Higher National School of Hydraulic The Library

Digital Repository of ENSH

المدرسة الوطنية العليا للري المكتبة المستودع الرقمي للمدرسة العليا للري

The title (العنوان):

Conception du réseau d'AEP de la région de Bounejdamen, commune d'El-Kseur (w. Bejaia).

The paper document Shelf mark (الشفرة) : 1-0018-20

APA Citation (توثيق APA):

Yaici, Rima (2020). Conception du réseau d'AEP de la région de Bounejdamen, commune d'El-Kseur (w. Bejaia)[Mem Ing, ENSH].

The digital repository of the Higher National School for Hydraulics "Digital Repository of ENSH" is a platform for valuing the scientific production of the school's teachers and researchers.

Digital Repository of ENSH aims to limit scientific production, whether published or unpublished (theses, pedagogical publications, periodical articles, books...) and broadcasting it online.

Digital Repository of ENSH is built on the open software platform and is managed by the Library of the National Higher School for Hydraulics. المستودع الرقمي للمدرسة الوطنية العليا للري هو منصة خاصة بتثمين الإنتاج العلمي لأساتذة و باحثى المدرسة.

يهدف المستودع الرقمي للمدرسة إلى حصر الإنتاج العلمي سواءكان منشورا أو غير منشور (أطروحات،مطبوعات بيداغوجية، مقالات الدوريات، كتب....) و بثه على الخط.

المستودع الرقمي للمدرسة مبني على المنصة المفتوحة و يتم إدارته من طرف مديرية المكتبة للمدرسة العليا للري.

كل الحقوق محفوظة للمدرسة الوطنية العليا للري.

الجمهورية الجزائرية الديمقراطية الشعبية وزارة التعليم العالى و البحث العلمي

NATIONAL HIGHER SCHOOL FOR HYDRAULICS

"The MujahidAbdellah ARBAOUI"

المدرسة الوطنية العليا للري "المجاهد عبد الله عرباوي"

+≯⊔⊙፥⊐+ I X፥I≯⊐≯ ⊔。IИ፥Ұ。 Ж。⊖О፥Ұ。

MEMOIRE DE FIN D'ETUDES

Pour l'obtention du diplôme d'ingénieur d'état en Hydraulique

Option: ALIMENTATION EN EAU POTABLE

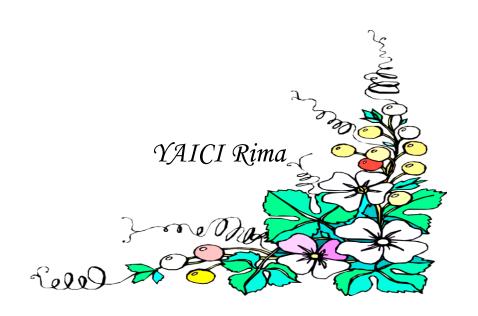
THEME:

CONCEPTION DU RESEAU D'AEP DE LA REGION DE BOUNEJDAMEN, COMMUNE D'EL-KSEUR (W.BEJAIA)

Présenté par : YAICI Rima

Devant les membres du jury

Nom et Prénoms	Grade	Qualité
KHETTAL Tahar	M.C.A	Président
KADI Latifa	M.A.A	Membre
SALHI Chahrazed	M.A.A	Membre
YAHIAOUI Samir	M.A.A	Promoteur


Session 2019/2020

Dédicaces

Je rends un grand hommage à travers ce travail, en signe de respect et de reconnaissance envers tous les membres de ma famille pour tous leurs sacrifices et leur soutien moral et matériel dont ils ont fait preuve pour que je réussisse.

Je dédie également ce travail à tous ceux qui me sont chers et à tous ceux qui ont contribué de prés ou de loin dans l'établissement de mon mémoire.

REMERCIEMENTS

A l'issu de cette étude. Il m'est agréable d'exprimer mes sincères remerciements à toutes les personnes qui m'ont aidé tout au long de mon travail, pour leurs précieux conseils qui m'ont guidé dans la réalisation de ce mémoire de fin d'étude.

J'exprime ma reconnaissance et ma profonde gratitude à Mr. YAHIAOUI

Samir de m'avoir encadré.

J'adresse également mes vifs remerciements à L'ensemble des enseignants de L'ENSH qui m'ont suivi durant mon cycle d'étude

Mon respect aux membres du jury qui me feront l'honneur d'apprécier et de juger mon travail.

ملخص

تتضمن مذكرة نهاية الدراسة تصميم شبكة توزيع المياه الصالحة للشرب لمنطقة بونجدمان، وهي بلدية تقع في القصر (ولاية بجاية). هذه المنطقة للأسف تتمتع بنظام توزيع المياه الصالحة للشرب غير فعال، قديم، متداعي وغير وظيفي.

ضمن هذا الإطار يقع عملنا، الذي يهدف إلى حساب شبكة توزيع المياه الصالحة للشرب من اجل الاستجابة النوعية و الكمية للاحتياجات المتز ابدة للسكان.

<u>Résumé</u>

Ce présent mémoire de fin d'étude consiste en la conception d'un réseau d'AEP de la région de Bounejdamen, commune située à El-Kseur (W. Béjaia). Cette région est malheureusement dotée d'un système d'alimentation en eau potable non fiable de point de vue physique; ancien, vétuste, défectueux et non fonctionnel. C'est dans ce cadre que s'inscrit notre travail, qui vise à dimensionner le réseau de distribution de l'eau potable, dans le but de répondre qualitativement et quantitativement aux besoins croissants de la population.

Abstract

This project consists in designing a drinking water supply network in the Bounejdamen region, a municipality of El-Kseur located in Bejaia. This region is unfortunately endowed with a drinking water supply system physically unreliable, old, dilapidated, defective and non-functional. Relevant to this, our work aims to dimension a drinking water distribution network in order to respond qualitatively and quantitatively to the growing needs of the population.

Sommaire

Dédicace Remerciement Résumé Sommaire Liste des tableaux Liste des figures Liste des plans

-
Introduction générale1
CHAPITRE I : PRESENTATION DE LA ZONE D'ETUDE
Introduction
I.1. Situation géographique2
I.2. Situation topographique
I-3- Situation géologique
I.4. Situation climatologique
I.4.1. Le climat
I.4.2. La température
I-4-3- Humidité4
I-4-4- Pluviométrie4
I-4-5- Le vent5
I-5- La sismicité5
I-6- La situation hydraulique5
I-6.1. Les eaux souterraines6
I-6.2. les eaux superficielles6
Conclusion6
CHAPITRE II : ESTIMATION DES BESOIN EN EAU DE LA REGION BOUNEJDAMEN
Introduction
II.1. Estimation de la population future
II.2. Catégorie de consommation
II.3. Choix de la norme unitaire de la consommation8
II.3.1. Dotation8
II.3.2. Critères de choix de la dotation9
II.4. Consommation moyenne journalière
II.5. Besoin en eau par catégorie de consommation9
II.5.1. Besoins domestique9
II.5.2. Equipements projeté9

II.5.3. Besoins culturels et commerciaux	10
II.5.4. Besoins d'élevage	10
II.6. Récapitulation des besoins en eau de Bounejdamen pour l'horizon 2050	10
Conclusion	11
CHAPITRE III : CARACTERISTIQUES DE LA CONSOMMAT	
Introduction	
III.1. Variation de la consommation	
III.2. Coefficient d'irrégularité	
III.3. Variation de la consommation journalière	
III.3.1. La consommation maximale journalière	
III.3.2. La consommation minimale journalière :	
III.4. Variations de la consommation horaire	
III.4.1. La consommation maximale horaire	
III.4.2. La consommation minimale horaire	
III.5. Calcul des débits journalier	
III.5.1. Les débits maximums journaliers	
III.5.2.Perte du réseau	
III.5.3. Les débits minimums journaliers	
III.6. Calcul des débits horaires	
III.6.1. Débit moyen horaire	
III.6.2. Débit maximum horaire	
III.6.3. Débit minimum horaire:	16
III.7. Evaluation de la consommation horaire selon le nombre d'habitants	17
Conclusion	19
CHAPITRE IV : LES RESERVOIRS	
Introduction	20
IV-1. Rôle et utilité du réservoir	20
IV -2. Classification des réservoirs	20
IV -3. Emplacement et altitude des réservoirs	21
IV -4. Equipements des réservoirs d'alimentation	21
IV -4.1. Conduite d'arrivée	21
IV -4.2. Conduite de départ	21
IV -4.3. Conduite de trop plein	21
IV -4.4. Conduite de vidange	21
IV4.5. La conduite by-pass	22
IV -4.6. Matérialisation de la réserve d'incendie	22

IV -5. Quelques recommandations sur les réservoirs	22
IV -6. Capacité du réservoir	22
IV -6.1. La méthode analytique	22
Conclusion	25
CHAPITRE V : CONCEPTION ET DIMENSIONNEMEN DISTRIBUTION	T DU RESEAU DE
Introduction	27
V-1. Choix du système de distribution	27
V-1.1. Cas du réservoir de tête	27
V-1.2. Cas du contre réservoir	27
V-2. Types du réseau de distribution	28
V-2.1. Réseau maillé	28
V-2.2. Réseau ramifié	28
V-2.3. Réseau mixte	29
V-2.4. Réseau étagé	29
V-3. Principe du tracé du réseau	29
V-4. Choix du matériau des conduites	29
V-5.Type de tuyaux	30
V-5.1. Les tuyaux métalliques	30
V-5.2. Les conduites plastiques	31
V-6. Calcul hydraulique du réseau de distribution	32
V-6.1. Détermination des débits du réseau	32
V-6.2. Présentation du logiciel EPANET	38
V-6.3. Interprétation des résultats	51
Conclusion	51
CHAPITRE VI : ACCESSOIRES DU RESEAU DE DIS	
Introduction	
VI- 1. Les accessoires du réseau	52
VI- 1.1. Les robinets-vannes	52
VI- 1.2.Les clapets	54
VI- 1.3. Les ventouses	54
VI- 1.4. Les bouches et poteaux d'incendie	55
VI- 2. Les pièces spéciales de raccordement	
VI- 2.1. Les tés	55
VI- 2.2. Les coudes	55
VI- 2.3. Les cônes.	55
VI- 2.4. Les crois de jonction	55
VI- 2.5. Les manchons	56

VI- 3.Les joints de raccordements	56
VI- 4.Les organes de mesure	56
VI- 4.1.Mesure de débit	56
VI- 4.2.Mesure de pression	577
Conclusion	58
CHAPITRE VII : POSE DE CANALISATION ET ORGANISAT CHANTIER	TION DE
Introduction	59
VII.1.Principe de pose de canalisation	
VII.2.Type de pose de canalisations	
VII.2.1. Pose de canalisation dans un terrain ordinaire	
VII.2.2. Pose de canalisation dans un terrain peu consistant	60
VII.2.3. Pose de canalisation dans un terrain marécageux	60
VII.2.4. Pose de canalisation en galerie	60
VII.2.5. Pose de canalisation en pente	60
VII.2.6. Pose des conduites en traversée d'une révère	61
VII.3.Stabilisation d'une conduite	61
VII.4. Exécution des travaux de pose des canalisations	61
VII.4. 1.Travaux préliminaires	61
VII.4. 2.Décapage	61
VII.4. 3.Exécution des tranchées	62
VII.4. 4.Pose du lit de sable	62
VII.4. 5.Pose des conduites	62
VII.4. 6.Epreuve de joints et de la canalisation	62
VII.4. 7.Remblayage des tranchées	
VII.4. 8.Construction des regards	63
VII.4. 9. Nivellement et compactage et la remise en état de la chaussée	63
VII.5.Calcul les volumes des travaux de réseaux de distribution	63
VII.5.1.Déblais d'excavation	63
VII.5.2.Volume des remblais compacté	69
Conclusion	73
Conclusion générale	74
Reference Bibliographique	

Annexes

Liste des Tableaux

CHAPITRE I: PRESENTATION DE LA ZONE D'ETUDE	
Tableau I.1 : variation des températures de la région de Bounejdamen	4
Tableau I.2 : Précipitations moyennes mensuelles (2015)	4
	.
CHAPITRE II : ESTIMATION DES BESOIN EN EAU DE LA REGIO	N
BOUNEJDAMEN	
Tableau II.1 : Estimation de la population à l'horizon 2050	8
Tableau II.2: Le nombre d'habitants des promotions projetées.	8
Tableau II.3: Tableau récapitulatif du nombre d'habitants	8
Tableau II.4: les besoins en eau domestique	9
Tableau II.5 : les besoins en eau des équipements projetés	9
Tableau II.6: les besoins en eau commerciaux	10
Tableau II.7: les besoins en eau agricole et d'élevage	10
Tableau II.8 : les besoins totaux en eau de Bounejdamen	11
CHAPITRE III : CARACTERISTIQUES DE LA CONSOMMATION EN	EAU
Tableau III.1: variation du coefficient βmax en fonction du nombre d'habitants	14
Tableau III.2: variation du coefficient β_{min} en fonction du nombre d'habitants	14
Tableau III.3: le débit maximum journalier	15
Tableau III.4: Les débits minimums journaliers	15
Tableau III.5 : Récapitulatif des débits horaires	
Tableau III.6 : la variation du débit horaire	
CHAPITRE IV : LES RESERVOIRS	
Tableau IV-1 : Détermination de la capacité du réservoir d'alimentation	24
Tableau IV 2 : Décultat du calcul du volume total du réconvoir d'alimentation	24

CHAPITRE V : CONCEPTION ET DIMENSIONNEMENT DU RESEAU DE DISTRIBUTION

Tableau V-1 : Récapitulatif des débits de calcul 33
Tableau V-2 : Récapitulatif des débits de calcul (cas de pointe)
Tableau V.3 : Coefficients de Rugosité pour les tuyaux neufs
Tableau V.4: les valeurs de K', b, m
Tableau V.5: caractéristiques hydrauliques et géométriques des tronçons pour le cas d
pointe4
Tableau V.6: caractéristiques hydrauliques et géométriques des tronçons pour le cas d
pointe + incendie
Tableau V.7 : Etat des nœuds du réseau (cas de pointe)
Tableau V.8 : Etat des nœuds du réseau (cas de pointe+incendie) 47
CHAPITRE VII : POSE DE CANALISATION ET ORGANISATION DE CHANTIER
Tableau VII.1 : Le volume à excaver
Tableau VII.2 : Capacité du godet en fonction du volume de terrassement
Tableau VII.3 : Le volume du remblai. 70
Tableau VII.4 : Récapitulatif des volumes des travaux de réseaux de distribution72
Tableau VII.5 : Devis estimatif et quantitatif des travaux de pose des canalisations73

Liste des figures

CHAPITRE I.	PRESENTATION DE L.	A ZONE D'ETUDE

Fig I-1: localisation de Bounejdamen	2
Fig I-2: Image satellitaire de la région de Bounejdamen	3
Fig I-3: la variation des précipitations moyennes mensuelles (2015)	5
CHAPITRE III : CARACTERISTIQUES DE LA CONSOMMATIO	N EN EAU
Fig III.1: Graphique de consommation de débit horaire	18
Fig III.2 : Courbe du cumul de consommation	18
CHAPITRE V : CONCEPTION ET DIMENSIONNEMENT DU RE DISTRIBUTION	ESEAU DE
Fig V.1: la vitesse et pression pour le cas de pointe	49
Fig V.2: vitesse et pression cas de pointe + incendie	50
CHAPITRE VI : ACCESSOIRES DU RESEAU DE DISTRIBU	TION
Fig VI.1: Robinet - vanne à opercule	52
Fig VI.2: vanne à papillon.	53
Fig VI.3 : Réducteur de pression.	54
Fig VI.4: Débitmètre à organe déprimogènes	57

Liste des plans

- **1-** Plan de masse du réseau projeté d'alimentation en eau potable de la région de Bounejdamen, commune d'El-Kseur (W.Bejaia).
- **2-** Profil en long de la conduite principale du réseau de distribution de la région de Bounejdamen, commune d'El-Kseur (W.Bejaia).
- **3-** Les accessoires et organes de raccordement dans le réseau d'alimentation en eau potable.
- 4- Schéma de montage aux nœuds.

INTRODUCTION GENERALE

L'eau est une ressource de plus haut intérêt de par l'accroissement des besoins de l'homme pour sa propre consommation et pour ses diverses utilisations (agriculture, industrie.....), que par l'apparition de nouvelles agglomérations inhérentes à l'accroissement démographique. Cependant, elle est objet de raréfaction par le fait de la sécheresse, de la pollution et de tous autres phénomènes.

Par conséquent, la conception de nouveaux réseaux s'avère plus qu'indispensable pour une consommation optimale et rationnelle afin de répandre aux besoins quantitatifs et qualitatifs des consommateurs et de ses diverses utilisations.

C'est dans ce cadre que s'inscrit le projet de ce travail, qui consiste en la conception d'un réseau d'AEP de la région de Bounejdamen, commune située à El-Kseur (W. Béjaia) et afin de faire face au déficit hydrique et au non fiabilité du système d'alimentation existant ainsi que la mauvaise qualité de l'eau.

