Higher National School of Hydraulic The Library

Digital Repository of ENSH

المدرسة الوطنية العليا للري المكتبة المستودع الرقمي للمدرسة العليا للري

The title (العنوان):

Rénovation du réseau d'alimentation en eau potable du Chef-Lieu de la commune de Guerouaou (w. Blida).

The paper document Shelf mark (الشفرة) : 1-0014-20

APA Citation (توثيق APA):

Ferdjouni, Nour El Houda (2020). Rénovation du réseau d'alimentation en eau potable du Chef-Lieu de la commune de Guerouaou (w. Blida)[Mem Ing, ENSH].

The digital repository of the Higher National School for Hydraulics "Digital Repository of ENSH" is a platform for valuing the scientific production of the school's teachers and researchers.

Digital Repository of ENSH aims to limit scientific production, whether published or unpublished (theses, pedagogical publications, periodical articles, books...) and broadcasting it online.

Digital Repository of ENSH is built on the open software platform and is managed by the Library of the National Higher School for Hydraulics.

المستودع الرقمي للمدرسة الوطنية العليا للري هو منصة خاصة بتثمين الإنتاج العلمي لأساتذة و باحثي المدرسة.

يهدف المستودع الرقمي للمدرسة إلى حصر الإنتاج العلمي سواء كان منشورا أو غير منشور (أطروحات،مطبوعات بيداغوجية، مقالات الدوريات، كتب....) و بثه على الخط.

المستودع الرقمي للمدرسة مبني على المنصة المفتوحة و يتم إدارته من طرف مديرية المكتبة للمدرسة العليا للري.

كل الحقوق محفوظة للمدرسة الوطنية العليا للري.

الجمهورية الجزائرية الديمقراطية الشعبية وزارة التعليم العالى و البحث العلمى

NATIONAL HIGHER SCHOOL FOR HYDRAULICS

المدرسة الوطنية العليا للري

"إيماريذ علّا عبد عماجماً!"

"The MujahidAbdellah ARBAOUI"

+>ЦО#Э+ І Х#ІЗЭ> Ц«ІИ#Ч« Ж«ӨО#Ч«

MEMOIRE DE FIN D'ETUDES

Pour l'obtention du diplôme d'Ingénieur d'Etat en Hydraulique

Option: ALIMENTATION EN EAU POTABLE

THEME:

RENOVATION DU RESEAU D'ALIMENTATION EN EAU POTABLE DU CHEF-LIEU DE LA COMMUNE DE GUEROUAOU (W.BLIDA)

Présenté par :

FERDJOUNI Nour El Houda

Devant les membres du jury

Nom et Prénoms	Grade	Qualité
Abdelmadjid BOUFEKANE	M.C.A	Président
Wahiba MOKRANE	M.A.A	Examinateur
Abdelkader HACHEMI	M.C.B	Examinateur
Boualem SALAH	Professeur	Promoteur

Session: SEPTEMBRE 2020

REMERCIEMENT

Je tiens à exprimer mes plus vifs remerciement à dieu le tout puissant pour la volonté, la sante et la patience qu'il m'a donnée durant toutes ces années d'études et qui m'ont permis d'en arriver là.

Tout d'abord je tiens à exprimer ma profonde gratitude et mes vifs remerciement à mon promoteur **Mr SALAH Boualem** pour le soutien, sa disponibilité, ses précieuses orientations, ses riches documentations qu'il m'a dispensé pour l'élaboration de cette présente thèse.

Je tiens à remercier toutes les personnes qui m'ont apporté leurs soutiens pour l'élaboration de ce mémoire en particulièrement :

- Mes parents et ma petite famille pour leurs soutiens moraux et financiers.
- Le président et les membres de jury qui me feront l'honneur de juger mon travail.
- Mes amis pour le soutien moral et leurs conseils judicieux tout le long de mes années d'études.
- L'ensemble des enseignants et la direction de l'école pour avoir veillé à notre formation.

Enfin je remercie toutes les personnes qui, de près ou de loin, ont participé à l'élaboration de ce travail et dont leurs noms ne figurent pas sur cette page.

FERDJOUNI Nour El Houda

DÉDICACE

Je dédie mon mémoire de fin d'étude à ma famille et particulièrement à mes parents qui m'ont inculqué les vertus du travail et de la droiture dans le devoir comme dans la vie courante

ملخص

تحوي شبكة بلدية قرواو على الكثير من الاعطاب و خاصةً التسربات. الهدف من هذه الدراسة هو ضمان توفير المياه الصالحة للشرب بشكل جيد للمستهلكين في بلدية قرواو ولاية البليدة, و هذا يتم اولاً بتشخيص شبكة إمدادات مياه الشرب عن طريق عرض مختلف المشاكل و النقائص في الشبكة, ثم تجديدها على عدة مراحل لخدمة السكان على نحو أفضل من حيث الضغط, السرعة و التدفق.

Résumé

Le réseau de la commune de Guerrouaou présente des défaillances assez remarquables notamment les fuites. L'objectif de cette étude est d'assurer une alimentation en eau potable suffisante pour les consommateurs du chef-lieu de la commune de Guerouaou wilaya de BLIDA; Cela consiste en premier lieu à faire un diagnostic du réseau d'alimentation en eau potable en présentant les différentes anomalies et défaillances dans le réseau ; ensuite une rénovation du réseau élaborée en plusieurs étapes de façon à mieux desservir les habitants en termes de pression, vitesse et débit.

ABSTRACT

The present water supply network of Guerouaou has remarkable failures, especially in terms of leaks. The aim of this study is to ensure a good supply of drinking water for the municipality of Guerouaou, Blida. The study consists primarily in making a diagnosis of the existing drinking water supply network, by presenting its various anomalies and failures. Then, a renovation of the network was developed in several stages to better serve the inhabitants in terms of pressure, speed and flow rate.

Remerciement

Dédicace

Résumé

SOMMAIRE

CHAPITRE I : PRESENTATION DE LA ZO	NE D'ETUDE
I.1.Introduction:	3
I.2. SITUATION GEOGRAPHIQUE	
I.3. SITUATION TOPOGRAPHIQUE	
I.4. Geologie	3
I.5. SITUATION CLIMATOLOGIQUE:	4
I.5.1. Pluviométrie	4
I.5.2. Température :	4
I.6.SITUATION DEMOGRAPHIQUE	4
I.6.1.Population actuelle	4
I.6.2.Population future	5
I.7.LES DIFFERENTS CATEGORIES DE CONSOMMATEURS	5
I.7.1.Les équipements publics de la zone d'étude	5
I.7.2.La zone industrielle	6
I.8.SITUATION HYDRAULIQUE DU RESEAU	7
I.8.1.Type du réseau de distribution	7
I.8.2.La dotation de consommation actuelle	7
I.8.3.Ouvrages de stockage	7
I.9.Conclusion	O
CHAPITRE II : ESTIMATION DES BESOINS A	
CHAPITRE II : ESTIMATION DES BESOINS A II.1.Introduction	CTUELS EN EAU
CHAPITRE II: ESTIMATION DES BESOINS A II.1.Introduction	CTUELS EN EAU10
CHAPITRE II: ESTIMATION DES BESOINS A II.1.INTRODUCTION	
CHAPITRE II : ESTIMATION DES BESOINS A II.1.Introduction	10
CHAPITRE II : ESTIMATION DES BESOINS A II.1.INTRODUCTION	10
CHAPITRE II : ESTIMATION DES BESOINS A II.1.INTRODUCTION	10
CHAPITRE II : ESTIMATION DES BESOINS A II.1.INTRODUCTION II.2. ESTIMATION DES BESOINS DE DIFFERENTES CATEGORIES DE CONSOMMATEUR Les besoins moyens journaliers Les besoins domestiques. Les besoins publics Les besoins industriels actuels Le débit d'incendie	.CTUELS EN EAU
CHAPITRE II : ESTIMATION DES BESOINS A II.1.INTRODUCTION II.2. ESTIMATION DES BESOINS DE DIFFERENTES CATEGORIES DE CONSOMMATEUR Les besoins moyens journaliers Les besoins domestiques Les besoins publics Les besoins industriels actuels Le débit d'incendie Les fuites et gaspillage	.CTUELS EN EAU
CHAPITRE II : ESTIMATION DES BESOINS A II.1.INTRODUCTION	.CTUELS EN EAU
CHAPITRE II : ESTIMATION DES BESOINS A II.1.INTRODUCTION II.2. ESTIMATION DES BESOINS DE DIFFERENTES CATEGORIES DE CONSOMMATEUR Les besoins moyens journaliers Les besoins domestiques Les besoins publics Les besoins industriels actuels Le débit d'incendie Les fuites et gaspillage II.3. RECAPITULATIF DES DEBITS MOYENS JOURNALIERS II.4.VARIATION DE LA CONSOMMATION	.CTUELS EN EAU
CHAPITRE II : ESTIMATION DES BESOINS A II.1.INTRODUCTION II.2. ESTIMATION DES BESOINS DE DIFFERENTES CATEGORIES DE CONSOMMATEUR Les besoins moyens journaliers Les besoins domestiques Les besoins publics Les besoins industriels actuels Le débit d'incendie Les fuites et gaspillage II.3. RECAPITULATIF DES DEBITS MOYENS JOURNALIERS II.4.VARIATION DE LA CONSOMMATION II.5.ETUDE DE LA VARIATION DE LA CONSOMMATION JOURNALIERE	.CTUELS EN EAU
CHAPITRE II : ESTIMATION DES BESOINS A II.1.INTRODUCTION II.2. ESTIMATION DES BESOINS DE DIFFERENTES CATEGORIES DE CONSOMMATEUR Les besoins moyens journaliers Les besoins domestiques Les besoins publics Les besoins industriels actuels Le débit d'incendie Les fuites et gaspillage II.3. RECAPITULATIF DES DEBITS MOYENS JOURNALIERS II.4.VARIATION DE LA CONSOMMATION	.CTUELS EN EAU
CHAPITRE II: ESTIMATION DES BESOINS A II.1.INTRODUCTION II.2. ESTIMATION DES BESOINS DE DIFFERENTES CATEGORIES DE CONSOMMATEUR Les besoins moyens journaliers Les besoins domestiques Les besoins publics Les besoins industriels actuels Le débit d'incendie Les fuites et gaspillage II.3. RECAPITULATIF DES DEBITS MOYENS JOURNALIERS II.4.VARIATION DE LA CONSOMMATION II.5.ETUDE DE LA VARIATION DE LA CONSOMMATION JOURNALIERE II.6. ETUDE DE LA VARIATION DE LA CONSOMMATION HORAIRE	.CTUELS EN EAU
CHAPITRE II : ESTIMATION DES BESOINS A II.1.INTRODUCTION	.CTUELS EN EAU
CHAPITRE II : ESTIMATION DES BESOINS A II.1.INTRODUCTION II.2. ESTIMATION DES BESOINS DE DIFFERENTES CATEGORIES DE CONSOMMATEUR Les besoins moyens journaliers Les besoins domestiques. Les besoins publics Les besoins industriels actuels Le débit d'incendie Les fuites et gaspillage. II.3. RECAPITULATIF DES DEBITS MOYENS JOURNALIERS. II.4.VARIATION DE LA CONSOMMATION II.5.ETUDE DE LA VARIATION DE LA CONSOMMATION JOURNALIERE II.6. ETUDE DE LA VARIATION DE LA CONSOMMATION HORAIRE II.7.CONCLUSION. CHAPITRE III : DIAGNOSTIC PHYSIQUE ET H	CTUELS EN EAU
CHAPITRE II: ESTIMATION DES BESOINS A II.1.INTRODUCTION	CTUELS EN EAU
CHAPITRE II: ESTIMATION DES BESOINS A II.1.INTRODUCTION	CTUELS EN EAU

III.3. DIAGNOSTIC HYDRAULIQUE	16
III.3.2. la source disponible	19
III.4.Conclusion	
CHAPITRE IV : RESERVOIRS	
CHAPITRE IV: RESERVOIRS	
IV.1.Introduction	
IV.2.LES ROLES DES RESERVOIRS	22
IV.3.L'EMPLACEMENT DES RESERVOIRS	22
IV.4.CHOIX DU TYPE DE RESERVOIR	
IV.5.EQUIPEMENTS DES RESERVOIRS D'ALIMENTATION	
IV.6.RECOMMANDATIONS DIVERS	24
IV.7. DIMENSIONNEMENT DE LA CAPACITE DE STOCKAGE D'UN RESERVOIR	24
IV.8. VERIFICATION DE STOCKAGE	25
IV.9.Conclusion	266
CHAPITRE V: RENOVATION DU RESEAU	
V.1.Introduction	28
V.2.CLASSIFICATION DES RESEAUX DE DISTRIBUTION	28
V.3.Conception d'un reseau	28
V.4.CHOIX DU TYPE DE MATERIAUX ET DE RESEAU	29
V.5. PROPOSITION DU RESEAU D'ALIMENTATION EN EAU POTABLE	29
V.6.ESTIMATION DES BESOINS DE CONSOMMATION EN EAU POTABLE POUR L'HORIZON 2050	29
V.6.1.Le débit moyen journalier	29
V.6.2.La variation du débit moyen journalier	
V.6.3.La consommation horaire	
7.7. CALCUL HYDRAULIQUE DU RESEAU DE DISTRIBUTION POUR L'HORIZON 2050	
V.7.1. choix du matériau des conduites	33
V.7.2.Vérification du stockage	34
V.7.3.Dimensionnement du réseau projeté	
V.7.4.Estimation des débits de dimensionnement	
V.7.5.Résultat de la simulation par EPANET	
V.8.CONCLUSION	
CHAPITRE VI : ACCESSOIRES DU RESEAU	
VI.1.Introdution	
VI.1.Introdution VI.2.Role des accessoires dans le reseau de distribution	40
VI.1.IntrodutionVI.2.Role des accessoires dans le reseau de distribution	40
VI.1.IntrodutionVI.2.Role des accessoires dans le reseau de distribution	4040
/I.1.Introdution	40 40 40
VI.1.INTRODUTION	

VII.5.LE SUIVI DE CHANTIER	47
VII.6.INSTALLATIONS DE CHANTIER	488
VII.7.LES ENGINS UTILISES SUR CHANTIER LORS DE LA REALISATION DU PROJET	48
VII.7.1.Les engins de terrassement	48
VII.8.ASSEMBLAGE DES CONDUITES PEHD	49
a) Procédé d'assemblage par électro soudage	49
b) Procédé d'assemblage par soudage bout à bout	500
VII.9.EVALUATION DU PROJET	50
VII.9.1.Volume de la couche végétale ou le goudron	50
VII.9.2.Excavation des tranchées	511
VII.9.3.Volume du remblai	522
VII.9.4.Volume excédentaire	522
VII.10.Devis estimatif	52
VII.11.PLANIFICATION DES TRAVAUX	553
VII.11.Conclusion.	55
CHAPITRE VIII : GESTION DES RESEAUX D'AI	EP
VIII.1.Introduction	57
VIII.2.BUT DE LA GESTION	57
VIII.3.GESTION ET EXPLOITATION DES RESEAUX DE DISTRIBUTION	57
VIII.4.LES DEFAILLANCES	57
VIII.4.1.Les pertes	57
VIII.4.2.La détérioration de la qualité de l'eau	58
VIII.4.3.L'entartrage du réseau	
VIII.5.DIAGNOSTIC DU RESEAU	
VIII.5.1.L'enquête et recueil des données	58
VIII.5.2.L'analyse des données	
VIII.5.3.Analyse et détermination des paramètres du diagnostic	
VIII.5.4.Estimation des coûts	
VIII.6.L'ENTRETIEN	
VIII.6.1.Types d'entretien	59
VIII.6.2.Procédé d'entretien d'un réseau d distribution	
VIII.7.Conclusion	60
CONCLUSION GENERALE	
CONCLUSION GENERALE	62
REFERENCES BIBLIOGRAPHIQUES	63
ANNEXES	
ANNEXE I: CARNET DES NŒUDS EN PHASE DE DIAGNOSTIC (RESEAU ACTUEL)	65
ANNEXE II	
CARNET DES NŒUDS EN PHASE DE RENOVATION (RESEAU PROJETE)	95

Liste des figures

Chapitre I : Présentation de la zone d'étude

Figure I.1.Carte de la situation géographique de Guerouaou
Figure I.2 : Schéma d'alimentation du chef-lieu de Guerouaou
Chapitre II : Estimation des besoins en eau actuels
Figure (II.1) : histogramme de la consommation horaire de l'agglomération
Figure (II.2) : la courbe de la consommation horaire cumulée
Figure(III.1): Etat des tronçons (vitesses) et des nœuds (pressions) du réseau actuel en cas de pointe
Figure(III.2): Etat des nœuds (pressions) et tronçons (vitesses) du réseau actuel en cas de pointe plus incendie
Chapitre V : Rénovation du réseau
Figure(V.1) : histogramme de la consommation horaire de l'agglomération
Figure (V.2): La courbe de la consommation horaire cumulée
Figure(V.4): Etat des nœuds (pressions) et tronçons (vitesses) en cas de pointe plus incendie37
Chapitre VI : Accessoires du réseau
Figure(VI.1): Robinet-vanne papillon
Figure(VI.3): Poteau d'incendie42Figure (VI.4): les raccordements42Figure (VI.5): manomètre43
Chapitre VII : Pose de canalisation et organisation de chantier
Figure(VII.1): pose de canalisation dans un terrain ordinaire

Liste des tableaux

Chapitre I : Présentation de la zone d'étude

Tableau(I.1): La pluviométrie moyenne mensuelle de la zone d'étude (Année 2018)	4
Tableau(I.2) : La température moyenne mensuelle de la zone d'étude (Année 2018)	4
Tableau (I.3): situation démographique du chef-lieu de la commune de Guerouaou (2018)	5
Tableau (I.4): évolution de la population de la zone d'étude	5
Tableau (I.5): les équipements publics et leurs besoins journaliers	5
Tableau (I.6): les besoins industriels du chef-lieu de la commune de Guerouaou	6
Tableau (I.7) les besoins journaliers des équipements projetés	6
Tableau (I.8): Les normes de dotation	7
Tableau (I.9) La production des forages de la commune de Guerouaou	8
Chapitre II : Estimation des besoins en eau actuels	
Tableau (II.1): les besoins domestiques	10
Tableau(II.2): Les besoins publics	
Tableau (II.3): la consommation moyenne journalière industrielle	11
Tableau(II.4) Récapitulatif des consommations moyennes journalières	
Tableau(II.5): La variation de la consommation journalière à l'horizon actuel	
Tableau(II.6): la variation de la consommation horaire	13
Chapitre III : diagnostic physique et hydraulique du réseau	
Tableau (III.1): la source disponible	19
Chapitre IV : Réservoirs	
Tableau(IV.1) : calcul de la capacité du réservoir	26
Chapitre V : Rénovation du réseau	
Tableau (V.1): évolution de la population de la zone d'étude	29
Tableau (V.2): Le besoin journalier domestique	30
Tableau (V.3): Les besoins journalier des équipements publics	30
Tableau (V.4) : Récapitulatif des consommations moyennes journalières	
Tableau (V.5) : Récapitulatif de la variation de la consommation journalière	31
Tableau(V.6): La variation de la consommation horaire	32

Chapitre VII : Pose de canalisation et organisation de chantier

Tableau (VII.1): volume de la couche végétale ou goudron à décaper	51
Tableau (VII.2) : Volume des tranchées	
Tableau(VII.4) : devis estimatif du projet à réaliser	53
Tableau(VII.5): planification des travaux selon leurs ordres chronologiques	54
Tableau (VII.6) : Calcul de la durée des travaux	55

Liste des planches

Planche n° (1) : Réseau existant du chef-lieu de la commune de Guerouaou

Planche n° (2) : Réseau projeté du chef-lieu de la commune de Guerouaou

Planche n° (3): Profil en long de la conduite principale

Planche n° (4): Plan de réservoir 100m3

Introduction générale

Introduction générale

L'eau, l'objet de base de toute vie, a une importance considérable pour le développement social et économique du pays.

Le réseau d'eau potable constitue un élément important dans la vie des sociétés. La fonction de base d'un réseau de distribution d'eau est de satisfaire les besoins des usagers en eau qui doit être de bonne qualité respectant les normes de potabilité et à une pression et quantité suffisantes.

Le réseau d'AEP est constitué des matériaux qui vieillissent donc il nécessite de le renouveler quand il atteint un seuil de vétusté limite ; Cette limite dépend de nombreux paramètres techniques, économiques, environnementaux, de gestion, ...etc.

La commune de Guerouaou souffre d'un manque d'eau malgré l'existence des tous les ouvrages nécessaires, la résolution de ce problème se fait par une étude de diagnostic du réseau existant afin de déterminer toutes les anomalies du système ; Puis proposer des solutions aptes à appliquer pour améliorer la desserte en eau, et enfin examiner l'état futur du réseau et voir si il est capable de satisfaire les besoins du chef-lieu de la commune.

Chapitre I : Présentation de la zone d'étude

I.1.Introduction:

L'objectif de ce chapitre est de présenter les différentes données qui sont nécessaires à l'élaboration du projet d'AEP de ladite région. Ces données que nous devrons collecter concernent les caractéristiques de la structure de l'agglomération notamment le plan de masse, celles de la population ainsi que la situation hydraulique du système actuel et la source d'eau. D'autres données seront prises également en considération pour mener à bien le projet d'AEP afin de satisfaire les besoins en eau des différentes catégories de consommateurs.

I.2. Situation géographique

La commune de GUEROUAOU, fait partie de la wilaya de Blida. Elle est administrativement limitée par :

- **Au Nord :** par la commune de Boufarik.
- A l'Est : par la commune de Soumaa.
- Au Sud : par la commune de Chréa.
- A l'Ouest : par la commune de Ouled Yaich.

Figure I.1 : Carte de la situation géographique de Guerouaou (Source : Google Maps)

I.3. Situation topographique

La commune de GUEROUAOU occupe la partie centrale de la plaine de la Mitidja, elle est caractérisée par une morphologie quasiment plane avec des pentes $\leq 5\%$ et une altitude atteint 300m.

I.4. Géologie

La ville de Guerouaou appartient à deux ensembles physiques différents

Au nord : la nappe de MITIDJA formée essentiellement des formations alluviales plus ou moins perméable (gravier, sable, argile et limon).

Au sud et sud-ouest : un ensemble montagneux composé d'une formation varié de crétacé et l'éocène.

I.5. Situation climatologique :

I.5.1. Pluviométrie

Les données concernant la pluviométrie de la zone d'étude relèvent de la station de Soumaa :

Tableau(I.1): La pluviométrie moyenne mensuelle de la zone d'étude (Année 2018)

Mois	sept	oct	nov	dec	janv	fev	mars	avril	Mai	juin	juil	aout
Pmoy (mm)	28,3	84,2	120,3	108,5	144,3	27,5	45	59,9	36,1	1	0	5,7

(Source ANRH Blida)

I.5.2. Température :

Les analyses des moyennes mensuelles de températures montrent des grandes différences de valeurs prélevées : on remarque des températures très faibles en mois de Janvier et Février (de 2°c à 6°c) ainsi que des températures très élevées en mois de Juillet et Août (de 35°c à 40°c) cela est exprimé par l'alternance de saison sèche et chaude et d'une saison humide et froide.

Tableau(I.2): La température moyenne mensuelle de la zone d'étude (Année 2018)

Mois	S	0	N	D	J	F	M	A	M	J	J	A
Tmin (°C)	17	15.5	6.5	5.5	2	4	6	7	15	18	21.5	21
Tmax (°C)	32	32	26	18.5	15	17	30	23	30	37	35	40
Tmoy (°C)	24.3	21.9	14.7	11.1	9.3	10.3	17.3	16.8	22.4	26.5	28.5	27.3

(Source : ANRH Blida)

I.5.3. Sismicité:

D'après le règlement parasismique Algérien (version2003), la wilaya de Blida est classée dans la zone une (03) de la carte de zonage sismique du territoire national, où les activités sismiques sont fortes avec intensité élevée et qui nécessitent des mesures spéciales ou antisismiques lors de l'édification des ouvrages.

