.4	Les adductions :	18
I.5 Co	onclusion:	19
	Chapitre II : Estimation des besoins en eau	
II.1 Int	troduction :	21
II.2 Ev	olution de la population :	21
II.3 Es	timation des besoins moyens actuels :	22
II.3.1	Généralité :	22
II.3.2	Choix de la dotation :	22
II.3.3	Catégories des besoins en eau :	23
II.3.4	Besoins domestiques moyens actuels :	23
II.3.5	Besoins moyens actuels des autres catégories de consommations :	24
II.3.6	Récapitulation de la consommation moyenne journalière actuel :	24
II.3.7	Fuites et gaspillage:	25
II.3.8	Variation de la consommation journalière actuels :	25
II.3.9	Variations de la consommation horaire actuelle :	27
II.3.10	Régime de la consommation de l'agglomération :	30
II.3.11	Récapitulatif des calculs actuels :	31
II.3.12	Tracés des graphiques de consommation horaire actuelle :	32

II.4	Est	imation des besoins moyens à l'horizon de 2050 :	33	
II.4	l .1	Besoins domestiques moyens à l'horizon de 2050 :	33	
II.4	1.2	Besoins des autres catégories de consommation à l'horizon de 2050 :	33	
II.4	1.3	Récapitulation de calcul des besoins moyens à l'horizon de 2050 :	34	
II.4	1.4	Fuites et gaspillage :	34	
II.4	1.5	Variation de la consommation journalière à l'horizon de 2050 :	35	
II.4	1.6	Variation de la consommation horaire à l'horizon de 2050 :	35	
II.4	1.7	Régime de consommation horaire à l'horizon de 2050 :	36	
II.4	1.8	Récapitulatif des calculs à l'horizon 2050 :	37	
II.4	1.9	Tracés des graphiques de consommation horaire à l'horizon de 2050 :	38	
II.5	Co	nclusion:	39	
		Chapitre III : Etat actuel du réseau de distribution		
III.1	Inti	roduction:	41	
III.2	Ob	jectif du diagnostic du réseau :	41	
III.3		t physique du réseau :		
III.3.1 Etat des conduites :				
III.3.2 Détails du réseau existent :				
III.4	Eta	t hydraulique :	46	
III.	4.1	Définition du logiciel EPANET :	47	
III.	4.2	Débit entrant dans le réseau :	47	
III.	4.3	Résultats du simulation (Etat hydraulique):	54	
III.	4.4	Interprétation du résultat de la simulation :	59	
III.5	Co	nclusion:	59	
		Chapitre IV : Projection et dimensionnement du réseau		
IV.1	Inti	oduction:	61	
IV.2	Ty	pes des réseaux de distribution :	61	
IV.	2.1	Réseau maillé :	61	
IV.	2.2	Réseau ramifié:	61	
IV.	2.3	Réseau mixte :	62	
IV.3	Ch	oix du type de réseau :	62	
IV.4	Pri	ncipe du tracé du réseau :	62	
IV.5	Cal	cul du réseau de distribution :	63	
IV.	5.1	Débit entrant dans le réseau :	63	
IV.	5.2	Calcul des débits spécifiques :	63	

IV.	5.3	Calcul des débits en route dans chaque tronçon :	64
IV.	5.4	Calcul des débits aux nœuds :	64
IV.6	Cal	cul des débits :	64
IV.7	Dir	nensionnement du réseau :	69
IV.	7.1	Etat des nœuds:	70
IV.	7.2	Etat des arcs:	72
IV.	7.3	Etat des réducteurs des pressions :	75
IV.8	Co	nclusion:	78
		Chapitre V : Etude des ouvrages de stockage	
V.1	Inti	oduction:	80
V.2	Rô	le des réservoirs :	80
V.3	Em	placement des réservoirs :	80
V.4	Cla	ssification des réservoirs :	81
V.4	l .1	D'après la nature des matériaux de construction, on distingue :	81
V.4	1.2	D'après la situation des lieux, ils peuvent être :	81
V.4	1.3	D'après leurs formes :	81
V.4	1.4	Selon le type d'usage :	81
V.5	Ch	oix de type de réservoir :	81
V.6	Equ	uipements d'un réservoir :	81
V.6	5.1	Une conduite d'arrivée ou d'alimentation :	82
V.6	5.2	Une conduite de départ ou de distribution :	82
V.6	5.3	Une conduite de trop-plein :	82
V.6	5.4	Une conduite de vidange :	82
V.6	5.5	Une conduite by-pass:	82
V.6	5.6	Un système de matérialisation d'incendie :	82
V.7	Cal	cul du volume du réservoir :	83
V.7	7.1	Principe de calcul :	84
V.7	7.2	Calcul du volume :	85
V.8	Ent	retien des réservoirs :	86
V.9	Red	commandations :	87
V.10	Co	nclusion:	87
		Chapitre VI : Organisation du chantier et pose de canalisation	
VI.1	Inti	oduction:	89
VI.2	Tra	vaux de pose de canalisation :	89

VI.2.1	Exécution des tranchées :	90
VI.2.2	Pose du lit de sable :	90
VI.2.3	Pose des conduites :	90
VI.2.4	Les pièces spéciales :	91
VI.2.5	Les accessoires :	92
VI.2.6	Compactage :	93
VI.3 Ca	lcul des quantités de travaux de pose de canalisation :	93
VI.3.1	Longueur des canalisations et grillage avertisseur :	93
VI.3.2	Volume déblai :	93
VI.3.3	Volume du lit de sable :	95
VI.3.4	Volume remblai :	96
VI.3.5	Volume total du remblai :	97
VI.3.6	Volume du déblai à évacuer :	98
VI.4 Ch	oix des engins d'exécution:	98
VI.4.1	Pelle hydraulique :	98
VI.4.2	Bulldozer:	98
VI.5 De	vis quantitatif estimatif:	99
VI.6 Ca	lcul du délai de réalisation du projet :	101
VI.6.1	Planification des travaux :	101
VI.7 Co	nclusion:	102
Conclusion	:	103
Références	bibliographiques:	104
Annexe:		105

Liste des tableaux

Liste des tableaux :

Tableau I – 1: précipitation moyennes mensuelles	15
Tableau I – 2: état de champ de captage de KHMISS EL KHACHNA	16
Tableau I – 3: les ouvrages de stockage de la ville de LARBAATACHE	17
Tableau I – 4: récapitulatif des adductions existent	18
Tableau II - 1: évolution de la population de la ville de LARBAATACHE	21
Tableau II - 2: les besoins domestiques moyens actuels	23
Tableau II - 3: Besoins moyens actuels des autres catégories de consommations	24
Tableau II - 4: Récapitulation de la consommation moyenne journalière actuel	25
Tableau II - 5: Variation de la consommation journalière actuels	27
Tableau II - 6: les valeurs de βmax en fonction du nombre d'habitant	28
Tableau II - 7: les valeurs de βmin en fonction du nombre d'habitant	29
Tableau II - 9: régime de consommation de l'agglomération	30
Tableau II - 10: Récapitulatif des calculs actuels	31
Tableau II - 11: besoins moyens domestiques à l'horizon 2050	33
Tableau II - 12: besoins des autres catégories de consommation à l'horizon de 2050	33
Tableau II - 13: récapitulation de calcul des besoins moyens à l'horizon de 2050	34
Tableau II - 14: variation de la consommation journalière à l'horizon de 2050	35
Tableau II - 15: variation de la consommation horaire à l'horizon de 2050	36
Tableau II - 16: régime de consommation horaire à l'horizon de 2050	36
Tableau II - 17 : récapitulatif des calculs a l'horizon 2050	37
Tableau III – 1: longueur de chaque type des conduites	45
Tableau III – 2: détaille de chaque type des conduites	46
Tableau III – 3: résumé des résultats de calcul des débits	48
Tableau III – 4: résultat de calcul des débits en route et des débits nodaux du réseau	49
Tableau III – 5: état des nœuds	54
Tableau III – 6: état des arcs	56
Tableau IV – 1 : résumé des calculs des débits	63
Tableau IV – 2: résultats des calculs des débits en route et des débits nodaux	65
Tableau IV – 3: état des nœuds	70
Tableau IV – 4: état des arcs	72
Tableau IV – 5: état des réducteurs des pressions	75
Tableau V – 1: calcul des volumes résiduels	85

Liste des tableaux

Tableau V – 2 : résumé des résultats de calcul	86
Tableau VI – 1: linéaire des conduites et de grillage avertisseur à fournir	93
Tableau VI – 2: volume du déblai	95
Tableau VI – 3: volume du lit de sable	95
Tableau VI – 4: volume du sable d'enrobage	96
Tableau VI – 5: volume du remblai en terrain naturel	97
Tableau VI – 6: capacité du godet en fonction du volume du terrassement	98
Tableau VI – 8: devis quantitatif estimatif	100
Tableau VI – 9: Tâches qui précèdent et qui succèdent chaque opération	101
Tableau VI – 10: Détermination du délai de réalisation	102

Liste des figures

Liste des figures :

Figure I - 1: situation de la commune de LARBAATACHE dans la wilaya de BOUMERI) ES
	12
Figure I - 2: délimitation de la commune de LARBAATACHE	13
Figure I - 3: accessibilité de la commune de LARBAATACHE	14
Figure II – 1: graphique de l'évolution de la population de la ville de LARBAATACHE	22
Figure II – 2: graphique de consommation horaire actuel	32
Figure II – 3: graphique du consommation horaire cumulé	32
Figure II – 4: graphique du consommation horaire à l'horizon 2050	38
Figure II – 5: graphique du consommation horaire cumulé a l'horizon 2050	38
Figure III – 1: état de la conduite DN40 a la cité des 30 logements	42
Figure III – 2: état de la conduite DN 32 en PEHD a la cité TAKMILIA	43
Figure III – 3: état de la conduite DN 50 en acier a la cité les eucalyptus (2012)	44
Figure III – 4: schéma du réseau existant	45
Figure III – 5: graphique du composition du réseau selon le type des conduites	46
Figure IV – 1: schéma du réseau en cas de pointe	76
Figure IV - 2 : schéma du réseau en cas de pointe + incendie	77
Figure V – 1: schéma représente les différent équipements du réservoir	83
Figure VI – 1 : coupe d'une tranché avec la canalisation posé	90

Liste des planches

Liste des planches :

- Planche 1 Plan de masse avec réseau d'AEP projeté de la ville de LARBAATACHE (W. BOUMERDES)
- Planche 2 profil en long de la conduite principale du réseau
- Planche 3 Réservoir d'alimentation DE LARBAATACHE 2*1000m3
- Planche 4 accessoires d'installation du réseau d'AEP

Introduction générale :

L'eau de notre jour est considérée comme un paramètre de classification des pays et le degré de confort des peuples, mais aussi elle est considérée comme une apparence d'indépendance des payes.

Le réseau d'eau potable constitue un élément important dans la vie des sociétés, c'est pour ça que les autorités locales algérienne font de leur mission le développement des infrastructures d'alimentation en eau potable.

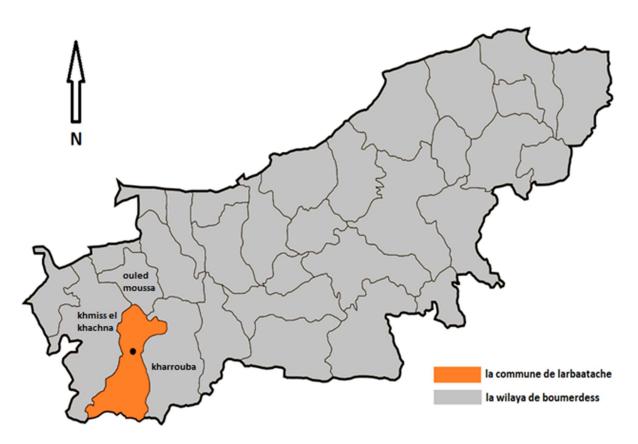
Dans ce mémoire, on va traiter le thème suivant : « réhabilitation du réseau d'AEP de la ville de LARBAATACHE », on va étudier la capabilité du réseau existent a rependre aux besoins de la population et suivant le résultat on va recommandé des solutions pour combler les problèmes présent.

La ville de LARBAATACHE est dotée d'un réseau de distribution très âgé et il présente des perturbations d'alimentation et un rendement faible.

On va commencer par une présentation de notre zone d'étude, ensuite une évaluation des besoins en alimentation en eau potable actuels, et à l'horizon de 2050 de notre agglomération. Après on établit une étude de diagnostic du réseau existant, ainsi que les ouvrage de stockage afin de pouvoir dimensionner le nouveau réseau, ainsi que les réservoirs à construire si nécessaire, et on finit par l'élaboration d'un plan d'organisation de chantier et un devis estimatif et quantitatif pour définir le cout global, et le délai de réalisation du projet.

Chapitre I : Présentation de la zone d'étude

I.1 Introduction:


Avant d'entamer n'importe quel projet, l'étude du site est nécessaire pour connaître les caractéristiques physiques du lieu et les facteurs qui influent sur l'élaboration de ce projet, pour cela nous devons disposer de certaines données, notamment celles :

- Naturelles du site.
- Relatives à l'agglomération.
- Propres à la situation hydraulique

La présentation de l'agglomération est une phase importante pour procéder à l'élaboration de notre projet.

I.2 Situation géographique de la commune de LARBATACHE :

La ville de LARBAATACHE est le chef-lieu de la commune de LARBAATACHE affiliée à la wilaya de BOUMERDES Elle est distante de 4Km seulement du chef-lieu de Daïra de KHEMIS EL KHECHNA et de 20Km du chef-lieu de la Wilaya de BOUMERDES.

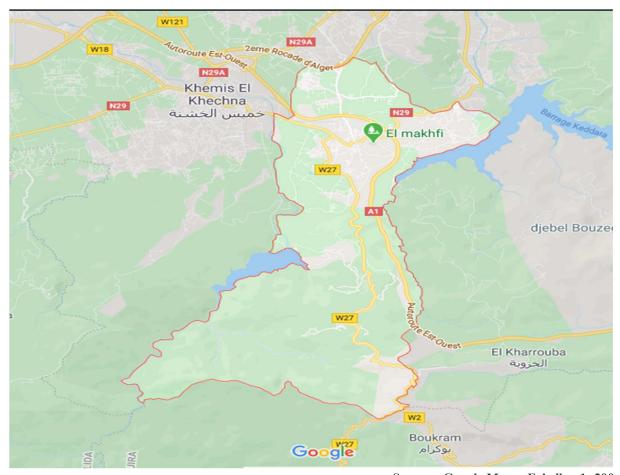
Source: Wikipédia, Echelle: 1:1000

Figure I - 1: situation de la commune de LARBAATACHE dans la wilaya de BOUMERDES

Administrativement, la commune de LARBAATACHE est limitée par :

- Les communes de OULED MOUSSA au nord
- La commune de KHAROUBA à l'est
- La commune de KHEMIS EL KHECHNA à l'Ouest
- La commune de BOUKERAM, (Wilaya de BOUIRA) au sud.

Cette commune se situe en Mitidja Orientale. Elle se trouve à l'Ouest dans la région postérieure de la wilaya de BOUMERDES à 25 km de celle-ci



Source: Wikipédia

Figure I - 2: délimitation de la commune de LARBAATACHE

I.2.1 Accessibilité de la commune :

La commune de LARBAATACHE est desservie par un réseau de communication important à savoir : l'autoroute est-ouest et la RN 29 et le CW 36 qui assure ses communications avec l'agglomération Algéroise et la région Nord - Centre, à travers les communes avoisinantes de KHEMIS ELKHECHNA, OULED MOUSSA, KHAROUBA et BOUDOUAOU, ainsi que les CW n27 et n36 qui eux traversent l'agglomération chef-lieu.

Source: Google Mapp, Echelle: 1:200

Figure I - 3: accessibilité de la commune de LARBAATACHE

I.3 Situation physique et naturelles du site :

I.3.1 Topographies et reliefs :

Le relief de la commune de LARBAATACHE s'élève graduellement du Nord vers le Sud ou la montagne se développe sur une grande partie du territoire communal.

La zone de piémont et la zone de montagne occupent plus de 75% du territoire de la commune de LARBAATACHE.

Les reliefs montagneux occupent de façon massive toute la moitié Sud de la commune et une bonne partie de la moitié Nord.

I.3.2 Le climat :

Le climat est de type méditerranéen à tendance humide à deux saisons contractées s'étendant sur un semestre chacune :

- L'hiver s'étend du mois d'octobre à mars
- L'été s'étend du mois d'avril au mois de septembre

Présentation de la zone d'étude

Ces dernières années, on assiste à un prolongement de la saison chaude jusqu'au mois de janvier, car les précipitations se font rares.

L'irrégularité des pluies est caractéristique du climat méditerranéen qui est saisonnière, annuelle et interannuelle, La station de KHMIS EL KHACHNA donne les précipitations suivantes durant l'année 2019 :

Tableau I – 1: précipitation moyennes mensuelles

Mois	Sept	Oct	Nov	Déc	Jan	Févr	Mars	Avril	Mai	Juin	Juillet	Août	total
Mm	35	72	125	143	130	91	87	59	52	18	1	3	819
Jours	4	8	11	13	12	11	10	8	7	4	1	1	90

Source: ANRH BOUMERDES

I.3.3 Les températures :

- La température moyenne annuelle est de 17,65 °C
- La température moyenne annuelle des mois les plus chauds est de 21,99°C (d'avril à septembre)
- La température moyenne annuelle des mois les plus froids est de 13,35°C (octobre à mars)

I.3.4 Les vents:

Les vents dominants sont les vents du sud-ouest (26,6 %), ceux du nord (20,3 %) et au Nord-est est (18 %), en hiver rassemblant (64,96 %) du total. Les autres variations se répartissent sur le long de l'année (surtout de Sud –Est).

I.3.5 Séismicité:

Le séisme du 21 mai 2003 a révélé le degré élevé de l'aléa sismique dans cette région de BOUMERDES.

LARBAATACHE est située dans une zone à haut risque sismique, elle est classée zone III. Notamment avec la présence de la faille de ZEMMOURI qui a été la cause du séisme du 21 mai 2003 et dont les conséquences ont été catastrophiques pour la commune.

LARBAATACHE est situé sur une zone particulièrement vulnérable à l'aléa sismique car le contexte géodynamique régional a engendré dans le nord de l'Algérie un ensemble de

structure tectonique (pli, failles, pli-failles) d'activités sismiques élevées comme l'atteste la fréquence des séismes durant le siècle dernier.

I.4 Situation hydraulique:

I.4.1 Les ressources en eau :

La ville de LARBAATACHE est alimentée par deux types de ressources en eau (superficielles et souterraines).

I.4.1.1 Les ressources superficielles :

- La ville de LARBAATACHE bénéfice d'un débit de 17 l/s soit 1468.8 m³/j à partir du SPIK (Système de Production ISSER-KADARRA)
- La ville de LARBAATACHE va recevoir l'eau à partir de SPET (Système de Production des Eaux de TAKSEBT) avec un débit de 71.52 l/s soit 6179.328 m³/j

I.4.1.2 Les ressources souterraines :

La mobilisation des ressources en eaux souterraines pour la ville de LARBAATACHE est assurée par le champ de captage de CHBACHEB.

La chaine des forages de CHEBACHEB est constituée par dix (10) forages, dont trois (03), le F5, F6 et F7, sont à l'arrêt, suite à un rabattement de la nappe. Et les sept (07) autres forages en service (F1, F2, F3, F4, F8, F9 et F10),

Cette ressource alimente la ville de LARBAATACHE avec un débit de 57.7 l/s soit $4985.28 \text{ m}^3/\text{j}$

champ de captage CHBACHEB (KHMIS EL KHACHNA) niveau forages débit (1/s) profondeur niveau Hmt (m) dynamique (m) statique (m) théorique d'exploitation (m) 110 92 9 F1 21,57 25,48 40 110 106 / F2 50 14

32,3

42,8

50,62

/

21,57

37,7

52,8

61,61

/

25,48

20

20

15,54

/

40

Tableau I − 2: état de champ de captage de KHMISS EL KHACHNA

100

110

110

110

170

120

120

95

/

92

F3

F4

F5

F6

F7

16

14

5

/

10

Présentation de la zone d'étude

F8	170	/	/	/	/	32
F9	170	/	/	/	/	17
F10	170	/	/	/	/	30

Source: DRE BOUMERDES

I.4.2 Les ouvrages de stockages :

Le Stockage de l'eau potable de la ville de LARBAATACHE est composé par plusieurs réservoirs :

Tableau I − 3: les ouvrages de stockage de la ville de LARBAATACHE

réservoir	capacité	Cote radier	Cote trop plein	Rôle	
Réservoir de	250 m ³	200	212.5	Alimente le réservoir de	
KHAHLIA	230 m ²	209	212,5	centre-ville	
Réservoir de	250 m ³	160	171	Refoule vers le réservoir	
centre-ville	230 m	0 m ³ 168 171		de BENHARCHAOU	
Réservoir de	2*1000 m ³	260	264	L'alimentation de toute la	
BENHARCHAOU	2 · 1000 III	200	204	ville de LARBAATACHE	

Source: DRE BOUMERDES

I.4.3 Les stations de pompages :

I.4.3.1 La station de pompage de GOUNI a KHMISS EL KHACHNA:

La chaine des forages de CHEBACHEB refoule l'eau à l'aide des pompes immergées vers la station de pompage de GOUNI, munie de deux réservoirs jumelés de capacité 2 X 500 M³. Pour un débit total entrant de l'ordre de 132 l/s, la station refoule à son tour 100 l/s vers les deux réservoirs jumelés 2 X 500 M³ qui alimentent la ville de KHEMIS EL-KHECHNA et 57.70 l/s vers le réservoir de 250 m³ de KHAHLIA

I.4.3.2 La station de pompage de centre-ville :

La station de pompage qui se trouve au centre-ville de LARBAATACHE reçoit l'eau de réservoir de 250 m³ de KEHAHLIA et qui refoule l'eau vers le réservoir de 2000 m³ de Ben HARCHAOU.

