Higher National School of Hydraulic The Library

Digital Repository of ENSH

المدرسة الوطنية العليا للري المكتبة المستودع الرقمي للمدرسة العليا للري

The title (العنوان):

Etude de renforcement en AEP du versant Ouest de la commune de Maatkas..

The paper document Shelf mark (الشفرة) : 1-0011-21

APA Citation (توثيق APA):

Boudhane, Anis (2021). Etude de renforcement en AEP du versant Ouest de la commune de Maatkas.[Mem Ing, ENSH].

The digital repository of the Higher National School for Hydraulics "Digital Repository of ENSH" is a platform for valuing the scientific production of the school's teachers and researchers.

Digital Repository of ENSH aims to limit scientific production, whether published or unpublished (theses, pedagogical publications, periodical articles, books...) and broadcasting it online.

Digital Repository of ENSH is built on the open software platform and is managed by the Library of the National Higher School for Hydraulics.

المستودع الرقمي للمدرسة الوطنية العليا للري هو منصة خاصة بتثمين الإنتاج العلمي لأساتذة و باحثي المدرسة.

يهدف المستودع الرقمي للمدرسة إلى حصر الإنتاج العلمي سواءكان منشورا أو غير منشور (أطروحات،مطبوعات بيداغوجية، مقالات الدوريات، كتب....) و بثه على الخط.

المستودع الرقمي للمدرسة مبني على المنصة المفتوحة و يتم إدارته من طرف مديرية المكتبة للمدرسة العليا للري.

كل الحقوق محفوظة للمدرسة الوطنية العليا للري.

الجمهورية الجزائرية الديمقراطية الشعبية وزارة التعليم العالى و البحث العلمي

NATIONAL HIGHER SCHOOL FOR HYDRAULICS

"The MujahidAbdellah ARBAOUI"

لمحر<mark>سة البطنية الحليل الريي</mark> "هوابهد علا عبد عمابمال" •۲۵⊙۵۰۲ تـ ۲۶۱۵۰۵ هـ ۲۶۵۵۶۰، ۲۰۵۵۶۰،

MEMOIRE DE FIN D'ETUDES

Pour l'obtention du diplôme d'Ingénieur d'Etat en Hydraulique

Option: ALIMENTATION EN EAU POTABLE

THEME:

ETUDE DE RENFORCEMENT EN AEP DU VERSANT OUEST DE LA COMMUNE DE MAATKAS

<u>Présenté par</u>: BOUDHANE Anis

Devant les membres du jury

Nom et Prénoms	Grade	Qualité		
KHETTAL TAHAR	Professeur	Président		
KADI Latifa	M.A.A	Examinateur		
BAGHRICHE Lilia	M.C.B	Examinateur		
BOUFEKANE Abdelmadjid	M.C.A	Promoteur		

Session novembre 2021

Dédicace

Je dédie ce modeste travail :

Avant tout, à mes très chers parents, qui n'ont jamais hésité à me soutenir le long de mon parcours d'études.

A mes frères : Redouane, Islam et Si Mouh

A mes sœurs : Liticia et Zineb

A ma petite nièce : Rynad

A tous mes cousins

A toute la famille BOUDHANE,

A tous mes amis,

BOUDHANE ANIS

Remerciements

Dans un premier lieu , nous remercions « Dieu » qui nous a donné force et patience pour achever ce modeste travail.

Je tiens à remercier particulièrement mon promoteur : « Mr. BOUFEKANE Abdelmadjid » Pour son aide et ses conseils pour l'élaborationet le suivi de mon projet de fin d'étude.

Toute gratitude à nos professeurs et enseignants qui nous ont guidés le long de notre formation.

Nos respects aux membres de jury qui nous feront l'honneur d'apprécier ce travail.

En fin j'adresse mes remerciements à tous ceux qui m'ont aidé de près ou de loin dans l'élaboration de ce travail.

في هذه المذكرة، قمنا بدراسة فنية كاملة لمشروع تدعيم إمدادات مياه الشرب إلى الجهة الغربية لبلدية معاتقة ولاية تيزي وزو من الأبار التي سيتم تنفيذها بوادي بوجدورة. بعد تقديم موقع المشروع، بدأنا في دراسة الاحتياجات المائية لمختلف الفئات من المستهلكين. بعد ذلك، تم إجراء دراسة فنية اقتصادية لإيجاد أقطار الانابيب وقمنا باختيار المضخات المناسبة لمحطتي الضخ. و أخيرًا، من أجل حماية نظام التزويد بالمياه الصالحة لشرب تحققنا من ظاهرة المطرقة المائية حيث تم تحديد حجم خزانات الهواء، أنهينا عملنا بأساليب التنفيذ والتنظيم وسلامة الموقع.

Résumé:

Dans le présent mémoire, nous avons fait une étude technique complète du projet de renforcement de l'alimentation en eau potable du versant ouest de la commune de maatkas (w.Tizi ouzou) à partir des forages qui seront réalisé à l'oued Bougdoura. Après avoir présenté le site du projet, nous avons entamé l'étude des besoins en eau des différentes catégories de consommateurs. Par la suite, une étude technico-économique de l'adduction a été faite où deux variantes ont été étudiées. Puis, nous avons dimensionné les bâches d'aspirations des stations de reprise, et vérifié la capacité des réservoirs existant situés dans la zone d'étude, suivie du choix des pompes adéquates pour les deux stations de reprise. Enfin, dans le but de protéger le système d'AEP nous avons procédés à la vérification du phénomène du coup de bélier où des réservoirs d'airs ont été dimensionnés, nous avons terminé notre travail par les méthodes de mise en œuvre, l'organisation et la sécurité de chantier.

Abstract:

In this paper, we have made a complete technical study of the project to strengthen the supply of drinking water to the western side of the town of maatkas (w.Tizi ouzou) from the boreholes that will be made in the wadi Bougdoura. After having presented the site of the project, we started the study of the needs in water of the various categories of consumers. Thereafter, a technical and economic study of the water supply was made where two variants were studied. Then, we dimensioned the suction tanks of the recovery stations, and verified the capacity of the existing reservoirs located in the study area, followed by the choice of adequate pumps for the two recovery stations. Finally, in order to protect the water supply system, we proceeded to the verification of the water hammer phenomenon where air tanks were dimensioned. We ended our work with the implementation methods, the organization and the safety of the site.

SOMMAIRE

Introdu	uction général	1
	Chapitre I Présentation de la région d'étude	
Introdu	uction	2
I.1	Situation géographique	2
I.2	Situation Topographique	3
I.3	Situation climatique	4
I.4	Situation géologique et géotechnique	4
I.5	La pluviométrie	4
I.6	Les températures	5
I.7	Situation Hydrographique	6
I.8	Situation Actuelle de actuelle de L'AEP	6
I.8	8.1 Système de distribution actuel	7
Conclu	usion	7
	Chapitre II Estimation Des Besoins En Eau	
Introdu	uction	8
II.1	Situation démographique	8
II.2	Estimation de la Population future	9
II.3	La dotation	10
II.4	La consommation moyenne journalière	10
II.5	Déférents types de besoins	11
II.	.5.1 Les besoins domestiques	11
II.	.5.2 Les besoins en eau d'autres usages	13
II.6	Estimation des besoins en eau en tenant compte les pertes	16
II.7	Variation de la consommation maximale et minimale journalier	17
II.	7.1 Coefficients d'irrégularité	17
II.8	Variation du débit horaire	18
II.	.8.1 1 ^{ère} méthode	18
II.	8.2 2 ^{ème} méthode	20
II.9	Bilan des ressources	23
Conclu	ısion	23

Chapitre III Les réservoirs

Introduc	ction		24
III.1	Uti	lités des réservoirs	24
III.2	Cla	ssification des réservoirs	24
III.3	Equ	nipement du réservoir	25
III.3	3.1	Conduite d'arrivée (adduction)	25
III.3	3.2	Conduite de départ	25
III.3	3.3	Conduite de départ	25
III.3	3.4	Conduite de vidange	25
III.3	3.5	Conduite de trop plein	25
III.3	3.6	Conduite by-pass	25
III.3	3.7	Système de matérialisation d'incendie	26
III.4	Em	placement de réservoir	26
III.5	Cho	oix de type de réservoir	26
III.6	Ent	retien du réservoir	26
III.7	Cal	cul de la capacité des réservoirs	27
III.′	7.1	Principe du calcul de la capacité	27
III.′	7.2	Dimensionnement de la bâche de reprise	28
III.′	7.3	Dimensionnement du réservoir de la station de reprise 1	28
III.′	7.4	Dimensionnement du réservoir de la station de reprise 2	29
III.′	7.5	Calcul des réservoirs de la zone d'étude	29
III.′	7.6	Dimensions des réservoirs à projeter	32
Conclus	ion		33
		Chapitre IV Adduction	
Introduc	ction		34
IV.1	Typ	oes adduction	34

IV.2 Ch	oix du tracé	35
IV.3 Ch	oix du type des conduites	35
IV.4 Ett	ide de l'adduction	36
IV.4.1	Proposition des variantes	36
IV.4.2	Etude technico-économique des conduites	36
IV.4.3	Dimensionnement des conduites de la variante 1	41
IV.4.4	Dimensionnement des conduites de la variante 2	52
IV.4.5	Choix de variante	55
Conclusion.		56
	Chapitre V: Etude et choix des pompes	
Introduction		57
V.1 Dé	finition de la pompe	57
V.2 Ch	oix du type de pompe	57
V.3 Ch	oix du nombre de pompes	57
V.4 Co	uplage des pompes	58
V.4.1	Couplage en série	58
V.4.2	Couplage en parallèle	58
V.5 Le	point de fonctionnement de la pompe	58
V.6 Etu	ide de la cavitation	62
V.7 Ch	oix des pompes du projet	63
V.7.1	Refoulement : SR1 - SR2	63
V.7.2	Refoulement : SR2 - Réservoir Ait Ahmed	66
V.7.3	Refoulement SR2 - Réservoir El Vir	68
V.7.4	Refoulement SR 2 - Réservoir Iverden	70
V.8 Bâ	timent de la station de pompage	72
V.8.1	Choix du bâtiment	72
V.8.2	Partie supérieure du bâtiment	73

V.8.3	Dimensionnement du	bâtiment des deux stations de reprise	73
Conclusion	:		75
	Chapitre VI	Protection contre le coup de bélier	
Introduction	1		76
VI.1	Protection contre le coup	o de bélier	76
VI.1.1	Définition		76
VI.1.2	Les causes du coup de	bélier	76
VI.1.3	Les conséquences de	ce phénomène	76
VI.1.4	Moyens de protection	contre le coup de bélier	77
VI.1.5	Calcul des réservoirs	l'air	78
Conclusion			81
	Chapitre VII	Pose de canalisation et accessoires	
Introduction	1		82
VII.1	Pose de canalisation		
VII.1.1	Différents types de pos	e des conduites	
VII.1.2	2 Différentes étapes de n	nise en place des canalisations	83
VII.2	Accessoires		85
VII.2.1	Robinets vannes		85
VII.2.2	2 Clapets anti retour		86
VII.2.3	3 Ventouses		86
VII.2.4	4 By-pass		87
VII.2.5	5 Vidanges		87
VII.2.6	o Organes de mesure		87
	_	ent	
		VIII Organisation de chantier	
Introduction	_	· · · · · · · · · · · · · · · · · · ·	90
VIII.1	Différents travaux à entr	eprendre	90

VIII.1.1	Travaux concernant l'adduction 90	
VIII.1.2	Travaux concernant la station de pompage90	
VIII.1.3	Travaux concernant les réservoirs	
VIII.2 Dé	finitions des engins de terrassement utilisés	
VIII.3 Ca	lcul des volumes des travaux	
VIII.3.1	Volumes des travaux de la conduite d'adduction (Lot 01)	
VIII.3.2	Volumes des travaux des réservoirs (Lot 03)	
VIII.3.3	Volumes des travaux de la station de pompage (Lot 2)	
VIII.4 Ca	lcul des coûts des travaux	
VIII.5 Pla	nnification des travaux	
VIII.5.1	Définition des tâches et leurs durées	
VIII.5.2	La planification des taches par la méthode du graphe (diagramme de Gantt) 108	
VIII.6 Séc	curité de travail	
VIII.6.1	Définition d'un accident de travail	
VIII.6.2	Les causes principales d'un accident de travail	
VIII.6.3	Prévention 116	
VIII.6.4	Les moyens de protection	
Conclusion		
Conclusion gé	néral	

Liste des tableaux

Chapitre I Présentation de la région d'étude

Tableau I-1 : Pluviométrie moyenne mensuelle interannuelle en (mm) (Période : 1978-2012)
Tableau I-2 : Température moyenne (2006-2016) à la Station LNI
Chapitre II Estimation Des Besoins En Eau
Tableau II-1: Population de la zone d'étude par villages
Tableau II-2: Evolution de la population à différents horizons
Tableau II-3: Besoins domestiques
Tableau II-4: Besoins domestiques (2036)
Tableau II-5: Besoins domestiques (2051) 12
Tableau II-6 : Estimation des besoins scolaires des différentes zones 13
Tableau II-7 : Estimation des besoins industriels des différentes zones 13
Tableau II-8 : Estimation des besoins sanitaires des différentes zones 13
Tableau II-9 : Estimation des besoins administratifs des différentes zones 14
Tableau II-10 : Estimation des besoins socioculturels des différentes zones 14
Tableau II-11: Estimation des besoins d'élevage 14
Tableau II-12 : Récapitulatif de la consommation moyenne journalière en eau en tenant
compte les pertes
Tableau II-13 : Récapitulatif de calcul des débits journaliers 18
Tableau II-14: variation du coefficient βmax
Tableau II-15: Variation du coefficient β_{min}
Chapitre III Les réservoirs
Tableau III-2: Capacité du réservoir Ait Ahmed
Tableau III-3 : Besoins en stockage des villagesdesservis à partir de réservoir Ait Ahmed . 30
Tableau III-4: Capacité du réservoir Ivardane
Tableau III-5 : Besoins en stockage des villagesdesservis à partir de réservoir Ivardane 3
Tableau III-6 : Capacité du réservoir El-Vir
Tableau III-7 : Besoins en stockage des villages desservis à partir de réservoir
Tableau III-8 : Tableau récapitulatif de différentes dimensions des réservoirs projetés 32
Chapitre IV Adduction
Tableau IV-1 : Coefficients K', m, β pour différents types du tuyau4

Tableau IV-2 : Calcul des pertes de charge et de la Hmt du tronçon Forage – Station de
reprise141
Tableau IV-3 : Les frais d'exploitation du tronçon Forage – Station de reprise1
Tableau IV-4 : Les frais d'amortissement du tronçon Forage – Station de reprise1 42
Tableau IV-5 : Le bilan des coûts du tronçon Forage – Station de reprise1
Tableau IV-6 : Calcul des pertes de charge et de la Hmt du tronçon Station de reprise1 –
Station de reprise2
$\textbf{Tableau IV-7:} Les\ frais\ d'exploitation\ du\ tronçon\ Station\ de\ reprise 1-Station\ de\ reprise 244$
Tableau IV-8 : Les frais d'amortissement du tronçon Station de reprise 1 – Station de reprise
2
Tableau IV-9 : Le bilan des coûts du tronçon Station de reprise1 – Station de reprise2 45
$\textbf{Tableau IV-10:} Calcul \ des \ pertes \ de \ charge \ et \ de \ la \ Hmt \ du \ tronçon \ Station \ de \ reprise \ 2-$
Réservoir Ait Ahmed
Tableau IV-11 : Les frais d'exploitation du tronçon Station de reprise 2 – Réservoir Ait
Ahmed
Tableau IV-12 : Les frais d'amortissement du tronçon Station de reprise 2 – Réservoir Ait
Ahmed
$\textbf{Tableau IV-13:} Le \ bilan \ des \ coûts \ du \ tronçon \ Station \ de \ reprise \ 2-Réservoir \ Ait \ Ahmed \ 47$
Tableau IV-14 : Calcul des pertes de charge et de la Hmt du tronçon Station de Reprise 2 –
Réservoir Ivarden
Tableau IV-15 : Les frais d'exploitation du tronçon Station de reprise 2 – Réservoir Ivarden
48
Tableau IV-16 : Les frais d'amortissement du tronçon Station de reprise 2 – Réservoir
Ivarden
Tableau IV-17 : Le bilan des coûts du tronçon Station de reprise 2 – Réservoir Ivarden 49
Tableau IV-18 : Calcul des pertes de charge et de la Hmt du tronçon Station de reprise 2 –
Réservoir EL Vir
Tableau IV-19 : Les frais d'exploitation du tronçon Station de reprise 2 – Réservoir EL Vir
50
Tableau IV-20 : Les frais d'amortissement du tronçon Station de reprise 2 – Réservoir EL Vir
Tableau IV-21 : Le bilan des coûts du tronçon Station de reprise 2 – réservoir EL Vir 51
Tableau IV-22 : Calcul des pertes de charge et de la Hmt du tronçon Station de reprise 2 –
Réservoir EL Vir

Tableau IV-23 : Les frais d'exploitation du tronçon Station de reprise 2 – Réservoir EL Vir
52
Tableau IV-24 : Les frais d'amortissement du tronçon Station de reprise 2 – Réservoir EL
Vir53
Tableau IV-25 : Le bilan des coûts du tronçon Station de reprise 2 – Réservoir EL Vir 53
Tableau IV-26 : Frais d'investissement du tronçon Réservoir EL Vir- Réservoir Ivardene 55
Tableau IV-27 : Tableau comparative des deux variantes 55
Chapitre V Etude et choix des pompes
Tableau V-1 : Caractéristique de la pompe sélectionnée pour la SR1
Tableau V-2 : Pression atmosphérique en fonction de la côte
Tableau V-3 : Pression de vapeur en fonction de la côte
Tableau V-4 : Caractéristique de la pompe sélectionnée pour la SR1
Tableau V-5 : Caractéristique de la pompe sélectionnée pour la SR2
Tableau V-6 : Caractéristique de la pompe sélectionnée pour la SR2
Tableau V-7 : Choix du type de bâtiment
Tableau V-8 : Récapitulatif des dimensions des stations de pompage 75
Chapitre VI Protection contre le coup de bélier
Tableau VI-1 : Les caractéristiques des conduites de refoulement
Tableau VI-2Calcul de célérité d'onde des conduites de refoulent. 80
Tableau VI-3 : Calcul du volume de réservoir d'air 80
Chapitre VIII Organisation de chantier
Tableau VIII-1 Calcul du Volume de décapage de la couche végétale
Tableau VIII-2 Calcul du volume des déblais d'excavation. 93
Tableau VIII-3 Volume de lit de sable. 94
Tableau VIII-4 Volume de remblais compacté. 94
Tableau VIII-5 Volumes des travaux de l'adduction. 95
Tableau VIII-6 Calcul des volumes des déblais pour les réservoirs. 96
Tableau VIII-7 Calcul des volumes du tout-venant
Tableau VIII-8 Calcul des volumes du béton de propreté
Tableau VIII-9 Calcul du volume du béton armé. 97
Tableau VIII-10 Calcul du volume du béton armé pour les coupoles
Tableau VIII-11 Calcul du volume du remblai compacté. 99
Tableau VIII-12 Les dimensions de la station de pompage
Tableau VIII-13 Calcul du volume de décapage. 100

Tableau VIII-14 Calcul du volume du béton armé de la station de reprise 1 101
Tableau VIII-15 Calcul du volume du béton armé de la station de reprise 2 101
Tableau VIII-16 Calcule du volume des travaux de la maçonnerie. 102
Tableau VIII-17 calcule volumes des travaux des stations des pompages
Tableau VIII-18 Devis quantitatif et estimatif des travaux de l'adduction. 103
Tableau VIII-19 Devis quantitatif et estimatif des travaux de la station de pompage 104
Tableau VIII-20 Devis quantitatif et estimatif des travaux des réservoirs. 105
Tableau VIII-21 Bilan total du projet entier. 106
Tableau VIII-22 Temps de réalisation des opérations de l'adduction. 106
Tableau VIII-23 Temps de réalisation des opérations de la station de pompage 107
Tableau VIII-24 Temps de réalisation des réservoirs. 108
Tableau VIII-25 Tâches qui précèdent et succèdent chaque opération d'une seule station de
pompage
Tableau VIII-26 Taches qui précèdent et succèdent pour chaque opération du lot 01 111
Tableau VIII-27 Taches qui précèdent et succèdent pour chaque opération du lot 03 113

LISTE DES FIGURES

Chapitre II Estimation Des Besoins En Eau

Figure II-1 : Evolution démographique de la zone d'étude puor différents horizons
Figure II-2: Histogramme de la consommation horaire
Figure II-3 : Courbe intégrale de la consommation totale
Chapitre IV Adduction
Figure IV-1: Bilan des frais d'amortissement et de l'exploitation
Figure IV-2 : Bilan des frais d'amortissement et de l'exploitation
Figure IV-3: Bilan des frais d'amortissement et de l'exploitation
Figure IV-4: Bilan des frais d'amortissement et de l'exploitation
Figure IV-5 : Bilan des frais d'amortissement et de l'exploitation
Figure IV-6 : Bilan des frais d'amortissement et de l'exploitation
Chapitre V Etude et choix des pompes
Figure V-1 : Point de fonctionnement d'une pompe
Figure V-2 : Point de fonctionnement par modification de la vitesse de rotation
Figure V-3 : Photo illustrant le phénomène de cavitation sur des aubes d'une pompe
centrifuge. 62
Figure V-4 : Courbe des NPSH
Figure V-5 : Courbes caractéristiques de la pompe de la station de reprise SR 1 64
Figure V-6 : Courbes caractéristiques de la pompe de la station de reprise SR2 67
Figure V-7 : Courbes caractéristiques de la pompe de la station de reprise SR2 (SR2-El Vir).
69
Figure V-8 : Courbes caractéristiques de la pompe de la station de reprise SR270
Chapitre VIII Organisation de chantier
Figure VIII -1 Diagramme de Gantt de la station de pompage
Figure VIII -2 Diagramme de Gantt de l'adduction
Figure VIII -3 Diagramme de Gantt du Réservoir

LISTE DES PLANCHES

Planche 1 : tracé en plan.

Planche 2 : tracé en plan.

Planche 3 : profils en travers.

Planche 4 : profil en long de tronçon (forage –SR1).

Planche 5 : profil en long de tronçon (SR2- Réservoir Ait Ahmed).

Planche 5 : profil en long de tronçon (SR2- Réservoir EL-VIR).

Introduction générale

Introduction Générale

L'eau dite "l'or bleu", est depuis la création, la source de la vie par excellence, un pilier du développement et un bien commun pour toute l'humanité. L'accès à l'eau potable pour tous est un enjeu vital, facteur de développement social et économique. Dans le monde d'aujourd'hui il y'a beaucoup de problèmes liés à la rareté et l'insuffisance des ressources en eau. Et parfois aussi, on rencontre des problèmes liés à la gestion des ressources et des réseaux.

L'Algérie, est l'un des pays où le problème de l'eau se pose d'une manière particulièrement aiguë, et tout cela à cause des caractéristiques climatiques, fluctuantes entre les années les plus sèches et les plus arrosées, c'est pourquoi, elle doit faire l'objet d'une gestion très attentive, sous ce motif les études sont effectuées dans le souci de trouver une meilleure adéquation entre les besoins en eau exprimés et les ressources naturelles existantes.

Actuellement, La zone d'étude souffre d'un problème d'insuffisance d'eau potable. L'objectif de notre étude consiste à dimensionner la nouvelle chaine d'adduction, qui aura pour but de remédier au déficit que connaissent les villages du versant ouest de la commune de Maâtkas en matière d'eau potable. Dans ce cadre, le sujet de notre mémoire de fin d'études est le renforcement du versant ouest de la zone à partir de batterie de forages qui seront réalisés à oued Bougdoura.

Cette étude est organisée en sept chapitres :

Dans le premier chapitre, une présentation sommaire de la zone d'étude et de ses caractéristiques essentielles sont données. Le deuxième chapitre sera consacré à l'estimation des besoins en eau, et cela dans le but d'établir un bilan des ressources disponibles et des besoins à satisfaire à long terme. Le dimensionnement des réservoirs de stockage fera l'objet du troisième chapitre. Le chapitre quatre se portera sur le dimensionnement de l'adduction, puis le cinquième chapitre s'intéresse sur le choix des pompes adéquates aux installations à partir du catalogue de groupe électro-pompes CAPRARI qui devront répondre aux exigences du projet. Pour le sixième chapitre, nous étudions le phénomène du coupe de bélier et le septième chapitre sur la pose des conduites et les accessoires nécessaires poue le bon fonctionnement du réseau. On finira par le huitième et le dernier chapitre qui sera sur l'organisation du chantier ou on fera des recommandations concernant l'organisation des travaux.

Chapitre I : Présentation de la région d'étude

Chapitre I Présentation de la région d'étude

Introduction

La commune de Maâtkas reconnait actuellement un déficit dans le domaine d'alimentation en eau potable vu l'accroissement démographique.

Dans le but d'y remédier, nous commençons notre étude par la présentation de la région d'étude pour connaître les caractéristiques physiques et notamment hydrauliques du lieu et les facteurs qui influent sur l'élaboration de ce dernier.

I.1 Situation géographique [5]

La commune de Maâtkas se situe dans la partie Sud – Ouest de la wilaya de Tizi-Ouzou. Elle s'étend sur une superficie de 45,29 km² (4529 ha) et abrite une population de 32 121 habitants, soit une densité de 709,22 hab/km² selon les données du RGPH 2008.