I.6. Situation démographique

I.6.1.Population actuelle

D'après le recensement de 2018, la population du chef-lieu de la commune de Guerouaou

- Le nombre des habitants du centre de Guerouaou est de 21331 habitants
- Le nombre de logements du lotissement de HALWIYA est de 133 logements et on considère que chaque logement comprend 7 habitants on aura : 931 habitants
- 2 autres lotissements de 250 logements et 350 logements (selon le plan technique de l'APC de Guerouaou), et on considère que chaque logement comprend 7 habitants on aura : 4200 habitants

D'où le nombre total d'habitants en 2018 du chef-lieu de la commune de Guerouaou est de **26462 habitants**

Tableau (I.3): situation démographique du chef-lieu de la commune de Guerouaou (2018)

Désignation	Nombre d'habitants		
Centre de Guerouaou	21331		
Lotissement de HALWIYA	931		
Lotissement de 250 et 350 logements	4200		
Total	26462		

(Source : APC de Guerouaou)

Pour le nombre d'habitant actuel (2020), on peut l'estimer par la formule suivante

$$P = P_0. (1+\eta)^n$$
 (I.1)

Avec: P: le nombre d'habitants en 2020

P0: le nombre d'habitants en 2018

ŋ: le taux moyen annuel d'accroissement de la commune donné à 2% (source : APC de Guerouaou)

N : le nombre d'année de calcul

D'où le nombre d'habitant actuel (en 2020) est de :

27532 habitants

I.6.2.Population future

Du fait du caractère rural du chef -lieu de la commune de Guerouaou, nous préconisons pour un taux d'accroissement de 1.9% pour l'horizon d'étude moyen terme(2030) et 1.8% pour le long terme (2050) ; le nombre d'habitant estimé pour ces horizons par la formule précédente (I.1) et est mentionné dans le tableau suivant :

Tableau (I.4): évolution de la population de la zone d'étude

L'horizon d'étude	Taux d'accroissement	Le nombre d'habitants à
L norizon d etude	(%)	l'horizon
Actuel (2020)	/	27532
Moyen terme (2030)	1.9	33234
Long terme (2050)	1.8	39725

I.7.Les différents catégories de consommateurs

I.7.1.Les équipements publics de la zone d'étude

Tableau (I.5): les équipements publics et leurs besoins moyens journaliers

Désignation	Dotation (1/j/unité)	Nombre d'unité	Consommation Moyenne journalière (m³/j)
Ecole primaire	20	295 élèves	5.89
C.E.M	20	196 élèves	3.92
Lycée	20	219 élèves	4.37
Mosquée	15	360 fidèles	5.4
Maison de jeunes	15	51 personnes	0.76
Bibliothèque communale	15	530 personnes	7.95
Post/ Telecom	15	28 employés	0.42
Chetouane Nedira	/	/	0.64
Hammam+ garage	50	336personnes	16.81

Désignation	Dotation (l/j/unité)	Nombre d'unité	Consommation Moyenne journalière (m³/j)	
Siege de l'ADE	10	27 employés	0.27	
Commissariat	15	110 employés	1.65	
Siege de l'APC	15	30 employés	0.30	
Brigade Gendarmerie	15	80 employés	1.2	
EPSP Bouinane	10	80 employés	0.8	
Parc de l'APC	10	3 m²	0.03	
Total (m ³ /j)	4.25			

(Source : APC Guerouaou)

I.7.2.La zone industrielle

Tableau (I.6): les besoins industriels du chef-lieu de la commune de Guerouaou

Industries	Besoins journalier en eau (m3/j)
AJUSCO-SONALGAZ	80
LOYA usine	70
FLA	80
Couscous MAMA usine	120
ALGESCO GELL S/NATRACH S/NLG	4.43
PROMASIDOR DJAZAIR	3.31
ALGESCO SPA	4.77
HAMIDA MOHAMED	2.21
SARL SOPI	0.88
SARL DJARISSI MOTOR COMPANI	0.54
ZEIDI ALI	0.44
BELHADJOURI SAMIR P/POISSON	0.39
BOUZID OMAR PROD/MATE	0.01
CONSTRUCTION	0.01
TOTAL	366.98

(Source : APC Guerouaou)

I.7.3. Equipements projetés

Selon le P.O.S des équipements publics sont projetés dont les besoins journaliers sont les suivants : **Tableau (I.7) les besoins journaliers des équipements projetés**

Equipement	Surface unitaire (m²)	Surface total (m²)	Dotation (l/j/m2)	Besoins (m3/J)
Complexe sportif	5285	5285	1	5.285
Cantre loisir	7225	7225	1	7.225
Centre commercial	6710	6710	1	6.71
Protection civil	3000	3000	1	3.00
Sanitaire	4270	4270	1	4.27
Total :			26,49	•

(Source : DRE Blida)

I.8. Situation hydraulique du réseau

I.8.1.Type du réseau de distribution [9], [2]

Le réseau existant est de type maillé contenant des ramifications de différents types de matériaux (PEHD, BONNA, Amiante ciment, Acier Galvanisé) et diamètre variant de DN40/49 mm à DN300 mm

I.8.2.La dotation de consommation actuelle [1]

La quantité d'eau nécessaire à l'alimentation d'une agglomération est généralement évaluée, selon le type de consommateur, en litre par 24 heures et par habitant, par carré de surface de végétaux, par mètre cube, par tonne de productivité, par tête d'animal, par véhicule......etc.

Cette quantité d'eau s'appelle la norme de consommation. Cette dernière dépend de certains critères dont les principaux sont :

- Le degré de confort de la population
- Le nombre d'habitants.
- Le développement urbain de la ville.
- La disponibilité de la ressource.
- Les habitudes de la population

Tableau (I.8): Les normes de dotation

Population	Dotation (l/habitant/jr)
P < 2000	125
2000 < P <20.000	150-200
20.000 < P <100.000	200-300
P > 100.000	300-400

(Source: Polycopie du Prof. B.SALAH)

La superficie concernée d'étude pour ce projet est de type urbain et la norme de dotation unitaire journalière est fixée de 150 l/j/habitant.

I.8.3.Ouvrages de stockage [2]

Le stockage de l'eau potable est un composant principal du système d'alimentation en eau potable ; le réseau existant de la zone concernée par l'étude comprend les ouvrages suivants

- Réservoir en cours de réalisation de capacité 2000m³ et de cote égale à 187 m
- Deux réservoirs de capacité 1000+500 m³ situés à une cote de 184.5m
- Un réservoir de capacité 500 m³ assemblé à la station de pompage avec une cote égale à 117.65m

I.8.4.Le schéma d'alimentation:

Le chef-lieu de la commune de Guerouaou est situé dans la zone de captage de la Mitidja, actuellement elle est alimentée par 6 forages; 4 autres forages sont en cours de réalisation avec débit de 10 l/s ainsi qu'une station de pompage.

Les 6 forages ; et par l'intermédiaire d'une station de pompage ; refoulent l'eau vers les réservoirs de stockage 500 m³ et 1000 m³ ; La production des forages est donnée dans le tableau suivant :

Désignation des	Débit d'exploitation	production horaire	production journalière
Forages	(1/s)	(m3/h)	(m3/j)
F01	8,5	30,6	734,4
F02	2,4	8,64	207,36
F03	3,0	10,8	259,2
F04	0,7	2,52	60,48
F05	5,0	18	432
F06	3,84	13,82	331,77
TOTAL	23,44	84,38	2025,21

(Source : DRE Blida)

Le schéma d'alimentation du chef-lieu de la commune de Guerouaou est illustré dans la figure suivante :

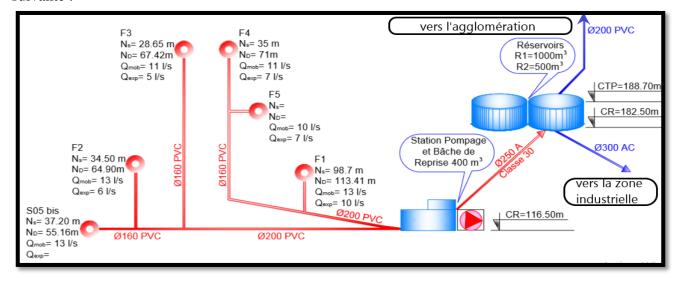


Figure I.2 : Schéma d'alimentation du chef-lieu de Guerouaou (Source : ADE Blida)

I.9. Conclusion

A travers ce chapitre, nous avons présenté d'une façon plus en moins détaillée les données qui sont nécessairement utiles au diagnostic du système d'AEP pour qu'il soit capable de satisfaire les besoins en eau de notre agglomération.

Chapitre II: Estimation des besoins actuels en eau

II.1.Introduction

L'estimation des besoins en eau d'une agglomération dépend d'une norme fixée pour chaque catégorie de consommateur .Cette norme unitaire (dotation) est définie comme un rapport entre le débit journalier et l'unité de consommation.

L'objectif de ce chapitre est d'estimer les besoins actuels en eau potable de la zone d'étude pour voir le fonctionnement du réseau et détecter les anomalies présentes.

II.2. Estimation des besoins de différentes catégories de consommateur

• Les besoins moyens journaliers [1]; [9]

Tout dimensionnement d'un système d'AEP doit faire face à la détermination du débit moyen journalier qui est donné par la relation suivante :

$$Q \text{ moy/j} = \frac{D \times N}{1000}$$
 (II.1)

Avec:

➤ Qmoy/j : Débit moyen journalier (m³/j).

N: nombre d'habitants (hab).

 \triangleright D : Dotation (L/j/hab).

• Les besoins domestiques : en utilisant la formule précédente ; les besoins domestiques sont les suivants :

Tableau (II.1): les besoins domestiques actuels

L'année	Nombre d'habitant	La dotation (l/j/hab)	Qmoy j (m ³ /j)	Qmoy j (l/s)
2020	27532	150	4129.8	47.8

• Les besoins publics

Tableau(II.2): Les besoins publics actuels

Types	Désignation	Dotation (l/j/unité)	Nombre d'unité	Consommation Moyenne journalière (m³/j)		
	Ecole primaire	20	295 élèves	5.89		
Les Besoins	C.E.M	20	196 élèves	3.92		
Scolaires	Lycée	20	219 élèves	4.37		
	Total (m ³ /j)	14.18				
	Mosquée	15	360 fidèles	5.4		
	Maison de jeunes	15	51 personnes	0.76		
	Bibliothèque communale	15	530 personnes	7.95		
Les Besoins Socioculturels	Stade	20	1	0.02		
Sociocultuleis	Post/ Telecom	15	28 employés	0.42		
	Chetouane Nedira	/	/	0.64		
	Hammam+ garage	50	336personnes	16.81		
	Total (m³/j)		32			

Types	Désignation	Dotation (1/j/unité)	Nombre d'unité	Consommation Moyenne journalière (m³/j)	
	Siege de l'ADE	10	27 employés	0.27	
	Commissariat	15	110 employé	1.65	
Les besoins	Siege de l'APC	15	30 employés	0.30	
administratifs	Brigade Gendarmerie	15	80 employés	1.2	
aummstratifs	EPSP Bouinane	10	80 employés	0.8	
	Parc de l'APC	10	3 m²	0.03	
	Total (m³/j)		4.25	5	
Total (m ³ /j)		52.6			
Total (l/s)		0.61			

• Les besoins industriels actuels

Tableau (II.3): la consommation moyenne journalière industrielle

Désignation	Débit moyen journalier (m³/j)
AJUSCO-SONALGAZ	80
Loya usine	70
FLA	80
Couscous MAMA usine	120
Algesco gell s/natrach s/nlg	4.43
Promasidor DJazair	3.31
Algesco SPA	4.77
Hamida Mohamed	2.21
SARL SOPI	0.88
SARL DJarissi motor compani	0.54
Zeidi Ali	0.44
Belhadjouri Samir p/poisson	0.39
Bouzid Omar prod/mate construction	0.01
$TOTAL (m^3/j)$	366.98
Total (l/s)	4.25

• Le débit d'incendie : on estime un débit de 17 l/s pour l'incendie

• Les fuites et gaspillage

Compte tenu des quantités d'eau prévues pour les fuites de réseau de distribution ; il est à noter :

- Pour un réseau bien entretenu, les pertes aboutissent au 25% de la consommation moyenne journalière.
- Pour un réseau de distribution moyennement entretenu, les pertes sont comprises entre 25% à 35% de la consommation moyenne journalière.
- Pour un réseau de distribution mal entretenu, les pertes aboutissent ou dépassent les 50% de la consommation moyenne journalière.

Dans notre cas, le réseau est mal entretenu, les pertes sont estimées à 40% de la consommation moyenne journalière

$$Q_{\text{fuite}} = 40\% * (47.8 + 0.61 + 4.25) = 21.0621/s$$

II.3. Récapitulatif des débits moyens journaliers

Tableau(II.4) Récapitulatif des consommations moyennes journalières :

Type de Consommation	Débit moyen journalier (l/s)
Domestique	47.8
Public	0.61
Industriel	4.25
Total	52.66
Fuites et gaspillage	21.06
Total	73.72

II.4. Variation de la consommation [9]; [2]

Les débits de consommation sont soumis à plusieurs variations dans le temps, parmi lesquelles nous avons :

- Les variations annuelles et à long terme.
- Les variations mensuelles qui sont lié au niveau de vie de l'agglomération.
- Les variations hebdomadaires qui dépendent de l'importance de l'agglomération.
- Les variations horaires qui dépendent du régime de consommation de l'agglomération pendant la journée.

II.5. Etude de la variation de la consommation journalière [2]

Pour projeter un régime de travail d'un système d'alimentation en eau, il faut adopter le graphique de consommation probable. Au cours de l'année, il existe une journée où la consommation est maximale ; de même il existe une journée où la consommation est minimale. Par rapport à la consommation moyenne calculée, nous pouvons déterminer un rapport qui nous indique de combien de fois la consommation maximale est supérieure à la consommation moyenne. Ce rapport est désigné par le terme de coefficient d'irrégularité journalière maximum \mathbf{k}_{maxj}

De même, il existe un coefficient qui nous indique de combien de fois la consommation est inférieure par rapport à la consommation moyenne : ce rapport est appelé coefficient minimum d'irrégularité journalière \mathbf{k}_{mini} .

```
Ainsi, nous pouvons écrire :
```

$$Q_{\text{max } j} = Q_{\text{moy } j} * k_{\text{max } j} \quad [m^3/j]$$

$$Q_{\min j} = Q_{\max j} * k_{\min j} [m^3/j]$$

Avec:

 $Q_{\text{moy }j}$: débit moyen journalier (m³/j).

 $Q_{max j}$: débit maximum journalier (m^3/j).

 $Q_{\min j}$: débit minimum journalier (m³/j).

K max j : Coefficient d'irrégularité journalière maximum varie entre 1.1 à 1.3

Dans notre cas nous prenons $K_{\text{max i}} = 1.3$

K min j : Coefficient d'irrégularité journalière minimum ; varie entre 0,7à 0,9

Dans notre cas $\mathbf{K}_{\min j} = \mathbf{0.8}$

Tableau(11.5): La variation de la consommation journalière à l'norizon actuel							
Type de consommation	$\begin{array}{c}Q_{moyj}\\(m^3/j)\end{array}$	K _{max j}	$\begin{array}{c} Q_{maxj} \\ (m^3/j) \end{array}$	Q _{maxj} (l/s)	K minj	$\begin{array}{c} Q_{min\ j} \\ (m^3/j) \end{array}$	Q _n (l/
D 41	4120.0	1.0	5260.74	(0.100	0.0	2202.04	20.7

Type de consommation	$Q_{\text{moyj}} $ $(\mathbf{m}^3/\mathbf{j})$	K _{max j}	$Q_{maxj} (m^3/j)$	Q _{maxj} (l/s)	K minj	$\begin{array}{c} Q_{\min j} \\ (m^3/j) \end{array}$	Q _{minj} (1/s)
		1.0	,	` /	0.0	` 0'	` /
Domestique	4129.8	1.3	5368.74	62.138	0.8	3303.84	38.239
Public	52.6	1.3	68.38	0.791	0.8	42.08	0.487
Industriel	366.98	1.3	477.074	5.522	0.8	293.584	3.398
Fuite et gaspillage	1819.75	1.3	2365.68	27.381	0.8	1455.802	16.850
Total	6369.13	1.3	8279.872	95.832	0.8	5095.306	58.973

II.6. Etude de la variation de la consommation horaire

L'étude de la variation de la consommation horaire a pour but la détermination du débit de pointe et cela par l'établissement de la répartition horaire du débit maximum journalier ;

En basant sur le tableau ci-dessous, la variation du débit horaire est exprimée en pourcentage du débit maximal journalier

Tableau(II.6): la variation de la consommation horaire

Heure	consomma	cumul			
	С%	$Q_h(m3/h)$	Q _h (l/s)	C%	$Q_h (m3/h)$
0-1	1,5	124,198	34,499	1,438684	124,1981
12	1,5	124,198	34,499	2,877369	248,3961
23	1,5	124,198	34,499	4,316053	372,5942
34	1,5	124,198	34,499	5,754737	496,7923
45	2,5	206,997	57,499	8,152544	703,7891
56	3,5	289,796	80,499	11,50947	993,5846
67	4,5	372,594	103,498	15,82553	1366,179
78	5,5	455,393	126,498	21,1007	1821,572
89	6,25	517,492	143,748	27,09522	2339,064
910	6,25	517,492	143,748	33,08974	2856,556
1011	6,25	517,492	143,748	39,08426	3374,048
1112	6,25	517,492	143,748	45,07877	3891,54
1213	5	413,994	114,998	49,87439	4305,533
1314	5	413,994	114,998	54,67	4719,527
1415	5,5	455,393	126,498	59,94518	5174,92
1516	6	496,792	137,998	65,69992	5671,712
1617	6	496,792	137,998	71,45465	6168,504
1718	5,5	455,393	126,498	76,72983	6623,897
1819	5	413,994	114,998	81,52544	7037,891
1920	4,5	372,594	103,498	85,84149	7410,485
2021	4	331,195	91,999	89,67799	7741,68
2122	3	248,396	68,999	92,55535	7990,076
2223	2	165,597	45,999	94,4736	8155,674
2324	1,5	124,198	34,499	95,91228	8279,872

D'après le tableau de la répartition journalière de la consommation, on a un débit maximal horaire estimé de **517.492 m³/h** durant les heures de pointe (entre 9h et 12h) ; ce débit sera la base du diagnostic et dimensionnement de notre réseau d'AEP.

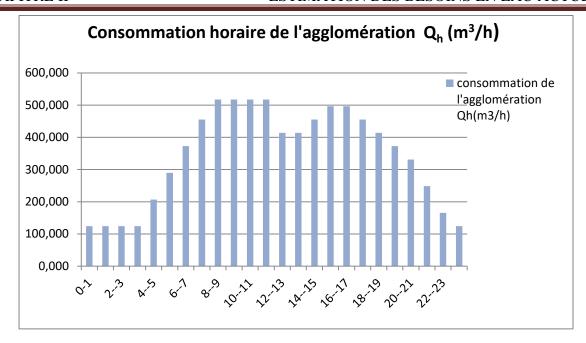


Figure (II.1): histogramme de la consommation horaire de l'agglomération



Figure (II.2): la courbe de la consommation horaire cumulée Q_h

II.7.conclusion

Ce chapitre nous a permis d'étudier la variation de la consommation actuelle ainsi que ses caractéristiques, dans un chapitre suivant nous allons étudier la capacité de stockage de la commune et faire un diagnostic du réseau existant.

Chapitre III: Diagnostic physique et hydraulique du réseau d'AEP

III.1.Introduction

L'objectif de ce diagnostic est de vérifier l'état du réseau d'alimentation en eau potable existant du chef-lieu de la commune de Guerouaou et aussi faire un bilan de fonctionnement passant par :

- L'Identification de différentes anomalies présentes dans le réseau ; les fuites et les pertes en eau
- La Vérification de l'état des réservoirs de stockage et leurs capacités
- La Vérification du fonctionnement du réseau en termes de pression et vitesse

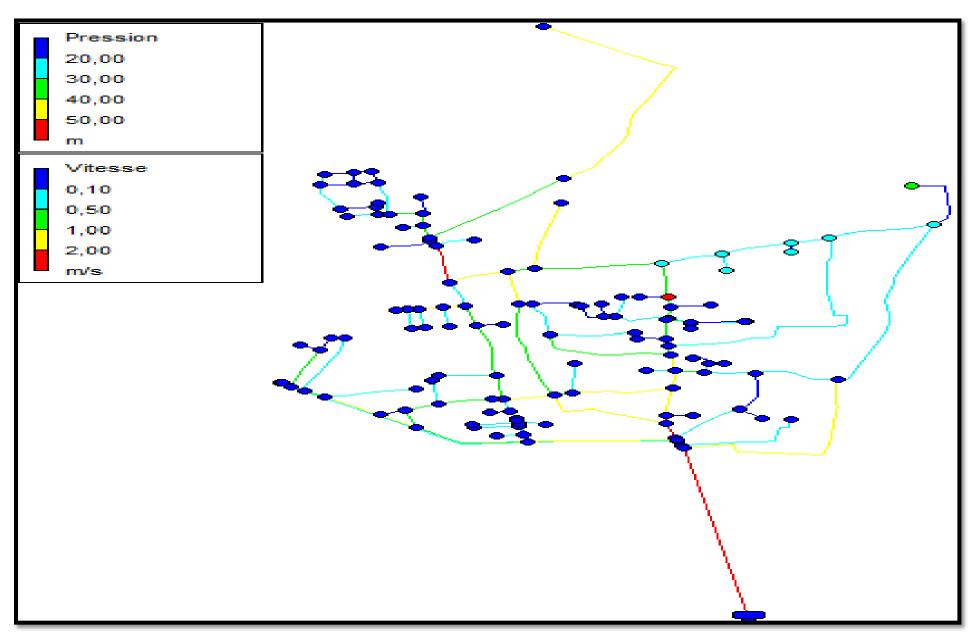
III.2.Diagnostic physique

III.2.1. Type de conduite du réseau

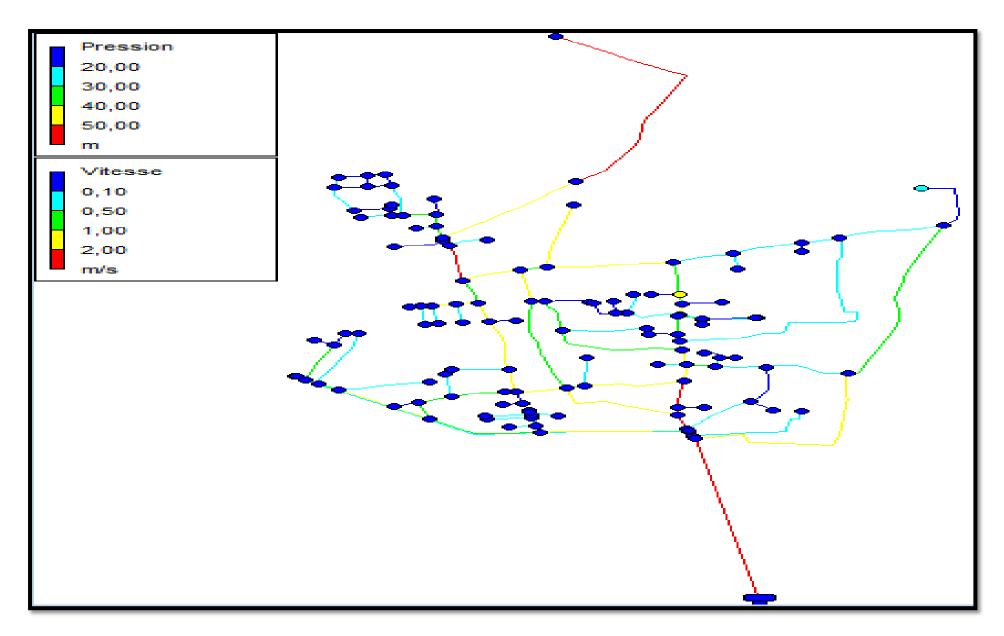
- Le réseau existant est composé d'un ensemble de conduites de différents types et diamètres :
- Les diamètres du réseau utilisés allant d'un DN40/49 jusqu'à un DN300
- Les matériaux de conduites utilisés sont les suivants : PEHD ; Amiante ciment ; Acier galvanisé et BONNA

III.2.2.Description de l'état physique du réseau existant

Le diagnostic physique établit nous montre une très grande dégradation des ouvrages tels que :


- ✓ Les regards de visite des vannes : l'emplacement des vannes est mal fait ; un très grand nombre d'entre eux sont abandonnées et même enterrées ce qui indique une absence totale de l'entretien.
- ✓ Les bouches à clés : absence des tampons des bouches à clés
- ✓ Manque de pièces spéciales et présence des pièces abandonnées
- ✓ Les fuites: le réseau de distribution présente des branchements illicites sur la conduite principale (celle en amiante ciment) et tout le réseau ainsi que les fuies là où il y a des accessoires

III.3. Diagnostic hydraulique


Dans cette partie nous vérifions le fonctionnement du réseau selon les besoins actuels dans le but de détecter les différentes anomalies.

III.3.1.Etat des vitesses et pressions

Nous avons utilisé EPANET pour simuler l'écoulement après introduction de tous les paramètres nécessaires (surtout les rugosités de matériaux vue qu'on n'a pas un seul type, on a pris pour : l'amiante ciment : $\mathcal{E}=0.4$; L'acier galvanisé : $\mathcal{E}=0.15$, PEHD : $\mathcal{E}=0.02$ et le BONNA : $\mathcal{E}=0.3$) les détails de résultats de la simulation sont mentionnés dans le carnet des nœuds (Annexe 1)

Figure(III.1): Etat des tronçons (vitesses) et des nœuds (pressions) du réseau actuel en cas de pointe

Figure(III.2): Etat des nœuds (pressions) et tronçons (vitesses) du réseau actuel en cas de pointe plus incendie

✓ Interprétation

- En cas de pointe: on remarque qu'il y a certain nœuds ont une charge très faibles (allant jusqu'à 7m) ainsi que les vitesses sont très faibles dans tous les tronçons et qui n'assure pas l'écoulement de l'eau (V=0.02 m/s dans quelques tronçons)
- En cas de pointe+ incendie: lors de la production d'un incendie au niveau du point défavorable (la zone industrielle dans notre cas) un rabaissement de pression se produit dans tous les nœuds du réseau et même une dépression dans certain nœuds (allant jusqu'à -48.33m et -305.78m au niveau du nœud n126) et les vitesses sont toujours très faibles.

III.3.2. la source disponible

La zone d'étude est alimentée par des forages qui refoulent un débit entre 1 l/s et 10 l/s mais on doit comparer les besoins journaliers avec la source d'alimentation pour confirmer sa disponibilité sinon on cherche une autre source d'alimentation.

Forages	$Q_{prod j} (m3/j)$	Q prod j (l/s)	$Q_{\max j} (m^3/j)$	$Q_{\text{max j}}(l/s)$
F01	734,4	8,5		
F02	207,36	2,4		
F03	259,2	3		
F04	60,48	0,7	8279.872	95.832
F05	432	5		
F06	331,77	3,84		
TOTAL	2025,21	23,44		

(Source : ADE Blida)

Le tableau nous montre que le débit fournit par les forages n'est pas suffisant pour répondre aux besoins des habitants ; sachant qu'il y a 4 forages projetés (prochainement) avec un débit de 20 l/s pour chacun cela va résoudre le problème du manque d'eau actuellement

<u>NB</u>: Vue l'état physique de notre réseau et qu'on estime un très grand volume de fuite, les réservoirs disponibles peuvent ne pas répondre aux besoins de stockage mais une fois on établit un réseau plus correct on revérifiera la capacité de stockage de nos réservoirs.

III.4.Conclusion

On constate que le réseau existant présente un très grand nombre d'anomalies, en plus de ce qu'on a déjà mentionné on cite :

✓ Des conduites en parallèle sur la même route : qu'on doit remplacer par une seule conduite d'un diamètre équivalent et assurant le débit total

Figure (III.3) conduites en parallèle formant le réseau existant

(En bleu : les conduites du réseau existant ; la zone hachurée représente les habitations).

- ✓ Conduites en amiante ciment : la majorité des conduites formant le réseau existant (65%) sont en amiante ciment qui et un matériau cancérigène et il est indispensable de le changer par un matériau plus sain et ne risque pas la santé humaine.
- ✓ Les autres types des matériaux : le PEHD ; PVC et l'acier galvanisé représentent 35% du réseau seulement.
- ✓ Les diamètres du réseau : en faisant la simulation de l'écoulement, dans le cas de pointe et pointe + incendie, on remarque des pressions faibles et des vitesses faibles aussi d'où la nécessité de changer les diamètres des conduites pour assurer les vitesses et pressions demandées.
- ✓ Les fuites et gaspillage : le débit consommé sous forme de fuites engendre une très grande consommation en eau ce qui explique l'augmentation du volume de stockage ainsi de la source.
- ✓ Les réservoirs de stockage : les réservoirs existants sont en bonne état nécessitant un entretien ordinaire seulement

Le réseau est en déséquilibre nécessitant une rénovation totale; notre rôle (les chapitres suivants) est d'étudier les variantes de réseau à fin de choisir la meilleure qui assure les besoins en termes de débit et pression, d'une façon technico-économique.