I.4.4 Les adductions :

I.4.4.1 Adduction station de pompage GOUNI – le réservoir de KHAHLIA :

Sur un linéaire de 1500 m et avec une conduite en amiante ciment de diamètre nominale de 200 mm et une Hmt de 90 m la station de pompage de GOUNI a KHMIS EL KHACHNA refoule l'eau vers le RESERVOIRE de 250 m³ de KHAHLIA

I.4.4.2 Adduction réservoir de KHAHLIA – station de pompage de centreville :

C'est une adduction gravitaire qui relie le réservoir de KHAHLIA avec la station de pompage situé au centre-ville, par une conduite d'amiante ciment de diamètre nominale de 200 mm et sur une longueur de 2350 m.

I.4.4.3 Adduction station de pompage de centre-ville – réservoir de BENHARCHAOU :

La station de pompage de centre-ville refoule l'eau vers le réservoir de BENHARCHAOU par une conduite en fonte de diamètre nominale égale à 250 mm et sur une longueur de 1114 m

I.4.4.4 Récapitulatif des adductions :

Tableau I – 4: récapitulatif des adductions existent

l'adduction	Matériaux	Diamètre	Linéaire
Station de pompage GOUNI – réservoir de KHAHLIA	Amiante ciment	200 mm	1500 m
Réservoir de KHAHLIA – station de pompage de de centre-ville	Amiante ciment	200 mm	2350 m
Station de pompage de centre-ville – réservoir de BENHARCHAOU	Fonte	250 mm	1114 m

Source: DRE BOUMERDES

Remarque:

on a deux adductions utilisent un matériaux dépassé et il est plus utilisable dans le domaine d'AEP, alors il faut faire une étude d'adduction pour rénové ces adductions.

Présentation de la zone d'étude

I.5 Conclusion:

Dans ce chapitre on a illustré les différentes données nécessaires concernant notre région, de point de vue topographique climatique et hydraulique, ces données vont être pris en considération lors de l'élaboration de notre étude.

Chapitre II:

Estimation des besoins en eau

II.1 Introduction:

L'objectif de ce chapitre est de faire une estimation des besoins en eau de la zone d'étude basée sur la population et son taux d'accroissement jusqu'à l'horizon d'étude ainsi que la norme de consommation et les différents équipements.

II.2 Evolution de la population :

Pour l'estimation de la population future, nous prenons un horizon de 30 ans et nous adopterons un taux d'accroissement de 2,21%. Pour les calculs de la population future nous utiliserons finalement la formule des intérêts composés :

$$P_N = P_0 \times (1+\tau)^N \tag{II-1}$$

Avec:

- P_N : Population future prise pour un horizon quelconque (hab)
- P_0 : Population de l'année de référence (hab)
- τ : Taux d'accroissement annuel de la population (2.21 %)
- N : nombre d'années séparant l'année de référence à l'horizon considéré (30 ans)

Selon le dernier recensement général de la population et de l'habitat effectué en 2008, la population de la ville de LARBAATACHE était de 12068 habitants.

Tableau II - 1: évolution de la population de la ville de LARBAATACHE

année	2008	2020	2050	
Nombre d'habitant	12068	15348	29571	

Remarque : Ce calcul est fait avec un taux d'accroissement de 2,21%, et cela d'après le service d'A.P.C de LARBAATACHE

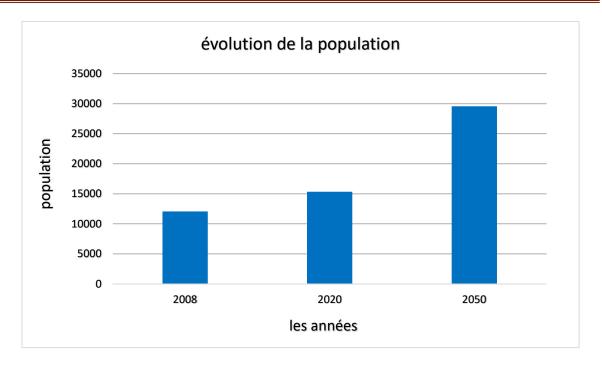


Figure II – 1: graphique de l'évolution de la population de la ville de LARBAATACHE

II.3 Estimation des besoins moyens actuels :

II.3.1 Généralité:

Les quantités des eaux de consommations sont à considérer selon les valeurs des débits de pointe qui conditionnent explicitement le dimensionnement des conduites, les débits seront évalués sur la base des consommations d'eaux globales de l'agglomération observée au jour de la forte consommation de l'année, rapporté à l'unité habitant sur une période de 24 heures [1]

II.3.2 Choix de la dotation :

La dotation c'est La quantité d'eau nécessaire à l'alimentation d'une agglomération est généralement évaluée, selon le type de consommateur, Cette quantité d'eau s'appelle la norme de consommation. Cette dernière dépend de certains critères dont les principaux sont :

- Le niveau de vie de la population ;
- Le nombre d'habitants ;
- Le développement urbain de la ville. L'existence de la ressource.
- Les habitudes de la population. [2]

II.3.3 Catégories des besoins en eau :

La consommation d'eau varie en fonction du type de consommateur. Mais avant tout projet d'alimentation en eau potable, Il est nécessaire de procéder à un recensement de toutes les catégories de consommateurs rencontrés au niveau d'une agglomération. Pour l'étude de la commune, il est nécessaire de se pencher sur les différentes catégories de besoins telles que :

- Besoins domestiques
- Besoins scolaires
- Besoins sanitaires
- Besoins administratifs
- Besoins socioculturels

Il est très difficile d'évaluer avec précisions les besoins en eau d'une agglomération à cause de l'absence des systèmes de comptage au niveau des réservoirs et des conduites de distribution.

II.3.4 Besoins domestiques moyens actuels:

L'estimation des besoins domestiques en eau potable dépend de l'accroissement démographique et de l'amélioration du niveau de vie. La consommation moyenne journalière de la zone concernée par l'étude, est égale à la dotation que multiplie le nombre total des habitants.

$$Q_{moy,j} = \frac{1}{1000} \times dot \times N.....(m^3/j)$$
 (II-2)

dot: Dotation moyenne en (l/j/hab)

N: Nombre d'habitants

Tableau II - 2: les besoins domestiques moyens actuels

Type de besoin	Nombre d'habitants	unité	Dotation (1/j/hab.)	consommation moyenne journalière (m3/j)
Domestique	15348	habitant	150	2302.20

Source: DRE BOUMERDES

II.3.5 Besoins moyens actuels des autres catégories de consommations :

Les besoins des différentes catégories de consommations équipements recueillis au niveau des différentes localités concernées par notre étude sont regroupés dans le tableau suivant :

Tableau II - 3: Besoins moyens actuels des autres catégories de consommations

				Dotation	consommation
Type de besoins	Equipement	Effectif	Unité	moyenne	moyenne journalière
				(L/J/Unité)	(m3/j)
	4 Ecole Primaires	1320	Élève	20	26,40
Scolaires	2 Ecole moyenne	840	Élève	20	16,80
	1 Lycée	540	Élève	20	10,80
	Complexe Omni sport	700	M ²	20	14,00
	Bibliothèque	90	lecteur	15	1,35
	Centre culturel	110	lecteur	15	1,65
Socioculturelle	Maison de jeune	124	Attribué	10	1,24
	2 mosquées	1600	Fidel	5	8,00
	crèche	105	enfant	20	2,10
	Stade municipal	6000	M ²	6	36,00
	APC	87	Employé	15	1,31
	Commissariat	75	Officier	80	6,00
Administratifs	Agence PTT	40	employé	20	0,80
Administratifs	Poste	25	Employé	15	0,38
	garde communale	560	M ²	5	2,80
	Gendarmerie	80	officier	80	6,40
santé	Centre de santé	80	patient	5	0,40
Same	Maternité	50	lit	50	2,50
	Totale	;		1	148.92

Source: Alimentation en eau potable des agglomérations, B. SALAH, 2014; DRE BOUMERDES

II.3.6 Récapitulation de la consommation moyenne journalière actuel :

Les résultats de l'évaluation des besoins moyens journaliers à l'horizon actuelle sont donnés dans le tableau suivant :

Tableau II - 4: Récapitulation de la consommation moyenne journalière actuel

Secteurs	consommation moyenne journalière (m3/j)
Besoins domestiques	2302.20
Besoins scolaires	54
Besoins sanitaires	12.90
Besoins administratifs	17.69
Besoins socioculturels	64.34
Total	2451.13

II.3.7 Fuites et gaspillage :

Les fuites d'eau sur le réseau sont parfois importantes. Elles se produisent en grande partie sur les branchements particuliers. La recherche des fuites est une opération délicate.

Généralement elles dépendent de l'état de réseau.

On estime les fuites et le gaspillage par 15 % du débit totale :

$$Q_{\text{fuite}} = 2451.13 \times 15 \% = 367.67 \text{ m}^3/\text{j}$$

Alors le débit moyen journalier devient

Kmax,j et Kmin,j

$$Q_{\text{totale}} = Q_{\text{moy,j}} = 2451.13 + 367.67 = 2818.79 \text{ m}^3/\text{j}$$

II.3.8 Variation de la consommation journalière actuels :

En fonction des jours, des mois, des semaines ; on observe des variations de la consommation, le débit d'eau consommé n'est pas constant, mais varie en présentant des extremums (maximums et minimums), cette variation est caractérisée par des coefficients d'irrégularité :

II.3.8.1 Consommation maximale journalière actuels :

La consommation maximale journalière représente la journée de l'année où la consommation en eau est la plus grande, et est définie par un coefficient d'irrégularité journalière maximale $K_{max\ jr}$. Ce dernier tient compte des variations journalières de la consommation.

Ce coefficient nous permet de savoir de combien de fois le débit maximum journalier dépasse le débit moyen journalier.

Estimation des besoins en eau

Pour le calculer, on calculera le rapport de la consommation maximale journalière sur la consommation moyenne journalière.

Soit:

$$K_{max,j} = \frac{Q_{max;j}}{Q_{moy,j}} \qquad \text{(II-3)}$$

Avec:

• $Q_{max,j}$: Débit de consommation maximale journalière (m³/j)

• $Q_{moy,j}$: Débit de consommation moyenne journalière (m³/j)

• $K_{max,i}$: Coefficient d'irrégularité de la consommation maximale journalière

Le coefficient d'irrégularité varie entre 1.1 et 1.3 dépendant du régime de consommation. Pour notre cas, on prend :

$$K_{max,j} = 1.3$$

II.3.8.2 Consommation minimale journalière actuel :

Ce débit représente la consommation d'eau minimale du jour le moins chargé de l'année, Par rapport à la consommation moyenne journalière déterminée, nous pouvant mettre en évidence un rapport nous indiquant de combien de fois la consommation minimale est en dessous de la moyenne de consommation, ce rapport est désigné sous le terme de coefficient d'irrégularité minimale journalière.

$$K_{min,j} = \frac{Q_{min;j}}{Q_{moy,j}}$$
 (II-4)

Avec:

 \checkmark $Q_{min,j}$: Débit de consommation minimale journalière (m³/j)

 $\checkmark Q_{moy,j}$: Débit de consommation moyenne journalière (m³/j)

 \checkmark $K_{min,j}$: Coefficient d'irrégularité de la consommation minimale journalière

Le coefficient d'irrégularité varie entre 0.7 et 0.9 dépendant du régime de consommation. Pour notre cas, on prend :

$$K_{min,j}=0.9$$

En ayant le débit moyen journalier, et après avoir donné une valeur aux deux coefficients, les résultats sont représentés dans le tableau suivant :

Tableau II - 5: Variation de la consommation journalière actuels

La ville	Qmoy,j (m3/j)	Kmax,j	Qmax,j (m3/j)	Kmin,j	Qmin,j
larbaatache	2818,79	1,30	3664,42	0,90	2536,91

II.3.9 Variations de la consommation horaire actuelle :

Les débits de consommation varient pendant une journée, celui la dépend des habitudes de notre population, chaque consommation horaire représente un pourcentage de consommation par rapport à la consommation totale journalière qui est égale au débit maximum journalier, la somme des consommations horaires est égal au $Q_{max,j}$.

II.3.9.1 Débit moyen horaire actuel :

Le débit horaires est donnée par la relation suivantes :

$$Q_{moy,h} = \frac{Q_{max,j}}{24}$$
 (II-5)
 $Q_{moy,h} = \frac{3664.42}{24} = 152.68 \, \frac{m^3}{h}$
 $Q_{moy,h} = 42.41 \, \frac{l}{s}$

II.3.9.2 Consommation maximale horaire actuelle :

Elle est représentée par le coefficient d'irrégularité maximale horaire ($K_{max\,h}$) qui représente l'augmentation de la consommation horaire pour la journée la plus chargée dans l'année .Il tient compte de l'accroissement de la population ainsi que du régime de travail de l'industrie .

Ce coefficient est donné par :

$$K_{max,h} = \alpha_{max} \times \beta_{max} \qquad \textbf{(II-6)}$$

Avec:

- α_{max} : tient compte du type des conditions de vie et du régime de travail des populations locales, varie entre 1.1 et 1.4. Dans notre cas on prend : α_{max} =1.3.
- β_{max} : Dépend du développement démographique ,selon le tableau suivant:

Estimation des besoins en eau

Tableau II - 6: les valeurs de βmax en fonction du nombre d'habitant

Nombre Habitant	1000	1500	2500	4000	6000	10000	20000	30000	50000	100000
eta_{max}	2	1.8	1.6	1.5	1.4	1.3	1.2	1.15	1.13	1.1

Source: Alimentation en eau potable des agglomérations, B. SALAH, 2014

Par un calcul d'interpolation on trouve :

$$\beta_{max} = 1.21$$

Le calcul du débits maximal horaire se fait par le biais de la formule suivante :

$$Q_{max,h} = K_{max,h} \times Q_{moy,h} \qquad \textbf{(II-7)}$$

Avec:

• $Q_{max,h}$: Débit de consommation maximum horaire

• $K_{max,h}$: Coefficient d'irrégularité maximum horaire

• $Q_{mov,h}$: Débit moyen horaire.

$$K_{max.h} = \alpha_{max} \times \beta_{max}$$
 (II-8)

$$K_{max,h} = 1.3 \times 1.21 = 1.57$$

II.3.9.3 Consommation minimale horaire actuelle :

Le débit minimale horaire est définie comme étant le débit minimal consommée pendant une heure de la journée. Il est caractérisé par un coefficient d'irrégularité minimal horaire K_{min,h}. L'intérêt par le calcul du débit minimal est de connaître la gamme de conduite avec pression nominale adéquate.

Ce coefficient dépend de deux caractéristiques de l'agglomération étudiée α_{min} et β_{min} .

Avec:

 Le coefficient α_{min}: tient compte du régime de travail des entreprises et industries, du degré du confort des habitants et leurs habitudes.

$$\alpha_{min} = 0.4 \div 0.6$$

Pour notre cas on prend:

$$\alpha_{min} = 0.50$$

• Le coefficient β_{min} : tient compte du nombre d'habitant de l'agglomération. Ses valeurs sont données par le tableau suivant :

Tableau II - 7: les valeurs de βmin en fonction du nombre d'habitant

Nombre d'habitant	<1000	1500	2500	4000	6000	10000	20000	30000	100000	300000
β_{min}	0.1	0.1	0.1	0.2	0.25	0.4	0.5	0.6	0.7	0.83

Source: Alimentation en eau potable des agglomérations, B. SALAH, 2014

Par un calcul d'interpolation on trouve :

$$\beta_{min} = 0.48$$

Le calcul du débits maximal horaire se fait par le biais de la formule suivante :

$$Q_{min,h} = K_{min,h} \times Q_{moy,h}$$

Avec:

• $Q_{min,h}$: Débit de consommation minimum horaire

• $K_{min,h}$: Coefficient d'irrégularité minimum horaire

• $Q_{mov,h}$: Débit moyen horaire.

$$K_{min,h} = \alpha_{min} \times \beta_{min}$$
 (II-9)

$$K_{min,h} = 0.50 \times 0.48 = 0.24$$

En ayant le débit moyen horaire, et après avoir donné une valeur aux coefficients, les résultats sont représentés dans le tableau suivant :

Tableau II - 8: récapitulatif de la variation de la consommation horaire actuel

la ville	Qmoy,h	Kmin.h	Qmin.h	Kmax.h	Qmax.h(M3/h)
larbaatache	152,68	0,24	36,99	1,57	239,73

II.3.10 Régime de la consommation de l'agglomération :

La variation des débits horaires est exprimée en pourcentage par rapport au débit maximal journalier de l'agglomération, par la relation suivante :

$$Q_{h,i} = C \times Q_{max,i}$$
 (II-10)

Avec:

- Q_{max h}: débit maximal horaire estimé en (m³/h)
- C : coefficient de consommation horaire (%)
- Q_{max jr}: débit maximal journalier estimé en (m³/jr)

Ces coefficients différents selon le nombre d'habitants, mais comme les habitants font partie de la même agglomération, ils ont donc les mêmes habitudes, d'où les mêmes coefficients. Et les résultats seront donnés dans les tableaux suivants :

Tableau II - 9: régime de consommation de l'agglomération

Heures	Consommation %	Consommation m3/h	Consommation cumulée		
Ticures	Consommation 70		%	m3/j	
0-1	1,50%	54,97	1,50%	54,97	
1-2	1,50%	54,97	3,00%	109,93	
2-3	1,50%	54,97	4,50%	164,90	
3-4	1,50%	54,97	6,00%	219,87	
4-5	2,50%	91,61	8,50%	311,48	
5-6	3,50%	128,25	12,00%	439,73	
6-7	4,50%	164,90	16,50%	604,63	
7-8	5,50%	201,54	22,00%	806,17	
8-9	6,25%	229,03	28,25%	1035,20	
9-10	6,25%	229,03	34,50%	1264,23	
10-11	6,25%	229,03	40,75%	1493,25	
11-12	6,25%	229,03	47,00%	1722,28	
12-13	5,00%	183,22	52,00%	1905,50	
13-14	5,00%	183,22	57,00%	2088,72	
14-15	5,50%	201,54	62,50%	2290,27	
15-16	6,00%	219,87	68,50%	2510,13	

Estimation des besoins en eau

16-17	6,00%	219,87	74,50%	2730,00
17-18	5,50%	201,54	80,00%	2931,54
18-19	5,00%	183,22	85,00%	3114,76
19-20	4,50%	164,90	89,50%	3279,66
20-21	4,00%	146,58	93,50%	3426,24
21-22	3,00%	109,93	96,50%	3536,17
22-23	2,00%	73,29	98,50%	3609,46
23-0	1,50%	54,97	100,00%	3664,42

Source : Alimentation en eau potable des agglomérations, B. SALAH, 2014

D'après le tableau ci-dessus on remarque que les heures de pointes de consommation sont les heures entre 8 heure du matin et jusqu'à midi, avec un débit maximale horaire estimé à 229.03 m³/h et la consommation minimale est estimer à 54.97 m³/h entre 23 heures et 4 heures.