Au cours de cette étude, il a été question de dresser d'abord l'inventaire des sources d'eau potable à proximité de la région sus-citée, ainsi que les ouvrages de stockage déjà existants, puis d'évaluer les estimations des besoins en eau pour des consommateurs réels et potentiels, et en fin de dimensionner un réseau d'alimentation avec tous ses réservoirs de stockage capables de combler son déficit hydrique.

En fin, de telles études sont si nécessaires pour l'alimentation des agglomérations et des populations en eau, mais aussi si importantes de les mener à bien, comme disait un proverbe chinois : « En buvant l'eau du puits, n'oubliez pas ceux qui l'ont creusé ».

CHAPITRE I: PRESENTATION DE LA ZONE D'ETUDE

Introduction

Ce chapitre a pour objectif de faire une présentation générale de la zone d'étude à savoir :

I.1. Situation géographique

La région de Bounejdamen est située à 2,60 km de la commune d'El Kseur et se trouve aussi distante de 20 km au Sud ouest de la ville de Bejaia, chef lieu de la willaya. Elle est limitée comme suite :

- Au Nord par la commune de Toudja,
- Au Sud par la commune de Oued Amizour,
- A l'Est par la commune de Oued Ghir,
- A l'Ouest par la localité Taourit Ighil Fenaia Ilmathen.

Fig.I.1: Localisation de Bounjdamen (Source Google Earth 2020)

I.2. Situation topographique

La région de Bounjdamen est caractérisée par son aspect montagneux. Elle est située à la latitude de 36°40′45″ Nord et à la longitude de 4°51′19″ Est.

Fig I.2: Image satellitaire de la région de Bounejdamen (Source Google Earth 2020).

I-3- Situation géologique

Il s'agit d'une formation essentiellement marneuse, épaisse, et riche en intercalations volcaniques. Elle est formée de coulées de laves et d'une petite venue intrusive.

I.4. Situation climatologique

I.4.1. Le climat

La région de Bounejdamen bénéficie d'un climat tempéré et humide avec un hiver doux, caractéristique des zones méditerranéennes, comme toutes les villes de la moitié Est du littoral algérien. En raison des massifs montagneux qui entourent cette région, il neige chaque année en hiver entre décembre et février pour les hautes altitudes de plus 600 m.

I.4.2. La température

La saison la plus chaude dure trios mois. Elle va de mois de juin jusqu'à septembre, avec une température quotidienne moyenne maximale supérieure à 27° C. Le jour le plus chaud de l'année est le 10 août, avec une température moyenne maximale de 30° C et minimale de 21° C.

La saison fraiche, quant à elle dure quatre mois. Elle va du mois de novembre jusqu'au mois de mars, avec une température quotidienne moyenne maximale inférieure à $18\,^{\circ}C$. Le jour le plus froid de l'année est le 20 février avec une température moyenne minimale de $7,6\,^{\circ}C$.

Les variations mensuelles des températures de la région de Bounejdamen sont illustrées dans le tableau ci-dessous :

mois	jan.	fév.	mar	avril	mai	juin	jui.	août	sep.	oct.	nov.	déc.	annuelle
min	7,7	7,6	8,5	10,1	13	17	19	21	19	15	11	8,4	12,94
moy	12	12	13	14,7	18	21	24	25	23	20	16	13	17,6
max	16	17	18	19.3	22	25	29	30	28	24	20	17	22.14

Tableau I-1 : Variation des températures (en °C) de la région de Bounejdamen (2015).

(Source relevés de la station météorologique de Béjaïa,2015)

I-4-3- Humidité

La région de Bounejdamen connaît des variations saisonnières en ce qui concerne l'humidité. La période la plus lourde de l'année dure quatre mois, du juin jusqu'à octobre, avec une sensation de lourdeur, ou étouffante au moins 18 % du temps. Le jour le plus lourd de l'année est le 13 août, avec un climat lourd 73 % du temps.

I-4-4- Pluviométrie

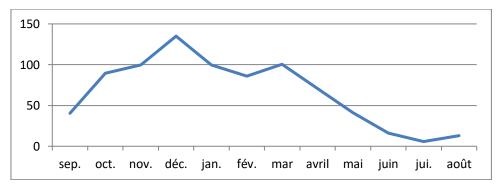

La région Bounejdamen connaît des variations saisonnières considérables en ce qui concerne les précipitations de pluie mensuelles, tel que illustrées par le tableau ci-dessous :

Tableau I-2: Précipitations moyennes mensuelles (2015)

Mois	jan.	fév.	mar	avril	mai	juin	jui.	août	sep.	oct.	nov.	déc.	annuelle
Précipitations (mm)	99,7	85,9	100	70,7	41,2	16,2	5,8	13	40,4	89,5	99,7	135	767,5

(Source relevé de l'ANRH de Béjaia, 2015)

Le tableau I-2 montre que la période pluvieuse s'étale du mois de Novembre au mois de Mars avec un maximum de précipitation de 135 mm au mois de Décembre Les mois de juin, juillet et août sont les plus secs, avec un minimum de précipitation de 5,8 mm au mois de juillet.

Figure I-4 : la variation des précipitations moyennes mensuelles (Source relevé de l'ANRH de Béjaia, 2015)

I-4-5- Le vent

La période la plus venteuse de l'année dure cinq mois. Elle va du mois d'octobre jusqu'au mois d'avril, avec des vitesses de vent moyennes supérieures à 11,1 kilomètres par heure.

La période la plus calme de l'année dure six mois. Elle va du mois d'avril jusqu'au mois d'octobre, avec une vitesse moyenne horaire du vent de 8,9 kilomètres par heure.

I-5- La sismicité

Selon le règlement parasismique algérien RPA 2003 survenu suite au séisme du 21/05/2003, le territoire algérien serait partagé en quatre zones de sismicité croissante :

Zone 0 : de sismicité négligeable.

Zone I : de sismicité faible.

Zone II : de sismicité moyenne.

Zone III : de forte sismicité.

La région de Bounejdamen, commune située à El-Kseur (W. Béjaia) serait classée dans la zone II, de sismicité moyenne, pouvant engendrer des dégâts forts et importants.

I-6. La situation hydraulique

Notre région d'étude a été alimentée par un forage vers une station de pompage refoulant vers un réservoir de stockage d'une capacité de 500 m³, ce dernier est en bon état physique ayant une cote de terrain de 315m avec 4,5 m de hauteur. Le forage est situé dans la nappe alluviale de la Soummam qui est à l'arrêt pour cause de la mauvaise qualité des eaux qui sont entartrantes. Notre région sera alimentée par les eaux du barrage de Tichy-Haf, par refoulement vers le réservoir de stockage. Ce barrage produit 47 millions m³ par an destinés à l'alimentation en eau potable dont la qualité d'eau est bonne, qui repend aux normes de potabilité ; une eau propre et saine selon les analyses et les prélèvements fait au niveau de la station du barrage ayant le code 15902 ; les résultats des prélèvements sont récapitulés dans le tableau annexe I.

La région de Bounejdamen dispose d'un réseau d'AEP très vétuste, ancien et défectueux en acier galvanisé qui remonte à l'époque coloniale et qui a connu plusieurs problèmes de fuites vu les branchements anarchiques et l'installation des suppresseurs et pompes dans le réseau sans aucune autorisation ou étude préalable tout cela entraine de très faibles pressions et donc un déficit hydrique. En contre partie, elle a connu une évolution assez rapide en constructions, ce qui a induit des effets négatifs et des surcharges

supplémentaires sur la capacité et le fonctionnement du réseau. En outre, il y une intégration de nouvelles promotions immobilières, ce qui va aggraver encore plus la situation de ce réseau quant à la satisfaction des besoins de la population en eau à long terme. Il est donc nécessaire de concevoir un nouveau réseau d'AEP qui va assurer un débit et une pression suffisante pour chaque consommateur.

I-6.1. Les eaux souterraines

Le réservoir existant est principalement alimenté via le forage situé dans la nappe alluviale de la Soummam. Cette eau est de qualité médiocre, elle est entartrante et fait l'objet de plus de réticence chez les abonnés.

I-6.2. Les eaux superficielles

On note l'existence de quelques captages privés et des fontaines de débits très faibles et variables selon les saisons. Ces sources servent à subvenir aux besoins de quelques particuliers en terme d'élevage et agriculture et qui ne peuvent être exploitables pour subvenir aux besoins de la population de la région d'étude.

CONCLUSION

A travers ce chapitre, des données nécessaires ont été défini pour la région, sujet de cette étude. De point de vue topographique, il ressort que cette région est dotée d'un relief irrégulier et de terrains accidentés. L'étude de la situation hydraulique a révélé que l'état du réseau est défectueux et ne peut subvenir aux besoins de la population ce qui nécessite la conception d'un nouveau réseau alimenté d'une eau de meilleure qualité qui ne peut être autre que celle du barrage de Tichy-Haf.

A partir des informations disponibles dans la région à étudier, nous allons donc, procéder dans le chapitre qui suit au calcul des besoins en eau de la région de Bounejdamen.

Introduction

Afin de rependre à la demande en eau de la région Bounejdamen, qui se trouve relative à l'évolution de la population et son niveau de vie, en fonction des équipements sanitaires disponibles et aux variations des périodes saisonnières, une étude détaillée de consommation dans cette région s'impose.

Ce chapitre vise à estimer les besoins en eau pour les différentes catégories de consommation.

II.1. Estimation de la population future

L'évolution de la population suit la loi des accroissements finis, donnée par la formule :

$$Pn = P0 (1+T)^n$$
 (II-1)

Avec:

Pn: La population à l'horizon d'étude.

P0 : La population de l'année de référence (2008).

T: Taux d'accroissement annuel de la population en %, pris égale à 2,2 %.

n : Nombre d'années séparant l'année de référence et l'horizon de calcul.

L'horizon de calcul considéré est : Long terme : 2050 (une durée de 30 ans).

L'évolution démographique sur l'horizon de 2050 est représentée dans le tableau cidessous:

Tableau II.1: Estimation de la population à l'horizon 2050.

Année	2008	2020	2050
Nombre	1559	2025	3891
d'habitants	1337	2023	3071

Pour le long terme, on a intégré les promotions prévues à savoir : le calcul du nombre d'habitant, qui est basé sur le nombre de foyers recensés, en prenant la valeur de 05 pers/logt, soit :

Nombre d'habitants = 5 pers/logt * Nbre de logements......(II.3)

Tableau II.2: Le nombre d'habitants des promotions projetées

Promotions	Nbre Logements	Nbre Hab
Promotion Boulkaria	143	715
Promotion Yemma Gouraya	130	650
Promotion Dar Nacer	120	600
Promotion Khelfia	150	750
Promotion Tafat	130	650
Promotion Bouchafia	150	750
Promotion Nacirya	130	650
Total	953	4765

(Source relevé l'APC d'El Kseur, 2019)

Tableau II.3: Tableau récapitulatif du nombre d'habitants

Nombre d'habitants à l'horizon d'étude	Le nombre d'habitants des promotions projetées	Le nombre d'habitants total
3891	4765	8656

II.2. Catégorie de consommation

Avant tout projet d'alimentation en eau potable, il est indispensable de faire un recensement de toutes les catégories de consommateurs rencontrés au niveau de la zone d'étude. Il est à savoir que la consommation d'eau est en fonction du type de consommateur.

Pour l'étude de la nouvelle région Bounejdamen, il est donc nécessaire d'étudier les différentes catégories de besoins en eau, a savoir :

- ✓ Les besoins domestiques.
- ✓ Les besoins culturels et commerciaux.
- ✓ Les besoins d'élevage.

II.3. Choix de la norme unitaire de la consommation

II.3.1. Dotation

La dotation ou la norme de consommation est définie comme étant la quantité d'eau que doit utiliser l'être humain pour satisfaire ses différents besoins, à savoir : la consommation urbaine, l'irrigation domestique, consommation publique et pertes. Elle est généralement évaluée en litre par habitant et par 24 heures, par mètre carré de surface de végétaux, par mètre cube, par tonne de productivité, par tête d'animal, par véhicule.....etc.

II.3.2. Critères de choix de la dotation

La dotation dépend essentiellement du

- ✓ Niveau de vie de la population et de ses habitudes.
- ✓ Nombre d'habitants.
- ✓ Développement urbain et sanitaire de la ville.
- ✓ Des ressources existantes.

II.4. Consommation moyenne journalière

Le débit moyen journalier au cours de l'année est donne par la relation suivante :

Qmoyj =
$$\frac{Ni*qi}{1000}$$
.....(II.3)

Q_{moy,j}: Consommation moyenne journalière (m³/j).

Ni : Nombre de consommation ou le nombre des usagers dans chaque groupe de catégorie de consommateurs.

q_i: Norme moyenne journalière de la consommation pour chaque groupe (1/j/par usager)

II.5. Besoin en eau par catégorie de consommation

II.5.1. Besoins domestique

Les besoins domestiques sont définis comme étant l'utilisation de l'eau pour la préparation des repas, la propreté, le lavage de la vaisselle et du linge, les douches, l'arrosage des jardins familiaux ...etc.

Les besoins en eau domestique dépendent essentiellement du développement des installations sanitaires et des habitudes de la population.

Tableau II.4: les besoins en eau domestique.

Equipements	Unité	Nombre	Dotation (l/j/unité)	Qmoy j (m3/j)
Bounejdamen	personne	3891	180	700.2

II.5.2. Equipements projeté

Tableau II.5: Les besoins en eau des équipements projetés.

Promotions	Nbre Logements	Nbre Hab	Dotation (l/j/unité)	Qmoy j (m3/j)
Total	953	4765	180	857,7

II.5.3. Besoins culturels et commerciaux

On entend par besoin culturels et commerciaux, les quantités d'eau nécessaire pour satisfaire la demande des édifices, commerces et ateliers qui s'y trouvent, à voir : les mosquées, les boutiques, les magasins et autres, tel qu'ils sont reportés sur le tableau cidessous :

Tableau II.6: Les besoins en eau commerciaux.

Fauinaments	Unité	Nombre	Dotation	Omov i (m3/i)
Equipements	Office	Nombre	(l/j/unité)	Qmoy j (m3/j)
Mosquée	personne	90	6	0,54
librairie	personne	3	5	0,015
Mécanicien	personne	3	10	0,03
Lavage	voiture	9	120	1,08
Alimentation générale	personne	3	5	0,015
Menuiserie	personne	4	8	0,032
	1,622			

(Source relevé l'APC d'El Kseur, 2019)

II.5.4. Besoins d'élevage

Les besoins d'élevage sont les quantités d'eau demandées par l'ensemble des animaux d'élevages, d'une exploitation agricole comme les chevaux, volailles, bovins....etc.

Tableau II.7: les besoins en eau agricole et d'élevage.

Cheptels	Unité	Nombre	Dotation (l/j/unité)	Qmoy j (m3/j)		
Chevaux	tête	115	70	8.05		
Volaille	tête	4000	1	4		
	Total					

(Source relevé l'APC d'El Kseur, 2019)

II.6. Récapitulation des besoins en eau de Bounejdamen pour l'horizon 2050

Apres avoir fait une étude détaillée des besoins en eau de la nouvelle région Bounejdamen, on peut récapituler les besoins totaux dans un tableau dans le but de déterminer le débit moyen journalier total, qui alimentera cette région.

Les besoins totaux en eau sont donc donnés dans le tableau ci-dessous :

Tableau II.8: Les besoins totaux en eau de Bounejdamen.

Type de besoin	Consommation moyenne journalière (m3/j)
Domestique	1557,9
Culturel et Commercial	1,622
Elevage	12.05
Total	1571,572

Conclusion

Nous avons pu évaluer à travers ce chapitre la consommation moyenne journalière, après avoir calculé les besoins des différentes catégories de consommation qui est de l'ordre de 1571,572 m³/j. Ce débit qui va être consommé par la nouvelle région Bounejdamen, et il va nous permettre, en outre, de calculer les déférents débits et dimensionnements qui feront l'objet de notre prochain chapitre.

CHAPITRE III:

CARACTERISTQIUES DE LA CONSOMMATION EN EAU

Introduction

Pour bien dimensionner un réseau d'alimentation en eau potable, il faut prendre en considération les conditions les plus défavorables. Pour cette raison, il est indispensable d'étudier les caractéristiques de consommation en eau, en tenant compte des coefficients d'irrégularités. Dans ce présent chapitre nous allons définir la variation des débits journaliers et horaires de la région, objet de cette étude.

III.1. Variation de la consommation

Le débit demandé par les déférents consommateurs varie dans le temps à cause de l'irrégularité de la consommation. Ces diverses variations font partie de la variété des activités humaines.

Par conséquent, on distingue la variation annuelle et aussi saisonnière, qui sont liées au développement de l'agglomération ainsi son niveau de vie, la variation mensuelle qui est en fonction de la densité de la zone, puis la variation journalière relative à la consommation la plus grande dans la journée durant une semaine.

Enfin, il y a la variation horaire qui est en fonction du régime de consommation de la population durant la journée.

III.2. Coefficient d'irrégularité

Les coefficients d'irrégularité permettent de se rapprocher de la vraie consommation de la zone d'étude vue que cette dernière est soumise à plusieurs variations dans le temps d'un endroit à un autre. Ces coefficients d'irrégularité sont :

- ✓ Le coefficient d'irrégularité maximale journalier (kmax,j) ;
- ✓ Le coefficient d'irrégularité minimale journalier (k min ,j) ;
- ✓ Le coefficient d'irrégularité maximale horaire (kmax,h) ;
- ✓ Le coefficient d'irrégularité minimale horaire (kmin,h).