Chapitre IV : Réservoirs

CHAPITRE IV RESERVOIRS

IV.1.Introduction

Le stockage de l'eau est un composant essentiel du système d'alimentation en l'eau potable, il se fait par l'intermédiaire d'une enveloppe qui contient l'eau et qui relie l'adduction au réseau de distribution.

Dans notre cas d'étude on va vérifier la suffisance des réservoirs existants et projeter d'autres si nécessaire.

IV.2.Les rôles des réservoirs [1]; [6]

Les réservoirs assurent une multitude de fonction, on peut citer :

- La régulation du débit : le réservoir permet d'adapter la production à la consommation
- La régularisation des pressions : le réservoir est un régulateur de pression puisque sa charge conditionne les pertes de charge dans le réseau
- Le réservoir assure une fonction de sécurité d'approvisionnement dans l'éventualité d'un incendie sur les équipements d'alimentation du réseau de distribution (pollution, rupture d'une canalisation, interruption de l'alimentation en énergie)
- L'emmagasinement de l'eau pendant les heures creuses de consommations et restitution pendant les heures où la consommation devient importante
- Une brise charge dans le cas d'une distribution étagée
- Le traitement de l'eau : les réservoirs disposés à l'aval immédiat des stations de traitement assure un temps de contacte suffisant entre l'agent désinfectant et l'eau, garantissant une désinfection adéquate avant la distribution
- Réduction des dépenses d'énergie : le réservoir permet de privilégier le pompage pendant des heures donc de plus faible coût de l'énergie

IV.3.L'emplacement des réservoirs [7]

L'emplacement du réservoir pose souvent un problème, pour cela nous sommes amenés à tenir compte des certaines considérations techniques et économiques suivantes :

- Le réservoir doit permettre d'assurer une pression au moment de la pointe et une distribution gravitaire, c'est-à-dire que la côte du radier doit être supérieure à toutes côtes piézométriques nécessaires dans le réseau de distribution
- Le réservoir doit être implanté, de préférence, à l'extrémité de l'agglomération ou à proximité du centre important de consommateur
- Pour des raisons économiques : il est préférable que le remplissage du réservoir se fasse par gravité donc à un niveau bas par rapport à la prise d'eau.

IV.4.Choix du type de réservoir [4]

On peut classer les réservoirs en plusieurs catégories : D'après la nature des matériaux de construction, on distingue :

- Les réservoirs métalliques
- Les réservoirs en maçonnerie
- Les réservoirs en béton arme, ordinaire ou précontraint

CHAPITRE IV RESERVOIRS

D'après la situation des lieux, ils peuvent être :

- Enterrées
- Semi-enterrés
- Sur élèves

D'après leurs formes :

- Circulaires
- Rectangulaires
- Ou d'une forme quelconque

IV.5. Equipements des réservoirs d'alimentation [2] [1]

Le réservoir doit comporter les équipements :

- Une conduite d'arrivée ou d'alimentation: Cette conduite, du type refoulement ou gravitaire, doit arriver de préférence en siphon noyé ou par le bas, toujours à l'opposé de la conduite de départ, pour provoquer le brassage qui permet le renouvellement de l'eau; L'extrémité de cette dernière est munie d'un dispositif qui obture la conduite quand le niveau atteint son niveau maximal.
- Une conduite de départ ou de distribution : cette conduite est placée à l'opposé de la conduite d'arrivée à quelques centimètres au-dessus du radier pour éviter l'entrée des matières en suspensions ; L'extrémité de cette dernière est munie d'une crépine courbée pour éviter le phénomène de vortex et d'une vanne à survitesse.
- Une conduite de trop plein : Cette conduite permet d'évacuer l'excès d'eau arrivant au réservoir en cas où une pompe ne s'arrête pas ; L'extrémité de cette conduite doit être en forme de siphon afin d'éviter l'introduction de certains corps nocifs dans la cuve.
- Une conduite de vidange : Elle permet la vidange du réservoir en cas de nettoyage ou de réparation ; Elle est munie d'un robinet- vanne, et se raccorde généralement à la conduite de trop- plein. Le robinet-vanne doit être nettoyé après chaque vidange pour éviter le dépôt de sable.
- Une conduite by-pass : C'est un tronçon de conduite qui relie la conduite d'arrivée et la conduite de départ, elle fonctionne uniquement quand le réservoir est isolé pour son entretien.
- Un système de matérialisation d'incendie : C'est une disposition spéciale de la tuyauterie qui permet d'interrompre l'écoulement, une foi le niveau de la réserve atteint. Nous distinguons :
 - Le système à deux prises : Ce système est très rarement utilisé du fait que la réserve de sécurité n'est pas convenablement renouvelée.
 - Le système à siphon : Ce système à l'avantage de renouveler constamment la réserve d'incendie.
- Autres équipements à prévoir dans les réservoirs : comme :
 - ➤ Une fenêtre d'aération : permettant l'entrée et la sortie de l'air lors du remplissage et la vidange du réservoir.
 - ➤ Un accès pour le nettoyage de la cuve
 - > Une chambre de vanne
 - ➤ Un trop plein pour l'évacuation de l'excédent d'eau ainsi qu'une galerie de vidange au fond

CHAPITRE IV RESERVOIRS

- ➤ Une fermeture par flotteur de l'alimentation
- ➤ Un capteur de niveau d'eau dans le réservoir

IV.6.Recommandations divers

- Limiter l'entrée de la lumière naturelle pour éviter les risques de prolifération d'algues.
- Éviter l'élévation de la température de l'eau par une bonne isolation thermique (talutage, pare-soleil), et ceci pour limiter l'activité biologique et protéger la structure contre les microfissurations.
- Aménager des évacuations pour les eaux pluviales.
- Prévoir des accès au réservoir empruntable par des véhicules en toute saison.
- Le renouvellement de l'étanchéité extérieure afin de parer à toute infiltration d'eau pouvant contaminer l'eau stockée.
- La mise en œuvre d'une isolation thermique afin de maintenir à l'intérieur de l'ouvrage une température constante proche de celle de l'eau emmagasinée.
- La réfection du revêtement de la surface intérieure en contact avec l'eau potable.
- La séparation de la réserve d'eau et de la chambre à vannes.
- La modification du système d'aération de la cuve (élimination des chapeaux d'aération audessus du plan d'eau et mise en place d'un système d'aération avec bouche murale, filtres et gaines d'aération horizontales).
- La modification de l'accès aux cuves pour faciliter le travail du personnel en charge des travaux d'entretien, le renouvellement de la tuyauterie et de la robinetterie
- La stagnation prolongée de l'eau peut y être la cause de la contamination de l'eau, une vidange chaque mois en période d'été e au moins une fois par ans pour le nettoyage et la désinfection des réservoirs s'avère nécessaire.

IV.7. Dimensionnement de la capacité de stockage d'un réservoir [1] [4]

Le dimensionnement d'un réservoir doit prendre en compte l'évolution de la population et ses habitudes de consommation. Il doit être tenu compte du fait que l'eau ne doit pas stagner dans le réservoir plus de 24 heures.

Pour estimer la capacité d'un réservoir, nous avons recouru soit à la méthode graphique, soit à la méthode analytique.

- La méthode graphique : cette méthode tient compte de la courbe de consommation totale (intégrale) et de la courbe d'apport du débit pompé en fonction de la durée de pompage. La capacité est déduite à partir des extremums des cumuls de la consommation vis-à-vis de celle des apports.
- La méthode analytique : Connaissant le régime de consommation de l'agglomération ainsi que le régime de travail de la station de pompage, nous déterminons analytiquement la capacité du réservoir. En conséquence, la capacité sera déduite à partir des résidus entre le cumul d'apport et de départ d'eau pour chaque heure pendant 24 heures

CHAPITRE IV RESERVOIRS

IV.8. Verification de stockage

Pour satisfaire au rôle qu'ils doivent jouer, les réservoirs doivent avoir une capacité suffisante.

La capacité d'un réservoir doit être estimée en tenant compte des variations des débits à l'entrée comme à la sortie, augmentée éventuellement de la réserve d'incendie qui est estimée à un minimum de 120 m³.

Pour notre cas d'étude, il existe :

- Un réservoir 1500 m³ qui alimente le réseau actuel (fonctionne)
- Un 2^{ème} réservoir de capacité 2000m3 en cours de réalisation (ne fonctionne pas encore).

La capacité du réservoir se calculera comme suit :

$$V_{\text{total}} = V_{\text{utile}} + V_{\text{incendie}}$$
 (IV.1)

Avec:

V_{total} : la capacité totale du réservoir estimée en m³.

$$V_{\text{utile}}$$
: la capacité résiduelle qui est égal à : $V_{\text{utile}} = \frac{a}{100} *Q_{\text{max j}}$ (IV.2)

Avec:

a: fraction horaire du débit maximum journalier (%): a = Reste⁺_{max} + |Reste⁻|_{max}

Q_{max j}: La consommation maximale journalière (m³/jr).

Remarque:

Vu que l'alimentation des réservoirs se fait par pompage, les coefficients de l'apport dépendent des heures de refoulement :

- 4h d'arrêt de pompage : de 00h jusqu'à 4h du matin, le coefficient de l'apport égale à 0%.
- 16h de pompage: de 4h jusqu'à minuit, le coefficient de l'apport égale à 5%.

En ayant les coefficients horaires de consommation de chaque partie, on diminue ces derniers des coefficients de l'apport :

- Si c'est positif, ceci sera considéré comme stockage.
- Si c'est négatif, ceci sera considéré comme distribution.

On calcule ensuite le reste, et de là on tire les maximums des valeurs positives et négatives, et c'est ainsi qu'on calcule la fraction horaire « a »

Une fois la fraction estimée, on calcule le volume régulation, et on lui ajoute le volume d'incendie

CHAPITRE IV RESERVOIRS

Tableau(IV.1) : calcul de la capacité du réservoir

Heures	Consommation (%)	Apport (%)	Arrivée au réservoir (%)	Départ du réservoir (%)	Reste dans le réservoir(%)
0-1	1,5	0	-	1,5	8,5
12	1,5	0	-	1,5	7
23	1,5	0	-	1,5	5,5
34	1,5	0	-	1,5	4
45	2,5	5	2,5	-	6,5
56	3,5	5	1,5	-	8
67	4,5	5	0,5	-	8,5
78	5,5	5	1	0,5	8
89	6,25	5	-	1,25	6,75
910	6,25	5	-	1,25	5,5
1011	6,25	5	-	1,25	4,25
1112	6,25	5	-	1,25	3 3
1213	5	5	0	0	3
1314	5	5	0	0	3
1415	5,5	5	-	0,5	2,5
1516	6	5	1	1	1,5
1617	6	5	1	1	0,5
1718	5,5	5	-	0,5	0
1819	5	5	0	0	0
1920	4,5	5	0,5	-	0,5
2021	4	5	1	-	1,5
2122	3	5	2	-	3,5
2223	2	5	3	-	6,5
2324	1,5	5	3,5	-	10

D'où

$$V_{\text{utile}} = \frac{10}{100} *13090,069 = 1309.007 \text{ m}^3$$

$$V_{total} = V_{utile} + V_{incendie} = 1309.007 + 120 = 1429,007 \text{ m}^3$$

Le volume nécessaire pour le stockage est de 1500 m³ donc les réservoirs existants suffit largement pour répondre aux besoins des consommateurs.

IV.9. Conclusion

D'après ce chapitre, nous remarquons que les réservoirs ont un rôle très important (stockage et distribution) ; pour cela ils nécessitent une surveillance régularisée et un entretien périodique concernant le nettoyage de la cuve. Il convient donc de bien les concevoir et de bien les réaliser (assurant l'étanchéité) afin qu'ils remplissent toutes les fonctions requises d'une manière durable.

Chapitre V : Rénovation du réseau

V.1.Introduction

Dans les chapitres précédents on a conclu que le réseau est en déséquilibre nécessitant un changement des différentes conduites soit l'aspect dimensions (diamètres et épaisseurs de conduite) ou matériaux (type de matériau de conduite utilisé) de façon à assurer une alimentation en eau potable en termes de pression et vitesse pour tous les consommateurs du chef-lieu de la commune de GUEROUAOU.

En arrivant à cette étape de l'étude, nous devons proposer les différentes variantes de réseau qui répondent aux besoins techniques et choisir la plus économique pour la population actuelle et future.

V.2. Classification des réseaux de distribution : [4], [1]

Les principales classifications des réseaux sont :

- ✓ Réseau ramifié
- ✓ Réseau maillé
- ✓ Réseau étagé

V.2.1.Le réseau maillé [2] [1]

Pour la distribution en eau des agglomérations de moyenne et de grande importance, ils présentent une solution plus adéquate grâce à leur sécurité et leur souplesse d'utilisation.

Les réseaux maillés sont constitués principalement d'une série de canalisation disposée de telle manière qu'il soit possible de décrire des boucles fermées ou maillées, ils sont utilisés en général dans les zones urbaines.

V.2.2.Le réseau ramifié [2] [1]

Ce type de réseau se présente selon une structure arborescente à partir du nœud à charge fixée assurant la mise sous pression. Cette configuration est justifiée par la dispersion des abonnés. Cependant, ce type de topologie réduit la fiabilité du réseau dans le cas d'une rupture d'une conduite, privant en eau les utilisateurs en aval du point de rupture. Elle caractérise généralement les réseaux de distribution d'eau en milieu rural.

V.2.3.Réseaux étagés [2] [1]

Le réseau étagé est caractérisé par des différences de niveau très importantes, ce qui fait que la distribution de l'eau par le réservoir donne des fortes pressions aux points bas.

En effet, le réseau exige l'installation d'un réservoir intermédiaire, alimenté par le premier qui permet de la régulariser la pression dans le réseau.

V.3.Conception d'un réseau [2] [1]

Plusieurs facteurs ont une influence sur la conception du réseau :

- ✓ L'emplacement des quartiers et consommateur principaux
- ✓ Le relief.
- ✓ Le souci d'assure un service souple et régulier.

V.4. Choix du type de matériaux et de réseau [2] [4]

Dans ce projet, notre étude se contentera sur l'utilisation de polyéthylène à haute densité (PEHD) vu les avantages qu'elle présente :

- ✓ Ils sont disponibles sur le marché.
- ✓ Peuvent supporter des pressions importantes.
- ✓ Économique sur le transport.
- ✓ Leur continuité et leur souplesse

Et pour le réseau, nous avons choisis dans ce projet la réalisation d'une ossature maillée.

V.5. Proposition du réseau d'alimentation en eau potable

Les conditions hydrauliques actuelles ne répondent pas aux besoins des habitants de façon adéquate comme il a été démontré dans le chapitre précédent pour cela nous allons proposer des variantes de réseau qui répondent aux critères.

Le réseau actuel comporte 2 réservoirs de capacité R_1 (1000+500) m^3 en fonctionnement et R_2 2000 m^3 qui rentre en service prochainement.

La variante proposée pour notre agglomération est :

✓ l'alimentation de l'agglomération se fait par le réservoir R₁seulement et R₂ un réservoir de stockage (c'est-à-dire lors du pompage R₁ alimente R₂ et R₂ alimente R₁ pendant les heures d'arrêt de pompage).

V.6. Estimation des besoins de consommation en eau potable pour l'horizon 2050

V.6.1.Le débit moven journalier

✓ La population future

Pour le nombre d'habitant futur (2050) on peut l'estimer par la formule suivante

$$P = P_0 \cdot (1+\eta)^n$$
 (IV.1)

Avec:

P: le nombre d'habitant en 2050

P0: le nombre d'habitant en 2020

ŋ: le taux moyen annuel d'accroissement de la commune donné à 1.8% (source : APC de Guerouaou)

N : le nombre d'année de calcul

Tableau (V.1): évolution de la population de la zone d'étude

L'horizon d'étude	Taux d'accroissement	Le nombre d'habitants à	
	(%)	l'horizon	
Actuel (2020)	/	27532	
Moyen terme (2030)	1.9	33234	
Long terme (2050)	1.8	39725	

✓ Besoin domestique

Le débit moyen journalier est donné par la formule suivante :

$$Q \text{ moy/j} = \frac{D \times N}{1000}$$
 (IV.1)

Avec:

Qmoy/j : Débit moyen journalier (m³/j).

N: nombre d'habitants (hab).

D : Dotation (L/j/hab) prise 200 l/j/hab selon les normes de dotation (Si 20.000
< P <100.000 habitants la dotation est prise entre 200 l/j/hab et 300 l/j/hab)

Tableau (V.2): Le besoin journalier domestique

L'anı	née	Nombre d'habitant	La dotation (l/j/hab)	Qmoy j (m³/j)	Qmoy j (l/s)
205	0	39725	200	7945	91.956

✓ Les équipements publics

En plus des équipements publics existants ; l'APC a projeté des équipements pour l'horizon futur (2050) tel que :

Tableau (V.3): Les besoins journalier des équipements publics

Unité	Dotation (l/j/unité)	Besoins (m ³ /J)	
265 personnes	20	5.285	
482 personnes	15	7.225	
6710 m²	1	6.71	
300 personnes	10	3.00	
285 personnes	15	4.27	
ents projetés (m3/J)	26.49		
ents existants (m³/j)	52.6		
Total (m³/j)			
/s)	0.92		
	265 personnes 482 personnes 6710 m² 300 personnes 285 personnes ents projetés (m3/J) ents existants (m³/j) 3/j)	265 personnes 20 482 personnes 15 6710 m² 1 300 personnes 10 285 personnes 15 ents projetés (m3/J) 26.49 ents existants (m³/j) 52.6 3/j) 79.09	

(Source: DRE Blida)

✓ Les industries

Aucune extension n'est prévue pour la zone industrielle ; d'où la consommation journalière des équipements industriels est de 4.25 l/s

Le débit moyen journalier est la somme des débits de consommation des différentes catégories, estimé de 97.126 l/s égale à 8391.6864 m³/j.

- ✓ Le débit d'incendie : on estime un débit de 17 l/s pour l'incendie
- ✓ Les fuites et gaspillage : l'état de notre réseau est neuf, on estime un pourcentage de 20% du débit moyen journalier pour les fuites et gaspillage, égale à 1678.214 m³/j ou 19.424 l/s.

Tableau (V.4): Récapitulatif des consommations moyennes journalières

Type de Consommation	Débit moyen journalier (l/s)
Domestique	91.956
Public	0.92
Industriel	4.25
Total	97.126
Fuites et gaspillage	19.424
Total	116.55

V.6.2.La variation du débit moyen journalier [2] [9]

Pour projeter un régime de travail d'un système d'alimentation en eau, il faut adopter le graphique de consommation probable. Au cours de l'année, il existe une journée où la consommation est maximale ; de même il existe une journée où la consommation est minimale. Par rapport à la consommation moyenne calculée, nous pouvons déterminer un rapport qui nous indique de combien de fois la consommation maximale est supérieure à la consommation moyenne. Ce rapport est désigné par le terme de coefficient d'irrégularité journalière maximum \mathbf{k}_{maxj}

De même, il existe un coefficient qui nous indique de combien de fois la consommation est inférieure par rapport à la consommation moyenne : ce rapport est appelé coefficient minimum d'irrégularité journalière \mathbf{k}_{minj} .

Ainsi, nous pouvons écrire :

$$Q_{\text{max } j} = Q_{\text{moy } j} * k_{\text{max } j} \quad [m^3/j]$$

$$Q_{\text{min } j} = Q_{\text{moy } j} * k_{\text{min } j} \quad [m^3/j]$$

Avec:

Q moy j : débit moyen journalier (m³/j). Q max j : débit maximum journalier (m³/j). Q min j : débit minimum journalier (m³/j).

K max i : Coefficient d'irrégularité journalière maximum varie entre 1.1 à 1.3

Dans notre cas nous prenons $K_{max i} = 1,3$

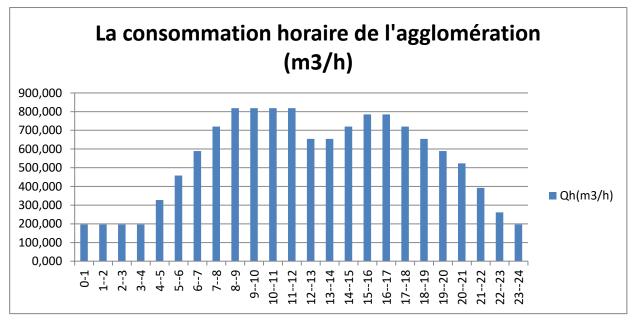
K min i : Coefficient d'irrégularité journalière minimum ; varie entre 0,7à 0,9

Dans notre cas $K_{min i} = 0.8$

Tableau (V.5): Récapitulatif de la variation de la consommation journalière

Type de consommation	$\begin{array}{c} Q_{moyj} \\ (m^3/j) \end{array}$	K _{max j}	$\begin{array}{c} Q_{maxj} \\ (m^3/j) \end{array}$	Q _{maxj} (l/s)	K minj	$\begin{array}{c} Q_{min j} \\ (m^3/j) \end{array}$	Q _{minj} (l/s)
Domestique	7945	1,3	10328,5	119,543	0,8	6356	73,565
Public	79,090	1,3	102,817	1,190	0,8	63,272	0,732
Industriel	366,980	1,3	477,074	5,522	0,8	293,584	3,398
Fuite et gaspillage	1678,214	1,3	2181,678	25,251	0,8	1342,571	15,539
Total	10069,284	1,3	13090,069	151,505	0,8	8055,427	93,234

V.6.3.La consommation horaire


L'étude de la variation de la consommation horaire a pour but la détermination du débit de pointe et cela par l'établissement de la répartition horaire du débit maximum journalier ;

En basant sur le tableau ci-dessous, la variation du débit horaire est exprimée en pourcentage du débit maximal journalier.

Tableau(V.6): La variation de la consommation horaire

TT	consommati	consommation de l'agglomération					
Heure	C%	Q _h (m3/h)	Q _h (l/s)	С%	Q _h (m3/h)		
0-1	1,5	196,351	54,542	2,274	196,351		
12	1,5	196,351	54,542	4,549	392,7021		
23	1,5	196,351	54,542	6,823	589,0531		
34	1,5	196,351	54,542	9,098	785,4042		
45	2,5	327,252	90,903	12,889	1112,656		
56	3,5	458,152	127,265	18,196	1570,808		
67	4,5	589,053	163,626	25,019	2159,861		
78	5,5	719,954	199,987	33,359	2879,815		
89	6,25	818,129	227,258	42,836	3697,945		
910	6,25	818,129	227,258	52,313	4516,074		
1011	6,25	818,129	227,258	61,790	5334,203		
1112	6,25	818,129	227,258	71,267	6152,333		
1213	5	654,503	181,807	78,849	6806,836		
1314	5	654,503	181,807	86,431	7461,339		
1415	5,5	719,954	199,987	94,770	8181,293		
1516	6	785,404	218,168	103,868	8966,697		
1617	6	785,404	218,168	112,966	9752,102		
1718	5,5	719,954	199,987	121,306	10472,06		
1819	5	654,503	181,807	128,888	11126,56		
1920	4,5	589,053	163,626	135,711	11715,61		
2021	4	523,603	145,445	141,776	12239,21		
2122	3	392,702	109,084	146,325	12631,92		
2223	2	261,801	72,723	149,358	12893,72		
2324	1,5	196,351	54,542	2,274	196,351		

D'après le tableau de la répartition journalière de la consommation, on a un débit maximal horaire estimé de $818.129 \, m^3/h$ durant les heures de pointe (entre 9h et 12h) ; ce débit sera la base du diagnostic et dimensionnement de notre réseau d'AEP.

Figure(V.1): histogramme de la consommation horaire de l'agglomération

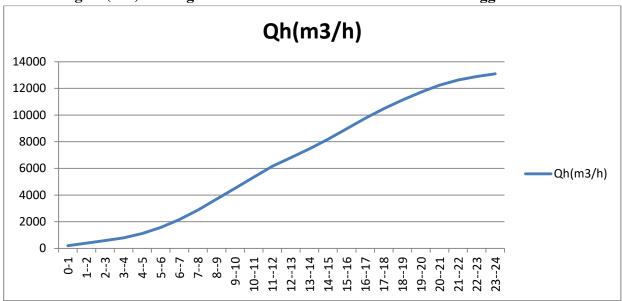


Figure (V.2) : La courbe de la consommation horaire cumulée

V.7. Calcul hydraulique du réseau de distribution pour l'horizon 2050

Le calcul du réseau de distribution se fait pour les deux cas :

- Cas de pointe
- Cas de pointe plus incendie.

V.7.1. choix du matériau des conduites [6] [1]

Le choix du matériau utilisé est en fonction de la pression supportée, de l'agressivité du sol et de l'ordre économique (coût et disponibilité sur le marché) ainsi que la bonne jonction de la conduite avec les équipements auxiliaires (joints, coudes, vannes...etc.).

Le réseau projeté sera totalement en PEHD pour les raisons suivantes :

- La disponibilité sur le marché national.
- Le procède de raccordement (soudage bout à bout) est très solide et ne permet pas l'apparition des zones faibles dans la conduite.
- Sa rugosité minimale.
- Sa résistance aux effets de sol (sols agressifs).
- Le PEHD il est non corrodable (détérioration chimique de la conduite).
- Le PEHD est un matériau flexible donc il est résistant aux charges extérieures.

V.7.2. Vérification du stockage

En se basant sur les résultats du chapitre précédent, on constate que le volume du réservoir existant est suffisant pour le stockage des besoins de notre zone d'étude.

V.7.3.Dimensionnement du réseau projeté [2] [1] [9] [4]

Pour dimensionner le réseau on passe par les étapes suivantes :

- Calcul des débits de dimensionnement (débits en route et aux nœuds).
- Repartir les débits arbitrairement dans le réseau en respectant la règle suivante :

$$\Sigma$$
 Qentrants= Σ Qsortants.

- Attribuer les diamètres aux conduites en fonction des débits et vitesses limites.
- On utilise le logiciel EPANET pour simuler le fonctionnement du réseau pour les deux cas de calcul; on doit s'assurer du bon fonctionnement du réseau à l'horizon 2050 en termes de pression et vitesse.