II.3.11 Récapitulatif des calculs actuels :

Les calculs faits précédemment sont résumés dans le tableau suivant :

Tableau II - 10: Récapitulatif des calculs actuels

Grandeur	Valeur	Unité
Nombre d'habitant	15348	Hab
Dotation	150	l/j/hab
Besoins domestiques	2302.20	M3/j
Besoins des autres catégories de consommation	148.92	M3/j
Besoins totale	2451.12	M3/j
Fuite et gaspillage	367.67	M3/j
Débit moyen journalier	2818.79	M3/j
Kmax.jr	1.3	Sans unité
Kmin.jr	0.9	Sans unité
Débit maximum journalier	3664.42	M3/j
Débit minimum journalier	2536.91	M3/j
Débit moyen horaire	152.68	M3/h
Kmax.hr	1.57	Sans unité
Kmin.hr	0.24	Sans unité
Débit maximum horaire	239.73	M3/h
Débit minimum horaire	36.99	M3/h

II.3.12 Tracés des graphiques de consommation horaire actuelle :

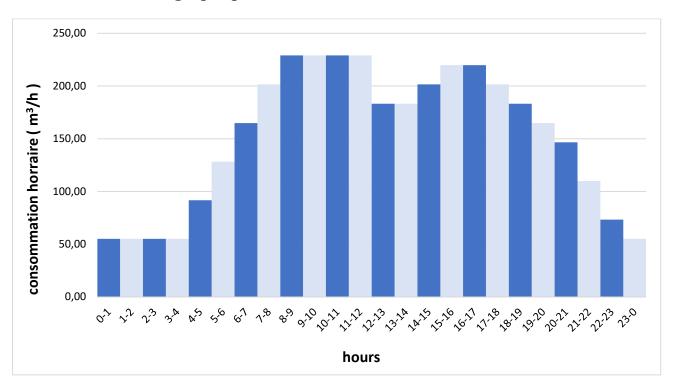


Figure II − 2: graphique de consommation horaire actuel

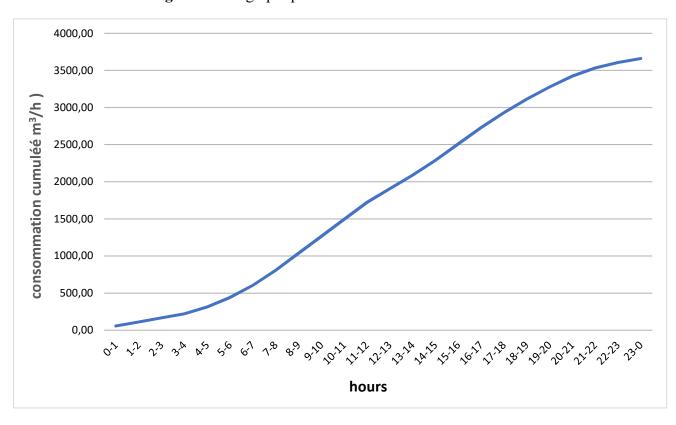


Figure II – 3: graphique du consommation horaire cumulé

II.4 Estimation des besoins moyens à l'horizon de 2050 :

Pour répondre aux besoins de la population future, on prévoit un changement d'habitude de consommation et aussi une augmentation dans le niveau de confort des ménages de notre agglomération. Cette prévision est quantifiée par une augmentation des quantités d'eau assuré pour chaque consommateur ainsi une augmentation dans les dotations dans l'horizon de 2050.

II.4.1 Besoins domestiques moyens à l'horizon de 2050 :

Les résultats de calcul sont présentés dans le tableau suivant :

Tableau II - 11: besoins moyens domestiques à l'horizon 2050

Type de besoins	Effectif	Unité	Dotation moyenne (L/J/Unité)	Consommation moyenne journalière (M3/J)
Domestiques	29571	Habitant	180	5322.78

Source: DRE BOUMERDES

II.4.2 Besoins des autres catégories de consommation à l'horizon de 2050 :

Tableau II - 12: besoins des autres catégories de consommation à l'horizon de 2050

Type de besoins				Dotation	consommation
	Equipement	Effectif	Unité	moyenne	moyenne journalière
				(L/J/Unité)	(m3/j)
Scolaires	4 Ecole Primaires	1320	Élève	20	26,40
	2 Ecole moyenne	840	Élève	20	16,80
	1 Lycée	540	Élève	20	10,80
Socioculturelle	Complexe Omni sport	700	M ²	20	14,00
	Bibliothèque	90	lecteur	15	1,35
	Centre culturel	110	lecteur	15	1,65
	Maison de jeune	124	Attribué	10	1,24
	2 mosquées	1600	Fidel	5	8,00
	crèche	105	enfant	20	2,10
	Stade municipal	6000	M ²	6	36,00
Administratifs	APC	87	Employé	15	1,31
	Commissariat	75	Officier	80	6,00
	Agence PTT	40	employé	20	0,80

Estimation des besoins en eau

	Poste	25	Employé	15	0,38
	garde communale	560	M ²	5	2,80
	Gendarmerie	80	officier	80	6,40
santé	Centre de santé	80	patient	5	0,40
	Maternité	50	lit	50	2,50
Totale					148.92

Source: Alimentation en eau potable des agglomérations, B. SALAH, 2014; DRE BOUMERDES

Pour l'estimation de débit d'équipement à l'horizon 2050 on ajout un 10% de débit d'équipement calculé à l'horizon 2020, alors le débit d'équipement à l'horizon 2050 devient :

$$Q = 148.92 \times 1.1 = 163.81 \text{ (m3/j)}$$

II.4.3 Récapitulation de calcul des besoins moyens à l'horizon de 2050 :

Les résultats de l'évaluation des besoins moyens journaliers à l'horizon actuelle sont donnés dans le tableau suivant :

Tableau II - 13: récapitulation de calcul des besoins moyens à l'horizon de 2050

Secteurs	consommation moyenne journalière (m3/j)		
Besoins domestiques	5322.78		
Besoins scolaires	54		
Besoins sanitaires	2.90		
Besoins administratifs	17.69		
Besoins socioculturels	64.34		
Majoration de 10%	14.89		
Total	5486.59		

II.4.4 Fuites et gaspillage:

Les fuites d'eau sur le réseau sont parfois importantes. Elles se produisent en grande partie sur les branchements particuliers. La recherche des fuites est une opération délicate.

Généralement elles dépendent de l'état de réseau.

On estime les fuites et le gaspillage par 15 % du débit totale :

$$Q_{\text{fuite}} = 5486.59 \text{ x } 15 \% = 822.98 \text{ m}^3/\text{j}$$

Alors le débit moyen journalier devient

$$Q_{totale} = Q_{moy,j} = 5486.59 + 822.98 = 6309.57 \text{ m}^3/\text{j}$$

II.4.5 Variation de la consommation journalière à l'horizon de 2050 :

Les résultats de calcul des différents débits journalier sont résumés dans le tableau cidessous :

Tableau II - 14: variation de la consommation journalière à l'horizon de 2050

La ville	Qmoy jr (m3/jr)	Kmax jr	Qmax j (m3/jr)	Kmin jr	Qmin j (m3/jr)
larbaatache	6309.57	1.3	8202.44	0.9	5678.61

II.4.6 Variation de la consommation horaire à l'horizon de 2050 :

II.4.6.1 Débit moyen horaire à l'horizon de 2050/

Le calcul du débit moyen horaire se fait par la formule (II - 5):

$$Q_{moy,h} = \frac{8202.44}{24} = 341.77 \ m^3/h$$

$$Q_{moy,h} = 94.93 l/s$$

II.4.6.2 Consommation maximale et minimale horaire à l'horizon de 2050 :

On prend:

$$\alpha_{max} = 1.30$$

$$\alpha_{min} = 0.50$$

Et Par interpolation:

$$\beta_{max} = 1.18$$

$$\beta_{min} = 0.53$$

• Les résultats de calcul sont illustrés dans le tableau suivant :

Estimation des besoins en eau

Tableau II - 15: variation de la consommation horaire à l'horizon de 2050

La ville	Qmoy hr (m3/h)	Kmax hr	Qmax h (m3/h)	Kmin hr	Qmin hr (m3/h)
larbaatache	341.77	1.57	536.57	0.27	92.27

II.4.7 Régime de consommation horaire à l'horizon de 2050 :

Les résultats sont résumés dans le tableau suivant :

Tableau II - 16: régime de consommation horaire à l'horizon de 2050

II.	Consommation 0/	% Consommation m3/h Consommation cum		ion cumulée
Heures	Consommation %	Consommation m3/n	%	m3/j
0-1	1,50%	123,04	1,50%	123,04
1-2	1,50%	123,04	3,00%	246,07
2-3	1,50%	123,04	4,50%	369,11
3-4	1,50%	123,04	6,00%	492,15
4-5	2,50%	205,06	8,50%	697,21
5-6	3,50%	287,08	12,00%	984,29
6-7	4,50%	369,11	16,50%	1353,40
7-8	5,50%	451,13	22,00%	1804,53
8-9	6,25%	512,65	28,25%	2317,18
9-10	6,25%	512,65	34,50%	2829,83
10-11	6,25%	512,65	40,75%	3342,49
11-12	6,25%	512,65	47,00%	3855,14
12-13	5,00%	410,12	52,00%	4265,26
13-14	5,00%	410,12	57,00%	4675,38
14-15	5,50%	451,13	62,50%	5126,51
15-16	6,00%	492,15	68,50%	5618,66
16-17	6,00%	492,15	74,50%	6110,80
17-18	5,50%	451,13	80,00%	6561,94
18-19	5,00%	410,12	85,00%	6972,06
19-20	4,50%	369,11	89,50%	7341,17
20-21	4,00%	328,10	93,50%	7669,26
21-22	3,00%	246,07	96,50%	7915,33
22-23	2,00%	164,05	98,50%	8079,38
23-0	1,50%	123,04	100,00%	8202,42

Source: Alimentation en eau potable des agglomérations, B. SALAH, 2014

Estimation des besoins en eau

D'après le tableau ci-dessus on remarque que les heures de pointes de consommation sont les heures entre 8 heure du matin et jusqu'à midi, avec un débit maximale horaire estimé à 512.65 m³/h et la consommation minimale est estimer à 123.04 m³/h entre 23 heures et 4 heures.

II.4.8 Récapitulatif des calculs à l'horizon 2050 :

Les calculs faits précédemment sont résumés dans le tableau suivant :

Tableau II - 17: récapitulatif des calculs a l'horizon 2050

Grandeur	Valeur	Unité
Nombre d'habitant	29571	hab
Dotation	180	l/j/hab
Besoins domestiques	5322.78	M3/j
Besoins des autres catégories de consommation	163.81	M3/j
Besoins totale	5486.59	M3/j
Fuite et gaspillage	822.98	M3/j
Débit moyen journalier	6309.57	M3/j
Kmax.jr	1.3	Sans unité
Kmin.jr	0.9	Sans unité
Débit maximum journalier	8202.44	M3/j
Débit minimum journalier	5678.61	M3/j
Débit moyen horaire	3341.77	M3/h
Kmax.hr	1.57	Sans unité
Kmin.hr	0.27	Sans unité
Débit maximum horaire	536.57	M3/h
Débit minimum horaire	92.27	M3/h

II.4.9 Tracés des graphiques de consommation horaire à l'horizon de 2050 :

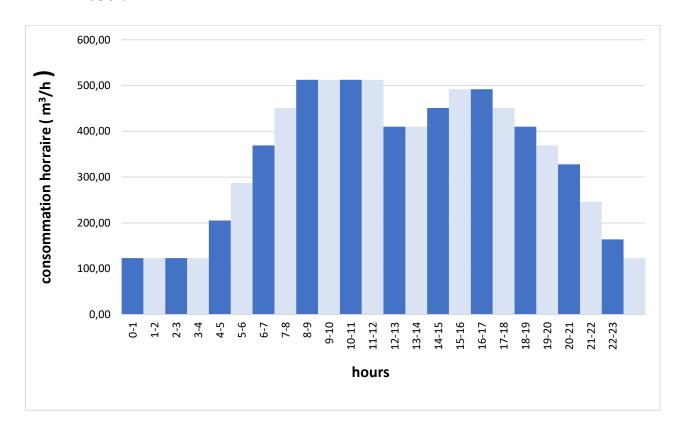


Figure II – 4: graphique du consommation horaire à l'horizon 2050

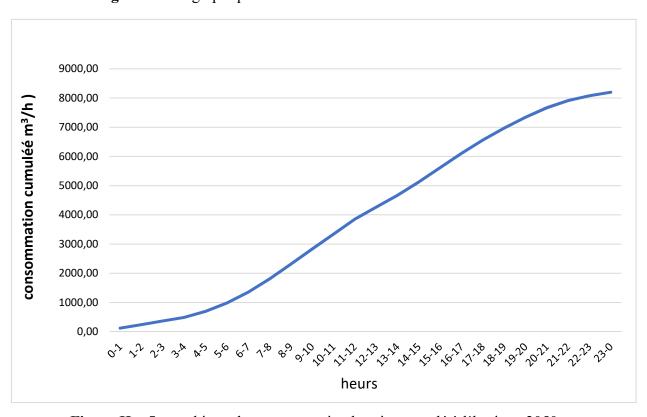


Figure II – 5: graphique du consommation horaire cumulé à l'horizon 2050

Estimation des besoins en eau

II.5 Conclusion:

Dans ce chapitre on a pris une vision globale sur les besoins en eau de la ville de LARBAATACHE actuels et futurs, les besoins de consommation sont presque doublés pour l'horizon 2050, et à partir de ces résultats on va faire dans le chapitre suivant un diagnostic du réseau existant pour savoir l'état de ce réseau et est-ce qu'il va satisfaire les besoins de cette agglomération.

Chapitre III:

III.1 Introduction:

Dans ce chapitre on va évaluer l'état actuel du réseau de distribution de la ville de LARBAATACHE, en se basent sur deux éléments : l'état physique du réseau (l'état des conduites, leur matériaux) et l'état hydraulique (les vitesses et les pressions).

III.2 Objectif du diagnostic du réseau :

L'étude diagnostic du réseau nous permet d'évaluer les capabilités du réseau actuel. Ainsi, élaborer un bilan des points faibles présents dans le réseau actuel et aboutir à un plan d'action concernant les différents composant de notre réseau. Notre étude sera décomposée en trois principaux points d'enquête :

- Etat physique actuelle du réseau de distribution (Type matériaux ; Usures des conduites ; Etats des accessoires et pièces spéciales)
- Etat hydraulique du réseau de distribution (Vitesse et pression ; Capabilité de servir en bonne condition vis-à-vis les extensions et l'augmentation de la population)

III.3 Etat physique du réseau :

Le réseau de distribution de la ville de LARBAATACHE a fait l'objet de réalisation au début des années 1980, il est conçu en majorité en acier galvanisé, de type ramifié en globale avec quelques tronçons en PEHD qui 'ont fait l'objet de réalisation aux années de 2006 à 2007.

Ce réseau de distribution connaît des fuites remarquables à cause de la vétusté de ce dernier.

D'après les fiches d'enquêtes de proximités sur le réseau de distribution en eau potable de

l'agglomération de la ville de LARBAATACHE on peut conclure les remarques suivantes :

- L'alimentation en eau potable se fait 1 à 3 fois /semaine.
- L'heure d'arrivée de l'eau au robinet est variable.
- La durée d'approvisionnement variée de 1h à 4h.

III.3.1 Etat des conduites :

Pour connaître l'état des conduites on procède à faire des sondages qui sont des visites sur terrains pour voir l'état réel des conduites et des équipements et leur degré de vétusté

III.3.1.1 Sondage n° 01:

Ce sondage se trouve à la cité des 30 logements de LARBAATACHE

Source: DRE BOUMERDES (2019)

Figure III – 1: état de la conduite DN40 a la cité des 30 logements

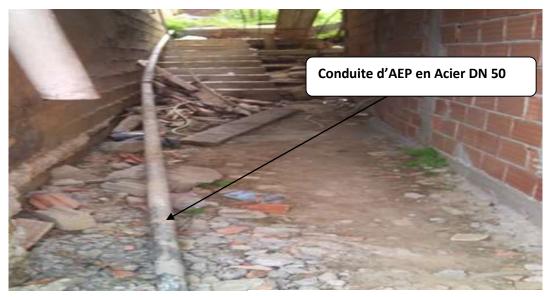
Remarques:

- La profondeur de pose non respecté.
- Absence de grillage avertisseur
- Absence de lit de pose (sable)
- La conduite se trouve à l'air libre

III.3.1.2 Sondage n° 02:

Ce sondage se trouve à la cité TAKMILIA de LARBAATACHE

Source: DRE BOUMERDES (2019)


Figure III – 2: état de la conduite DN 32 en PEHD a la cité TAKMILIA

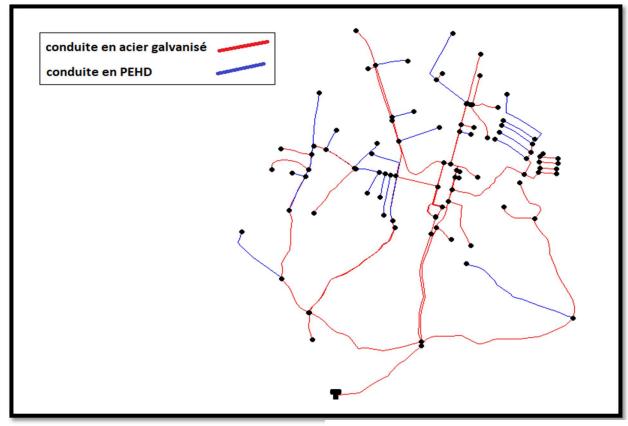
Remarques:

- La profondeur de pose non respectée qui égale à 0.3 m.
- Absence de grillage avertisseur
- Absence de lit de pose (sable)
- Aucune marge de sécurité entre la conduite d'assainissement et la conduite d'AEP
- Un risque d'infiltration des eaux usées du branchement individuel qui va perpétuer sur la conduite d'AEP ça veut dire risque de cross connexion.

III.3.1.3 Sondage n° 03:

Ce sondage se trouve à la cité les eucalyptus de LARBAATACHE

Source: DRE BOUMERDES (2019)


Figure III – 3: état de la conduite DN 50 en acier a la cité les eucalyptus

Remarque:

• La conduite se trouve à l'air libre

III.3.2 Détails du réseau existent :

La figure suivante montre le schéma du réseau existent et le type des matériaux utilisé pour chaque conduite :

Source: DRE BOUMERDES

Figure III – 4: schéma du réseau existant

Le tableau suivant résume le linéaire de chaque type des conduites :

Tableau III – 1: longueur de chaque type des conduites

	Longueur totale (m)	Pourcentage (%)
Acier galvanisé	16429.93	73,26%
PEHD	5995,72	26,74%
totale	22425.65	100%

Source: DRE BOUMERDES

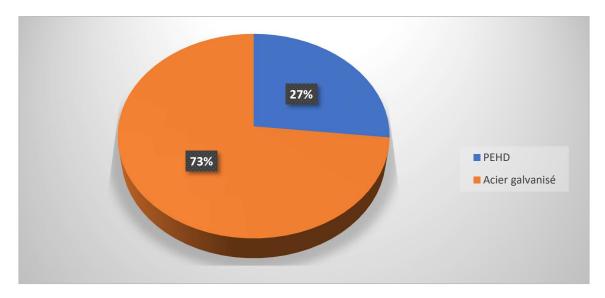


Figure III – 5: graphique du composition du réseau selon le type des conduites

Tableau III – 2: détaille de chaque type des conduites

Acier galv	Acier galvanisé		D
diamètre (mm)	longueur (m)	diamètre (mm)	longueur(m)
DN 32	497,1	DN 32	1621,9
DN 40	1529,8	DN 40	74,23
DN 50	2353,6	DN 50	1438,2
DN 80	4197,3	DN 63	62,8
DN 100	3646,2	DN 75	517,4
DN 150	3595,7	DN 90	1436,3
DN 200	610,23	DN 110	624,2
		DN 160	220,6

Source: DRE BOUMERDES

Remarque:

On remarque que le réseau existant est composé principalement par des matériaux dépassés et inutilisables dans nos jours (acier galvanisé), avec quelques extensions en PEHD.

III.4 Etat hydraulique:

En se basant sur le calcul des besoins actuels de l'agglomération, on fait une analyse hydraulique du réseau pour vérifier son fonctionnement hydraulique en question des pressions et vitesses. Afin d'effectuer cette analyse, on utilise le logiciel EPANET.

III.4.1 Définition du logiciel EPANET:

EPANET est un logiciel publiquement distribué utilisée partout dans le monde pour modéliser les réseaux de distribution d'eau potable. Il a été développé comme un outil permettant de comprendre le mouvement et le devenir des constituants de l'eau potable dans les réseaux de distribution, et peut être utilisé pour de nombreux types d'applications dans l'analyse des systèmes de distribution. Aujourd'hui, les ingénieurs et les consultants utilisent EPANET pour concevoir et dimensionner de nouvelles infrastructures hydrauliques, moderniser l'infrastructure vieillissante existante, optimiser le fonctionnement des réservoirs et des pompes, réduire la consommation d'énergie, étudier les problèmes de qualité de l'eau et se préparer aux urgences. Il peut également être utilisé pour modéliser les menaces de contamination et évaluer la résilience aux menaces de sécurité ou aux catastrophes naturelles.