Elle est issue du découpage administratif de 1987et relevé de la daïra Maâtkas. Elle est délimitée parla Figure (I-1) :

- Au Nord, par la commune de Tirmitine.
- A l'Est, par la commune de Benizmenzer.
- Au Sud par le village de Souk El Tenine.
- A l'Ouest, par les villages d'Ait Yahia Moussa.

La commune de Maâtkas est traversée dans le sens Nord Sud par le chemin de wilaya n° 147, ainsi que par divers chemins communaux.et à l'ouest par le CW 128.

La zone d'études est constituée des villages Ait Zaim, Ait Ahmed, Cheurfa, El Vir, Ighil Aouene, Takhribt, Tadjiouth, limités comme suit :

- Al'Est, par la commune de benizmenzer.
- Au Nord, par la commune de Tirmitine.
- A l'Ouest, par la CW 128 et la commune d'AinZaouia.
- Au sud, par le village de Berkouka.

L'altitude de la zone d'études varie de 730 à Mezdata jusqu'à 150 m NGA au niveau de la gare (CW 128).

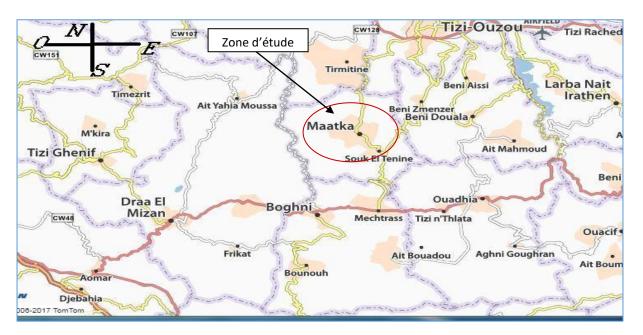


Figure I-1 : Situation de la zone d'étude (Extrait de la carte de Tizi Ouzou)

I.2 Situation Topographique [5]

Le relief dans la commune de Maâtkas se caractérise par son aspect montagneux dominant, du fait qu'elle fait partie du grand massif Kabyle.

L'altitude moyenne oscille entre 600 et 700 m. Le relief est ponctué par des replats formants les sommets sur lesquels est implantée la majorité des établissements humains (villages).

En ce qui concerne les pentes, elles sont moyennement fortes, allant de 0 jusqu'à 25 % et parfois dépassent les 25 %.

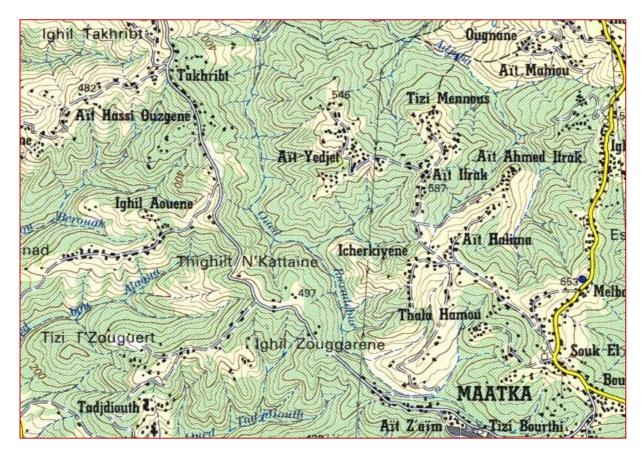


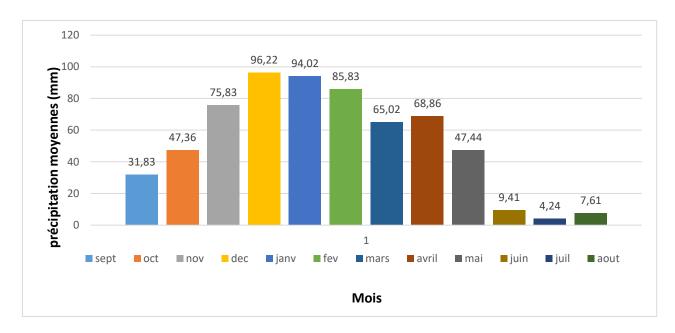
Figure I-2 : Reliefs de la zone d'étude (Extrait de la carte topographique de Tizi Ouzou)

I.3 Situation climatique [5]

Le climat dans la commune de Maâtkas est typiquement méditerranéen à caractère montagneux. Il est conditionné par la nature du relief et caractérisé par une morphologie nuancée, voire contrastée. Ce climat est sec et chaud en été, froid et pluvieux en hiver.

I.4 Situation géologique et géotechnique [5]

Cristallophylliennes, une puissante assise de schistes micacés se situe à la périphérie avec un affleurement gréseux et conglomératique. La constitution géologique du la zone d'étude est essentiellement formée de roches.


I.5 La pluviométrie

Les pluies sont moyennement abondantes et se concentrent pendant quelques mois de l'année (Figure I.3 et Tableau I.1). En fait, la commune en question se situe dans la séquence bioclimatique humide dont la pluviométrie moyenne est de plus de 1200 mm à la station de Boughni (Source : ANRH de Blida).

Années	Sept	Oct	Nov	Déc	Janv	Févr	Mars	Avril	Mai	Juin	Juil	Aout
Moyenne	31,83	47,36	75,83	96,22	94,02	85,83	65,02	68,86	47,44	9,41	4,24	7,61

Tableau I-1 : Pluviométrie moyenne mensuelle interannuelle en (mm) (Période : 1978-2012)

(Source: ANRH Blida)

Figure I-3 : Histogramme des précipitations moyennes annuelles (1978-2012)

I.6 Les températures

Les températures moyennes saisies à partir des stations de Tizi-Ouzou et de Larbaâ-Nath-Irathen varient entre 12 et 22 °C (Tableau 0-2, Figure0-4) leurs fluctuations dépendent de la morphologie des terrains.

Les températures minimales varient entre 5 et 9°c au mois de Janvier, tandis que les températures maximales dépassent 38 °C au mois Juillet.

Année	Janv	Fev	Mars	Avril	Mai	Juin	Juil	Aout	Sept	Oct	Nov	Dec
2006	13,8	15,3	20,7	25,2	29,0	32,3	37,1	34,2	31,7	30,1	23,8	16,7
2008	10,8	10,4	12,7	14,0	20,8	25,2	38,5	33,5	22,8	19,3	15,3	15,8
2010	10,6	10,3	13,4	17,6	19,7	23,2	36	34	30	19,6	15,7	11,7
2012	6,9	5,2	10,4	11,3	12,8	15,5	20,3	20,3	19,1	18,1	17,9	7,4
2014	9,9	9,8	13,1	17,3	21,4	30	36	33,5	24,4	20,2	14,9	12,2
2016	12,8	12,6	12,5	16,1	19,0	24,3	27,9	27,1	24,3	22,5	15,7	12,6

Tableau I-2: Température moyenne (2006-2016) à la Station LNI

(Source : DRE deTizi Ouzou)

I.7 Situation Hydrographique [3]

La commune de Maâtkas est traversée par un réseau dense constitué par des Oueds et les cours d'eau dont la majorité sont temporaires.

Il est à signaler que les Oueds permanents dans la commune en question, présentent les limites Sud et Ouest qui sont respectivement Oued Mechtras et Oued Ahlou Agouni qui est l'un des principaux affluents d'Oued Sébaou.

La topographie très accidentée des terrains de la commune joue un rôle important dans la mobilisation et la densification du réseau hydrographique.

I.8 Situation Actuelle de L'AEP [3]

La zone d'étude est alimentée en eau potable à partir de la chaîne de Tassadort dont la source mobilisée est située à l'oued Sébaou, lieu-dit « Bouaid », le débit total mobilisé avoisine les 450m3/h, ce débit alimente la commune de Maatkas et les autres localités concernées par la chaîne de Tassadorttelles que les communes de Beni Douala, Beni Zmenzer, et une partie de Tizi Ntleta et Ouadhias, en plus du débit reçu à partir du transfert du barrage Taksebt arrêté à 120 l/sec.

Quant à la station de Tassadort, elle comprend sept groupes électropompes dont deux sont destinés pour la zone de Maatkas et Tirmitine, quatre pour la zone de Beni Douala et le dernier pouvant refouler dans les deux directions.

Le refoulement se fait vers le réservoir de MEZDATA d'une capacité de 500 m³ situé à une altitude de 736,5 m NGA. Par une conduite en acier de diamètre 500mm, ce dernier

alimente gravitairement les différents réservoirs de la commune.

I.8.1 Système de distribution actuel [3]

L 'eau pompée à partir de Tassadort arrive au niveau du réservoir 500 m3 de Mezdata.

A partir du réservoir de Mezdata, l'eau est acheminée gravitairement vers les différents réservoirs : R500 m³ Igaridéne ; R100 m³ Anegah; R500 m³ Melvéne ; R 200m³ Bouhamdoune, R 500m³ Fekrane(alimente Souk El tenine) ; R300 m³ Fekrane (alimente Berkouka), R100 m³ El Vir et R 100 m³ Takhribth ; R 200 m³ Timezguida (Ighil Aouène).

Conclusion

Dans ce chapitre nous avons recueilli des informations sur les caractéristiques de la région d'étude à savoir : la géographie, la géologie, et les caractéristiques climatologies. Ces déférentes caractéristiques vont nous permettre dans l'élaboration du projet.

Après avoir définie les données nécessaires de notre zone d'étude, nous nous intéressons dans le chapitre suivant aux besoins en eau potable.

Chapitre II : Estimation des Besoins en eau

Chapitre II Estimation Des Besoins En Eau

Introduction

Avant la réalisation de tout projet d'alimentation en eau potable pour une agglomération, il faut prévoir avec le plus d'exactitude possible des besoins et le volume d'eau nécessaire à la consommation.

Dans ce chapitre nous estimons les besoins en eau nécessaires de cette agglomération, qui dépendent de plusieurs facteurs tels que : l'évolution de la population, les équipements sanitaires, le niveau de vie de la population. Nous présentons l'évolution de la population, et les différents équipements qui se trouvent dans cette région, pour l'horizon de calcul.

II.1 Situation démographique

Selon les RGPH 2008 (Recensement Générale de la population de la commune de Maatkas) la population de Maâtkas s'élève au nombre de 32 121 habitants, cette information est fourni par les services d'APC. Paralleur, la population des localités concernant la zone d'étude s'élevée la même période a 8490 habitants.

Les populations par villages sont comme suit :

Tableau II-1: Population de la zone d'étude par villages

Population	2008
Cheurfa bas	599
Ait Ahmed	2899
Ait Zaim	246
IghilZougaghene	321
TiziTzougarth	1480
Tadjiouth Haut	246
Tadjiouth Bas	308
IghilAouene	222
El Vir	147
Iakouchene	147
ArkoubAzougagh	1357
Takhribt	147
Achnina	371
Population Totale	8490

II.2 Estimation de la Population future

La présente étude consiste à satisfaire notre agglomération en matière d'eau potable à long terme. Le choix de l'horizon dépend de la durée de vie du réseau d'Alimentation en eau potable, qui est fonction des matériaux des conduites du réseau et de son entretien. Pour notre étude nous avons choisi l'horizon 2051.

L'estimation de la population est élaborée par la relation des intérêts composés.

La relation est donnée par :

$$P_n = P_0 * (1 + t)^n$$
 (II.1)

Avec:

P_n: population à l'horizon d'étude.

P₀ : population de l'année de référence.

t: Taux d'accroissement de la population, dans notre cas il est égal à 1,5% selon l'office national des statistiques (source DRE W.T.O).

n : nombre d'année séparant les horizons considérés.

Sur la base de la loi précédente. L'estimation de la population future des localités est donnée dans le tableau ci-dessous :

Tableau II-2 : Evolution de la population à différents horizons

¥7211	Population	Population	Population	Population
Villages	2008	2021	2036	2051
Cheurfa bas	599	727	909	1136
Ait Ahmed	2899	3518	4398	5499
Ait Zaim	246	299	373	467
IghilZougaghene	321	390	487	609
TiziTzougarth	1480	1796	2245	2807
Tadjiouth Haut	246	299	373	467
Tadjiouth Bas	308	374	467	584
IghilAouene	222	269	337	421
El Vir	147	178	223	279
Iakouchene	147	178	223	279
ArkoubAzougagh	1357	1647	2059	2574
Takhribt	147	178	223	279
Achnina	371	450	563	704
Population Totale	8490	10303	12881	16105

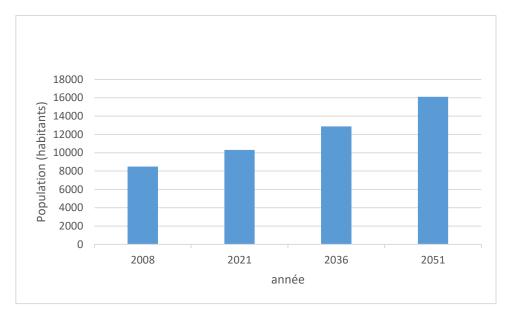


Figure II-1 : Evolution démographique de la zone d'étude puor différents horizons

II.3 La dotation

La dotation notée « dot » est la norme de consommation, définie comme étant la quantité d'eau consommée par un habitant pour satisfaire à ses différents besoins dans sa vie quotidienne. Son évaluation dépend de nombreux paramètres : la catégorie de consommateurs, le type d'agglomération, le degré d'équipements.

Selon la direction de l'hydraulique de la wilaya de Tizi Ouzou il est admis une dotation de 150 litres/habitant/jour largement suffisante pour ce genre d'agglomération, nous maintenons la même valeur pour les divers horizons d'étude (source : DRE W T .O).

II.4 La consommation movenne journalière

Elle représente la quantité d'eau moyenne consommée par l'ensemble de la population et par d'autre installation pendant une journée.

Le débit Moyen Journalier est donné par la relation suivante :

$$Q_{\text{moy j}} = \frac{1}{1000} * \text{dot} * N (m^3/j)$$
 (II.2)

 $Q_{\ moy\, j}$: Débit moyen journalier en $(m^3\!/j)$

N: nombre d econsommateurs (habitants).

dot : dotation moyenne en (litre/jour/consommateur).

II.5 Déférents types de besoins

Pour l'élaboration des besoins en eau potable de la zone d'étude sur les différents horizons de l'étude, on prendra en considération deux types de consommations :

- Consommation domestique.
- Consommation des autres usagers.

II.5.1 Les besoins domestiques

• L'année d'étude (2021)

La consommation en potable pour l'année d'étude, est résumée dans le tableau ci-après :

Tableau II-3: Besoins domestiques

Villages	Population 2021	Qmoyj (m³/j)	Qmoyj (l/s)
Cheurfa bas	727	109,05	1,26
Ait Ahmed	3518	527,7	6,11
Ait Zaim	299	44,85	0,52
IghilZougaghene	390	58,5	0,68
TiziTzougarth	1796	269,4	3,12
Tadjiouth Haut	299	44,85	0,52
Tadjiouth Bas	374	56,1	0,65
IghilAouene	269	40,35	0,47
El Vir	178	26,7	0,31
Iakouchene	178	26,7	0,31
ArkoubAzougagh	1647	247,05	2,86
Takhribt	178	26,7	0,31
Achnina	450	67,5	0,78
Population Totale	10303	1545,45	17,89

• L'année d'étude (2036)

Tableau II-4: Besoins domestiques (2036)

Villages	Population 2036	Qmoyj (m³/j)	Qmoyj (l/s)
Cheurfa bas	909	136,35	1,58
Ait Ahmed	4398	659,7	7,64
Ait Zaim	373	55,95	0,65
Ighil Zougaghene	487	73,05	0,85
Tizi Tzougarth	2245	336,75	3,90
Tadjiouth Haut	373	55,95	0,65
Tadjiouth Bas	467	70,05	0,81
Ighil Aouene	337	50,55	0,59
El Vir	223	33,45	0,39
Iakouchene	223	33,45	0,39
Arkoub Azougagh	2059	308,85	3,57
Takhribt	223	33,45	0,39
Achnina	563	84,45	0,98
Population Totale	12881	1932,15	22,36

• L'année d'étude (2051)

Tableau II-5: Besoins domestiques (2051)

Villages	population 2051	Qmoyj (m/j)	Qmoyj (l/s)
Cheurfa bas	1136	170,4	1,97
Ait Ahmed	5499	824,85	9,55
Ait Zaim	467	70,05	0,81
Ighil Zougaghene	609	91,35	1,06
Tizi Tzougarth	2807	421,05	4,87
Tadjiouth Haut	467	70,05	0,81
Tadjiouth Bas	584	87,6	1,01
Ighil Aouene	421	63,15	0,73
El Vir	279	41,85	0,48
Iakouchene	279	41,85	0,48
Arkoub Azougagh	2574	386,1	4,47
Takhribt	279	41,85	0,48
Achnina	704	105,6	1,22
Population Totale	16105	2415,75	27,96

II.5.2 Les besoins en eau d'autres usages

• Estimation des besoins scolaires

Les besoins scolaires estimés sont résumés dans le tableau suivant :

Tableau II-6: Estimation des besoins scolaires des différentes zones

Villages	Equipement	Unité	Nombre	Dotation (l/j/élève)	Qmoy.j (m³/j)
	école primaire		140		2,8
Ait Ahmed	école primaire	Elève	74	20	1,48
Ait Anmed	CEM	Eleve	510		10,2
	Lycée		764		15,28
Ait Zaim	école primaire	Elève	217	20	4,34
Tizi Tzougarth	école primaire	Elève	90	20	1,8
Tadjiouth	école primaire	Elève	60	20	1,2
Ighil Aouene	СЕМ	Elève	514	20	10,28
El Vir	école primaire	Elève	112	20	2,24

• Estimation des besoins industriels

Les besoins industriels sont résumés dans le tableau suivant :

Tableau II-7: Estimation des besoins industriels des différentes zones

Villages	Equipement	Qmoy.j (m³/j)	
Tadjiouth	huileries	3,2	
El Vir	huileries	3,2	

• Estimation des besoins sanitaire :

Les besoins sanitaires estimés sont résumés dans le tableau suivant :

Tableau II-8 : Estimation des besoins sanitaires des différentes zones

Villages	Equipement	Unité	Nombre	Dotation (l/j/élève)	Qmoy.j (m³/j)
Ait Ahmed	Centre de santé	Employé	20	50	1

• Estimation des besoins administratifs

Les besoins administratifs estimés sont résumés dans le tableau suivant :

Tableau II-9 : Estimation des besoins administratifs des différentes zones

Villages	Equipement	Unité	Nombre	Dotation (l/j/élève)	Qmoy.j (m³/j)
Ait Ahmed	siège de daïra	Employé	70	20	1,4
	siège d'apc	Employé	55	20	1,1
	Police communale	Employé	100	50	5
Tizi Tzougarth	poste	Employé	11	20	0,22

• Estimation des besoins socioculturels

Les besoins socioculturels estimés sont résumés dans le tableau suivant :

Tableau II-10 : Estimation des besoins socioculturels des différentes zones

Villages	Equipement	Unité	Nombre	Dotation [l/j/élève]	Qmoy.j [m³/j]
Tadjiouth	4 Mosquées	Fidèle	500	20	10
Ait Zaim	1 Mosquée	Fidèle	100	20	2
Cheurfa	1 Mosquée	Fidèle	100	20	2
Ait Ahmed	Maison de jeunes	personne	100	15	1,5
	3 mosquées	Fidèle	700	20	14

• Estimation des besoins d'élevage

Les besoins d'élevage estimés sont résumés dans le tableau suivant :

Tableau II-11: Estimation des besoins d'élevage

Villages	Equipement	Nombre	Dotation	Qmoy.j (m³/j)
	ovins	360	5	1,8
Cheurfa bas	Poulet de chair	490	1	0,49
Cheuria bas	Poulet pondeuses	310	1	0,31
	Bovins	300	50	15
	ovins	350	5	1,75
A:t Ahmad	Poulet de chair	320	1	0,32
Ait Ahmed	Poulet pondeuses	700	1	0,7
	Bovins	380	50	19

	ovins	410	5	2,05	
Ait Zaim	Poulet de chair	370	1	0,37	
	Poulet pondeuses	465	1	0,465	
	Bovins	450	50	22,5	
	ovins	245	5	1,225	
Ighil Zougaghene	Poulet pondeuses	460	1	0,46	
	Bovins	395	50	19,75	
	ovins	420	5	2,1	
Tigi Tgangantl	Poulet de chair	160	1	0,16	
Tizi Tzougarth	Poulet pondeuses	325	1	0,325	
	Bovins	460	50	23	
	ovins	470	5	2,35	
	Poulet de chair	380	1	0,38	
Tadjiouth	Poulet pondeuses	560	1	0,56	
	Bovins	435	50	21,75	
	Caprins	430	5	2,15	
Ighil Aouene	ovins	360	5	1,8	
	Poulet de chair	240	1	0,24	
	Poulet pondeuses	360	1	0,36	
EL Vir	ovins	260	5	1,3	
	Poulet de chair	460	1	0,46	
	Bovins	270	50	13,5	
lakouchene	ovins	465	5	2,325	
	Poulet de chair	360	1	0,36	
	Poulet pondeuses	620	1	0,62	
	Bovins	470	50	23,5	
	Caprins	360	5	1,8	
	ovins	460	5	2,3	
	Poulet de chair	380	1	0,38	
Arkoub Azougagh	Bovins	400	50	20	
	caprins	370	5	1,85	
	ovins	190	5	0,95	
Takhribt	Poulet de chair	210	1	0,21	
	Bovins	235	50	11,75	
	ovins	375	5	1,875	
Achina	Poulet de chair	245	1	0,245	
	Bovins	230	50	11,5	

II.6 Estimation des besoins en eau en tenant compte les pertes

Pour le calcul de la consommation moyenne journalière majorée, nous allons prendre en considération les pertes dans le réseau qui peuvent être dues soit à un manque d'étanchéité au niveau de joint des canalisations, soit aux fuites dans les systèmes de distribution qui sont en fonction du type de tuyau, ou aux fuites chez les consommateurs (robinet). Le volume des pertes est généralement compris entre 15 et 30 % de la quantité d'eau. Selon le service technique de la subdivision des ressources en eau de la commune de Maâtkas, le taux de fuit à considérer est 12%.

$$Q_{perte} = 0.12 * (Q_{dom} + Q_{\acute{e}qu})$$
 (II.3)

Q perte : le débit des pertes (m³/j).

Q dom: Le débit moyen journalier domestique (m³/j).

 $Q_{\ \ \text{\'equ}}$: Le débit moyen journalier des équipements (autre usages) (m³/j).

Tableau II-12 : Récapitulatif de la consommation moyenne journalière en eau en tenant compte les pertes

Villages	Besoins en eau des autres usages (m³/j)	Besoins en eau domestique (m³/j)	Débit des Pertes (m³/j)	Qmoy.j (m³/j)	Qmoy.j (l/s)
				212.0	2.46
Cheurfa bas	19,6	170,4	22,8	212,8	2,46
Ait Ahmed	75,53	824,85	108,05	1008,43	11,67
Ait Zaim	31,73	70,05	12,21	113,99	1,32
IghilZougaghene	21,44	91,35	13,53	126,32	1,46
TiziTzougarth	27,61	421,05	53,84	502,49	5,82
Tadjiouth	41,59	157,65	23,91	223,15	2,58
IghilAouene	12,68	63,15	9,10	84,93	0,98
El Vir	20,7	41,85	7,51	70,06	0,81
Iakouchene	28,61	41,85	8,45	78,91	0,91
ArkoubAzougagh	27,53	386,1	49,64	463,27	5,36
Takhribt	12,91	41,85	6,57	61,33	0,71
Achnina	13,62	105,6	14,31	133,53	1,55
Total	333,53	2415,75	329,91	3079,19	35,64

II.7 Variation de la consommation maximale et minimale journalier

Dans un réseau d'AEP, il y a toujours augmentation ou diminution de consommation. Ces variations s'étalent sur l'heure, la journée, l'année. En raison de l'irrégularité de la consommation et tenant compte des fuites qui peuvent survenir, le débit exigé pour les consommateurs sera obtenu en majorant le débit moyen journalier avec un coefficient d'irrégularité.

II.7.1 Coefficients d'irrégularité

Coefficient d'irrégularité maximum journalier (kmaxj)

Du fait de l'existence d'une irrégularité de la consommation maximale au cours de la journée, on doit tenir compte de cette variation en déterminant le rapport par la relation suivante :

$$K_{\text{max j}} = \frac{Q_{\text{max j}}}{Q_{\text{moy j}}} \qquad (II.4)$$

Q_{max j} :débit maximum journalier en m3/j.

Q_{moy j}: débit moyen journalier en m3/j.

K_{max j}: coefficient d'irrégularité maximum journalière.

Ce coefficient consiste à prévenir les fuites et les gaspillages dans le réseau, en majorant la moyenne de 10% à 30%. Donc la valeur de « k » varie entre 1,1 et 1,3.Pour notre cas on prend : kmaxj = 1,1 (Rapport de l'APC de Maâtkas).

• Coefficient d'irrégularité minimum journalier (kmini)

Celui-ci est défini comme étant le rapport de consommation minimale journalière et moyenne journalière tel que donnée par l'équation :

$$K_{\min j} = \frac{Q_{\min j}}{Q_{\max j}}$$
 (II.5)

Q_{min j}: débit minimum journalier en m3/j.

Q_{moyi}: débit moyen journalier en m3/j.

K_{min j}: coefficient d'irrégularité minimum journalière.

Ce coefficient permet de déterminer le débit minimum journalier, en envisageant unesous consommation dans le réseau, k_{minj} varie entre 0,7 et 0,9. Pour notre projet on prend :

k_{minj} =0.8 (Rapport de l'APC de Maâtkas).

