Higher National School of Hydraulic The Library

Digital Repository of ENSH

المدرسة الوطنية العليا للري المكتبة المستودع الرقمي للمدرسة العليا للري

The title (العنوان):

Dimensionnement du réseau d'AEP de la cité BenYoub, Baraki (w. Alger)..

The paper document Shelf mark (الشفرة) : 1-0003-22

APA Citation (توثيق APA):

Saoudi, Sara (2022). Dimensionnement du réseau d'AEP de la cité BenYoub, Baraki (w. Alger).[Mem Ing, ENSH].

The digital repository of the Higher National School for Hydraulics "Digital Repository of ENSH" is a platform for valuing the scientific production of the school's teachers and researchers.

Digital Repository of ENSH aims to limit scientific production, whether published or unpublished (theses, pedagogical publications, periodical articles, books...) and broadcasting it online.

Digital Repository of ENSH is built on the open software platform and is managed by the Library of the National Higher School for Hydraulics.

المستودع الرقمي للمدرسة الوطنية العليا للري هو منصة خاصة بتثمين الإنتاج العلمي لأساتذة و باحثي المدرسة.

يهدف المستودع الرقمي للمدرسة إلى حصر الإنتاج العلمي سواءكان منشورا أو غير منشور (أطروحات،مطبوعات بيداغوجية، مقالات الدوريات، كتب....) و بثه على الخط.

المستودع الرقمي للمدرسة مبني على المنصة المفتوحة و يتم إدارته من طرف مديرية المكتبة للمدرسة العليا للري.

كل الحقوق محفوظة للمدرسة الوطنية العليا للري.

الجمهورية الجزائرية الديمقراطية الشعبية وزارة التعليم العالى و البحث العلمى

NATIONAL HIGHER SCHOOL FOR HYDRAULICS

"The Mujahid Abdellah ARBAOUI"

MEMOIRE DE FIN D'ETUDES

Pour l'obtention du diplôme d'Ingénieur d'Etat en Hydraulique

Option_: CONCEPTION DES SYSTEMES D'ALIMENTATION EN EAU POTABLE

THEME:

Dimensionnement du réseau d'AEP de la cité BEN YOUB, BARAKI (W. Alger)

Présenté par : SAOUDI Sara

Devant les membres du jury

Nom et Prénom	Grade Qualité			
A. AMMARI	M.C.B	Président		
A. HACHEMI	M.C.B	Examinateur		
O. MOKRANE	M.A.A	Examinatrice		
L. KADI	M.A.A	Examinatrice		
B. SALAH	Professeur	Promoteur		

Session Décembre 2022

Dédicace

Je dédie ce modeste Travail à Ma chère mère, Mon cher père

Pour leurs sacrifices et leurs motivations afin d'atteindre mon

objectif, et sans eux je ne serais pas arrivé jusqu'à là. Ce travail

présente l'aboutissement du soutien et des encouragements qu'il

m'ont prodigués tout le long de ma scolarité.

Je le dédie également à :

Ma sœur Síham.

Mes deux frères : Ait Ahmed et Abderrahim.

Ma meilleure amie Djouher pour son soutien, son aide et ses encouragements, malgré son éloignement.

Mon amíe Meriem pour son aíde et ses conseils durant ma formation.

Mon amíe Ouir. F pour ces précieux conseils et son aide.

Tous mes amís que j'ai connus durant ma formation à ENSH.

En un mot, à toute ma famille, les amís et tous ceux que j'estime beaucoup.

SARA. SAGUDI

Remerciement

En premier lieu, je remercie Dieu le tout puissant, de m'avoir donné le courage, la volonté et la patience afin de mener ce modeste travail à terme.

Ce travail ne serait pas aussi riche et n'aurait pas pu avoir le jour sans l'aide et l'encadrement de mon promoteur Mr SALAH Boualem. Je le remercie pour la qualité de son encadrement exceptionnel, pour sa patience, sa disponibilité et surtout pour ces précieux conseils.

Mes remerciements vont également à Mrs DAHMANI Hocine et AMEZIANE

Mouloud qui m'ont fourni les outils nécessaires et ont grandement facilité mon

travail.