III.4.2 Débit entrant dans le réseau :

C'est le débit maximal consommé dans le réseau de distribution :

$$Q_{consomm\acute{e}} = \sum Q_{ri} + \sum Q_{concentr\acute{e}}$$
 (III – 1)

Avec:

- $Q_{consommé}$: Débit maximal consommé (l/s)
- $\sum Q_{ri}$: Somme des débits en routes dans chaque tronçon (1/s)
- $\sum Q_{concentré}$: Somme des débits concentrés soutirés dans le réseau (1/s)

Comme notre réseau ne contient pas de consommation concentré $\sum Q_{concentré}=0$, On aboutit à la relation suivante :

$$Q_{consomm\acute{e}} = \sum Q_{ri}$$
 (III – 2)

III.4.2.1 Calcul des débits spécifiques :

On considère l'hypothèse que les besoins sont également répartis sur le long de la longueur du réseau de distribution. On a donc le débit spécifique calculé par :

$$q_{sp} = \frac{\sum Q_{ri}}{\sum L_i} \qquad (III - 3)$$

Avec:

- q_{sp} : Débit spécifique (l/s/ml)
- $\sum Q_{ri}$: Somme des débits en routes de chaque tronçon (1/s)
- $\sum L_i$: Somme des longueurs des tronçons assurant un service en route (ml)

On résume le résultat de calcul dans le tableau suivant :

Tableau III – 3: résumé des résultats de calcul des débits

$\sum Q_{ri}$	66,59
$\sum L_i$	22425,65
q_{sp}	0,003

III.4.2.2 Calcul des débits en route dans chaque tronçon :

C'est le débit consommé le long de chaque tronçon et donné par la relation :

$$Q_{ri} = q_{sp} \times L_i \qquad (III - 4)$$

Avec:

• Q_{ri} : Débits en route (l/s)

• q_{sp} : Débit spécifique (l/s/ml)

• L_i : Longueurs du tronçon (ml)

III.4.2.3 Calcul des débits aux nœuds :

Ils sont les débits concentrés en chaque nœud de consommation. Ils représentent la moitié des débits consommés dans les tronçons autour du nœud considéré. Un débit nodal pour un nœud donné est calculé par la formule ainsi :

$$Q_{ni} = 0.5 \times \sum Q_{ri} + \sum Q_{cci} \qquad (III - 5)$$

Avec:

• Q_{ni} : Débit nodal dans le nœud considéré. (l/s)

• $\sum Q_{ri}$: Somme des débits en routes des tronçons adjacents au nœud considéré. (l/s)

• $\sum Q_{cci}$: Somme des débits concentrés dans le nœud considéré. (l/s)

III.4.2.4 Calcul des débits :

Les résultats de calcul des débits en routes et les débits nodaux sont résumés dans le tableau suivant :

Tableau III – 4: résultat de calcul des débits en route et des débits nodaux du réseau

nœud	tronçons	Longueur (m)	Débit en route (l/s)	Débit nodale (1/s)
1	1	235,8	0,707	0,354
	1	235,8	0,707	
	2	177,8	0,533	
2	3	51,77	0,155	1,658
	14	322	0,966	
	18	317,9	0,954	
3	2	177,8	0,533	0,267
4	3	51,77	0,155	0,078
5	4	316,9	0,951	0,475
	4	316,9	0,951	
6	5	46,74	0,140	0,868
	6	215,1	0,645	
7	5	46,74	0,140	0,070
	6	215,1	0,645	
0	10	131,3	0,394	0.007
8	11	298,7	0,896	0,996
	13	18,68	0,056	
9	7	73,16	0,219	0,110
	7	73,16	0,219	
10	9	93,06	0,279	0,446
	10	131,3	0,394	
11	8	62,83	0,188	0,094
	8	62,83	0,188	
12	9	39,06	0,117	0,448
	24	196,52	0,590	
13	11	298,7	0,896	0,448
14	12	228	0,684	0,342
	12	228	0,684	
15	13	18,68	0,056	0,396
	106	17	0,051	
16	107	172,9	0,519	0,259
17	15	231	0,693	0,347
	15	231	0,693	
18	17	144,7	0,434	1,177
	20	409,2	1,228	
	16	125,3	0,376	
19	17	144,7	0,434	0,882
	18	317,9	0,954	

20	16	125,3	0,376	0,188
21	19	780,1	2,340	1 (52
21	14	322	0,966	1,653
	19	780,1	2,340	
22	26	418,9	1,257	1 000
<i>LL</i>	61	68	0,204	1,908
	60	5	0,015	
23	20	409,2	1,228	1 150
	21	357,4	1,072	1,150
	21	357,4	1,072	
24	23	232,2	0,697	0,892
	60	5	0,015	
	22	26,63	0,080	
25	24	196,52	0,590	0,804
	27	313	0,939	
	22	26,63	0,080	
26	25	364,5	1,094	1,215
	26	418,9	1,257]
27	23	232,2	0,697	0,348
28	25	364,5	1,094	0,547
29	26	418,9	1,257	1 000
<i></i>	27	313	0,939	1,098
30	28	385,6	1,157	0,578
	28	385,6	1,157	
31	89	417,5	1,253	1,586
	96	254,4	0,763	
32	102	373,9	1,122	0,561
33	103	198,33	0,595	0,297
34	30	199,7	0,599	0,300
	30	199,7	0,599	
35	34	48,42	0,145	0,416
	35	29,11	0,087	
36	31	207,7	0,623	0,312
	31	207,7	0,623	
37	33	44,95	0,135	0,452
	34	48,42	0,145]
38	32	208,4	0,625	0,313
	32	208,4	0,625	
39	33	44,95	0,135	0,546
	36	110,9	0,333	1
	102	373,9	1,122	
40	103	198,33	0,595	0,902
	35	29,11	0,087	1

	36	110,9	0,333	
41	45	97,65	0,293	1,055
	55	494,7	1,484	
42	37	99,99	0,300	0,150
	37	99,99	0,300	
43	41	22,78	0,068	0,239
	42	36,32	0,109	
44	38	98,82	0,296	0,148
	38	98,82	0,296	
45	42	36,32	0,109	0,254
Ī	43	34,44	0,103	
46	39	88,19	0,265	0,132
	39	88,19	0,265	
47	34	48,42	0,145	0,249
	44	29,28	0,088	
48	40	97,73	0,293	0,147
	40	97,73	0,293	,
49	44	29,28	0,088	0,337
	45	97,65	0,293	
50	41	22,78	0,068	0,034
51	46	270,1	0,810	0,405
	46	270,1	0,810	
52	47	200,8	0,602	1,661
	48	636,1	1,908	
53	47	200,8	0,602	0,301
	48	636,1	1,908	
54	49	675,4	2,026	3,311
	93	896	2,688	
55	49	675,4	2,026	1,013
56	50	153,8	0,461	0,231
	50	153,8	0,461	
57	51	17,27	0,052	0,316
	52	39,78	0,119	<u> </u>
58	51	17,27	0,052	0,026
	27	313	0,939	,
59	52	39,78	0,119	0,561
	53	21,53	0,065	,
60	53	21,53	0,065	0,032
	54	74,56	0,224	- ,
61	55	494,7	1,484	0,964
	57	73,35	0,220	- ,

0,491	0,982	327,3	56	62
	0,982	327,3	56	
0,940	0,220	73,35	57	63
	0,677	225,7	58	
	1,972	657,26	29	
1,426	0,677	225,7	58	64
	0,204	68	61	
	1,972	657,26	29	
2.124	2,088	696,1	59	
3,134	2,051	683,8	94	65
	0,156	52	105	
	2,088	696,1	59	
2.260	2,124	708	62	
2,369	0,481	160,3	97	66
	0,044	14,74	99	
1,062	2,124	708	62	70
	3,060	1020	63	
1,934	0,763	254,4	96	71
	0,044	14,74	99	
	3,060	1020	63	
2 244	0,815	271,8	64	72
2,344	0,731	243,7	65	72
	0,081	27,15	69	
0,408	0,815	271,8	64	73
0,366	0,731	243,7	65	74
0,203	0,405	135,1	66	75
	0,405	135,1	66	
0,448	0,097	32,17	71	76
	0,394	131,3	72	
0,212	0,424	141,4	67	77
	0,424	141,4	67	
0,305	0,090	30	70	78
	0,097	32,17	71	
	0,723	240,9	68	
0,447	0,081	27,15	69	79
	0,090	30	70	
0,361	0,723	240,9	68	80
	0,394	131,3	72	
0,231	0,048	16,13	74	81
	0,020	6,51	76	
0,521	1,041	347,1	73	82

	1,041	347,1	73	
0,945	0,048	16,13	74	83
	0,801	267,1	79	
0,287	0,575	191,6	75	84
	0,575	191,6	75	
0,584	0,020	6,51	76	85
	0,574	191,2	77	
0.4==	0,574	191,2	77	0.6
0,477	0,380	126,8	78	86
0,190	0,380	126,8	78	87
	0,801	267,1	79	0.0
0,948	1,094	364,8	80	88
0,547	1,094	364,8	80	89
•	1,094	364,8	80	
0,936	0,510	169,9	81	90
,	0,267	88,97	85	
0,255	0,510	169,9	81	91
,	0,754	251,4	82	
0,910	0,799	266,2	84	92
-	0,267	88,97	85	
0,377	0,754	251,4	82	93
0,111	0,223	74,23	83	94
·	0,223	74,23	83	
0,796	0,799	266,2	84	95
•	0,570	190	86	
	0,799	266,2	84	
1,354	0,657	219,1	87	96
	1,253	417,5	89	
	0,442	147,4	90	
0,506	0,051	17	106	97
0,500	0,519	172,9	107	
0,221	0,442	147,4	90	98
·	1,675	558,3	88	
2,259	2,688	896	93	101
•	0,156	52	105	
4.400	2,051	683,8	94	102
1,198	0,344	114,6	95	102
0,172	0,344	114,6	95	103
0,240	0,481	160,3	97	69

III.4.3 Résultats du simulation (Etat hydraulique) :

Apres l'introduction des différents paramètres hydraulique de notre réseau : Diamètres ; Rugosités ; longueurs ; les caractéristiques des réservoirs existant ainsi que les débits nodaux de consommation, on lance la simulation et on extrait l'états des nœuds et des arcs de notre réseau.

III.4.3.1 Etat des nœuds :

Tableau III – 5: état des nœuds

Nœud	Altitude (m)	Demande de base (l/S)	Pression (m.c.e)
Nœud n1	107,88	0,354	49,89
Noeud n2	114,51	1,658	43,29
Noeud n3	105,24	0,267	52,55
Noeud n4	118,03	0,078	39,77
Noeud n5	104,60	0,475	18
Noeud n6	113,69	0,868	8,97
Noeud n7	113,98	0,07	8,68
Noeud n8	118,92	0,996	3,81
Noeud n9	122,90	0,11	18,03
Noeud n10	123,12	0,446	17,91
Noeud n11	124,93	0,094	16,71
Noeud n12	124,50	0,448	17,14
Noeud n13	108,37	0,448	12,77
Noeud n14	120,41	0,342	0,33
Noeud n15	118,75	0,396	2,73
Noeud n16	113,09	0,259	7,66
Noeud n17	120,39	0,347	35,95
Noeud n18	126,07	1,177	32,31
Noeud n19	121,15	0,882	36,85
Noeud n20	118,06	0,188	39,56
Noeud n21	121,70	1,653	36,59
Noeud n22	160,96	1,908	2,07
Noeud n23	136,70	1,15	24,78
Noeud n24	160,84	0,892	2,15
Noeud n25	137,17	0,804	18,92
Noeud n26	137,09	1,215	19,28
Noeud n27	144,88	0,348	18,09
Noeud n28	119,19	0,547	37,09
Noeud n29	151,84	1,098	4,15
Noeud n30	181,82	0,578	67,78
Noeud n31	211,81	1,586	37,89

Noeud n32	113,30	0,561	25,35
Noeud n33	117,51	0,298	21,89
Noeud n34	117,80	0,3	21,66
Noeud n35	131,97	0,416	7,65
Noeud n36	118,39	0,312	21,25
Noeud n37	135,21	0,452	4,61
Noeud n38	119,56	0,313	20,37
Noeud n39	136,50	0,546	3,62
Noeud n40	129,21	0,902	10,35
Noeud n41	145,47	1,055	-4,22
Noeud n42	135,81	0,15	5,25
Noeud n43	136,67	0,239	4,46
Noeud n44	138,84	0,148	2,23
Noeud n45	139,20	0,254	1,94
Noeud n46	142,11	0,132	-1,01
Noeud n47	142,03	0,249	-0,88
Noeud n48	145,22	0,147	-4,11
Noeud n49	144,47	0,337	-3,29
Noeud n50	135,30	0,034	5,83
Noeud n51	147,35	0,405	120,01
Noeud n52	173,16	1,661	97,81
Noeud n53	160,12	0,301	110,33
Noeud n54	216,34	3,311	54,74
Noeud n55	161,49	1,013	68,72
Noeud n56	131,97	0,231	12,86
Noeud n57	138,53	0,316	7,03
Noeud n58	137,55	0,026	8,02
Noeud n59	139,70	0,561	5,87
Noeud n60	139,22	0,032	6,35
Noeud n61	144,36	0,964	1,23
Noeud n62	154,37	0,491	-8,39
Noeud n63	148,77	0,94	-2,1
Noeud n64	170,20	1,426	-2,35
Noeud n65	242,04	3,134	29,19
Noeud n66	229,46	2,369	34,22
Noeud n70	143,69	1,062	113,9
Noeud n71	229,47	1,934	31,38
Noeud n72	135,69	2,344	113,01
Noeud n73	145,14	0,408	100,37
Noeud n74	130,34	0,366	118,08
Noeud n75	150,88	0,203	97,79
Noeud n76	138,88	0,484	109,8
Noeud n77	146,82	0,212	101,86

Noeud n78	138,70	0,305	109,98
Noeud n79	137,93	0,477	110,77
Noeud n80	150,44	0,361	98,22
Noeud n81	137,97	0,231	110,69
Noeud n82	182,60	0,521	65,96
Noeud n83	138,02	0,945	110,63
Noeud n84	127,50	0,287	119,85
Noeud n85	137,92	0,584	110,64
Noeud n86	158,99	0,477	89,5
Noeud n87	152,98	0,19	95,12
Noeud n88	158,25	0,948	90,71
Noeud n89	135,37	0,547	111,79
Noeud n90	163,86	0,936	83,4
Noeud n91	170,19	0,255	76,96
Noeud n92	175,42	0,91	73,77
Noeud n93	181,31	0,377	67,55
Noeud n94	186,27	0,111	62,74
Noeud n95	180,75	0,796	68,28
Noeud n96	197,46	1,354	51,79
Noeud n97	118,62	0,506	2,47
Noeud n98	113,84	0,221	7,04
Noeud n101	244,21	2,259	27,86
Noeud n102	166,91	1,198	104,13
Noeud n103	169,39	0,172	101,61
Noeud n69	240,47	0,24	23,2

III.4.3.2 Etat des arcs :

Tableau III – 6: état des arcs

Arc	Longueur (m)	Débit (l/S)	Vitesse (m/s)	perte de charge (m/km)
Tuyau p1	235,8	-0,35	0,07	0,12
Tuyau p2	177,8	0,27	0,05	0,07
Tuyau p3	51,77	0,08	0,04	0,05
Tuyau p4	316,9	-0,48	0,09	0,19
Tuyau p5	46,74	0,07	0,04	0,05
Tuyau p6	215,1	-1,41	0,15	0,28
Tuyau p7	73,16	-0,11	0,14	1,29
Tuyau p8	62,83	-0,09	0,03	0,03
Tuyau p9	39,06	-5,14	1,02	15,72
Tuyau p10	131,3	4,58	2,33	139,39
Tuyau p11	298,7	-0,45	0,36	5,32

Tuyau p12	228	-0,34	0,27	3,26
Tuyau p13	18,68	-1,72	1,37	66,46
Tuyau p15	231	-0,35	0,43	8,83
Tuyau p16	125,3	0,19	0,23	3,02
Tuyau p17	144,7	1,97	0,39	2,61
Tuyau p18	317,9	-0,9	0,18	0,63
Tuyau p19	780,1	-3,11	0,62	6,08
Tuyau p20	409,2	-3,5	0,7	7,59
Tuyau p21	357,4	4,65	0,59	4,23
Tuyau p22	26,63	-7,58	0,97	10,66
Tuyau p23	232,2	-0,35	0,07	0,12
Tuyau p24	196,52	-5,68	1,92	73,51
Tuyau p25	364,5	-0,55	0,11	0,26
Tuyau p26	418,9	-9,34	1,19	15,89
Tuyau p27	313	1,1	0,14	0,3
Tuyau p28	385,6	-0,58	0,11	0,27
Tuyau p30	199,7	-0,3	0,15	0,81
Tuyau p31	207,7	-0,31	0,16	0,87
Tuyau p32	208,4	-0,31	0,16	0,88
Tuyau p33	44,95	3,24	0,64	6,58
Tuyau p34	48,42	2,48	0,49	3,98
Tuyau p35	29,11	1,76	0,35	2,12
Tuyau p36	110,9	-4,1	0,82	10,25
Tuyau p37	99,99	-0,15	0,12	0,75
Tuyau p38	98,82	-0,15	0,12	0,74
Tuyau p39	88,19	-0,13	0,11	0,6
Tuyau p40	97,73	-0,15	0,12	0,73
Tuyau p41	22,78	-0,03	0,03	0,06
Tuyau p42	36,32	-0,42	0,08	0,17
Tuyau p43	34,44	-0,82	0,16	0,54
Tuyau p44	29,28	-1,21	0,24	1,06
Tuyau p45	97,65	-1,69	0,22	0,66
Tuyau p46	270,1	-0,41	0,5	13,4
Tuyau p47	200,8	0,3	0,24	2,59
Tuyau p48	636,1	-2,37	0,13	0,17
Tuyau p49	675,4	1,01	1,26	60,51
Tuyau p50	153,8	-0,23	0,29	4,8
Tuyau p51	17,27	0,03	0,02	0,04
Tuyau p52	39,78	-0,57	0,07	0,1
Tuyau p53	21,53	0,03	0,03	0,05
Tuyau p54	74,56	-1,17	0,15	0,34
Tuyau p55	494,7	6,85	0,87	8,78
Tuyau p56	327,3	-0,49	0,25	2,09

Tuyau p57	73,35	8,98	1,14	14,71
Tuyau p58	225,7	-10,41	2,45	93,8
Tuyau p59	696,1	22,4	1,27	10,84
Tuyau p62	708	1,06	0,54	8,61
Tuyau p63	1020	8,03	1,02	11,9
Tuyau p64	271,8	0,41	0,51	11,76
Tuyau p65	243,7	-0,37	0,19	1,15
Tuyau p66	135,1	-0,2	0,05	0,05
Tuyau p67	141,4	-0,21	0,05	0,06
Tuyau p68	240,9	0,36	0,08	0,16
Tuyau p69	27,15	4,91	0,24	0,43
Tuyau p70	30	4,07	0,2	0,31
Tuyau p71	32,17	3,56	0,18	0,24
Tuyau p72	131,3	2,87	0,14	0,17
Tuyau p73	347,1	-0,52	0,1	0,24
Tuyau p74	16,13	-1,1	0,22	0,91
Tuyau p75	191,6	-0,29	0,36	6,32
Tuyau p76	6,51	1,54	0,78	14,63
Tuyau p77	191,2	0,67	0,13	0,35
Tuyau p78	126,8	-0,19	0,24	3,08
Tuyau p79	267,1	0,36	0,19	1,2
Tuyau p80	364,8	-0,55	0,11	0,25
Tuyau p81	169,9	0,25	0,13	0,65
Tuyau p82	251,4	0,38	0,19	1,3
Tuyau p83	74,23	-0,11	0,09	0,38
Tuyau p84	266,2	3,03	0,17	0,26
Tuyau p85	88,97	1,74	0,89	21,69
Tuyau p86	190	-1,31	0,17	0,39
Tuyau p87	219,1	-2,22	0,28	0,99
Tuyau p89	417,5	6,6	0,37	1,08
Tuyau p90	147,4	0,22	0,18	1,49
Tuyau p93	896	6,69	0,38	1,11
Tuyau p94	683,8	1,37	0,14	0,28
Tuyau p95	114,6	0,17	0,09	0,33
Tuyau p61	68	-20,25	2,58	70,81
Tuyau P97	160,3	0,24	0,05	0,06
Tuyau P99	14,742	18,73	3,73	192,25
Tuyau P96	254,4	8,76	1,74	43,8
Tuyau P102	373,8974	0,56	0,29	2,42
Tuyau P103	198,3348	0,3	0,15	0,8
Tuyau P105	52	58,98	1,88	16,24
Tuyau P106	17	0,99	0,78	22,98
Tuyau P107	172,9	0,26	0,21	1,98

Tuyau P14	322	1,45	0,29	1,49
Tuyau P29	657,26	-32,08	3,93	157,3
Tuyau P60	5	5,89	0,75	6,6
Tuyau P88	558,3	-67,93	2,16	21,36

III.4.4 Interprétation du résultat de la simulation :

D'après les résultats de la simulation, on constate le mauvais fonctionnement hydraulique du réseau existant à savoir :

- Les pressions inférieures à 20 m.c.e au niveau de 43 nœuds, dont 8 nœuds présentent des dépressions
- Les faibles vitesses dans environ 60 tronçons (vitesse < 0.3 m/s)
- Les fortes vitesses dans quelques tronçons

III.5 Conclusion:

Ce chapitre nous a donné une vision générale sur l'état actuel du réseau existant du point de vue physique et hydraulique. En se basant sur les résultats du diagnostic une projection d'un nouveau réseau d'AEP est obligatoire pour satisfaire les besoins en eau de notre agglomération à l'horizon de calcul.