III.3. Variation de la consommation journalière

La consommation journalière maximale nous permet de prédéterminer le dimensionnement des réseaux d'AEP, ainsi que les capacités de stockage (réservoirs) et les installations de pompage.

III.3.1. La consommation maximale journalière

La consommation maximale journalière représente la journée de l'année où la consommation en eau est la plus grande. Elle est définie par un coefficient d'irrégularité

journalière maximale K_{max} jr. Ce dernier tient compte des variations journalières de la consommation.

Ce coefficient nous permet de savoir de combien le débit maximum journalier dépasse le débit moyen journalier.

Pour le calculer, on effectuera le rapport de la consommation maximale journalière sur la consommation moyenne journalière.

Soit:

$$K_{\text{max,j}} = Q_{\text{max,j}} / Q_{\text{moy,j}} \dots (III.1)$$

Avec:

Qmax,j : le débit maximum journalier en (m³/j)

Qmoy, j : le débit moyen journalier en (m³/j)

Le coefficient d'irrégularité maximale journalier ($\mathbf{K_{max} jr}$) est compris entre 1,1 et 1,3. Il consiste à prévenir les fuites et les gaspillages au niveau du réseau avec une majoration de la consommation moyenne de 10% à 30%. On prend donc $\mathbf{K_{max} jr} = 1.2$.

III.3.2. La consommation minimale journalière

La consommation minimale journalière, représentée par $\mathbf{K_{min}}$ j, qui est déterminé comme étant le rapport de la consommation minimale journalière et la consommation moyenne journalière :

Avec:

Qmin jr: le débit minimum journalier en (m³/j)

Qmoy,j: le débit moyen journalier en (m³/j)

Le coefficient d'irrégularité minimale journalier ($\mathbf{Kmin}\ \mathbf{jr}$) est compris entre 0,7 et 0,9 · On prend donc $\mathbf{Kmin}\ \mathbf{jr} = \mathbf{0},\mathbf{8}$.

III.4. Variations de la consommation horaire

III.4.1. La consommation maximale horaire

Elle est représentée par le coefficient d'irrégularité maximale horaire (**Kmax,h**), qui représente l'augmentation de la consommation horaire pour la journée la plus chargée dans l'année. Il tient compte de l'accroissement de la population ainsi que du degré de confort et du régime de travail de l'industrie.

D'une manière générale, ce coefficient peut être décomposé en deux autres coefficients : α_{max} et β_{max} ; tel que:

Kmax,h =
$$\alpha$$
max . β max (III.3)

Avec:

 α_{max} : coefficient qui tient compte du confort des équipements de l'agglomération et de régime du travail, varie de 1,2 à 1,5 et dépend du niveau de développement local. Pour notre cas on prend : $\alpha_{max} = 1,5$.

βmax : coefficient tient compte de l'importance démographique de l'agglomération et l'accroissement de la population.

Le tableau III.1 donne sa variation en fonction du nombre d'habitants

Tableau III.1: variation du coefficient βmax en fonction du nombre d'habitants.

Habitant	<1000	1500	2500	4000	6000	10000	20000	50000
B _{max}	2	1,8	1,6	1,5	1,4	1,3	1,2	1,15

Donc pour notre cas on prend : $\beta_{max} = 1.34$;

d'où la valeur de Kmax,h sera : Kmax,h =1.5*1.34=2.01

$$K_{\text{max,h}} = 2.01$$

III.4.2. La consommation minimale horaire

Elle est donnée par le coefficient d'irrégularité minimale horaire $K_{min,h}$, qui permet de déterminer le débit minimum horaire envisageant une sous consommation :

$$K_{min,h} = \alpha_{min} * \beta_{min} \dots (III.4)$$

Avec:

 α_{min} : varie de 0,4 à 0,6. Pour notre cas on prend $\alpha_{min} = 0,5$.

β_{min} : coefficient étroitement lié à l'accroissement de la population.

Le tableau III.2 ci-dessus donne sa variation en fonction du nombre d'habitants.

Tableau III.2: variation du coefficient β_{min} en fonction du nombre d'habitants.

Habitant	<1000	1500	2500	4000	6000	10000	20000	30000
β min	0,1	0,1	0,1	0,2	0,25	0,4	0,5	0,6

Donc pour notre cas on prend $\beta_{min} = 0.35$; d'où la valeur de $K_{min,h}$ sera :

Kmin,h =0.5*0.35=0.18

III.5. Calcul des débits journalier

III.5.1. Les débits maximums journaliers

Le calcul de la consommation maximale journalière et la consommation journalière est récapitulé dans le tableau suivant :

Tableau III.3: Le débit maximum journalier.

Catégorie	Qmoyj (m ³ /j)	Kmaxj	Qmaxj (m ³ /j)
Domestique	1557,9	1,2	1869,48
Culturel et Commercial	1,622	1,2	1,946
Elevage	12,05	1,2	14.46
	1885,886		

III.5.2.Perte du réseau

Les pertes et le gaspillage représentent 20% à 30 % dans le réseau neuf pour notre cas elle sot estimées à 20% du débit maximum journalier Qmax.j.

Dans notre cas on prend 20%

$$Q_{maxj} = 1885.886* 1.2 = 2263,064 (m^3/j)$$

III.5.3.Les débits minimums journaliers

Les débits minimums journaliers sont résumés dans le Tableau III.4:

Tableau III.4 : Les débits minimums journaliers.

Catégorie	Qmoyj (m ³ /j)	K _{minj}	Qminj (m ³ /j)
Domestique	1557,9	0,8	1246,32
Culturel et commercial	1.622	0,8	1.298
Elevage	12.05	0,8	9.64
	1257,258		

III.6. Calcul des débits horaires

III.6.1. Débit moyen horaire

Le débit moyen horaire est donné par la relation suivante :

$$Q_{\text{movh}} = Q_{\text{maxi}}/24 \text{ (m}^3/\text{h)}.....(III.5)$$

Avec:

Q_{moyh}: débit moyen horaire en m³/h.

Q_{maxj}: débit maximum journalier en m³/j.

Donc:

 Q_{movh} =2263,064 /24=94.294 m³/h.

$$Q_{\text{moyh}} = 94.294 \text{ m}^3/\text{h}.$$

III.6.2. Débit maximum horaire

Ce débit correspond à l'heure de pointe où la consommation est la plus importante durant la journée. On l'utilise pour le dimensionnement du réseau de distribution.

Le débit maximum horaire est donné par la formule suivante :

$$Q_{maxh}=K_{maxh}*Q_{moyh}$$
 (m³/h).....(III.6)

Avec:

Qmaxh: débit maximum horaire (m³/h).

Qmovh: débit moyen horaire (m³/h).

Kmaxh: coefficient maximum horaire.

III.6.3. Débit minimum horaire:

Le calcule de ce débit est important pour le dimensionnement mécanique de la conduite et pour la détection des fuites.

Le débit minimum horaire est donné par la formule suivante :

$$Qminh=Kminh*Qmoyh (m3/h).....(III.7)$$

Avec:

Qminh: débit minimum horaire (m³/h.)

Qmoyh: débit moyen horaire (m³/h).

Kminh: coefficient minimum horaire.

Les calculs sont résumés dans le tableau III.5

Tableau III.5: Récapitulatif des débits horaires.

Région	Q _{moy,h} (m ³ /h)	Kmaxh	Q _{maxh} (m ³ /h)	K _{minh}	Q _{minh} (m ³ /h)
Bounejdamen	94,294	2,01	189,531	0,18	16,973

III.7. Evaluation de la consommation horaire selon le nombre d'habitants

Tableau III.6: La variation du débit horaire.

	Agglomération rurale			
Heures	$Q_{\text{maxj}}(m^3/j)=2263,064(m^3/j)$		Cumulé	
h	Ch%	Q _{maxh} (m3/h)	Ch%	Q _{maxh} (m3/h)
0*1	0,75	16,97298	0,75	16,97298
1*2	0,75	16,97298	1,5	33,94596
2*3	1	22,63064	2,5	56,5766
3*4	1	22,63064	3,5	79,20724
4*5	3	67,89192	6,5	147,09916
5*6	5,5	2263,064	12	271,56768
6*7	5,5	2263,064	17,5	396,0362
7*8	5,5	2263,064	23	520,50472
8*9	3,5	79,20724	26,5	599,71196
9*10	3,5	79,20724	30	678,9192
10*11	6	135,78384	36	814,70304
11*12	8,5	192,36044	44,5	1007,0635
12*13	8,5	192,36044	53	1199,42392
13*14	6	135,78384	59	1335,20776
14*15	5	113,1532	64	1448,361
15*16	5	113,1532	69	1561,5142
16*17	3,5	79,20724	72,5	1640,7214
17*18	3,5	79,20724	76	1719,9286
18*19	6	135,78384	82	1855,7125
19*20	6	135,78384	88	1991,4963
20*21	6	135,78384	94	2127,2802
21*22	3	67,89192	97	2195,1721
22*23	2	45,26128	99	2240,4334
23*24	1	22,63064	100	2263,064

D'après les valeurs de tableau précédent l'heure de pointe est située de 11h à 13h et le débit correspondant est :

 $Q_{maxh} = 192,36 \text{ m}3/h = 53.433 \text{ l/s}$

 $Q_{maxh} = 53.433 \text{ l/s}$

Page 17

Connaissant les débits en chaque heure on peut tracer le graphe de consommation et la courbe intégrale de consommation.

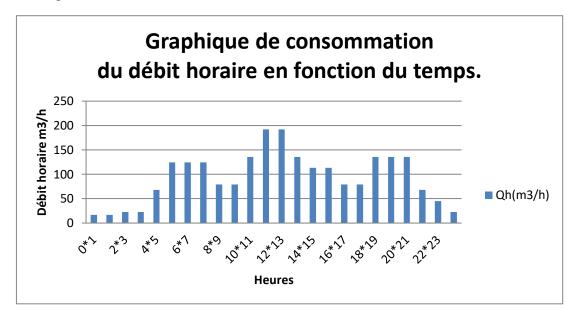


Fig III.1: Graphique de consommation de débit horaire.

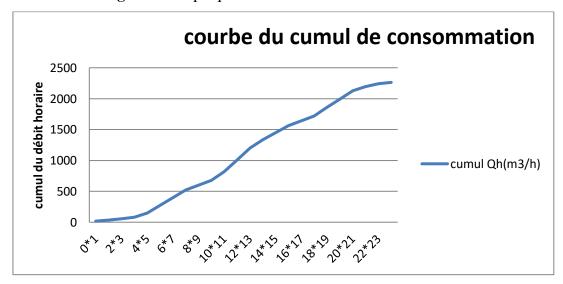


Fig III.2: Courbe du cumul de consommation.

Conclusion

A travers ce chapitre, on a pu savoir les besoins demandés par notre région dont nous avons déterminé les débits journaliers, maximum et minimum qui sont estimés respectivement à : $Q_{maxj} = 2263,064 \text{ m}^3/\text{j}$, et $Q_{minj} = 1257,258 \text{m}^3/\text{j}$.

De même que, les débits horaires (moyen, maximum et minimum), qui sont estimés de l'ordre Qmaxh= 192,36 m³/h et Qminh =16.973m³/h, comme nous avons aussi tracé la courbe du cumul de consommation (courbe intégrale).

CHAPITRE IV: LES RESERVOIRS

Introduction

Les réservoirs d'alimentation en eau potable sont définis comme étant des ouvrages hydrotechniques ayant un rôle important dans le réseau de distribution. En effet, ils servent à équilibrer la demande et la production en eau.

Leur conception nécessite une étude technique pour pouvoir rependre aux tâches pour les quelles ils sont conçus. Afin d'assurer un bon fonctionnement, nous allons vérifier si le réservoir existant suffira à notre agglomération, ce qui est l'objectif de ce chapitre.

IV-1. Rôle et utilité du réservoir

Un réservoir d'alimentation doit remplir plusieurs rôles et utilités dans le réseau de distribution, a savoir:

- assurer le rôle de relai.
- Emmagasiner l'eau pendant les heures creuses de consommation et restitution pendant les heures dont la consommation devient importante.
- Assurer la continuité de la distribution pendant l'arrêt de la pompe.
- Régulariser la pression dans le réseau de distribution.
- Régulariser le fonctionnement du pompage.
- Assurer la disponibilité de la réserve d'incendie.
- Dans le cas où le réseau est étendu longitudinalement et où les pressions sont faibles, il a pour rôle d'équilibre pour augmentant ces faibles pressions.
- Réduire les dépenses d'énergie c'est-à-dire stockage pendant le nuit et distribution gravitaire pendant la journée.
- Briser la charge dans le cas d'une distribution étagée.

IV -2. Classification des réservoirs

Les réservoirs peuvent être classés selon plusieurs critères :

- > Selon les matériaux de construction
 - Réservoirs en maçonnerie.
 - Réservoirs en béton ordinaire au précontraint.
 - Réservoirs métalliques.
- > Selon la situation des lieux
 - Réservoirs enterrés.
 - Réservoirs semi-enterrés.
 - Réservoirs surélevés, sur tour.

- > Selon la forme de la cuve
 - Réservoirs rectangulaires.
 - Réservoirs circulaires.
 - Réservoirs carrés.

N.B : Pour le cas de notre région d'étude est un réservoir circulaire.

IV -3. Emplacement et altitude des réservoirs

L'emplacement d'un réservoir dépend de la topographie. L'altitude du radier doit être supérieure à la plus grande côte piézométrique nécessaire au niveau du réseau de distribution. En ce qui concerne la côte du radier, il faut évaluer la perte de charge entre le réservoir et la plus haute côte piézométrique à desservir, ce qui définira le type du réservoir à adopter.

IV -4. Equipements des réservoirs d'alimentation

IV -4.1. Conduite d'arrivée

La conduite d'arrivée est placée plutôt au fond du réservoir ou en siphon noyé, toujours a l'opposée de la conduite de départ, afin d'assurer un brassage pour pouvoir renouveler l'eau par mélange en créant des perturbations.

IV -4.2. Conduite de départ

Dans l'objectif d'éviter l'entrée des matières en suspension dans le réservoir, la conduite de départ est placée à l'opposé de la conduite d'arrivée, et à quelques centimètres audessus du radier environ 15 à 20 cm. Son extrémité est munie d'une crépine courbée afin d'éviter le phénomène de vortex, et aussi d'une vanne à survitesse pour se fermer en cas d'augmentation du débit.

IV -4.3. Conduite de trop plein

Cette conduite est destinée à l'évacuation de l'excès d'eau arrivant au réservoir en cas où une pompe ne s'arrête pas. Si le réservoir est compartimenté, chaque cuve doit avoir une conduite de trop-plein.

IV -4.4. Conduite de vidange

La conduite de décharge se trouve au point le plus bas du réservoir. Elle sert à vidanger le réservoir en cas du nettoyage ou de la réparation. Elle est munie d'un robinet qui se raccorde généralement à la conduite de trop-plein, et qui en outre doit être nettoyé après chaque vidange pour éviter les dépôts de sable.

IV 4.5. La conduite by-pass

La conduite by-pass est un tronçon de conduite qui relie la conduite d'arrivée et la conduite de départ dans le cas d'un réservoir unique. Cette conduite est utile lorsque le réservoir est isolé pour son entretient ou dans le cas d'un incendie.

IV -4.6. Matérialisation de la réserve d'incendie

C'est une disposition spéciale de la tuyauterie servant à l'arrêt de l'écoulement lorsqu'on atteint le niveau de la réserve d'incendie. On distingue :

IV -4.6.1. Le système à deux prises

Il est rarement utilisé du fait de l'existence d'une tranche de morte, c'est-à-dire la réserve de sécurité n'est pas convenablement renouvelée.

IV -4.6.2. Le système à siphon

Le siphon se désamorce grâce à l'évent quand le niveau de la réserve est atteint et pour que la réserve ne soit pas entamée. Ainsi, la réserve est constamment renouvelée tout en restant disponible tout le temps.

IV -5. Quelques recommandations sur les réservoirs

Voici quelques recommandations sur les réservoirs

- Les réservoirs doivent être protégés contre toute pollution d'origine extérieure et contre les élévations importantes de température.
- Les réservoirs doivent être faciles d'accès et leur installation doit permettre de vérifier en tout temps leur étanchéité.
- Un dispositif permettant une prise d'échantillon d'eau doit être installé en amont et en aval immédiat du réservoir.
- L'ensemble des matériaux constituant les réservoirs ne doit ni se désagréger ni communiquer à l'eau les saveurs ou les odeurs désagréables.
- Des dispositions doivent être prises pour assurer un approvisionnement en eau potable pendant la mise hors service.
- Les réservoirs doivent être vidés, nettoyés et désinfectés au moins une fois par an, et a chaque intervention susceptible de contaminer l'eau

IV -6. Capacité du réservoir

La capacité du réservoir doit être estimée en tenant compte des variations du débit à l'entrée ainsi qu'à la sortie, mais le plus souvent la capacité est calculée pour satisfaire aux

variations journalières du débit de consommation, en tenant compte évidemment du jour de plus forte consommation et de la réserve d'eau destiné à l'incendie.