Villages	Qmoy.j(m3/j)	Kmax	Q _{max} (m ³ /j)	Kmin	$Q_{min}(m^3/j)$
Cheurfa bas	212,8		234,08		170,24
Ait Ahmed	1008,43		1109,27		806,74
Ait Zaim	113,99		125,39		91,19
IghilZougaghene	126,32		138,95		101,06
TiziTzougarth	502,49		552,74		401,99
Tadjiouth	223,15		245,46		178,52
IghilAouene	84,93	1,1	93,42	0,8	67,94
El Vir	70,06		77,06		56,04
Iakouchene	78,91		86,80		63,13
ArkoubAzougagh	463,27		509,59		370,61
Takhribt	61,33		67,46		49,06
Achnina	133,53		146,88		106,82
Total	3079,19		3387,11		2463,35

Tableau II-13 : Récapitulatif de calcul des débits journaliers

II.8 Variation du débit horaire

Pour la vérification des calculs des débits horaires on utilise deux méthodes.

II.8.1 1ère méthode

Cette méthode consiste à déterminer le débit moyen horaire, en suite on détermine les débits horaires maximum et minimum, on tient compte les coefficients horaires qui dépendant des caractéristiques de l'agglomération.

II.8.1.1 Débit moyen horaire

Le débit moyen horaire est donné par la formule suivante :

$$Q_{moy\,h} = Q_{max\,j}/24\ (m^3/h) \eqno (II.6)$$

Avec:

 $Q_{\text{moy }h}$: Débit moyen horaire (m^3/h) .

 $Q_{max\,j}$: Débit maximum journalier (m^3/j).

$$Q_{\text{moy h}} = \frac{3387.11}{24} = 141.129 (\text{m}^3/\text{h})$$

II.8.1.2 Débit maximum horaire

Ce débit correspond à l'heure de pointe où la consommation est la plus importante durant la journée. Le débit maximum horaire est donné par la formule suivante :

$$Q_{\text{max h}} = K_{\text{max h}} * Q_{\text{moy h}} (m^3/h) \qquad (II.7)$$

Le coefficient maximum horaire est calculé par la formule suivante :

$$K_{\text{max h}} = \alpha_{\text{max}} * \beta_{\text{max}}$$
 (II.8)

 α_{max} : Coefficient qui dépend du niveau de vie et du confort, il varie entre 1.2 et 1.4. Dans notre cas (zone rurale et semi-rurale) on prend α_{max} = 1.2.

 β_{max} : coefficient qui dépend du nombre d'habitant et sera déterminer par interpolation en utilisent les valeurs données dans le tableau.

Tableau II-14: variation du coefficient βmax.

Population (hab) (10 ³)	1	1,5	2,5	4	6	10	20	30	100	300
eta_{max}	2	1,8	1,6	1,5	1,4	1,3	1,2	1,15	1,1	1,03

Vu le nombre d'habitant qui est 16105. La valeur de β_{max} correspondant est : 1,23

Donc: $K_{max} = 1.2 \times 1.23 = 1.5$

 $Q_{\text{max h}} = 1.5 * 141.129 = 211.69 \text{ m}^3/\text{h}$

 $Q_{\text{max h}} = 211.69 \text{m}^3/\text{h}.$

II.8.1.3 Débit minimum horaire

Le calcule de ce débit est important pour le dimensionnement mécanique de la conduite et pour la détection des fuites.

Le débit minimum horaire est donné par la formule suivante :

$$Q_{\min h} = K_{\min h} * Q_{moy h} (m^3/h) \qquad (II.9)$$

Le coefficient minimum horaire est calculé par la formule suivante :

$$K_{min} = \alpha_{min} * \beta_{min} \qquad (II.10)$$

 α_{min} : coefficient qui dépend des habitudes de la population et le niveau de développement, il varie de 0,4 à 0,6.

On prend $\alpha_{min} = 0.5$

 β_{min} : coefficient qui dépend de l'accroissement de la population, il est donnée par le Tableau suivant :

0,6

0,7

0,83

 Population (hab) (10³)
 1
 1,5
 2,5
 4
 6
 10
 20
 30
 100
 300

0,2

0,25

0,4

0,5

Tableau II-15 : Variation du coefficient β_{min}

La valeur de β min correspondante est : β min=0,46.

0,1

0,1

0,1

Donc: $K_{min h}=0.5*0.46=0.23$

 $Q_{min h} = 0.23*141.129 = 32.53 \text{ m}^3/\text{h}$

II.8.2 2ème méthode

 β_{min}

Cette méthode nous permet de déterminer la répartition des débits en chaque heure, qui varient d'une agglomération à une autre en fonction du nombre d'habitants.

II.8.2.1 Evaluation de la consommation horaire en fonction du nombre d'habitants

Le débit horaire d'une agglomération est variable selon l'importance de cette dernière et l'habitude quotidienne des habitants. La variation des débits horaires dans une journée est représentée en fonction du nombre d'habitants dans le tableau suivant :

Tableau II-16 : Coefficients de répartition des débits horaires en fonction du nombre d'habitants

	Coefficients de répartition des débits horaires (%)								
Heures	Moins de	De 10 001	De 50 001	Plus de	Agglomération				
(h)	10 000	à 50 000	à 100 000	100 000	De type rural				
	habitants	habitants	habitants	habitants					
0-1	01	1,5	03	3,35	0,75				
1-2	01	1,5	3.2	3,25	0,75				
2-3	01	1,5	2.5	3,3	01				
3-4	01	1,5	2.6	3,2	01				
4-5	02	2,5	3.5	3,25	03				
5-6	03	3,5	4.1	3,4	5,5				
6-7	05	4,5	4.5	3,85	5,5				
7-8	6.5	5,5	4.9	4,45	5,5				
8-9	6.5	6,25	4.9	5,2	3,5				
9-10	5.5	6,25	5.6	5,05	3,5				

10-11	4.5	6,25	4,8	4,85	06
11-12	5.5	6,25	4,7	4,6	8,5
12-13	07	05	4,4	4,6	8,5
13-14	07	05	4,1	4,55	06
14-15	5.5	5,5	4,2	4,75	05
15-16	4.5	06	4,4	4,7	05
16-17	05	06	4,3	4,65	3,5
17-18	6.5	5,5	4,1	4,35	3,5
18-19	6.5	05	4,5	4,4	06
19-20	05	4,5	4,5	4,3	06
20-21	4.5	04	4,5	4,3	06
21-22	03	03	4,8	4,2	03
22-23	02	02	4,6	3,75	02
23-24	01	1,5	3,3	3,7	01

Dans chaque agglomération, la variation du débit horaire est exprimée en pourcentage du débit maximum journalier.

$$Q_h = C_h * Q_{max j}$$
 (II.11)

 $Q_h\,$: débit horaire en m^3/h .

Ch: coefficients de répartition des débits horaires en (%).

 $Q_{max \, j}$: débit maximum journalier en m^3/j .

Le nombre d'habitant de la zone d'étude à l'horizon de 2051 est de 16105, donc il correspond à la deuxième colonne de tableau II-16.

Tableau II-17: Variation du débit horaire pour la zone d'étude

	Co	nsommation totale	Courbe de la consommation cumulée		
Heures	C_{h}	consommation horaire	$C_{\rm h}$	Consommation cumulée	
	Ch	(m^3/h)	Ch	(m^3/h)	
0_1	1,5	50,81	1,5	50,81	
1_2	1,5	50,81	3	101,61	
2_3	1,5	50,81	4,5	152,42	
3_4	1,5	50,81	6	203,23	
4_5	2,5	84,68	8,5	287,90	

5_6	3,5	118,55	12	406,45
6_7	4,5	152,42	16,5	558,87
7_8	5,5	186,29	22	745,16
8_9	6,25	211,69	28,25	956,86
9_10	6,25	211,69	34,5	1168,55
10_11	6,25	211,69	40,75	1380,25
11_12	6,25	211,69	47	1591,94
12_13	5	169,36	52	1761,30
13_14	5	169,36	57	1930,65
14_15	5,5	186,29	62,5	2116,95
15_16	6	203,23	68,5	2320,17
16_17	6	203,23	74,5	2523,40
17_18	5,5	186,29	80	2709,69
18_19	5	169,36	85	2879,05
19_20	4,5	152,42	89,5	3031,47
20_21	4	135,48	93,5	3166,95
21_22	3	101,61	96,5	3268,56
22_23	2	67,74	98,5	3336,31
23_24	1,5	50,81	100	3387,11

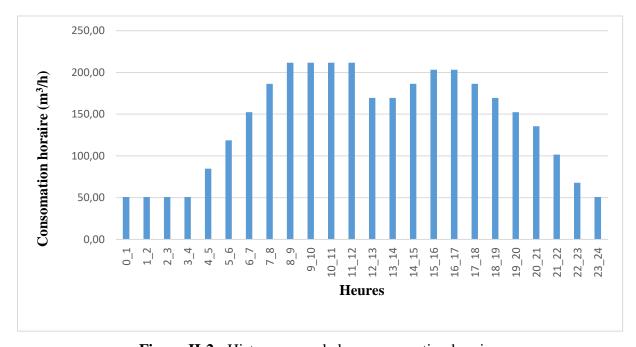


Figure II-2: Histogramme de la consommation horaire

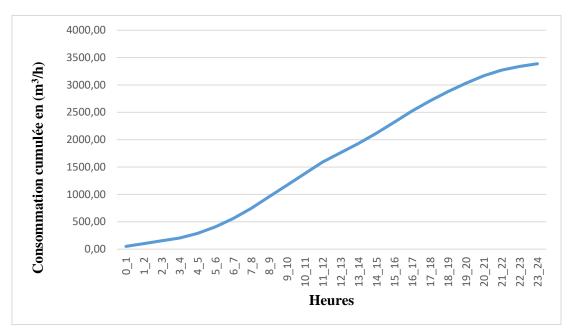


Figure II-3 : Courbe intégrale de la consommation totale

A partir de tableau précèdent, le débit de pointe $Q_{max.h}$ pour la zone d'étude est de 211,69 m³/h et survient entre 8h et 12h.

Remarque:

Après l'utilisation des deux méthodes on a trouvé le même résultat par les deux méthodes pour le calcul de débit maximum et $Q_{maxh}=211,69 \text{ m}^3/\text{h}$.

II.9 Bilan des ressources

Le bilan de consommation de la zone d'étude est présenté dans le tableau suivant :

Années2051besoins totaux en eau (m^3/j) 3387,11Production en eau existante (m^3/j) 1000Déficit (m^3/j) 2387.11

Tableau II-18: Tableau des déficits à combler à l'an 2051

Conclusion

L'estimation des besoins en eau des différents consommateurs de notre agglomération, nous a permis d'effectuer un bilan entre la production en eau existante et les besoins en eau déterminés. Ce dernier a montré que les ressources existantes ne peuvent pas satisfaire la totalité des besoins en eau potable de cette zone, c'est pourquoi il faudra combler le déficit en projetant une adduction pour transférer l'eau et répondre aux besoins de la population.

Chapitre III Les réservoirs

Introduction

Le réservoir est un ouvrage très important dans un réseau d'alimentation en eau potable. C'est un ouvrage aménagé pour contenir l'eau, soit potable destinée à la consommation publique, soit de l'eau à usage industriel. Il permet d'emmagasiner les eaux lorsque le régime de fonctionnement est supérieur au régime de consommation et assure la production en cas d'une forte demande.

Le but du présent chapitre est de déterminer les volumes de stockage nécessaires et les vérifier de telle façon qu'on assure le meilleur fonctionnement des réseaux.

III.1 Utilités des réservoirs

Les réservoirs constituent les organes régulateurs de pression et de débit entre le régime de production et le régime de consommation, ils permettent :

Une certaine souplesse pour faire face, sans gêne, pour les utilisateurs, aux incidents suivant :

- Panne électrique.
- Remplacement d'une pompe.
- Accident sur la conduite de refoulement.

Une régularité de fonctionnement des groupes de pompage, de profiter au maximum du tarif de nuit en énergie électrique.

En résumé, les réservoirs constituent un volant qui permet d'assurer aux heures de pointe, les débits maximaux demandés. De plus, ils permettent de combattre efficacement les incendies.

III.2 Classification des réservoirs [1]

Il existe plusieurs types de réservoirs, on peut les classifier selon trois paramètres :

a. D'après la nature des matériaux

- Les réservoirs métalliques.
- Les réservoirs en maçonnerie.
- Les réservoirs en béton armé, ordinaire ou précontraint.

b. D'après la situation des lieux

- Réservoir au sol.
- Enterrés.
- Semi-enterrés.
- Surélevés, sur tour.

c. D'après des considérations esthétiques, soit

- Affirmer les fonctions de l'ouvrage.
- S'intégrer au paysage.

III.3 Equipement du réservoir

III.3.1 Conduite d'arrivée (adduction)

L'eau arrive au réservoir par averse, soit à chute libre, provoquant une oxygénation de l'eau, ce qui peut être favorable aux eaux souterraines, ordinairement pauvres en oxygène dissous, soit en prolongeant la conduite de façon à ce que l'extrémité soit toujours noyée.

III.3.2 Conduite de départ

Contrairement à la conduite d'arrivée qui monte au sommet de la réserve, la conduite de départ d'eau part du fond de la réserve (0,15 à 0,20 m au-dessus du radier). Elle doit être opposée à la conduite d'amenée et munie d'une crépine en vue d'éviter l'introduction dans la distribution, des boues ou des sables qui peuvent se déposer dans la cuve.

III.3.3 Conduite de départ

Cette conduite est placée à l'opposé de la conduite d'arrivée, à quelques centimètres au-dessus du radier (0,15 à 0,2 m) pour éviter la pénétration du sable dans le réseauet est équipée d'une crépine coudée pour éviter la pénétration d'air dans la conduite (phénomène de vortex).

III.3.4 Conduite de vidange

Elle permet de vidanger le réservoir en vue de nettoyage ou de réparation. Cette conduite partira au point bas du réservoir ou son sol est fait de telle manière que l'eau s'écoule naturellement vers cette vidange. Elle sera munie d'un robinet vanne et sera raccordée à la conduite de trop plein.

III.3.5 Conduite de trop plein

Cette conduite permet d'évacuer l'excès d'eau arrivant au réservoir au cas où la pompe ne s'arrête pas. Si le réservoir est compartimenté, chaque cuve doit avoir une conduite de trop plein, ces conduites (de trop plein de chaque cuve) doivent se réunir dans la chambre de manœuvre, pour former un joint hydraulique évitant la pénétration de tout corps étranger.

III.3.6 Conduite by-pass

Ce tronçon de conduite relie les conduites d'alimentation (arrivée) et de distribution (départ), il fait circuler l'eau sans la faire passer au réservoir, permettant d'isoler le réservoir en cas de besoin (nettoyage de la cuve ou réparation du château).

III.3.7 Système de matérialisation d'incendie

C'est une disposition spéciale de la tuyauterie qui permet d'interrompre l'écoulement, une fois que le niveau de la réserve d'incendie est atteint.

III.4 Emplacement de réservoir [1]

Pour le bon fonctionnement du réseau, il faut choisir convenablement l'emplacement du réservoir donc il faut tenir compte des points suivants :

- L'emplacement de réservoir doit être aussi bien choisi afin de donner aux abonnés une pression suffisante au moment de la pointe.
- L'altitude du réservoir, plus précisément du radier doit se situer à un niveau supérieur à la plus haute cote piézométrique exigée sur le réseau pour effectuer une alimentation gravitaire de réseau de distribution.
- Il faut évaluer la perte de charge entre le réservoir et le point de plus haute cote piézométrique à desservir pour avoir en première approximation, l'altitude du radier.
- Il faut tenir compte de la topographie et la géologie des lieux. Il ne faut pas oublier les extensions futures de l'agglomération.

III.5 Choix de type de réservoir

Le choix du type de réservoir dépend surtout des facteurs économiques.

La zone étudiée est très accidentée donc on opte pour les réservoirs circulaires semi-enterrés présenteront, les avantages suivants :

- Economie sur les frais de construction.
- Etude architecturale très simplifiée et moins sujette à critique.
- Etanchéité plus facile à réaliser.
- Construction à une température constante de l'eau ainsi emmagasinée.

III.6 Entretien du réservoir

Le réservoir doit faire l'objet d'une surveillance régulière concernant : La corrosion, les fissures éventuelles et la dégradation.

Le nettoyage périodique de la cuve comporte les phases suivantes :

- Isolement et vidange de la cuve.
- Elimination des dépôts sur les parois.
- Examen des parois et réparations éventuelles.
- Désinfection à l'aide des produits chlorés.
- Remise en service.

III.7 Calcul de la capacité des réservoirs

III.7.1 Principe du calcul de la capacité

Dans notre cas, pour calculer la capacité d'un réservoir on doit tenir compte des variations à l'entrée comme à la sortie, du mode d'exploitation des ouvrages situés en amont, et de la variabilité de la demande.

Pour notre projet, nous avons projeté (05) cinq ouvrages hydrotechniques :

- Deux bâches de reprise.
- Trois réservoirs.

La capacité du réservoir est déterminée en fonction du débit d'apport et celui de sortie augmenté éventuellement de la réserve incendie. Deux méthodes peuvent être appliquées pour la déterminer :

- La méthode analytique.
- La méthode graphique.

III.7.1.1 La méthode analytique

La méthode analytique consiste à calculer, pour chaque heure de la journée, le résidu dans le réservoir. Le volume de régulation sera :

$$V_{\rm r} = \frac{\mathbf{a} * \mathbf{Q}_{\max j}}{100} (\mathbf{m}^3)$$
 (III. 1)

V_r: capacité résiduelle (m³),

a: fraction horaire du débit maximum journalier (%).

 $Q_{\text{max } i}$: La consommation maximale journalière (m³/j).

Le volume total détermine en ajoutant le volume d'incendie au volume de régulation :

$$V_T = V_r + V_{inc} (III.2)$$

V_T: capacité totale du réservoir (m³).

V_{inc}: volume d'incendie estimé à 120 m³.

• Détermination de résidu maximum dans les réservoirs :

Pour dimensionner un réservoir, on est appelé à déterminer le résidu maximal. Souvent celui-ci peut être localisé aux environs des heures de pointe où la consommation est élevée.

La variation entre le débit entrant et le débit à distribuer peut nous permettre sa localisation. Si la déférence de débit entrant et sortant du réservoir est supérieure à celui qui sort de ce dernier cela indique qu'il y a un surplus, et dans le cas contraire, on aura un déficit.

On détermine ensuite le résidu dans le réservoir pour chaque heure. La valeur maximale trouvée sera le pourcentage du volume de stockage.

III.7.1.2 Méthode graphique

Cette méthode est baisée sur le traçage des courbes de la consommation maximale journalière et celle caractérisant l'apport de la station de pompage, en additionnant en valeur absolue les écarts de deux extremums de la courbe de consommation par rapport à celle d'apport, on obtiendra le résidu maximal journalier.

Donc:

$$R_{max} = |V| + |V^-|(\%)$$
 (III.3)

Le volume de régulation V_r est calculé selon la formule suivante :

$$V_r = \frac{Q_{max\,j^*}R_{max}}{100}(m^3)$$
 (III.4)

Dont le volume total sera : $V_t = V_r + V_{inc}$

III.7.2 Dimensionnement de la bâche de reprise

La station de reprise est un ouvrage équipé d'un réservoir et d'une station de pompage. Le dimensionnement de cet ouvrage est déterminé en tenant compte du temps nécessaire pour maintenir la crépine en charge et pour que la pompe ne se désamorce pas. Ce temps est généralement pris à un quart d'heure (1/4 h). Pour procéder à la détermination du volume dela bâche de reprise, on utilise la formule suivante :

$$V_{bache} = \frac{Q * t}{T_I}$$
 (III.5)

t: temps nécessaire pour maintenir la crépine en charge (t=0,25h).

T': le temps de fonctionnement de la station de pompage (T'=20h).

III.7.3 Dimensionnement du réservoir de la station de reprise 1

Le débit sortant de la station de pompage (SP1) est de2387.11m³/j.

$$V_{\text{bache}} = \frac{2387.11*0.25}{20} = 28.65 \text{ m}^3$$

Dans notre cas, comme on a un pompage de 24h/24h à partir des forages et un refoulement de 20h/24h à partir de la station de pompage 1, on dimensionne la bâche eau en ajoutant le volume reçu durant les quatre heures, donc le volume de la bâche à eau sera :

$$V_{bache} = \left(\frac{Q_{max}}{20} * 4\right) + 28.65 = 506 \text{ (m}^3\text{)}$$
 (III.6)

On prendra un réservoir de capacité standard de 500m³.

Pour une hauteur de 4 m, le diamètre de la bâche à eau sera :

$$D = \sqrt{\frac{4 * V_{bache}}{\pi * h}}$$
 (III. 7)

$$D = 12,62 \text{ m}$$

III.7.4 Dimensionnement du réservoir de la station de reprise 2

Le débit sortant de la station de pompage (SP1) est de : 2387,11 m³/j.

$$V_{\text{bache}} = \frac{2387.11*0.25}{20} = 28,65 \text{ m}^3$$

On prendra un réservoir de capacité standard de 50 m³.

Pour une hauteur de 3 m, le diamètre de la bâche à eau sera : $\mathbf{D} = 4.6 \text{ m}$.

III.7.5 Calcul des réservoirs de la zone d'étude

III.7.5.1 Réservoir Ait Ahmed

Tableau III-1: Capacité du réservoir Ait Ahmed

Heures	Apports	Sorties (%)	Déficit (%)	Surplus	Résidu (%)
00 - 01	5	1	-	4	11
1_2	5	1	-	4	15
2_3	5	1	-	4	19
3_4	5	1	-	4	23
4_5	5	2	-	3	26
5_6	5	3	-	2	28
6_7	5	5	0	-	28
7_8	5	6,5	1,5	-	26,5
8_9	5	6,5	1,5	-	25
9_10	5	5,5	0,5	-	24,5
10_11	5	4,5	-	0,5	25
11_12	5	5,5	0,5	-	24,5
12_13	5	7	2	-	22,5
13 - 14	5	7	2	-	20,5
14 - 15	5	5,5	0,5	-	20
15 - 16	5	4,5	-	0,5	20,5
16 - 17	5	5	0	-	20,5
17 - 18	5	6,5	1,5	-	19
18 - 19	0	6,5	6,5	-	12,5
19 - 20	0	5	5	-	7,5
20 - 21	0	4,5	4,5	-	3
21 - 22	0	3	3	-	0
22 - 23	5	2	-	3	3
23 - 00	5	1	-	4	7

• Le volume utile sera : $V_r = \frac{1468.73*28}{100} = 411,25 \text{m}^3$

Tableau 0-2: Besoins en stockage des villagesdesservis à partir de réservoir Ait Ahmed

Horizon	Q _{max j} (m ³ /j)	V _{utile} (m ³)	V _{incendie} (m ³)	V _t (m ³)	V _{disponible} (m ³)	Déficit/Surplus (m³)	V _n (m ³)
2051	1468,735	411,25	120	531,25	200	-331,25	400

Le réservoir d'eau existant de 200 m³ n'est pas suffisant pour l'alimentation de l'agglomération à l'horizon de 2051. Donc, il faut projeter un nouveau réservoir 400 m³ pour satisfaire les besoins de toute l'agglomération.

III.7.5.2 Réservoir Ivardane

Tableau III-3: Capacité du réservoir Ivardane

Heures	Apports	Sorties (%)	Déficit (%)	Surplus	Résidu (%)
00 - 01	5	1	-	4	11
1_2	5	1	-	4	15
2_3	5	1	-	4	19
3_4	5	1	-	4	23
4_5	5	2	-	3	26
5_6	5	3	-	2	28
6_7	5	5	0	-	28
7_8	5	6,5	1,5	-	26,5
8_9	5	6,5	1,5	-	25
9_10	5	5,5	0,5	-	24,5
10_11	5	4,5	-	0,5	25
11_12	5	5,5	0,5	-	24,5
12_13	5	7	2	-	22,5
13 - 14	5	7	2	-	20,5
14 - 15	5	5,5	0,5	-	20
15 - 16	5	4,5	-	0,5	20,5
16 - 17	5	5	0	-	20,5
17 - 18	5	6,5	1,5	-	19
18 - 19	0	6,5	6,5	-	12,5
19 - 20	0	5	5	-	7,5
20 - 21	0	4,5	4,5	-	3
21 - 22	0	3	3	-	0
22 - 23	5	2	-	3	3
23 - 00	5	1	-	4	7

Le volume utile sera : $V_r = \frac{1264,25*28}{100} = 353,99 \text{ m}^3$

La capacité totale sera : $V_t = 353,99 + 120 = 473.99 \text{ m}^3$

Tableau III-4: Besoins en stockage des villagesdesservis à partir de réservoir Ivardane

Horizon	Q _{max j} (m ³ /j)	V _{utile} (m ³)	V _{incendie} (m ³)	V _t (m ³)	V _{disponible} (m ³)	Déficit/Surplus (m³)	V _n (m ³)
2051	1264,260	353,99	120	473,99	200	-273,99	300

Le réservoir d'eau existant de 200 m³ n'est pas suffisant pour l'alimentation de l'agglomération à l'horizon de 2051. Donc, il faut projeter un nouveau réservoir 300 m³ pour satisfaire les besoins de toute l'agglomération.