Chapitre IV:

IV.1 Introduction:

On a vu dans le chapitre précédent que le réseau existant de la ville de LARBAATACHE est mal fonctionne et n'assure pas les besoins en eau de l'agglomération, dans ce chapitre on va projeter et dimensionner un nouveau réseau pour répondre aux besoins futurs de la ville.

IV.2 Types des réseaux de distribution :

Nous distinguons trois types de réseau et cela en fonction de la disposition des tronçons :

- Réseau maillé
- Réseau ramifié
- Réseau mixte

IV.2.1 Réseau maillé :

Un réseau maillé est constitué d'une série de tronçons disposés de telle manière qu'il soit possible de décrire une ou plusieurs boucles fermées en suivant son tracé, une telle boucle s'appelle une maille. [3]

IV.2.1.1 Les avantages :

- Plus flexible
- Bonne répartition et pas de stagnation de l'eau dans le réseau
- Plus fiable en cas de pannes [4]

IV.2.1.2 Les inconvénients :

- Coûts d'investissement supérieur ;
- La détermination des conditions d'équilibre hydraulique et dimensionnement sont plus complexe ;
- Indétermination dans le sens et la valeur du débit et des pertes de charge ;
- Pertes de charge élevées à cause du nombre important d'accessoires. [5]

IV.2.2 Réseau ramifié :

Une conduite principale se ramifie en plusieurs direction et il y'a qu'un chemin possible entre le réservoir et les autres points. [6]

IV.2.2.1 Les avantages :

- Calcul hydraulique et dimensionnement simples ;
- Plus économique. [7]

IV.2.2.2 Les inconvénients :

- Peu flexible, terme de pression;
- Il y'a une stagnation d'eau donc dégradation de la qualité de l'eau ;
- Peu fiable en cas de panne. [8]

IV.2.3 Réseau mixte:

C'est la combinaison dans un même réseau de distribution d'eau des 2 configurations antérieures, Il correspond à la situation la plus courante pour les réseaux domiciliaires.

IV.3 Choix du type de réseau :

Plusieurs facteurs influencent le choix de type de réseau à utiliser : nous citons les suivants :

- L'emplacement de gros consommateurs ;
- L'emplacement des quartiers ;
- Le relief;
- Le souci d'assurer un service souple et régulier ;
- Suivi des voix routières.

Pour notre cas le relief accidenté et la déposition des consommateurs exige la projection d'un réseau ramifié.

IV.4 Principe du tracé du réseau:

Le tracé du réseau dépend du plan d'urbanisation, de l'emplacement des consommateurs et du Relief, donc il se fait comme suite :

- Tout d'abord, il faut repérer l'emplacement des grands consommateurs.
- Repérer les quartiers ayant une densité de population importante ;
- Déterminer le sens principal de l'écoulement d'eau pour pouvoir tracer les conduites maîtresses dans ce sens
- Ces conduites principales doivent être bien reparties pour avoir une bonne distribution d'eau.
- Pour alimenter l'intérieur des quartiers, les conduites principales sont reliées par des conduites secondaires (branches).

IV.5 Calcul du réseau de distribution :

Le dimensionnement du réseau projeté de la ville de LARBAATACHE sera fait de façon à satisfaire les besoins actuels de l'agglomération et assurer ainsi une alimentation future au long terme pour les extensions et les consommateur future. Le calcul sera fait en considérant de cas de calcul : Cas de pointe et cas de pointe + incendie.

IV.5.1 Débit entrant dans le réseau :

C'est le débit maximal consommé dans le réseau de distribution :

$$Q_{consommé} = \sum Q_{ri} + \sum Q_{concentré}$$
 (IV – 1)

Avec:

- $Q_{consomm\acute{e}}$: Débit maximal consommé (l/s)
- $\sum Q_{ri}$: Somme des débits en routes dans chaque tronçon (l/s)
- $\sum Q_{concentré}$: Somme des débits concentrés soutirés dans le réseau (l/s)

Comme notre réseau ne contient pas de consommation concentré $\sum Q_{concentré}=0$, On aboutit à la relation suivante :

$$Q_{consomm\acute{e}} = \sum Q_{ri}$$
 (IV – 2)

IV.5.2 Calcul des débits spécifiques :

On considère l'hypothèse que les besoins sont également répartis sur le long de la longueur du réseau de distribution. On a donc le débit spécifique calculé par :

$$q_{sp} = \frac{\sum Q_{ri}}{\sum L_i} \qquad (IV - 3)$$

Avec:

- q_{sp} : Débit spécifique (l/s/ml)
- $\sum Q_{ri}$: Somme des débits en routes de chaque tronçon (1/s)
- $\sum L_i$: Somme des longueurs des tronçons assurant un service en route (ml)

On résume le résultat de calcul dans le tableau suivant :

Tableau IV – 1 : résumé des calculs des débits

$\sum Q_{ri}$ 149.05

$\sum L_i$	21626,04
q_{sp}	0.0074

IV.5.3 Calcul des débits en route dans chaque tronçon :

C'est le débit consommé le long de chaque tronçon et donné par la relation :

$$Q_{ri} = q_{sp} \times L_i \qquad (IV - 4)$$

Avec:

• Q_{ri} : Débits en route (1/s)

• q_{sp} : Débit spécifique (l/s/ml)

• L_i : Longueurs du tronçon (ml)

IV.5.4 Calcul des débits aux nœuds :

Ils sont les débits concentrés en chaque nœud de consommation. Ils représentent la moitié des débits consommés dans les tronçons autour du nœud considéré. Un débit nodal pour un nœud donné est calculé par la formule ainsi :

$$Q_{ni} = 0.5 \times \sum Q_{ri} + \sum Q_{cci} \qquad (IV - 5)$$

Avec:

• Q_{ni} : Débit nodal dans le nœud considéré. (1/s)

• $\sum Q_{ri}$: Somme des débits en routes des tronçons adjacents au nœud considéré. (1/s)

• $\sum Q_{cci}$: Somme des débits concentrés dans le nœud considéré. (1/s)

IV.6 Calcul des débits :

Le calcul se fait pour deux cas de fonctionnement pour, cas de fonctionnement en pointe et le fonctionnement en pointe plus incendie en ajoutant pour le dernier un débit d'incendie exiger à 17 l/s dans le nœud le plus défavorable. Pour notre c'est le point le plus éloigné du réservoir, donc le nœud 3.

Les résultats de calcul des débits en routes et les débits nodaux sont résumés dans le tableau suivant :

Tableau IV – 2 : résultats des calculs des débits en route et des débits nodaux

	A	1		Q routes		Q nodaux
nœuds	tronçons	longueurs	pointe	pointe + incendie	pointe	pointe + incendie
1	1	563,05	4,167	4,167	2,083	2,083
2	31	186,68	1,381	1,381	0,691	0,691
	3	132	0,977	0,977		
3	11	182,5	1,351	1,351	1,782	18,782
	14	167,2	1,237	1,237		
4	17	657,45	4,865	4,865	2,433	2,433
5	3	132	0,977	0,977	0,488	0,488
	4	421,8	3,121	3,121		
6	6	266,4	1,971	1,971	3,042	3,042
	12	134	0,992	0,992		
	4	421,8	3,121	3,121		
7	5	150,9	1,117	1,117	2,834	2,834
	8	193,3	1,430	1,430	,	
8	5	150,9	1,117	1,117	0,558	0,558
	6	266,4	1,971	1,971	2,379	2,379
0	7	178,1	1,318	1,318		
9	10	29,68	0,220	0,220		
	29	168,7	1,248	1,248		
	7	178,1	1,318	1,318		
10	8	193,3	1,430	1,430	2,163	2,163
	9	213,2	1,578	1,578		
	9	213,2	1,578	1,578		
11	10	29,68	0,220	0,220	1,386	1,386
	16	131,69	0,975	0,975		
12	36	255,89	1,894	1,894	0,947	0,947
	11	182,5	1,351	1,351		
13	12	134	0,992	0,992	1,857	1,857
	13	185,4	1,372	1,372		
14	13	185,4	1,372	1,372	0,686	0,686
	14	167,2	1,237	1,237		
15	15	11,55	0,085	0,085	1,955	1,955
	19	349,5	2,586	2,586		
	15	11,5	0,085	0,085	1,488	
16	21	138	1,021	1,021		1,488
	62	252,7	1,870	1,870		
17	128	511,1	3,782	3,782	1,891	1,891
18	26	295	2,183	2,183	1,092	1,092
19	62	252,7	1,870	1,870	0,935	0,935

		2,586	2,586	349,5	19	
3,016	3,016	1,436	1,436	194	20	20
		2,011	2,011	271,7	92	
0,718	0,718	1,436	1,436	194	20	21
		1,021	1,021	138	21	
1,144	1,144	0,904	0,904	122,2	22	22
		0,363	0,363	49,07	23	
0,452	0,452	0,904	0,904	122,2	22	23
		0,363	0,363	49,07	23	
1,472	1,472	0,687	0,687	92,85	25	24
		1,894	1,894	255,89	36	
		2,068	2,068	279,5	91	
2,261	2,261	1,926	1,926	260,3	95	25
		0,527	0,527	71,22	98	
		0,687	0,687	92,85	25	
2,112	2,112	0,999	0,999	134,95	87	26
		2,539	2,539	343,14	89	
3,068		1,248	1,248	168,7	29	
	2.060	0,567	0,567	76,63	35	20
	3,068	1,782	1,782	240,82	18	29
	1	2,539	2,539	343,14	89	
1,388		0,975	0,975	131,69	16	
	1,388	1,030	1,030	139,2	33	32
		0,771	0,771	104,2	34	
		1,030	1,030	139,2	33	
0,901	0,901	0,607	0,607	82,02	38	33
		0,165	0,165	22,26	39	
		0,771	0,771	104,2	34	
1 707	1 707	0,567	0,567	76,63	35	24
1,707	1,707	0,607	0,607	82,02	38	34
		1,468	1,468	198,4	47	
		0,165	0,165	22,26	39	
0,860	0,860	0,167	0,167	22,63	40	37
		1,388	1,388	187,6	53	
		0,167	0,167	22,63	40	
3,001	3,001	0,860	0,860	116,2	41	38
3,001	3,001	4,974	4,974	672,2	45	36
		0,860	0,860	116,2	41	
1,159	1,159	1,124	1,124	151,9	42	39
		0,335	0,335	45,21	43	-
0,562	0,562	1,124	1,124	151,9	42	40

	43	45,21	0,335	0,335		
41	45	672,2	4,974	4,974	2,654	2,654
	24	190,62	1,411	1,411		
44	47	198,4	1,468	1,468	2,400	2,400
	74	259,6	1,921	1,921		,
	53	187,6	1,388	1,388		
48	54	55,36	0,410	0,410	1,859	1,859
ļ l	74	259,6	1,921	1,921		
	54	55,36	0,410	0,410		
49	55	182,3	1,349	1,349	1,370	1,370
Ī	56	132,5	0,981	0,981		
50	55	182,3	1,349	1,349	0,675	0,675
<i>5</i> 1	56	132,5	0,981	0,981		2.441
51	57	527,3	3,902	3,902	2,441	2,441
52	57	527,3	3,902	3,902	1,951	1,951
	51	85,32	0,631	0,631		
54	60	145,4	1,076	1,076	1,353	1,353
Ī	87	134,95	0,999	0,999		
55	60	145,4	1,076	1,076	0,538	0,538
	48	548,38	4,058	4,058		3,309
5.0	51	85,32	0,631	0,631		
56	68	31,59	0,234	0,234	3,309	
	72	229	1,695	1,695		
	18	240,82	1,782	1,782		
57	31	186,68	1,381	1,381	2,099	2,099
	64	139,7	1,034	1,034		
	64	139,7	1,034	1,034		
59	72	229	1,695	1,695	1,767	1,767
	78	109	0,807	0,807		
	68	31,59	0,234	0,234		
62	71	240,6	1,780	1,780	1,775	1,775
	101	207,45	1,535	1,535		
63	91	279,5	2,068	2,068	1,034	1,034
64	101	207,45	1,535	1,535	0,768	0,768
65	71	240,6	1,780	1,780	0,890	0,890
66	48	548,38	4,058	4,058	2,029	2,029
(0	24	190,62	1,411	1,411	1 122	1 100
68	76	125,6	0,929	0,929	1,432	1,432
T	77	70,69	0,523	0,523		
69	76	125,6	0,929	0,929	0,465	0,465

70	77	70,69	0,523	0,523		1,581
	80	37,02	0,274	0,274	1,581	
	27	319,72	2,366	2,366		
	78	109	0,807	0,807		0,876
71	79	81,24	0,601	0,601	0,876	
	83	46,56	0,345	0,345		
	26	295	2,183	2,183		1,929
70	79	81,24	0,601	0,601	1,929	
72	80	37,02	0,274	0,274		
	86	108,2	0,801	0,801		
74	27	319,72	2,366	2,366	1,183	1,183
	83	46,56	0,345	0,345	,	,
75	84	330,3	2,444	2,444	1,783	1,783
	85	104,9	0,776	0,776		,
76	84	330,3	2,444	2,444	1,222	1,222
	61	30,17	0,223	0,223	0,900	0,900
77	85	104,9	0,776	0,776		
	86	108,2	0,801	0,801		
	44	228,97	1,694	1,694	1,604	1,604
79	61	30,17	0,223	0,223		
.,	88	176,97	1,310	1,310		
80	88	176,97	1,310	1,310	0,655	0,655
	92	271,7	2,011	2,011	,	1,681
84	93	138,6	1,026	1,026	1,681	
	94	44,1	0,326	0,326		
85	93	138,6	1,026	1,026	0,513	0,513
	94	44,1	0,326	0,326		1,315
87	95	260,3	1,926	1,926	1,315	
	96	50,88	0,377	0,377		
	66	633	4,684	4,684		2,626
89	96	50,88	0,377	0,377	2,626	
	97	25,78	0,191	0,191		
	97	25,78	0,191	0,191		1,151
90	99	219,3	1,623	1,623	1,151	
	106	66,13	0,489	0,489	7	
	98	71,22	0,527	0,527	2,130	2,130
92	99	219,3	1,623	1,623		
	100	285,2	2,110	2,110		
93	100	285,2	2,110	2,110	1,055	1,055
98	66	633	4,684	4,684	2,342	2,342
	1	563,05	4,167	4,167	·	2,328
99	106	66,13	0,489	0,489	2,328	
100	123	668,2	4,945	4,945	2,472	2,472

5,837		4,907	4,907	663,06	2	102
	5,837	0,174	0,174	23,48	125	
		6,593	6,593	890,9	126	
2,536		3,046	3,046	411,63	110	
	2,536	1,852	1,852	250,3	120	103
		0,174	0,174	23,48	125	
1,523	1,523	3,046	3,046	411,63	110	104
0,847	0,847	1,694	1,694	228,97	44	106
4,434		3,500	3,500	472,98	59	
	4,434	3,329	3,329	449,9	119	112
		2,039	2,039	275,5	122	
3,110		3,329	3,329	449,9	119	
	3,110	1,852	1,852	250,3	120	113
		1,039	1,039	140,4	121	
5,069		2,039	2,039	275,5	122	
	5,069	4,945	4,945	668,2	123	115
		3,155	3,155	426,3	124	
1,577	1,577	3,155	3,155	426,3	124	116
5,729		4,865	4,865	657,45	17	
	5,729	6,593	6,593	890,9	126	118
2,795		3,782	3,782	511,1	128	
	2,795	0,875	0,875	118,2	129	119
		0,932	0,932	126	130	
1,484		0,875	0,875	118,2	129	
	1,484	0,852	0,852	115,2	136	120
		1,240	1,240	167,6	137	
1,945		2,047	2,047	276,6	73	
	1,945	0,932	0,932	126	130	121
		0,912	0,912	123,2	131	
0,456	0,456	0,912	0,912	123,2	131	122
1,023	1,023	2,047	2,047	276,6	73	124
1 022	1 022	1,212	1,212	163,8	135	125
1,032	1,032	0,852	0,852	115,2	136	125
0,606	0,606	1,212	1,212	163,8	135	126
0,620	0,620	1,240	1,240	167,6	137	127

IV.7 Dimensionnement du réseau :

Pour en finir on insert toutes ces données sur EPANET, et on lance la simulation. Les résultats sont donnés dans les tableaux suivant :

IV.7.1 Etat des nœuds:

Tableau IV – 3 : état des nœuds

		Point	e	Pointe + incendie		
nœuds	Altitude (m)	Demande de base (1/S)	Pression (m)	Demande de base (1/S)	Pression (m)	
Noeud 1	181,00	2,083	15,83	2,083	15,33	
Noeud 2	134,99	0,691	54,06	0,691	53,2	
Noeud n3	115,00	1,782	73,67	18,782	67,48	
Noeud 4	181,26	2,433	67,48	2,433	67,25	
Noeud n5	117,96	0,488	70,26	0,488	64,07	
Noeud n6	111,71	3,042	75,05	3,042	70,27	
Noeud n7	106,96	2,834	76,36	2,834	73,59	
Noeud n8	108,30	0,558	74,35	0,558	71,58	
Noeud n9	118,94	2,379	68,78	2,379	66,14	
Noeud n10	112,95	2,163	71,14	2,163	68,55	
Noeud n11	118,63	1,386	69,3	1,386	67,76	
Noeud 12	133,54	0,947	52,73	0,947	49,14	
Noeud n13	107,98	1,857	79,84	1,857	74,11	
Noeud n14	106,89	0,686	79,76	0,686	74,03	
Noeud n15	118,56	1,955	70,36	1,955	65,96	
Noeud n16	118,71	1,488	70,22	1,488	65,86	
Noeud n17	216,03	1,891	15,83	1,891	15,6	
Noeud 18	168,56	1,092	18,3	1,092	17,81	
Noeud n19	106,45	0,935	79,72	0,935	75,36	
Noeud n20	135,42	3,016	63,74	3,016	63,12	
Noeud n21	130,67	0,718	67,17	0,718	66,55	
Noeud n22	121,17	1,144	67,89	1,144	64,09	
Noeud n23	118,05	0,452	70,6	0,452	66,8	
Noeud n24	121,92	1,472	67,21	1,472	63,62	
Noeud n25	138,08	2,261	60,76	2,261	60,26	
Noeud n26	125,96	2,112	63,32	2,112	60,18	
Noeud n29	124,40	3,068	63,86	3,068	61,24	
Noeud n32	120,04	1,388	68,17	1,388	66,83	
Noeud n33	120,64	0,901	68,34	0,901	67,46	
Noeud n34	124,90	1,707	64,18	1,707	63,31	
Noeud n37	120,12	0,86	68,81	0,86	67,94	
Noeud n38	119,59	3,001	69,22	3,001	68,35	
Noeud n39	117,56	1,159	68,97	1,159	68,1	
Noeud n40	114,40	0,562	71,45	0,562	70,57	
Noeud n41	118,64	2,654	67,58	2,654	66,71	
Noeud n44	135,69	2,4	53,94	2,4	53,22	

Noeud n48	140,18	1,859	47,95	1,859	47,21
Noeud n49	142,38	1,37	45,32	1,37	44,58
Noeud n50	157,61	0,675	28,97	0,675	28,23
Noeud n51	146,57	2,441	39,77	2,441	39,03
Noeud n52	147,66	1,951	31,61	1,951	30,87
Noeud n54	131,17	1,353	58,29	1,353	55,39
Noeud n55	131,46	0,538	57,4	0,538	54,5
Noeud n56	135,21	3,309	54,38	3,309	51,64
Noeud n57	136,76	2,099	53,48	2,099	52,61
Noeud n59	144,59	1,767	46,04	1,767	45,32
Noeud n62	137,85	1,775	51,65	1,775	48,91
Noeud n63	151,20	1,034	43,99	1,034	43,48
Noeud n64	149,50	0,768	38,41	0,768	35,67
Noeud n65	150,62	0,89	36,48	0,89	33,74
Noeud n66	177,78	2,029	13,06	2,029	11,49
Noeud n68	144,48	1,432	46,36	1,432	45,83
Noeud n69	132,38	0,465	58,06	0,465	57,53
Noeud n70	148,74	1,581	42,27	1,581	41,76
Noeud n71	151,48	0,876	39,75	0,876	39,26
Noeud n72	151,27	1,929	39,84	1,929	39,35
Noeud n74	154,94	1,183	30,75	1,183	30,24
Noeud n75	155,47	1,783	35,8	1,783	35,33
Noeud n76	138,93	1,222	46,53	1,222	46,06
Noeud n77	153,19	0,9	38,24	0,9	37,8
Noeud n79	166,88	1,613	24,61	1,613	24,18
Noeud n80	176,20	0,655	14,27	0,655	13,83
Noeud n84	154,33	1,681	45,64	1,681	45,11
Noeud n85	152,10	0,513	47,35	0,513	46,81
Noeud n87	158,26	1,315	41,96	1,315	41,44
Noeud n89	163,88	2,626	36,46	2,626	35,95
Noeud n90	166,78	1,151	33,62	1,151	33,11
Noeud n92	142,72	2,13	56,24	2,13	55,73
Noeud n93	182,56	1,055	12,54	1,055	12,03
Noeud n98	126,79	2,342	61,76	2,342	61,25
Noeud n99	181,50	2,328	18,98	2,328	18,47
Noeud n100	181,78	2,472	78,7	2,472	78,19
Noeud n102	244,14	5,837	18,73	5,837	18,49
Noeud n103	241,81	2,536	21,04	2,536	20,79
Noeud n106	180,44	0,847	11,51	0,847	11,14
Noeud n104	181,96	1,523	79,99	1,523	79,62
Noeud n112	229,57	4,434	32,61	4,434	32,14
Noeud n113	234,37	3,11	28,36	3,11	28,08
Noeud n115	209,68	5,069	52,22	5,069	51,74