V.7.4. Estimation des débits de dimensionnement

La détermination des débits dans un réseau s'effectue de la manière suivante :

- 1. On détermine la longueur de chaque tronçon qui assure un débit en route du réseau
- 2. On calcule le débit en route en se basant sur la consommation maximale horaire en cas de pointe et en cas de pointe + incendie
- 3. On calcule le débit spécifique en considérant le débit en route

a. Le débit en route

Il est défini comme étant le débit reparti uniformément le long d'un tronçon du réseau, il est donné par la relation suivante :

$$\Sigma Qr = Q_{max h} - \Sigma Q_{conc}$$

Avec : Σ Qr : Le débit route global

Q_{max h}: le débit maximal horaire consommé

Σ Q_{conc} : Somme de débits concentrés

b. Le débit spécifique

Le débit spécifique est défini comme étant le rapport entre le débit de route et la somme des longueurs de tous les tronçons assurant un débit en route :

$$Q_{sp} = \frac{\sum Qr}{\sum Li}$$

Avec: Qsp: débit spécifique (1/s/m)

 ΣQr : la somme des débits en route

 Σ Li : la somme des longueurs des tronçons du réseau (m)

c. Le débit au nœud

Le débit au nœud est celui qui est concentré à chaque point de jonction des conduites du réseau, il doit être déterminé à partir de la relation suivante :

$$Q_{n,\,i} = \, 0.5 * \, \Sigma \, \, Q_{r\,i\text{-}k} \, + \Sigma \, \, Qconc$$

Avec : Q_{n, i}: débit au nœud i

 $\sum Q_{ri-k}$: somme des débits route des tronçons reliés au nœud i

 Σ Qconc : somme des débits concentrés au nœud.

V.7.4.1. Cas de pointe

D'après le tableau (IV.6) qui indique la consommation horaire on constate que l'heure de pointe est entre 8h et 12h donc :

$$Q_{pnte} = Q_{max h} = 818.129 \text{m}^3/\text{h} = 227.258 \text{ l/s}$$

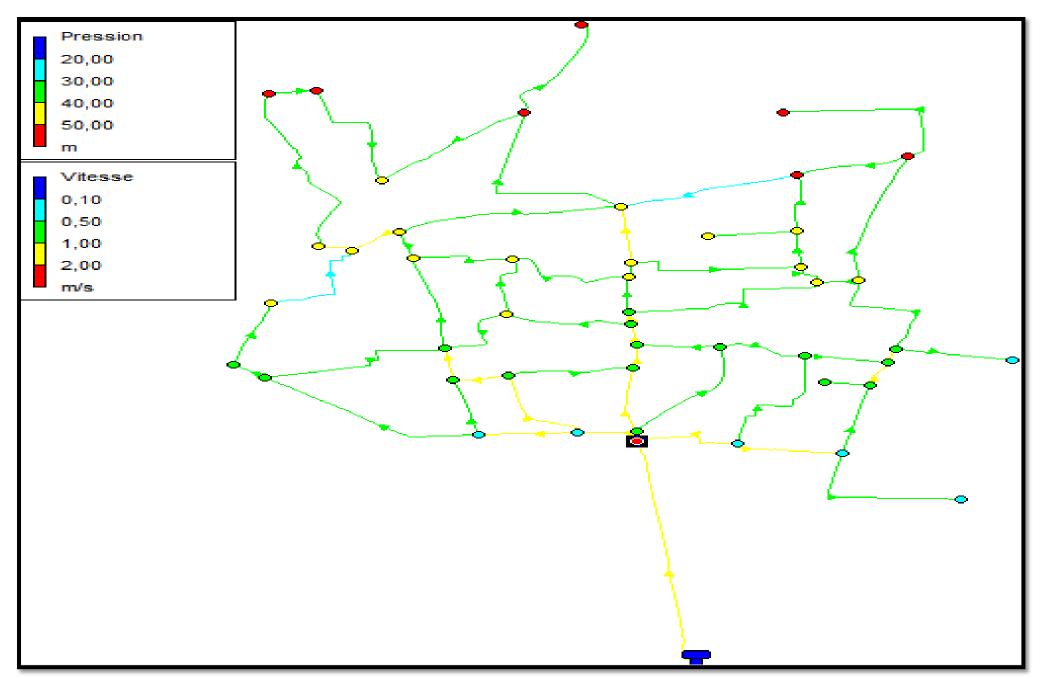
a) Débit en route

b) Débit spécifique :

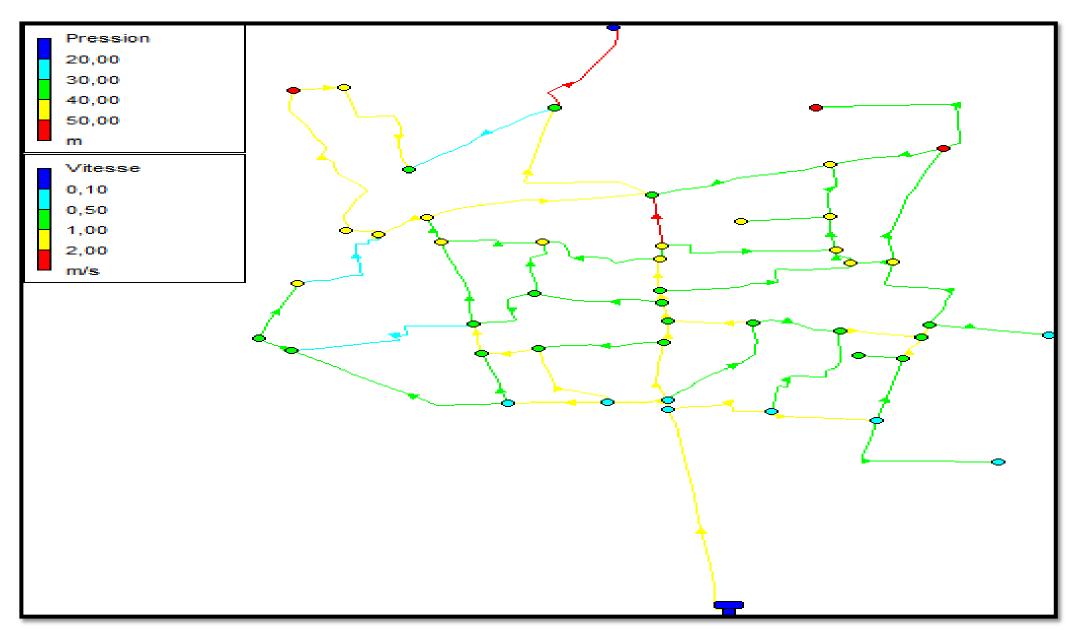
$$Q_{sp} = 0.0109 \text{ 1/s/m}$$

c) Débit route pour chaque tronçon et les débits aux nœuds

Les résultats de calcul des débits en route et aux nœuds seront mentionnés dans le carnet des nœuds.


V.7.4.2. Cas de pointe + incendie

Dans ce cas le calcul se fait de la même manière que le cas précédent mais seulement on doit s'assurer que le débit d'incendie donné par le réservoir (est de **17 l/s**) se trouve au point le plus défavorable qui est dans notre cas le point le plus loin (nœud n° 26 avec une cote de terrain de 98.5 m).


V.7.5.Résultat de la simulation par EPANET [5]

EPANET est un logiciel permettant de modéliser le réseau d'alimentation en eau potable et préserver toutes ses caractéristique (les longueurs de tronçons ; les cotes ; les pentes ; les diamètres des conduites ; ...etc.) et par la suite modéliser l'écoulement réel et faire une estimation des pertes de charge ; les vitesses et les pressions engendrés par l'écoulement

Après avoir saisi les données nécessaires à la simulation, on lance la simulation du réseau et suite à plusieurs essais des diamètres de conduites dans le but d'avoir des vitesses et des pressions admissibles, les résultats de simulation sont regroupés dans les figures suivantes et les tableaux dans le carnet des nœuds (voir annexe 2)

Figure(V.3): Etat des nœuds (pressions) et tronçons (vitesses) en cas de p***ointe

Figure(V.4): Etat des nœuds (pressions) et tronçons (vitesses) en cas de pointe plus incendie

• Remarque (1)

La simulation montre que la majorité des vitesses sont comprises entre 0.5 m/s et 2 m/s ce qui permet un bon fonctionnement du réseau

Elle montre aussi que les pressions sont bien réparties dans le réseau et sont comprises entre 1bar et 6bars la chose qui permet le bon fonctionnement des accessoires installés chez les abonnés.

• Remarque (2)

En se basant sur les photos ci-dessus, on voit bien que les pressions et vitesses après simulation dans le cas de pointe plus incendie sont acceptables, donc notre réseau ne présente aucun problème et répond bien aux besoins.

V.8.Conclusion

Le but de la rénovation du réseau est d'assurer une alimentation en eau potable pour les différentes catégories de consommateurs en termes de pression et vitesse; Le réseau projeté présente un bon fonctionnement du point de vue vitesses et pressions que ce soit en cas de pointe (vitesses et pressions admissibles) ou en cas de pointe plus incendie (il fournit le débit d'incendie sans influence dur les consommateurs).

Chapitre VI : Accessoires du réseau

VI.1.Introdution

Dans la partie précédente nous avons procédé à la réalisation du réseau de distribution, cependant pour compléter cette dernière nous devons accessoiriser notre réseau de distribution.

Dans cette partie nous allons présenter les accessoires complétant l'ossature et la conception de notre réseau car un réseau sans accessoires ne pourra jamais fonctionner et donner un rendement maximal.

VI.2.Rôle des accessoires dans le réseau de distribution [2] [1]

Le long d'une canalisation, nous devrons installer des organes qui jouent un rôle prépondérant dans le bon fonctionnement du réseau, ils sont installés pour but de :

- Assurer un bon écoulement d'eau
- Protéger les canalisations
- Changer la direction et /ou le diamètre des conduites
- Raccorder les conduites
- Régulariser les pressions et les vitesses
- Vider les conduites
- Chasser ou faire pénétrer l'air dans la conduite

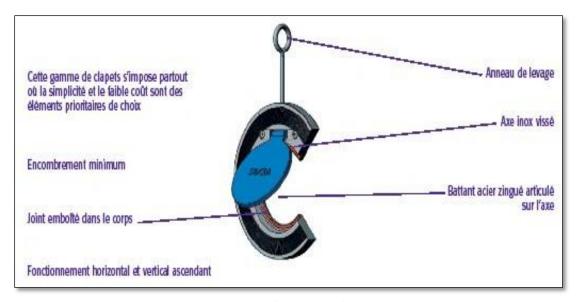
VI.3.Les accessoires et appareils utilisés dans le réseau [4] [9]

VI.3.1.Les robinets-vannes

Ce sont des appareils de sectionnement permettant l'isolement des différents tronçons du réseau pour faciliter d'une éventuelle réparation sans influencer le fonctionnement des autres; Ils sont placés à chaque nœud ou sur le parcours d'une longue conduite.

Il existe plusieurs types de vannes, on distingue :

- Les robinets-vannes à opercule: ils doivent être complétement fermés ou ouverts ; Ils sont placés au niveau de chaque nœud.
- Les vannes papillons : elles créent de faibles pertes de charge à pleine ouverture ; ce type permet un arrêt automatique et rapide en cas de rupture de la conduite et on la place à la sortie du réservoir.



Figure(VI.1): Robinet-vanne papillon

• Les robinets de décharge: il est placé au point bas du tracé en vue de la vidange de la conduite dans un égout ou en plein air ; Pour notre réseau on place les robinets de décharge aux points bas formant les mailles et au niveau des nœuds qui représentent les extrémités avales des ramifications.

VI.3.2.Les clapets

Le clapet anti-retour est un appareil qui fonctionne comme une porte, son rôle est de diriger l'écoulement dans un seul sens.

Figure(VI.2): Clapet anti-retour

VI.3.3.Les ventouses

Sont des appareils permettant l'évacuation de l'air accumulé suit à un dégazage de l'oxygène dissout dans l'eau; Elles sont disposées en points hauts de la canalisation

Pour les réseaux de distribution, les ventouses sont remplacées par des robinets de prise, elles ne sont pas donc nécessaires.

VI.3.4.Les poteaux et bouches d'incendie

Les poteaux d'incendie assurent un débit minimal de 17 l/s sous 1bar pour combattre l'incendie, de ce fait la distance entre eux ne doit pas dépasser les 200m et 100m dans le cas où le risque d'incendie est élevé. Ils doivent être reliés au réseau par des conduites de raccordement (diamètre minimal de 150mm) dotées d'une vanne d'isolement; Aux pieds des poteaux on place de pierres pour les drainer après les avoir utilisés; cette dernière assure la protection des poteaux contre le gel. Dans notre cas, on prévoit l'installation de poteaux d'incendie chaque 200m, au niveau des conduites véhiculant au minimum un débit 17 l/s sous une pression minimale de 1 bar. On veille à choisir le coté de la rue de façon à minimiser la longueur de leurs branchement à la conduite de distribution.

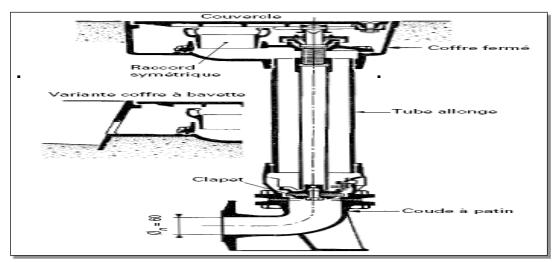


Figure (VI.3): Poteau d'incendie

VI.3.5.Les raccordements

Sont des pièces spéciales permettant d'assurer la continuité du fil d'eau lors d'un changement de diamètre, de direction ou de débit ; Tel que:

- Les coudes: sont utilisés surtout dans les réseaux maillés et ramifiés lorsque la conduite change de direction, généralement ils sont maintenus par des massifs de butée convenablement dimensionnées; On distingue deux types de coudes: à deux emboitements ou bien à un emboitement et un bout lisse et ils sont présentés avec un angle α: 1/4 (90°); 1/8 (45°); 1/16(22°30');...etc.
- Les tés : les tés sont utilisés dans le but de soutirer un débit d'une canalisation ou d'ajouter un débit complémentaire : ils se présentent soit à trois emboitements soit à deux emboitements et brides.
- Les croix de jonction : on les rencontre au niveau des réseaux maillés et ramifiés, les croix de jonction sont utilisées pour croiser des canalisations de même ou différents diamètres et de sens perpendiculaire
- Les manchons : On les rencontre au niveau des montages des appareils et accessoires.

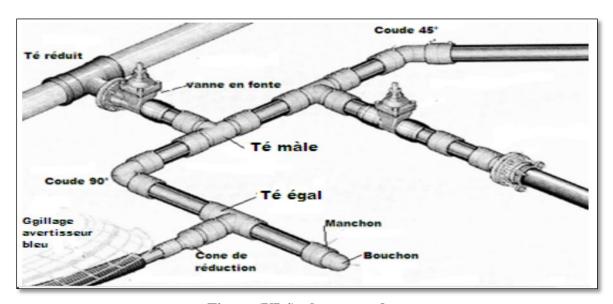


Figure (VI.4): les raccordements

Dans notre cas, on prévoit l'installation de poteaux d'incendie chaque 200m, au niveau des conduites véhiculant au minimum un débit 17 l/s sous une pression minimale de 1 bar. On veille à choisir le coté de la rue de façon à minimiser la longueur de leurs branchement à la conduite de distribution.

VI.3.6.Les appareils de mesure

Le réseau de distribution nécessite l'emplacement des appareils de mesures qui servent à l'évaluation du rendement du réseau et le contrôle de la consommation ; on a deux types d'appareil de mesure :

- Les appareils de mesure de débits : on distingue des appareils traditionnels (les appareils déprimogènes) tels que le diaphragme, le venturi, et la tuyère et d'autre modernes qui sont les plus utilisés comme les débits mètre et les compteurs ; Pour notre réseau on prévoit l'installation des débits-mètre au niveau des nœuds des mailles et ramifications.
- Les appareils de mesure de pression : la pression se mesure par des manomètres (à soufflet, à capsule, à membrane, à aiguilles) ; Pour notre cas on prévoit l'utilisation des manomètres au niveau des nœuds.

Figure (VI.6): manomètre

VI.4.Conclusion

A travers ce chapitre nous avons présenté le rôle et l'importance de chaque accessoire pour mieux gérer le système d'alimentation en eau potable; c'est dans ce sens que les différents types d'accessoires doivent être installés soigneusement par des personnes qualifiées et compétentes et un entretien périodique et une bonne gestion sont nécessaire.

Chapitre VII: Pose de canalisation et organisation de chantier

VII.1.Introduction

La pose de canalisation joue un rôle très important dans la stabilisation et la durabilité des conduites, et par conséquent dans la durée de vie du réseau et son bon fonctionnement. Dans ce contexte, et dans le but d'obtenir une meilleure coordination des travaux sur terrain, nous allons exposer la pose de canalisation en général, à effectuer dans notre agglomération, une chronologie des travaux à entreprendre, ainsi que les engins de terrassement qui vont être utilisés pour la mise en place des conduites.

VII.2.Choix de type de pose de canalisation [7] [10]

La pose de canalisation est pratiquement la même pour toutes les conduites, la différence apparait dans le mode de pose, c'est CE qui varie d'un type de terrain à autre dans le but de diminuer l'influence des contraintes agissantes sur la conduite.

En principe, les canalisations sont posées en tranchée à l'exception de certains cas où elles sont posées sur sol et doivent être rigoureusement entretenues et protégées ; dans ce but on constate l'existence de différentes variantes de pose des conduites :

- Pose de canalisation dans un terrain ordinaire
- Pose de canalisation dans un terrain peu consistant
- Pose de canalisation dans un terrain marécageux
- Pose de canalisation en galerie
- Pose de canalisation traversée d'une rivière
- Pose de canalisation par forage dirigé
- Pose en pente

Dans notre cas, après une visite sur terrain selon le tracé que nous avons adopté, il s'est avéré que le terrain est ordinairement stable et ne présente aucun obstacle de pose de canalisation. Par conséquent la pose de canalisation se fait dans un terrain ordinaire.

VII.3. Stabilisation des canalisations [10]

Les canalisations sont constituées par une suite de conduites véhiculant un liquide sous pression et assemblé par des joints, elles subissent des contraintes importantes on peut citer les forces de poussées exercées par l'eau et qui a tendance à déboiter les joints ; Pour éviter tous risques de déboitement il convient essentiel de rééquilibrer ces forces en construisant des butées en béton.

Le principe du choix de butée est de prendre en compte toutes les pressions(F) qui se manifestent lors du mouvement de fluide (Elles varient d'un joint à un autre); Le poids de la butée est proportionnel à la force (F') qui oppose aux pressions (F).

VII.4. Travaux de la mise en place des canalisations [10]

Dans un chantier hydraulique il existe pas mal de taches à faire en respectant le délai de réalisation des opérations :

1. **Nivellement :** c'est la mesure des différences d'altitudes entre deux ou plusieurs points situés sur une pente uniforme. Lorsque le terrain compte des obstacles on procède au nivellement par cheminement ou par un simple calcul et on détermine la hauteur de chaque point ainsi la profondeur de tronchée en point.

- **2. Excavation des tranchées :** cette opération se fait en deux parties : enlèvement de la couche végétale à l'aide d'un bulldozer puis la réalisation des fouilles par une pelle hydraulique.
- La largeur des tranchées (doit être au minimum 0.60m) est calculée en fonction du diamètre de la conduite en laissant un espace de 50cm de chaque côté pour faciliter les travaux ; C'est-àdire :

$$B = D + (2 \times 0.50) \text{ en (m)}$$
 (VII.1)

Avec

B : la largeur de la tranchéeD : le diamètre de la conduite

• La profondeur de la tranchée doit être suffisante (de 0.6m à 1.2m) pour assurer la protection de la conduite contre les variations de températures et le risque d'écrasement sous l'effet des charges et surcharge ; Elle est donnée par la formule suivante :

$$H=D + H1 + H2 en (m)$$
 (VII.2)

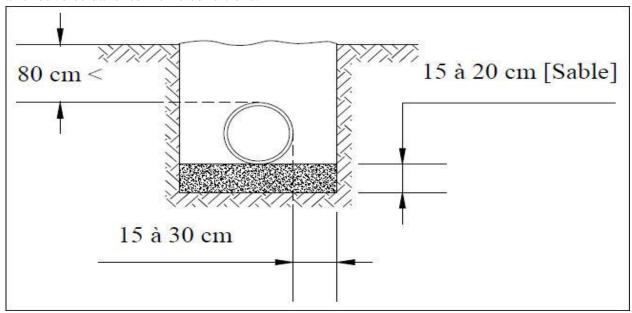
Avec

H : la profondeur de la tranchée

D : le diamètre de la conduite

 $\mathbf{H1}$: profondeur du lit de pose (0.2m)

H2: la distance verticale séparant la génératrice supérieure de la conduite à la surface du sol (m)


- 3. Le lit de pose : c'est un lit de sable d'une épaisseur de 15cm à 20cm nivelée suivant les côtes du profil en long ; On va utiliser du Gravier car on a un terrain ordinaire
- **4. Pose de la conduite :** avant de descendre la conduite, on procède à un triage des conduites de façon à écarter celles qui ont subies des chocs ; On les descend lentement et soigneusement à l'aide d'un engin de levage et on vérifie régulièrement l'alignement des conduites pour éviter tous problèmes lors du raccordement.
- **5.** Raccordement des canalisations : le raccordement des conduites se fait au niveau des tranchées ; Pour plus de sécurité on procède à un essai de pression à l'aide d'une pompe d'épreuve pour remplir la conduite sous pression de 1.5 fois la pression de service à laquelle sera soumise la conduite en cours de fonctionnement pendant une durée de 30min , le test est réussi si la variation de la pression ne dépasse pas 0.2 bar.
- **6. Remblayage des tranchées :** c'est une opération de terrassement qui consiste à enterrer la conduite en utilisant le remblai résultant de l'excavation et il se fait en deux phases généralement :
- Le remblai d'enrobage : comprend un remblayage compacté au-dessus du lit de sable jusqu'à la hauteur de l'axe de la conduite (on peut excéder de 10 cm au-dessus de la génératrice supérieure de la conduite) pour éviter tout mouvement de cette dernière ; On utilise toujours le même matériau que le lit de sable.

- •Le remblai supérieur : on utilise généralement le déblai d'extraction de la fouille expurgé des matériaux de diamètre supérieur à 10 cm, des débris végétaux et animaux et tout élément pouvant porter atteinte à la canalisation. On utilise toujours un filet avertisseur à une distance de 20cm à 30cm au-dessus de la conduite pour la protéger.
- 7. Nivellement et compactage : une fois le remblayage est fini, on procède au nivellement qui consiste à étaler les terres ensuite au compactage pour augmenter la densité des terres et éviter le tassement par la suite ; cette opération se fait à l'aide d'un compacteur.
- **8. Désinfection du réseau :** Lors de la pose, la terre ou les poussières peuvent être introduites à l'intérieure de la conduite, pour éliminer tous corps étrangers il est indispensable de procéder à un nettoyage et un rinçage de la conduite avant de livrer l'eau aux consommateurs.

Les produits de désinfection ont un temps de contact qui dépend du produit et sa dose introduite, Les plus utilisables pour désinfecter le réseau sont :

- L'eau de javel ou l'hypochlorite de sodium
- Le permanganate de potassium (KMnO₄)
- L'hypochlorite de calcium (ClOCa)

Enfin on possède au rinçage à l'eau potable et des prélèvements de contrôle sont faits par le laboratoire chargé de la surveillance des eaux, si l'avis du laboratoire est défavorable l'opération sera renouvelée dans les même conditions.

Figure(VII.1) : pose de canalisation dans un terrain ordinaire (Source : Polycopie B.SALAH)

VII.5.Le suivi de chantier [10]

On peut définir le suivi de chantier par l'ensemble des mesures à prendre afin d'avoir une meilleure réalisation du projet, il faut donc procéder à une mise en place d'indicateurs permettant de contrôler le coût et la qualité des travaux.

Le suivi du chantier se fait selon les étapes suivantes :

- Le contrôle technique
- Gérer le personnel et animer l'équipe
- Suivre le matériel, la main d'œuvre et les matériaux
- Contrôler l'avancement des travaux
- Contrôler les factures
- Gérer les relations entre les fonctionnaires de chantier
- Analyser les résultats

VII.6.Installations de chantier [10]

Les installations se diffèrent selon la destination, on distingue :

- Les installations destinées aux personnels : elles englobent tous les locaux utilisés par le personnel tels que : les vestiaires, les sanitaires, les dortoirs, les locaux de divertissement ; Ces installations sont destinées généralement aux grands projets.
- Les installations destinées au stockage de matériaux : Leurs but principale est de protéger les matériaux tels que les conduites pour éviter toutes fissurations ou cassures possibles et aussi d'empêcher les débris de se poser à l'intérieur de ces dernières ; Protéger aussi le lit de sable afin qu'il ne soit pas mélanger avec des pièces dures
- Les installations destinées à l'entretien et la réparation des engins : ce sont des ateliers de mécanique, électricité, dégraissage et lavage.

VII.7.Les engins utilisés sur chantier lors de la réalisation du projet

Le matériel est devenu le moyen principal de construction et de l'entretien des ouvrages, de ce fait et grâce au développement, il existe une multitude d'engins qui se diffèrent selon les caractéristiques de bases assurant leurs fonctionnement telles que : la puissance, la capacité en volume, la vitesse de déplacement, le poids, ... etc.

VII.7.1.Les engins de terrassement

Ils permettent une réduction considérable du prix et du temps de terrassement ; nous allons utiliser:

- Bulldozer : c'est un engin d'excavation et de refoulement composé d'un tracteur sur chenilles ou sur pneus muni d'une lame ; vue la puissance du bulldozer, il est très convenable pour le refoulement de la terre et des roches désagrégées, l'excavation en ligne droite et assure un transport de 50m.
- La pelle hydraulique : c'est un engin d'excavation pour chargement stationnaire qui peut adapter plusieurs équipements sur la pelle tel que : les crochets, grues,...etc. Selon la disposition du godet change les types de travaux de la pelle, on cite :
- ➤ La pelle en butte : lorsque l'ouverture du godet est disposée vers le haut, dans ce cas la pelle permet : l'excavation des parois verticales, des fondations et des tranchées peu profondes ; le nivellement ; le décapage et le travail en déblais.

- ➤ La pelle en retro : lorsque l'ouverture du godet est disposée vers le bas, dans ce cas la pelle a une aptitude de creuser en dessous de la surface d'appuis, excaver dans la direction de la machine et creuser avec grande précision et rapidité les tranchée à talus verticaux.
- ➤ La pelle en benne preneuse : en permettant la manipulation des matériaux en chargement, déchargement, stockage...etc. ou le terrassement en fouille.
- La chargeuse : c'est un tracteur équipé d'un godet de chargement et déchargement à l'avant, elle est utilisée pour le remblayage des tranchées après la pose des canalisations.
- Compacteur : c'est un engin qui tasse la terre sous lui grâce à un ou plusieurs rouleaux, il sert au compactage des remblais à fin d'assurer au minimum tout mouvement ultérieur de la surface et d'obtenir une résistance plus élevée des fondations.