Mes remerciements s'adressent également à tous les nos professeurs et enseignants qui ont contribué à ma formation

Mes vifs remerciements vont également aux membres de jury pour l'intérêt qu'ils ont porté à mon projet en acceptant d'examiner mon travail et de l'enrichir par leurs propositions.

Merci.

ملخص:

تتضمن هذه المذكرة دراسة تتعلق بحي بن يوب حمزة، التابع لمدينة براقي ولاية الجزائر، حيث لا يملكون أي شبكة لتوزيع للمياه الصالحة للشرب. هدفنا هو تحديد الاحتياجات المائية للحي، ثم تصميم وتحجيم نظام امداد مياه الشرب لتلبية الاحتياجات المائية الاحتياجات المائية للسكان لأفاق 2052 علما انه يتم تزويد الخزان الموجود والذي سعته 1500 م3عن طريق البئر الارتوازي شاوش فليت.

الكلمات المفتاحية:

حى بن يوب حمزة، شبكة توزيع، التوزيع، الخزان، البئر الارتوازى شاوش فليت.

Résumé:

Ce mémoire comprend une étude de la cité Ben Youb Hamza faisant partie de la commune Baraki wilaya d'Alger qui n'est dotée d'aucun réseau de distribution en eau potable. Notre objectif consiste à déterminer d'abord les besoins en eau de la cité par la suite dimensionner et projeter un système d'AEP pour satisfaire les besoins en eau des habitants à l'horizon 2052 sachant que le château d'eau existant de volume 1500 m³ est alimenté par le forage de chaouch félit.

Mots-clés:

Cité Hamza Ben Youb, Réseau de distribution, Forage de chaouch felit, Château d'eau.

Summary:

The present project, includes a study of housing estate Ben Youb Hamza, which is part of Baraki, as they don't have any drinking water distribution network. Our objective is to determine the water needs of the city, then to design a DWS system to satisfy the water needs of the inhabitants by 2052, knowing that the existing tank with a volume of 1,500 m³ is supplied by the chaouch felit well.

Key words:

Hamza Ben Youb city, distribution network, tank, chaouch felit well

Table de matières

Introduction générale
Chapitre I : Présentation de la zone d'étude I.1. Introduction
I.2. Situation géographique de la zone d'étude2
I.3. Les données naturelles de la zone d'étude
I.3.1. Topographie du sol
I.3.2. Situation géologique
I.3.3. Sismicité tectonique du sol
I.3.4. Aperçu climatique
I.3.5. Pluviométrie
I.3.6. Température
I.3.7. Humidité de l'air5
I.3.8. Le Vent
I.4. Situation démographique5
I.5. Situation hydraulique
I.5.1. Alimentation en Eau Potable
I.5.2. Assainissement
I.6. Conclusion
Chapitre II: Estimation des besoins en eau
II.1 Introduction
II.2. Evaluation de la population à l'horizon d'étude
II.3. Estimation des besoins en eau domestique
II-3-1. Débit moyen journalier
II-3-2. Le débit moyen journalier pour les équipements8
II.4. Débit de fuite et de gaspillage10
II.5. Variation de la consommation journalière
I.5.1. Débit maximal journalier
I.5.2. Débit minimal journalier
II.6. Variation des débits horaires
I.6.1. Débit moyen horaire :
I.6.2. Débit maximal horaire :
I.6.3. Débit minimal horaire :
II.7. Évaluation de la consommation horaire en fonction du nombre d'habitant
II.8. Conclusion
Chapitre III : Les réservoirs de stockage.
III-1. Introduction