On peut appliquer deux méthodes pour déterminer le volume du réservoir : la méthode analytique, qui tient compte des débits d'apport et des débits de départ du réservoir et la méthode graphique, qui tient compte de la courbe de consommation totale (intégrale) et de la courbe d'apport du débit pompé en fonction de la durée de pompage. Par contre, la capacité est déduite à partir des extrêmement des cumuls et de la consommation vis-à-vis de la de celle des apports.

Pour le cas de cette étude, on appliqué la méthode analytique

IV -6.1. La méthode analytique

La méthode analytique consiste à calculer pour chaque heure de la journée le résidu dans le réservoir, afin de déterminer son volume qui sera donné par la formule suivante

$$Vu = \frac{Rmax^{+} + |Rmax^{-}|}{100} * Qmaxj.....(IV-1)$$

Avec:

Vu : le volume utile du réservoir (m³).

 $Rmax^+$: le reste dans le réservoir maximum positif.

Rmax⁻ : le reste dans le réservoir maximum négatif.

Qmaxj: le débit maximum journalier (m³/j).

Si l'on tient compte de la réserve d'incendie, on aura le volume total du réservoir :

Avec:

Vt : le volume total du réservoir (m³).

Vu : le volume utile du réservoir (m³).

Vinc : le volume d'incendie estimé à 120 (m³).

Tableau IV-1: Détermination de la capacité du réservoir d'alimentation.

Heures	La consommation d'eau en %	Le refoulement d'eau en %	l l'eau au l d'eau du l		Reste le rése	
h			reservon			1 -
0*1	0,75	0	-	-0,75	8,25	6,3
1*2	0,75	0	-	-0,75	7,5	5,5
2*3	1	0	-	-1	6,5	4,5
3*4	1	0	-	-1	5,5	3,5
4*5	3	5	2	-	7,5	5,5
5*6	5,5	5	-	-0,5	7	5
6*7	5,5	5	-	-0,5	6,5	4,5
7*8	5,5	5	-	-0,5	6	4
8*9	3,5	5	1,5	-	7,5	5,5
9*10	3,5	5	1,5	_	9	7
10*11	6	5	-	-1	8	6
11*12	8,5	5	-	-3,5	4,5	2,5
12*13	8,5	5	-	-3,5	1	-1
13*14	6	5	-	-1	0	-2
14*15	5	5	0	-	0	-2
15*16	5	5	0	-	0	-2
16*17	3,5	5	1,5	-	1,5	-1
17*18	3,5	5	1,5	-	3	1
18*19	6	5	-	-1	2	0
19*20	6	5	-	-1	1	-1
20*21	6	5	-	-1	0	-2
21*22	3	5	2	-	2	0
22*23	2	5	3	-	5	3
23*24	1	5	4	-	9	7

Tableau IV.2: Résultat du calcul du volume total du réservoir d'alimentation.

Paramètres	Qmaxj	R ⁺ max	R ⁻ max	Vu	Vinc	Vt
Unité	(m^3/j)	-	-	m ³	m^3	m ³
Résultats	2263,064	7	2	203,67576	120	323,68

Après la normalisation du volume total du réservoir, on a trouvé que sa capacité du stockage nécessaire est de 400 m³. De ce fait, la capacité du réservoir existant, qui est de 500 m³, est suffisante pour satisfaire les besoins de notre agglomération.

CHAPITRE IV: LES RESERVOIRS

Le réservoir est un réservoir circulaire sur sol en béton armé ayant les caractéristiques suivantes :

➤ La capacité du stockage : 500 m³.

Le diamètre : 13 m.

La hauteur de la cuve : 4.5 m.

La cote du terrain : 315 m.

La cote du radier : 317 m.

La conduite de refoulement est une conduite en fonte de diamètre 800mm.

(Source relevé de l'APC d'EL Kseur, 2019)

Conclusion

Dans ce chapitre on a vérifié la capacité du réservoir d'eau pour alimenter notre région d'étude, en utilisant la méthode analytique, qui est de 500 m³, comme on a déterminé également ses dimensions, dont on conclu qu'il suffira les besoins de la population pour l'horizon d'étude.

CHAPITRE V:

CONCEPTION ET DIMENSIONNEMENT DU RESEAU DE DISTRIBUTION

Introduction

A partir du moment où les besoins en eau d'une agglomération ont été évalués, on devra choisir adéquatement le réseau de distribution pour assurer l'eau aux différentes catégories de consommation.

Afin d'aboutir à la satisfaction des demandes d'abonnées quant à la pression et débit, il est indispensable de concevoir un réseau de distribution. A cet égard, les canalisations devront présenter des diamètres optimaux.

V-1. Choix du système de distribution

Le système de distribution à adopter dépend du relief du plan de masse de la zone d'étude. On distingue deux types de fonctionnement :

V-1. 1. Cas du réservoir de tête

Dans ce cas, le réservoir est placé entre la source et le réseau. Dans ce cas de fonctionnement, le réseau travaille sous une charge stable crée par le réservoir. La réserve d'incendie est stockée dans le réservoir. Le réseau de distribution fonctionne pour deux cas ; le cas de pointe et le cas de pointe + incendie. Le réservoir doit être placé à une côte suffisante pour une pression au sol suffisante en tout point de réseau. Le réservoir de tête est opté dans un plan de masse à relief accidenté.

V-1.2. Cas du contre réservoir

Dans ce cas, le réseau est placé entre la station de pompage et le château d'eau dans ce type de fonctionnement nous avons quatre cas de calcul possible ; cas de pointe, cas de pointe+ incendie, cas de transite et cas où la pompe est à l'arrêt. Le contre réservoir est préférable pour un plan de masse allongé à relief plat.

* Remarque:

Dans notre cas, on choisi le système de distribution avec un réservoir de tête puisque notre région est à relief accidenté. Dans ce système, l'alimentation sera effectuée à partir du barrage Tichy-Haf directement par refoulement vers le réservoir de stockage, puis la distribution sera gravitaire à partir du réservoir vers le réseau de distribution.

V-2. Types du réseau de distribution

On distingue trois types de réseau selon la disposition des tronçons :

- Réseau maillé ;
- Réseau ramifié;
- Réseau mixte;
- Réseau étagé.

V-2.1. Réseau maillé

Un réseau maillé est composé d'une série de tronçons disposés de telle sorte qu'il soit possible de former une ou plusieurs boucles fermées appelées une ou des mailles. Ce type de réseau est généralement adapté dans les zones urbaines.

V-2.1.1. Les avantages

- Bonne répartitions des pressions et débits.
- Plus fiable, en cas de cassure on peut isoler le tronçon.
- Eviter les stagnations dans les impasses.
- Plus flexible et sécurisé

V-2.1.2. Les inconvénients

- Coûts d'investissement élevé.
- Indétermination dans le sens est la valeur du débit et de perte de charge.
- Les pertes de charge élevées à cause du nombre important d'accessoires.
- Sa conception est plus difficile et complexe.

V-2.2. Réseau ramifié

C'est un réseau qui comprend une conduite principale et des conduites secondaires (des branches). C'est un réseau ayant une structure arborescente.

V-2.2.1. Les avantages

- Économique lorsque la densité d'habitation est faible.
- Les diamètres sont non importants en général.
- Calcul hydraulique et dimensionnement simple.
- Il convient bien aux petites ses agglomérations dispersées.

V-2.2.2. Les inconvénients

- Stagnation d'eau dans les conduites impasse.
- N'assure pas l'alimentation de retour.

• Peu fiable, en cas de panne sur la conduite principale toute la population d'avale sera privée d'eau et peu flexible.

V-2.3. Réseau mixte

C'est la combinaison dans un même réseau de distribution d'eau les deux réseaux : maillé et ramifié.

V-2.4. Réseau étagé

Ce type du réseau se présente dans le cas où la zone d'étude dispose de très importantes différences de niveau. Le réservoir projeté qui assure la distribution provoque de fortes pressions aux points plus bas de réseau. D'ou la nécessité d'adaptation de ce type du réseau qui représente la solution idéal pour résoudre ce problème en créant plusieurs zones indépendantes les une des autre concernant le niveau de la pression.

Remarque:

Dans notre cas, on a choisi d'adapter le réseau ramifié du fait que notre région est une zone rurale ,ayant une densité éparse et présentant un relief accidenté avec des dénivelés relativement importants.

V-3. Principe du tracé du réseau

Le tracé du réseau est relatif au plan d'urbanisation, de l'emplacement des consommateurs ainsi du relief, de ce fait il faut prendre en considération ce qui suit:

- Tout d'abord, il faut repérer l'emplacement des grands consommateurs.
 - Ensuite il faut localiser les quartiers disposant une densité de population importante ;
 - Déterminer le sens principal de l'écoulement d'eau dans l'objectif de tracer les conduites maîtresses suivant ce sens.
 - Pour avoir une bonne distribution d'eau, les conduites principales doivent être bien reparties.
 - Les conduites principales doivent être reliées à des conduites secondaires (branches) pour alimenter l'intérieur des quartiers.

V-4. Choix du matériau des conduites

Dans le but du bon choix du type de matériau, on prend en compte les paramètres suivants:

- ✓ Le respect de la réglementation sanitaire en vigueur.
- ✓ Le diamètre.

- ✓ La pression de service à supporter par le matériau.
- ✓ La durée de vie du matériau.
- ✓ Les conditions de pose.
- ✓ Le prix de la conduite.
- ✓ La disponibilité de ce dernier sur le marché.

V-5. Type de tuyaux

Les tuyaux peuvent être constitués d'un matériau unique ou composite, on peut distinguer :

V-5.1. Les tuyaux métalliques

V-5.1.1. Les conduites en fonte

Sans doute la fonte a été parmi les premiers matériaux de canalisations et l'un des plus rependus dans le monde, afin de véhiculer l'eau de distribution publique. Les tuyaux en fonte présentent plusieurs avantages et aussi des inconvénients.

V-5.1.1.a. Les avantages

- ✓ Bonne résistances aux sollicitations du fluide.
- ✓ Bonne conduction du son pour la recherche de fuite.
- ✓ Facilité de pose.
- ✓ Durable dans le temps.

V-5.1.1.b. Les inconvénients

- ✓ Risque de déformation des conduites pendant leur transport et un cout très élevé pendant la pose.
- ✓ Mauvaise résistance au cisaillement.
- ✓ Sensible à la corrosion des sols agressifs.
- ✓ Sensible et fragile vis-à-vis des mouvements de terrain des coups de bélier et des surcharges occasionnées par les transports routiers dans les voies où elles sont posées.

V-5.1.2. Les conduites en acier

Les tuyaux en acier sont soudables et plus légers que la fonte ce qui représente un avantage d'économie pour les transporter.

V-5.1.2.a. Les avantages

- ✓ Les tuyaux en acier ne nécessitent pas d'emboitements puisque ils sont soudables.
- ✓ Les conduites en fonte présentent une bonne étanchéité.

- ✓ Les tuyaux en acier n'ont pas besoin de posséder des joints dotés d'une certaine élasticité puisque l'élasticité du tuyau lui-même est suffisante pour résister aux efforts auxquelles les canalisations sont soumises en service.
- ✓ Ils résistent bien efforts de flexion.
- ✓ Les tubes sont fournis en longueurs de 6 à 16 m.

V-5.1.2.b. Les inconvénients

- ✓ Les tuyaux en acier ne résistent pas contre la corrosion.
- ✓ Risque d'ovalisation.

V-5.2. Les conduites plastiques

Grace à leur faible rugosité et inertie, des facilités de pose adaptées à chaque type et d'un cout global souvent intéressant les conduites en matière plastique dominent le marché ; on distingue :

V-5.2.1. Les tuyaux en PVC

Les tuyaux en PVC « polychlorure de vinyle » sont d'un usage pratique de par leur légèreté et leur relative facilité à mettre en œuvre.

V-5.2.1.a. Les avantages

- ✓ Bonne résistance contre la corrosion.
- ✓ Les tuyaux en PVC présentent une forte inertie électrique.
- ✓ Une faible rugosité qui se maintient au long des années.
- ✓ Bonne résistance chimique à la solution saline, acide et solution oxydable.
- ✓ Grace à son inertie chimique, le PVC ne subit ni entartage ni corrosion.
- ✓ Facilité de pose.
- ✓ Les tuyaux en PVC ont une longueur de 4 à 6 m.

V-5.2.1.b. Les inconvénients

- ✓ Sensible aux variations de températures et de pression donc ils présentent un risque de rupture.
- ✓ Fuites fréquentes au niveau des joints.

V-5.2.2. Les conduites en PEHD

Le polyéthylène est issu des hydrocarbures utilisé dans plusieurs usages.

V-5.2.2.a. Les Avantages

- ✓ Résistance contre la corrosion interne et externe et contre l'entartage.
- ✓ Facilité de pose grâce à sa grande flexibilité donc il s'adapte bien au terrain.
- ✓ Une longue durée de vie.
- ✓ Fiabilité au niveau des branchements ce qui assure une meilleure étanchéité dans le réseau.
- ✓ Bonne caractéristiques hydrauliques son coefficient de rugosité est faible.

V-5.2.2.b. Les inconvénients

- ✓ Risque d'ovalisation pour les grands diamètres.
- ✓ Peut libérer des substances dans l'eau.
- ✓ Savoir faire particulier pour les raccordements.

V-5.2.3. Les conduites en PRV

Les conduites en PRV « polyester renforcé en fibre de verre », constitué de résine de polyester, de fibre de verre et de sable.

V-5.2.3.a. Les avantages

- ✓ Bonne résistance au gel, aux températures élevées et aux ultraviolets.
- ✓ Les caractéristiques hydrauliques très élevées, son coefficient de rugosité et de dilatation.
- ✓ Facilité de pose.

V-5.2.3.b. Les inconvénients

✓ Risque d'ovalisation pour les grands diamètres.

N.B: Dans notre, nous avons opté pour les tuyaux en polyéthylènes suite à plusieurs avantages qu'ils bénéficient.

V-6. Calcul hydraulique du réseau de distribution

V-6.1. Détermination des débits du réseau

V-6.1.2. Le débit spécifique

Le débit spécifique est défini par la formule suivante :

$$qspi = \frac{Qmaxh - Qcon}{\Sigma Li} \dots (V.1)$$

Avec:

qspi :débit spécifique (l/s/m).

Qmaxh : débit maximum horaire (1/s).

Qconc : débit concentré (l/s).

ΣLi= somme des longueurs des tronçons du réseau en mètre (m).

Pour notre cas le débit concentré est nul vue qu'il n'existe aucune industrie.

V-6.1.3.Le débit en route

Il est défini comme étant le débit réparti uniformément le long d'un tronçon du réseau, il est donné par la formule suivante :

$$Qr = qspi*Li....(V.2)$$

Avec:

Qr : débit en route (l/s).

qspi : débit spécifique en (l/s/m).

Li: longueur du tronçon (m).

V-6.1.4. Le débit au nœud

Le débit au nœud est celui qui est concentré à chaque point de jonction des conduites du réseau, il doit être déterminé à partir de la relation suivante :

Qn,
$$i = 0.5 \Sigma$$
 Qri- + Σ Qconc.....(V.3)

Avec:

On, i: débit au nœud i (l/s)

 Σ Qri: somme des débits en route des tronçons reliés au nœud i (1/s)

 Σ Qconc : somme des débits concentrés au nœud (l/s) qui sont nuls.

Tableau V-1 : Récapitulatif des débits de calcul.

Qmaxh		Qconc	Σ Li	qspi
m3/h	(l/s)	(l/s)	(m)	(l/s/m)
192,36	53,433	0	9451.28	0.00565

V-6.1.4.a. Cas de pointe

Les résultats donnés sont récapitulés dans le tableau V-2 ci- après :

Tableau V-2 : Récapitulatif des débits de calcul (cas de pointe).

NŒUDS	Tronçon	longueure (m)	qspi (l/s/m)	qr (l/s)	qn (l/s)
	c 1	188,5	0,00565357	1,06569795	
n1	c2	207,6	0,00565357	1,17368113	3,39864361
	c3	806,2	0,00565357	4,55790813	
n2	c2	207,6	0,00565357	1,17368113	0,58684057
	c3	806,2	0,00565357	4,55790813	
n3	c4	88,26	0,00565357	0,49898409	3,32559948
	c18	282	0,00565357	1,59430674	
	c4	88,26	0,00565357	0,49898409	
n4	c5	153	0,00565357	0,86499621	1,28720482
	сб	214,1	0,00565357	1,21042934	
n5	c5	153	0,00565357	0,86499621	0,43249811
	сб	214,1	0,00565357	1,21042934	
n6	c7	57,53	0,00565357	0,32524988	1,1847904
	с8	147,5	0,00565357	0,83390158	
n7	c7	57,53	0,00565357	0,32524988	0,16262494
	с8	147,5	0,00565357	0,83390158	
n8	с9	8,94	0,00565357	0,05054292	1,18001313
	c12	261	0,00565357	1,47558177	

Suite du tableau V-2 : Récapitulatif des débits de calcul (cas de pointe).