VII.8.Assemblage des conduites PEHD [10]

Le polyéthylène (PE) est le plastique de production le plus commun, nous allons nous concentrer à son emploi en tuyaux. Les deux méthodes les plus communes pour le souder sont l'électrosoudure et la soudure bout à bout. Par ses propriétés, le polyéthylène est idéal pour les réseaux de distribution d'eau potable. Parmi les avantages qu'il présente sont sa grande flexibilité, son absence de toxicité, ses bas coûts de maintenance, sa facile installation et manipulation, sa basse rugosité ou sa résistance à des agents extérieurs et à la corrosion.

Bien que les deux techniques les plus habituelles, aussi l'électro-soudure que la soudure bout à bout, sont relativement simples, il est fondamentale de préparer les surfaces sur lesquelles nous allons faire la liaison et connaître en détail le processus pour effectuer une bonne soudure. A l'heure de choisir quel type de soudure employer des deux, nous devons prendre en compte le type d'œuvre à laquelle nous faisons face, quant à la fiabilité, les deux sont des systèmes pareils.

a) Procédé d'assemblage par électro soudage

La réalisation d'un assemblage par électro soudage met en œuvre des pièces de raccordement électro-soudables (pièce de forme ou manchon) permettant de raccorder, à l'aide d'une machine de soudage, deux tubes entre eux ou un tube et une pièce de forme à extrémité lisse. Dans ce procédé, les types de canalisations peuvent être des barres droites ou des tubes enroulés, et l'épaisseur des parties assemblées est indifférente. Toutefois leur diamètre extérieur doit être compatible avec celui des manchons et / ou des pièces de forme électro-soudables.

Les étapes à suivre lors de l'électro-soudage sont les suivantes :

- Redressement (tubes enroulés) et alignement des tubes,
- Maintien des tubes et / ou pièces de forme entre eux à l'aide d'un positionneur.
- Préparation des extrémités à assembler (coupe, espacement, nettoyage, grattage si nécessaire pour la qualité de tube employée, marquage, ...)
 - Soudage de l'assemblage selon les spécifications de l'opérateur de réseau,
 - après soudage, maintien en place du positionneur pendant le temps de refroidissement

b) Procédé d'assemblage par soudage bout à bout

La réalisation d'un assemblage par soudage bout à bout consiste à joindre les extrémités de tubes en barres droites entre eux ou avec des pièces de forme à extrémités lisses après avoir préalablement obtenu la fusion des extrémités à assembler par chauffage au moyen d'une machine de soudage.

Dans ce procédé, les tubes et / ou pièces de forme doivent avoir la même épaisseur dans la zone de fusion.

Ces deux procédés peuvent être utilisés concomitamment pour la réalisation d'un même ouvrage.

Les étapes à suivre lors du soudage bout à bout sont les suivantes :

- Alignement des tubes et / ou pièces de forme.
- Préparation des extrémités par dressage.
- Nettoyage de l'outil chauffant, si nécessaire.
- Soudage de l'assemblage selon les spécifications de l'opérateur de réseau,
- Après soudage, immobilisation de l'assemblage pendant le temps de refroidissement.

VII.9.Evaluation du projet

L'évaluation du projet consiste à déterminer les quantités de toutes les opérations effectuées sur le terrain pour la réalisation du projet ; Cette étape est nécessaire pour l'estimation du devis de notre projet.

VII.9.1. Volume de la couche végétale ou le goudron

Avant de réaliser les tranchées, on est obligé de décaper la couche extérieure (que ce soit une couche végétale ou du goudron).

Le volume de décapage est calculé par la formule suivante :

$$V_{dec} = L * 1 * e_d \tag{VII.3}$$

Avec:

V_{dec}: le volume décapé (en m³)

L: la longueur de la conduite (en m)

l: la largeur de la tranchée (en m) calculé par la formule (VII.1)

e_d: la hauteur du décapage qui varie entre 10cm et 20cm

Diamètre extérieur (mm)	Diamètre extérieur (m)	L (m)	l (m)	e _d (m)	$V_{dec} (m^3)$
50	0,05	125,6	1,05	0,2	26,38
63	0,063	1053,4	1,063	0,2	223,95
75	0,075	526,2	1,075	0,2	113,13
90	0,09	2083	1,09	0,2	454,09
110	0,11	3781,1	1,11	0,2	839,40
125	0,125	1223,2	1,125	0,2	275,22
160	0,16	4637,5	1,16	0,2	1075,90
200	0,2	3612,53	1,2	0,2	867,01
250	0,25	2505,4	1,25	0,2	626,35
315	0,315	1185,39	1,315	0,2	311,76
500	0,5	48,66	1,5	0,2	14,60
630	0,63	1149	1,63	0,2	374,57
Volume total à décaper (m³)				5202.37	

Tableau (VII.1): volume de la couche végétale ou goudron à décaper

Nous avons un volume de 5202.37 m³ de terre végétale ou goudron à décaper.

VII.9.2.Excavation des tranchées

• Le déblai

Le volume du déblai à excaver se calcule par la formule :

$$V_d = L * 1 * H \tag{VII.4}$$

Avec:

L : la longueur de la conduite (en m)

1 : la largeur de la tranchée (en m) calculé par la formule (VII.1)

H: le diamètre extérieur de la conduite (en m) augmenté de 1m du remblai

• Le lit du sable

Le lit de sable est un élément important dans la pose de canalisation en permettant de protéger les canalisations ; le volume du lit de sable est calculé par la formule :

$$Vs = es * L * 1$$
 (VII.5)

Avec:

es : la hauteur du lit de sable prise entre 0.1m et 0.15m

L : la longueur de la conduite (en m)

1 : la largeur de la tranchée (en m) calculé par la formule (VII.1)

• Le volume de la tranchée

Le volume de la tranchée est estimé par la formule

$$V_e = V_d + V_s \tag{VII.6}$$

Diamètre extérieur (mm)	L (m)	l (m)	es (m)	Vs (m ³)	H (m)	$V_d(m^3)$	$V_e(m^3)$
50	125,6	1,05	0,1	13,188	1,05	138,474	151,662
63	1053,4	1,063	0,1	111,9764	1,063	1190,309	1302,286
75	526,2	1,075	0,1	56,5665	1,075	608,0899	664,656
90	2083	1,09	0,1	227,047	1,09	2474,812	2701,859
110	3781,1	1,11	0,1	419,7021	1,11	4658,693	5078,395
125	1223,2	1,125	0,1	137,61	1,125	1548,113	1685,723
160	4637,5	1,16	0,1	537,95	1,16	6240,22	6778,17
200	3612,53	1,2	0,1	433,5036	1,2	5202,043	5635,547
250	2505,4	1,25	0,1	313,175	1,25	3914,688	4227,863
315	1185,39	1,315	0,1	155,8788	1,315	2049,806	2205,685
500	48,66	1,5	0,1	7,299	1,5	109,485	116,784
630	1149	1,63	0,1	187,287	1,63	3052,778	3240,065
Volumes total (m ³)			260	1.183	311	87.51	33788.69

Tableau (VII.2) : Volume des tranchées

VII.9.3. Volume du remblai

Le remblai c'est la quantité de terre qui enrobe la conduite pour la stabiliser ; il est donné par la formule :

$$V_{r} = V_{e} - V_{s} - V_{c} \tag{VII.7}$$

Avec

Vc : le volume occupé par la conduite donné :

$$Vc = \frac{\pi * D^2}{4} * L$$
 (VII.8)

VII.9.4. Volume excédentaire

Pour le calculer on utilise la formule :

$$V_{ex} = V_f - V_r \tag{VII.9}$$

Avec:

Vf : le volume du sol foisonné calculé par : $V_f = V_e * K_f \dots (VII.10)$

Kf: le coefficient de foisonnement dépendant du type de sol; Kf=1.1 Pour notre cas d'étude

Tableau(VII.3): volume du remblai et le volume excédentaire

$\mathbf{V_e}$	(m^3)	$V_s (m^3)$	$V_c(m^3)$	$V_r (m^3)$	$V_{f}(m^{3})$	$V_{ex} (m^3)$
3378	88,69	2601,183	859,436	30328,075	37167,56	6839,489

VII.10.Devis estimatif

L'établissement d'un devis nous donne la possibilité d'estimer le montant nécessaire pour la réalisation de différentes taches d'un projet.

Le tableau suivant présente un devis estimatif de notre projet :

Tableau(VII.4): devis estimatif du projet à réaliser: [8]

n°	Désignation	Unité	Quantité	P,U (Da)	Montant (Da)			
Travaux de terrassement								
1	Décapage de la couche végétal et goudron	m3	5202,37	3000	15607100,43			
2	Déblayage des fouilles	m3	31187,51	1200	37425013,38			
3	Le lit de pose en sable	m3	2601,183	1200	3121420,086			
4	Remblayage des tranchées	m3	30328,075	2000	60656150,11			
5	Evacuation des terres excédentaires	m3	6839,489	500	3419744,478			
Į.	Total (Da)		12	0229428,5				
	canalisations: y compr	is les acces	soires					
1	Conduite PEHD PN 16 Ø50	ml	125,6	239,01	30019,656			
2	Conduite PEHD PN 16 Ø63	ml	1053,4	375	395025			
3	Conduite PEHD PN 16 Ø75	ml	526,2	516,97	272029,614			
4	Conduite PEHD PN 16 Ø90	ml	2083	697,1	1452059,3			
5	Conduite PEHD PN 16 Ø110	ml	3781,1	1043,06	3943914,166			
6	Conduite PEHD PN 16 Ø125	ml	1223,2	1428,15	1746913,08			
7	Conduite PEHD PN 16 Ø160	ml	4637,5	2314,8	10734885			
8	Conduite PEHD PN 16 Ø200	ml	3612,53	3618,94	13073529,32			
9	Conduite PEHD PN 16 Ø250	ml	2505,4	5639,24	14128551,9			
10	Conduite PEHD PN 16 Ø315	ml	1185,39	8968,57	10631253,19			
11	Conduite PEHD PN 16 Ø500	ml	48,66	22695,35	1104355,731			
12	Conduite PEHD PN 16 Ø630	ml	1149	36177,56	41568016,44			
13	Croix de jonction	/	4	37106,73	148426,92			
14	Tés de jonction	/	46	6989,57	321520,22			
15	Bouchons	/	3	2912,33	8736,99			
16	Réducteurs	/	6	4564,52	27387,12			
17	Robinets-vannes	/	95	16737,18	1590032,1			
	Total (Da)		10	1176655,7				
		Total on HT (D-)		221406084,2				
		` /			42067156			
					263473240,2			

VII.11. Planification des travaux

Elle consiste à chercher le meilleur procédé d'utiliser la main d'œuvre et les autres moyens de mise en œuvre, d'une façon économique. Il existe deux principales méthodes de planification :

- Méthodes basées sur le réseau
- Méthodes basées sur le graphique

Les principales opérations pour la conception des collecteurs d'un projet d'AEP

A. Décapage de la couche de goudron (si elle existe) ou celle de la végétation

- B. Exécution des trawnchées et des fouilles pour les regards
- C. Aménagement du lit de pose
- **D.** La mise en place des canalisations en tranchée
- **E.** Construction des regards et les vannes
- **F.** Assemblage des tuyaux
- G. Faire les essais d'étanchéité pour les conduites et les joints
- H. Remblai des tranchées
- I. Travaux de finition.

Tableau (VII.5): planification des travaux selon leurs ordres chronologiques

OPERATION	TR	Précède	succède
A	30	В	-
В	75	C, D, E	A
С	30	F	В
D	40	F	В
E	36	F	В
F	30	G	C, D, E
G	10	Н	G
Н	30	I	G
I	15	-	Н

Avec:

TR: temps de réalisation.

DCP TR
DFP DCPF
DFPP MT

DCP : date de commencement au plus tôt ;

DFP: date de finition au plus tôt

DCPP: date de commencement au plus tard;

DFPP: date de finition au plus tard;

MT : marge totale.

Tableau (VII.6) : calcul de la durée des travaux

opération	Tr	Dp		DPP		N/I+
		DCP	DFP	DCPP	DFPP	Mt
A	30	0	30	0	30	0
В	75	30	105	30	105	0
С	30	105	135	115	145	10
D	40	105	145	105	145	0
Е	36	105	141	104	145	1
F	30	145	175	145	175	0
J	10	175	185	175	185	0
Н	30	185	215	185	215	0
I	15	215	230	215	230	0

La durée totale du projet est égale à la somme des durées des travaux du chemin critique A-B-D-

F-J-H-I, C'est-à-dire : 230 jours ou bien 7 mois et 20 jours

VII.12.Conclusion

A travers ce chapitre, nous avons présenté les étapes à suivre lors de la réalisation d'un réseau d'alimentation en eau potable et la nécessité d'un personnel qualifié pour la pose des conduites.

Ce chapitre nous permet de conclure que l'organisation de chantier est nécessaire avant le commencement de la réalisation car elle nous permet de définir tous les volumes des travaux, les engins qu'on utilise, le temps de réalisation ainsi que le cout total du projet.

L'estimation du prix nécessaire pour le projet est de : deux cent soixante-trois millions quatre cent soixante-treize mille deux cent quarante virgule deux Dinars Algérien.

Chapitre VIII: Gestion du réseau d'AEP

VIII.1.Introduction

La gestion d'un système d'alimentation en eau potable nécessite d'accomplir avec rigueur un ensemble de taches afin d'assurer le bon fonctionnement du réseau d'alimentation en eau potable, de garantir l'ensemble des besoins dans des bonnes conditions des débits, pressions et qualité ainsi d'entretenir ses différents équipements ; Tout en prenant soins que le coût globale de ces opérations reste relativement minime.

VIII.2.But de la gestion [3]

La gestion des réseaux d'alimentation en eau potable a pour but d'assurer :

- L'entretien des canalisations et ouvrages du réseau par des interventions de maintenance, dépannage et nettoyage.
- L'exploitation par la régulation des débits, traitement, stockage et distribution des eaux.

VIII.3.Gestion et exploitation des réseaux de distribution [3]

Afin d'assurer une bonne gestion du réseau de distribution on doit disposer d'un descriptif détaillé des différents organes composant le réseau, leurs matériaux et leurs propriétés pour faciliter sa gestion et son entretien.

La gestion d'un réseau peut se faire en deux étapes essentielles :

- La définition des différentes défaillances susceptibles de se manifester, leurs causes et effets
- La méthodologie de réparation du réseau en faisant : un diagnostic pour apprécier l'état qualitatif et l'entretien.

VIII.4.Les défaillances

On définit défaillance toute détérioration pouvant provoquer un risque de dysfonctionnement du réseau ou de l'un de ses éléments, ou une diminution de son rendement.

Il existe différents types de défaillance, on cite :

VIII.4.1.Les pertes

Le réseau de distribution est conçu pour transporter une quantité d'eau déterminée par une étude estimative des besoins, toute consommation non estimée est considéré comme perte ; on distingue :

- **a. Par fuites :** ce sont des fuites inévitables dans le réseau, généralement localisées dans les joints, les vannes, les points de raccordements ou une mauvaise étanchéité de la maçonnerie du réservoir.
- **b.** Les ruptures sur les conduites : représente une défaillance structurelle de la conduite ou des pièces spéciales due à une surcharge excessive, détérioration du lit de pose, la corrosion ou un mouvement du sol ; elles peuvent entrainer une intervention sur le réseau de plusieurs heures pendant lesquelles les abonnées seront privés de l'eau ou subissent une chute de pression.
- c. Les pertes dites « administratives » : sont engendrées par des branchements illicites dans le réseau, l'absence du compteur chez les abonnés ou la consommation des organismes publics.

VIII.4.2.La détérioration de la qualité de l'eau

Le maintien de la qualité de l'eau pendant sa distribution nécessite un suivie de contrôle ; il est indispensable de procéder des analyses périodiques sur la majorité du réseau pour assurer la bonne qualité d'eau distribuée ainsi qu'une base de données sur les différents paramètres (le dosage du chlore, la turbidité...etc).

La dégradation de la qualité de l'eau peut être conséquence :

- a. d'une introduction des substances toxiques : à travers l'air (dissoutes dans l'air) ou par pénétration des eaux parasites à travers les endroits de fuites ce qui engendre la non-potabilité de l'eau, il faut alors élaborer un traitement rendant cette eau potable.
- **b. Du vieillissement des canalisations :** les réactions chimiques entre l'eau et le matériau de conduite se manifeste par l'observation de certaine influence négative sur l'eau : l'odeur, la couleur, le gout ...etc.

VIII.4.3.L'entartrage du réseau

C'est le dépôt du tartre à l'intérieur de la canalisation causé par un changement de température (baisse ou élévation), une variation de vitesse ou une stagnation de l'eau dans le réseau.

La lutte contre l'entartrage se fait par un ajustement de PH (un PH neutre) à la sortie du réservoir de distribution ou l'injection de poly-phosphate dans le réseau.

VIII.5.diagnostic du réseau

Le diagnostic permet d'état qualitatif des différents organes du réseau afin de déduire les opérations d'entretien ou de maintenance à effectuer, pour cela on propose une méthodologie de diagnostic recommandée et qui s'établit en quatre phases :

VIII.5.1.L'enquête et recueil des données

En constituant une base de données rassemblant des analyses fonctionnelles du réseau, analyses systématiques des défaillances et l'historique des évènements puis faire une projection future.

VIII.5.2.L'analyse des données

Cette phase est faite en deux étapes :

- Traitement des données : pour objectif la détermination de la fiabilité des composants du réseau et le taux de leur défaillance, cela nous permet de bien déterminer le type de maintenance nécessaire.
- La mise en œuvre d'une politique de maintenance optimisée : en mesurant l'efficacité des actions décidées, les écarts entre la prévention et les résultats et enfin guider l'exploitant vers la maintenance la mieux adaptée.

VIII.5.3. Analyse et détermination des paramètres du diagnostic

Cette phase permet de choisir le matériel et le personnel nécessaire pour les différents types de maintenance.

VIII.5.4. Estimation des coûts :

En estimant les différentes dépenses nécessaires pour l'application de l'entretien ; La recherche d'une optimisation du coût global et la meilleure valorisation du patrimoine conduise à trouver un équilibre entre les ouvrages neufs et les travaux de conservation

VIII.6.L'entretien [3]

C'est l'ensemble d'opérations d'inspection et de remise en état suggérées par le diagnostic dans le but de préserver l'état initial du réseau

VIII.6.1. Types d'entretien [3]

- **a.** Entretien préventif systématique : ce type d'entretien nous permet de surveiller les états physiques et hydrauliques des conduites et ses accessoires d'une façon régulière basée sur les résultats donnés par le diagnostic. Il consiste à intervenir dans des opérations de routine telles que : vérification de bon fonctionnement des ventouses et des régulateurs de pression, contrôle de la qualité d'eau,...etc.
- **b.** Entretien exceptionnel : consiste à faire des interventions concernant les défaillances survenues soudainement sur le réseau prévues auparavant par les exploitants ; Ce type d'entretien comprend beaucoup plus de travaux de réparation.

VIII.6.2. Procédé d'entretien d'un réseau d distribution [3]

Le problème majeur rencontré au niveau du réseau de distribution est les pertes quel que soit leurs types, c'est pour cette raison et lors de l'entretien l'exploitant doit procéder à deux actions nécessaires :

a. La détection et réparation des fuites : il est nécessaire de noter que la détection des fuites reste difficile, malgré la disponibilité des méthodes et outils de localisation, en vue qu'ils varient selon la pression dans les conduites et que les organes des systèmes d'alimentation en eau potable ne sont pas sensibles aux déperditions de la même manière.

La détection des fuites se fait par une des méthodes suivantes :

- Méthode de recherche à grande échelle : consiste à calculer la différence entre le volume entrant dans le réseau et le volume consommé, cette différence nous permet de soupçonner les fuites dans un secteur du réseau ; Puis, et à l'aide des compteurs placés en amont et en aval de cette zone, on localise les fuites par des méthodes plus fines.
- Méthode acoustique : lors d'une fuite, les molécules d'eau se frottent entre elles et contre les parois de la fuite, ce frottement se traduit par un bruit qu'on peut l'entendre par contact direct avec la conduite ou par l'écouter sur le sol et ceci nous permet de délimiter la zone de fuite. L'utilisation des amplificateurs mécaniques ou électroniques ou les corrélateurs acoustiques nous permet d'éliminer tous les bruits parasites comme le vent, le trafic routière,...etc.
- Méthode moderne : actuellement, et vu le développement existant, plusieurs méthodes sont développées et employées dans la recherche des fuites comme l'utilisation des caméras qui permet de déceler les anomalies (infiltration d'eau polluée, glissement des joints,...etc.) ; Les traceurs radioactifs qui permet de détecter la radioactivité intense au niveau des fuites ; la photographie aérienne qui permet de déceler les zones de températures différentes résultant des fuites.

Après la détection des fuites, on procèdera à leurs réparations tout en prenant les dispositions suivantes :

- Faire un terrassement profond pour éviter le retour d'eau polluée dans la canalisation après la coupe de la conduite.
 - Eliminer le tronçon au droit de la fuite puis faire une vidange de la conduite
- Nettoyer bien à l'eau javellisée toutes les pièces de réparation ainsi que les parties du tuyau dégagé.
 - Rincer et contrôler la qualité de l'eau avant la remise en service de la conduite.
- **b.** Le comptage : dans le but de diminuer au maximum les pertes provoquées par le sous comptage, il est inévitable de vérifier l'installation des compteurs chez les abonnés ainsi que leurs sensibilités.

VIII.7. Conclusion

Le rendement d'un système d'alimentation en eau potable est basé sur la différence entre le volume d'eau entrant dans le réseau et le volume consommé, pour cela les gestionnaires de service doivent porter une attention constante pour l'équivalence de ces deux paramètres.

Conclusion générale

Conclusion générale

A travers ce travail, nous avons essayé d'englober tous les points qui touchent le réseau d'alimentation en eau potable du chef-lieu de la commune de GUEROUAOU.

Durant notre étude, la priorité est donnée au côté technique pour assurer une pression et vitesse convenables à la consommation des abonnées puis le côté économique.

Le côté technique est basé sur le diagnostic du réseau existant afin de détecter toutes les anomalies du réseau ensuite procéder à les régler.

Comme solution adoptée à ces anomalies, nous avons opté à une rénovation du réseau basé sur des conduites en PEHD PN16 et nous avons utilisé le logiciel de simulation hydraulique EPANET pour montrer l'état du réseau de distribution (existant et projeté).

Le réservoir existant du chef-lieu de la commune a une capacité de stockage suffisante pour couvrir les besoins des consommateurs et est en bonne état de côté génie civil, c'est pour cette raison que nous n'avons pas projeté un nouveau réservoir.

En fin, notre réseau projeté est apte à répondre aux besoins jusqu'à l'horizon 2050 avec un fonctionnement beaucoup plus fiable, une gestion du réseau permettra un meilleur fonctionnement donnant un meilleur rendement.

Cette étude nous a permis de mettre en pratique, toutes les connaissances acquises durant notre cycle de formation en hydraulique.

Références bibliographiques

- [1]: SALAH.B « polycopie d'alimentation en eau potable » 2014.
- [2]: **DUPONT.A** « Hydraulique urbaine » tome I ;II et III, Edition Eyrolles (1979)
- [3]: LYONNAISE DES EAUX « Mémento du gestionnaire de l'AEP et de l'assainissement » tome I
 - [4]: **BOUSLIMI**.M « Alimentation en eau potable », octobre 2004.
 - [5]: Guide EPANET
- [6]: Jacque Bonvin « Hydraulique urbaine 1 captages, réseau d'adduction, réservoirs, réseau de distribution, équipement, pompes, petites centrales hydrauliques (version 2005) »
 - [7]: Montpellier « Guide technique d'eau potable (octobre 2017) »
 - [8]: Anonyme: Catalogue technique des tubes polyéthylènes et accessoires Chiali
 - [9]: Michel Carlier: « hydraulique générale et appliquée » Edition Eyrolles
- [10]: Règle de pose des canalisations en plastique destinées aux projets d'AEP: Ministère des ressources en eau.