Noeud n116	182,28	1,577	67,73	1,577	67,26
Noeud n118	216,25	5,729	45,61	5,729	45,37
Noeud n119	182,29	2,795	44,89	2,795	44,66
Noeud n120	164,48	1,484	61,79	1,484	61,56
Noeud n121	173,13	1,945	52,06	1,945	51,82
Noeud n122	171,56	0,456	53,2	0,456	52,97
Noeud n124	150,80	1,023	70,84	1,023	70,6
Noeud n125	164,19	1,032	60,96	1,032	60,72
Noeud n126	163,91	0,606	60,4	0,606	60,17
Noeud n127	169,08	0,62	56,31	0,62	56,08

IV.7.2 Etat des arcs:

Tableau IV – 4: état des arcs

	Longueur	Diamètre extérieur	pointe		pointe+ incendie	
arcs	(m)	(mm)	Débit (l/s)	Vitesse (m/s)	Débit (l/s)	Vitesse (m/s)
Tuyau P1	563,05	75	2,08	0,61	2,08	0,61
Tuyau p2	663,06	500	157,57	1,03	174,57	1,14
Tuyau p3	132,00	50	0,49	0,32	0,49	0,32
Tuyau p4	421,80	50	0,79	0,52	0,48	0,32
Tuyau p5	150,90	50	0,56	0,37	0,56	0,37
Tuyau p6	266,40	75	1,5	0,44	2,89	0,84
Tuyau p7	178,10	63	2,46	1,02	2,44	1,01
Tuyau p8	193,30	90	2,6	0,53	2,91	0,59
Tuyau p9	213,20	63	2,3	0,95	2,63	1,09
Tuyau p10	29,68	50	0,74	0,49	2,03	1,34
Tuyau p11	182,50	110	4,88	0,66	3,18	0,43
Tuyau p12	134,00	75	2,33	0,68	0,64	0,19
Tuyau p13	185,40	50	0,69	0,45	0,69	0,45
Tuyau p14	167,20	160	7,15	0,46	22,45	1,44
Tuyau p15	11,55	200	7,48	0,31	22,48	0,92
Tuyau p16	131,69	125	4,43	0,46	6,05	0,63
Tuyau P17	657,45	63	2,43	1,01	2,43	1,01
Tuyau p18	240,82	75	2,38	0,7	3,38	0,99
Tuyau p19	349,50	50	1,62	1,07	1,93	1,27
Tuyau p20	194,00	50	0,72	0,47	0,72	0,47
Tuyau p21	138,00	200	9,9	0,41	24,9	1,02
Tuyau p22	122,20	50	0,45	0,31	0,45	0,31
Tuyau p23	49,07	200	11,5	0,47	26,5	1,09
Tuyau p24	190,62	200	28,28	1,16	30,72	1,26

				1	1	1
Tuyau p25	92,85	200	13,92	0,57	28,92	1,19
Tuyau p26	295,00	50	1,09	0,72	1,09	0,72
Tuyau p27	319,72	50	1,18	0,78	1,18	0,78
Tuyau p29	168,70	125	5,6	0,59	5,68	0,6
Tuyau P31	186,68	50	0,69	0,45	0,69	0,45
Tuyau p32	31,52	315	48,26	0,8	52,18	0,86
Tuyau p33	139,20	75	1,9	0,56	2,47	0,72
Tuyau p34	104,20	90	3,91	0,79	4,96	1,01
Tuyau p35	76,63	50	0,92	0,61	1,75	1,15
Tuyau P36	255,89	50	0,95	0,62	0,95	0,62
Tuyau p38	82,02	200	11,59	0,48	12,11	0,5
Tuyau p39	22,26	160	8,79	0,56	8,74	0,56
Tuyau p40	22,63	125	7,38	0,77	7,38	0,77
Tuyau p41	116,20	75	3,85	1,13	3,85	1,13
Tuyau p42	151,90	50	0,56	0,37	0,56	0,37
Tuyau p43	45,21	75	2,13	0,62	2,13	0,62
Tuyau p44	228,97	315	50,53	0,83	54,45	0,9
Tuyau p45	672,20	50	0,52	0,34	0,52	0,34
Tuyau p47	198,40	200	18,14	0,74	20,53	0,84
Tuyau P48	548,38	250	29,45	0,77	42,22	1,11
Tuyau P51	85,32	250	23,29	0,61	36,53	0,96
Tuyau p53	187,60	50	0,55	0,36	0,5	0,33
Tuyau p54	55,36	110	6,44	0,87	6,44	0,87
Tuyau p55	182,30	50	0,68	0,44	0,68	0,44
Tuyau p56	132,50	90	4,39	0,89	4,39	0,89
Tuyau p57	527,30	63	1,95	0,81	1,95	0,81
Tuyau P59	472,98	250	33,23	0,87	46	1,21
Tuyau p60	145,40	50	0,54	0,35	0,54	0,35
Tuyau p62	252,70	50	0,94	0,61	0,94	0,61
Tuyau p64	139,70	125	5,17	0,54	6,17	0,65
Tuyau p66	633,00	63	2,34	0,97	2,34	0,97
Tuyau p68	31,59	110	3,43	0,47	3,43	0,47
Tuyau p71	240,60	50	0,89	0,59	0,89	0,59
Tuyau p72	229,00	50	0,58	0,38	1,05	0,69
Tuyau p73	276,60	50	1,02	0,67	1,02	0,67
Tuyau p74	259,60	125	7,74	0,81	7,8	0,82
Tuyau p76	125,60	50	0,47	0,31	0,47	0,31
Tuyau p77	70,69	250	30,18	0,79	32,62	0,86
Tuyau p78	109,00	125	7,52	0,79	8,99	0,94
Tuyau p79	81,24	90	1,53	0,31	1,52	0,31
Tuyau p80	37,02	250	32,94	0,86	35,38	0,93
Tuyau p83	46,56	200	9,92	0,41	11,38	0,47
Tuyau p84	330,30	50	1,22	0,8	1,22	0,8

Tuyau p85	104,90	200	12,93	0,53	14,39	0,59
Tuyau p86	108,20	250	34,43	0,9	36,89	0,97
Tuyau p87	134,95	250	21,4	0,56	34,64	0,91
Tuyau p88	176,97	50	0,65	0,43	0,65	0,43
Tuyau p89	343,14	125	5,37	0,56	3,61	0,38
Tuyau p91	279,50	50	1,03	0,68	1,03	0,68
Tuyau p92	271,70	125	5,35	0,56	5,66	0,59
Tuyau p93	138,60	50	0,51	0,34	0,51	0,34
Tuyau p94	44,10	125	7,55	0,79	7,86	0,82
Tuyau p95	260,30	50	0,62	0,41	0,62	0,41
Tuyau p96	50,88	160	9,48	0,61	9,79	0,63
Tuyau p97	25,78	200	14,45	0,59	14,76	0,61
Tuyau p98	71,22	110	2,67	0,36	2,68	0,36
Tuyau p99	219,30	110	5,86	0,8	5,86	0,8
Tuyau p100	285,20	50	1,05	0,69	1,05	0,69
Tuyau p101	207,45	50	0,77	0,51	0,77	0,51
Tuyau p106	66,13	250	21,46	0,56	21,77	0,57
Tuyau p110	411,63	315	52,9	0,87	56,82	0,94
Tuyau p119	449,90	400	72,65	0,74	85,74	0,88
Tuyau p120	250,30	500	76,28	0,5	89,36	0,59
Tuyau p121	140,40	50	0,52	0,34	0,52	0,34
Tuyau p122	275,50	315	34,99	0,58	35,3	0,58
Tuyau p123	668,20	250	28,35	0,74	28,65	0,75
Tuyau p124	426,30	50	1,58	1,04	1,58	1,04
Tuyau p125	23,48	500	131,72	0,86	148,72	0,98
Tuyau p126	890,90	250	20,01	0,52	20,01	0,52
Tuyau p128	511,10	125	9,96	1,04	9,96	1,04
Tuyau p129	118,20	90	3,74	0,76	3,74	0,76
Tuyau p130	126,00	75	3,42	1	3,42	1
Tuyau p131	123,20	50	0,46	0,31	0,46	0,31
Tuyau p135	163,80	50	0,61	0,4	0,61	0,4
Tuyau p136	115,20	63	1,64	0,68	1,64	0,68
Tuyau p137	167,60	50	0,62	0,41	0,62	0,41

Au premier lieu on avait des grandes pressions à cause du terrain accédanté et pour les réduire on a procédé a installé 4 réducteur de pressions :

- Le réducteur n :1 conçus à réduire la pression de 6 bars
- Le réducteur n : 2 conçus à réduire la pression de 7 bars
- Le réducteur n : conçus à réduire la pression de 7 bars
- Le réducteur n : 4 conçus à réduire la pression de 3 bars

Après l'installation de ces réducteurs de pression On remarque que notre réseau fonctionne avec des pressions acceptable et satisfaisantes dans les deux cas (pointe et pointe+ incendie), et que la totalité des nœuds ont des pressions entre 10 et 80 m.c.e

IV.7.3 Etat des réducteurs des pressions :

Tableau IV – 5 : état des réducteurs des pressions

	Diametra	pointe			pointe+ incendie		
Longueur (m)	Diamètre extérieur (mm)	Débit (l/s)	Vitesse (m/s)	Perte de Charge (m/km)	Débit (l/s)	Vitesse (m/s)	Perte de Charge (m/km)
Vanne 1	250	25,87	0,68	60	26,18	0,69	60
Vanne 2	250	31,48	0,83	70	44,25	1,16	70
Vanne 4	125	11,85	1,24	30	11,85	1,24	30
Vanne 3	315	51,38	0,85	70	55,29	0,91	70

On remarque que les vitesses dans notre réseau sont très acceptables, la majorité des tronçons ont des vitesses entre 0.5 et 1.5 m/s avec quelques tronçons ont des vites entre 0.3 et 0.5 m/s mais sa reste acceptable et dans les normes.

Les schémas suivant représentes l'état des nœuds et des arcs dans les deux cas de fonctionnement (Pointe et Pointe + Incendie) :

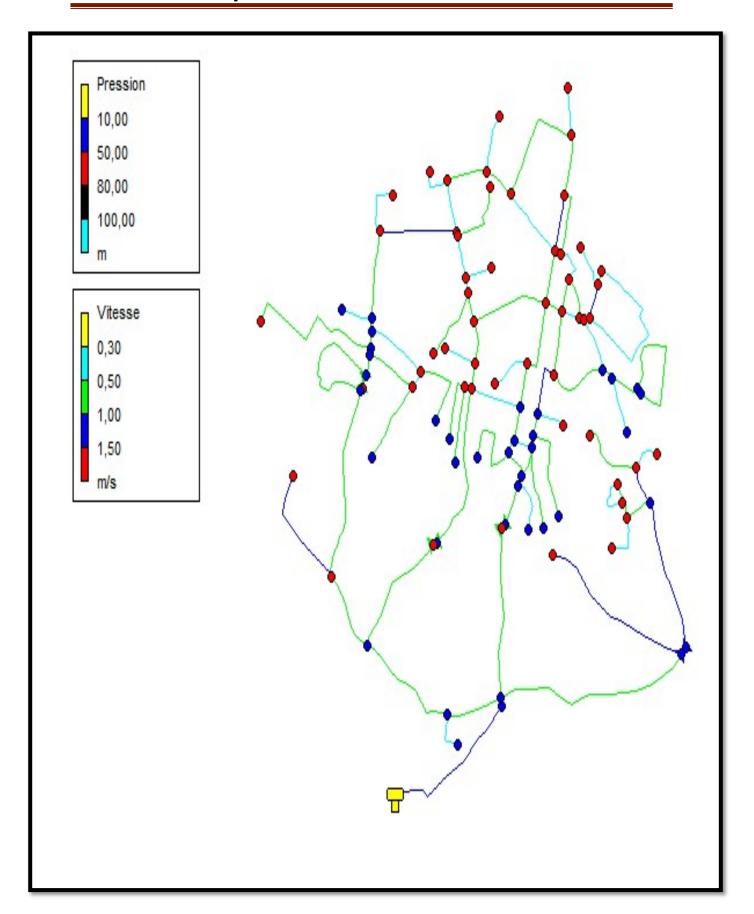


Figure IV - 1 : schéma du réseau en cas de pointe

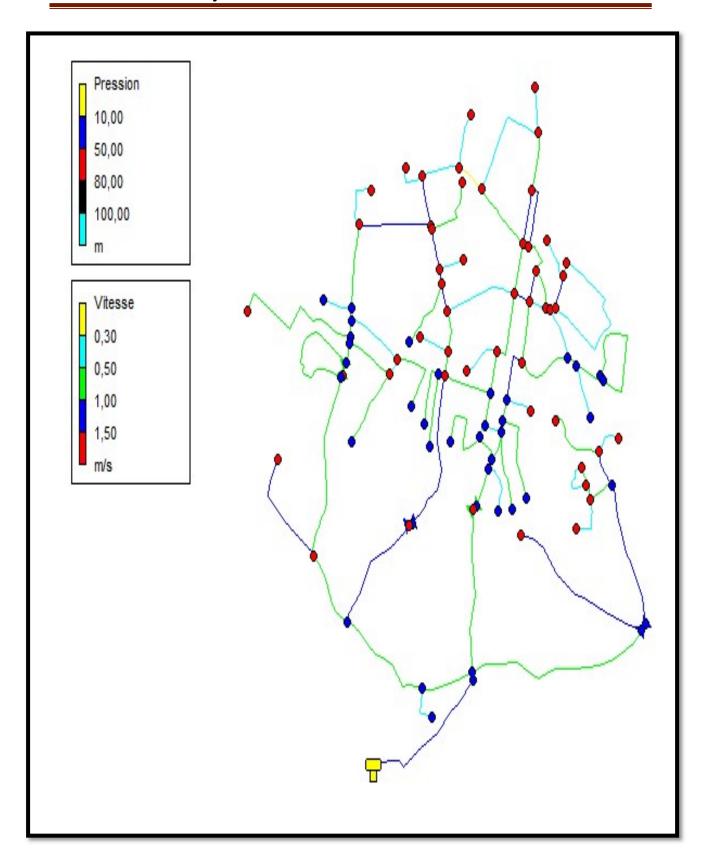


Figure IV - 2 : schéma du réseau en cas de pointe + incendie

IV.8 Conclusion:

À la fin de ce chapitre on a arrivé à dimensionner le nouveau réseau de distribution de la ville de LARBAATACHE et assuré le bon fonctionnement du réseau avec des pressions et des vitesses dans les normes exigées et on a assuré que notre réseau répond aux besoins de l'agglomération jusqu'à l'horizon 2050,

Aussi on a utilisé des conduites en PEHD d'une pression nominale de 10 bar par rapport aux avantages qui nous offres.

Chapitre V:

Etude des ouvrages de stockage

V.1 Introduction:

Le réservoir d'eau potable joue un rôle capital dans le réseau de distribution dont un de ses rôles importants est de relier le réseau de distribution à la source d'eau, dans ce chapitre on va déterminer les volumes de stockage, et de vérifier leur capacité à l'horizon de l'étude, soit 2050, afin d'assurer un meilleur fonctionnement du réseau d'alimentation et satisfaire les besoins en eau des habitants.

V.2 Rôle des réservoirs :

- La régulation du débit entre le régime de l'adduction (déterminé par le pompage et le traitement) et le régime de distribution (donné par la consommation).
- La régulation de pression en tout point du réseau : le réservoir permet de fournir aux abonnés une pression suffisante et plus ou moins constante, la pression fournie par les stations de pompage peut varier au moment de la mise en marche et de l'arrêt des pompes.
- La sécurité vis-à-vis des risques d'incendie, de demande en eau exceptionnelle.

Comme ils offrent d'autres avantages à savoir :

- Ils constituent une réserve pour les imprévus (rupture, panne des pompes, réparations, extension du réseau...).
- Offre la possibilité de pomper la nuit, lorsque les tarifs d'électricité sont les plus bas.
- Régularité dans le fonctionnement du pompage. Les pompes refoulent à un débit constant.
- Simplification de l'exploitation.
- Sollicitation régulière des points d'eau qui ne sont pas l'objet des variations journalières au moment de la pointe.
- Régularité des pressions dans le réseau. [10]

V.3 Emplacement des réservoirs :

L'emplacement du réservoir pose souvent un problème délicat à résoudre. Pour cela nous on doit prendre compte de certains points à savoir :

- Il est préférable que le réservoir soit à un niveau bas par rapport à la prise d'eau, ce qui implique un remplissage par gravité, ce qui sera plus économique.
- L'alimentation du réseau de distribution doit se faire par gravite, le réservoir doit être construit à un niveau supérieur à celui de l'agglomération.

• Lorsque plusieurs réservoirs sont nécessaires, on doit les implanter de préférence soit en extrémité du réseau, soit à proximité du centre important de consommation. [11]

V.4 Classification des réservoirs :

On peut classer les réservoirs en plusieurs catégories d'après différents critères :

V.4.1 D'après la nature des matériaux de construction, on distingue :

- Les réservoirs en maçonnerie
- Les réservoirs en béton armé ou ordinaire

V.4.2 D'après la situation des lieux, ils peuvent être :

- Enterrées
- Semi-enterrés
- Surélève
- Posé sur sole

V.4.3 D'après leurs formes :

- Circulaires
- Rectangulaires
- Carrés

V.4.4 Selon le type d'usage :

- Réservoirs principaux d'accumulation et de stockage.
- Réservoirs d'équilibres.
- Réservoirs de transits.

V.5 Choix de type de réservoir :

Le choix du réservoir dépend des :

- Conditions topographiques.
- Conditions géotechniques.
- Conditions hydrauliques.
- Conditions économiques.

V.6 Equipements d'un réservoir :

Le réservoir est constitué de :

V.6.1 Une conduite d'arrivée ou d'alimentation :

Cette conduite, du type refoulement ou gravitaire, doit arriver de préférence dans la cuve en siphon noyé ou par le bas, toujours à l'opposé de la conduite de départ, pour provoquer le brassage.

Cette arrivée par le bas ou en siphon noyé permet le renouvellement d'eau par mélange en créant des perturbations. L'extrémité de cette dernière est munie d'un dispositif qui obture la conduite quand le niveau atteint son niveau maximal.

V.6.2 Une conduite de départ ou de distribution :

Cette conduite est placée à l'opposé de la conduite d'arrivée à quelques centimètres au-dessus du radier (15 à 20 cm) pour éviter l'entrée de matières en suspension. L'extrémité est munie d'une crépine courbée pour éviter le phénomène de vortex (pénétration d'air dans la conduite). Cette conduite et équipée d'une vanne à survitesse permettant la fermeture rapide en cas de rupture au niveau de cette conduite.

V.6.3 Une conduite de trop-plein :

Cette conduite permet d'évacuer l'excès d'eau arrivant au réservoir en cas où une pompe ne s'arrête pas.

L'extrémité de cette conduite doit être en forme de siphon afin d'éviter l'introduction de Certains corps nocifs dans la cuve.

V.6.4 Une conduite de vidange :

- Elle permet la vidange du réservoir en cas de nettoyage ou de réparation.
- Elle est munie d'un robinet- vanne, et se raccorde généralement à la conduite de tropplein. Le robinet-vanne doit être nettoyé après chaque vidange pour éviter le dépôt de sable.

V.6.5 Une conduite by-pass:

C'est un tronçon de conduite qui relie la conduite d'arrivée et la conduite de départ, elle fonctionne uniquement quand le réservoir est isolé pour son entretien.