NŒUDS	Tronçon	longueur (m)	qspi (l/s/m)	qr (l/s)	qn (l/s)
	c9	8,94	0,00565357	0,05054292	
n9	c10	208,8	0,00565357	1,18046542	0,84173177
	c11	80,03	0,00565357	0,45245521	
n10	c10	208,8	0,00565357	1,18046542	0,59023271
n11	c11	80,03	0,00565357	0,45245521	0,2262276
	c12	261	0,00565357	1,47558177	
n12	c13	428,1	0,00565357	2,42029332	2,87257892
	c14	327,1	0,00565357	1,84928275	
n13	c13	428,1	0,00565357	2,42029332	1,44014666
	c14	327,1	0,00565357	1,84928275	
n14	c15	70,45	0,00565357	0,39829401	1,82907123
	c16	249,5	0,00565357	1,41056572	
n15	c15	70,45	0,00565357	0,39829401	0,199147
16	c16	249,5	0,00565357	1,41056572	1 102 11007
n16	c17	151,1	0,00565357	0,85425443	1,10241007
n17	c17	151,1	0,00565357	0,85425443	0,42712721
	c18	282	0,00565357	1,59430674	
n18	c19	246,3	0,00565357	1,39247429	1,5415024
	c20	17,02	0,00565357	0,09622376	
n19	c19	246,3	0,00565357	1,39247429	0,69623715
	c20	17,02	0,00565357	0,09622376	
n20	c21	174,6	0,00565357	0,98711332	2,80253118
	c22	799,8	0,00565357	4,52172529	
n21	c21	174,6	0,00565357	0,98711332	0,49355666
	c22	799,8	0,00565357	4,52172529	5,39378846
n22	c23	245,8	0,00565357	1,38964751	
	c24	862,5	0,00565357	4,87620413	
n23	c23	245,8	0,00565357	1,38964751	0,69482375

Suite du tableau V-2 : Récapitulatif des débits de calcul (cas de pointe).

NŒUDS	Tronçon	longueure (m)	qspi (l/s/m)	qr (l/s)	qn (l/s)
	c24	862,5	0,00565357	4,87620413	
n24	c25	169,8	0,00565357	0,95997619	3,34832683
	c31	152,2	0,00565357	0,86047335	
	c25	169,8	0,00565357	0,95997619	
n25	c26	49,46	0,00565357	0,27962557	0,82287711
	c29	71,84	0,00565357	0,40615247	
	c26	49,46	0,00565357	0,27962557	
n26	c27	73,51	0,00565357	0,41559393	1,11161588
	c28	164,5	0,00565357	0,93001227	
n27	c27	73,51	0,00565357	0,41559393	0,20779697
n28	c28	164,5	0,00565357	0,93001227	0,46500613
20	c29	71,84	0,00565357	0,40615247	0.20124012
n29	c30	66,6	0,00565357	0,37652776	0,39134012
n30	c30	66,6	0,00565357	0,37652776	0,18826388
	c31	152,2	0,00565357	0,86047335	
n31	c32	131,1	0,00565357	0,74118303	2,01125753
	c33	428,2	0,00565357	2,42085867	
n32	c32	131,1	0,00565357	0,74118303	0,37059151
	c33	428,2	0,00565357	2,42085867	
n33	c34	108,6	0,00565357	0,6139777	1,8051849
	c39	101,8	0,00565357	0,57553343	
	c34	108,6	0,00565357	0,6139777	
n34	c35	50,49	0,00565357	0,2844875	0,54254485
	c36	32,84	0,00565357	0,18566324	
n35	c35	50,49	0,00565357	0,28544875	0,14272437
	c36	32,84	0,00565357	0,18566324	
n36	c37	63,01	0,00565357	0,35623145	0,7342574
	c38	163,9	0,00565357	0,92662012	
n37	c37	63,01	0,00565357	0,35623145	0,17811572
n38	c38	163,9	0,00565357	0,92662012	0,46331006

Suite du tableau V-2 : Récapitulatif des débits de calcul (cas de pointe).

NŒUDS	Tronçon	longueur (m)	qspi (l/s/m)	qr (l/s)	qn (l/s)
	c39	101,8	0,00565357	0,57553343	
n39	c40	113,1	0,00565357	0,63941877	0,98965743
	c50	135,2	0,00565357	0,76436266	
	c40	113,1	0,00565357	0,63941877	
40	c41	106	0,00565357	0,59927842	0.02697452
n40	c42	81,53	0,00565357	0,46093556	0,92687453
	c43	27,26	0,00565357	0,15411632	
n41	c41	106	0,00565357	0,59927842	0,29963921
n42	c42	81,53	0,00565357	0,46093556	0,23046778
	c43	27,26	0,00565357	0,15411632	
n 12	c44	148,4	0,00565357	0,83898979	1 17206096
n43	c46	168,2	0,00565357	0,95093047	1,17206986
	c47	70,77	0,00565357	0,40010315	
1.1	c44	148,4	0,00565357	0,83898979	0.55176016
n44	c45	46,79	0,00565357	0,26453054	0,55176016
n45	c45	46,79	0,00565357	0,26453054	0,13226527
n46	c46	168,2	0,00565357	0,95093047	0,47546524
	c47	70,77	0,00565357	0,40010315	
n47	c48	54,3	0,00565357	0,30698885	0,39922685
	c49	16,16	0,00565357	0,09136169	
n48	c48	54,3	0,00565357	0,30698885	0,15349443
n49	c49	16,16	0,00565357	0,09136169	0,17187051
	c50	135,2	0,00565357	0,76436266	
n50	c51	83,55	0,00565357	0,47235577	1,08675749
	c52	165,7	0,00565357	0,93679655	
n51	c51	83,55	0,00565357	0,47235577	0,23617789
n50	c52	165,7	0,0065357	0,93679655	0,79178248
n52	c53	114,4	0,00565357	0,64676841	
n53	c53	114,4	0,00565357	0,64676841	0,3233842

V-6.1.4.b. Cas de pointe +incendie

Ce cas est similaire au cas de pointe mais, mis à part le nœud 39 qui est considéré comme étant le nœud le plus défavorable puisque ce dernier est le plus éloigné et raccorde un groupement d'habitation important, d'où une grande densité d'habitation ce qui crée un cas de fonctionnement défavorable, dont il est nécessaire d'assurer un débit supplémentaire d'incendie de 17 l/s.

 $Q_{39} = 17 + 0.98965743 = 17.98965743$ l/s.

V-6.2. Présentation du logiciel EPANET

EPANET est un logiciel de simulation du comportement hydraulique et de la qualité de l'eau sur de longues durées dans les réseaux sous pression. EPANET calcule le débit dans chaque tuyau, la pression a chaque nœud, le niveau de l'eau dans les réservoirs, et la concentration en substances chimiques dans les différentes parties du réseau, au cours d'une durée de simulation divisée en plusieurs étapes.

Les données à introduire consistent en :

Au niveau des nœuds:

- L'altitude du nœud (m).
- La demande au nœud (1/s).

Au niveau des tronçons :

- La longueur (m).
- Le diamètre (m).
- La rugosité (mm).

La simulation du réseau donne en résultat :

- Le débit de chaque tronçon.
- La pression à chaque nœud.

On fait introduire les débits et les altitudes de chaque nœud, ainsi que la longueur et les diamètres de chaque conduite, après on lance la simulation du réseau et afin d'avoir des vitesses dans l'intervalle (0.5m/s – 1.5m/s), parfois jusqu'à 2m/s et aussi des pressions aux différents nœuds qui ne dépasse pas 60 m.c.e, on change les diamètres pour chaque conduite.

Tableau V.3 : Coefficients de Rugosité pour les tuyaux neufs.

Matériau	Hazen-Williams (Universel)	Darcy-weisbach (mm)	Manning (Universel)
Fonte revêtue	130-140	0,25	0,012-0,015
Béton ou Revêt de Béton	120-140	0,3-3,0	0,012-0,017
Acier Galvanisé	120	0,15	0,015-0,017
PEHD	140-150	0,0015	0,011-0,015
Acier	100-120	0,03	0,015-0,017

Pour notre cas le coefficient de rugosité est 0.0015.

V-6.3. Dimensionnement du réseau

Les résultats sont représentés dans le tableau suivant :

> Cas de pointe

Tableau V.5: caractéristiques hydrauliques et géométriques des tronçons pour le cas de pointe.

Tronçon	Débit	Diamètre normalisé	Rugosité	Vitesse	Gradient
	(l/s)	mm	mm	m/s	m/m
c1	53,43	315	0,0015	1,02	0,00308
c2	0,59	63	0,0015	0,5	0,00851
c3	49,49	315	0,0015	0,95	0,00268
c4	13,78	125	0,0015	1,68	0,02277
c5	0,43	40	0,0015	0,57	0,01449
сб	12,06	110	0,0015	1,9	0,033
c7	0,16	25	0,0015	0,57	0,02697
c8	10,71	110	0,0015	1,68	0,02664
c9	1,66	50	0,0015	1,4	0,05328
c10	0,59	32	0,0015	1,22	0,07245
c11	0,23	25	0,0015	0,8	0,04786
c12	7,87	90	0,0015	1,85	0,04023
c13	1,44	63	0,0015	0,77	0,01385
c14	3,56	75	0,0015	1,34	0,02984
c15	0,2	25	0,0015	0,7	0,03833
c16	1,53	50	0,0015	1,29	0,04615
c17	0,43	40	0,0015	0,57	0,01418
c18	32,39	250	0,0015	0,99	0,00378
c19	0,7	40	0,0015	0,92	0,03344
c20	30,15	250	0,0015	0,92	0,00332
c21	0,49	40	0,0015	0,65	0,01826
c22	26,86	250	0,0015	0,82	0,0027
c23	0,69	50	0,0015	0,59	0,01144
c24	20,77	200	0,0015	0,99	0,00497
c25	3,19	63	0,0015	1,7	0,05705
c26	1,78	50	0,0015	1,51	0,06073

Suite du tableau V.5 : les caractéristiques hydrauliques et géométriques des tronçons pour le cas de pointe.

Tronçon	Débit	Diamètre normalisé	Rugosité	Vitesse	Gradient
	(l/s)	mm	mm	m/s	m/m
c27	0,21	25	0,0015	0,73	0,04127
c28	0,47	40	0,0015	0,62	0,01645
c29	0,58	32	0,0015	1,2	0,07017
c30	0,19	25	0,0015	0,66	0,03476
c31	14,24	200	0,0015	0,68	0,00252
c32	0,37	32	0,0015	0,77	0,03196
c33	11,85	200	0,0015	0,56	0,00181
c34	2,06	50	0,0015	1,74	0,07857
c35	0,14	25	0,0015	0,5	0,02152
c36	1,38	50	0,0015	1,16	0,03822
c37	0,18	25	0,0015	0,63	0,03158
c38	0,46	40	0,0015	0,61	0,01635
c39	7,99	160	0,0015	0,59	0,00261
c40	4,56	90	0,0015	1,07	0,01509
c41	0,3	32	0,0015	0,62	0,02205
c42	0,23	25	0,0015	0,81	0,04943
c43	3,1	75	0,0015	1,17	0,02335
c44	0,68	32	0,0015	1,42	0,09405
c45	0,13	25	0,0015	0,47	0,01888
c46	0,48	32	0,0015	0,98	0,04949
c47	0,77	32	0,0015	1,6	0,11624
c48	0,15	25	0,0015	0,54	0,02441
c49	0,17	25	0,0015	0,61	0,02968
c50	2,44	63	0,0015	1,3	0,03533
c51	0,24	25	0,0015	0,83	0,05159
c52	1,12	40	0,0015	1,48	0,07702
c53	0,32	32	0,0015	0,67	0,02518

> Cas de pointe + incendie

Tableau V.6 : les caractéristiques hydrauliques et géométriques des tronçons pour le cas de pointe + incendie.

Tronçon	Débit	Diamètre normalisé	Rugosité	Vitesse	Gradient
	l/s	mm	mm	m/s	m/m
c1	70,43	315	0,0015	1,35	0,00508
c2	0,59	63	0,0015	0,5	0,00851
c3	66,49	315	0,0015	1,27	0,00457
c4	66,49	315	0,0015	1,27	0,02277
c5	13,78	125	0,0015	1,68	0,01449
с6	0,43	40	0,0015	0,57	0,033
c7	12,06	110	0,0015	1,9	0,02697
c8	0,16	25	0,0015	0,57	0,02664
c9	10,71	110	0,0015	1,68	0,05328
c10	1,66	50	0,0015	1,4	0,07245
c11	0,23	25	0,0015	0,8	0,04786
c12	7,87	90	0,0015	1,85	0,04023
c13	1,44	63	0,0015	0,77	0,01385
c14	3,56	75	0,0015	1,34	0,02984
c15	0,2	25	0,0015	0,7	0,03833
c16	1,53	50	0,0015	1,29	0,04615
c17	0,43	40	0,0015	0,57	0,01418
c18	49,39	250	0,0015	1,5	0,00812
c19	0,7	40	0,0015	0,92	0,03344
c20	47,15	250	0,0015	1,43	0,00747
c21	0,49	40	0,0015	0,65	0,01826
c22	43,86	250	0,0015	1,33	0,00655
c23	0,69	50	0,0015	0,59	0,01144
c24	37,77	200	0,0015	1,8	0,01467
c25	3,19	63	0,0015	1,7	0,05705
c26	1,78	50	0,0015	1,51	0,06073

Suite du tableau V.6 : les caractéristiques hydrauliques et géométriques des tronçons pour le cas de pointe + incendie.

Tronçon	Débit	Diamètre normalisé	Rugosité	Vitesse	Gradient
	l/s	mm	mm	m/s	m/m
c27	0,21	25	0,0015	0,73	0,04127
c28	0,47	40	0,0015	0,62	0,01645
c29	0,58	32	0,0015	1,2	0,07017
c30	0,19	25	0,0015	0,66	0,03476
c31	31,24	200	0,0015	1,49	0,01039
c32	0,37	32	0,0015	0,77	0,03196
c33	28,85	200	0,0015	1,37	0,009
c34	2,06	50	0,0015	1,74	0,07857
c35	0,14	25	0,0015	0,5	0,02152
c36	1,38	50	0,0015	1,16	0,03822
c37	0,18	25	0,0015	0,63	0,03158
c38	0,46	40	0,0015	0,61	0,01635
c39	24,99	160	0,0015	1,86	0,02039
c40	4,56	90	0,0015	1,07	0,01509

Suite du tableau V.6 : les caractéristiques hydrauliques et géométriques des tronçons pour le cas de pointe + incendie.

Tronçon	Débit	Diamètre normalisé	Rugosité	Vitesse	Gradient
	l/s	mm	mm	m/s	m/m
c41	0,3	32	0,0015	0,62	0,02205
c42	0,23	25	0,0015	0,81	0,04943
c43	3,1	75	0,0015	1,17	0,02335
c44	0,68	32	0,0015	1,42	0,09405
c45	0,13	25	0,0015	0,47	0,01888
c46	0,48	32	0,0015	0,98	0,04949
c47	0,77	32	0,0015	1,6	0,11624
c48	0,15	25	0,0015	0,54	0,02441
c49	0,17	25	0,0015	0,61	0,02968
c50	2,44	63	0,0015	1,3	0,03533
c51	0,24	25	0,0015	0,83	0,05159
c52	1,12	40	0,0015	1,48	0,07702
c53	0,32	32	0,0015	0,67	0,02518

V-6.2.1.d. Détermination de pression de service

> Cas de pointe

Tableau V.7: Etat des nœuds du réseau (cas de pointe).

Nœud	Débit	Côte	Côte piézométrique	Pression
	l/s	m	m	m
n1	3,39864361	257,939867	316,42	58,48
n2	0,58684057	258,283855	314,65	56,37
n3	3,32559948	194,658438	214,66	20
n4	1,28720482	181,874953	212,65	30,77
n5	0,43249811	181,274892	210,43	29,16
n6	1,1847904	162,734602	205,58	42,85
n7	0,16262494	176,394259	204,03	27,64
n8	1,18001313	149,748272	201,66	51,91
n9	0,84173177	148,799653	201,18	52,38
n10	0,59023271	151,643301	186,05	34,41
n11	0,2262276	141,164448	197,35	56,18
n12	2,87257892	117,364488	174,3	56,93
n13	1,44014666	109,79289	168,37	58,58
n14	1,82907123	120,103703	164,54	44,44
n15	0,199147	128,961801	161,84	32,88
n16	1,10241007	140,206406	153,03	12,82
n17	0,42712721	120,751675	150,88	30,13
n18	1,5415024	174,064073	213,59	39,53
n19	0,69623715	157,911307	205,36	47,45
n20	2,80253118	173,1038	213,54	40,43
n21	0,49355666	159,672498	210,35	50,67
n22	5,39378846	151,671645	211,38	59,71
n23	0,69482375	167,456057	208,57	41,11
n24	3,34832683	128,319748	158,32	30
n25	0,82287711	122,82958	148,63	25,8
n26	1,11161588	118,128411	145,63	27,5

Suite du tableau V.7 : Etat des nœuds du réseau (cas de pointe).