Annexes

Annexe I:

Carnet des nœuds en phase de diagnostic (réseau actuel)

Carnet des nœuds en phase de diagnostic du réseau

nœuds	tronçon	L (m)	Qsp (l/s/m)	Q_{ri} (l/s)	Q_{ni} (l/s)
	1	188,1	0,0060	1,1286	
1	99	241	0,0060	1,4460	1,76
	67	156,8	0,0060	0,9408	
	64	85,36	0,0060	0,5122	
2	81	214,4	0,0060	1,2864	1,46
	1	188,1	0,0060	1,1286	
	2	225	0,0060	1,3500	
3	29	186,6	0,0060	1,1196	1,55
	28	104,3	0,0060	0,6258	
	2	225	0,0060	1,3500	
4	30	115,4	0,0060	0,6924	1,20
	22	58,73	0,0060	0,3524	
	3	119,2	0,0060	0,7152	0,78
5	57	66,24	0,0060	0,3974	
	56	73,31	0,0060	0,4399	
6	3	119,2	0,0060	0,7152	0,36
	4	170,7	0,0060	1,0242	0,76
7	55	8,665	0,0060	0,0520	
	56	73,31	0,0060	0,4399	
	4	170,7	0,0060	1,0242	
8	15	132	0,0060	0,7920	1,02
	120	36,95	0,0060	0,2217	
	5	249,5	0,0060	1,4970	
9	79	213	0,0060	1,2780	2,71
	80	441,5	0,0060	2,6490	
10	5	249,5	0,0060	1,4970	0,75
	6	89,75	0,0060	0,5385	
11	94	120	0,0060	0,7200	0,77
	93	48,05	0,0060	0,2883	
12	6	89,75	0,0060	0,5385	0,27

12	7			\mathbf{Q}_{ri} (l/s)	Q_{ni} (l/s)
12	,	109,6	0,0060	0,6576	
13	131	47,49	0,0060	0,2849	0,99
	130	173,9	0,0060	1,0434	
	7	109,6	0,0060	0,6576	
14	109	35,69	0,0060	0,2141	0,57
	108	44,21	0,0060	0,2653	
	8	154,9	0,0060	0,9294	
15	101	24,23	0,0060	0,1454	0,67
	100	43,22	0,0060	0,2593	
16	8	154,9	0,0060	0,9294	0,46
	9	49,03	0,0060	0,2942	
17	124	58,93	0,0060	0,3536	0,53
	125	68,41	0,0060	0,4105	
18	9	49,03	0,0060	0,2942	0,15
	10	432,7	0,0060	2,5962	
19	92	54,64	0,0060	0,3278	1,75
	115	95,74	0,0060	0,5744	
	76	153,9	0,0060	0,9234	
20	77	53,94	0,0060	0,3236	2.72
20	82	602,8	0,0060	3,6168	3,73
	10	432,7	0,0060	2,5962	
	140	164,2	0,0060	0,9852	
21	137	108,6	0,0060	0,6516	1,28
	11	153,5	0,0060	0,9210	
22	11	153,5	0,0060	0,9210	0,46
	12	152,6	0,0060	0,9156	
23	76	153,9	0,0060	0,9234	1,01
	75	30,89	0,0060	0,1853	•
	12	152,6	0,0060	0,9156	
24	35	171,5	0,0060	1,0290	1,97
	135	332,4	0,0060	1,9944	•

nœuds	tronçon	L (m)	Qsp (l/s/m)	Q ri (l/s)	Q _{ni} (l/s)
	13	130,1	0,0060	0,7806	
25	99	241	0,0060	1,4460	1,24
	100	43,22	0,0060	0,2593	
26	13	130,1	0,0060	0,7806	0,39
	14	81,91	0,0060	0,4915	
27	61	112,4	0,0060	0,6744	1,15
21	63	99,63	0,0060	0,5978	1,13
	33	91,06	0,0060	0,5464	
28	14	81,91	0,0060	0,4915	0,25
29	15	132	0,0060	0,7920	0,40
	16	36,67	0,0060	0,2200	
30	126	74,14	0,0060	0,4448	0,83
	127	166,7	0,0060	1,0002	
31	16	36,67	0,0060	0,2200	0,11
	17	91,6	0,0060	0,5496	
32	59	254,8	0,0060	1,5288	1,84
	60	265,7	0,0060	1,5942	
33	17	91,6	0,0060	0,5496	0,27
	18	77,79	0,0060	0,4667	
34	92	54,64	0,0060	0,3278	0,92
	91	175,6	0,0060	1,0536	
35	18	77,79	0,0060	0,4667	0,23
	19	64,14	0,0060	0,3848	
36	102	76,49	0,0060	0,4589	0,67
	103	81,32	0,0060	0,4879	
37	19	64,14	0,0060	0,3848	0,19
	20	73,97	0,0060	0,4438	
38	132	49,4	0,0060	0,2964	0,64
	133	90,1	0,0060	0,5406	
	20	73,97	0,0060	0,4438	
39	113	68,67	0,0060	0,4120	0,73
	114	99,73	0,0060	0,5984	

nœuds	tronçon	L (m)	Qsp (l/s/m)	Q ri (l/s)	Q _{ni} (l/s)
	21	83,41	0,0060	0,5005	
40	57	66,24	0,0060	0,3974	1,11
	58	219,5	0,0060	1,3170	
41	21	83,41	0,0060	0,5005	0,25
42	22	58,73	0,0060	0,3524	0,18
	23	368,8	0,0060	2,2128	
43	72	72,17	0,0060	0,4330	1,46
	73	44,79	0,0060	0,2687	
44	23	368,8	0,0060	2,2128	1,23
44	25	42,12	0,0060	0,2527	1,23
	24	276,4	0,0060	1,6584	
45	71	335,6	0,0060	2,0136	2,05
	72	72,17	0,0060	0,4330	
46	24	276,4	0,0060	1,6584	0,83
47	25	42,12	0,0060	0,2527	0,40
4/	123	90,21	0,0060	0,5413	0,40
	26	41,24	0,0060	0,2474	
48	128	76,75	0,0060	0,4605	0,83
	129	157,8	0,0060	0,9468	
49	26	41,24	0,0060	0,2474	0,12
	27	83,01	0,0060	0,4981	
50	120	36,95	0,0060	0,2217	0,71
	121	116,1	0,0060	0,6966	
51	27	83,01	0,0060	0,4981	0,25
52	28	104,3	0,0060	0,6258	0,31
	29	186,6	0,0060	1,1196	
53	58	219,5	0,0060	1,3170	2,35
	65	377,4	0,0060	2,2644	
	30	115,4	0,0060	0,6924	
54	31	324,1	0,0060	1,9446	4,96
	53	1214	0,0060	7,2839	.,. 0

nœuds	tronçon	L (m)	Qsp (l/s/m)	Q_{ri} (l/s)	Q_{ni} (l/s)
	31	324,1	0,0060	1,9446	
55	32	372,2	0,0060	2,2332	5,33
	83	1081	0,0060	6,4859	
56	32	372,2	0,0060	2,2332	1,12
	33	91,06	0,0060	0,5464	·
57	124	58,93	0,0060	0,3536	1,67
	139	407,6	0,0060	2,4456	ŕ
	34	447,6	0,0060	2,6856	
58	116	10,28	0,0060	0,0617	1,49
	118	38,4	0,0060	0,2304	,
59	34	447,6	0,0060	2,6856	1,34
60	35	171,5	0,0060	1,0290	0,51
	36	549,5	0,0060	3,2970	1,95
61	101	24,23	0,0060	0,1454	
	102	76,49	0,0060	0,4589	
62	36	549,5	0,0060	3,2970	1,65
	37	151,9	0,0060	0,9114	
63	68	439,4	0,0060	2,6364	1,79
	69	5,412	0,0060	0,0325	·
64	37	151,9	0,0060	0,9114	0,46
	38	116,2	0,0060	0,6972	,
65	70	364,4	0,0060	2,1864	2,45
	71	335,6	0,0060	2,0136	
	38	116,2	0,0060	0,6972	
66	137	108,6	0,0060	0,6516	0,91
	138	77,65	0,0060	0,4659	
	39	85,31	0,0060	0,5119	
67	86	43,93	0,0060	0,2636	0,57
	87	59,97	0,0060	0,3598	
68	39	85,31	0,0060	0,5119	0,26
	40	135,5	0,0060	0,8130	
69	87	59,97	0,0060	0,3598	0,64
ļ	88	18,99	0,0060	0,1139	٠,٠.

nœuds	tronçon	L (m)	Qsp (l/s/m)	Q ri (l/s)	Q _{ni} (l/s)
70	40	135,5	0,0060	0,8130	0,41
	41	135,4	0,0060	0,8124	
71	88	18,99	0,0060	0,1139	0,51
	89	15,61	0,0060	0,0937	
72	41	135,4	0,0060	0,8124	0,41
	42	90,37	0,0060	0,5422	
73	89	15,61	0,0060	0,0937	0,51
	90	62,9	0,0060	0,3774	
74	42	90,37	0,0060	0,5422	0,27
	43	60,22	0,0060	0,3613	
75	90	62,9	0,0060	0,3774	0,70
	134	109,5	0,0060	0,6570	
76	43	60,22	0,0060	0,3613	0,18
	44	80,29	0,0060	0,4817	
77	66	132,9	0,0060	0,7974	1,64
	135	332,4	0,0060	1,9944	
78	44	80,29	0,0060	0,4817	0,24
	45	69,88	0,0060	0,4193	
79	123	90,21	0,0060	0,5413	1,22
	122	248,1	0,0060	1,4886	
80	45	69,88	0,0060	0,4193	0,21
	46	190,5	0,0060	1,1430	
81	77	53,94	0,0060	0,3236	1,64
	78	303	0,0060	1,8180	
82	46	190,5	0,0060	1,1430	0,57
	47	434,1	0,0060	2,6046	
83	64	85,36	0,0060	0,5122	2,69
	65	377,4	0,0060	2,2644	
84	47	434,1	0,0060	2,6046	1,30
	48	125	0,0060	0,7500	
85	95	69,9	0,0060	0,4194	0,80
	96	71,46	0,0060	0,4288	

nœuds	tronçon	L (m)	Qsp (l/s/m)	Q ri (l/s)	Q_{ni} (l/s)
86	48	125	0,0060	0,7500	0,37
87	49	126,2	0,0060	0,7572	0,38
	49	126,2	0,0060	0,7572	
88	98	34,68	0,0060	0,2081	0,70
	96	71,46	0,0060	0,4288	
89	50	125,6	0,0060	0,7536	0,38
	50	125,6	0,0060	0,7536	
90	97	34,6	0,0060	0,2076	0,58
	98	34,68	0,0060	0,2081	
	51	1307	0,0060	7,8419	
91	118	38,4	0,0060	0,2304	4,05
	119	5,093	0,0060	0,0306	
92	51	1307	0,0060	7,8419	3,92
	52	954,7	0,0060	5,7281	
93	83	1081	0,0060	6,4859	7,33
	139	407,6	0,0060	2,4456	
94	52	954,7	0,0060	5,7281	2,89
94	116	10,28	0,0060	0,0617	2,09
	53	1214	0,0060	7,2839	
95	62	65,15	0,0060	0,3909	3,98
	93	48,05	0,0060	0,2883	
	54	3,298	0,0060	0,0198	
96	94	120	0,0060	0,7200	0,59
	126	74,14	0,0060	0,4448	
	54	3,298	0,0060	0,0198	
97	55	8,665	0,0060	0,0520	0,27
	128	76,75	0,0060	0,4605	
98	59	254,8	0,0060	1,5288	0,76
	60	265,7	0,0060	1,5942	
99	115	95,74	0,0060	0,5744	1,13
	117	14,84	0,0060	0,0890	

nœuds	tronçon	L (m)	Qsp (l/s/m)	Q ri (l/s)	Q _{ni} (l/s)
	61	112,4	0,0060	0,6744	
100	91	175,6	0,0060	1,0536	1,77
	78	303	0,0060	1,8180	
	62	65,15	0,0060	0,3909	
101	63	99,63	0,0060	0,5978	1,82
	80	441,5	0,0060	2,6490	
	66	132,9	0,0060	0,7974	
102	67	156,8	0,0060	0,9408	1,08
	95	69,9	0,0060	0,4194	
	68	439,4	0,0060	2,6364	
103	117	14,84	0,0060	0,0890	1,38
	119	5,093	0,0060	0,0306	
	69	5,412	0,0060	0,0325	
104	70	364,4	0,0060	2,1864	1,24
	86	43,93	0,0060	0,2636	,
	73	44,79	0,0060	0,2687	
105	74	37,84	0,0060	0,2270	0,99
	122	248,1	0,0060	1,4886	
106	74	37,84	0,0060	0,2270	0,11
	75	30,89	0,0060	0,1853	,
107	134	109,5	0,0060	0,6570	0,91
	140	164,2	0,0060	0,9852	
	79	213	0,0060	1,2780	
108	84	138,5	0,0060	0,8310	1,19
	85	43,92	0,0060	0,2635	2,29
	81	214,4	0,0060	1,2864	
109	82	602,8	0,0060	3,6168	2,58
107	85	43,92	0,0060	0,2635	2,30
110	84	138,5	0,0060	0,8310	0,42
111	97	34,6	0,0060	0,2076	0,10
111	103	81,32	0,0060	0,4879	0,10
112	103	109,6	0,0060	0,6576	0,87
114	104	99,83	0,0060	0,5990	0,67

nœuds	tronçon	L (m)	Qsp (l/s/m)	Q _{ri} (l/s)	Q _{ni} (l/s)
113	104	109,6	0,0060	0,6576	0,33
	105	94,55	0,0060	0,5673	
114	107	37,04	0,0060	0,2222	0,53
	108	44,21	0,0060	0,2653	
115	105	94,55	0,0060	0,5673	0,43
115	131	47,49	0,0060	0,2849	0,43
	106	99,83	0,0060	0,5990	
116	107	37,04	0,0060	0,2222	1,04
	111	210,3	0,0060	1,2618	
117	109	35,69	0,0060	0,2141	0,11
118	110	69,54	0,0060	0,4172	0,48
110	133	90,1	0,0060	0,5406	0,40
	110	69,54	0,0060	0,4172	
119	114	99,73	0,0060	0,5984	1,03
	130	173,9	0,0060	1,0434	
	111	210,3	0,0060	1,2618	
120	112	74,43	0,0060	0,4466	1,06
	113	68,67	0,0060	0,4120	
121	112	74,43	0,0060	0,4466	0,37
121	132	49,4	0,0060	0,2964	0,37
122	121	116,1	0,0060	0,6966	0,35
123	125	68,41	0,0060	0,4105	0,21
124	127	166,7	0,0060	1,0002	0,50
125	129	157,8	0,0060	0,9468	0,47
126	Zone industrielle	/	/	/	5,52
127	138	77,65	0,0060	0,4659	0,23

Etat des nœuds en cas de pointe (résultats de la simulation pour le réseau actuel)

ID Noeud	Altitude	Demande Base	Charge	Pression
1D Nocuu	m	LPS	m	m
Noeud n1	128,6386	1,76	146,32	17,68
Noeud n2	128,5532	1,46	147,88	19,33
Noeud n3	126,1395	1,55	149,48	23,34
Noeud n4	124,4659	1,2	149,51	25,04
Noeud n5	134,667	0,78	150,47	15,8
Noeud n6	132,5	0,36	150,45	17,95
Noeud n7	136,2052	0,76	150,82	14,61
Noeud n8	134,8954	1,02	150,73	15,83
Noeud n9	136,7169	2,71	149,97	13,25
Noeud n10	137,7772	0,75	149,49	11,71
Noeud n11	139,1487	0,77	151,19	12,04
Noeud n12	138,5609	0,27	151,16	12,6
Noeud n13	117,1031	0,99	119,73	2,63
Noeud n14	117,823	0,57	119,73	1,9
Noeud n15	123,5167	0,67	126,51	2,99
Noeud n16	121,7458	0,46	126,48	4,73
Noeud n17	142,6364	0,53	151,5	8,86
Noeud n18	143,6217	0,15	151,49	7,87
Noeud n19	151,7332	1,75	157,04	5,3
Noeud n20	145,3473	3,73	151,03	5,68
Noeud n21	145,1549	1,28	147,57	2,42
Noeud n22	141,4998	0,46	147,45	5,95
Noeud n23	144,9238	1,01	149,52	4,6
Noeud n24	141,173	1,97	148,41	7,23
Noeud n25	124,2153	1,24	129,16	4,95
Noeud n26	122,724	0,39	129,09	6,36
Noeud n27	143,9687	1,15	152,27	8,3
Noeud n28	143,3747	0,25	152,23	8,85
Noeud n29	132,4672	0,4	150,65	18,18

ID Noeud	Altitude	Demande Base	Charge	Pression
1D Noeud	m	LPS	m	m
Noeud n30	137,2911	0,83	150,42	13,13
Noeud n31	137,7879	0,11	150,42	12,63
Noeud n32	150,0084	1,84	160,22	10,21
Noeud n33	151,9315	0,27	160,19	8,26
Noeud n34	149,8647	0,92	156,13	6,27
Noeud n35	150,4356	0,23	156,11	5,68
Noeud n36	121,3893	0,67	120,47	-0,92
Noeud n37	120,6658	0,19	120,44	-0,22
Noeud n38	113,1287	0,64	119,63	6,51
Noeud n39	114,0324	0,73	119,63	5,6
Noeud n40	95,8019	1,11	150,19	54,39
Noeud n41	132,8048	0,25	150,17	17,36
Noeud n42	124,9706	0,18	149,49	24,52
Noeud n43	141,4241	1,46	142,19	0,77
Noeud n44	133,2049	1,23	139,97	6,76
Noeud n45	142,0533	2,05	142,59	0,53
Noeud n46	142,1861	0,83	141,94	-0,24
Noeud n47	133,9656	0,4	139,96	6
Noeud n48	137,5204	0,83	150,76	13,24
Noeud n49	137,8067	0,12	150,76	12,95
Noeud n50	134,6289	0,71	150,72	16,09
Noeud n51	132,761	0,25	150,69	17,93
Noeud n52	128,6316	0,31	149,37	20,74
Noeud n53	128,2307	2,35	149,44	21,21
Noeud n54	124,4659	4,96	149,54	25,07
Noeud n55	123,3831	5,33	149,66	26,28
Noeud n56	118,2502	1,12	149,66	31,41
Noeud n57	144,2169	1,67	151,51	7,29
Noeud n58	155,8284	1,49	163,17	7,35
Noeud n59	151,0621	1,34	162,63	11,57

ID Noeud	Altitude	Demande Base	Charge	Pression
ID Noeud	m	LPS	m	m
Noeud n60	140,8417	0,51	148,24	7,4
Noeud n61	123,0185	1,95	120,79	-2,23
Noeud n62	116,846	1,65	119,56	2,72
Noeud n63	153,1979	1,79	149,25	-3,95
Noeud n64	148,3138	0,46	149,24	0,93
Noeud n65	148,4771	2,45	146,55	-1,92
Noeud n66	145,6339	0,91	146,97	1,34
Noeud n67	151,6454	0,57	149,07	-2,58
Noeud n68	151,5512	0,26	149	-2,55
Noeud n69	149,7428	0,64	149,01	-0,73
Noeud n70	149,3602	0,41	148,77	-0,59
Noeud n71	149,1751	0,51	149	-0,17
Noeud n72	149,0367	0,41	148,77	-0,27
Noeud n73	148,7084	0,51	149	0,29
Noeud n74	149,8783	0,27	148,93	-0,95
Noeud n75	147,2967	0,7	149,01	1,71
Noeud n76	147,2625	0,18	149	1,74
Noeud n77	134,2085	1,64	146,84	12,63
Noeud n78	134,5198	0,24	146,82	12,3
Noeud n79	136,2008	1,22	139,99	3,79
Noeud n80	135,6197	0,21	139,97	4,35
Noeud n81	145,3532	1,64	151,17	5,82
Noeud n82	141,104	0,57	150,95	9,85
Noeud n83	128,0474	2,69	148,04	20
Noeud n84	119,0067	1,3	110,16	-8,84
Noeud n85	130,9318	0,8	142,8	11,86
Noeud n86	133,6164	0,37	142,67	9,05
Noeud n87	133,2012	0,38	141	7,79
Noeud n88	130,3542	0,7	141,13	10,78
Noeud n89	132,9393	0,38	140,77	7,83

ID Noeud	Altitude	Demande Base	Charge	Pression
1D Noeud	m	LPS	m	m
Noeud n90	130,0644	0,58	140,9	10,84
Noeud n91	154,9938	4,05	161,07	6,07
Noeud n92	141,4244	3,92	160,08	18,66
Noeud n93	145,4925	7,33	150,84	5,34
Noeud n94	155,7341	2,89	163,76	8,03
Noeud n95	140,542	3,98	151,31	10,77
Noeud n96	136,4743	0,59	150,9	14,43
Noeud n97	136,4285	0,27	150,88	14,45
Noeud n98	144,3316	0,76	160,21	15,87
Noeud n99	154,1358	1,13	160,28	6,14
Noeud n100	146,3835	1,77	153,33	6,94
Noeud n101	141,9354	1,82	151,58	9,64
Noeud n102	131,4853	1,08	146,42	14,94
Noeud n103	154,5183	1,38	160,82	6,3
Noeud n104	153,1829	1,24	149,15	-4,03
Noeud n105	141,381	0,99	142,12	0,74
Noeud n106	141,3358	0,11	142,12	0,79
Noeud n107	145,2387	0,91	149,06	3,82
Noeud n108	132,8617	1,19	149,68	16,82
Noeud n109	132,6976	2,58	149,66	16,96
Noeud n110	132,6435	0,42	149,68	17,04
Noeud n111	129,8712	0,1	140,9	11,03
Noeud n112	119,9267	0,87	120,18	0,26
Noeud n113	118,2677	0,33	120,18	1,92
Noeud n114	118,5889	0,53	119,86	1,27
Noeud n115	117,192	0,43	119,77	2,58
Noeud n116	119,0276	1,04	119,91	0,88
Noeud n117	117,1863	0,11	119,72	2,54
Noeud n118	111,3321	0,48	119,64	8,31
Noeud n119	113,8	1,03	119,65	5,85

ID Noeud	Altitude	Demande Base	Charge	Pression
1D Noeud	m	LPS	m	m
Noeud n120	115,2428	1,11	119,63	4,39
Noeud n121	114,0758	0,37	119,63	5,56
Noeud n122	132,7446	0,35	150,72	17,97
Noeud n123	142,0213	0,21	151,48	9,46
Noeud n124	136,3166	0,5	150,27	13,95
Noeud n125	136,2437	0,47	150,73	14,49
Noeud n126	98,5	5,52	99,07	0,57
Noeud n127	145,6689	0,23	146,97	1,3
Réservoir 1	184,5	Sans Valeur	190,5	6

Etat des tronçons en cas de pointe (résultats de la simulation pour le réseau actuel)

ID Arc	Longueur		Diamètre extérieur	Rugosité	Type	Débit	Vitesse	Perte de Charge
ID Arc	m	mm	mm	mm	Type	LPS	m/s	m/km
Tuyau p1	188,1	150	150	0,04	AC	-20,61	1,17	8,28
Tuyau p2	225	200	200	0,04	AC	-4,72	0,15	0,14
Tuyau p3	119,2	80	80	0,15	AG	0,36	0,07	0,13
Tuyau p4	170,7	125	125	0,04	AC	2,73	0,22	0,5
Tuyau p5	249,5	60	60	0,15	AG	0,75	0,27	1,93
Tuyau p6	89,75	60	60	0,15	AG	0,27	0,1	0,31
Tuyau p7	109,6	80	80	0,04	AC	0,13	0,03	0,01
Tuyau p8	154,9	80	80	0,04	AC	0,46	0,09	0,19
Tuyau p9	49,03	60	60	0,15	AG	0,15	0,05	0,09
Tuyau p10	432,7	150	150	0,04	AC	27,14	1,54	13,89
Tuyau p11	153,5	60	60	0,15	AG	0,46	0,16	0,79
Tuyau p12	152,6	125	125	0,04	AC	11,87	0,97	7,29
Tuyau p13	130,1	60	60	0,15	AG	0,39	0,14	0,59
Tuyau p14	81,91	51,4	63	0,02	PEHD	0,25	0,12	0,52
Tuyau p15	132	60	60	0,15	AG	0,4	0,14	0,62
Tuyau p16	36,67	49	49	0,15	AG	0,11	0,06	0,11
Tuyau p17	91,6	60	60	0,15	AG	0,27	0,1	0,31
Tuyau p18	77,79	60	60	0,15	AG	0,23	0,08	0,23
Tuyau p19	64,14	49	49	0,15	AG	0,19	0,1	0,44
Tuyau p20	73,97	80	80	0,04	AC	0,12	0,02	0,01
Tuyau p21	83,41	60	60	0,15	AG	0,25	0,09	0,27
Tuyau p22	58,73	49	49	0,15	AG	0,18	0,1	0,4
Tuyau p23	368,8	60	60	0,15	AG	1,39	0,49	6,02
Tuyau p24	276,4	60	60	0,15	AG	0,83	0,29	2,32
Tuyau p25	42,12	60	60	0,15	AG	-0,16	0,06	0,1
Tuyau p26	41,24	49	49	0,15	AG	0,12	0,06	0,15
Tuyau p27	83,01	60	60	0,15	AG	0,25	0,09	0,27
Tuyau p28	104,3	49	49	0,15	AG	0,31	0,16	1,05
Tuyau p29	186,6	150	150	0,04	AC	-2,86	0,16	0,23

ID Arc	Longueur	Diamètre intérieur	Diamètre extérieur	Rugosité	Tyme	Débit	Vitesse	Perte de Charge
ID Arc	m	mm	mm	mm	Type	LPS	m/s	m/km
Tuyau p30	115,4	200	200	0,04	AC	-6,1	0,19	0,22
Tuyau p31	324,1	200	200	0,04	AC	-8,34	0,27	0,38
Tuyau p32	372,2	200	200	0,04	AC	1,12	0,04	0,01
Tuyau p33	91,06	90	110	0,02	PEHD	5,47	0,86	8,38
Tuyau p34	447,6	80	80	0,04	AC	1,34	0,27	1,21
Tuyau p35	171,5	60	60	0,15	AG	0,51	0,18	0,95
Tuyau p36	549,5	130,8	160	0,02	PEHD	7,17	0,53	2,23
Tuyau p37	151,9	100	100	0,04	AC	0,46	0,06	0,06
Tuyau p38	116,2	100	100	0,04	AC	-4,48	0,57	3,62
Tuyau p39	85,31	49	49	0,15	AG	0,26	0,14	0,77
Tuyau p40	135,5	49	49	0,15	AG	0,41	0,22	1,74
Tuyau p41	135,4	49	49	0,15	AG	0,41	0,22	1,74
Tuyau p42	90,37	49	49	0,15	AG	0,27	0,14	0,82
Tuyau p43	60,22	60	60	0,15	AG	0,18	0,06	0,15
Tuyau p44	80,29	60	60	0,15	AG	0,24	0,08	0,25
Tuyau p45	69,88	60	60	0,15	AG	0,21	0,07	0,2
Tuyau p46	190,5	60	60	0,15	AG	0,57	0,2	1,17
Tuyau p47	434,1	32,6	40	0,02	PEHD	1,3	1,56	87,26
Tuyau p48	125	51,4	63	0,02	PEHD	0,37	0,18	1,03
Tuyau p49	126,2	51,4	63	0,02	PEHD	-0,38	0,18	1,07
Tuyau p50	125,6	51,4	63	0,02	PEHD	-0,38	0,18	1,07
Tuyau p51	1307	130,8	160	0,02	PEHD	3,92	0,29	0,75
Tuyau p52	954,7	130,8	160	0,02	PEHD	-19,21	1,43	13,54
Tuyau p53	1214	100	100	0,04	AC	-2,72	0,35	1,46
Tuyau p54	3,298	150	150	0,04	AC	20,53	1,16	8,22
Tuyau p55	8,665	150	150	0,04	AC	18,84	1,07	7
Tuyau p56	73,31	150	150	0,04	AC	15,35	0,87	4,78
Tuyau p57	66,24	150	150	0,04	AC	14,21	0,8	4,14
Tuyau p58	219,5	150	150	0,04	AC	12,85	0,73	3,44
Tuyau p59	254,8	130,8	160	0,02	PEHD	-0,76	0,06	0,04