III.7.5.3 Réservoir El-Vir

Tableau III-5: Capacité du réservoir El-Vir

Heures	Apports	Sorties (%)	Déficit (%)	Surplus	Résidu (%)
00 - 01	5	1	-	4	11
1_2	5	1	-	4	15
2_3	5	1	-	4	19
3_4	5	1	-	4	23
4_5	5	2	-	3	26
5_6	5	3	-	2	28
6_7	5	5	0	-	28
7_8	5	6,5	1,5	-	26,5
8_9	5	6,5	1,5	-	25
9_10	5	5,5	0,5	-	24,5
10_11	5	4,5	-	0,5	25
11_12	5	5,5	0,5	-	24,5
12_13	5	7	2	-	22,5
13 - 14	5	7	2	-	20,5
14 - 15	5	5,5	0,5	-	20
15 - 16	5	4,5	-	0,5	20,5
16 - 17	5	5	0	-	20,5
17 - 18	5	6,5	1,5	-	19
18 - 19	0	6,5	6,5	-	12,5
19 - 20	0	5	5	-	7,5
20 - 21	0	4,5	4,5	-	3
21 - 22	0	3	3	-	0
22 - 23	5	2	-	3	3
23 - 00	5	1	-	4	7

Le volume utile sera : $V_r = \frac{654.12*28}{100} = 183,153 \text{ m}^3$

La capacité totale sera : $V_t = 183.153 + 120 = 303,15 \text{m}^3$

Tableau III-6: Besoins en stockage des villages desservis à partir de réservoir

Horizon	Q _{max j} (m ³ /j)	V _{utile} (m ³)	V _{incendie} (m ³)	V _t (m ³)	V _{disponible} (m ³)	Déficit/Surplus (m³)	V _n (m ³)
2051	654,118	183,153	120	303,15	100	-203,15	200

Le réservoir d'eau existant de 100 m³ n'est pas suffisant pour l'alimentation de l'agglomération à l'horizon de 2051. Donc, il faut projeter un nouveau réservoir 200 m³ pour satisfaire les besoins de toute l'agglomération.

III.7.6 Dimensions des réservoirs à projeter

En ce qui concerne la forme des réservoirs, nous optons pour des réservoirs à section circulaire puisque nos volumes sont tous inférieurs à 10000 m³.

La hauteur de l'eau dans la cuve est comprise entre 3 et 6 m en moyenne, toutefois, les réservoirs de grande capacité des agglomérations importantes peuvent présenter des hauteurs d'eau comprises entre 7 et 10 m

• Le diamètre D de la cuve :

$$S = \frac{V_n}{h} \Rightarrow \frac{\pi * D}{4} = \frac{V_n}{h} \Rightarrow D = \sqrt{\frac{4 * V_n}{\pi * h}} (m)$$
 (III.8)

V_n: capacité normalisée du réservoir (m³).

S : section du réservoir (m²).

D: diamètre de la cuve (m).

h: hauteur d'eau (m).

• La hauteur de la réserve d'incendie h_{inc} :

$$\mathbf{h_{inc}} = \frac{\mathbf{V_{inc}}}{\mathbf{S}}(\mathbf{m})$$
 (III. 9)

Les dimensions des différents réservoirs projetés sont cites dans le tableau suivant :

Tableau III-7: Tableau récapitulatif de différentes dimensions des réservoirs projetés

Réservoirs	Volume (m ³)	h (m)	S (m ²)	D (m)	H _{inc} (m)
Ait Ahmed	400	4	100	11.28	1,6
Ivardane	300	4	75	9,77	1,6
El-Vir	200	3	66,67	9,22	1,8

Conclusion

D'après cette étude, on a remarqué que les réservoirs ne suffisent pas pour les besoins de notre zone d'étude à l'horizon d'étude 2051. Donc, nous avons projeté trois nouveaux réservoirs :

- Réservoirs Ait Ahmed 400 m³.
- Réservoirs Ivardane 300 m³.
- Réservoirs El-Vir 200 m³.

L'acheminement de l'eau vers ce réservoir se fait par l'intermédiaire de deux stations de reprise alimentée par refoulement à partir des forages.

Chapitre IV Adduction

Introduction

L'adduction est l'acheminement de l'eau de la source, ou du point de son prélèvement (forage, piquage sur une conduite,...etc.) vers des ouvrages de stockage qui servent à emmagasiner l'eau avant sa mise en distribution.

Ce chapitre a pour but de trouver une solution technico-économique pour le dimensionnement du réseau d'adduction afin de combler le déficit et alimenter notre zone d'étude jusqu'à l'horizon 2051.

IV.1 Types adduction

On distingue deux types d'adduction :

• Adduction par refoulement

La pression sur le réseau et l'acheminement de l'eau se fait à l'aide de pompes à l'intérieur de stations de pompage.

• Adduction gravitaire:

L'écoulement de l'eau à des pressions importantes est causé par la différence des niveaux hydrauliques : l'altitude de la source est supérieure à l'altitude du point de consommation, et se déplace donc grâce à la force de gravitation d'où son nom.

• Adduction mixte:

Dans certains cas, la topographie des lieux imposera une adduction mixte. On distingue les cas :

- Refoulement-gravitaire : la conduite de refoulement se transforme en conduite gravitaire par l'installation d'un réservoir intermédiaire ou réservoir tampon.
- Gravitaire-refoulement : on s'efforcera toujours de réduire le plus possible la longueur de la conduite de refoulement.

L'extrémité amont de la conduite gravitaire est munie d'une vanne à survitesse, par contre on évite l'arrivée par le fond au niveau du réservoir intermédiaire car on risque d'avoir siphonage dans la partie gravitaire.

IV.2 Choix du tracé [1]

Le choix du tracé du profil de la conduite d'adduction se fait selon certains critères techniques et économiques, par exemple :

- Le profil de la conduite doit être aussi régulier et aussi court que possible afin de réduire les frais d'investissement et éviter les contre pentes.
- Pour les conduites de longueurs importantes, il sera bon de prévoir quelques robinets de sectionnements en vue de faciliter les réparations éventuelles.
- Le profil sera étudié pour que l'air puisse être évacué facilement.
- Eviter la multiplication des ouvrages couteux ou fragiles (traversée de route, rivière,...etc.)
- Il est préférable de concevoir le profil en long le long des routes et des pistes pour faciliter la pose des conduites et son exploitation.

IV.3 Choix du type des conduites

Pour l'installation d'un réseau, le choix du type des conduites requiert une attention toute particulière car le bon fonctionnement du réseau en dépend en grande partie.

Certains paramètres sont impératifs au choix des matériaux entre autre :

- Le diamètre économique.
- La pression de l'eau.
- Les pertes de charge.
- Le prix de revient et la facilité de mise en œuvre en fonction du tracé.

Les types de conduites les plus couramment utilisés dans les réseaux d'eau potable sont :

- Conduite en acier.
- Conduite en fonte
- Conduite en PEHD (polyéthylène haute densité).

Pour notre projet, on a choisi des conduites en PEHD pour les conduites de refoulement, vue les avantages qu'elles présentent :

- Une durée de vie importante (50 ans à une température de 20°C).
- Facilité de soudage par éléctrofusion ou bout à bout, confère au réseau une étanchéité quasiment parfaite.
- Une bonne résistance chimique, aux chocs et aux ultraviolets.
- Résiste à la corrosion, stabilité du réseau en milieu agressif.

- La propriété de flexibilité permet aux conduites, d'absorber les impacts et les contraintes causée par les mouvements de sol, ainsi à se déformer sans dommage permanent.

- Résistance au coup de bélier.
- Un faible coût.

IV.4 Etude de l'adduction

IV.4.1 Proposition des variantes

L'objectif de cette étude est de réaliser un renforcement en AEP de la commune de Maâtkas à partir des forages à projeter au niveau de l'oued Boghni en plus de la source mobilisée d'oued Sebaou. L'alimentation de la zone d'étude peut se faire en projetons une nouvelle adduction par refoulement qui prend son départ à partir des forages projetés vers les réservoirs Ait Ahmed et El Vi et Ivardhen après avoir transités par deux stations de reprise et deux bâches de stockage projetées, vue la dénivelée importante, (Forage – Réservoir) la première sera projetée à la côte de 281 m et la 2ème à la côte de 436 m.

- Le réservoir 200 m³ Ait Ahmed alimentera Ait Zaim, Ait Ahmed et Cheurfa Bas.
- Le réservoir 300 m³ d'Ivaradhen alimentera Ighil Aouene, Ighil Zeguaghen, Tizi Tzougart, Tadjiouth Haut, Tadjiouth Bas et Iakouchene.
- Le réservoir 200 m³ El Vir alimentera El Vir et Takhribt et Achnina.

Pour l'alimentation des réservoirs Ivaradhen et El Vir, nous suggérons deux variantes.

- Variante 1: Consiste à alimenter les réservoirs d'Ivaradenet EL Vir par deux conduites en parallèle.
- Variante 2 : Alimenter le réservoir d'Ivaraden par gravité à partir du réservoir El Vir

IV.4.2 Etude technico-économique des conduites [2][4]

Une étude technico-économique est indispensable pour choisir le diamètre le plus économique qui permettra de donner un coût de revient minimum entre les dépenses de fonctionnement et celle d'investissement, plus le diamètre de la conduite est petit pour un même débit à relever, plus la perte de charge sera grande d'où l'énergie dépensée sera importante ; par contre, plus le diamètre est grand, par suit la diminution des pertes de charge d'où les frais d'exploitation diminuent.

IV.4.2.1 Etude de l'adduction par refoulement

IV.4.2.1.1 Choix de la gamme des diamètres

Les formules qui nous permettent de calculer le diamètre économique sont :

• La formule de BONNIN : $D = \sqrt{Q}$ (0IV.1)

• La formule de BRESS : $D = 1, 5 * \sqrt{Q}$ (IV.2)

Avec:

D: Diamètre de la conduite (m).

Q: Débit véhiculé dans la conduite (m³/s).

Remarque:

La formule de Bress n'est valable que pour les petits projets (longueur de conduite ≤ 1 Km). Avec ces deux formules on détermine une gamme du diamètre économique, suivant plusieurs diamètres normalisés, notre choix se portera sur le plus économique c'est-à-dire, celui qui présente un bilan minimale et une vitesse comprise entre 0,5 et 2m/s.

IV.4.2.1.2 Calcul de la vitesse

D'après l'équation de continuité : $\mathbf{Q} = \mathbf{V} * \mathbf{S} \Longrightarrow \mathbf{V} = \frac{\mathbf{Q}}{\mathbf{S}}$

On a : $S = \frac{\pi D^2}{4}$

Donc: $V = \frac{4*Q}{\pi R^2}$ (IV. 3)

V : Vitesse d'écoulement dans la conduite (m/s) ;

Q : Débit véhiculé dans la conduite (m³/s) ;

D : Diamètre de la conduite (m).

IV.4.2.1.3 Calcul des pertes de charges

Les pertes de charges dans les canalisations sont dues au frottement d'eau contre les parois de ces canalisations ainsi que les différents organes d'adduction, elles sont liées à la longueur de la conduite, à son diamètre et aux singularités (vannes, coudes, clapets, ...).

Elle se présente sous deux formes :

- Pertes de charges linéaires.
- Pertes de charges singulières.

• Les pertes de charges linéaires

Elles se produisent tout au long de la conduite, elles peuvent être déterminées par la formule de DARCY-WIESBACH suivante :

$$\Delta H_L = \frac{8 \lambda L Q^2}{\pi^2 g D^5}$$
 (IV. 4)

g : Accélération de la pesanteur (m/s²).

 \mathbf{Q} : Débit à refouler (m³/s).

L : longueur géométrique de la conduite (m).

 λ : Coefficient de frottement qui est en fonction de la rugosité de la paroi interne de la conduite et du régime d'écoulement, nous calculons λ avec la formule de Nikuradzé :

$$\lambda = (1.14 - 0.86 * ln \frac{K_s}{D})^{-2}$$

K : Coefficient de rugosité équivalente de la paroi qui varie comme suit :

- Pour les tube en acier : $K = 10^{-3}$ mm.
- Pour les tubes en fonte : K = 0.03 mm.
- Pour les tubes en PEHD :
 - K = 0.01mm si D < 200 mm.
 - K = 0.02 mm si D > 200 mm.

• Les pertes de charge singulières

Les pertes de charge singulières représentent les pertes occasionnées par les singularités dans les conduites (coudes, vannes, clapets et branchements, ..., etc.). Dans la pratique, ces pertes de charge sont estimées à 10% (pour le PEHD) des pertes de charge linéaires.

$$\Delta \mathbf{H_s} = \Delta \mathbf{H_L} * \mathbf{0.1} \qquad (IV.5)$$

• Les pertes de charge totales

Elle représente la somme des pertes de charge linéaire et singulière :

$$\Delta H_T = \Delta H_S + \Delta H_L \Rightarrow \Delta H_T = 1.1 \Delta H_L \quad (IV.6)$$

IV.4.2.1.4 Calcul de la hauteur manométrique totale d'élévation

La hauteur manométrique totale est la somme de pertes de charge et de la hauteur géométrique.

$$\mathbf{HMT} = \mathbf{H_g} + \Delta \mathbf{H_T} \tag{IV.7}$$

Avec:

H_g: Hauteur géométrique (m).

 ΔH_T : Pertes de charge totales (m).

IV.4.2.1.5 Puissance absorbée par la pompe

C'est la puissance fournie la pompe, définie comme suit :

$$\mathbf{P} = \frac{\mathbf{g} * \mathbf{Q} * \mathbf{HMT}}{\mathbf{\eta}} \tag{IV.8}$$

Avec:

 η : rendement de la pompe en (%) (n = 82%).

Q : débit refoulé par la pompe en (m^3/s) .

g: pesanteur (9.81 m/s^2) .

IV.4.2.1.6 Energie consommée par la pompe

$$\mathbf{E} = \mathbf{P} * \mathbf{t} * \mathbf{365} (\mathbf{KWH}) \tag{IV. 9}$$

Avec:

t: c'est le temps de pompage par jour en (heure), dans notre cas t = 20h.

P: puissance de la pompe en (kW).

IV.4.2.1.7 Frais d'exploitation

Les frais d'exploitation sont définis comme suit :

$$\mathbf{F}_{\mathbf{exp}} = \mathbf{E} * \mathbf{e} \quad (\mathbf{DA}) \tag{IV. 10}$$

Avec:

E : énergie consommée par la pompe en (KWH)

e : prix unitaire d'un KW H imposé par la SONELGAZ. (e = 4,67 DA)

IV.4.2.1.8 Frais d'amortissement

Les frais d'amortissement sont donnés comme suit :

$$\mathbf{F}_{\mathsf{am}} = \mathbf{P}_{\mathsf{u}} * \mathbf{L} * \mathbf{A} \tag{IV.11}$$

Avec:

Pu : Prix unitaire de la conduite (DA/ml).

L : Longueur de la conduite (m).

A: Amortissement annuel.

$$A = \frac{i}{(i+1)^{n-1}} + i$$
 (IV. 12)

Avec:

i : Taux d'annuité (i=8%).

n : Nombre d'année sur lequel s'effectuera l'amortissement (n= 30ans).

IV.4.2.1.9 Calcul du bilan

Le bilan des frais F_t (DA) est calculé pour chaque diamètre incluant les frais d'exploitation et les frais d'amortissement. Il est donné par la formule suivante :

$$\mathbf{F_t} = \mathbf{F_{am}} + \mathbf{F_{exp}} \tag{IV.13}$$

IV.4.2.2 Etude de l'adduction gravitaire

Quatre paramètres interviennent pour le calcul d'une conduite gravitaire : le débit Q, le diamètre D, la vitesse V et la charge disponible. Généralement en pratique, seul le diamètre est à déterminer.

• Les pertes de charge singulières

Les pertes de charge singulières représentent les pertes occasionnées par les singularités dans les conduites (coudes, vannes, clapets et branchements,...etc.), dans la pratique, ces pertes de charge sont estimées à 10% des pertes de charge linéaires.

• Les Pertes de charge totales

On sait que l'écoulement est variable suivant le régime et la nature du matériau de la conduite. Pour cela on fait intervenir certains coefficients (β, m) qui tiennent compte de cela moyennant une formule approchée :

$$\Delta \mathbf{H_T} = \frac{\mathbf{K'} * \mathbf{L_{et}} * \mathbf{Q}^{\beta}}{\mathbf{D_{av}^m}}$$
 (IV.14)

K': résistance par mètre linéaire.

D_{av} : diamètre avantageux calculé de la conduite (m).

 ΔH_T : perte de charge totale (m).

$$\Delta H_{T} = 1.1 * \Delta H_{L} \Longrightarrow L_{et} = 1.1 * L_{g}$$
 (IV.15)

L_g : longueur géométrique de la conduite (m).

Q : Débit véhiculé par la conduite (m3/s).

β : exposant tenant compte du régime d'écoulement.

m : exposant tenant compte du type du matériau.

Selon le type de matériau, on choisit les coefficients K', m et β.

Tuyau	K'	m	b
Acier et fonte	0,00179 - 0,001735	5,1 - 5,3	1,9-2
Amiante - Ciment	0,00118	4,89	1,85

4,772

2

Tableau IV-1 : Coefficients K', m, β pour différents types du tuyau

On déduit alors le diamètre calculé de la conduite gravitaire :

$$\mathbf{D_{av}} = \sqrt[m]{\frac{\mathbf{K'} * \mathbf{L_{et}} * \mathbf{Q}^{\beta}}{\Delta \mathbf{H_T}}} \quad (IV.16)$$

IV.4.3 Dimensionnement des conduites de la variante 1

IV.4.3.1 Dimensionnement du tronçon Forage –station de reprise 1

0,001052

Données:

- Débit : $0.03 \text{ m}^3/\text{s}$.

Plastique

- Longueur : 2 635 m.

- Hg = 165 m.

Tableau IV-2 : Calcul des pertes de charge et de la Hmt du tronçon Forage – Station de reprise1

Diamètre intérieur en (m)	Débit (m³/s)	V (m/s)	λ	L(m)	$\Delta \mathbf{H}_{\mathrm{T}}(\mathbf{m})$	Hg(m)	HMT(m)
69,8	0,03	7,82	0,0130561	2635	1700,26405	165	1865,26405
85,4	0,03	5,22	0,0125535	2635	596,287539	165	761,287539
97	0,03	4,05	0,0122510	2635	307,816266	165	472,816266
124,2	0,03	2,47	0,0116942	2635	85,3772222	165	250,377222
155,2	0,03	1,58	0,0112242	2635	26,8952793	165	191,895279
194,2	0,03	1,01	0,0107794	2635	8,42027607	165	173,420276
244,6	0,03	0,64	0,0103	2635	2,550218037	165	167,550218
310,6	0,03	0,39	0,0099	2635	0,741117199	165	165,7411172

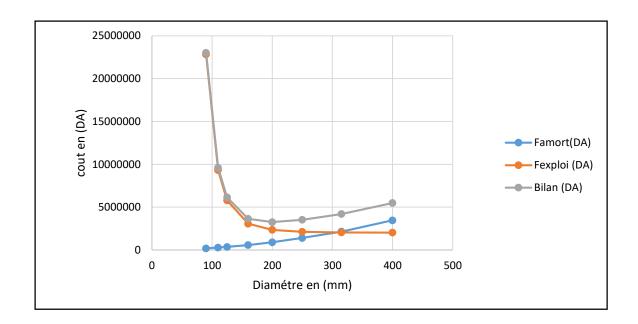
Les frais d'exploitation correspondant aux différents diamètres sont présentés dans le tableau suivant :

Tableau IV-3 : Les frais d'exploitation du tronçon Forage – Station de reprise1

Diamètre (mm)	P (KWatt)	E (KWh)	Fexploi (DA)
90	669,447818	4 886 969,07	22 822 145,6
110	273,227954	1 994 564,07	9 314 614,19
125	169,694911	1 238 772,85	5 785 069,21
160	89,8609957	655 985,269	3 063 451,2
200	68,8716838	502 763,291	2 347 904,57
250	62,2409601	454 359,008	2 121 856,57
315	60,13418191	438979,528	2050034,396
400	59,48489121	434239,7058	2027899,426

Les frais d'amortissement correspondant aux différents diamètres sont présentés dans le tableau suivant :

Tableau IV-4: Les frais d'amortissement du tronçon Forage – Station de reprise1


Diamètre (mm)	Prix de ml (DA)	L (m)	L'amortissement	Famot (DA)
90	807,58	2635	0,0888	188 964,03
110	1195,84	2635	0,0888	279 812,21
125	1515,75	2635	0,0888	354 667,31
160	2465	2635	0,0888	576 780,42
200	3858,27	2635	0,0888	902 788,88
250	6001,75	2635	0,0888	1 404 337,48
315	9170,01	2635	0.0888	2145672,30
400	14777,99	2635	0,0888	3457872,32

Après avoir calculé les frais d'exploitations et ceux d'investissements nous allons faire la somme de ces frais pour calculer le bilan total des coûts.

Tableau IV-5 : Le bilan des coûts du tronçon Forage – Station de reprise1

Diamètre (mm)	Famort (DA)	Fexploi (DA)	Bilan (DA)
90	188 964,03	22 822 145,6	23 011 109,60
110	279 812,21	9 314 614,19	9 594 426,40
125	354 667,31	5 785 069,21	6 139 736,52

160	576 780,42	3 063 451,2	3 640 231,62
200	902 788,88	2 347 904,57	3 250 693,45
250	1404337,479	2121856,569	3 526194,05
315	2145672,3	2050034,396	4 195706,70
400	3457872,324	2027899,426	5 485771,75

Figure IV-1 : Bilan des frais d'amortissement et de l'exploitation (Forage – Station de reprise1)

D'après les résultats, on constate que le diamètre le plus économique et le **200 mm** (PEHD DN200mm PN20) avec une vitesse acceptable de **1,58 m/s** et une Hmt de **191,89 m.**

IV.4.3.2 Dimensionnement du tronçon station de reprise 1 –station de reprise 2 Données :

- Débit : $0,03315 \text{ m}^3/\text{s}$.

- Longueur : 1 350 m.

- Hg = 159 m.

Tableau IV-6 : Calcul des pertes de charge et de la Hmt du tronçon Station de reprise1 – Station de reprise2.

Diamètre intérieur en (mm)	Débit (m³/s)	V (m/s)	λ	L(m)	$\Delta \mathbf{H}_{\mathrm{T}}(\mathbf{m})$	Hg(m)	HMT(m)
69,8	0,03315	8,64	0,0131	1350	1063,64	159	1222,64
85,4	0,03315	5,77	0,0144	1350	428,33	159	587,33
97	0,03315	4,47	0,0140	1350	220,73	159	379,73
124,2	0,03315	2,73	0,0134	1350	61,02	159	220,02
155,2	0,03315	1,75	0,0128	1350	19,17	159	178,17
194,2	0,03315	1,12	0,0122	1350	5,99	159	164,99
244,6	0,03315	0,70	0,0117	1350	1,81	159	160,81

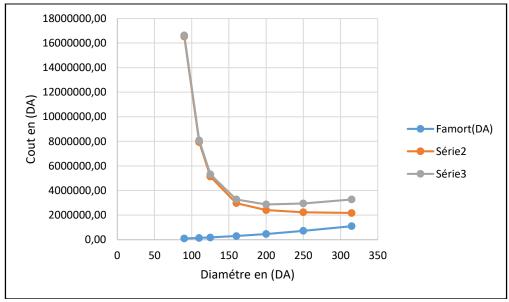
Les frais d'exploitation correspondant aux différents diamètres sont présentés dans le tableau suivant :

Tableau IV-7 : Les frais d'exploitation du tronçon Station de reprise1 – Station de reprise2

Diamètre (mm)	P (K Watt)	E (KWh)	F exploi (DA)
90	484,88	3 539 644,45	16 530 139,6
110	232,93	1 700 358,73	7 940 675,253
125	150,60	1 099 344,24	5 133 937,62
160	87,26	636 987,33	2 974 730,81
200	70,66	515 816,99	2 408 865,32
250	65,43	477 647,15	2 230 612,17
315	63,77	465 552,99	2 174 132,47

Les frais d'amortissement correspondant aux différents diamètres sont présentés dans le tableau suivant :

Tableau IV-8: Les frais d'amortissement du tronçon Station de reprise 1 – Station de reprise 2


Diamètre (mm)	Prix de ml (DA)	L (m)	L'amortissement	F amot (DA)
90	807,58	1350	0,0888	96 842,60
110	1 195,84	1350	0,0888	143 401,59
125	1 515,75	1350	0,0888	181 764,25
160	2465	1350	0,0888	295 595,49

200	3 858,27	1350	0,0888	462 672,30
250	6 001,75	1350	0,0888	719 712,07
315	9170,01	1350	0,0888	1 099 640,41

Après avoir calculé les frais d'exploitations et ceux d'amortissement nous allons calculer le bilan total :

Tableau IV-9 : Le bilan des coûts du tronçon Station de reprise1 – Station de reprise2

Diamètre (mm)	Famort (DA)	Fexploi (DA)	Bilan (DA)
90	96 842,60	16 530 139,6	16 626 982,20
110	143 401,59	7 940 675,253	8 084 076,84
125	181 764,25	5 133 937,619	5 315 701,865
160	295 595,49	2 974 730,809	3 270 326,30
200	462 672,30	2 408 865,321	2 871 537,62
250	719 712,07	2 230 612,171	2 950 324,24
315	1 099 640,41	2 174 132,473	39 118 949,06

Figure IV-2 : Bilan des frais d'amortissement et de l'exploitation (Station de reprise1 – Station de reprise2)

D'après les résultats, on constate que le diamètre le plus économique et le 200 mm (PEHD DN200mm PN20) avec une vitesse acceptable de 1,75 m/s et une Hmt de 178,17 m.

IV.4.3.3 Dimensionnement du tronçon station de reprise 2 –réservoir Ait Ahmed Données :

Débit : 0,0144 m³/s.
 Longueur : 2 332 m.

- Hg = 154 m.