Nœuds	Débit	Côte	Côte piézométrique	Pression
	l/s	m	m	m
n27	0,20779697	119,778882	142,59	22,82
n28	0,46500613	115,579947	142,92	27,34
n29	0,39134012	125,111416	143,59	18,48
n30	0,18826388	121,775996	141,28	19,5
n31	2,01125753	119,848668	157,94	38,09
n32	0,37059151	119,709845	153,75	34,04
n33	1,8051849	98,968711	157,16	58,19
n34	0,54254485	115,385592	148,63	33,24
n35	0,14272437	114,326457	147,54	33,22
n36	0,7342574	118,908094	147,37	28,47
n37	0,17811572	121,226907	145,38	24,16
n38	0,46331006	127,029406	144,69	17,66
n39	0,98965743	97,7341854	156,89	59,16
n40	0,92687453	110,595064	155,19	44,59
n41	0,29963921	115,664776	152,85	37,19
n42	0,23046778	114,909927	151,16	36,25
n43	1,17206986	114,899434	154,55	39,65
n44	0,55176016	118,631195	140,59	21,96
n45	0,13226527	111,448066	139,71	28,26
n46	0,47546524	123,84848	146,23	22,38
n47	0,44541651	123,558715	146,33	22,77
n48	0,15349443	120,850303	145	24,15
n49	0,17187051	123,56	145,85	22,29
n50	1,08675749	95,4163397	152,12	56,7
n51	0,23617789	106,395016	147,81	41,41
n52	0,79178248	95,3084884	139,36	44,05
n53	0,3233842	114,397061	136,48	22,08
Réservoir1	-	317	319	2

Cas de pointe + incendie
 Tableau V.8 : Etat des nœuds du réseau (cas de pointe+incendie).

Nœud	Débit	Côte	Côte piézométrique	Pression
	l/s	m	m	m
n1	3,39864361	257,939867	316,04	58,1
n2	0,58684057	258,283855	314,28	55,99
n3	3,32559948	194,658438	214,66	20
n4	1,28720482	181,874953	212,65	30,77
n5	0,43249811	181,274892	210,43	29,16
n6	1,1847904	162,734602	205,58	42,85
n7	0,16262494	176,394259	204,03	27,64
n8	1,18001313	149,748272	201,66	51,91
n9	0,84173177	148,799653	201,18	52,38
n10	0,59023271	151,643301	186,05	34,41
n11	0,2262276	141,164448	197,35	56,18
n12	2,87257892	117,364488	174,3	56,93
n13	1,44014666	109,79289	168,37	58,58
n14	1,82907123	120,103703	164,54	44,44
n15	0,199147	128,961801	161,84	32,88
n16	1,10241007	140,206406	153,03	12,82
n17	0,42712721	120,751675	150,88	30,13
n18	1,5415024	174,064073	212,37	38,3
n19	0,69623715	157,911307	204,13	46,22
n20	2,80253118	173,1038	212,24	39,14
n21	0,49355666	159,672498	209,05	49,38
n22	5,39378846	151,671645	207,01	55,33
n23	0,69482375	167,456057	204,19	36,74
n24	3,34832683	128,319748	158,32	30
n25	0,82287711	122,82958	148,63	25,8
n26	1,11161588	118,128411	145,63	27,5

Suite du tableau V.8 : Etat des nœuds du réseau (cas de pointe+incendie).

Nœud	Débit Côte		Côte piézométrique	Pression
	l/s	m	m	m
n27	0,20779697	119,778882	142,59	22,82
n28	0,46500613	115,579947	142,92	27,34
n29	0,39134012	125,111416	143,59	18,48
n30	0,18826388	121,775996	141,28	19,5
n31	2,01125753	119,848668	156,74	36,89
n32	0,37059151	119,709845	152,55	32,84
n33	1,8051849	98,968711	152,88	53,92
n34	0,54254485	115,385592	144,35	28,97
n35	0,14272437	114,326457	143,27	28,94
n36	0,7342574	118,908094	143,1	24,19
n37	0,17811572	121,226907	141,11	19,88
n38	0,46331006	127,029406	140,42	13,39
n39	17,9896574	97,7341854	150,81	53,08
n40	0,92687453	110,595064	149,1	38,51
n41	0,29963921	115,664776	146,77	31,1
n42	0,23046778	114,909927	145,07	30,16
n43	1,17206986	114,899434	148,47	33,57
n44	0,55176016	118,631195	134,51	15,88
n45	0,13226527	111,448066	133,63	22,18
n46	0,47546524	123,84848	140,14	16,29
n47	0,44541651	123,558715	140,24	16,68
n48	0,15349443	120,850303	138,92	18,06
n49	0,17187051	123,56	139,76	16,2
n50	1,08675749	95,4163397	146,03	50,62
n51	0,23617789	106,395016	141,72	35,33
n52	0,79178248	95,3084884	133,27	37,96
n53	0,3233842	114,397061	130,39	15,99
Réservoir1	-	317	319	2

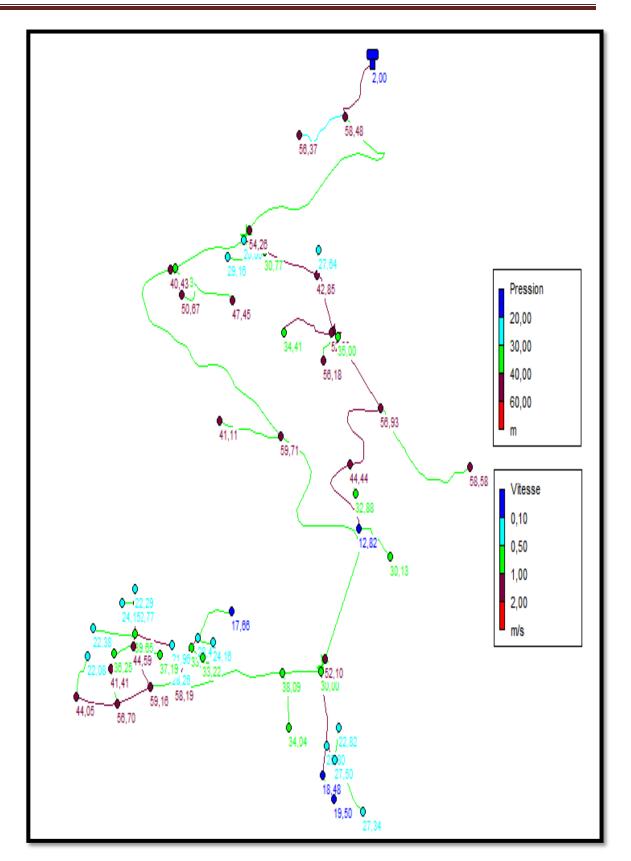


Fig V.1: la vitesse et pression pour le cas de pointe.

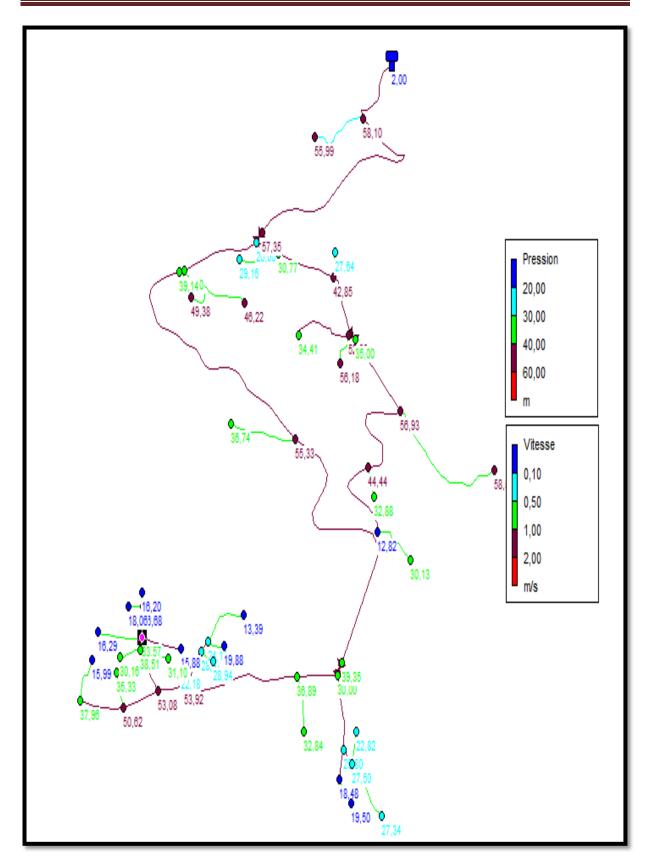


Fig V.2: la vitesse et pression cas de pointe + incendie.

V-6.3. Interprétation des résultats

Les vitesses : pour les deux cas (cas de pointe et cas de pointe+ incendie) les vitesses sont respectées, nous avons recensé une vitesse de 0.47 m/s pour un seul tronçon uniquement, ce qui peut induire par la suite à la formation de la sédimentation et le colmatage à l'intérieur de la canalisation donc, l'entretient régulier de cette dernière est nécessaire.

Les pressions : pour le cas de pointe les pressions dans notre réseau sont acceptables qui ne dépassent pas 60 m.c.e , mais on a recensé quelques pressions élevées dans certains nœuds où on a utilisé des réducteurs de pressions afin de les réduire et avoir des pression acceptables. Pour le cas de pointe + incendie on remarque que les pressions sont faibles par rapport au cas de pointe.

Conclusion

Pour conclure, nous avons dimensionné le réseau d'alimentation en eau potable de notre zone d'étude, en utilisant EPANET où on peut dire que notre réseau fonctionne normalement, les pressions et les vitesses sont conformes aux normes. Cependant, le tronçon qui a une faible vitesse, on préconise une vidange périodique afin d'éviter les dépôts minéraux dans les conduites.

CHAPITRE VI: ACCESSOIRES DU RESEAU DE DISTRIBUTION

Introduction

Un réseau de distribution doit être équipé et disposé en organes d'accessoires complétant l'ossature et la conception d'un réseau de distribution afin d'assurer le bon rendement de fonctionnement hydraulique de ce dernier et pour mieux le gérer. Ces organes ont pour rôle : la protection des conduites, l'assurance d'un bon écoulement, la régularisation ainsi la mesure de pression et débit.

VI- 1. Les accessoires du réseau

VI- 1.1. Les robinets-vannes

Les robinets-vannes appelées aussi des appareils de sectionnement, ont pour fonction de régulariser le débit et aussi d'isoler les tronçons du réseau de distribution lors d'une réparation sur l'un d'entre eux, on distingue :

VI- 1.1.1. Le robinet - vanne à opercule

Le robinet - vanne à opercule est un dispositif de sectionnement qui permet d'arrêter le débit et d'isoler la tuyauterie en aval. Cet appareil doit être complètement ouvert ou complètement fermé. Son actionnement peut se faire soit par volant, une tige d'extension ou bien par l'actionnement électrique. Ils sont placés dans chaque nœud en respectant la règle (n-1) où n est le nombre de branche. Les diamètres varient entre 40 mm et 300mm.

Fig VI.1: Robinet - vanne à opercule (D'après le document BAYARD société de groupe).

VI- 1.1.2. La vanne à papillon

Ce type de vanne peut servir pour le sectionnement que pour le réglage de débit son encombrement est faible comparé à celui des robinets - vanne à opercule et occasionne de faible perte de charge. Les vannes à papillon sont utilisées surtout au niveau des réservoirs

CHAPITRE VI: ACCESSOIRES DU RESEAU DE DISTRIBUTION

d'eau dans notre cas on installe ces dernières à l'amont de la conduite qui se ferment sous la pression de l'eau. Les vannes à papillon sont plutôt utilisées pour les gros diamètres (350 mm et plus).

Fig VI.2: vanne à papillon (D'après le document BAYARD société de groupe).

VI- 1.1.3. Vane de décharge

C'est un robinet placé au niveau des points bas, en vue de vidanger les conduites, qui se fait soit dans l'égout voisin ou dans un fossé routier (hormis des villes). Il doit être disposé à l'intérieur d'un regard facilement accessible.

N.B: pour notre cas on prévoit les vannes de décharges aux points bas des canalisations qui se trouvent au niveau des nœuds 1, p53, p67, p97 pour vidanger, réparer et nettoyer les conduites.

VI- 1.1.4. Vanne de réduction de pression

Le réducteur de pression est un appareil qui sert à stabiliser et réduire la pression du réseau à une valeur de consigne quelles que soient les variations de pression et débit dans les conduites. La pression du ressort agit sur la partie supérieure de la membrane et la pression avale agit sous sa partie inferieure ; ce qui fait que la pression avale est équilibrée à tout moment par l'action du ressort en provoquant par la suite les déplacements du clapet quand des variations du débit ou pression dans le réseau se présentent.

N.B: pour notre cas on prévoit les réducteurs de pression au niveau des nœuds qui ont des pressions élevées n3, 8,24 afin de réduire ces dernières et obtenir des valeurs acceptables.

Fig VI.3: Réducteur de pression (D'après le document BAYARD société de groupe).

VI- 1.2.Les clapets

Le clapet a pour fonction de diriger l'écoulement dans un seul sens, donc il empêche la circulation en retour. On les utilise généralement dans les stations de pompage où ils sont souvent disposés à la sortie même des pompes, entre celle-ci et les robinets de sectionnement, comme on les rencontre ainsi sur les canalisations de distribution.

N.B: pour notre cas, on prévoit les clapets où les compteurs sont installés à un seul sens pour diriger l'écoulement dans le sens indiqué par le compteur.

VI- 1.3. Les ventouses

Les ventouses sont installées au niveau des points hauts des conduites dans un réseau de distribution, afin d'évacuer l'air emprisonné à cause du dégazage de l'oxygène dissout lors de la mise en eau dans la conduite. Les poches d'aires produites à l'intérieure des tuyauteries induisent à la diminution de ses sections, des pressions et provoquent aussi l'arrêt complet du débit. Et réciproquement, elles permettent l'introduction de l'air lors de sa vidange afin d'éviter sa mise en dépression.

Les ventouses sont installées à l'intérieur des regards visitables et doivent être vérifiées périodiquement pour assurer leur bon fonctionnement.

N.B: pour notre projet on a utilisé deux ventouses au niveau des points hauts p57, p85.

VI- 1.4. Les bouches et poteaux d'incendie

Les bouches ou les poteaux d'incendie doivent être alimentés par des conduites de même diamètre qui doivent assurer un débit minimal de 17(1/s) avec une pression de 1 bar. Leur diamètre est normalisé à 80,100 ou 150mm.

Ces derniers seront disposés au coté de rue, de façon à minimiser la longueur de leurs branchement à la conduite de distribution espacés de 100 à 200 m et répartis suivant l'importance des risques imprévus.

VI- 2. Les pièces spéciales de raccordement

VI- 2.1. Les tés

Les tés ont pour fonction soit de soutirer un débit d'une conduite ou d'ajouter un débit complémentaire. Il sont rencontrés soit à trois emboîtements soit à deux emboîtements et bride. On les trouve dans les réseaux maillés, ramifiés et aussi les canalisations d'adduction dans le cas de piquage.

VI- 2.2. Les coudes

Les coudes sont utilisés le plus souvent pour les réseaux maillés et ramifiés, dans le cas où il y a un changement de direction des conduites. Usuellement, ils sont maintenus par des massifs de butées, convenablement dimensionnés, on y distingue des coudes à deux emboîtements ou bien à emboîtement et à bout lisse.

VI- 2.3. Les cônes

Les cônes servent à raccorder des conduites ayant des diamètres différents et aussi à relier les accessoires aux conduites. On les trouve aussi à l'entrée et sortie des pompes. Ils peuvent être : à deux emboîtements; à deux brides ou à emboîtement et à bride.

VI- 2.4. Les crois de jonction

Les crois de jonction sont utilisés pour croiser des conduites de sens perpendiculaire.les deux manchons de croix peuvent avoir des diamètres différents. On distingue des crois de jonction à brides ou à manchons et à brides. Ils sont rencontrés au niveau du réseau maillé et ramifié.

VI- 2.5. Les manchons

On rencontre les manchons surtout au niveau des montages des appareils accessoires (robinet-vannes, au niveau des joints) .On distingue des manchons à bouts lisses des deus extrémités, à deux emboitements et bout lisse, à brides et bout lisse, à emboitement et bride.

VI- 3.Les joints de raccordements

Les joints de raccordements permettent d'assurer l'étanchéité des jointures des tronçons des conduites et de faire face aux sollicitations mécaniques et chimiques. Ils sont caractérisés par leur fragilité du fait de leur souplesse ; toute action de la canalisation s'émette sur le joint, ce qui provoque en lui des usures mécaniques. Le dessèchement et l'action des produits chlorés de l'eau contribuent au vieillissement des joints.

Il existe trois principaux types de joints : à emboîtement, à bride et à bille ou rotule. Les joints mécaniques et à emboîtement sont utilisés généralement pour relier les conduites enterrées dans le sol entre elles, tandis que les joints à billes permettent jusqu'à 15 % de changement de direction des canalisations, alors que les joints à bride qui sont plus rigides sont utilisés pour raccorder des tronçons à l'intérieur des constructions comme les stations de pompage, station de traitement et pour les poteaux d'incendie.