<u>Table de Matières</u>

III-2. Les rôles d'un réservoir.	16
III-3. Caractéristiques du réservoir	16
III-4. Emplacement du réservoir	16
III-5. Classification des réservoirs	17
III-5-1. Selon le matériau de construction	17
III-5-2. Selon la situation des lieux	17
III-5-3. Selon la forme géométrique	17
III-5-4. Selon l'utilisation	17
III-6. Choix du type de réservoir	17
III-7. Equipements des réservoirs	18
III-7-1. Conduite d'arrivée	18
III-7-2. Conduite de distribution	18
III-7-3. Trop-plein	19
III-7-4. Vidange	19
III-7-5. By-pass	20
III-7-6. Matérialisation de la réserve d'incendie	20
III-7-6-1. Système siphon	20
III-7-6-2. Le système à deux prises	20
III-8. Calcul de l'ouvrage de stockage	21
III-8-1. Calcul analytique de la capacité du réservoir	21
III-8-2. Dimensionnement du réservoir R2	23
III-8-2-1. La section du réservoir.	23
III-8-2-2. Le diamètre du réservoir	23
III-8-2-3. La hauteur de la réserve d'incendie	23
III-8-2-4. La hauteur totale du réservoir	23
III-8-2-5. La cote du réservoir	23
III-9 Entretien des réservoirs et hygiène	24
III-10. Conclusion	24
Chapitre IV : Dimensionnement du réseau de distribution	
IV-1. Introduction	25
IV-2. Le réseau de distribution	25
IV-2-1. Structure des réseaux	25
IV-2-2. Classification des réseaux d'AEP	25
IV-2-2-1. Réseau maillé	25
IV-2-2-2. Réseau ramifié	25
IV 2 2 3 Pásagy mixta (combiná)	26

<u>Table de Matières</u>

IV-2-2-4. Réseau étagé	26
IV-2-2-5. Réseau à alimentation distincte	26
IV-2-3. Principe du tracé du réseau	26
IV-2-4. Choix du système de la distribution	27
IV-2-5. Choix du type des matériaux	27
IV-3. Calcul hydraulique du réseau de distribution	28
IV-3-1. Détermination des débits de dimensionnement	28
IV-3-1-1. Débit spécifique	28
IV-3-1-2. Débits en route	28
IV-3-1-3. Débit nodal	28
A. Cas de pointe	29
B. Cas de pointe + incendie	34
C. Cas de transit	34
IV-3-2. Répartition arbitraire des débits	40
IV-3-3. Présentation du logiciel EPANET	40
IV-3-3-1. Les étapes d'utilisation du logiciel EPANET	40
A. Première étape	40
B. Deuxième étape	40
C. Troisième étape	40
IV-3-3-2. Résultats de la simulation du réseau avec EPANET	41
A. Cas de pointe	41
B. Cas de pointe + incendie	50
C. Cas de transit	59
IV-3-3-3. Interprétation des résultats	68
A. Cas de pointe	68
	68
B. Cas de pointe + incendie	08
B. Cas de pointe + incendie	
	68
C. Cas de transit	68 68
C. Cas de transit	68 68 68
C. Cas de transit	68 68 68
C. Cas de transit	68 68 68 68
C. Cas de transit IV-4. Les équipements du réseau de distribution IV-4-1. Les accessoires IV-4-1-1. Robinets vannes A. Vanne à coin (à opercule)	68 68 68 69
C. Cas de transit IV-4. Les équipements du réseau de distribution IV-4-1. Les accessoires IV-4-1-1. Robinets vannes A. Vanne à coin (à opercule) B. Vannes papillons	68 68 68 69 69
C. Cas de transit IV-4. Les équipements du réseau de distribution IV-4-1. Les accessoires IV-4-1-1. Robinets vannes A. Vanne à coin (à opercule) B. Vannes papillons C. Vannes de décharge	68 68 68 69 69 69

Table de Matières

IV-4-1-5. Organes de mesure	.70
A. Mesure de débit	.70
B. Mesure de la pression	71
IV-5. Conclusion	.71
Chapitre V : Pose de canalisation.	
V-1. Introduction	.72
V-2. Type de pose de canalisation	72
V-2-1. La Pose dans un terrain peu consistant	.72
V-2-2. La Pose dans un terrain marécageux	73
V-2-3. La Pose en galerie	.73
V-2-4. Traversée d'une rivière	.73
V-2-5. La Pose sans ouverture de tranchée	.74
V-2-5-1. Pose par fonçage	.74
V-2-5-2. Forage dirigé	74
V-2-6. La pose en pente	.75
V-2-7. La Pose dans un terrain ordinaire	.75
IV-4-2. Systèmes de raccordement	76
IV-4-2-1. La soudure par électro-fusion	.76
IV-4-2-2. La soudure bout à bout (polyfusion)	.76
IV-4-2-3. Les raccords mécaniques	.76
A. Les Tés	.77
B. Les cônes	.77
C. Les coudes	.77
D. Les joints	.78
E. Manchon	.78
F. Croix	.78
V-3. Conclusion	.79
Chapitre VI : Organisation De Chantier	
VI-1. Introduction	.80
VI-2. Exécution des travaux	.80
VI-2-1. Vérification, manutention des conduites	.80
VI-2-2. Décapage de la couche végétale	.80
VI-2-3. Réalisation des tranchées et des fouilles	
VI-2-3-1. La largeur de la tranchée	.81
VI-2-3-2. La profondeur de la tranchée	.81
VI-2-4 Aménagement du lit de pose	81