Tableau IV-10 : Calcul des pertes de charge et de la Hmt du tronçon Station de reprise 2 – Réservoir Ait Ahmed

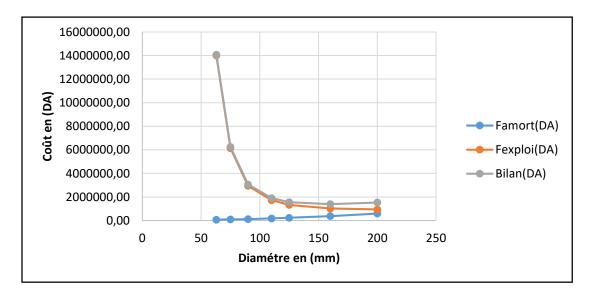
Diamètre intérieur en (mm)	Débit (m3/s)	V (m/s)	λ	L(m)	ΔHT(m)	Hg(m)	HMT(m)
48,8	0,0144	7,68	0,0140	2 332	2229,58	154	2 383,58
58,2	0,0144	5,40	0,0135	2 332	891,79	154	1045,79
69,8	0,0144	3,75	0,0131	2 332	346,69	154	500,69
85,4	0,0144	2,51	0,0144	2 332	139,61	154	293,61
97	0,0144	1,94	0,0140	2 332	71,95	154	225,95
124,2	0,0144	1,19	0,0134	2 332	19,89	154	173,89
155,2	0,0144	0,76	0,0128	2 332	6,25	154	160,25

Les frais d'exploitation correspondant aux différents diamètres sont présentés dans le tableau suivant :

Tableau IV-11 : Les frais d'exploitation du tronçon Station de reprise 2 – Réservoir Ait Ahmed.

Diamètre (mm)	P (K Watt)	E (KWh)	F exploi (DA)
63	410,63	2 997 577,15	13 998 685,31
75	180,16	1 315 177,91	6 141 880,839
90	86,26	629 670,29	2 940 560,274
110	50,58	369 246,38	1 724 380,61
125	38,92	284 148,92	1 326 975,48
160	29,96	218 683,95	1 021 254,04
200	27,61	201 527,48	941 133,31

Les frais d'amortissement correspondant aux différents diamètres sont présentés dans le tableau suivant :


Tableau IV-12 : Les frais d'amortissement du tronçon Station de reprise 2 – Réservoir Ait Ahmed

Diamètre (mm)	Prix de ml (DA)	L(m)	L'amortissement	F amot (DA)
63	342,92	2 332	0,0888	71 034,3605
75	481,72	2 332	0,0888	99 786,1662
90	581,46	2 332	0,0888	120 446,866
110	858,73	2 332	0,0888	177 882,119
125	1 111,77	2 332	0,0888	230 298,236
160	1 817,05	2 332	0,0888	376 393,866
200	2 853,44	2 332	0,0888	591 077,469

Après avoir calculé les frais d'exploitations et ceux d'amortissement nous allons calculer le bilan total :

Tableau IV-13: Le bilan des coûts du tronçon Station de reprise 2 – Réservoir Ait Ahmed

Diamètre (mm)	Famort (DA)	Fexploi (DA)	Bilan (DA)
63	71 034,36	13 998 685,31	14 069 719,67
75	99 786,17	6 141 880,839	6 241 667,01
90	120 446,87	2 940 560,274	3 061 007,14
110	177 882,12	1 724 380,61	1 902 262,73
125	230 298,24	1 326 975,476	1 557 273,71
160	376 393,87	1 021 254,036	1 397 647,90
200	591 077,47	941 133,31	1 532 210,78

Figure IV-3 : Bilan des frais d'amortissement et de l'exploitation (Station de reprise 2 – Réservoir Ait Ahmed)

D'après les résultats, on constate que le diamètre le plus économique est de 160 mm (PEHD DN160mm PN20) avec une vitesse acceptable de 1,19 m/s et une Hmt de 173,89 m.

IV.4.3.4 Dimensionnement du tronçon station de reprise 2 – réservoir Ivarden Données :

- Débit : $0,01275 \text{ m}^3/\text{s}$.

- Longueur : 2 500 m.

- Hg = 76 m.

Tableau IV-14 : Calcul des pertes de charge et de la Hmt du tronçon Station de Reprise 2 – Réservoir Ivarden

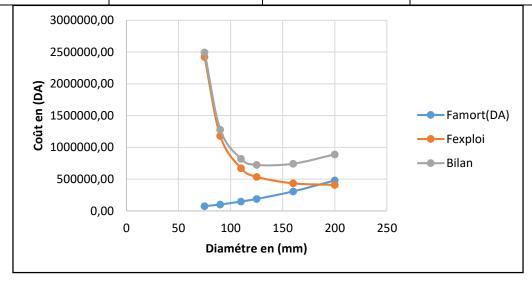
Diamètre intérieur en (mm)	Débit (m³/s)	V (m/s)	λ	L(m)	ΔHT(m)	Hg(m)	HMT(m)
55,4	0,01275	5,28	0,0137	2500	968,57	76	1044,57
66	0,01275	3,72	0,0132	2500	389,76	76	465,76
79,2	0,01275	2,58	0,0127	2500	151,14	76	227,14
96,8	0,01275	1,73	0,0123	2500	53,32	76	129,32
110,2	0,01275	1,33	0,0120	2500	27,21	76	103,21
141	0,01275	0,81	0,0114	2500	7,58	76	83,58
176,2	0,01275	0,52	0,0125	2500	2,72	76	78,72

Les frais d'exploitation correspondant aux différents diamètres sont présentés dans le tableau suivant :

Tableau IV-15: Les frais d'exploitation du tronçon Station de reprise 2 – Réservoir Ivarden

Diamètre (mm)	P (K Watt)	E (KWh)	F exploi (DA)
63	159,33	1 163 122,06	5 431 780,02
75	71,04	518 626,34	2 421 985,03
90	34,65	252 922,34	1 181 147,31
110	19,73	143 995,95	672 461,09
125	15,74	114 921,41	536 682,99
160	12,75	93 064,62	434 611,77
200	12,01	87 650,71	409 328,80

Les frais d'amortissement correspondant aux différents diamètres sont présentés dans le tableau suivant :


Tableau IV-16 : Les frais d'amortissement du tronçon Station de reprise 2 – Réservoir Ivarden

Diamètre (mm)	Prix de ml (DA)	L(m)	L'amortissement	F amot (DA)
63	238,48	2500	0,0888	52 958,92
75	338,61	2500	0,0888	75 194,64
90	446,8	2500	0,0888	99 220,24
110	665,64	2500	0,0888	147 817,73
125	843,99	2500	0,0888	187 423,66
160	1382	2500	0,0888	306 898,78
200	2 162,92	2500	0,0888	480 316,58

Après avoir calculé les frais d'exploitations et ceux d'amortissement nous allons calculer le bilan total :

Tableau IV-17 : Le bilan des coûts du tronçon Station de reprise 2 – Réservoir Ivarden

Diamètre (mm)	Famort (DA)	Fexploi (DA)	Bilan (DA)
63	52 958,92	5 431 780,021	5 484 738,937
75	75 194,64	2 421 985,026	2 497 179,67
90	99 220,24	1 181 147,31	1 280 367,55
110	147 817,73	672 461,09	820 278,82
125	187 423,66	536 682,99	724 106,65
160	306 898,78	434 611,77	741 510,56
200	480 316,58	409 328,80	889 645,38

Figure IV-4 : Bilan des frais d'amortissement et de l'exploitation (Station de reprise 2 – Réservoir Ivarden).

D'après les résultats, on constate que le diamètre le plus économique et le 125 mm (PEHD DN125mm PN10) avec une vitesse acceptable de 1,33 m/s et une Hmt de 103,21 m.

IV.4.3.5 Dimensionnement du tronçon Station de reprise 2 – Réservoir EL Vir Données :

- Débit : $0,006 \text{ m}^3/\text{s}$.

- Longueur : 4 318 m.

- Hg = 88 m.

Tableau IV-18 : Calcul des pertes de charge et de la Hmt du tronçon Station de reprise 2 – Réservoir EL Vir

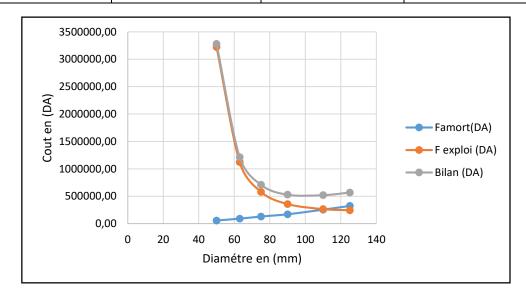
Diamètre intérieur en (mm)	Débit (m3/s)	V (m/s)	λ	L(m)	ΔHT(m)	Hg (m)	HMT(m)
35,2	0,006	6,15	0,0150	4 318	3 927,65	88	4 015,65
44	0,006	3,94	0,0143	4 318	1 228,57	88	1 316,57
55,4	0,006	2,48	0,0137	4 318	370,47	88	458,47
66	0,006	1,75	0,0132	4 318	149,08	88	237,08
79,2	0,006	1,21	0,0127	4 318	57,81	88	145,81
96,8	0,006	0,81	0,0123	4 318	20,39	88	108,39
110,2	0,006	0,63	0,0137	4 318	11,91	88	99,91

Les frais d'exploitation correspondant aux différents diamètres sont présentés dans le tableau suivant :

Tableau IV-19: Les frais d'exploitation du tronçon Station de reprise 2 – Réservoir EL Vir

Diamètre (mm)	P (K Watt)	E (KWh)	F exploi (DA)
40	288,25	2 104 188,74	9 826 561,41
50	94,50	689 877,93	3 221 729,94
63	32,91	240 238,16	1 121 912,21
75	17,02	124 230,72	580 157,45
90	10,47	76 404,73	356 810,09
110	7,78	56 798,28	265 247,98
125	7,17	52 352,00	244 483,86

Les frais d'amortissement correspondant aux différents diamètres sont présentés dans le tableau suivant :


Tableau IV-20: Les frais d'amortissement du tronçon Station de reprise 2 – Réservoir EL Vir

Diamètre (mm)	Prix de ml (DA)	L(m)	L'amortissement	F amot (DA)
40	97,69	4 318	0,0888	37 469,6694
50	150,53	4 318	0,0888	57 736,81374
63	238,48	4 318	0,0888	91 470,63934
75	338,61	4 318	0,0888	129 876,1875
90	446,8	4 318	0,0888	171 373,2039
110	665,64	4 318	0,0888	255 310,7865
125	843,99	4 318	0,0888	323 718,152

Après avoir calculé les frais d'exploitations et ceux d'amortissement nous allons calculer le bilan total :

Tableau IV-21 : Le bilan des coûts du tronçon Station de reprise 2 – réservoir EL Vir

Diamètre (mm)	Famort (DA)	Fexploi (DA)	Bilan (DA)
50	57 736,81	3 221 729,935	3 279 466,75
63	91 470,64	1 121 912,21	1 213 382,85
75	129 876,19	580 157,4475	710 033,63
90	171 373,20	356 810,09	528 183,30
110	255 310,79	265 247,98	520 558,77
125	323 718,15	244 483,86	568 202,01

Figure IV-5 : Bilan des frais d'amortissement et de l'exploitation (Station de reprise 2 – Réservoir EL vir)

D'après les résultats, on constate que le diamètre le plus économique et le 110 mm (PEHD DN110 mm PN10) avec une vitesse acceptable de 0.81m/s et une Hmt de 108,39 m.

IV.4.4 Dimensionnement des conduites de la variante 2

IV.4.4.1 Dimensionnement du tronçon Station de reprise 2 – Réservoir EL Vir

Données:

Débit : 0,01875 m3/s.Longueur : 4 299 m.

- Hg = 88 m.

Tableau IV-22 : Calcul des pertes de charge et de la Hmt du tronçon Station de reprise 2 – Réservoir EL Vir

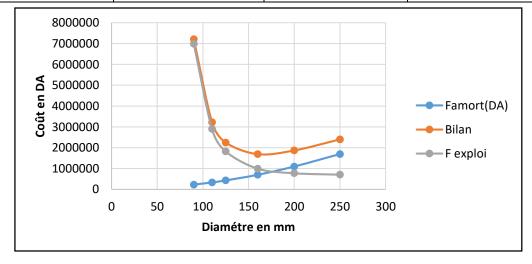
Diamètre intérieur en (mm)	Débit (m3/s)	V (m/s)	λ	L(m)	ΔHT(m)	Hg(m)	HMT(m)
73,6	0,01875	4,40	0,013	4316	825,95	88	913,95
90	0,01875	2,94	0,012	4316	290,55	88	378,55
102,2	0,01875	2,28	0,012	4316	150,19	88	238,19
130,8	0,01875	1,39	0,012	4316	41,76	88	129,76
163,6	0,01875	0,89	0,011	4316	13,10	88	101,10
204,6	0,01875	0,57	0,011	4316	4,11	88	92,11

Les frais d'exploitation correspondant aux différents diamètres sont présentés dans le tableau suivant :

Tableau IV-23: Les frais d'exploitation du tronçon Station de reprise 2 – Réservoir EL Vir

Diamètre (mm)	P (K Watt)	E (KWh)	F exploi(DA)
90	205,011	1 496 581,746	6 989 036,752
110	84,913	619 864,703	2 894 768,163
125	53,430	390 039,232	1 821 483,214
160	29,108	212 487,189	992 315,175
200	22,677	165 542,888	773 085,286
250	20,662	150 832,939	704 389,824

Les frais d'amortissement correspondant aux différents diamètres sont présentés dans le tableau suivant :


Tableau IV-24 : Les frais d'amortissement du tronçon Station de reprise 2 – Réservoir EL Vir

Diamètre (mm)	Prix de ml (DA)	L(m) L'amortissement		F amot (DA)
90	581,46	4 316	0,0888	222 919,6711
110	858,73	4 316	0,0888	329 219,2226
125	1 111,77	4 316	0,0888	426 229,496
160	1 817,05	4 316	0,0888	696 619,1799
200	2 853,44	4 316	0,0888	1 093 949,552
250	4 414,76	4 316	0,0888	1 692 527,168

Après avoir calculé les frais d'exploitations et ceux d'amortissement nous allons calculer le bilan total :

Tableau IV-25: Le bilan des coûts du tronçon Station de reprise 2 – Réservoir EL Vir

Diamètre (mm)	Famort (DA)	Fexploi (DA)	Bilan (DA)
90	222 919,6711	6 989 036,752	7 211 956,423
110	329 219,2226	2 894 768,163	3 223 987,385
125	426 229,496	1 821 483,214	2 247 712,71
160	696 619,1799	992 315,1748	1 688 934,355
200	1 093 949,552	773 085,2864	1 867 034,838
250	1 692 527,168	704 389,8241	2 396 916,992

Figure IV-6 : Bilan des frais d'amortissement et de l'exploitation (Station de reprise 2 – Réservoir EL vir)

D'après les résultats, on constate que le diamètre le plus économique et le 160 mm (PEHD DN160mm PN16) avec une vitesse acceptable de 1.39 m/s et une Hmt de 129.76 m.

IV.4.4.2 Dimensionnement du tronçon Réservoir EL Vir - Réservoir Ivardene

On calcule le diamètre avantageux de la conduite gravitaire pour le tronçon réservoir El Vir –Réservoir Ivardene.

Données:

- Débit : $0.01275 \text{ m}^3/\text{s}$.

- Longueur : 2 514 m.

- Hg = 76 m.

On a $L_g = 2823 \text{ m}$ $L_{et} = 3105, 3 \text{ m}$.

Nous optons pour des conduites en PEHD en prenant : m = 4,772, K' = 0,001052, $\beta = 2$.

Comme le diamètre de l'adduction est inconnu, donc par hypothèse nous supposons que la charge disponible est égale à la perte de charge engendrée dans la conduite.

$$D_{av} = \sqrt[4.772]{\frac{0,001052 * 3105,3 * 0,01275^2}{12}}$$

$$D_{av} = 122,34 \text{ mm}$$

Le diamètre le plus avantageux calculé est de 122.34mm. Il est compris entre les diamètres normalisés 110 mm et 125 mm, donc nous allons adopter une adduction à deux conduites en série composée de Ø110 et Ø125.

La perte de charge engendrée s'écrit :

$$\Delta \mathbf{H}_{\mathrm{T}} = \mathbf{K}' * \mathbf{Q}^{\beta} * \left(\frac{\mathbf{L}_{1}}{\mathbf{D}_{1}^{\mathrm{m}}} + \frac{\mathbf{L}_{2}}{\mathbf{D}_{2}^{\mathrm{m}}}\right)$$
 (IV. 17)

$$\Delta H_T = 0.001052*0.01275^2*\left(\frac{x}{0.11^{4.772}} + \frac{L - x}{0.125^{4.772}}\right)$$

Avec:

L = 3105,3 m.

 $\Delta H_T = 12 \text{ m}.$

Donc nous trouvons x = 398,62 m.

Nous aurons un diamètre 110 mm sur une longueur de 400 m suivi d'un diamètre 125 mm sur une longueur de 2 705 m.

Nous déterminons la vitesse d'écoulement dans la conduite gravitaire moyennant l'équation de continuité :

$$Q = V * S \rightarrow Q = \frac{\pi * D^2}{4}$$

Ainsi:

$$V = \frac{4*Q}{\pi*D^2}$$
 (IV.18)

Avec:

S: section de la canalisation (m²).

V : vitesse d'écoulement (m/s).

D: diamètre nominal de la conduite (m).

Donc, le tronçon (Réservoir EL-Vir – Réservoir Ivarden) aura un diamètre normalisé DN = 125 mm sur une longueur de 2 705 m et une vitesse de 1,04 m/s, suivie d'un diamètre normalisé DN = 110 mm sur une longueur de 400 m et une vitesse de 1,34 m/s.

• Calcul des frais d'investissement

Tableau IV-26: Frais d'investissement du tronçon Réservoir EL Vir- Réservoir Ivardene.

Diamètre (mm)	Prix de ml (DA)	L (m)	Frais d'investissement (DA)
110	400	400	160 000
125	2 705	2 700	7 303 500
		Total	7 463 500

IV.4.5 Choix de variante

Calcul des frais d'investissement de la variante 1 et la variante 2 :

Tableau IV-27: Tableau comparative des deux variantes

Variante1	Montant (DA)	Variante 2	Montant (DA)
Forage - S.R.1 Projetée	rage - S.R.1 Projetée 3 250 693,45 Forage - S.R.1 Projetée		3 250 693,45
S.R.1 Projetée - S.R.2 Projetée	2 871 537,62	S.R.1 Projetée - S.R.2 Projetée	2 871 537,62
S.R.2 - R. Ait Ahmed	S R 2- R 200 Ait		1 531 867,88
S.R.2 - R. El vir	520 558,768	S.R.2 - R El vir	1 688 934,35
S.R.2 - R. Ivarden	724 106,649	R. El Vir - R Ivarden	7 463 500,00
Prix Total (DA)	8 898 764,37	Prix total (DA)	16 806 533,3

On opte pour la variante N°1 qui est de longueur totale de 13 135 m. C'est la variante techniquement la plus économique.

Conclusion

L'étude faite dans ce chapitre a permis de choisir la variante d'adduction la plus avantageuse du point de vue économique et technique, ainsi que le calcul des diamètres adéquats pour chaque tronçonà savoir :

- Un diamètre de Ø 200 pour le tronçon de refoulement entre les forages et la station de reprise 1.
- Un diamètre de Ø 200 pour le tronçon de refoulement entre la station de reprise1 et la station de reprise 2.
- Un diamètre de Ø 160 pour le tronçon de refoulement entre la station de reprise2 et le réservoir Ait Ahmed.
- Un diamètre de Ø 110 pour le tronçon de refoulement entre la station de reprise2 et le réservoir El Vir.
- Un diamètre de Ø 125 pour le tronçon de refoulement entre la station de reprise2 et le réservoir Ivarden.

On a également calculé les pertes de charges et les Hmt pour chaque tronçon, ce qui constituera une base de calcul pour le chapitre consacré aux pompes.

Chapitre V : Etude et choix des pompes

Chapitre V : Etude et choix des pompes

Chapitre VI : Protection contre le coup de bélier

Chapitre VI Protection contre le coup de bélier

Introduction

Le coup de bélier est un phénomène de choc résultant d'un écoulement non permanent, et caractérisé par un changement brusque du régime d'écoulement dans la conduite.

Ce choc violent se traduit souvent par un bruit caractéristique, et peut entraîner la rupture de la conduite dans les grosses installations, du fait de la quantité d'eau en mouvement. Ce problème peut être résolu avec la mise en place d'un anti-bélier.

VI.1 Protection contre le coup de bélier

VI.1.1 Définition

Le coup de bélier est un phénomène oscillatoire transitoire qui se manifeste dans les conduites en charge, soit gravitaire soit en refoulement.

C'est un écoulement non permanent du liquide accompagné de variations pratiquement sensibles de la pression qui peuvent devenir dangereuses pour la tuyauterie. Ces variations résultent d'une perturbation des conditions permanentes d'écoulement.

VI.1.2 Les causes du coup de bélier [1]

Les causes les plus fréquentes qui provoquent ce phénomène sont :

- L'ouverture ou fermeture instantanée ou trop rapide d'une vanne de sectionnement ou d'un robinet d'obturation placé en bout d'une conduite d'adduction.
- La mise en marche ou l'arrêt brutal d'un groupe électropompes.
- Le remplissage ou la vidange d'un système d'AEP.
- La disparition de l'alimentation électrique dans une station de pompage est cependant la cause la plus répandue du coup de bélier.
- Fermeture instantanée ou trop rapide d'une vanne de sectionnement ou d'un robinet d'obturation placé en bout d'une conduite d'adduction.

VI.1.3 Les conséquences de ce phénomène

- Eclatement de la conduite du à la surpression.
- Ecrasement du à la dépression.
- Usure rapide des matériels.
- Détérioration des joints par suite fuites aux raccords.

VI.1.4 Moyens de protection contre le coup de bélier [1]

Dans une installation où le risque de coup de bélier existe, il est nécessaire de définir les protections que l'on va introduire dans le système de façon à minimiser les effets à des valeurs compatible avec la résistance de la conduite : limitation de surpression et/ou de la dépression, on utilise pour cela un appareil appelé anti-bélier.

Il existe différents moyens de protection des installations contre le coup de bélier

· Réservoirs d'air

C'est un réservoir métallique disposé à la station de pompage contenant de l'eau et de l'air sous pression, la pression dans l'air en marche normale équilibre la pression dans la conduite en cas de coup de bélier. Ce réservoir va alimenter la conduite en eau lors de la dépression (par suite la dilatation du volume d'air) et récupérer l'eau à partir de la conduite lors de la surpression (par suite de la compression du volume d'air), ainsi il permet de limiter aussi bien la dépression que la surpression. A cause de sa simplicité et son efficacité, le réservoir d'air est le moyen de protection contre les coups de bélier le plus utilisé en alimentation en eau.

Volant d'inertie

Calé sur l'arbre du groupe, il constitue un moyen assurant l'alimentation de veine liquide, malgré l'arrêt du moteur actionnant la pompe grâce à l'énergie qu'il accumule pendant la marche normale. Le volant la restitue au moment de la disjonction et permet ainsi d'allonger le temps d'arrêt de l'ensemble, donc de diminuer l'intensité du coup de bélier. Au démarrage, le groupe électropompe, avec le volant d'inertie, consomme plus d'énergie.

• Soupape de décharge

C'est un appareil avec un ressort à boudin qui est obturé par compression, en marche normale. On la place dans les endroits où la surpression est maximale. Dans le cas où une surpression survienne, le ressort est comprimé par l'eau qui est à l'intérieur de la conduite car sa pression dépasse la pression admissible et l'eau sur pressée sort de la conduite. Il y a lieu de prévoir un moyen pour l'évacuation vers l'extérieur de l'eau ainsi libérée.

Les ventouses

Dans la majorité des cas, les ventouses sont à double effet, elles fonctionnent comme des purgeurs automatiques : lorsqu'une poche d'air arrive, elles s'ouvrent pour l'extraire à l'extérieur, et lorsqu'une dépression se produit, elles s'ouvrent et permettent l'entrée d'air extérieur, cet air reste dans l'installation, mais le collapse de la tuyauterie a été évité.

• Cheminées d'équilibre

C'est un réservoir à l'air libre, qui stock une certaine quantité d'eau et la restitue à la conduite en cas d'arrêt du système. Une cheminée d'équilibre est généralement aménagée en dérivation à la jonction d'une galerie d'amenée en charge et d'une conduite forcée, dans le but de réduire la valeur des surpressions produites par le coup de bélier, elle est aussi utilisée sur le tracé de refoulement qui comporte des points hauts où peut survenir une cavitation en régime transitoire et qui ne sont pas facilement accessibles.

Pour notre adduction, nous proposons comme moyen de protection, le réservoir d'air car :

- Il intervient dans la protection contre la surpression et la dépression.
- Il est utilisé pour les moyennes et grandes hauteurs de refoulement.
- Il est simple à installer.
- Bon fonctionnement.
- Bonne sécurité.

VI.1.5 Calcul des réservoirs d'air [2]

Le calcul du réservoir d'air permet de déterminer les valeurs de la surpression et de la dépression maximales dans les conduites de refoulement et le volume du réservoir d'air. Comme méthode de calcul, on distingue : la méthode de VIBERT.

• Méthode de VIBERT

Nous calculons la célérité d'onde à l'aide de la formule améliorée par Mr. SALAH, B pour les conduites enterrées :

$$C = \frac{\sqrt{\frac{K}{\rho}}}{\sqrt{1 + \frac{K*2*a*(1-v_m^2)(1-v_s)}{(1-v_m^2)*a*E_s + E_m*e_m*(1-v_s)}}}$$
(VI. 1)

C : célérité d'onde en (m/s).

K : Coefficient d'élasticité de l'eau, $K = 2.07*10^9$ Pas.

 ρ : Masse volumique de l'eau, $\rho = 1000 \text{ kg} / \text{m}3$.