ID Assa	Longueur	Diamètre intérieur	Diamètre extérieur	Rugosité	Т	Débit	Vitesse	Perte de Charge
ID Arc	m	mm	mm	mm	Type	LPS	m/s	m/km
Tuyau p60	265,7	150	150	0,04	AC	-2,87	0,16	0,23
Tuyau p61	112,4	200	200	0,04	AC	-47,15	1,5	9,38
Tuyau p62	65,15	200	200	0,04	AC	-30,3	0,96	4,09
Tuyau p63	99,63	200	200	0,04	AC	-40,28	1,28	6,97
Tuyau p64	85,36	150	150	0,04	AC	-9,36	0,53	1,92
Tuyau p65	377,4	150	150	0,04	AC	-13,35	0,76	3,69
Tuyau p66	132,9	125	125	0,04	AC	7,51	0,61	3,13
Tuyau p67	156,8	125	125	0,04	AC	3,12	0,25	0,64
Tuyau p68	439,4	100	100	0,04	AC	13,02	1,66	26,34
Tuyau p69	5,412	100	100	0,04	AC	10,77	1,37	18,43
Tuyau p70	364,4	100	100	0,04	AC	6,47	0,82	7,12
Tuyau p71	335,6	100	100	0,04	AC	8,5	1,08	11,82
Tuyau p72	72,17	100	100	0,04	AC	5,62	0,72	5,49
Tuyau p73	44,79	100	100	0,04	AC	2,77	0,35	1,52
Tuyau p74	37,84	100	100	0,04	AC	0,11	0,01	0
Tuyau p75	30,89	100	100	0,04	AC	-9,67	1,23	15,03
Tuyau p76	153,9	150	150	0,04	AC	-22,54	1,28	9,79
Tuyau p77	53,94	150	150	0,04	AC	-11,33	0,64	2,73
Tuyau p78	303	130,8	160	0,02	PEHD	-13,54	1,01	7,1
Tuyau p79	213	125	125	0,04	AC	-4,7	0,38	1,33
Tuyau p80	441,5	125	125	0,04	AC	-8,16	0,67	3,65
Tuyau p81	214,4	125	125	0,04	AC	-12,71	1,04	8,28
Tuyau p82	602,8	160	160	0,04	AC	-12,2	0,61	2,27
Tuyau p83	1081	200	200	0,04	AC	14,79	0,47	1,09
Tuyau p84	138,5	125	125	0,04	AC	-0,42	0,03	0,02
Tuyau p85	43,92	125	125	0,04	AC	3,09	0,25	0,63
Tuyau p86	43,93	100	100	0,04	AC	3,06	0,39	1,82
Tuyau p87	59,97	100	100	0,04	AC	2,23	0,28	1,03
Tuyau p88	18,99	100	100	0,04	AC	1,18	0,15	0,33
Tuyau p89	15,61	100	100	0,04	AC	0,26	0,03	0,02

ID Arc	Longueur	Diamètre intérieur	Diamètre extérieur	Rugosité	Tyma	Débit	Vitesse	Perte de Charge
ID AIC	m	mm	mm	mm	Type	LPS	m/s	m/km
Tuyau p90	62,9	100	100	0,04	AC	-0,52	0,07	0,08
Tuyau p91	175,6	200	200	0,04	AC	-62,46	1,99	15,98
Tuyau p92	54,64	200	200	0,04	AC	-63,61	2,02	16,54
Tuyau p93	48,05	200	200	0,04	AC	23,6	0,75	2,57
Tuyau p94	120	200	200	0,04	AC	22,56	0,72	2,36
Tuyau p95	69,9	51,4	63	0,02	PEHD	-3,31	1,6	51,88
Tuyau p96	71,46	51,4	63	0,02	PEHD	-2,14	1,03	23,29
Tuyau p97	34,6	51,4	63	0,02	PEHD	-0,1	0,05	0,07
Tuyau p98	34,68	51,4	63	0,02	PEHD	-1,06	0,51	6,55
Tuyau p99	241	100	100	0,04	AC	21,97	2,8	71,2
Tuyau p100	43,22	100	100	0,04	AC	20,34	2,59	61,43
Tuyau p101	24,23	73,6	90	0,02	PEHD	19,21	4,52	236,09
Tuyau p102	76,49	130,8	160	0,02	PEHD	10,09	0,75	4,15
Tuyau p103	81,32	130,8	160	0,02	PEHD	9,23	0,69	3,52
Tuyau p104	109,6	130,8	160	0,02	PEHD	0,33	0,02	0,01
Tuyau p105	94,55	130,8	160	0,02	PEHD	4,51	0,34	0,97
Tuyau p106	99,83	130,8	160	0,02	PEHD	8,03	0,6	2,74
Tuyau p107	37,04	130,8	160	0,02	PEHD	5,59	0,42	1,42
Tuyau p108	44,21	49	49	0,15	AG	0,55	0,29	2,97
Tuyau p109	35,69	49	49	0,15	AG	0,11	0,06	0,11
Tuyau p110	69,54	130,8	160	0,02	PEHD	-1,49	0,11	0,14
Tuyau p111	210,3	80	80	0,04	AC	1,4	0,28	1,32
Tuyau p112	74,43	80	80	0,04	AC	0,12	0,02	0,01
Tuyau p113	68,67	80	80	0,04	AC	0,17	0,03	0,02
Tuyau p114	99,73	80	80	0,04	AC	-0,43	0,09	0,17
Tuyau p115	95,74	200	200	0,04	AC	-92,49	2,94	33,85
Tuyau p116	10,28	200	200	0,04	AC	-121,7	3,87	57,44
Tuyau p117	14,84	200	200	0,04	AC	-96,49	3,07	36,72
Tuyau p118	38,4	200	200	0,04	AC	-118,87	3,78	54,88
Tuyau p119	5,093	200	200	0,04	AC	110,9	3,53	48

ID Asso	Longueur	Diamètre intérieur	Diamètre extérieur	Rugosité	Tuna	Débit	Vitesse	Perte de Charge
ID Arc	m	mm	mm	mm	Type	LPS	m/s	m/km
Tuyau p120	36,95	102,2	125	0,02	PEHD	1,31	0,16	0,35
Tuyau p121	116,1	125	125	0,04	AC	0,35	0,03	0,01
Tuyau p122	248,1	60	60	0,15	AG	1,67	0,59	8,6
Tuyau p123	90,21	60	60	0,15	AG	0,24	0,09	0,26
Tuyau p124	58,93	100	100	0,04	AC	0,89	0,11	0,2
Tuyau p125	68,41	60	60	0,15	AG	0,21	0,07	0,2
Tuyau p126	74,14	60	60	0,15	AG	1,44	0,51	6,48
Tuyau p127	166,7	60	60	0,15	AG	0,5	0,18	0,92
Tuyau p128	76,75	80	80	0,15	AG	1,42	0,28	1,49
Tuyau p129	157,8	80	80	0,15	AG	0,47	0,09	0,2
Tuyau p130	173,9	130,8	160	0,02	PEHD	-2,96	0,22	0,46
Tuyau p131	47,49	130,8	160	0,02	PEHD	-4,08	0,3	0,81
Tuyau p132	49,4	130,8	160	0,02	PEHD	-0,25	0,02	0
Tuyau p133	90,1	130,8	160	0,02	PEHD	-1,01	0,08	0,07
Tuyau p134	109,5	100	100	0,04	AC	-1,4	0,18	0,45
Tuyau p135	332,4	125	125	0,04	AC	9,39	0,76	4,72
Tuyau p136	1281	80	80	0,04	AC	5,52	1,1	16
Tuyau p137	108,6	100	100	0,04	AC	5,62	0,72	5,49
Tuyau p138	77,65	100	100	0,04	AC	0,23	0,03	0,01
Tuyau p139	407,6	100	100	0,04	AC	2,91	0,37	1,65
Tuyau p140	164,2	100	100	0,04	AC	7,36	0,94	9,04
Tuyau R-1	1110	257,8	315	0,02	BONNA	143,8	2,75	20,48

Etat des nœuds en cas de pointe + incendie (résultats de la simulation pour le réseau actuel)

ID Noeud	Altitude	Demande Base	Charge	Pression
ID Nocuu	m	LPS	m	m
Noeud n1	128,6386	1,76	132,79	4,16
Noeud n2	128,5532	1,46	136,49	7,94
Noeud n3	126,1395	1,55	140,08	13,94
Noeud n4	124,4659	1,2	140,17	15,7
Noeud n5	134,667	0,78	141,45	6,79
Noeud n6	132,5	0,36	141,44	8,94
Noeud n7	136,2052	0,76	141,96	5,75
Noeud n8	134,8954	1,02	141,87	6,97
Noeud n9	136,7169	2,71	140,5	3,79
Noeud n10	137,7772	0,75	140,02	2,25
Noeud n11	139,1487	0,77	142,44	3,29
Noeud n12	138,5609	0,27	142,41	3,85
Noeud n13	117,1031	0,99	52,01	-65,09
Noeud n14	117,823	0,57	52,01	-65,81
Noeud n15	123,5167	0,67	72,41	-51,1
Noeud n16	121,7458	0,46	72,38	-49,36
Noeud n17	142,6364	0,53	142,93	0,3
Noeud n18	143,6217	0,15	142,93	-0,69
Noeud n19	151,7332	1,75	149,89	-1,85
Noeud n20	145,3473	3,73	142,01	-3,33
Noeud n21	145,1549	1,28	138,31	-6,84
Noeud n22	141,4998	0,46	138,19	-3,31
Noeud n23	144,9238	1,01	140,06	-4,87
Noeud n24	141,173	1,97	137,91	-3,27
Noeud n25	124,2153	1,24	80,97	-43,25
Noeud n26	122,724	0,39	80,89	-41,83
Noeud n27	143,9687	1,15	143,82	-0,15
Noeud n28	143,3747	0,25	143,77	0,4
Noeud n29	132,4672	0,4	141,79	9,32

ID Noeud	Altitude	Demande Base	Charge	Pression
1D Noeud	m	LPS	m	m
Noeud n30	137,2911	0,83	141,59	4,3
Noeud n31	137,7879	0,11	141,59	3,8
Noeud n32	150,0084	1,84	153,98	3,98
Noeud n33	151,9315	0,27	153,96	2,02
Noeud n34	149,8647	0,92	148,74	-1,13
Noeud n35	150,4356	0,23	148,72	-1,72
Noeud n36	121,3893	0,67	52,75	-68,63
Noeud n37	120,6658	0,19	52,73	-67,94
Noeud n38	113,1287	0,64	51,92	-61,21
Noeud n39	114,0324	0,73	51,92	-62,12
Noeud n40	95,8019	1,11	141,05	45,25
Noeud n41	132,8048	0,25	141,03	8,23
Noeud n42	124,9706	0,18	140,14	15,17
Noeud n43	141,4241	1,46	133	-8,42
Noeud n44	133,2049	1,23	130,78	-2,43
Noeud n45	142,0533	2,05	133,4	-8,66
Noeud n46	142,1861	0,83	132,75	-9,43
Noeud n47	133,9656	0,4	130,77	-3,19
Noeud n48	137,5204	0,83	141,92	4,4
Noeud n49	137,8067	0,12	141,92	4,11
Noeud n50	134,6289	0,71	141,86	7,23
Noeud n51	132,761	0,25	141,83	9,07
Noeud n52	128,6316	0,31	139,97	11,34
Noeud n53	128,2307	2,35	139,91	11,68
Noeud n54	124,4659	4,96	140,22	15,76
Noeud n55	123,3831	5,33	140,44	17,06
Noeud n56	118,2502	1,12	140,43	22,18
Noeud n57	144,2169	1,67	142,94	-1,27
Noeud n58	155,8284	1,49	157,68	1,85
Noeud n59	151,0621	1,34	157,13	6,07

ID Noeud	Altitude	Demande Base	Charge	Pression
ID Noeud	m	LPS	m	m
Noeud n60	140,8417	0,51	137,74	-3,1
Noeud n61	123,0185	1,95	53,07	-69,95
Noeud n62	116,846	1,65	41,67	-75,18
Noeud n63	153,1979	1,79	140,23	-12,97
Noeud n64	148,3138	0,46	140,22	-8,09
Noeud n65	148,4771	2,45	137,36	-11,11
Noeud n66	145,6339	0,91	137,75	-7,88
Noeud n67	151,6454	0,57	139,94	-11,71
Noeud n68	151,5512	0,26	139,87	-11,68
Noeud n69	149,7428	0,64	139,78	-9,96
Noeud n70	149,3602	0,41	139,55	-9,81
Noeud n71	149,1751	0,51	139,76	-9,42
Noeud n72	149,0367	0,41	139,52	-9,52
Noeud n73	148,7084	0,51	139,75	-8,96
Noeud n74	149,8783	0,27	139,67	-10,21
Noeud n75	147,2967	0,7	139,73	-7,57
Noeud n76	147,2625	0,18	139,72	-7,54
Noeud n77	134,2085	1,64	134,43	0,22
Noeud n78	134,5198	0,24	134,41	-0,11
Noeud n79	136,2008	1,22	130,8	-5,4
Noeud n80	135,6197	0,21	130,78	-4,84
Noeud n81	145,3532	1,64	142,23	-3,13
Noeud n82	141,104	0,57	142	0,9
Noeud n83	128,0474	2,69	136,93	8,89
Noeud n84	119,0067	1,3	99,05	-19,95
Noeud n85	130,9318	0,8	129,74	-1,2
Noeud n86	133,6164	0,37	129,61	-4,01
Noeud n87	133,2012	0,38	127,94	-5,27
Noeud n88	130,3542	0,7	128,07	-2,28
Noeud n89	132,9393	0,38	127,71	-5,23

ID Noeud	Altitude	Demande Base	Charge	Pression
1D Noeud	m	LPS	m	m
Noeud n90	130,0644	0,58	127,84	-2,22
Noeud n91	154,9938	4,05	155,05	0,05
Noeud n92	141,4244	3,92	154,06	12,64
Noeud n93	145,4925	7,33	142,09	-3,41
Noeud n94	155,7341	2,89	158,41	2,68
Noeud n95	140,542	3,98	142,59	2,05
Noeud n96	136,4743	0,59	142,07	5,6
Noeud n97	136,4285	0,27	142,04	5,61
Noeud n98	144,3316	0,76	153,97	9,64
Noeud n99	154,1358	1,13	154,04	-0,09
Noeud n100	146,3835	1,77	145,15	-1,24
Noeud n101	141,9354	1,82	142,92	0,99
Noeud n102	131,4853	1,08	133,36	1,88
Noeud n103	154,5183	1,38	154,74	0,22
Noeud n104	153,1829	1,24	140,1	-13,08
Noeud n105	141,381	0,99	132,93	-8,45
Noeud n106	141,3358	0,11	132,93	-8,4
Noeud n107	145,2387	0,91	139,73	-5,51
Noeud n108	132,8617	1,19	139,96	7,1
Noeud n109	132,6976	2,58	139,89	7,2
Noeud n110	132,6435	0,42	139,96	7,31
Noeud n111	129,8712	0,1	127,84	-2,03
Noeud n112	119,9267	0,87	52,47	-67,46
Noeud n113	118,2677	0,33	52,47	-65,8
Noeud n114	118,5889	0,53	52,14	-66,45
Noeud n115	117,192	0,43	52,05	-65,14
Noeud n116	119,0276	1,04	52,19	-66,83
Noeud n117	117,1863	0,11	52,01	-65,18
Noeud n118	111,3321	0,48	51,92	-59,41
Noeud n119	113,8	1,03	51,93	-61,87

ID Noeud	Altitude	Demande Base	Charge	Pression
1D Noeud	m	LPS	m	m
Noeud n120	115,2428	1,11	51,92	-63,32
Noeud n121	114,0758	0,37	51,92	-62,16
Noeud n122	132,7446	0,35	141,86	9,11
Noeud n123	142,0213	0,21	142,92	0,9
Noeud n124	136,3166	0,5	141,44	5,12
Noeud n125	136,2437	0,47	141,89	5,65
Noeud n126	98,5	22,52	-255,31	-353,81
Noeud n127	145,6689	0,23	137,75	-7,92
Réservoir 1	184,5	Sans Valeur	190,5	6

Etat des tronçons en cas de pointe +incendie (résultats de la simulation pour le réseau actuel)

	Longueur	Diamètre intérieur	Diamètre extérieur	Rugosité		Débit	Vitesse	Perte de Charge
ID Arc	m	mm	mm	mm	type	LPS	m/s	m/km
Tuyau p1	188,1	150	150	0,04	AC	-32,6	1,84	19,65
Tuyau p2	225	200	200	0,04	AC	-8,18	0,26	0,37
Tuyau p3	119,2	80	80	0,04	AG	0,36	0,20	0,13
Tuyau p4	170,7	125	125	0,13	AC	2,73	0,07	0,13
Tuyau p5	249,5	60	60	0,15	AG	0,75	0,27	1,93
Tuyau p6	89,75	60	60	0,15	AG	0,73	0,27	0,31
Tuyau p7	109,6	80	80	0,04	AC	0,13	0,03	0,01
Tuyau p8	154,9	80	80	0,04	AC	0,46	0,09	0,19
Tuyau p9	49,03	60	60	0,04	AG	0,15	0,05	0,09
Tuyau p10	432,7	150	150	0,13	AC	31,31	1,77	18,19
Tuyau p11	153,5	60	60	0,15	AG	0,46	0,16	0,79
Tuyau p12	152,6	125	125	0,04	AC	16,88	1,38	14,09
Tuyau p13	130,1	60	60	0,15	AG	0,39	0,14	0,59
Tuyau p14	81,91	51,4	63	0,02	PEHD	0,25	0,12	0,52
Tuyau p15	132	60	60	0,15	AG	0,4	0,14	0,62
Tuyau p16	36,67	49	49	0,15	AG	0,11	0,06	0,11
Tuyau p17	91,6	60	60	0,15	AG	0,27	0,1	0,31
Tuyau p18	77,79	60	60	0,15	AG	0,23	0,08	0,23
Tuyau p19	64,14	49	49	0,15	AG	0,19	0,1	0,44
Tuyau p20	73,97	80	80	0,04	AC	0,12	0,02	0,01
Tuyau p21	83,41	60	60	0,15	AG	0,25	0,09	0,27
Tuyau p22	58,73	49	49	0,15	AG	0,18	0,1	0,4
Tuyau p23	368,8	60	60	0,15	AG	1,39	0,49	6,02
Tuyau p24	276,4	60	60	0,15	AG	0,83	0,29	2,32
Tuyau p25	42,12	60	60	0,15	AG	-0,16	0,06	0,1
Tuyau p26	41,24	49	49	0,15	AG	0,12	0,06	0,15
Tuyau p27	83,01	60	60	0,15	AG	0,25	0,09	0,27
Tuyau p28	104,3	49	49	0,15	AG	0,31	0,16	1,05
Tuyau p29	186,6	150	150	0,04	AC	-6,32	0,36	0,94

ID A ma	Longueur	Diamètre intérieur	Diamètre extérieur	Rugosité	4	Débit	Vitesse	Perte de Charge
ID Arc	m	mm	mm	mm	type	LPS	m/s	m/km
Tuyau p30	115,4	200	200	0,04	AC	-9,56	0,3	0,49
Tuyau p31	324,1	200	200	0,04	AC	-11,33	0,36	0,67
Tuyau p32	372,2	200	200	0,04	AC	1,12	0,04	0,01
Tuyau p33	91,06	90	110	0,02	PEHD	5,89	0,93	9,59
Tuyau p34	447,6	80	80	0,04	AC	1,34	0,27	1,21
Tuyau p35	171,5	60	60	0,15	AG	0,51	0,18	0,95
Tuyau p36	549,5	130,8	160	0,02	PEHD	24,17	1,8	20,75
Tuyau p37	151,9	100	100	0,04	AC	0,46	0,06	0,06
Tuyau p38	116,2	100	100	0,04	AC	-4,29	0,55	3,35
Tuyau p39	85,31	49	49	0,15	AG	0,26	0,14	0,77
Tuyau p40	135,5	49	49	0,15	AG	0,41	0,22	1,74
Tuyau p41	135,4	49	49	0,15	AG	0,41	0,22	1,74
Tuyau p42	90,37	49	49	0,15	AG	0,27	0,14	0,82
Tuyau p43	60,22	60	60	0,15	AG	0,18	0,06	0,15
Tuyau p44	80,29	60	60	0,15	AG	0,24	0,08	0,25
Tuyau p45	69,88	60	60	0,15	AG	0,21	0,07	0,2
Tuyau p46	190,5	60	60	0,15	AG	0,57	0,2	1,17
Tuyau p47	434,1	32,6	40	0,02	PEHD	1,3	1,56	87,26
Tuyau p48	125	51,4	63	0,02	PEHD	0,37	0,18	1,03
Tuyau p49	126,2	51,4	63	0,02	PEHD	-0,38	0,18	1,07
Tuyau p50	125,6	51,4	63	0,02	PEHD	-0,38	0,18	1,07
Tuyau p51	1307	130,8	160	0,02	PEHD	3,92	0,29	0,75
Tuyau p52	954,7	130,8	160	0,02	PEHD	-21,78	1,62	17,1
Tuyau p53	1214	100	100	0,04	AC	-3,19	0,41	1,95
Tuyau p54	3,298	150	150	0,04	AC	23,78	1,35	10,83
Tuyau p55	8,665	150	150	0,04	AC	22,09	1,25	9,43
Tuyau p56	73,31	150	150	0,04	AC	18,6	1,05	6,83
Tuyau p57	66,24	150	150	0,04	AC	17,46	0,99	6,07
Tuyau p58	219,5	150	150	0,04	AC	16,1	0,91	5,22
Tuyau p59	254,8	130,8	160	0,02	PEHD	-0,76	0,06	0,04

ID A wo	Longueur	Diamètre intérieur	Diamètre extérieur	Rugosité	truno	Débit	Vitesse	Perte de Charge
ID Arc	m	mm	mm	mm	type	LPS	m/s	m/km
Tuyau p60	265,7	150	150	0,04	AC	-2,87	0,16	0,23
Tuyau p61	112,4	200	200	0,04	AC	-53,31	1,7	11,83
Tuyau p62	65,15	200	200	0,04	AC	-34,02	1,08	5,08
Tuyau p63	99,63	200	200	0,04	AC	-46,02	1,46	8,96
Tuyau p64	85,36	150	150	0,04	AC	-16,08	0,91	5,21
Tuyau p65	377,4	150	150	0,04	AC	-20,07	1,14	7,88
Tuyau p66	132,9	125	125	0,04	AC	12,52	1,02	8,05
Tuyau p67	156,8	125	125	0,04	AC	8,13	0,66	3,62
Tuyau p68	439,4	100	100	0,04	AC	14,68	1,87	33,02
Tuyau p69	5,412	100	100	0,04	AC	12,43	1,58	24,11
Tuyau p70	364,4	100	100	0,04	AC	6,66	0,85	7,5
Tuyau p71	335,6	100	100	0,04	AC	8,5	1,08	11,82
Tuyau p72	72,17	100	100	0,04	AC	5,62	0,72	5,49
Tuyau p73	44,79	100	100	0,04	AC	2,77	0,35	1,52
Tuyau p74	37,84	100	100	0,04	AC	0,11	0,01	0
Tuyau p75	30,89	100	100	0,04	AC	-8,01	1,02	10,59
Tuyau p76	153,9	150	150	0,04	AC	-25,9	1,47	12,72
Tuyau p77	53,94	150	150	0,04	AC	-13,78	0,78	3,91
Tuyau p78	303	130,8	160	0,02	PEHD	-15,99	1,19	9,64
Tuyau p79	213	125	125	0,04	AC	-6,72	0,55	2,55
Tuyau p80	441,5	125	125	0,04	AC	-10,18	0,83	5,48
Tuyau p81	214,4	125	125	0,04	AC	-17,98	1,47	15,87
Tuyau p82	602,8	160	160	0,04	AC	-15,45	0,77	3,52
Tuyau p83	1081	200	200	0,04	AC	17,78	0,57	1,52
Tuyau p84	138,5	125	125	0,04	AC	-0,42	0,03	0,02
Tuyau p85	43,92	125	125	0,04	AC	5,11	0,42	1,55
Tuyau p86	43,93	100	100	0,04	AC	4,53	0,58	3,7
Tuyau p87	59,97	100	100	0,04	AC	3,7	0,47	2,56
Tuyau p88	18,99	100	100	0,04	AC	2,65	0,34	1,4
Tuyau p89	15,61	100	100	0,04	AC	1,73	0,22	0,65

ID A ma	Longueur	Diamètre intérieur	Diamètre extérieur	Rugosité	4	Débit	Vitesse	Perte de Charge
ID Arc	m	mm	mm	mm	type	LPS	m/s	m/km
Tuyau p90	62,9	100	100	0,04	AC	0,95	0,12	0,23
Tuyau p91	175,6	200	200	0,04	AC	-71,06	2,26	20,44
Tuyau p92	54,64	200	200	0,04	AC	-72,21	2,3	21,07
Tuyau p93	48,05	200	200	0,04	AC	26,85	0,85	3,27
Tuyau p94	120	200	200	0,04	AC	25,81	0,82	3,03
Tuyau p95	69,9	51,4	63	0,02	PEHD	-3,31	1,6	51,88
Tuyau p96	71,46	51,4	63	0,02	PEHD	-2,14	1,03	23,29
Tuyau p97	34,6	51,4	63	0,02	PEHD	-0,1	0,05	0,07
Tuyau p98	34,68	51,4	63	0,02	PEHD	-1,06	0,51	6,55
Tuyau p99	241	100	100	0,04	AC	38,97	4,96	215,05
Tuyau p100	43,22	100	100	0,04	AC	37,34	4,75	197,94
Tuyau p101	24,23	73,6	90	0,02	PEHD	36,21	8,51	798,21
Tuyau p102	76,49	130,8	160	0,02	PEHD	10,09	0,75	4,15
Tuyau p103	81,32	130,8	160	0,02	PEHD	9,23	0,69	3,52
Tuyau p104	109,6	130,8	160	0,02	PEHD	0,33	0,02	0,01
Tuyau p105	94,55	130,8	160	0,02	PEHD	4,51	0,34	0,97
Tuyau p106	99,83	130,8	160	0,02	PEHD	8,03	0,6	2,74
Tuyau p107	37,04	130,8	160	0,02	PEHD	5,59	0,42	1,42
Tuyau p108	44,21	49	49	0,15	AG	0,55	0,29	2,97
Tuyau p109	35,69	49	49	0,15	AG	0,11	0,06	0,11
Tuyau p110	69,54	130,8	160	0,02	PEHD	-1,49	0,11	0,14
Tuyau p111	210,3	80	80	0,04	AC	1,4	0,28	1,32
Tuyau p112	74,43	80	80	0,04	AC	0,12	0,02	0,01
Tuyau p113	68,67	80	80	0,04	AC	0,17	0,03	0,02
Tuyau p114	99,73	80	80	0,04	AC	-0,43	0,09	0,17
Tuyau p115	95,74	200	200	0,04	AC	-105,27	3,35	43,42
Tuyau p116	10,28	200	200	0,04	AC	-136,13	4,33	71,34
Tuyau p117	14,84	200	200	0,04	AC	-109,27	3,48	46,65
Tuyau p118	38,4	200	200	0,04	AC	-133,3	4,24	68,5
Tuyau p119	5,093	200	200	0,04	AC	125,33	3,99	60,79