V.6.6 Un système de matérialisation d'incendie :

C'est une disposition spéciale de la tuyauterie qui permet d'interrompre l'écoulement, une foi le niveau de la réserve atteint. Nous distinguons :

- Le système à deux prises : Ce système est très rarement utilisé du fait que la réserve de sécurité n'est pas convenablement renouvelée.
- Le système à siphon : Ce système à l'avantage de renouveler constamment la réserve d'incendie.

Quelques équipements sont aussi à prévoir dans les réservoirs :

- Une fenêtre d'aération (entrée et sortie de l'air lors du remplissage et de la vidange).
- Un accès pour le nettoyage de la cuve.
- Une chambre de vannes, un trop-plein (évacuation de l'excédent d'eau), une galerie de vidange (au fond).
- Une fermeture par flotteur de l'alimentation, un enregistreur du niveau d'eau dans le réservoir. [12]

Le schéma suivant représentera tout ce qui a été mentionné au-dessus :

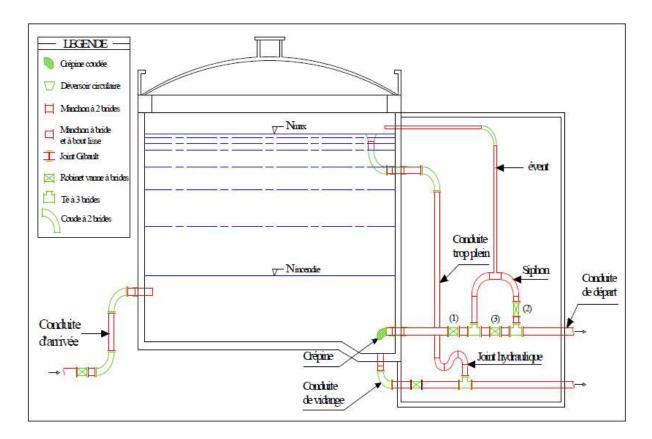


Figure V - 1: schéma représente les différent équipements du réservoir

V.7 Calcul du volume du réservoir :

Pour calculer la capacité de stockage nécessaire pour notre consommation, on doit prendre en considération deux paramètres, le premier c'est le régime de la consommation journalière de

Etude des ouvrages de stockage

notre agglomération et le deuxième c'est le régime d'alimentation du réservoir pour notre cas un refoulement de 16h/24h.

Il existe de méthode de calcul du volume de réservoir : la méthode analytique et la méthode graphique. On opte à utiliser la méthode analytique pour notre étude.

V.7.1 Principe de calcul:

V.7.1.1 Volume total:

Le calcul du volume total se fera par le biais de la formule suivante :

$$V_t = V_r + V_{inc}$$
 $(V - 1)$

• Avec:

• V_t : Volume total estimé du réservoir m³

• V_r : Volume résiduel m³

• Vinc : Volume de la réserve d'incendie m³

$$V_{inc} = 120 \text{ m}^3$$

V.7.1.2 Volume résiduel :

La capacité résiduelle est calculée par la formule suivante :

$$V_r = \frac{\alpha \times Q \max j}{100} \dots (V - 2)$$

Avec:

• V_r : Volume résiduel m³

• α : Fraction horaire du débit maximal journalier %

• Qmax. j : Débit maximal journalier m³/j

La détermination de la fraction horaire du débit maximal se fait comme suit :

On diminue les coefficients de consommation de ceux de l'apport ensuite on classe chaque résultat :

• Si le résultat est positif on considère un arrivé d'eau

• Si le résultat est négatif on considère une départ d'eau

Etude des ouvrages de stockage

Ensuite on choisit la période ou le réservoir est vide (Résidu=0) et on calcule le reste en cumulant les valeurs de départ d'eau et d'arrivé d'eau, puis on calcul la fraction horaire en sommant les valeurs maximales positif et négatif en valeur absolue.

V.7.2 Calcul du volume :

V.7.2.1 Calcul du volume résiduel :

Tableau V − 1 : calcul des volumes résiduels

Heures	Consommation %	Refoulement %	Départ %	Arrivé %	Résiduel %
0-1	1,50%	0,00%	-1,50%		-8.00%
1-2	1,50%	0,00%	-1,50%		-9.50%
2-3	1,50%	0,00%	-1,50%		-11.00%
3-4	1,50%	0,00%	-1,50%		-12.50%
4-5	2,50%	6,25%		3,75%	-8.75%
5-6	3,50%	6,25%		2,75%	-6.00%
6-7	4,50%	6,25%		1,75%	-4.25%
7-8	5,50%	6,25%		0,75%	-3.50%
8-9	6,25%	6,25%	0,00%	0,00%	-3.50%
9-10	6,25%	6,25%	0,00%	0,00%	-3.50%
10-11	6,25%	6,25%	0,00%	0,00%	-3.50%
11-12	6,25%	6,25%	0,00%	0,00%	-3.50%
12-13	5,00%	6,25%		1,25%	-2.25%
13-14	5,00%	6,25%		1,25%	-1.00%
14-15	5,50%	6,25%		0,75%	0.25%
15-16	6,00%	6,25%		0,25%	0.00%
16-17	6,00%	6,25%		0,25%	0.25%
17-18	5,50%	6,25%		0,75%	1.00%
18-19	5,00%	6,25%		1,25%	2.25%
19-20	4,50%	6,25%		1,75%	4.00%
20-21	4,00%	0,00%	-4,00%		0.00%
21-22	3,00%	0,00%	-3,00%		-3.00%
22-23	2,00%	0,00%	-2,00%		-5.00%
23-0	1,50%	0,00%	-1,50%		-6.50%

Source: Alimentation en eau potable des agglomérations, B. SALAH, 2014

$$\alpha = 4 + |-12.5| = 16.5$$

$$v_r = \frac{16.5 \times 9064.33}{100}$$

$$V_r = 1495.61 \text{ m}^3$$

Alors le volume total est :

$$\mathbf{v}_t = \mathbf{v}_r + \mathbf{v}_{inc}$$

$$v_t = 1459.61 + 120$$

$$v_t = 1579.61 \text{ m}^3$$

On résume ces calculs dans le tableau suivant :

Tableau V – 2 : résumé des résultats de calcul

Fraction du débit maximal journalier (%)	16.5
Volume résiduel (m³)	1459.61
Volume incendie (m³)	120.00
Volume total (m ³)	1579.61

D'après les calculs on constate que les ouvrages de stockages existants qui alimente la ville de LARBAATACHE répond largement aux besoins de stockage de l'agglomération à l'horizon 2050 et il n'ya pas une nécessite de projeté un nouveau réservoir.

V.8 Entretien des réservoirs :

Les réservoirs doivent être sous surveillance permanente pour cela on appliquera des soins particuliers tels que :

- Couvrir les réservoirs pour raison d'hygiène et de sécurité pour les protéger contre les corps étrangers et les variations de température ;
- Elimination des dépôts sur les parois ;
- Examen et réparations éventuelle de celle-ci ;
- Désinfection à l'aide des produits chlorés ;
- Toutes les vannes sont disposées dans la chambre de manœuvre ;
- Remise en service;

Etude des ouvrages de stockage

- Inclure l'entretien des parties métalliques comme les portes, échelles, équipement hydrauliques et cheminées d'aération ;
- Isolement et vidange du réservoir, s'effectue que lorsque la quantité d'eau stockée dans le réservoir est la plus faible pour éviter le gaspillage d'eau et perte de temps ;
- Une ventilation convenablement choisie sera aménagée, conçus de façon a éviter l'entrée d'une certaine espèce nuisible. [13]

V.9 Recommandations:

- Eviter l'élévation de la température de l'eau par une bonne isolation thermique et ceci pour limiter l'activité biologique et protéger la structure contre les microfissurations;
- Aménager les évacuations pour les eaux pluviales ;
- Limiter l'entrée de la lumière naturelle pour éviter les risques de prolifération d'algues. [14]

V.10 Conclusion:

Dans ce chapitre on a calculé la capacité de stockage nécessaire pour répondre aux besoins de l'agglomération à l'horizon 2050, on a déduit que le réservoir existant R2×1000 m³ suffit largement.

Chapitre VI:

Organisation du chantier et pose de canalisation

VI.1 Introduction:

Dans ce chapitre on va voir les principales étapes de la pose des canalisations ainsi que les calculs des quantités des travaux de la pose avec le choix des engins et puis on conclut notre travail et notre chapitre par un devis estimatif du projet qui représente une estimation du cout de projet.

VI.2 Travaux de pose de canalisation :

Dans le but d'assurer une bonne longévité des conduites dans le temps, on doit respecter certaines normes lors de l'exécution des travaux de pose canalisation, tel que la profondeur de la tranchée qui doit être suffisante pour que la conduite soit à l'abri des conditions climatiques (gel et changement de température) et ne subisse pas l'action directe des surcharges d'exploitation dans le but de diminuer l'effet des différentes contraintes agissant sur la canalisation.

- Avant la descente des conduites aux fouilles, on procède à un triage des conduites de façon à écarter celles qui on subit des chocs.
- La descente des tuyaux doit être manipulée avec soin, ils seront posés lentement soit manuellement soit mécaniquement à l'aide d'un pose tube dans le fond de la fouille.
- Chaque élément posé dans la tranchée doit être présenté dans l'axe de l'élément précédemment posé, et au cours de la pose, il faut vérifier régulièrement l'alignement des tuyaux afin d'avoir une pente régulière entre deux regards, pour y opérer correctement on effectue des visées à l'aide des nivelettes tous les 80 m environ
- Tous les débris liés à la pose doivent être retirés de l'intérieur du tuyau avant ou juste après la réalisation d'un emboîtement. Ceci peut être effectué en faisant passer un goupillon le long du tuyau ou à la main, selon le diamètre.
- A chaque arrêt de travail un bouchon temporaire doit être solidement appliqué sur l'extrémité ouverte de la canalisation pour éviter l'introduction des corps étrangers.
 Cela peut faire flotter les tuyaux en cas d'inondation de la tranchée, auquel cas les tuyaux doivent être maintenus au sol par un remplissage partiel de la tranchée ou par étayage temporaire. [14]

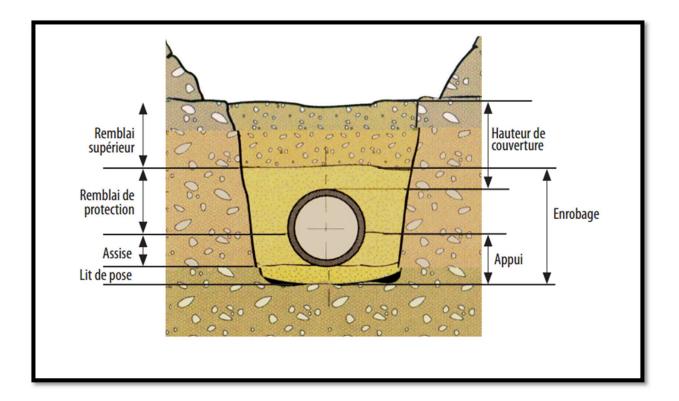


Figure VI – 1 : coupe d'une tranché avec la canalisation posé

Pour effectuer une pose de canalisation, on suit les étapes suivantes :

VI.2.1 Exécution des tranchées :

C'est la première opération dans la pose de n'importe quelle canalisation. Elle consiste à exécuter des excavations selon un axe de projet tracé avec une pelle hydraulique. Le déblai excavé sera stocké le long de la tranchée pour l'utiliser ultérieurement au remblayage.

Le fond de la tranchée doit ensuite être nettoyer et niveler de tout matériaux qui peuvent endommager la canalisation posée. [15]

VI.2.2 Pose du lit de sable :

Le pose d'un lit de sable de 0.1 à 0.15m d'épaisseur comme une couche de protection de la conduite de toute irrégularité présente au fond de la tranchée.

VI.2.3 Pose des conduites :

La pose des conduites est une opération délicate, il faut l'exécuter avec prudence afin de ne pas endommagé les conduites en PEHD. Les conduites sont d'abord alignées parallèlement à la tranchée puis elles sont surélevées avec un engin de puissance suffisante.

Au moment de leur mise en place, les tuyaux et raccords sont examinés à l'intérieur et débarrassés de tout corps étranger. Leurs abouts sont soigneusement nettoyés et préparés conformément aux règles de pose du matériau mis en œuvre. Les canalisations sont ensuite soudées en utilisant les équipements adéquats. [16]

Les canalisations sont aussi munies des pièces spéciales et des accessoires, si nécessaire comme suit :

VI.2.4 Les pièces spéciales :

VI.2.4.1 Les cônes :

Ils sont utilisés pour relier les conduites de diamètre différents, les accessoires aux conduites. On distingue soit des cônes à emboitement, soit des cônes à emboitement et brides.

VI.2.4.2 Les croix de jonction :

Ces pièces sont utilisées pour croiser des canalisations de sens perpendiculaire. Les manchons des croix peuvent avoir des diamètres différents. Elles peuvent être à brides complétement ou à manchons et brides.

VI.2.4.3 Les croix de jonction et d'incendie :

Elles ont le même rôle que les précédentes, en plus elles reçoivent les bouches ou les poteaux d'incendie.

VI.2.4.4 Les manchons :

En pratique, on les rencontre à bouts lisses, à deux emboitements, à emboitement et bout lisse, à deux brides, à bride et bout lisse, à emboitement et bride.

On les rencontre surtout au niveau des montages des appareils accessoires.

VI.2.4.5 Les coudes :

On y rencontre des coudes à deux emboitements ou bien à emboitement et bout lisse. Ils se présentent avec les angles suivants : 1/4 (90°) ; 1/8 (45°) ; 1/16 (22°30) ; 1/32 (11°15)

VI.2.4.6 Les tés :

Ils se présentent soit à trois emboitements ; trois brides ou emboitements et brides. Ils sont utilisés pour soutirer un débit ou ajouter un débit complémentaire dans une conduite.

VI.2.5 Les accessoires :

VI.2.5.1 Les robinets vannes :

C'est des organes placés sur le réseau pour permettre la régulation des débits et le sectionnement ou isolation des conduites pour intervention de réparation et aussi permettre la vidange des canalisations. Ils sont placés soit sous des bouche à clé (faible diamètres) soit en chambres sous regards (grands diamètres).

VI.2.5.2 Les ventouses :

Elles sont installées aux points hauts pour évacuer l'air accumulé suit à un dégazage de l'oxygène dissout. Elles sont disposées dans des regards visitables et leur bon fonctionnement doit être vérifier périodiquement.

VI.2.5.3 Bouches et poteaux d'incendie :

Ce sont des organes qui permettent l'utilisation de la réserve d'incendie de 120m³ leur diamètre est normalisé à 80,100 ou 150mm. Ils doivent assurer un débit de 17l/s à 1bar de pression.

VI.2.5.4 Les régulateurs de pressions :

Ce sont des organes de vannage qui introduisent une perte de charge variable de manière à ce que la pression aval soit maintenue à une valeur constante de consigne.

VI.2.5.5 Appareils de mesures :

C'est des appareils qui mesurent les pressions et les vitesses réels dans le réseau. On distingue : pour la mesure du débit, les débitmètres à organes déprimogène et les débitmètres ultrason et pour la mesure de pression les manomètres à soufflet ; à capsule et à membrane.

VI.2.5.6 Remblayage des tranchées :

Cette opération se fait en deux couches, la première et le recouvrement de la conduite par du sable fin jusqu'à une hauteur de 15cm au-dessus de la conduite, ensuite une grille d'avertissement de couleur bleu en plastique est placée pour séparer les deux couches de remblais, puis en continue le remblayage avec de la terre déjà excavée de la tranchée présente sur place.

VI.2.6 Compactage:

Après le remblayage de la tranchée, il faut procéder à compacter le sol avec un engin de compactage a rouleau lisse afin d'augmenter la densité du sol recouvrant la conduite pour assurer la stabilité du sol et la protection de la conduite contre les mouvements du sol.

VI.3 Calcul des quantités de travaux de pose de canalisation :

VI.3.1 Longueur des canalisations et grillage avertisseur :

Les conduites sont fournies sous forme de couronne de 100m de longueur jusqu'au diamètre Ø110mm, et sous forme de barre de 12m de longueur à partir du diamètre Ø125mm. On calcul donc la quantité des conduites à fournir, les résultats sont résumés dans le tableau

D _{ext} (mm)	L (m)	Fourniture	Linéaire à fournir
50	7882,92	Couronne 100m	7883
63	2324,25	Couronne 100m	2325
75	1630,88	Couronne 100m	1631
90	629,44	Couronne 100m	630
110	559,97	Couronne 100m	560
125	2001,36	Barre 12m	2002
160	240,26	Barre 12m	241
200	1625,95	Barre 12m	1626
250	2414,57	Barre 12m	2415
315	947,62	Barre 12m	948
400	449,90	Barre 12m	450
500	936,84	Barre 12m	937

Tableau VI – 1 : linéaire des conduites et de grillage avertisseur à fournir

Le linéaire total à fournir de canalisations et de grillage avertisseur est :

$$L_T = 21 648 \text{ ml}$$

totale

VI.3.2 Volume déblai :

Le volume du déblai excavé sera calculé par les sections partielles des tranchées de chaque diamètre par les relations suivantes :

Le volume du déblai :

21648

$$V_D = S_D \times L \dots \dots \dots \dots (VI - 1)$$

Avec:

- V_d : Volume du déblai pour chaque diamètre (m³)
- S_d : Section de la tranchée pour chaque diamètre (m²)
- L : Longueur de la tranchée pour chaque diamètre (m)
- La section du déblai :

$$S_D = B_{tr} \times H_{tr} \dots \dots \dots \dots (VI - 2)$$

Avec:

- B_{tr} : Largeur de la tranchée pour chaque diamètre (m)
- H_{tr} : Profondeur de la tranchée pour chaque diamètre (m)
- ➤ Largeur de la tranchée : Elle est calculée en fonction du diamètre, on ajoute 30 cm de chaque côté de la conduite pour permettre les manœuvres des ouvriers.

$$B_{tr} = D_{ext} + (0.3 \times 2) \dots \dots \dots \dots (VI - 3)$$

Avec:

- D_{ext} : Diamètre extérieur de la conduite (m)
- Profondeur de la trachée : Elle est calculée en fonction du diamètre, on ajoute la hauteur génératrice supérieur de la conduite à la surface du terrain naturel et la hauteur du lit de sable.

$$H_{tr} = D_{ext} + H + e_{S} \dots \dots \dots \dots \dots (VI - 4)$$

Avec:

- H : Hauteur génératrice supérieure de la conduite à la surface du terrain naturel
 (m) On prend H = 1m
- e_s : Epaisseur du lit de sable (m) On prend $e_s = 0.15m$

On résume le calcul du volume de déblai dans le tableau suivant :

Tableau VI – 2: volume du déblai

D_{ext}	L	B_{tr}	H_{tr}	S_D	V_D
(mm)	(m)	(m)	(m)	(m^2)	(m^3)
50	7882,92	0,65	1,2	0,78	6148,68
63	2324,25	0,66	1,213	0,80	1869,21
75	1630,88	0,68	1,225	0,83	1348,53
90	629,44	0,69	1,24	0,86	538,55
110	595,97	0,71	1,26	0,89	533,15
125	2001,36	0,73	1,275	0,92	1850,01
160	240,26	0,76	1,31	1,00	239,20
200	1625,95	0,80	1,35	1,08	1756,03
250	2414,57	0,85	1,4	1,19	2873,34
315	947,62	0,92	1,465	1,34	1270,26
400	449,9	1,00	1,55	1,55	697,35
500	1386,74	1,10	1,65	1,82	2516,93
				totale	21 641,23

Le volume total du déblai à excaver est :

$$V_d = 21 642 m^3$$

VI.3.3 Volume du lit de sable :

Le volume de sable nécessaire est calculé par la formule suivante :

$$V_S = B_{tr} \times L \times e_S \dots \dots \dots \dots \dots (VI - 5)$$

Avec:

- V_s : Volume de lit de sable (m3).
- B_{tr} : Largeur de la tranchée (m).
- L: Longueur de la tranchée de chaque diamètre (m).
- e_s : Epaisseur de lit de sable (m) On prend $e_s = 0.15m$

On résume le calcul dans le tableau suivant :

Tableau VI – 3 : volume du lit de sable

D_{ext}	L	B_{tr}	e_S	V_S
(mm)	(m)	(m)	(m)	(m^3)
50	7882,92	0,65	0,15	768,58
63	2324,25	0,66	0,15	230,10
75	1630,88	0,68	0,15	166,35
90	629,44	0,69	0,15	65,15
110	595,97	0,71	0,15	63,47
125	2001,36	0,73	0,15	219,15

160	240,26	0,76	0,15	27,39
200	1625,95	0,8	0,15	195,11
250	2414,57	0,85	0,15	307,86
315	947,62	0,92	0,15	130,77
400	449,9	1	0,15	67,49
500	1386,74	1,1	0,15	228,81
			totale	2470,23

Le volume du sable à fournir pour lit de sable est :

$$V_S = 2 \ 471 \ m^3$$

VI.3.4 Volume remblai:

Le volume de chaque couche de remblais sera calculé ainsi :

VI.3.4.1 Volume de sable d'enrobage (première couche) :

On le calcul par la formule suivante :

$$V_{SE} = L \times [(D_{ext} + 0.15) \times B_{tr}) - D_{ext}^2 \times \pi/4] \dots (VI - 6)$$

Avec:

- V_{SE} : Volume du sable d'enrobage (m3).
- B_{tr} : Largeur de la tranchée (m).
- L : Longueur de la tranchée de chaque diamètre (m).