 E_m : module de Young du matériau de la conduite en PEHD, $E_{m,pehd} = 3*10^9 \, Pas$.

 E_s : module de Young du sol; $E_s = 2*10^8 Pas$.

 v_m : Coefficient de poisson du matériau. $v_{m,pehd} = 0.46$.

 v_s : Coefficient de poisson du sol entourant la conduite. v_s =0.33.

 e_m : Epaisseur de la conduite (m).

a : rayon intérieur de la conduite (m).

- La charge tenant compte du coup de bélier :

$$\mathbf{Z} = \mathbf{H_g} + \frac{\mathbf{C} \cdot \mathbf{V_0}}{\mathbf{g}} \quad (VI.2)$$

 V_0 : Vitesse moyenne de refoulement (m/s).

 H_q : Hauteur géométrique (m).

g: L'accélération de la pesanteur, (g=9.81m/s²).

- La charge statique absolue :

$$Z_0 = H_g + 10 \tag{VI.3}$$

- La charge maximale absolue :

$$\mathbf{Z}_{max} = \mathbf{Z}_0 + \frac{\mathbf{C} \cdot \mathbf{V}_0}{\mathbf{g}} \tag{VI.4}$$

$$\begin{vmatrix} \frac{Z_{max}}{Z_0} \\ h_0 = \frac{V_0^2}{2*g} \Rightarrow \frac{h_0}{Z_0} \end{vmatrix} \Rightarrow \text{Abaque de VIBERT} \Rightarrow \frac{U_0}{LS}, \frac{Z_{min}}{Z_0}$$

$$U_0 * Z_0 = U_{\text{max}} * Z_{\text{min}} \Rightarrow U_{\text{max}} = \frac{U_0}{\frac{Z_{\text{min}}}{Z_0}}$$

U_{max}: volume du réservoir d'air.

Application:

Les caractéristiques de l'adduction de refoulement sont représentées dans le tableau suivant :

Tableau VI-1: Les caractéristiques des conduites de refoulement

Les conduites	Type de matériau	Dint (mm)	ep (mm)	S (m ²)	V (m/s)	L (m)	Hg (m)
SR1-SR2	PEHD	155,2	22,4	0,0314	1,75	1350	159
SR1-Réservoir Ait- Ahmed	PEHD	124,2	17,9	0,02	1,19	2332	154
SP2-Réservoir ivarden	PEHD	110,2	7,4	0,0122	1,33	2500	76
SP2- Réservoir El vir	PEHD	96,8	6,6	0,0095	0,81	4318	88

Les résultats de calcul de la célérité d'onde sont regroupés dans le tableau suivant :

Tableau VI-2 : Calcul de célérité d'onde des conduites de refoulent.

Les conduites	K (Pa)	ρ (kg/m³	a (m)	v_{m}	v_s	E _s (Pa)	E _m (Pa)	e _m (m)	C (m/s)
SR1-SR2	2.07*109	1000	0,0776	0,45	0,33	2*10 ⁸	3*10 ⁹	0,0224	216,38
SR1-Ait Ahmed	2.07*109	1000	0,0621	0,45	0,33	2*108	3*10 ⁹	0,0179	216,22
SP2-ivarden	2.07*109	1000	0,0551	0,45	0,33	2*108	3*10 ⁹	0,0074	155,20
SP2-el vir	2.07*109	1000	0,0486	0,45	0,33	2*108	3*10 ⁹	0,0066	156,41

Les résultats de calcul de volume des réservoirs d'air sont regroupés dans le tableau suivant :

Tableau VI-3 : Calcul du volume de réservoir d'air

Conduites	Z ₀ (m)	h ₀ (m)	h_0/Z_0	\mathbf{Z}_{max}	U ₀ /(LS)	$U_0(m^3)$	U _{max} (m ³)	$V_{normalis\'e} \ (m^3)$
SR1-SR2	169	0,156	9.2*10-4	233,752	0,02	0,848	1,146	2
SR1-Ait Ahmed	164	0,072	4.4*10-4	217,237	0,013	0,606	0,772	1
SP2-Ivarden	86	0,090	1.05*10 ⁻³	120,543	0,021	0,641	0,877	2
SP2-El Vir	98	0,033	3.4*10-4	140,226	0,006	0,246	0,333	1

Vu les volumes des réservoirs d'air, ces derniers seront installés à l'extérieur du bâtiment de la station de pompage afin de réduire l'encombrement à l'intérieur de la salle des machines et de gagner sur son génie civil.

Conclusion

À travers ce chapitre, nous avons cité les différents moyens de protection contre le phénomène du coup de bélier ainsi que les méthodes de calcul des réservoirs d'air, et nous avons déterminé les volumes de ces réservoirs d'air qui doivent être installés juste à la sortie de chaque station de pompage.

Chapitre VII : Pose de canalisation

et accessoires

Chapitre VII Pose de canalisation et accessoires

Introduction

La pose de canalisation joue un rôle important dans leur stabilisation, et leur protection, et par conséquent dans le bon fonctionnement du système. Dans ce contexte, et dans le but d'obtenir une meilleure coordination des travaux sur terrain, nous allons déterminer les étapes nécessaires pour une bonne pose de canalisation.

VII.1 Pose de canalisation

Les canalisations sont généralement posées en tranchée, à l'exception de certains cas où elles sont posées sur le sol à condition qu'elles soient rigoureusement entretenues et protégées.

VII.1.1 Différents types de pose des conduites

Le choix du type de pose des conduites dépend essentiellement de la topographie du terrain, de la disposition des lieux et des différents obstacles qui peuvent être rencontrés.

VII.1.1.1 Pose en terre

Pour la disposition des tuyaux dans les meilleures conditions, la pose en terre s'effectue dans une tranchée de largeur suffisante avec établissement des niches pour faciliter le travail lors de jointure.

Cette opération s'effectue par tronçon successif, en posant des tuyaux en files bien alignés et bien nivelés, tout en commençant par les points hauts. L'enfouissement des canalisations a pour but de les protéger contre les dégradations extérieur, de conserver la fraîcheur de l'eau et de la mettre à l'abri du gel.

VII.1.1.2 Pose en mauvais terrains

Si la conduite devra être posée en mauvais terrains (terrains marécageux), il pourra être nécessaire pour éviter les affaissements (tassement) qui rompraient la conduite où désassembleraient les joints, de couler au fond de la tranchée une dalle en béton armé.

VII.1.1.3 Pose en galerie

La pose des conduites en galerie présente double avantages de faciliter leur surveillance et d'éviter les tassements de terrain en cas de fuite, ainsi l'ouverture de chaussée à l'occasion des réparations ou de remplacement. Cette pose est courante dans les villes ou agglomérations disposant déjà de galeries spéciales souterraines (égouts, caniveaux ou galeries spéciales visitables).

Les conduites sont posées sur les consoles en fonte d'aluminium scellées dans les pieds droits pour les petits diamètres, et sur les tasseaux pour les grands diamètres dans les galeries sèches spéciales.

VII.1.1.4 Pose en pente

Au-delà d'une certaine pente, les frottements entre canalisations et les terres sont insuffisants pour maintenir la conduite, il convient alors d'équilibrer la composante axiale de gravité par l'utilisation de butées d'encrage ou de joints verrouillés, les deux techniques pouvant être associées.

VII.1.1.5 Pose des conduites en traversées des routes et voies ferrées

Pour qu'il n'y plus de transmission des vibrations dues aux charges et pour amortir les chocs qui peuvent nuire à la conduite et causant des ruptures, par suite des infiltrations nuisibles, on prévoit les solutions suivantes :

- Couler de béton noyant la plus grande partie du tuyau.
- Placer une dalle de béton armé sur des piédroits en béton.
- Coller une dalle en béton armé sur un lit de sable recouvrant entièrement le tuyau (enrobage).
- Utiliser les gaines, qui sont des buses de diamètre supérieur dans lesquelles les conduites sont introduites.

VII.1.1.6 Traversée d'une rivière

La pose de canalisation à la traversée d'une rivière demande certains travaux confortatifs en fonction de l'état de la traversée et de l'importance de l'adduction. L'existence d'un pont-route servira également de support pour la canalisation, ou celle-ci sera accrochée au tablier.

Dans le cas où le pont-route n'existe pas la canalisation pourra suivre le lit de rivière, posée sur des ouvrages spéciaux (Tasseaux par exemple) et couverte de tout- venant pour être protégée contre les chocs.

VII.1.2 Différentes étapes de mise en place des canalisations

VII.1.2.1 Réalisation des fouilles

a. Largeur de la tranchée

La largeur de la tranchée doit être au minimum 0.60 m et cela, pour faciliter les travaux. Elle sera calculée en fonction du diamètre de la conduite, en laissant 0.30 m d'espace de chaque côté de celle-ci.

Elle est donnée par la formule suivante :

Si DN ≤ 400 : **B** = **D** + (2 × 0,30) (m) (VII.1)

Si DN > 400 : $\mathbf{B} = \mathbf{D} + (2 \times 0.50)$ (m) .(VII.2)

Avec:

B: largeur de la tranchée (m).

D : diamètre de la conduite (m).

b. La profondeur de la tranchée

Elle est déterminée de façon qu'une distance suffisante soit ménagée au-dessus de la génératrice supérieure du tuyau pour assurer la protection de la conduite contre les dégâts qui pourraient être causés par le gel, et ceux d'écrasement sous l'effet de charge et de surcharge.

Cette hauteur se justifie par la nécessité de garder la fraîcheur de l'eau pendant les grandes chaleurs, généralement elle varie de 0.8 à 1.20 m.

Le calcul de la profondeur de la tranchée est :

$$H = D + H_1 + H_2(m)$$
 (VII.3)

Avec:

H: la profondeur de la tranchée.

H₁: profondeur du lit de pose.

H₂: distance verticale séparant la génératrice supérieure de la conduite et la surface du sol.

D : diamètre de la conduite (mm).

c. Lit de pose

Le fond de la tranchée doit être recouvert d'un lit de pose de 0,15 à 0,20 m d'épaisseur bien pilonné et bien nivelé suivant les côtes du profil en long.

VII.1.2.2 Préparation de la canalisation

Avant la descente en fouille, les tuyaux sont examinés en vue d'éliminer ceux qui auraient subi des chocs, et de les débarrasser de tous corps étranger. Pour faciliter le nivèlement, ils sont calés sur bois avant l'exécution des joints. Dans le cas des conduites en acier de petits diamètres, la soudure des joints est exécutée au-dessus des fouilles où les tuyaux se trouvent maintenus par les bois disposés au travers de la tranchée.

VII.1.2.3 Epreuve des joints et des canalisations principales

Ce sont des essais à la pression hydraulique qui ont pour objectif de vérifier l'étanchéité des conduites dont la longueur est de 300 à 400 m. La pression d'essai est en

principe égale à la pression à laquelle sera soumise réellement la conduite + 50 %, cette opérations'effectue à l'aide d'une pompe d'épreuve, la durée de l'épreuve est d'au moins 30 mn. La variation de pression doit rester inférieure à 0,2 bars et 0,3 bars pour les conduites de faible pression nominale.

VII.1.2.4 Essai général du réseau

L'essai général du réseau est une étape très importante pour d'adduction dans le but de connaître leur degré d'efficacité, il est procédé à une mise en pression générale du réseau par l'intermédiaire d'un réservoir, les robinets et les vannes de branchement et de raccordement étant fermées. Après 48 heures de mise en pression, les pertes de charge par rapport à la capacité du réseau sont constatées, elle ne doit pas dépasser 2%.

VII.1.2.5 Remblaiement de la tranchée

La mise en place du remblaiement est effectuée manuellement, en occupant soigneusement, par couches successives arrosées et bien tassées avec la terre des déblais expurgés de tous les éléments susceptibles de porter atteinte aux revêtements extérieurs des canalisations, soit avec tous matériaux pulvérulents convenables. Le remblaiement est ainsi poursuivi de la même façon jusqu'à 0,3 m au-dessus de la conduite et il est achevé avec tout venant à l'aide d'engins mécanique.

VII.2 Accessoires

Le long d'une canalisation, divers organes et accessoires sont installés, afin de :

- Assurer un bon écoulement.
- Régulariser les pressions et mesurer les débits.
- Protéger la canalisation.
- Vidanger une conduite.
- Chasser ou faire pénétrer l'air dans une conduite.
- Changer la direction.
- Raccorder deux conduites.
- Changer le diamètre.

VII.2.1 Robinets vannes

Les vannes au niveau de la conduite d'adduction sont indispensables à fin d'isoler les tronçons de la conduite (en particulier pour réparation), nous les plaçons sur la conduite chaque 400m si la longueur de la conduite est très longue.

Nous distinguons les robinets vannes à coin (à opercule) et les vannes papillon.

• Robinets-vanne à opercule

Ce sont des appareils de sectionnement qui doivent être complètement ouverts ou fermés. La vanne est une sorte de lentille épaisse qui s'abaisse ou s'élève verticalement à l'aide d'une vis tournant dans un écran fixé à la vanne.

Les vannes papillon

Il s'agit d'un élément de conduite traversé par un axe déporté entraînant, en rotation, un disque obturateur appelé papillon. Ils peuvent aussi bien servir pour le sectionnement que pour le réglage des débits. Ils sont d'un encombrement réduit, légers, le couple de manœuvre est faible.

Dans notre cas, nous optons pour :

- Des robinets-vanne à opercule à la sortie de chaque pompe, sur chaque conduite d'arrivées et de vidange des réservoirs, sur la conduite d'aspiration de chaque pompe et au maximum chaque 400m de la conduite gravitaire et de refoulement.
- Des vannes papillon sur chaque conduite de départ du réservoir.

VII.2.2 Clapets anti retour

Ils sont destinés à empêcher la circulation en retour. Leur emploi est général dans les stations de pompage où ils sont souvent disposés à la sortie même des pompes, entre celles-ci et les robinets de sectionnement. Dans notre cas, l'installation d'un clapet anti retour se fait à la sortie de chaque pompe.

VII.2.3 Ventouses

Une accumulation d'air peut se faire aux points hauts d'une conduite. La poche d'air provoque des perturbations qu'il s'agit d'éviter : diminution de la section, arrêt complet des débits, diminution de la pression et coups de bélier.

L'évacuation de l'air se fait par l'intermédiaire d'une ventouse qui peut être manuelle ou automatique :

- Une ventouse manuelle est un simple robinet que l'on manœuvre périodiquement.
- Les ventouses automatiques sont des pièces évacuant l'air dès qu'il se forme une poche notable.

Dans notre cas ; les ventouses sont placées au point haut des conduites et après la vanne de sectionnement. Toutes ces ventouses sont disposées dans des regards visitables et leur bon fonctionnement doit être vérifié périodiquement.

VII.2.4 By-pass

Le by pass est utilisé pour les rôles suivants :

- Faciliter la manœuvre de la vanne à fermeture lente.
- Remplir à débit réduit, la conduite avant sa mise en service.
- Relier la conduite d'arrivée à la conduite de départ du réservoir.

Dans notre cas, les by pass sont placés parallèlement aux vannes de sectionnement se trouvant le long de la conduite de refoulement pour remplir les deux premiers rôles, et à l'intérieur de chambre de vannes pour remplir le troisième rôle.

VII.2.5 Vidanges

Ce sont des ouvrages installés au niveau des points les plus bas des tronçons de conduites. Chaque ouvrage de point bas abrite un système de vidange de la conduite. Ce système est composé d'un té monté directement sur la conduite principale sur lequel est montée une vanne fermée pendant le fonctionnement normal de la conduite. Sur la vanne est installé un tuyau de même diamètre qui remonte verticalement jusqu'au niveau du terrain naturel pour permettre l'évacuation de l'eau à l'extérieur de l'ouvrage.

VII.2.6 Organes de mesure

VII.2.6.1 Mesure de débit

Les dispositifs de mesure de débit sont :

- Le diaphragme, Le venturi et La tuyère.

On crée une contraction de la section d'écoulement. Cette contraction entraîne une augmentation de la vitesse d'écoulement au droit de l'appareil se traduisant par une diminution de la pression .La mesure s'effectue avec un capteur de pression différentielle.

VII.2.6.2 Mesure de pression

Les appareils utilisés pour la mesure de pression sont :

• Manomètres à aiguilles

Dans les manomètres à aiguille, le mouvement est transmis à l'aiguille soit par un secteur denté soit par un levier soit par une membrane. L'avantage de cette transmission est la facilité d'étalonnage et son inconvénient réside dans usure rapide de la denture surtout si le manomètre subit des vibrations.

Manomètres à soufflet

Ce sont des manomètres dont l'organe actif est un élément élastique en forme de soufflet. Sous l'effet de la pression, le soufflet se déforme dans la direction axiale. Les

manomètres à soufflet présentent l'avantage d'éliminer le danger de gel et leur inconvénient réside dans leur sensibilité aux vibrations et au sur-chauffage.

VII.2.7 Organes de raccordement

Les organes de raccordement sont nécessaires pour :

- La déviation d'une partie d'écoulement.
- L'introduction dans la conduite d'un débit supplémentaire ou son soutirage.
- Le changement de diamètre de la conduite.
- Le montage et le démontage des accessoires.
- Le changement de direction de la conduite.

VII.2.7.1 Coudes

Les coudes sont des accessoires utiles pour le changement de direction. Généralement, les coudes sont maintenus par des massifs de butées, convenablement dimensionnés. Nous distinguons des coudes à deux emboîtements ou bien à emboîtements et à bout lisse, les deux types de coude se présentent avec un angle α de 1/4 (90°), $1/8(45^\circ)$, 1/16 (22°30'), $1/32(11^\circ15')$.

VII.2.7.2 Cônes

Les cônes sont utilisés pour relier deux conduites de diamètres différents comme nous les rencontrons aussi à l'entrée et à la sortie des pompes, nous distinguons :

- Les cônes à deux emboîtements.
- Les cônes à deux brides.
- Les cônes à emboîtement et bride.

VII.2.7.3 Les manchons

Ce sont des morceaux de 25 à 50 cm, nous rencontrons les manchons à bouts lisses des deux extrémités, à deux emboîtements, à emboîtement et bout lisse, à deux brides, à bride et bout lisse, à emboîtement et bride, nous les rencontrons surtout au niveau des montages des appareils accessoires.

VII.2.7.4 Joints de démontage

En pratique, on rencontre des manchons à bouts lisses des deux extrémités, à deux emboîtements, à emboîtement et bout lisse, à deux brides, à bride et bout lisse, à emboîtement et bride, on les rencontre surtout au niveau des montages des appareils accessoires (vannes, clapet...) et au niveau de certains joints.

Conclusion

La maitrise de la pose de canalisation est primordiale dans une étude d'adduction en eau potable. Une pose mal faite sera à l'origine des fuites excessives dans le réseau qui entraineront par la suite des infiltrations nocives et une dégradation de tout le réseau. Des essais d'étanchéités et de pressions seront obligatoires pour détecter d'éventuelles fuites au niveau des joints ou des conduites avant le remblaiement définitif.

Dans ce chapitre, nous avons abordé le mode de pose de canalisation à envisager dans notre projet. Les accessoires correspondants ont été énumérés.

Chapitre VIII : Organisation de chantier

Chapitre VIII Organisation de chantier

Introduction

Afin que notre projet soit exécuté dans les meilleures conditions possibles, une opération dite L'organisation d'un chantier consiste à déterminer et coordonner la mise en œuvre des moyens nécessaires pour la réalisation et l'exécution des travaux dans les meilleures conditions et dans les plus brefs délais. Ainsi permettre d'avoir une idée sur le coût de réalisation de notre projet.

VIII.1 Différents travaux à entreprendre

VIII.1.1 Travaux concernant l'adduction

Les taches constituant les travaux à faire pour la mise en place de l'adduction sont :

- Exécution des tranchées C'est une opération de terrassement (déblais) qui consiste à faire des excavations. Ces excavations seront faites par une pelle hydraulique et le déblai sera posé sur un coté de la tranchée, l'autre côté étant réservé au bardage des conduites.
- Construction des regards: Les regards constituent l'abri de certains accessoires de l'adduction à savoir les ventouses, les vannes de vidange et les vannes de sectionnement, ils sont conçus en béton armé.
- **Pose du lit de sable :** Cette opération consiste à poser un lit de sable au fond de la tranchée, ce lit aura une épaisseur de 10cm dans notre cas.
- **Pose des conduites :** Apres avoir mis en place le lit de sable, on procède à la pose des canalisations.
- **Remblayage des tranchées :** C'est une opération de terrassement qui consiste à enterrer la conduite, en utilisant le remblai en terre épierré
- Nivellement et compactage: Une fois le remblai fait, on procède au nivellement qui consiste à étaler les terres qui sont en monticule, ensuite à compacter pour augmenter la densité des terres et éviter un tassement par la suite et la remise en état des lieux s'il s'agit des travaux en urbain, ou traversée de route

VIII.1.2 Travaux concernant la station de pompage

Les tâches constituant les travaux à faire pour la construction de la station de pompage sont :

- Exécution du décapage.
- Exécution des fouilles.
- Coulage du béton de propreté.
- Coulage du béton pour les semelles.

- Coulage du béton pour les demi-poteaux.
- Remblayage des fouilles.
- Coulage du béton des longrines inférieures.
- Remblayage des casiers.
- Coulage de la chape inférieure.
- Coulage du béton de poteaux.
- Coulage du béton pour longrines supérieures et de la dalle.
- Maçonnerie et finition générale.

VIII.1.3 Travaux concernant les réservoirs

Les tâches constituant les travaux à faire pour la construction des réservoirs sont :

- Décapage de la terre végétale, terrassement en grande masse (selon la topographie), et excavation pour l'ancrage du réservoir.
- Pose du tout-venant.
- Coulage du béton de propreté.
- Coulage du béton du radier.
- Coulage du béton armé du voile et des poteaux de la chambre de manœuvre.
- Coulage du béton armé de la coupole et de la dalle de la chambre de manœuvre.
- Maçonnerie de la chambre de manœuvre.
- Les différentes étanchéités (pax aluminium pour la coupole, Flinckotte pour le soubassement etc.), et peinture extérieure....

VIII.2 Définitions des engins de terrassement utilisés

Le matériel utilisé est le matériel classique des chantiers de travaux publics. L'utilisation de gros engins mécaniques va réduire considérablement le prix et le temps des terrassements dont l'incidence, dans la construction des chantiers, se trouve ainsi sensiblement diminuée.

Les engins que nous allons utiliser sont :

- Une pelle hydraulique.
- Un Bulldozer.
- Un chargeur.
- Un compacteur.
- Des camions pour le transport des matériaux, et l'évacuation des terres excédentaires.

• Pelle hydraulique

Les pelles sont des engins de terrassement qui conviennent à tous les terrains même durs, la pelle peut porter divers équipements qui en font un engin de travail à plusieurs fins :

- Godet normal pour travail en butée.
- Godet rétro pour travail en fouille et en tranché.
- Godet niveleur pour travail de décapage ou de nivelage.
- Benne preneuse pour terrassement en fouille ou déchargement de matériaux (sable, pierres...). Dragline pour travail en fouille.

Bulldozer

Le bulldozer est une pelle niveleuse montée sur un tracteur à chenille ou à pneus, l'outil de terrassement est une lame profilée portée par deux bras articulés qu'un mécanisme hydraulique permet d'abaisser ou de lever. Si la lame est en position basse l'engin fait des terrassements par raclage avec une profondeur de coupe de 20 à 30cm. En mettant la lame en position intermédiaire, on peut régaler des tas de déblais en couche d'épaisseur de 20 à 30cm également. La position haute est une position de transport (hauteur de la lame au-dessus du sol de 75cm à 1m).

• Chargeur

C'est un tracteur à pneus muni de godet de chargement et de déchargement à l'avant, on l'utilisera pour remblayer les fouilles, les casiers et la tranchée après pose de la conduite.

• Compacteur (vibrateur de sol)

C'est un engin peu encombrant, composé de deux petits cylindres d'environ 30 cm de diamètre muni d'un guidon. Cet engin sert au compactage des remblais des surfaces étroites telles que les fouilles des semelles, les casiers entre ceintures inférieures du bâtiment et les tranchées.

VIII.3 Calcul des volumes des travaux

Pour faciliter la réalisation des travaux dans les plus brefs délais, nous recommandons de réaliser les travaux des trois lots en parallèle :

- Lot 01 : La réalisation de la conduite d'adduction
- Lot 02 : La réalisation de la station de pompage.
- Lot 03 : la réalisation des réservoirs.

VIII.3.1 Volumes des travaux de la conduite d'adduction (Lot 01)

• Volume de décapage de la couche végétale

Le volume de la couche à décaper est donné par la relation suivante :

$$V_c = B * L * h_c \quad (m^3)$$
 (VIII.1)

Avec : B : largeur de la tranchée, (B = D + 0.6) (m).

D : diamètre de la conduite (m).

hc: hauteur de la couche (hc=0.2m).

L : longueur totale de tranchées (m).

Tableau VIII -1Calcul du Volume de décapage de la couche végétale.

Tronçons	D(m)	B(m)	L(m)	e(m)	$V_c(m^3)$		
forage-SR1	200	0,8	2635	0,2	421,6		
SR1-SR2	200	0,8	1350	0,2	216		
SR1-Ait- Ahmed	160	0,76	2332	0,2	354,46		
SR2-El-vir	110	0,71	4299	0,2	610,46		
SR2- Ivarden	125	0,725	2500	0,2	362,5		
	Total						

• Volume de déblai d'excavation

Le volume de déblai est calculé par la relation suivante :

$$V_d = B * H * L \quad (m^3)$$
 (VIII.2)

Avec:

B : largeur de la tranchée, B = D + 0.6 (m).

H: hauteur de la tranchée, H = D + h + e (m).