Table de Matières

VI-2-5. Pose de conduite	81
VI-2-6. Assemblage des conduites	81
VI-2-7. Essaie d'étanchéité sur les joints et les conduites	82
VI-2-8. Remblai de tranché	82
VI-2-9. Compactage	82
VI-2-10. Désinfection du réseau	82
VI-3. Choix des engins	82
VI-3-1. Pour le décapage de la terre végétale	82
VI-3-2. Pour l'excavation des tranchées	82
VI-3-3. Pour le remblaiement des tranchées	82
VI-3-4. Pour le compactage	83
VI-4. Calcul des volumes	83
VI-4-1. Volume du décapage de la couche végétale	83
VI-4-2. Volume du déblai des tranchées	83
VI-4-3. Volume occupé par le lit de sable	83
VI-4-4. Volume occupé par les conduites	83
VI-4-5. Volume du remblai de protection	83
VI-4-6. Volume excédentaire	84
VI-5. Calcul des volumes des travaux de réservoir projeté	86
VI-5-1. Calcul de volume des déblais	86
VI-5-2. Calcul de volume de tout-venant	86
VI-5-3. Calcul de volume de béton de propreté	87
VI-5-4. Calcul de volume de béton armé	87
VI-5-5. Calcul de volume de remblai compacté	88
VI-6. Calcul des coûts des travaux	89
VI-7. Planification des travaux	90
VI-7-1. Durée des tâches	90
VI-7-1-1. Distribution	91
VI-7-1-2. Réservoir	92
VI-7-2. Planification des travaux par la méthode du graphe (diagramme de Gantt)	92
Conclusion	97
Conclusion générale	98

Liste des Figures

Chapitre I : Présentation de la zone d'étude Figure(I-1) : situation géographique de la zone d'étude
Figure (I-2) : carte géologique de la région de Baraki
Figure (I-3) : carte de zonage sismique de l'Algérie
Chapitre II : Estimation des besoins en eau
Figure (II-1): Diagramme d'évolution de la population de la zone d'étude
Figure (II-2) : Courbe des débits cumulés
Figure (II-3): Régime de la consommation horaire (2052)
Chapitre III : Les réservoirs de stockage.
Figure (III-1) : conduite d'amenée
Figure (III-2) : Conduite de distribution
Figure (III-3) : Conduite du trop-plein et de vidange19
Figure (III-4) : Conduite du By-pass20
Figure (III-5): Matérialisation de la réserve d'incendie
Chapitre IV : Dimensionnement du réseau de distribution
Figure (IV-1) : Schéma du réseau maillé25
Figure (IV-2) : Schéma du réseau ramifié
Figure (IV-3): Vitesse et pression pour le cas de pointe
Figure (IV-4): Numérotation des nœuds pour le cas de pointe
Figure (IV-5) : Numérotation des conduites pour le cas de pointe
Figure (IV-6): Vitesse et pression pour le cas de pointe + incendie
Figure (IV-7): Numérotation des nœuds pour le cas de pointe + incendie57
Figure (IV-8) : Numérotation des conduites pour le cas de pointe + incendie
Figure (IV-9): Vitesse et pression pour le cas de transit
Figure (IV-10): Numérotation des nœuds pour le cas de transit
Figure (IV-11): Numérotation des conduites pour le cas de transit
Figure (IV-12): Robinets vanne à opercule
Figure (IV-13): Vanne papillon69
Figure (IV-14):Ventouse
Figure (IV-15): Clapet anti- retours
Figure (IV-16): Débitmètres déprimogènes
Chapitre V : Pose de canalisation
Figure (V-1) : Pose de conduite en tranchée dans un terrain peu consistant72
Figure (V-2): Pose de conduite en galerie
Figure (V-3): Traversée d'une rivière par pont
Figure (V-4): Pose par fonçage74