VI- 4.Les organes de mesure

VI- 4.1.Mesure de débit

VI- 4.1.1.Débitmètre à organe déprimogènes

La mesure du débit se fait à partir d'une différence de pression, où on doit créer un étranglement au niveau de la conduite, ce qui va provoquer une chute de pression. Le fluide s'écoule par un passage plus étroit, la pression en amont du rétrécissement sera plus élevée qu'en aval. Cette baisse de pression va engendrer une augmentation de vitesse d'écoulement. Ainsi, nous pouvons en mesurant une différence de pression (ou pression différentielle) de part et d'autre de l'étranglement, on peut déterminer le débit. La mesure s'effectue avec un capteur de pression différentielle. Les appareils les plus utilisés au niveau des installations hydrauliques sont : le diaphragme, la tuyère et le venturi.

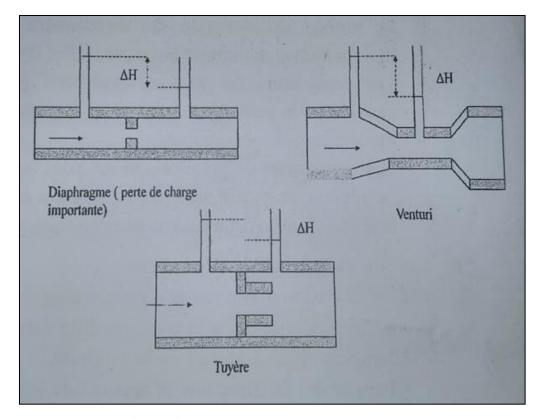


Fig VI.4 : Débitmètre à organe déprimogènes.

VI- 4.1.1.Débitmètre à ultrason

C'est un émetteur ultrasonique qui émet des ondes sonores il permet de connaitre la vitesse du fluide en mesurant le temps mis par le signal pour parcourir la distance L.

On installe des compteurs à un seul sens à la rentrée et à la sortie du réservoir et au niveau des ramifications car il est important de connaître le débit transité dans chaque conduite.

VI- 4.2.Mesure de pression

VI- 4.2.1.Manomètres à soufflet

C'est un manomètre constitué d'un élément élastique en forme de soufflet qui se déforme dans la direction axiale sous l'effet de la pression, Son avantage est l'éradication du danger de gel et mais il est sensible et fragile aux vibrations et au sur chauffage.

VI- 4.2.2.Manomètres à aiguilles

Les manomètres à aiguille se caractérisent par la transmission de mouvements par un secteur denté, soit par un levier et soit par une membrane à l'aiguille. Ils présentent l'avantage de facilité d'étalonnage et l'inconvénient d'usure rapide de la denture notamment lorsque le manomètre subit des vibrations.

CHAPITRE VI: ACCESSOIRES DU RESEAU DE DISTRIBUTION

On utilise dans notre projet le manomètre à aiguilles pour mesurer la pression à la sortie du réservoir et l'entré du réseau, et au niveau de chaque nœud du réseau.

Conclusion

La maitrise de l'installation des accessoires est primordiale dans une étude de réseau d'alimentation en eau potable. Pour le cas de notre travail, il est nécessaire d'opter plusieurs accessoires et connaître leurs emplacements sur toute la longueur du réseau afin de garantir une bonne fiabilité du fonctionnement ainsi que l'entretien des conduites, de façon à avoir la durabilité de ces appareils.

Introduction

La maitrise de pose de canalisation est une étape primordiale dans un réseau de distribution et demeure un facteur essentiel pour la stabilité et la longévité de ces dernières, donc pour assurer un bon fonctionnement et une durabilité du réseau. Dans le cadre d'avoir une meilleure coordination des travaux sur terrain, on va présenter la pose de canalisation à réaliser dans notre projet et la chronologie des travaux à entreprendre pour la mise en place de ces conduites.

VII.1. Principe de pose de canalisation

En général, les canalisations sont posées en tranchée sauf certain cas où elles sont posées sur sol, mais qu'elles soient protégées et rigoureusement entretenues, pratiquement le principe de pose de canalisation est le même, mais le mode de pose diffère d'un sol à un autre pour réduire l'effet des distinctes contraintes agissantes sur la canalisation.

La tranchée doit être suffisamment large dans le cas où la canalisation est posée en tranchée, afin d'accéder l'entrée des ouvriers, comme elle faudra présenter un élargissement au niveau des joints, et son fond doit être réglé conformément au profil en long définitif de la conduite.

Selon les régions qui différent et sous le fait du gel, l'épaisseur du remblai au dessus de la génératrice supérieure de la conduite varie, pratiquement elle est de 1 m dans les régions tempérées et de 1.25m à 1.5 m dans les régions à climat rigoureux.

Les conduites doivent être toujours posées de tel façon à générer des points bas pour la vidange, et des points hauts pour l'évacuation de l'aire entraîner soit pendant le remplissage de la conduite soit lors de fonctionnement, par conséquent on opte un tracé en dents de scie avec des pentes de quelques millimètres par mètre et des changements de pente tout les 200 à 400 m.les canalisations doivent être éloignées lors de la pose de tout élément dure d'environ 10 m, de 30 cm des câbles électriques et de 60 cm des canalisations de gaz.

En général, le choix du type de pose est conditionné par la topographie du terrain, la disposition des lieux et la position des différents obstacles qui peuvent être rencontrés.

VII.2. Type de pose de canalisations

VII.2.1. Pose de canalisation dans un terrain ordinaire

Dans le terrain ordinaire la pose de canalisation s'effectue en tranchée dont la largeur minimale est de 0.60 m pour permettre aux ouvriers d'y entrer. La profondeur de la tranchée doit permettre de recevoir le lit de pose de 0.15 à 0.20 m d'épaisseur convenablement nivelé

destiné à constituer un matelas au dessous du tuyau, la conduite et l'épaisseur du remblai (80 cm minimum) afin d'éviter les dégâts pouvant être causés par les charges. Avant la mise en fouille, on fait un triage des conduites de façon à éliminer celles qui ont subi de chocs, fissuration... etc. ensuite, on pratique la descente en lit soit manuellement soit mécaniquement. Le remblaiement doit être fait par couche de 20 à 30 cm, par couches successives arrosées et bien tassées avec de la terre exempts de pierres, et sera par la suite achevé avec du tout venant.

N.B: Dans le cas de notre projet les conduites seront posées dans un terrain ordinaire sauf le tronçon C8 et C14, dont on effectue la pose de la canalisation en traversée d'une rivière.

VII.2.2. Pose de canalisation dans un terrain peu consistant

La conduite doit être posée sur une semelle en béton armé ou non et qui être continue ou pas selon la nature du sol avec interposition d'un lit de sable, afin d'éviter tout mouvement postérieurement.

VII.2.3. Pose de canalisation dans un terrain marécageux

Pour le cas de pose de canalisation dans un terrain marécageux, on prévoit un moyen de drainage dans la tranchée comme une conduite par exemple, couvert d'un lit de gravier de gros calibre suivis par un lit en béton armé sur lequel repose la conduite.

VII.2.4. Pose de canalisation en galerie

Cette pose est fréquente dans les villes ayant déjà de galeries spéciales souterraines (égouts, caniveaux ou galeries spéciales visitables). Pour la pose de canalisation en galerie on prévoit un canal, dans le but d'éviter et aussi d'évacuer les eaux stagnantes dans la galerie et pour les déverser dans l'égout voisin. Les canalisations de petits diamètres peuvent être mises à l'intérieur d'un fourreau avec un diamètre supérieur, qui repose sur des tasseaux en béton. Les robinets vannes sont placés des deux cotés de la route. Son avantage est la facilité de leur surveillance et l'ouverture de la chaussée en cas des réparations, ainsi que éviter les tassements de terrain en cas de fuite.

VII.2.5. Pose de canalisation en pente

La pose de canalisation en pente est utilisée lorsque les frottements entre canalisations et les terres sont insuffisants pour maintenir la conduite au delà d'une certaine pente, il

convient alors d'équilibrer la composante axiale de gravité par l'utilisation de butées d'encrage ou de joints verrouillés, les deux techniques pouvant être associées.

VII.2.6. Pose des conduites en traversée d'une révère

La pose de canalisation à la traversée d'une rivière demande certains travaux confortatif en fonction de l'état de la traversée. L'existence d'un pont servira également de support de la canalisation, où celle-ci sera accrochée au tablier .La canalisation pourras suivre le lit de la rivière dont elle sera posée sur des ouvrages spéciaux par exemple des tasseaux et couverte de tout-venant contre les chocs dû à la navigation par exemple .Dans ce cas de traversés par le fond en opte pour des canalisations en acier et en polystyrène du fait de leurs élasticité.

VII.3. Stabilisation d'une conduite

Les conduites sont composées par une chaine des tuyaux réunis par des joints. En dehors des cas où les joints sont à brides et soudés, il y a tendance sur la poussée exercée par l'eau à un déboitement des joints, dans les parties coudées, les branchements et les pièces coniques d'où la nécessité de construire des massifs en béton qui s'opposent à ce déboitement par leur poids. Dans notre projet on prévoit des massifs en béton au niveau des coudes, des tés et des cônes.

VII.4. Exécution des travaux de pose des canalisations

VII.4. 1.Travaux préliminaires

Avant de commencer les travaux de pose, on doit procéder aux opérations de piquetage et de jalonnement qui permettent : de matérialiser sur le terrain le tracé et le profil en long de canalisation, de niveler les différentes altitudes pour déterminer la hauteur et la profondeur de chaque point de la tranchée et de reporter la position de tous les ouvrages enterrés (réseaux d'assainissement, câbles électriques, canalisation de gaz). Pour un repérage précis, il faut exécuter des sondages de reconnaissance perpendiculairement aux lieux des canalisations indiquées sur les plans du projet.

VII.4. 2.Décapage

Les travaux de décapage consistent à débarrasser la couche végétale (abatage des arbres) à l'aide d'un bulldozer. L'épaisseur de la couche à éliminer est de 10cm.

VII.4. 3. Exécution des tranchées

C'est une opération de terrassement (déblais) qui consiste à faire des excavations. L'excavation des tranchées s'effectue par tronçon successive, en commençant par les points hauts pour assurer l'écoulement naturel des eaux d'infiltrations. Ces excavations seront faites par une pelle hydraulique.

VII.4. 4.Pose du lit de sable

Cette opération consiste à poser un lit de sable au fond de la tranchée .Il a pour fonction première d'assurer une répartition uniforme des charges sur la zone d'appui, il y a donc lieu de poser les tuyaux de manière à ce qu'il n'y ait ni appui linéaire, ni appui ponctuel, ce lit aura une épaisseur de 15 à 20 cm, dans notre cas en prend 20cm.

VII.4. 5.Pose des conduites

On procède à la pose des canalisations après avoir mis en place le lit de sable. Avant la descente des conduites aux fouilles, on procède à un triage des conduites de façon à écarter celles qui on subi des chocs, la descente de ces tuyaux doit être manipulée avec soin. Chaque élément posé dans la tranchée doit être présenté dans l'axe de l'élément précédemment posé, et au cours de la pose, il faut vérifier régulièrement l'alignement des tuyaux afin d'avoir une pente régulière. Tous les débris liés à la pose doivent être retirés de l'intérieur du tuyau avant ou juste après la réalisation d'un emboîtement. A chaque arrêt de travail un bouchon temporaire doit être solidement appliqué sur l'extrémité ouverte de la canalisation pour éviter l'introduction des corps étrangers.

VII.4. 6.Epreuve de joints et de la canalisation

L'essai de pression des conduites et des joints se fait avant le remblaiement pour plus de sécurité, cet essai d'étanchéité est effectué à l'aide d'une pompe d'essai appelée aussi pompe d'épreuve, qui consiste au remplissage de la conduite en eau sous une pression de 1,5 fois la pression de service à laquelle sera soumise la conduite en cours de fonctionnement. Cette épreuve doit durer 30 minutes environ où la variation ne doit pas excéder 0,2 bar et on doit procéder à la désinfection du réseau avant la distribution aux consommateurs.

VII.4. 7. Remblayage des tranchées

C'est une opération de terrassement qui consiste à enterrer la conduite, il doit être de qualité pour assurer la protection des conduites contre tout dégât lors de l'exécution des

remblais supérieurs et ainsi la transmission régulière des charges sur la canalisation. Le remblaiement doit être fait par couche de 20 à 30 cm, par couches successives arrosées et bien tassées avec de la terre exempts de pierres, par le chargeur.

VII.4. 8. Construction des regards

Les regards constituent l'abri de certains accessoires de distribution à savoir les ventouses et les vannes de vidange, ils sont conçus en béton armé.

VII.4. 9. Nivellement et compactage et la remise en état de la chaussée

Après avoir accompli le remblai, on exécute le nivellement qui consiste à étendre les terres qui sont en élévation, par la suite on procède au compactage avec un compacteur afin d'augmenter la densité des terres et éviter tout risque d'un tassement ultérieur.

VII.5. Calcul les volumes des travaux de réseaux de distribution

VII.5.1.Déblais d'excavation

C'est le volume de déblai extrait lors de creusement de tranchée, donc son volume sera :

$$V_{D\acute{e}blais} = Htr x b x L....(VII.1)$$

Avec:

V _{Déblais}: Le volume de déblais (m³).

Htr: la hauteur de la tranchée (m).

b : la largeur de la tranchée (m).

L : la longueur de la tranchée (m).

VII.5.1.1.La profondeur de la tranchée

La profondeur de la tranchée dépend du diamètre de la conduite. Elle est donnée par la relation suivante :

Htr=D+h+hs (VII.2)

Avec:

Htr: profondeur de la tranchée (m).

D : diamètre de la conduite (m).

h : hauteur de la génératrice supérieure de la conduite à la surface du sol, on prend: $h=0.9\ m.$

hs : épaisseur du lit de pose de sable, on prend : hs = 0.20 m.

D'où:

Avec:

Htr: profondeur de la tranchée (m).

D : diamètre de la conduite (m).

VII.5.1.1. Largeur de la tranchée

La largeur de la tranchée sera calculée en fonction du diamètre de la conduite .nous laissons 30 cm d'espace de chaque côté de la conduite.

Avec:

b : la largeur de la tranchée (m).

D : diamètre de la conduite (m).

Les calculs des déblais sont récapitulés dans le tableau suivant :

Tableau VII.1: Le volume à excaver.

Tronçon	D (mm)	L (m)	b(m)	H tr (m)	Vdéblais(m3)
c1	315	188,5	0,915	1,415	244,056
c2	63	207,6	0,663	1,163	160,074
c3	315	806,2	0,915	1,415	1043,807
c4	125	88,26	0,725	1,225	78,386
c5	40	153	0,64	1,14	111,629
с6	110	214,1	0,71	1,21	183,933
c7	25	57,53	0,625	1,125	40,451
с8	110	147,5	0,71	1,21	126,717
с9	50	8,94	0,65	1,15	6,683
c10	32	208,8	0,632	1,132	149,381
c11	25	80,03	0,625	1,125	56,271
c12	90	261	0,69	1,19	214,307
c13	63	428,1	0,663	1,163	330,095
c14	75	327,1	0,675	1,175	259,431
c15	25	70,45	0,625	1,125	49,535
c16	50	249,5	0,65	1,15	186,501
c17	40	151,1	0,64	1,14	110,243
c18	250	282	0,85	1,35	323,595
c19	40	246,3	0,64	1,14	179,7
c20	250	17,02	0,85	1,35	19,53

Suite du tableau VII.1 : Le volume à excaver.

Tronçon	D (mm)	L (m)	b(m)	H tr (m)	Vdéblais(m3)
c21	40	174,6	0,64	1,14	127,388
c22	250	799,8	0,85	1,35	917,771
c23	50	245,8	0,65	1,15	183,736
c24	200	862,5	0,8	1,3	897
c25	63	169,8	0,663	1,163	130,928
c26	50	49,46	0,65	1,15	36,971
c27	25	73,51	0,625	1,125	51,687
c28	40	164,5	0,64	1,14	120,019
c29	32	71,84	0,632	1,132	51,396
c30	25	66,6	0,625	1,125	46,828
c31	200	152,2	0,8	1,3	158,288
c32	32	131,1	0,632	1,132	93,792
c33	200	428,2	0,8	1,3	445,328
c34	50	108,6	0,65	1,15	81,179
c35	25	50,49	0,625	1,125	35,501
c36	50	32,84	0,65	1,15	24,548
c37	25	63,01	0,625	1,125	44,304
c38	40	163,9	0,64	1,14	119,581
c39	160	101,8	0,76	1,26	97,484
c40	90	113,1	0,69	1,19	92,866

Suite du tableau VII.1: Le volume à excaver.

Tronçon	D (mm)	L (m)	b(m)	H tr (m)	Vdéblais(m3)	
c41	32	106	0,632	1,132	75,835	
c42	25	81,53	0,625	1,125	57,326	
c43	75	27,26	0,675	1,175	21,621	
c44	32	148,4	0,632	1,132	106,169	
c45	25	46,79	0,625	1,125	32,899	
c46	32	168,2	0,632	1,132	120,334	
c47	32	70,77	0,632	1,132	50,631	
c48	25	54,3	0,625	1,125	38,18	
c49	25	16,16	0,625	1,125	11,363	
c50	63	135,2	0,663	1,163	104,249	
c51	25	83,55	0,625	1,125	58,746	
c52	40	165,7	0,64	1,14	120,895	
c53	32	114,4	0,632	1,132	81,845	
		Total			8511,009	

D'après ce tableau, le volume total du déblai est de $8511,009 \text{ m}^3$.