D : diamètre de la conduite (m).

h: hauteur de la génératrice supérieur de la conduite à la surface du sol, h=1 (m).

e : épaisseur du lit de sable, e = 0.2m.

Tableau VIII -2 Calcul du volume des déblais d'excavation.

Tronçons	D(m)	B(m)	H(m)	L(m)	$V_d(m^3)$
forage-SR1	200	0,8	1,4	2635	2951,20
SR1-SR2	200	0,8	1,4	1350	1512,00
SR1-Ait- Ahmed	160	0,76	1,4	2332	2410,36
SR2-El-vir	110	0,71	1,3	4299	3998,50
SR2-Ivarden	125	0,725	1,33	2500	2401,56
	13273.62				

• Volume de lit de sable

Le volume de lit de sable est calculé par :

$$V_s = B * e * L (m^3)$$
 (VIII.3)

Avec:

B: largeur de la tranchée (m).

e: épaisseur du lit de sable, e = 0.2m.

L : longueur de la tranchée (m).

Tableau VIII -3 Volume de lit de sable.

Tronçons	D(m)	B(m)	L(m)	e(m)	$V_s(m^3)$
forage-SR1	200	0,8	2635	0,2	421,6
SR1-SR2	200	0,8	1350	0,2	216
SR1-Ait- Ahmed	160	0,76	2332	0,2	354,46
SR2-El-vir	110	0,71	4299	0,2	610,46
SR2- Ivarden	125	0,725	2500	0,2	362,5
		Total			1965,022

• Volume de remblais compacté

Le volume du remblai est égal au volume du déblai réduit du volume occupé par la conduite plus le volume du lit de sable :

$$V_r = V_d - (V_s + V)$$
 (m³) (VIII.4)

Avec:

Vd : volume du déblai (m³).

Vs : volume du lit de sable (m³).

V : volume occupé par la conduite (m³), (V = L * $\frac{\pi*D^2}{4}$).

Tableau VIII -4 Volume de remblais compacté.

Tronçons	D(m)	S(m)	L(m)	V (m ³)	Vs (m ³)	$V_d(m^3)$	Vr(m ³)
forage-SR1	200	0,031	2635	81,685	421,6	2951,2	3291,12
SR1-SR2	200	0,031	1350	41,85	216	1512	1686,15
SR1-Ait_Ahmed	160	0,02	2332	46,64	354,46	2410,36	2718,18
SR2-El-vir	110	0,009	4299	38,691	610,46	3998,50	4570,27
SR2-Ivarden	125	0,012	2500	30	362,5	2401,56	2734,06
Total							

Désignation Unité Quantité Volume de décapage de la m^3 1965,022 couche végétale Déblai d'excavation m^3 13273,6176 Lit de sable m^3 1965,022 14999,7736 Remblai compacté m^3

Tableau VIII -5 Volumes des travaux de l'adduction.

VIII.3.2 Volumes des travaux des réservoirs (Lot 03)

Les réservoirs à projeter de notre système d'adduction sont au nombre de cinq, dont trois réservoirs de stockage de capacité $200~\text{m}^3$, $300~\text{m}^3$ et 400~m3 et plus deux bâche de reprise avec une capacité de 500~m3 et l'autre de 50~m3.

- La profondeur d'excavation est de 2m.
- Le diamètre d'excavation doit être supérieur à celui du réservoir de 2 m.
- L'épaisseur du lit de tout venant est de : 0,3 m.
- L'épaisseur du béton de propreté est de : 0,15 m.
- L'épaisseur du radier du réservoir est de : 0,15 m.
- L'épaisseur du voile du réservoir est de : 0,25 m.
- L'épaisseur de la coupole est de 0,1 m.
- L'acrotère à 0,3 m de hauteur et 0,08 m d'épaisseur.
- Les chicanes sont en brique de surface unitaire de 0.2×0.3 m².

• Volume des déblais :

Le volume total des déblais est la somme des déblais des réservoirs et des chambres de manœuvres :

$$V_d = \left(\frac{\pi * D_{exc}^2}{4}\right) * h_{exc}$$
 (VIII.5)

 D_{exc} : Diamètre d'excavation (m), $D_{exc} = D_{ext} + 2$.

 D_{ext} : Diamètre extérieur du radier du réservoir (m), $D_{\text{ext}} = D_{\text{int}} + (2 * 0.3)$.

Dint : Diamètre intérieur du réservoir (m)

 h_{exc} : profondeur d'excavation (m), $h_{exc} = 2$ m.

Réservoir	Capacité (m³)	D _{int} (m)	Dext (m)	Dexc (m)	$V_{d}(m^{3})$		
Ait- Ahmed	400	11,28	11,88	13,88	302,47		
El-vir	200	9,22	9,82	11,82	219,35		
Ivarden	300	9,77	10,37	12,37	240,24		
Bâche de reprise SR1	500	12,62	13,22	15,22	363,69		
Bâche de reprise SR2	50	4,6	5,2	7,2	81,39		
	Total						

Tableau VIII -6 Calcul des volumes des déblais pour les réservoirs.

• Calcul du volume de tout-venant

Le volume du tout-venant sera calculé par la formule suivante :

$$V_{tv} = \left(\frac{\pi * D_{exc}^2}{4}\right) * e_{tv}$$
 (VIII.6)

V_{tv}: Volume du tout-venant (m³).

 e_{tv} : Epaisseur de la couche du tout- venant (m), e_{tv} = 0,3 m.

 $V_{tv}(m^3)$ Réservoir $\mathbf{D}_{\mathrm{exc}}(\mathbf{m})$ Ait- Ahmed 13,88 45,37 El-vir 11,82 32,90 Ivarden 12,37 36,04 Bâche de reprise SR1 15,22 54,55 Bâche de reprise SR2 7,2 12,21 **Total** 181,07

Tableau VIII -7 Calcul des volumes du tout-venant.

• Calcul du volume de béton de propreté

La pose du béton de propreté sera étendue de 0.5 m des parois extérieures du réservoir. Le volume du béton de propreté est calculé par la formule suivante :

$$V_{bp} = \left(\frac{\pi * D_{bp}^2}{4}\right) * e_{bp}$$
 (VIII.7)

V_{bp} : Volume du béton de propreté en m³.

 D_{bp} : Diamètre de la couche du béton de propreté en m. Donc $D_{bp} = D_{ext} + 1$.

e_{bp}: Epaisseur de la couche du béton de propreté en m. on prend une épaisseur de 0.15 m.

Réservoir	$\mathbf{D}_{\mathrm{ext}}\left(\mathbf{m}\right)$	D _{bp} (m)	V _{bp} (m ³)
Ait- Ahmed	11,88	12,88	19,53
El-vir	9,82	10,82	27,57
Ivarden	10,37	11,37	30,44
Bâche de reprise SR1	13,22	14,22	47,62
Bâche de reprise SR2	5,2	6,2	9,05
	Total		134,22

Tableau VIII -8 Calcul des volumes du béton de propreté.

• Volume de béton armé :

Les éléments des réservoirs dont le béton armé est le matériau de construction sont :

- Radiers des réservoirs.
- Voile des réservoirs.
- Voiles de la chambre de manœuvre.
- Ceintures supérieurs des réservoirs.
- Coupoles des réservoirs.

Les éléments du réservoir, ayant des formes circulaires, sont estimés moyennant par la formule :

$$V_{ba} = \pi * \left(\frac{D_{ext}^2 - D_{int}^2}{4}\right) * H$$
 (VIII.8)

Dext: Diamètre extérieur de l'élément du réservoir en m.

Dint : Diamètre intérieur de l'élément du réservoir en m.

H: Hauteur de l'élément du réservoir en m.

Les résultats de calcul sont récapitulés dans le tableau qui suit :

Tableau VIII -9 Calcul du volume du béton armé.

Réservoir	Eléments	Dext (m)	D _{int} (m)	H (m)	$V_{ba} (m^3)$
	Radier	11,8		0,4	43,72
	Voiles	11,3	10,8	3	26,02
Ait- Ahmed	Ceintures supérieures	11,3	10,3	0,5	8,48
	Acrotères	11,3	11,1	0,5	1,76
	Radier	9,8		0,4	30,16
El-vir	Voiles	9,3	8,8	3	21,31
EI-VII	Ceintures supérieures	9,3	8,3	0,5	6,91

	Acrotères	9,3	9,1	0,5	1,44
	Radier	9,7		0,4	29,54
	Voiles	9,2	8,7	3	21,08
Ivarden	Ceintures supérieures	9,2	8,2	0,5	6,83
	Acrotères	9,2	9,1	0,5	0,72
	Radier	13,22		0,4	54,88
Bâche de	Voiles	12,72	12,22	3	29,37
reprise SR1	Ceintures supérieures	12,7	11,7	0,5	9,57
	Acrotères	12,7	12,6	0,5	0,99
	Radier	5,2		0,4	8,49
Bâche de	Voiles	4,7	4,2	3	10,48
reprise SR2	Ceintures supérieures	4,7	3,7	0,5	3,29
	Acrotères	4,7	4,6	0,5	0,36
	To	otal			315.42

• Coupole:

La coupole est une calotte sphérique de rayon :

$$R = \frac{f^2 + \left(\frac{D}{2}\right)^2}{2*f}$$
 (VIII.9)

R : Rayon de la coupole (m).

D : Diamètre du réservoir (m).

f: Flèche de la coupole (m).

$$V_c=2*\pi*R*f*e_{cb}$$
 (VIII.10)

V_c: Volume du béton armé de la coupole (m³).

 e_c : Epaisseur de la coupole (m), e_c =0.1m.

Tableau VIII -10 Calcul du volume du béton armé pour les coupoles.

Réservoir	D _{ext} (m)	R (m)	V (m ³)
Ait- Ahmed	11,88	5,94	5,60
El-vir	9,82	4,91	4,63
Ivarden	10,37	5,185	4,88
Bâche de reprise SR1	13,22	6,61	6,23
Bâche de reprise SR2	5,2	2,6	2,45
	23,78		

• Calcul du volume du remblai compacté

Le volume du remblai compacté est égal au vide restant, après coulage du béton armé des voiles, entre ces derniers et les limites d'excavation.

$$V_r = \frac{\pi * (D_{exc}^2 - D_{ext}^2) * h}{4}$$
 (VIII.11)

V_r : Volume du remblai compacté (m³).

Dext : Diamètre extérieur du radier du réservoir (m).

Dexc: Diamètre d'excavation (m).

h: profondeur d'excavation (m), h = 2 m.

Tableau VIII -11 Calcul du volume du remblai compacté.

Réservoir	D _{ext} (m)	D _{exc} (m)	$V_{r} (m^3)$
Ait- Ahmed	11,88	13,88	80,89
El-vir	9,82	11,82	67,95
Ivarden	10,37	12,37	71,40
Bâche de reprise SR1	13,22	15,22	89,30
Bâche de reprise SR2	5,2	7,2	38,94
	348,48		

VIII.3.3 Volumes des travaux de la station de pompage (Lot 2)

Les dimensions de la station de pompage sont :

Tableau VIII -12 Les dimensions de la station de pompage.

Station de pompage	Hauteur du bâtiment (m)	Largeur du bâtiment (m)	Longueur du bâtiment (m)
SR1	6	6	16
SR2	6	6	20

- La profondeur des fouilles h = 2 m.
- Les semelles sont de forme carré de côté L=1,5 m et de hauteur h=0,6 m.
- Les demi- poteaux sont de forme carrée de côté 0,4 m et de hauteur h = 1.4 m.
- Les poteaux sont de forme carrée de côté 0,4 m et de hauteur totale h = 6 m.
- Le nombre de poteaux total est de 15 pour la station de pompage1 et de 18 pour la station de reprise2
- La dalle supérieure et inférieure a une épaisseur de 12 cm.
- Les longrines ont une hauteur de h = 0.60 m et une épaisseur de 0.4 m.

• Calcul du volume de décapage :

L'épaisseur de la couche superficielle à décaper est de 10 cm et ce décapage s'étend jusqu'aux extrémités extérieures des fouilles.

$$V_d=L_{dec}*l_{d\acute{e}c}*E_{d\acute{e}c}$$
 (VIII.12)

Tableau VII -13 Calcul du volume de décapage.

Station de reprise	Unité	V_d
SR1	m^3	14,4
SR2 m ³		16
То	30,4	

· Calcul du volume des déblais :

Le type du bâtiment de la station de pompage étant en surface, le volume des déblais est égal au volume excavé des fouilles.

$$V_{\text{fouille}} = L_f * l_f * h_f = 2 * 2 * 2 = 8 \text{ m}^3$$

Le nombre de fouilles dans la station de reprise 1 étant de 15, le volume total du béton de propreté est de 120 m³.

Le nombre de fouilles dans la station de reprise 2 étant de 18, le volume total du béton de propreté est de 144 m³.

· Calcul du volume du béton de propreté

Le volume du béton de propreté dans une fouille est de 2*2*0,1 soit 0,4 m³.

Le nombre de fouilles dans la station de reprise 1 étant de 15, le volume total du béton de propreté est de 6 m³.

Le nombre de fouilles dans la station de reprise 2 étant de 18, le volume total du béton de propreté est de 7.2 m³.

· Calcul du volume du béton armé :

Les éléments de la station de pompage dont le béton armé est le matériau de construction sont :

- Semelles.
- Demi-poteaux.
- Poteaux.
- Longrines.
- Chape inférieure.
- Dalle supérieure.

Tableau VIII -14 Calcul du volume du béton armé de la station de reprise 1.

Elément	L(m)	l(m)	h (m)	n	V=L*l*h*n (m³)
Semelles	2	2	0,6	15	36
Demi-poteaux	0,4	0,4	1,4	15	3,36
Poteaux	0,4	0,4	6	15	14,4
Ceintures .sup.larg	6	0,4	0,6	5	7,2
supérieures longueur	16	0,4	0,6	3	11,52
Ceintures inf.sup.larg	6	0,4	0,6	5	7,2
Ceintures inf.longueur	16	0,4	0,6	3	11,52
Dalle supérieure/	16	6	0,12	1	11,52
inférieure	16	6	0,12	1	11,52
	Total				114,24

Tableau VIII -15 Calcul du volume du béton armé de la station de reprise 2.

Elément	L(m)	l(m)	h (m)	n	V=L*l*h*n
					(\mathbf{m}^3)
Semelles	2	2	0,6	18	43,2
Demi-poteaux	0,4	0,4	1,4	18	4,03
Poteaux	0,4	0,4	6	18	17,28
Ceintures .sup.larg	6	0,4	0,6	6	8,64
supérieures longueur	20	0,4	0,6	3	14,4
Ceintures inf.sup.larg	6	0,4	0,6	6	8,64
Ceintures inf.longueur	20	0,4	0,6	3	14,4
Dalle supérieure/	20	6	0,12	1	14,4
inférieure	20	6	0,12	1	14,4
	Total				139,39

• Calcul du volume du remblai compacté :

Le volume du remblai compacté des fouilles est 2*2* (2 m profondeur initiale de la fouille moins l'épaisseur de la semelle et du béton de propreté donne une profondeur de 1.4m), le volume est de 5.34 m³.

Le nombre de fouilles dans la station de reprise 1 étant de 15, donc le volume de remblais compacté des fouilles est de : 80.1 m3.

Le nombre de fouilles dans la station de reprise 2 étant de 18, donc le volume de remblais compacté des fouilles est de : 96.12 m3.

• Le volume du remblai compacté des casiers :

Le volume des remblais compactés des casiers est de : V= 5.6m³

Le nombre de casiers dans la station de reprise 1 étant de 8 le volume total de remblais compacté des casiers est de 44.8m³.

Le nombre de casiers dans la station de reprise 1 étant de 10 le volume total de remblais compacté des casiers est de 56 m³.

• Volume de la maçonnerie :

Pour la station de pompage seul les murs extérieurs seront construits en briques double parois de dimensions 30×20 (cm²). La surface de la maçonnerie totale est :

 $S \ \mathsf{maconneries} = S_T \ \mathsf{murs} - S \ \mathsf{fen\hat{e}tres} - S \ \mathsf{portail}.$

 $S_{T murs}$: Surface totale des murs = 342.68 m².

S fenêtres : Surface des fenêtres = 24.64 m^2 .

S portail.: Surface du portail = 12 m^2 . Donc : Smaçonnerie = 306.04 m2 .

D'où le nombre de briques nécessaire est de : $N = 2 * \frac{S_{maçonneries}}{S_{briques}}$

Tableau VIII -16 Calcule du volume des travaux de la maçonnerie.

Station de namice	C (m ²)	S (m ²)	le nombre de briques
Station de reprise	$S_{T \text{ murs}} (m^2)$	S maçonneries (m ²)	nécessaire
SR1	132	95,36	3156
SR2	156	119,36	3978
	Total		7156

Les résultats des volumes des travaux de la station de pompage sont récapitulés dans le tableau suivant :

Désignation Unité station de reprise m^3 30,4 Décapage Excavation m^3 264 Remblais compacté m^3 276,02 Béton de propreté m^3 13,2 m^3 Béton armé 253,6 m^3 7156 Maçonnerie

Tableau VIII -17 calcule volumes des travaux des stations des pompages.

VIII.4 Calcul des coûts des travaux

Les devis estimatifs et quantitatifs du projet sont représentés dans les tableaux qui suivent :

• Lot 01: Devis quantitatif et estimatif des travaux de l'adduction.

Tableau VIII -18 Devis quantitatif et estimatif des travaux de l'adduction.

d'excavation) 3 Fourniture et pose d'un lit de sable m³ 1965,022 800 1572017,6 4 Remblai compacté de terre tout venant m³ 14999,7736 200 2999954,72 5 PEHD-PN20-DN 200 m 2635 3858,27 10166541,3 6 PEHD-PN20-DN 200 m 1350 3858,27 5208664,5 7 PEHD-PN20-DN 160 m 2332 2465 5748380	N	Désignation des travaux	Unité	Quantité	Prix Unitaire, HT (DA)	Montant Total.HT (DA)			
1		TERRASSEMENT							
2 en tranchées (déblai d'excavation) m³ 13273,6176 300 3982085,23 3 Fourniture et pose d'un lit de sable m³ 1965,022 800 1572017,6 4 Remblai compacté de terre tout venant m³ 14999,7736 200 2999954,72 CANALISATION 5 PEHD-PN20-DN 200 m 2635 3858,27 10166541,6 6 PEHD-PN20-DN 200 m 1350 3858,27 5208664,5 7 PEHD-PN20-DN 160 m 2332 2465 5748380 8 PEHD-PN10-DN 110 m 4318 665,64 2874233,5 9 PEHD-PN10-DN 125 m 2500 843,99 2109975 Fourniture et pose de grillage avertisseur, couleur bleu, posé à 0.3 m au-dessus de la génératrice supérieure de la conduite m 13135 80 1050800 MONTANT TOTAL (HT) : 36007405,4 (I	1	•	m ³	1965,022	150	294753,3			
Template Template	2	en tranchées (déblai	m ³	13273,6176	300	3982085,28			
Terre tout venant T4999,7736 200 2999954,75	3		m ³	1965,022	800	1572017,6			
5 PEHD-PN20-DN 200 m 2635 3858,27 10166541,3 6 PEHD-PN20-DN 200 m 1350 3858,27 5208664,5 7 PEHD-PN20-DN 160 m 2332 2465 5748380 8 PEHD-PN10-DN 110 m 4318 665,64 2874233,52 9 PEHD-PN10-DN 125 m 2500 843,99 2109975 Fourniture et pose de grillage avertisseur, couleur bleu, posé à 0.3 m au-dessus de la génératrice supérieure de la conduite m 13135 80 1050800 MONTANT TOTAL (HT) : 36007405,4 (1)	4		m ³	14999,7736	200	2999954,72			
6 PEHD-PN20-DN 200 m 1350 3858,27 5208664,5 7 PEHD-PN20-DN 160 m 2332 2465 5748380 8 PEHD-PN10-DN 110 m 4318 665,64 2874233,52 9 PEHD-PN10-DN 125 m 2500 843,99 2109975 Fourniture et pose de grillage avertisseur, couleur bleu, posé à 0.3 m au-dessus de la génératrice supérieure de la conduite m 13135 80 1050800 MONTANT TOTAL (HT) : 36007405,4 (1)			CANAI	LISATION					
7 PEHD-PN20-DN 160 m 2332 2465 5748380 8 PEHD-PN10-DN 110 m 4318 665,64 2874233,52 9 PEHD-PN10-DN 125 m 2500 843,99 2109975 10 Fourniture et pose de grillage avertisseur, couleur bleu, posé à 0.3 m au-dessus de la génératrice supérieure de la conduite m 13135 80 1050800 MONTANT TOTAL (HT) : 36007405,4 (1)	5	PEHD-PN20-DN 200	m	2635	3858,27	10166541,5			
8 PEHD-PN10-DN 110 m 4318 665,64 2874233,55 9 PEHD-PN10-DN 125 m 2500 843,99 2109975 Fourniture et pose de grillage avertisseur, couleur bleu, posé à 0.3 m au-dessus de la génératrice supérieure de la conduite m 13135 80 1050800 MONTANT TOTAL (HT) : 36007405,4 (1)	6	PEHD-PN20-DN 200	m	1350	3858,27	5208664,5			
9 PEHD-PN10-DN 125 m 2500 843,99 2109975 Fourniture et pose de grillage avertisseur, couleur bleu, posé à 0.3 m au-dessus de la génératrice supérieure de la conduite MONTANT TOTAL (HT): 36007405,4 (1	7	PEHD-PN20-DN 160	m	2332	2465	5748380			
Fourniture et pose de grillage avertisseur, couleur bleu, posé à 0.3 m au-dessus de la génératrice supérieure de la conduite MONTANT TOTAL (HT): 36007405,4 (1)	8	PEHD-PN10-DN 110	m	4318	665,64	2874233,52			
grillage avertisseur, couleur bleu, posé à 0.3 m au-dessus de la génératrice supérieure de la conduite MONTANT TOTAL (HT): grillage avertisseur, m 13135 80 1050800 36007405,4 (I	9	PEHD-PN10-DN 125	m	2500	843,99	2109975			
MONTANT TOTAL (HT): 36007405,4 (I	10	grillage avertisseur, couleur bleu, posé à 0.3 m au-dessus de la génératrice supérieure de	m	13135	80	1050800			
			36007405 4 (DA)						
141O1411A141 1 4/A (12/0) • UO+1+U/4U2(1									
			42848812,4(DA)						

• Lot 02 : Devis quantitatif et estimatif des travaux de la station de pompage.

Tableau VIII -19 Devis quantitatif et estimatif des travaux de la station de pompage.

N	Désignation des travaux	Unité TERRAS	Quantité SEMENT	Prix Unitaire, HT (DA)	Montant Total.HT (DA)
1	Excavation de la plateforme et les fouilles	m ³	294,4	250	73600
2	Remblai compacté de terre tout venant	m ³	277.02	150	41553
	CONSTRUC	CTION EN	BETON et Ma	çonnerie	
3	Béton de propreté : dosé de 150 kg/m3 de ciment.	m ³	13,2	10000	132000
4	Béton armé : dosé de 350 kg/m3 de ciment y compris le coffrage et ferraillage et toutes sujétions éventuelles	m ³	253,6	40000	10144000
5	Maçonnerie en briques	m ³	7156	40	286240
MONTANT TOTAL (HT):					10677393
MONTANT TVA (19%):					2028704,67
	MONTANT TOTAL (TTC):				

• Lot 03 : Devis quantitatif et estimatif des travaux des réservoirs.

Tableau VIII -20 Devis quantitatif et estimatif des travaux des réservoirs.

N	Désignation des travaux	Unité	Quantité	Prix Unitaire, HT (DA)	Montant Total.HT (DA)
		TERRAS	SSEMENT		
1	Déblais des	réservoirs	1207,1292	250	301782,299
2	Remblais compacté en terre tout venant		348,48	150	52272
3	Tout-ve	enant	181,06938	600	108641,628
	C	CONSTRUCT	ION EN BET	ON	
4	Béton de propr 150 kg/m3 d		134,2	10000	1342000
Béton armé : dosé de 350 kg/m3 de ciment y compris le coffrage et ferraillage et toutes sujétions éventuelles		339,198783	40000	13567951,3	
	15372647,2				
MONTANT TVA (19%):					2920802,97
MONTANT TOTAL (TTC):					18293450,2

N	Désignation des travaux	Montant total H.T (DA)
1	Lot 01	36007405,4
2	Lot 02	12706097,67
3	Lot 03	15372647,2
N	Montant total H.T	
MONTANT TVA (19%):		11788041,9
MONTANT TOTAL (TTC):		73848360,3

Tableau VIII -21: Bilan total du projet entier.

VIII.5 Planification des travaux

Avant d'entamer la réalisation des travaux sur le chantier, il faut faire une planification qui consiste une étude théorique qui recherche constamment la meilleure façon d'utilisation de la main d'œuvre et des autres moyens.

Les travaux suivant seront ordonnés selon la méthode du graphe (diagramme de Gantt).

La théorie des graphes consiste à représenter les différentes taches par des barres sur un calendrier d'une manière à ce que les longueurs des barres seront proportionnelles à leurs durées.

Le diagramme de Gantt est considéré parmi les outils les plus efficaces pour représenter visuellement les différentes activités qui constituent la gestion d'un projet bien défini.

VIII.5.1 Définition des tâches et leurs durées

• Lot 01 : La réalisation de la conduite d'adduction

Les taches de réalisation de l'adduction et leurs durées sont mentionnées dans le tableau suivant :

Notation	Opération	Durée (jour)
A	Excavation de la tranchée	91
В	Pose du lit de sable	10
С	Pose de conduite	14
D	Epreuve des joints de canalisation	14
Е	Remblais compacté	14

Tableau VIII -22 Temps de réalisation des opérations de l'adduction.