On résume les calculs dans le tableau suivant :

Tableau VI – 4: volume du sable d'enrobage

D_{ext}	L	B_{tr}	V_{SE}
(mm)	(m)	(m)	(m^3)
50	7882,92	0,65	1009,31
63	2324,25	0,66	319,50
75	1630,88	0,68	242,32
90	629,44	0,69	100,23
110	595,97	0,71	104,36
125	2001,36	0,73	377,23
160	240,26	0,76	51,78
200	1625,95	0,8	404,21
250	2414,57	0,85	702,49
315	947,62	0,92	331,58
400	449,9	1	190,94
500	1386,74	1,1	719,37
		totale	4553,31

Le volume total du sable de remblayage :

$$V_{SE} = 4 554 m^3$$

VI.3.4.2 Volume de remblai en terrain naturel épierré :

On le calcule par la formule suivante :

$$V_{TN} = (1 - 0.15) \times L \times B_{tr} \dots \dots \dots \dots (VI - 7)$$

Avec:

• V_{TN} : Volume du remblai en terrain naturel (m3).

• B_{tr} : Largeur de la tranchée (m).

• L: Longueur de la tranchée de chaque diamètre (m).

On résume les calculs dans le tableau suivant :

Tableau VI – 5: volume du remblai en terrain naturel

D_{ext}	L	B_{tr}	V_{TN}
(mm)	(m)	(m)	(m^3)
50	7882,92	0,65	4355,31
63	2324,25	0,66	1303,90
75	1630,88	0,68	942,65
90	629,44	0,69	369,17
110	595,97	0,71	359,67
125	2001,36	0,73	1241,84
160	240,26	0,76	155,21
200	1625,95	0,8	1105,65
250	2414,57	0,85	1744,53
315	947,62	0,92	741,04
400	449,9	1	382,42
500	1386,74	1,1	1296,60
		totale	13997,98

Le volume total du remblai en terrain naturel est :

$$V_{TN} = 13 998 \, m^3$$

VI.3.5 Volume total du remblai :

$$V_R = V_{SE} + V_{TN} \dots \dots \dots \dots (VI - 8)$$

Avec:

• V_R : Volume total du remblai (m3).

• V_{SE} : Volume du sable d'enrobage (m3).

• V_{TN} : Volume du remblai en terrain naturel (m³).

Le volume total du remblai est :

$$V_R = 4554 + 13998$$

 $V_R = 18552 m^3$

VI.3.6 Volume du déblai à évacuer :

Le volume du déblai à évacuer est calculé par la formule suivante :

$$V_{DE} = V_D - V_{TN} \dots \dots \dots (VI - 9)$$

Avec:

• V_{DE} : Volume du déblai à évacuer (m3).

• V_D : Volume du déblai excavé (m3).

• V_{TN} : Volume du remblai en terrain naturel (m³).

Le volume du déblai à évacuer est :

$$V_{DE} = 21 642 - 13 998$$
$$V_{DE} = 7 644 m^3$$

VI.4 Choix des engins d'exécution :

VI.4.1 Pelle hydraulique:

A travers les volumes calculés, nous déterminons la capacité du godet pour notre pelle.

Tableau VI – 6 : capacité du godet en fonction du volume du terrassement

Volume du terrassement par une pelle (m3)	≤10 000	≥10 000	>20 000	>100 000
Capacité du godet (m3)	0,25-0,35	0,5-0,65	1-1,25	1,5

Comme le volume total est supérieur à 20 000 m³, nous optons pour une pelle avec une capacité du gobet égale à 1 m³.

VI.4.2 Bulldozer:

Le choix du bulldozer se fait en fonction de la capacité du godet de l'excavateur. Le bulldozer est utilisé pour le remblaiement de la tranchée après la pose des conduites.

Tableau VI - 7 : choix de bulldozer en fonction du capacité du godet

Capacité du godet de la pelle (m3)	0,3-0,65	0,75-1,0	1,25-1,5	2,0-3,0
Classe du bulldozer d'après la	40-60	70-118	120-140	150-300
puissance du tracteur (KW)	10 00	70 110	120 110	150 500

Nous optons pour un bulldozer avec une capacité du godet de la pelle égale à 1 m3, ayant une Puissance de : Pb = 118 KW.

VI.5 Devis quantitatif estimatif:

C'est l'estimation du cout totale des opérations et des différents produits nécessaires pour l'élaboration du projet et la somme de toutes ces frais représentent le cout estimé pour notre projet.

Le devis est représenté dans le tableau ci-dessous :

Tableau VI - 8: devis quantitatif estimatif

N° d'article	Dés	ignation des travaux	Unité	Quantité	Prix unitaire (DA)	Montant		
	1		Pose de ca	analisation				
l.1.1		Terrassement						
1.1.2	Travaux de dé des conduites	blai en tranchée pour la pose	M ³	21 642	600	12 985 200,00		
1.1.3		un lit de sable de 15 cm u fond de la tranchée	M^3	2 471	3300	8 154 300,00		
1.1.4		d'enrobage de la conduite au-dessus des conduites	M^3	4 554	2250	10 246 500,00		
1.1.5	Fourniture et avertisseur de	mise en place d'un grillage couleur bleu	ML	21 648	105	2 273 040,00		
1.1.6	Travaux de re	mblai en terre ordinaire	M^3	13 998	600	8 398 800,00		
1.1.7	Evacuation de décharge pub	s terres excédentaires à lique	M^3	7 644	225	1 719 900,00		
1.2		Conduite						
1.2.1	Fourniture et PN10 bars DN	pose des conduites en PEHD 50	ML	7883	375	2 956 125,00		
1.2.2	Fourniture et PN16 bars DN	pose des conduites en PEHD 63	ML	2325	450	1 046 250,00		
1.2.3	Fourniture et PN10 bars DN	pose des conduites en PEHD 75	ML	1631	600	978 600,00		
1.2.4	Fourniture et PN10 bars DN	pose des conduites en PEHD 90	ML	630	900	567 000,00		
1.2.5	Fourniture et PN10 bars DN	pose des conduites en PEHD 110	ML	596	1500	894 000,00		
1.2.6	Fourniture et PN10 bars DN	pose des conduites en PEHD 125	ML	2002	2250	4 504 500,00		
1.2.7	Fourniture et PN10 bars DN	pose des conduites en PEHD 160	ML	241	3750	903 750,00		
1.2.8	Fourniture et PN10 bars DN	pose des conduites en PEHD 200	ML	1626	6000	9 756 000,00		
1.2.9	Fourniture et PN10 bars DN	pose des conduites en PEHD 250	ML	2415	6000	14 490 000,00		
1.2.10	Fourniture et PN10 bars DN	pose des conduites en PEHD 315	ML	948	15000	14 220 000,00		
1.2.11	Fourniture et PN10 bars DN	pose des conduites en PEHD 400	ML	450	21750	9 787 500,00		
1.2.12	Fourniture et PN10 bars DN	pose des conduites en PEHD 500	ML	1387	30000	41 610 000,00		
1.2.13	mise en place o	l'un réducteur de pression		4	75000	300000		

Prix total hors taxes	145 791 465,00
TVA (19%)	27 700 378,35
Prix total toutes taxes comprises	173 491 843,35

Le prix total d'exécution du projet est estimé à :

$$P_T = 173 491 844.00 DA$$

Prix total en lettre : cent soixante-treize million quatre cent quatre-vingt et onze mille huit cent quarante-quatre dinars algérien

VI.6 Calcul du délai de réalisation du projet :

VI.6.1 Planification des travaux :

Les principales opérations à exécuter sont :

- A : Préparation de l'espace de travail :
- B : Exécution des tranchées :
- C : Aménagement du lit de pose :
- D : Mise en place des canalisations :
- E : Assemblage des canalisations :
- F : Remblaiement des tranchées :
- G: Nivellement et compactage:
- H : Faire des vérifications et des finitions du projet

On montre le lien entre les opérations qui précèdent et qui succèdent dans le tableau suivant :

Tableau VI – 9: Tâches qui précèdent et qui succèdent chaque opération

N°	Opération	TR (jours)	Précède	Succède
01	A	8	В	
02	В	40	С	A
03	С	18	D	В
04	D	45	Е	С
05	Е	23	F	D
06	F	32	G	Е
07	G	22	Н	F

08	Н	11	 G

Tableau VI – 10: Détermination du délai de réalisation

Opération	TR (jours)	D	PP P	D	PP	MT
op era men	Tre (Jours)	DCP	DFP	DCPP	DFPP	1,11
A	8	0	8	0	8	0
В	40	8	48	8	48	0
С	18	48	66	48	66	0
D	45	66	111	66	111	0
Е	23	111	134	111	134	0
F	32	134	166	134	166	0
G	22	166	188	166	188	0
Н	11	188	199	188	199	0

Le chemin critique est A-B-C-D-E-F-G-H. Donc de délai de la réalisation est 199 jours.

VI.7 Conclusion:

On a vu dans ce chapitre:

- Les étapes à suivre pour la pose des canalisations et les différents accessoires.
- Les quantités des travaux a exécuté et les engins nécessaires.
- L'estimation du cout et la durée des travaux.

Conclusion générale

Dans ce mémoire, on a procédé à l'étude et l'analyse du réseau de distribution d'eau potable de la ville de LARBAATACHE afin de mettre en évidence les problèmes présents et ainsi retrouver des solutions pour assurer une alimentation optimale aux différents consommateurs.

Après avoir effectué une étude de diagnostic physique et hydraulique, on a constaté que le réseau existant de la ville de LARBAATACHE n'est pas conforme aux normes de fonctionnement normal des réseaux. De plus, on trouve que les ouvrages de stockages déjà existants peuvent satisfaire la demande de la ville à l'horizon 2050.

On propose donc dans cette étude la réalisation d'un nouveau réseau d'alimentation en eau potable capable de satisfaire les besoins en eau actuels et futurs de la ville vis-à-vis de la disponibilité de la ressource à partir des différents forages existants.

On a donnée des recommandations sur la pose des canalisations en optant pour l'utilisation des conduites en PEHD avec la norme de pression de PN10 pour notre installation, pour assurer une longévité à long terme du réseau de distribution.

Enfin nous souhaitons avoir fait un travail qui peut servir d'avant-projet a une étude détaillée afin de garantir une alimentation en eau potable sans interruptions

Références bibliographiques

1.Document

- MOUSSA Mahmoud « Alimentation en eau potable », 2002.
- SALLAH Boualem « Alimentation En Eau Potable Des Agglomérations », ENSH 2014. [1] [2] [10] [11] [12]
- DUPONT « Hydraulique urbaine », Tome II, édition Eyrolles, Paris 1977.
- KAHLERRAS Djilali « Organisation De Chantier », ENSH 2018. [14] [15] [16]

2. Mémoire de fin d'études

- BERKANI Amina "ALIMENTATION EN EAU POTABLE DE LA VILLE DE KHEMISTI", ENSH 2015. [3] [4] [5] [6] [7] [8]
- BOUDOUR Anis "Etude du système d'alimentation en eau potable de la ville de MAHELMA.
 W. ALGER", ENSH 2017. [9]
- HAMAS Abderrahmane" Diagnostic et conception du réseau d'alimentation en eau potable de la ville de BORDJ GHEDIR (W. Bordj Bou Arreridj)", ENSH 2011. [13]

3. Webographie

- https://www.groupe-chiali.com/en/documentation-en#specifications_techniques, version 7/31/2020.
- https://www.ramus-industrie.com/nos-produits/regulation/reducteur-regulateur-stabilisateur-de-pression-aval/redar-rl-2/, version 6/26/2020.

Annexe

ÉVALUATION DES BESOINS EN EAU .1.

OBJET		EN LITRES	OBSERVATIONS
Alimentation et besoins domestiques	60 à 100	Par habitant et par jour	Valeurs moyennes (1).
Alimentation, besoins domestiques et arrosage du jardin familial.	100 à 150	Par habitant et par jour	Valeurs moyennes (le jardin correspond généralement à plusieurs personnes)
	150 à 200	Petite ville ou groupe important de logements par habitant et par jour	Sans industries ni installations particulières telles que les fontaines, etc
Alimentation, besoins domestiques, arrosage et services publics.	200 à 250	Grande agglomération	Compris petites industries et toutes installations publiques.
	300 à 500	Grande ville	
Arrosage jardins et pelouses	6	Par mètre carré	Régions sèches (+ 50%) Régions humides (-50 %)
Lavage des cours	1,5 à 5	Par mètre carré	Suivant revêtement.
Baignoire	200	Par personne pour un bain	Compris le rinçage de l'appareil
Douche	25	Par personne pour une douche	Compris le rinçage de l'appareil
WC. à réservoir de chasse.	10 à 12	Par opération de chasse	
Lavabo	10	Par personne et par jour	
Bidet - pédiluve	6	Par personne et par jour	Pour toilettes seulement
EVIER	30	Par personne et par jour	Pour cuisine et besoins domestiques.
Nettoyage des marchés et champs de foire	5	Par mètre carré	Dans le cas de nettoyage mécanisé, voi le débit des engins utilisés
Nettoyage caniveaux,	25	Par mètre de caniveaux	
Lavoir public	1200	Par place et par jour	
Lavage de voiture automobile	100 à 150	Par voiture	Si portique de lavag de débit de l'apparei.

^{(1).} Ces valeurs sont des moyennes. Elles ne peuvent donc pas servir pour un petit nombre d'habitance des pavillon) sans une étude sérieuse.

Annexe 1 – Tableau des dotations des équipements (Partie 1)

ÉVALUATION DES BESOINS EN EAU.2.

OBJET		EN LITRES	OBSERVATIONS
Hôpitaux	300 à 400	Par lit et par jour (1)	Compris toutes les personnes et services.
Caserne	50	Par personne et par jour	Lavage des cours et matériel non compris.
Hôtels (par chambre)	70 230	Sans bain Avec bain	Compris restaurant
Internat Écoles : Demi-pension Externat	50 20 10	Par élève et par jour	Pour les écoles techniques, il faut majorer ces chiffres.
Bureaux	15	Par employé et par jour	
Cantines: 1 repas 2 repas 3 repas	10 20 25	Par rationnaire et par jour	l repas ≔ repas de midi 2 repas = repas de midi et du soir.
Restaurants : 2 repas. 3 repas	20 35 45	Par personne et par jour	Pour les restaurants de luxe, on pourra majorer les chiffres.
Cheval Bétail : Bovidé Mouton	50 50 7 0 5	Par animal et par jour	Pour les jeunes animaux, on adoptera 50% de ces chiffres
Arrosage cultures maraîchères.	25	Par mètre carré et par	
Laiterie - Beurrerie - Fromagerie	5	Par litre de lait traité	Ces chiffres ne sont donnés qu'à titre indicatif : on
sucrerie	100	Par kilo de sucre fabriqué	adoptera de préférence les chiffres donnés par les utilisateurs (2)
garage	15	Par employé et par jour	Non compris lavage voiture
Abattoirs petit bétail Abattoirs gros bétail	200 500	Par tête de bétail	

Annexe 2 – Tableau des dotations des équipements (Partie 2)

Pour les cliniques ou petits établissements, minorer eu chiffre.
 Les besoins industriels doivent être étudiés d'après les indications les utilisateurs.

CENTRE	S D'ACCLONERA	TIONS .	DMMATION TOT		
					4 4 4
					1, 129 %
1		NOMBRES	D'HABITANTS		
per server .i.	Moins de	de I000I ! 1 à 50000 ;	'de 5000I à I00000	plus de '! I00000 !	Aggl. de type rural
	2	1 3	4	1 5 1	6
I	1.00	1 I.50	3.00	1 3.35	0.75
0 - I !	44.	1.50	3.20	3.25	0.75
I - 2	1.00	1 1.50	2.50	3.30	I.00
2 - 3	I I.00	1 1.50	2.60	1 3.20	T.00
3-4	1 1.00	4	1 3.50	1 3.25	3.00
4 - 5	1 .2.00	1 3.50	1 4.10	1 3.40	5.50
5 - 6	3.00		4.50	1 3.85	5.50
6 - 7	5.00	1 4.50	4.90	+ 4+45	5.50
7 - 8	1 6.50	5.50		5.20	3.50
8 - 9	1 6.50	1 6.25	1 -4.90	1 5.05	3.50
9 - 10	5.50	1 6.25	5.60	1 2.85	1 6.00
10 - I	4.50	1 6.25	4.80	1 4.60	8.50
-II - I	5.50	6.25	4.70	1 2.60	8.50
12 - I	3, 7.00	5.00	1 - 4.40	1 4.55	1 6.00
I3 - I	41 7.00	5.00	4.10	1 4.75	1 5.00
I4 -I3	5.50	5.50	1 4.20	1 4.70	1 5.00
15 - 1		6.00	1 4.40	1 4.65	1 3.50
16 - 3	171 5-00	6.00	4.30	1 4.35	1 3.50
17 - 3	181 6.50	5.50	4.10	1 4.40	1
18 -		5.00	1 4.50	1 4.30	1 6.00
19 -	201 5.00	4.50	4.50	1 4.30	5.0
20 -	211 4.50	4.00	1 4.50	1 4.20	1 3.00
2I -		1 3.00	4.80		1 2.00
22 -		1 2.00		. 1 3.75	1 - 00
23 -	24! 1.00	1 1.50	3.30	1 3.70	

Annexe 3 – Tableau des coefficients du régime de consommation selon la population

ANNEXE 1 Épaisseurs de paroi Dimensions en millimètres Séries de tubes SDR 6 SDR 7,4 SDR 9 SOR 11 SDR 13.6 **SDR 17** \$ 3.2 S 4 55 S 6,3 58 Pression nominale PN en bar PE 40 PN 10 PN 5 PN4 PE 63 PN 8 PE 80 PN 25 PN 20 PN 16 PN 12.5 PN 10 PE 100 PN 25 PN 20 PN 16 PN 12.5 PN 10 Dim. Épaisseur de paro 16 3,0 9 3,4 2,35) 2.7 2,0 0 2,3 20 3,4 3,9 3,00 2.7 2.0 2,3 25 4.2 4.8 3,5 4,4 4.0 3,0 ° 2,3 2,7 2,0 5 2.3 32 6.1 5.0 3,8 4,1 3,0 c) 3,4 2,4 2.8 2.0 0 2,3 40 6.7 4.2 3,0 3,5 2,8 8,3 9.3 6,9 7.7 5,6 6,3 5,2 3.7 4.2 3.0 3.4 63 10,5 11,7 8.6 9.6 7,1 8,0 4,7 5,3 3,8 4.3 75 11.5 8.4 9,4 6,8 7.6 6.3 4,5 5.1 90 15.0 16.7 13,7 11,3 9.2 6,7 7.5 5.4 6,1 18,3 20.3 15,1 16.8 12,3 13.7 11,1 9,1 6.6 7,4 125 23,0 17,1 19.0 14,0 15,6 11.4 12,7 10,3 8.3 140 23,3 21,3 15,7 17.4 12.7 14,1 8,3 9,3 160 26,6 29.4 21.9 24,2 17,9 19,8 16.2 11.8 13.1 9,5 10.6 29.9 33,0 24,6 27.2 20,1 22,3 14.8 10,7 11.9 200 33,2 30,3 22.4 24.8 18.2 20,2 11,9 13,2 225 37,4 41,3 27,9 20.5 22.7 16,6 18,4 13,4 14,9 250 45,8 34,2 37.8 27.9 30,B 22,7 25,1 18,4 20,4 14.8 16.4 280 46,5 42,3 31,3 34.6 28,1 22,8 16,6 18.4 315 52,3 57.7 47,6 35,2 38.9 28.6 31.6 23,2 25,7 18,7 20,7 355 59.0 85,0 48,5 53,5 43,8 35.6 28.9 21,1 400 60,3 44.7 49.3 36.3 40,1 23,7 26,2 450 67,8 50,3 55.5 40.9 45.1 33,1 36.6 29,5 _ 500 61,5 45,4 50,1 36.8 40.6 29,7 32.8 56,D 41,2 45,5 33,2 36,7 630 57,2 63,1 46.3 710 52.2 57.6 42.1 46,5 64,8 58,8 47.4 52.3 900 53,3 58.8 1 000 65,4 1 400 1 600 https://www.groupe-chiali.com/images/documentations/2019/specifications_techniques/cahier_prescriptions_pehd_aep/page_9.jpg 1/1

Annexe 4 – Tableau des diamètres des conduites en PEHD