VII.5.1.1.a. Détermination de la capacité du godet

A travers ce volume calculé, nous déterminons la capacité du godet pour notre pelle.

Tableau VII.2 : Capacité du godet en fonction du volume de terrassement.

volume du terrassement par une pelle (m3)	Inferieur ou égale à 10000	Supérieur ou égale à 10000		Supérieur à 100000
capacité du godet (m3)	0.25-0.35	0.5-0.65	1-1.25	1.5

Comme le volume total est inferieur à 10000 m³, nous optons pour une pelle avec une capacité du gobet égale à 0.35 m³.

VII.5.1.1.b. Rendement d'exploitation de la pelle choisie

Le rendement de la pelle est donné par la relation :

$$Rp=(3600*q*Kr*Kt)/(Tc*Kf).....(VII.5)$$

Avec:

q : capacité du gobet 0.35 m³.

Kr: coefficient de remplissage du gobet, Kr = 0.8 - 0.9, on prend Kr = 0.8.

Kt: coefficient d'utilisation du temps dépend de la nature du sol et de l'habilité du conducteur: Kt = 0.7- 0.9 on prend Kt = 0.8.

Kf: coefficient de foisonnement du sol Kf = 1,2.

Tc: la duré d'un cycle de remplissage du gobet; Tc = (15-30) s, nous prenons Tc = 20 s.

D'où on trouve : R=33.6 m3/h

Si nous prenons une durée de travail de 8 heures par jour Rp=268.8 m3/j.

VII.5.1.1.c. La duré d'excavation

Connaissant le volume de terre à excaver et le rendement de l'engin le temps d'exploitation sera :

Avec:

T : La duré d'excavation (jour).

V : volume de déblais (m³).

R_p: capacité du godet en jour (m³/jour).

Application numérique : T= **8511,009** / 268.8 = 31.66 donc T=32 jours.

VII.5.2. Volume des remblais compacté

Le volume de remblai égal le volume des déblais réduit du volume occupé par la conduite et du volume du lit de sable et le volume d'enrobage calculé comme suit :

Avec:

Vr : Volume des remblais compacté (m³).

Vdéblais : Volume de déblais (m³).

Vs : volume du lit du sable (m³).

Ve : volume de l'enrobage (m³).

Vc : Volume de la conduite (m³).

VII.5.2.1.Le volume du lit du sable

Comme on a dit le lit de sable à une épaisseur de 20 cm le long de la tranchée donc son volume sera :

$$Vs = e_s \times b \times L....$$
 (VII.8)

Avec:

Vs : Volume de lit de sable (m³) .

e_s: épaisseur de sable (m).

b : largeur de la tranchée (m).

L : longueur de tranchée (m).

VII.5.2.2.Le volume de l'enrobage

C'est le volume du sable que l'on ajoute au-dessous des canalisations avec une épaisseur de 20 cm le long de la tranchée donc son volume sera :

$$Ve= e_n \times b \times L....(VII.9)$$

Avec:

Ve: Volume d'enrobage (m³).

e_n: épaisseur de l'enrobage (m).

b : largeur de la tranchée (m).

L : longueur de tranchée (m).

VII.5.2.3. Volume de la conduite

Après l'exécution des déblais de la tranchée et la mise en place du lit de sable, il y a lieu déposer la conduite dont la connaissance de la section est importante pour la détermination du volume des remblais.il est donné par la relation suivante :

$$Vc = L \times \pi \times D^2/4...$$
 (VII.10)

Avec:

Vc : Volume de la conduite(m³) .

L : longueur de tranchée (m).

D : diamètre de la conduite (m).

Les résultats sont récapitulés dans le tableau suivant :

Tableau VII.3: Le volume du remblai.

Tronçon	L (m)	D (mm)	Vdéblais(m³)	Vs (m ³)	Ve (m ³)	Vc (m ³)	Vr (m ³)
c1	188,5	315	244,056	34,496	34,496	14,683	160,382
c2	207,6	63	160,074	27,528	27,528	0,647	104,372
c3	806,2	315	1043,807	147,535	147,535	62,796	685,942
c4	88,26	125	78,386	12,798	12,798	1,083	51,708
c5	153	40	111,629	19,584	19,584	0,192	72,269
c6	214,1	110	183,933	30,402	30,402	2,034	121,095
c7	57,53	25	40,451	7,191	7,191	0,028	26,04
c8	147,5	110	126,717	20,945	20,945	1,401	83,426

Suite du tableau VII.3 : Le volume du remblai.

Tronçon	L (m)	D (mm)	Vdéblais(m³)	Vs (m ³)	Ve (m ³)	Vc (m ³)	Vr (m ³)
c9	8,94	50	6,683	1,162	1,162	0,018	4,341
c10	208,8	32	149,381	26,392	26,392	0,168	96,428
c11	80,03	25	56,271	10,004	10,004	0,039	36,224
c12	261	90	214,307	36,018	36,018	1,66	140,612
c13	428,1	63	330,095	56,766	56,766	1,334	215,229
c14	327,1	75	259,431	44,159	44,159	1,444	169,67
c15	70,45	25	49,535	8,806	8,806	0,035	31,888
c16	249,5	50	186,501	32,435	32,435	0,49	121,142
c17	151,1	40	110,243	19,341	19,341	0,19	71,371
c18	282	250	323,595	47,94	47,94	13,836	213,879
c19	246,3	40	179,7	31,526	31,526	0,309	116,338
c20	17,02	250	19,53	2,893	2,893	0,835	12,909
c21	174,6	40	127,388	22,349	22,349	0,219	82,471
c22	799,8	250	917,771	135,966	135,966	39,24	606,598
c23	245,8	50	183,736	31,954	31,954	0,482	119,345
c24	862,5	200	897	138	138	27,083	593,918
c25	169,8	63	130,928	22,515	22,515	0,529	85,368
c26	49,46	50	36,971	6,43	6,43	0,097	24,015
c27	73,51	25	51,687	9,189	9,189	0,036	33,273
c28	164,5	40	120,019	21,056	21,056	0,207	77,701
c29	71,84	32	51,396	9,081	9,081	0,058	33,177
c30	66,6	25	46,828	8,325	8,325	0,033	30,145
c31	152,2	200	158,288	24,352	24,352	4,779	104,805
c32	131,1	32	93,792	16,571	16,571	0,105	60,545
c33	428,2	200	445,328	68,512	68,512	13,445	294,859

Suite du tableau VII.3 : Le volume du remblai.

Tronçon	L (m)	D (mm)	Vdéblais(m³)	Vs (m ³)	Ve (m ³)	Vc (m ³)	Vr (m ³)
c34	108,6	50	81,179	14,118	14,118	0,213	52,729
c35	50,49	25	35,501	6,311	6,311	0,025	22,854
c36	32,84	50	24,548	4,269	4,269	0,064	15,945
c37	63,01	25	44,304	7,876	7,876	0,031	28,52
c38	163,9	40	119,581	20,979	20,979	0,206	77,417
c39	101,8	160	97,484	15,474	15,474	2,046	64,491
c40	113,1	90	92,866	15,608	15,608	0,719	60,932
c41	106	32	75,835	13,398	13,398	0,085	48,953
c42	81,53	25	57,326	10,191	10,191	0,04	36,903
c43	27,26	75	21,621	3,68	3,68	0,12	14,14
c44	148,4	32	106,169	18,758	18,758	0,119	68,534
c45	46,79	25	32,899	5,849	5,849	0,023	21,179
c46	168,2	32	120,334	21,26	21,26	0,135	77,678
c47	70,77	32	50,631	8,945	8,945	0,057	32,683
c48	54,3	25	38,18	6,788	6,788	0,027	24,578
c49	16,16	25	11,363	2,02	2,02	0,008	7,315
c50	135,2	63	104,249	17,928	17,928	0,421	67,972
c51	83,55	25	58,746	10,444	10,444	0,041	37,818
c52	165,7	40	120,895	21,21	21,21	0,208	78,267
c53	114,4	32	81,845	14,46	14,46	0,092	52,832
	Total		8511,009	1371,786	1371,786	194,214	5573,223

D'après ce tableau, le volume total du remblai est de 5573,223 m³.

Soit le tableau ci-dessous récapitulant tous les volumes :

Tableau VII.4 : Récapitulatif des volumes des travaux de réseaux de distribution.

Désignation	Unité	Quantité
Déblais	m^3	8511,009
Lit de sable	m^3	1371,786
Enrobage	m^3	1371,786
Conduite	m^3	194,214
Remblais	m^3	5573,223

Tableau VII.5: Devis estimatif et quantitatif des travaux de pose des canalisations.

N°	Désignation	unité	Prix unitaire	quantité	prix total
1	Déblais	M3	650	8 511,01	5 532 155,85
2	fourniture et mise en place du lit de sable	M3	700	1 371,79	960 250,20
3	fourniture et mise de l'enrobage	M3	800	194,21	155 371,20
	Pose, fourniture et transport de conduites en PEHD PN 16				
	DN 315 mm	ML	16 442,24	994,7	16 355 096,13
	DN 250 mm	ML	10 363,01	1 098,82	11 387 082,65
	DN 200 mm	ML	6 655,33	1 442,90	9 602 975,66
	DN 160 mm	ML	4 268,35	101,8	434 518,03
	DN 125 mm	ML	2 609,47	88,26	230 311,82
4	DN 110 mm	ML	2 081,85	361,6	752 796,96
	DN 90mm	ML	1 425,35	374,1	533 223,44
	DN 75 mm	ML	974,83	354,36	345 440,76
	DN 63 mm	ML	700,56	940,7	659 016,79
	DN 50 mm	ML	440,6	695,14	306 278,68
	DN 40 mm	ML	284,19	1 219,10	346 456,03
	DN 32 mm	ML	185,05	1 019,51	188 660,33
	DN 25 mm	ML	114,56	686,42	78 636,28
5	Mise en place du grillage avertisseur de couleur bleue	M2	40	9 434,94	377 397,60
6	Remblais	M3	150	5 573,22	835 983,45
7	Construction de regards de vanne de dimension avec tampon 1.0*1.0* 1.5	U	19	60 000,00	1 140 000,00
8	La démolition et la remise en état de la chaussée goudronnée	М3	2 500,00	206,57	516 436,25
	TOTAL EN HT				50 738 088,09
	TVA (19%)				9 640 236,74
	TOTAL EN TTC				60 378 324,83

(Source bureau d'étude N.DEHDOUH, 2019)

Conclusion

Ce chapitre nous permet de présenter la démarche et les étapes d'élaboration d'un projet d'alimentation en eau potable. On a défini d'une part ,le principe de pose des canalisation afin de garantir un meilleur rendement qui assurera leur longévité ,et d'autre part tous les travaux nécessaires pour la réalisation de notre projet qui vont avoir lieu sur chantier, ainsi que les engins les plus adéquats pour les différentes tâches. Comme on a estimé approximativement le montant total de notre projet.

CONCLUSION GENERALE

Ce présent mémoire de fin d'étude a été consacré à la conception d'un nouveau réseau d'alimentation en eau potable pour la région de Bounjdamen, commune d'EL- Kseur (W.Béjaia). Il a traité les diverses étapes de réalisation d'un projet d'alimentation en eau potable.

En effet, après avoir fait la collecte des données nécessaires pour entamer notre étude, on a d'abord présenté la région d'étude. Par la suite, on a estimé les différents besoins relatifs à la consommation pour l'horizon 2050 dont le besoin de consommation est évalué à 1571,572 m³/j pour 8656 habitants. Après cela, on a tracé et dimensionné le réseau de distribution de la région d'étude, qui est du type ramifié, à l'aide du logiciel Epanet, et cela pour les deux cas ; cas de pointe et cas de pointe plus incendie.

Par conséquent, la simulation du réseau de distribution nous a permis d'obtenir les diamètres optimaux de toutes les conduites, tout en respectant et en répondant aux conditions de pression et de vitesse, après avoir vérifier préalablement la capacité du réservoir de stockage d'eau.

Pour assurer le bon rendement de fonctionnement hydraulique du réseau de distribution de la région de Bounejdamen et pour mieux le gérer, l'installation des accessoires s'avère primordiale, et c'est pour cette raison qu'on a abordé ce point. Ajoutant à ceci, la nécessité de pose des conduites et les travaux exécutés pendant ce projet, puis on a également estimé le coût du projet.

En fin, on souhaite avoir fait un travail qui peut servir d'avant-projet à une étude plus détaillée, et de garantir une bonne alimentation en eau potable de la région de Bounejdamen.

Pour terminer, on voudrait remercier d'avantage l'honorable jury qui aura à apprécier ce travail auquel nous attacherons beaucoup d'attention et d'écoute à leurs remarques et suggestions nécessaires à l'enrichissement de cette étude.

REFERENCE BIBLIOGRAPHIQUE

REFERENCE BIBLIOGRAPHIQUE

- [1] A. DUPONT Paris (1977): Hydraulique urbaine, Tome II, édition Eyrolles.
- [2] E.IVANOV (1985) : Organisation et la construction d'un système du projet de distribution de l'eau. Paris.
- [3] **DJ.KAIDI** (2016): « Alimentation en eau potable de Tlata commune de Taher de la wilaya de Jijel » Mémoire de fin d'étude, ENSH de Blida.
- [4] Données recueillies auprès de l'APC d'EL Kseur.
- [5] Données recueillies auprès du bureau d'étude de monsieur N.DEHDOUH.
- [6] **J.BONIN** (1986) : Hydraulique urbaine appliquée aux agglomérations de petites et moyennes importances. Paris.
- [7] L.LOUNES, N. MAOUCHE (2015) :« Conception et dimensionnement des réseaux d'eau potable et d'eau usée du village TAKRIETZ (W-BEJAIA) ». Mémoire de fin de cycle,Université de Béjaia.
- [8] R.BALLE (1992): Dimensionnement des réseaux d'alimentation en eau potable et d'évacuation des eaux usées.

ANNEXE

Annexe I : les caractéristiques de l'eau du barrage de Tichy-Haf

CodSta	NomSta	datprel	Ca mg/l	Cl mg/l	K mg/l	SO4 mg/l	Mg mg/l	Na mg/l	Ph	T°C
150902	Bge Tichy Haf	09/01/2018	133,3	162	5	388	68	103	7,6	11
150902	Bge Tichy Haf	06/02/2018	150,3	163	3	388	53	100	7,6	11,5
150902	Bge Tichy Haf	06/03/2018	150,3	163	3	388	53	100	7,6	11,5
150902	Bge Tichy Haf	03/04/2018	135	93	4	276	38	100	7,8	14,5
150902	Bge Tichy Haf	21/05/2018	124	97	5	361	55	100	7,9	20,5
150902	Bge Tichy Haf	20/06/2018	113,4	104,2	4	301,1	50	90	7,9	25
150902	Bge Tichy Haf	17/07/2018	123,5	107,8	4	362,2	46	110	8,5	28
150902	Bge Tichy Haf	29/08/2018	126,7	122,5	4	352,8	65	100	8	27
150902	Bge Tichy Haf	25/09/2018	113,9	122,5	4	360,7	48	108	8,3	20
150902	Bge Tichy Haf	23/10/2018	110,6	127	4	388,4	52	103	8,6	22
150902	Bge Tichy Haf	12/11/2018	112,6	128,3	4	330,1	40	98	7,8	17,5

Source (ADE de Béjaia)

Annexe III.1: les variations horaires de la consommation d'eau dans divers centres d'agglomération.

.

	Nombre d'habitants									
Heures	Moins de	De 10001 à	De 50001 à	Plus de	Agglomération					
	10000	50000	100000	100000	de type rural					
0-1	1	1,5	3	3,35	0,75					
1-2	1	1,5	3,2	3,25	0,75					
2-3	1	1,5	2,5	3,3	1					
3-4	1	1,5	2,6	3,2	1					
4-5	2	2,5	3,5	3,25	3					
5-6	3	3,5	4,1	3,4	5,5					
6-7	5	4,5	4,5	3,85	5,5					
7-8	6,5	5,5	4,9	4,45	5,5					
8-9	6,5	6,25	4,9	5,2	3,5					
9-10	5,5	6,25	5,6	5,05	3,5					
10-11	4,5	6,25	4,8	4,85	6					
11-12	5,5	6,25	4,7	4,6	8,5					
12-13	7	5	4,4	4,6	8,5					
13-14	7	5	4,1	4,55	6					
14-15	5,5	5,5	4,2	4,75	5					
15-16	4,5	6	4,4	4,7	5					
16-17	5	6	4,3	4,65	3,5					
17-18	6,5	5,5	4,1	4,35	3,5					
18-19	6,5	5	4,5	4,4	6					
19-20	5	4,5	4,5	4,3	6					
20-21	4,5	4	4,5	4,3	6					
21-22	3	3	4,8	4,2	3					
22-23	2	2	4,6	3,75	2					
23-24	1	1,5	3,3	3,7	1					
total	100	100	100	100	100					

Annexe V: Gamme de diamètres normalisés en PEHD.

Gamme PEHD (mm)									
20	25	32	40	50	63	75	90		
110	125	160	200	250	315	400	500		
630									

Source (bureau d'étude des travaux hydrauliques N.DEHDOUH)