• Lot 02 : la réalisation de la station de pompage

Les taches de construction de la station de pompage et leurs durées sont mentionnées dans le tableau suivant :

Tableau VIII -23 Temps de réalisation des opérations de la station de pompage.

Notation	Opération	Durée (jour)
A	Décapage	10
В	Excavation	18
С	Coulage du béton de propreté	4
D	Coulage du béton pour les semelles	6
Е	Coulage du béton pour les demi-poteaux	10
F	Remblayage et compactage des fouilles	4
G	Coulage du béton pour les longrines inférieures	30
Н	Remblayage et compactage des casiers	12
I	Coulage de la chape inférieure	2
J	Coulage du béton pour les poteaux	16
K	Coulage du béton pour les longrines supérieures et la dalle	45
L	Maçonnerie et finition générale	40
M	Embellissement (trottoirs, bitumage et verdure), évacuation des débris et nettoyage	10

• Lot 2 : la réalisation des réservoirs :

La construction des réservoirs de notre adduction se feront en parallèle, y compris le réservoir de la station de pompage.

Les taches de construction d'un réservoir et leurs durées sont mentionnées dans le tableau suivant :

Notation Opération Durée (jour) Α Excavation. 4 2 В Pose de tout venant. \mathbf{C} Coulage du béton de propreté. 1 Coulage du béton du radier. 60 D Ε Coulage béton armé du voile du réservoir. 60 Coulage du béton armé de la ceinture supérieur du réservoir. F 25 G Coulage du béton armé de la coupole. 60 2 Η Remblayage et compactage Ι Maçonnerie et finition générale 30 J Evaluation des débris et nettoyage 2

Tableau VIII -24 Temps de réalisation des réservoirs.

VIII.5.2 La planification des taches par la méthode du graphe (diagramme de Gantt)

On utilise le logiciel Microsoft Project pour tracer les diagrammes de Gantt. Pour cela, on introduit les différents tâches avec leurs temps de réalisation et en respectant leurs ordre chronologique et les liaisons qui relient entre ces activités. Comme ce logiciel nous impose d'introduire la date de commencement du projet, on fixe la date pour ce 28 novembre 2021, et on obtiendra les diagrammes figurants dans les pages qui succèdent :

• La réalisation de la station de pompage

On montre le lien entre les opérations qui précèdent et qui succèdent, pour chaque opération de réalisation de la station de pompage dans le tableau suivant :

Tableau VIII -25 Tâches qui précèdent et succèdent chaque opération d'une seule station de pompage.

Opération	TR	Précède	Succède
A	10	-	В
В	18	A	С
С	4	В	D
D	6	С	Е
Е	10	D	F
F	4	Е	G
G	30	F	Н
Н	12	G	I
I	2	Н	J
J	16	I	K
K	45	J	L
L	40	K	M
M	10	L	-

Le chemin critique de cette prestation est A-B-C-D-E-F-G-H-I-J-K-L-M, le projet de réalisation d'une seule station de pompage durera 228 jours ouvrables.

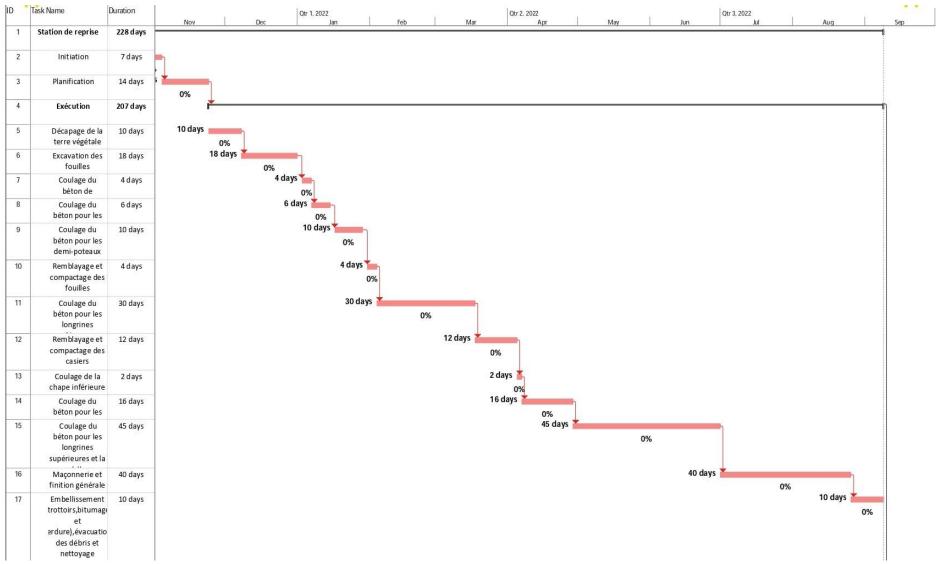


Figure VIII -1 Diagramme de Gantt de la station de pompage.

• La réalisation de la conduite d'adduction

On montre le lien entre les opérations qui précèdent et qui succèdent, pour chaque opération de réalisation de la conduite d'adduction dans le tableau suivant :

Tableau VIII -26 Taches qui précèdent et succèdent pour chaque opération du lot 01.

Opération	TR	Précède	Succède
A	91	-	B, C
В	10	A	D
С	14	A	D
D	14	B, C	Е
Е	14	D	-

Le chemin critique du projet de l'adduction est A-C-D-E, la réalisation de l'adduction s'achèvera dans 154 jours ouvrables.

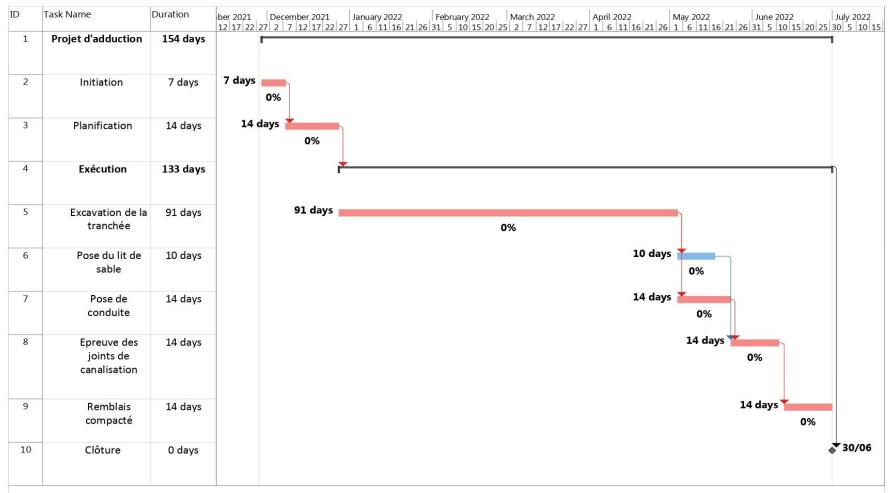


Figure VIII -2 Diagramme de Gantt de l'adduction.

• La réalisation des réservoirs

On montre le lien entre les opérations qui précèdent et qui succèdent, pour chaque opération de réalisation d'un réservoir dans le tableau suivant :

Tableau VIII -27 Taches qui précèdent et succèdent pour chaque opération du lot 03.

Opération	TR	Précède	Succède
A	4	-	В
В	2	A	С
С	1	В	D
D	60	С	Е
Е	60	D	F
F	25	E	G, H
G	60	F	I
Н	2	F	I
I	30	G, H	J
J	2	I	-

Le chemin critique du projet de l'adduction est A-B-C-D-E-F-G-H-I-J, la réalisation de réservoir s'achèvera dans 267 jours ouvrables.

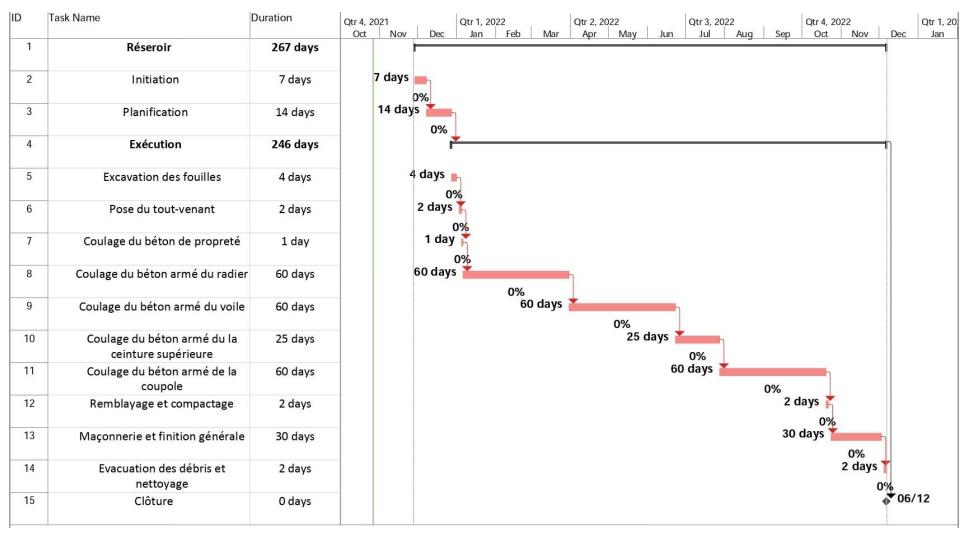


Figure VIII -3 Diagramme de Gantt du Réservoir.

VIII.6 Sécurité de travail

Le risque d'accident est réel dans chaque phase de réalisation d'un projet : Que ce soit dans la phase des travaux de terrassement, des travaux de bétonnage, dans les installations électriques ou les installations sous pressions. Le risque existe aussi en exploitation c'est à dire après la réalisation du projet (travaux d'entretien des installations).

Il est donc important de tenir compte de l'ensemble des mesures sécuritaires afin d'éviter ou limiter au maximum les éventuels risques pouvant survenir pendant ces phases.

VIII.6.1 Définition d'un accident de travail

L'accident survenu par le fait ou l'occasion du travail de toute personne salariée ou travaillant à quelque titre que ce soit pour un ou plusieurs employeurs ou chefs d'entreprise, qu'elle qu'en soit la cause.

On peut citer:

- Les accidents entrainant une incapacité temporelle (IT) : donnant lieu à une indemnisation d'au moins un jour.
- Les accidents de travail avec une incapacité permanente (IP) : donnant lieu à l'attribution d'une rente ou d'un capital.

L'accident de travail est :

- Soudain.
- Doit provoquer une lésion du corps.
- Se produit à l'occasion de travail.

VIII.6.2 Les causes principales d'un accident de travail

Généralement les accidents de travail imputables à des conditions dangereuses et actions dangereuses sont causés par deux facteurs.

Facteur matériel.

Il concerne les conditions dangereuses susceptibles d'évoluer au cours du travail.

Les causes d'accidents d'origines matériels sont :

- Installations non ou mal protégés.
- Protection individuelle inexistante.
- Outillage, engins, équipements en mauvais état.
- Matière défectueuse.
- Facteur d'ambiance impropre.
- Conditions climatiques défavorables.

Facteur humain

Il concerne les actions dangereuses qui sont des réactions physiques des travailleurs difficiles à prévoir, car chaque être humain est un cas particulier qui réagit différemment selon les circonstances ou selon son humeur personnelle.

Les conditions dangereuses pouvant causées des accidents de travail sont :

- Mauvaise conception des engins.
- Intervenir sans précaution sur les machines en mouvement.
- Ne pas utiliser les équipements de protection individuelle.
- Imprudence durant les opérations de stockage ou de manipulation.
- Suivre un rythme de travail inadapté.
- Défaut de formation technique.
- Défaut d'organisation générale du travail.

VIII.6.3 Prévention

La prévention est une attitude ou l'ensemble des mesures à prendre pour éviter qu'un accident, ou une maladie ne se produisent, par exemple :

- Le matériel utilisé doit être conforme aux normes requises et bien entretenu.
- La signalisation dans l'entreprise et principalement sur les chantiers, doit être évidente et connue de tous, utilisation des couleurs de sécurité (rouge, orange, vert).
- Isolement des zones dangereuses.
- Amélioration des ambiances de travail (bruit, empoussièrement, ambiance thermique).
- Contrôle des matériaux.
- Contrôle médical périodique

VIII.6.4 Les moyens de protection

Un équipement de protection est un dispositif, un mécanisme, un appareil ou une installation qui par sa conception (agencement et matériaux constitutifs), est capable d'assurer valablement la protection des salariés contre un ou plusieurs risques professionnels et d'en limiter ainsi les conséquences, on peut les diviser en deux catégories :

VIII.6.4.1 Les moyens de protection collectifs

Il est dit de protection collective s'il assure indistinctement la sécurité du salarié affecté au poste et celle des autres personnes présentes à proximité. Les équipements de protection collective permettent de protéger l'ensemble des salariés et sont dans ce sens à privilégier. Quatre principes régissent les moyens de protection collective :

- la protection par éloignement (balisage, déviation...).

- la protection par obstacle (rambarde de sécurité...).
- la protection par atténuation d'une nuisance (insonorisation du local, encoffrement de la pièce usinée, aspiration de poussière, ventilation...).
- la protection par consignation d'une fonction dangereuse lors d'intervention.

VIII.6.4.2 Les moyens de protection individuels

Un équipement de protection individuelle (EPI) est un dispositif ou moyen destiné à être porté ou tenu par une personne en vue de la protéger contre un ou plusieurs risques susceptibles de menacer sa sécurité ou sa santé au travail.

Parmi ces moyens on cite:

- combinaisons étanches ou spécifiques à certains risques (casque de protection contre les objets pouvant tomber).
- Protection des mains : gants, crèmes protectrices...
- Chaussures de protection (semelle épaisse, antidérapante, avec coquille métallique).
- Lunettes de sécurité (UV, chaleur, protection de débris).
- Protecteurs auditifs (casques antibruit, bouchons d'oreille).
- Masques et cagoules anti-poussières.
- Moyens de protection anti chutes.

Conclusion

D'après ce chapitre on peut conclure que l'organisation de chantier est nécessaire avant le commencement des travaux, car elle nous permet de définir tous les volumes des travaux nécessaires pour l'élaboration du chantier, Le coût total du projet qui est de **73848360,3** DA,

La durée du projet qui est de 267 jours, Les engins à utiliser qui sont principalement l'angledozer, pelle, compacteur, chargeur.

On a conclu aussi que les accidents de travail sont inévitables dans un chantier, mais on peut les diminuer en prévenant de façon individuelle ou collective.

Conclusion générale

Conclusion Générale

Dans le cadre de ce mémoire de fin d'études, nous avons étudié le projet portant sur le renforcement de l'alimentation en eau potable du versant ouest de la commune de Maâtkas.

Toutefois, Après l'estimation des besoins projetés à l'horizon 2051, et tenant comptent des ressources existantes, nous avons constaté qu'il y avait un déficit de de 2387.11m³/j, ce qui nous a conduits à trouver une nouvelle source d'approvisionnement qui sera labatterie de forages qui seront réalisés à oued Bougdoura afin de combler le déficit en eau.

Afin d'assurer l'alimentation en eau potable dans la zone d'étude, et son acheminement par refoulement , nous avons déterminé les volumes des réservoirs et ceux des deux stations de reprises.

Concernant le réseau d'adduction et le tracé, nous avons essayé de suivre la route afin d'éviter les terrains privés, en utilisant le Polyéthylène Hautes Densité (PEHD) comme matériaux vu les avantages qu'il présente et ceci avec des diamètres économiques qui répondent à l'aspect technique (vitesse).

Au long du réseau d'adduction, on place des ventouses à chaque point haut pour évacuer les bulles d'air qui peuvent survenir à l'intérieur de la conduite, et des vidanges aux points bas.

La protection des canalisations de l'adduction est une opération aussi importante car un bon dimensionnement à lui seul ne suffit pas à garantir la longévité de la conduite et sa sécurité, donc il est indispensable de prévoir des protections contre des problèmes du coup de bélier par une étude simplifiée et un dimensionnement des réservoirs d'air pour les conduites.

A la lumière de ce modeste travail, nous souhaitons avoir répondu à l'objectif fixé au départ, et aussi nous espérons que ce mémoire puisse servir de support pour une étude plus détaillée.

Enfin, nous tenons à signaler qu'il est indispensable que les gestionnaires et les exploitants accordent une importance à la maintenance et à l'entretient de l'adduction, des réservoirs et des équipements à fin de garantir la pérennité du projet.

Références bibliographique

- [1] **A. Dupont :** Hydraulique urbaine, ouvrages de transport, élévation et distribution des eaux Tome II, édition Eyrolles, Paris 1977
- [2] B.SALAH: « Cours d'Alimentation en Eau Potable», ENSH 2014.
- [3] Données de la subdivision de l'hydraulique.
- [4] M. CARLIER: « Hydraulique générale et appliquée », édition Eyrolles.
- [5] Plan directeur d'aménagement urbain.
- [6] LENCASTRE.A: « HYDRAULIQUE GENERALE», édition Eyrolles, Paris 1983

Catalogue

[7]: caprari pupp tutor 2.0

Annexes

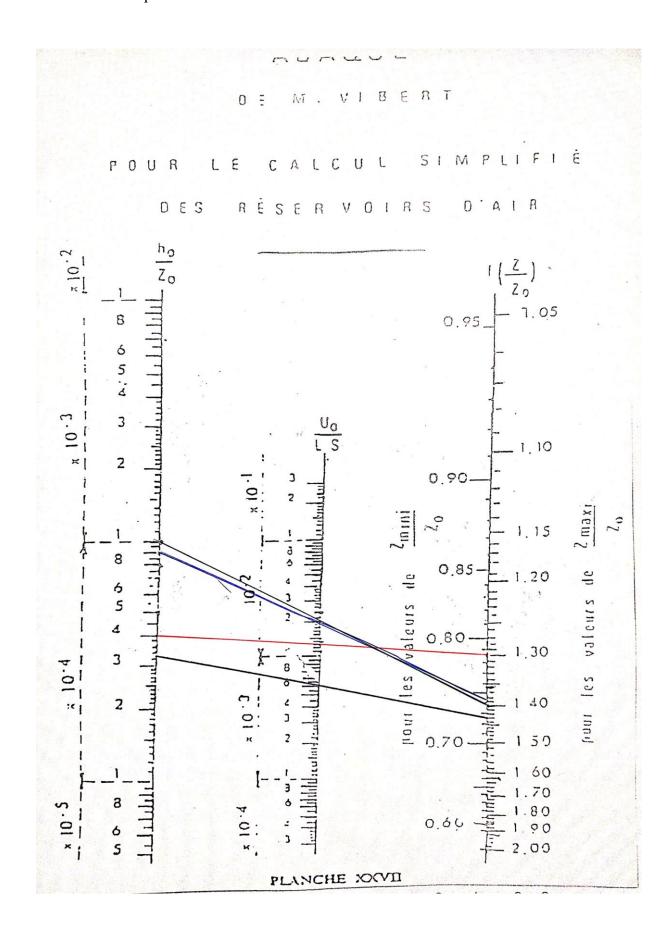
Annexe 1: Liste des prix des tuyaux PEHD PN 20 (CHIALI 2021).

TUBE PEHD EAU PN20

Code	Désignation Article	UM	Prix MI HT	Prix MI TTC
11 009 0201	Tube PEHD Ø 20 PN 20 EP 3.0 mm	ML	38.00	45.22
11 009 0251	Tube PEHD Ø 25 PN 20 EP 3.5 mm	ML	60.57	72.08
11 009 0321	Tube PEHD Ø 32 PN 20 EP 4.4 mm	ML	93.71	111.51
11 009 0401	Tube PEHD Ø 40 PN 20 EP 5.5 mm	ML	146.28	174.07
11 009 0501	Tube PEHD Ø 50 PN 20 EP 6.9 mm	ML	226.56	269.61
11009 0631	Tube PEHD Ø 63 PN 20 EP 8.6 mm	ML	361.70	430.42
11 009 0751	Tube PEHD Ø 75 PN 20 EP 10.3 mm	ML	508.54	605.16
11 009 0901	Tube PEHD Ø 90 PN 20 EP 10.1 mm	ML	678.64	807.58
11 009 1101	Tube PEHD Ø 110 PN 20 EP 12.3 mm	ML	1004.91	1195.84
11 009 1251	Tube PEHD Ø 125 PN 20 EP 14.0 mm	ML	1273.74	1515.75
11 009 1601	Tube PEHD Ø 160 PN 20 EP 17.9 mm	ML	2071.43	2465.00
11 009 2001	Tube PEHD Ø 200 PN 20 EP 22.4 mm	ML	3242.24	3858.27
11 009 2501	Tube PEHD Ø 250 PN 20 EP 27.9 mm	ML	5043.49	6001.75
11 009 3151	Tube PEHD Ø 315 PN 20 EP 35.2 mm	ML	7705.89	9170.01
11 009 4001	Tube PEHD Ø 400 PN 20 EP 44.7 mm	ML	12418.48	14777.99
11 009 5001	Tube PEHD Ø 500 PN 20 EP 55.8 mm	ML	19337.24	23011.32
11 009 6301	Tube PEHD Ø 630 PN 20 EP 70.8 mm	ML	30722.26	36559.49

Annexe 2: Liste des prix des tuyaux PEHD PN 16 (CHIALI 2021).

TUBE PEHD EAU PN16


Code	Désignation Article	UM	Prix MI HT	Prix MI TTC
11 004 0201	Tube PEHD Ø 20 PN 16 EP 2.3 mm	ML	29.61	35.24
11 004 0251	Tube PEHD Ø 25 PN 16 EP 3.0 mm	ML	48.03	57.16
11 004 0321	Tube PEHD Ø 32 PN 16 EP 3.6 mm	ML	75.47	89.81
11 004 0401	Tube PEHD Ø 40 PN 16 EP 4.5 mm	ML	116.64	138.80
11 004 0501	Tube PEHD Ø 50 PN 16 EP 5.6 mm	ML	180.68	215.01
11 004 0631	Tube PEHD Ø 63 PN 16 EP 7.1 mm	ML	288.17	342.92
11 004 0751	Tube PEHD Ø 75 PN 16 EP 8.4 mm	ML	404.81	481.72
11 008 0901	Tube PEHD Ø 90 PN 16 EP 8.2 mm	ML	488.62	581.46
11 008 1101	Tube PEHD Ø 110 PN 16 EP 10.0 mm	ML	721.62	858.73
11 008 1251	Tube PEHD Ø 125 PN 16 EP 11.4 mm	ML	934.26	1111.77
11 008 1601	Tube PEHD Ø 160 PN 16 EP 14.6 mm	ML	1526.93	1817.05
11 008 2001	Tube PEHD Ø 200 PN 16 EP 18.2 mm	ML	2397.85	2853.44
11 008 2501	Tube PEHD Ø 250 PN 16 EP 22.7 mm	ML	3709.88	4414.76
11 008 3151	Tube PEHD Ø 315 PN 16 EP 28.6 mm	ML	5881.51	6997.00
11 008 4001	Tube PEHD Ø 400 PN 16 EP 36.3 mm	ML	9500.91	11306.08
11 008 5001	Tube PEHD Ø 500 PN 16 EP 45.4 mm	ML	14816.89	17632.10
11 008 6301	Tube PEHD Ø 630 PN 16 EP 57.2 mm	ML	22513.76	26791.37

Annexe 3: Liste des prix des tuyaux PEHD PN 10 (CHIALI 2021).

TUBE PEHD EAU PN10

Code	Désignation Article	UM	Prix MI HT	Prix MI TTC
110030201	TUBE PEHD Ø 20 PN 10 EP. 2.0 mm	ML	34,32	40,15
110030251	TUBE PEHD Ø 25 PN 10 EP. 2.0 mm	ML	43,78	51,23
110070321	TUBE PEHD EAU PE100 Ø 32 PN10 EP. 2.0 mm	ML	55,10	64,47
110070401	TUBE PEHD EAU PE100 Ø 40 PN 10 EP. 2.4 mm	ML	83,50	97,69
110070501	TUBE PEHD EAU PE100 Ø 50 PN10 EP. 3.0 mm	ML	128,66	150,53
110070631	TUBE PEHD EAU PE100 Ø 63 PN10 EP. 3.8 mm	ML	203,83	238,48
110070751	TUBE PEHD EAU PE100 Ø 75 PN 10 EP. 4.5 mm	ML	289,41	338,61
110070901	TUBE PEHD EAU PE100 Ø 90 PN10 EP. 5.4 mm	ML	381,88	446,80
110071101	TUBE PEHD EAU PE100 Ø 110 PN10 EP. 6.6 mm	ML	568,93	665,64
110071251	TUBE PEHD EAU PE100 Ø 125 PN10 EP. 7.4 mm	ML	721,36	843,99
110071601	TUBE PEHD EAU PE100 Ø 160 PN10 EP. 9.5 mm	ML	1 181,58	1 382,45
110072001	TUBE PEHD EAU PE100 Ø 200 PN10 EP. 11.9 mm	ML	1 848,65	2 162,92
110072501	TUBE PEHD EAU PE100 Ø 250 PN10 EP. 14.8 mm	ML	2 869,93	3 357,81
110073151	TUBE PEHD EAU PE100 Ø 315 PN10 EP. 18.7 mm	ML	4 322,93	5 057,83
110074001	TUBE PEHD EAU PE100 Ø 400 PN10 EP. 23.7 mm	ML	6 936,23	8 115,39
110075001	TUBE PEHD EAU PE100 Ø 500 PN10 EP. 29.7 mm	ML	10 783,03	12 616,15
110076301	TUBE PEHD EAU PE100 Ø 630 PN10 EP. 37.4 mm	ML	17 077,20	19 980,32

Annexe 4 : Abaque de VIBERT