ID Arc	Longueur	Diamètre intérieur	Diamètre extérieur	Rugosité	truno	Débit	Vitesse	Perte de Charge
ID Arc	m	mm	mm	mm	type	LPS	m/s	m/km
Tuyau p120	36,95	102,2	125	0,02	PEHD	1,31	0,16	0,35
Tuyau p121	116,1	125	125	0,04	AC	0,35	0,03	0,01
Tuyau p122	248,1	60	60	0,15	AG	1,67	0,59	8,6
Tuyau p123	90,21	60	60	0,15	AG	0,24	0,09	0,26
Tuyau p124	58,93	100	100	0,04	AC	0,89	0,11	0,2
Tuyau p125	68,41	60	60	0,15	AG	0,21	0,07	0,2
Tuyau p126	74,14	60	60	0,15	AG	1,44	0,51	6,48
Tuyau p127	166,7	60	60	0,15	AG	0,5	0,18	0,92
Tuyau p128	76,75	80	80	0,15	AG	1,42	0,28	1,49
Tuyau p129	157,8	80	80	0,15	AG	0,47	0,09	0,2
Tuyau p130	173,9	130,8	160	0,02	PEHD	-2,96	0,22	0,46
Tuyau p131	47,49	130,8	160	0,02	PEHD	-4,08	0,3	0,81
Tuyau p132	49,4	130,8	160	0,02	PEHD	-0,25	0,02	0
Tuyau p133	90,1	130,8	160	0,02	PEHD	-1,01	0,08	0,07
Tuyau p134	109,5	100	100	0,04	AC	0,07	0,01	0
Tuyau p135	332,4	125	125	0,04	AC	14,4	1,17	10,46
Tuyau p136	1281	80	80	0,04	AC	22,52	4,48	231,84
Tuyau p137	108,6	100	100	0,04	AC	5,43	0,69	5,16
Tuyau p138	77,65	100	100	0,04	AC	0,23	0,03	0,01
Tuyau p139	407,6	100	100	0,04	AC	3,33	0,42	2,11
Tuyau p140	164,2	100	100	0,04	AC	7,17	0,91	8,63
Tuyau R-1	1110	257,8	315	0,02	BONNA	160,8	3,08	25,31

<u>Avec</u>: AC: Amiante ciment

AG : Acier galvanisé

Annexe II:

Carnet des nœuds en phase de rénovation (réseau projeté) Carnet des nœuds en phase de rénovation

ID nœuds	Tronçons en commun	L (m)	Qsp (l/s/m)	Q _r (l/s)	$Q_n(l/s)$	
1	p15	314,1	0,010948	3,44	1 00	
1	p16	48,66	0,010948	0,53	1,99	
	p16	48,66	0,010948	0,53		
2	p1	330,3	0,010948	3,62	5.02	
2	p38	531,5	0,010948	5,82	5,92	
	p42	170,3	0,010948	1,86		
	p1	330,3	0,010948	3,62		
3	p2	354	0,010948	3,88	4,39	
	p4	117	0,010948	1,28		
	p2	354	0,010948	3,88		
4	p41	399,6	0,010948	4,37	5,00	
	p54	158,9	0,010948	1,74		
_	p3	699,7	0,010948	7,66		
5	p37	284,7	0,010948	3,12	6,90	
	p43	276,5	0,010948	3,03		
	р3	699,7	0,010948	7,66		
6	p58	114,2	0,010948	1,25	7,77	
	61	605,5	0,010948	6,63		
	p4	117	0,010948	1,28		
7	p40	233,7	0,010948	2,56	2,51	
	p31	107,2	0,010948	1,17		
	p7	169,5	0,010948	1,86		
8	p5	138	0,010948	1,51	5,24	
	p56	650,2	0,010948	7,12	,	
	p5	138	0,010948	1,51		
9	p33	469,8	0,010948	5,14	4,95	
	p36	296,2	0,010948	3,24	ŕ	
10	p6	798,8	0,010948	8,75	7,29	
10	p53	533,1	0,010948	5,84	1,49	
	р6	798,8	0,010948	8,75		
11	р9	526,2	0,010948	5,76	12.26	
11	p26	283	0,010948	3,10	12,36	
	p56	650,2	0,010948	7,12		

ID nœuds	Tronçons en commun	L (m)	Qsp (l/s/m)	$Q_r(l/s)$	Q _n (l/s)
	p7	169,5	0,010948	1,86	
12	p21	104	0,010948	1,14	4,08
	p57	471,8	0,010948	5,17	
13	p8	138,1	0,010948	1,51	3,87
13	p51	569,4	0,010948	6,23	3,07
14	p8	138,1	0,010948	1,51	5,49
14	p52	865	0,010948	9,47	3,49
	р9	526,2	0,010948	5,76	
15	p10	330,3	0,010948	3,62	6,30
	p22	294,5	0,010948	3,22	
	p10	330,3	0,010948	3,62	
16	p23	655,3	0,010948	7,17	8,95
	p19	649	0,010948	7,11	
	p11	630,6	0,010948	6,90	
17	p12	120,6	0,010948	1,32	4,67
	p27	102,4	0,010948	1,12	
	p11	630,6	0,010948	6,90	
18	p13	177,6	0,010948	1,94	4,78
	p32	64,14	0,010948	0,70	
	p12	120,6	0,010948	1,32	
19	p23	655,3	0,010948	7,17	7,10
	p45	521,1	0,010948	5,70	
	p13	177,6	0,010948	1,94	
20	p25	75,05	0,010948	0,82	3,59
	p35	402,4	0,010948	4,41	
	p14	587,8	0,010948	6,44	
21	p39	259,4	0,010948	2,84	5,90
	p46	231,5	0,010948	2,53	
	p15	314,1	0,010948	3,44	
22	p14	p14 587,8 0,01		6,44	6,69
	p17	319,8	0,010948	3,50	

ID nœuds	Tronçons en commun	L (m)	Qsp (l/s/m)	Q _r (l /s)	$Q_n(l/s)$	
	p17	319,8	0,010948	3,50		
23	p18	598,2	0,010948	6,55	6,97	
	p49	354,8	0,010948	3,88		
24	p18 598,2 0,010948 6,55		6,55	3,27		
25	p19	649	0,010948	7,11	3,55	
26	Zone industrielle	/	/	/	5,52	
27	p21	104	0,010948	1,14	<i>5 2</i> 0	
21	p52	865	0,010948	9,47	5,30	
	p22	294,5	0,010948	3,22		
28	p29	183,8	0,010948	2,01	3,97	
	p28	247,4	0,010948	2,71		
	p24	523,7	0,010948	5,73		
29	p25	75,05	0,010948	0,82	4,83	
	p26	283	0,010948	3,10		
	p24	523,7	0,010948	5,73		
30	p27	102,4	0,010948	1,12	4,43	
	p29	183,8	0,010948	2,01	,	
31	p28	p28 247,4	p28 247,4 0,010948	0,010948	2,71	1,35
	p30	366,8	0,010948	4,02		
32	p34	318,9	0,010948	3,49	5,52	
	p55	323,2	0,010948	3,54	,	
	p32	64,14	0,010948	0,70		
33	p31	107,2	0,010948	1,17	2,95	
	p30	366,8	0,010948	4,02	,	
	p33	469,8	0,010948	5,14		
24	p55	323,2	0,010948	3,54	0.57	
34	p60	164,8	0,010948	1,80	8,56	
	p61	605,5	0,010948	6,63		
	p34	318,9	0,010948	3,49		
35	p35	402,4	0,010948	4,41	5,57	
	p36	296,2	0,010948	3,24	,	

ID nœuds	Tronçons en commun	L (m)	Qsp (l/s/m)	Q _r (l /s)	$Q_n(l/s)$	
	p38	531,5	0,010948	5,82		
36	p39	259,4	0,010948	0,010948 2,84		
	p40	233,7	0,010948	2,56		
	p41	399,6	0,010948	4,37		
37	p42	170,3	0,010948	1,86	4,63	
	p43	276,5	0,010948	3,03		
	p44	334,2	0,010948	3,66		
38	p45	521,1	0,010948	5,70	5,09	
	p47	73,83	0,010948	0,81		
39	p44	334,2	0,010948	3,66	1,83	
	p46	231,5	0,010948	2,53	,	
40	p47	73,83	0,010948	0,81	2,38	
	p50	130,3	0,010948	1,43		
	p50	130,3	0,010948	1,43		
41	p49	354,8	0,010948	3,88	3,34	
	p48	125,6	0,010948	1,38		
42	p48	125,6	0,010948	1,38	0,69	
42	p51	569,4	0,010948	6,23	(0.4	
43	p53	533,1	0,010948	5,84	6,04	
	p37	284,7	0,010948	3,12		
44	p54	158,9	0,010948	1,74	3,33	
	p60	164,8	0,010948	1,80		
45	p57	471,8	0,010948	5,17	4.20	
45	p59	327,7			4,38	
16	p58	114,2	0,010948	1,25	2.42	
46	p59	327,7	0,010948	3,59	2,42	

Etat des nœuds en cas de pointe (réseau projeté)

ID Noeud	Altitude	Demande Base	Pression
1D Nocuu	m	LPS	m
Noeud n1	155,7166	1,99	29,01
Noeud n2	154,4995	5,92	30,09
Noeud n3	146,8968	4,39	35
Noeud n4	145,4075	5	35,18
Noeud n5	153,1575	6,9	27,22
Noeud n6	142,0729	7,77	34,58
Noeud n7	144,2832	2,51	36,91
Noeud n8	128,7471	5,24	48,36
Noeud n9	131,195	4,95	46,34
Noeud n10	117,477	7,29	53,44
Noeud n11	128,23	12,36	45,36
Noeud n12	128,4419	4,08	46,13
Noeud n13	114,0758	3,87	54,02
Noeud n14	111,1434	5,49	57,73
Noeud n15	124,2489	6,3	50,48
Noeud n16	123,2154	8,95	53,16
Noeud n17	135,7984	4,67	41,93
Noeud n18	140,598	4,78	39,65
Noeud n19	135,5221	7,1	42,68
Noeud n20	136,3162	3,59	43,56
Noeud n21	145,3407	5,9	36,52
Noeud n22	156,0427	6,69	27,52
Noeud n23	155,2509	6,97	26,79
Noeud n24	158,6605	3,27	21,45
Noeud n25	116,9951	3,55	56,94
Noeud n26	109,2609	5,52	59,29
Noeud n27	127,353	5,3	46,13
Noeud n28	130,2334	3,97	46,4
Noeud n29	134,4304	4,84	45,33

ID No and	Altitude	Demande Base	Pression
ID Noeud	m	LPS	m
Noeud n30	134,4191	4,43	42,97
Noeud n31	130,8095	1,35	43,39
Noeud n32	138,85	5,52	41,04
Noeud n33	141,912	2,95	38,57
Noeud n34	141	8,56	37,65
Noeud n35	132,5032	5,57	45,94
Noeud n36	144,4462	5,61	38,4
Noeud n37	152,8599	4,63	29,99
Noeud n38	142,0496	5,09	37,47
Noeud n39	144,3	1,83	29,54
Noeud n40	144,157	2,38	36,22
Noeud n41	146,6077	3,34	34,51
Noeud n42	145,8	0,69	34,18
Noeud n43	123,8215	6,04	41,52
Noeud n44	144,9954	3,33	34,31
Noeud n45	133,0769	4,38	42,17
Noeud n46	141,2081	2,42	35,19
Réservoir R1	184,5	Sans Valeur	6

Etat des tronçons en cas de pointe (réseau projeté)

	Longueur	Diamètre intérieur	Diamètre extérieur	Rugosité	TD.	Débit	Vitesse	Perte de Charge
ID Arc	m	mm	mm	Mm	Type	LPS	m/s	m/km
Tuyau R1-n1	1149	515,6	630	0,013	PEHD	227,28	1,09	1,55
Tuyau p1	330,3	257,8	315	0,013	PEHD	89,81	1,72	8,18
Tuyau p2	354	130,8	160	0,013	PEHD	9,6	0,71	3,7
Tuyau p3	699,7	130,8	160	0,013	PEHD	11,72	0,87	5,32
Tuyau p4	117	257,8	315	0,013	PEHD	75,83	1,45	5,98
Tuyau p5	138	204,6	250	0,013	PEHD	-28,45	0,87	3,05
Tuyau p6	798,8	163,6	200	0,013	PEHD	-16,47	0,78	3,34
Tuyau p7	169,5	130,8	160	0,013	PEHD	20,67	1,54	14,97
Tuyau p8	138,1	102,2	125	0,013	PEHD	-6,25	0,76	5,62
Tuyau p9	526,2	61,4	75	0,013	PEHD	-0,93	0,31	2,17
Tuyau p10	330,3	73,6	90	0,013	PEHD	-2,42	0,57	4,98
Tuyau p11	630,6	130,8	160	0,013	PEHD	-10,02	0,75	4
Tuyau p12	120,6	90	110	0,013	PEHD	3,66	0,58	3,97
Tuyau p13	177,6	257,8	315	0,013	PEHD	42,79	0,82	2,1
Tuyau p14	587,8	163,6	200	0,013	PEHD	-15,26	0,73	2,91
Tuyau p15	314,1	257,8	315	0,013	PEHD	-58,25	1,12	3,69
Tuyau p16	48,66	409,2	500	0,013	PEHD	167,04	1,27	2,7
Tuyau p17	319,8	204,6	250	0,013	PEHD	36,3	1,1	4,76
Tuyau p18	598,2	90	110	0,013	PEHD	3,27	0,51	3,24
Tuyau p19	649	90	110	0,013	PEHD	3,55	0,56	3,75
Tuyau p20	528,3	102,2	125	0,013	PEHD	5,52	0,67	4,49
Tuyau p21	104	130,8	160	0,013	PEHD	17,04	1,27	10,51
Tuyau p22	294,5	90	110	0,013	PEHD	-4,81	0,76	6,47
Tuyau p23	655,3	163,6	200	0,013	PEHD	-14,92	0,71	2,79
Tuyau p24	523,7	102,2	125	0,013	PEHD	-5,55	0,68	4,53
Tuyau p25	75,05	257,8	315	0,013	PEHD	35,75	0,68	1,51
Tuyau p26	283	130,8	160	0,013	PEHD	25,36	1,89	21,81
Tuyau p27	102,4	130,8	160	0,013	PEHD	-9,01	0,67	3,3
Tuyau p28	247,4	51,4	63	0,013	PEHD	1,35	0,65	9,86
Tuyau p29	183,8	130,8	160	0,013	PEHD	-10,13	0,75	4,08

ID 4	Longueur	Diamètre intérieur	Diamètre extérieur	Rugosité	Т	Débit	Vitesse	Perte de Charge
ID Arc	m	mm	mm	Mm	Type	LPS	m/s	m/km
Tuyau p30	366,8	204,6	250	0,013	PEHD	19,89	0,6	1,59
Tuyau p31	107,2	257,8	315	0,013	PEHD	80,43	1,54	6,67
Tuyau p32	64,14	257,8	315	0,013	PEHD	57,59	1,1	3,61
Tuyau p33	469,8	204,6	250	0,013	PEHD	-24,76	0,75	2,37
Tuyau p34	318,9	130,8	160	0,013	PEHD	10,76	0,8	4,56
Tuyau p35	402,4	90	110	0,013	PEHD	3,45	0,54	3,56
Tuyau p36	296,2	130,8	160	0,013	PEHD	8,64	0,64	3,06
Tuyau p37	284,7	130,8	160	0,013	PEHD	9,68	0,72	3,76
Tuyau p38	531,5	163,6	200	0,013	PEHD	-16,31	0,78	3,28
Tuyau p39	259,4	90	110	0,013	PEHD	-3,59	0,56	3,83
Tuyau p40	233,7	102,2	125	0,013	PEHD	7,11	0,87	7,09
Tuyau p41	399,6	163,6	200	0,013	PEHD	-22,06	1,05	5,68
Tuyau p42	170,3	204,6	250	0,013	PEHD	54,99	1,67	10,22
Tuyau p43	276,5	163,6	200	0,013	PEHD	28,3	1,35	8,96
Tuyau p44	334,2	51,4	63	0,013	PEHD	1,83	0,88	17
Tuyau p45	521,1	204,6	250	0,013	PEHD	25,68	0,78	2,54
Tuyau p46	231,5	130,8	160	0,013	PEHD	-12,95	0,96	6,38
Tuyau p47	73,83	163,6	200	0,013	PEHD	32,6	1,55	11,62
Tuyau p48	125,6	40,8	50	0,013	PEHD	0,69	0,53	9,08
Tuyau p49	354,8	204,6	250	0,013	PEHD	26,06	0,79	2,6
Tuyau p50	130,3	163,6	200	0,013	PEHD	22,03	1,05	5,67
Tuyau p51	569,4	73,6	90	0,013	PEHD	-2,38	0,56	4,82
Tuyau p52	865	130,8	160	0,013	PEHD	-11,74	0,87	5,33
Tuyau p53	533,1	73,6	90	0,013	PEHD	-3,66	0,86	10,46
Tuyau p54	158,9	163,6	200	0,013	PEHD	26,66	1,27	8,03
Tuyau p55	323,2	90	110	0,013	PEHD	-3,61	0,57	3,86
Tuyau p56	650,2	73,6	90	0,013	PEHD	-2,54	0,6	5,42
Tuyau p57	471,8	51,4	63	0,013	PEHD	-0,45	0,22	1,42
Tuyau p58	114,2	130,8	160	0,013	PEHD	7,25	0,54	2,23
Tuyau p59	327,7	102,2	125	0,013	PEHD	4,83	0,59	3,53
Tuyau p60	164,8	204,6	250	0,013	PEHD	-33,01	1	4
Tuyau p61	605,5	90	110	0,013	PEHD	-3,3	0,52	3,29

Etat des nœuds en cas de pointe + incendie (réseau projeté)

ID Noeud	Altitude	Demande Base	Pression
1D Noeud	m	LPS	m
Noeud n1	155,7166	1,99	28,76
Noeud n2	154,4995	5,92	29,82
Noeud n3	146,8968	4,39	34,13
Noeud n4	145,4075	5	34,3
Noeud n5	153,1575	6,9	26,44
Noeud n6	142,0729	7,77	33,57
Noeud n7	144,2832	2,51	35,87
Noeud n8	128,7471	5,24	46,8
Noeud n9	131,195	4,95	44,88
Noeud n10	117,477	7,29	39,65
Noeud n11	128,23	12,36	37,61
Noeud n12	128,4419	4,08	44,17
Noeud n13	114,0758	3,87	49,81
Noeud n14	111,1434	5,49	54,01
Noeud n15	124,2489	6,3	48,37
Noeud n16	123,2154	8,95	52,07
Noeud n17	135,7984	4,67	40,66
Noeud n18	140,598	4,78	38,32
Noeud n19	135,5221	7,1	41,76
Noeud n20	136,3162	3,59	42,04
Noeud n21	145,3407	5,9	36,04
Noeud n22	156,0427	6,69	27,19
Noeud n23	155,2509	6,97	26,35
Noeud n24	158,6605	3,27	21,01
Noeud n25	116,9951	3,55	55,86
Noeud n26	109,2609	22,52	16,88
Noeud n27	127,353	5,3	43,92
Noeud n28	130,2334	3,97	44,94
Noeud n29	134,4304	4,84	43,74
Noeud n30	134,4191	4,43	41,62

ID Noeud	Altitude	Demande Base	Pression
1D Noeud	m	LPS	m
Noeud n32	138,85	5,52	39,78
Noeud n33	141,912	2,95	37,33
Noeud n34	141	8,56	36,47
Noeud n35	132,5032	5,57	44,55
Noeud n36	144,4462	5,61	37,9
Noeud n37	152,8599	4,63	29,5
Noeud n38	142,0496	5,09	36,75
Noeud n39	144,3	1,83	28,82
Noeud n40	144,157	2,38	35,61
Noeud n41	146,6077	3,34	33,98
Noeud n42	145,8	0,69	33,65
Noeud n43	123,8215	6,04	31,91
Noeud n44	144,9954	3,33	33,26
Noeud n45	133,0769	4,38	41,02
Noeud n46	141,2081	2,42	34,16
Réservoir R1	184,5	Sans Valeur	6

Etat des tronçons en cas de pointe + incendie (réseau projeté)

	Longueur	Diamètre intérieur	Diamètre extérieur	Rugosité	Т	Débit	Vitesse	Perte de Charge
ID Arc	m	mm	mm	mm	Type	LPS	m/s	m/km
Tuyau R1-n1	1149	515,6	630	0,013	PEHD	244,28	1,17	1,76
Tuyau p1	330,3	257,8	315	0,013	PEHD	99,91	1,91	9,96
Tuyau p2	354	130,8	160	0,013	PEHD	9,63	0,72	3,73
Tuyau p3	699,7	130,8	160	0,013	PEHD	12,13	0,9	5,66
Tuyau p4	117	257,8	315	0,013	PEHD	85,89	1,65	7,53
Tuyau p5	138	204,6	250	0,013	PEHD	-32,09	0,98	3,8
Tuyau p6	798,8	163,6	200	0,013	PEHD	-31,5	1,5	10,9
Tuyau p7	169,5	130,8	160	0,013	PEHD	22,39	1,67	17,33
Tuyau p8	138,1	102,2	125	0,013	PEHD	-8,22	1	9,24
Tuyau p9	526,2	61,4	75	0,013	PEHD	-2,53	0,85	12,89
Tuyau p10	330,3	73,6	90	0,013	PEHD	-3,17	0,75	8,08
Tuyau p11	630,6	130,8	160	0,013	PEHD	-9,88	0,74	3,91
Tuyau p12	120,6	90	110	0,013	PEHD	4,96	0,78	6,85
Tuyau p13	177,6	257,8	315	0,013	PEHD	53,79	1,03	3,19
Tuyau p14	587,8	163,6	200	0,013	PEHD	-15,98	0,76	3,16
Tuyau p15	314,1	257,8	315	0,013	PEHD	-60,36	1,16	3,93
Tuyau p16	48,66	409,2	500	0,013	PEHD	181,93	1,38	3,16
Tuyau p17	319,8	204,6	250	0,013	PEHD	37,69	1,15	5,1
Tuyau p18	598,2	90	110	0,013	PEHD	3,27	0,51	3,24
Tuyau p19	649	90	110	0,013	PEHD	3,55	0,56	3,75
Tuyau p20	528,3	102,2	110	0,013	PEHD	22,52	2,75	58,64
Tuyau p21	104	130,8	160	0,013	PEHD	19,01	1,42	12,84
Tuyau p22	294,5	90	110	0,013	PEHD	-5,65	0,89	8,67
Tuyau p23	655,3	163,6	200	0,013	PEHD	-15,67	0,75	3,05
Tuyau p24	523,7	102,2	125	0,013	PEHD	-5,23	0,64	4,07
Tuyau p25	75,05	257,8	315	0,013	PEHD	46,93	0,9	2,48
Tuyau p26	283	130,8	160	0,013	PEHD	36,86	2,74	43,58
Tuyau p27	102,4	130,8	160	0,013	PEHD	-10,18	0,76	4,12
Tuyau p28	247,4	51,4	63	0,013	PEHD	1,35	0,65	9,86
Tuyau p29	183,8	130,8	160	0,013	PEHD	-10,97	0,82	4,72

ID Arc	Longueur	Diamètre intérieur	Diamètre extérieur	Rugosité	Type	Débit	Vitesse	Perte de Charge
ID Arc	m	mm	mm	mm		LPS	m/s	m/km
Tuyau p30	366,8	204,6	250	0.013	PEHD	20,28	0,62	1,65
Tuyau p31	107,2	257,8	315	0,013	PEHD	91,69	1,76	8,49
Tuyau p32	64,14	257,8	315	0,013	PEHD	68,46	1,31	4,96
Tuyau p33	469,8	204,6	250	0,013	PEHD	-28,05	0,85	2,97
Tuyau p34	318,9	130,8	160	0,013	PEHD	11,29	0,84	4,97
Tuyau p35	402,4	90	110	0,013	PEHD	3,27	0,51	3,25
Tuyau p36	296,2	130,8	160	0,013	PEHD	8,99	0,67	3,29
Tuyau p37	284,7	130,8	160	0,013	PEHD	10,98	0,82	4,72
Tuyau p38	531,5	163,6	200	0,013	PEHD	-17,46	0,83	3,71
Tuyau p39	259,4	90	110	0,013	PEHD	-3,54	0,56	3,73
Tuyau p40	233,7	102,2	125	0,013	PEHD	8,31	1,01	9,4
Tuyau p41	399,6	163,6	200	0,013	PEHD	-24	1,14	6,63
Tuyau p42	170,3	204,6	250	0,013	PEHD	58,64	1,78	11,5
Tuyau p43	276,5	163,6	200	0,013	PEHD	30,01	1,43	9,98
Tuyau p44	334,2	51,4	63	0,013	PEHD	1,83	0,88	17
Tuyau p45	521,1	204,6	250	0,013	PEHD	27,74	0,84	2,92
Tuyau p46	231,5	130,8	160	0,013	PEHD	-13,62	1,01	6,98
Tuyau p47	73,83	163,6	200	0,013	PEHD	34,66	1,65	13
Tuyau p48	125,6	40,8	50	0,013	PEHD	0,69	0,53	9,08
Tuyau p49	354,8	204,6	250	0,013	PEHD	27,45	0,83	2,86
Tuyau p50	130,3	163,6	200	0,013	PEHD	23,42	1,11	6,34
Tuyau p51	569,4	73,6	90	0,013	PEHD	-4,35	1,02	14,31
Tuyau p52	865	130,8	160	0.013	PEHD	-13,71	1,02	7,07
Tuyau p53	533,1	73,6	90	0,013	PEHD	-1,69	0,4	2,61
Tuyau p54	158,9	163,6	200	0,013	PEHD	28,64	1,36	9,15
Tuyau p55	323,2	90	110	0,013	PEHD	-3,47	0,55	3,59
Tuyau p56	650,2	73,6	90	0,013	PEHD	-4,46	1,05	14,94
Tuyau p57	471,8	51,4	63	0,013	PEHD	-0,71	0,34	3,15
Tuyau p58	114,2	130,8	160	0,013	PEHD	7,51	0,56	2,38
Tuyau p59	327,7	102,2	125	0,013	PEHD	5,09	0,62	3,88
Tuyau p60	164,8	204,6	250	0,013	PEHD	-36,29	1,1	4,76
Tuyau p61	605,5	90	110	0,013	PEHD	-3,15	0,49	3,02