Liste des Figures

Figure (V-5): Pose par forage dirigé	75
Figure (V-6) : Pose de conduite en tranchée dans un terrain ordinaire	76
Figure (IV-7): Les Tés	77
Figure (IV-8) : Les Cônes	77
Figure (IV-9): Les Coudes	78
Figure (IV-10): Les Manchons	78
Figure (IV-11): Les Croix	79
Chapitre VI: Organisation De Chantier	
Figure (VI-1) : Diagramme de GANTT de la distribution	95
Figure (VI-2) : Diagramme de GANTT du Réservoir	96

Liste des Tableaux

Chapitre I : Présentation de la zone d'étude

Tableau (I-1): Pluies moyennes mensuelles
Tableau (I-2): Températures moyennes mensuelles
Tableau (I-3): Humidités relatives mensuelles en %
Tableau (I-4): Vitesses du vent mensuelles en m/s
Tableau (I-5): Evaluation de la population
Chapitre II : Estimation des besoins en eau
Tableau (II-1): Estimation de la population
Tableau(II-2) : Récapitulatif des besoins domestiques
Tableau (II-3) : Tableau récapitulatif des besoins scolaires
Tableau (II-4) : Tableau récapitulatif des besoins commerciaux9
Tableau (II-5) : Tableau récapitulatif des besoins socioculturels
Tableau (II-6) : Récapitulation des besoins en eaux totaux
Tableau (II-7) : Majoration de la consommation moyenne journalière
Tableau (II-8) : Variation de la consommation journalière maximale
Tableau (II-9) : Variation de la consommation journalière minimale
Tableau (II-10) : Les valeurs de βmax en fonction de la population
Tableau (II-11): Variation de la consommation horaire maximale
Tableau (II-12) : Les valeurs de βmin en fonction de la population
Tableau (II-13): Variation de la consommation horaire minimale
Tableau (II-14) : Variation de la consommation horaire pr notre agglomération 205213
Chapitre III : Les réservoirs de stockage.
Tableau (III-1) : Evaluation de la capacité de stockage
Tableau (III-1) : Evaluation de la capacité de stockage (suite)
Tableau (III-2) : Caractéristique du réservoir R2 calculé
Chapitre IV : Dimensionnement du réseau de distribution
Tableau (IV-1): Détermination des débits aux nœuds dans le cas de pointe
Tableau (IV-1): Détermination des débits aux nœuds dans le cas de pointe (suite)30
Tableau (IV-1) : Détermination des débits aux nœuds dans le cas de pointe (suite)31
Tableau (IV-1) : Détermination des débits aux nœuds dans le cas de pointe (suite)32
Tableau (IV-1) : Détermination des débits aux nœuds dans le cas de pointe (suite)33
Tableau (IV-1) : Détermination des débits aux nœuds dans le cas de pointe (suite)34
Tableau (IV-2) : Détermination des débits aux nœuds dans le cas de transit35
Tableau (IV-2) : Détermination des débits aux nœuds dans le cas de transit (suite)
Tableau (IV-2) : Détermination des débits aux nœuds dans le cas de transit (suite)37

Liste des Tableaux

Tableau (IV-2): Determination des debits aux nœuds dans le cas de transit (suite)	30
Tableau (IV-2) : Détermination des débits aux nœuds dans le cas de transit (suite)	39
Tableau (IV-2): Détermination des débits aux nœuds dans le cas de transit (suite)	.40
Tableau (IV-3): Résultats de la simulation pr ls conduites du réseau dans le cas de pointe	.41
Tableau (IV-3): Résultats de la simulation pour les conduites du réseau (suite)	.42
Tableau (IV-3): Résultats de la simulation pour les conduites du réseau (suite)	43
Tableau (IV-4): Résultats de la simulation pour les nœuds du réseau dans le cas de pointe	.44
Tableau (IV-4) : Résultats de la simulation pour les nœuds du réseau. (Suite)	45
Tableau (IV-4) : Résultats de la simulation pour les nœuds du réseau. (Suite)	.46
Tableau (IV-5): Résultats de la simulation pr ls conduites dans le cas de pointe+incendie	.50
Tableau (IV-5) : Résultats de la simulation pour les conduites du réseau. (Suite)	.51
Tableau (IV-5) : Résultats de la simulation pour les conduites du réseau. (Suite)	.52
Tableau (IV-6) : Résultats de la simulation pr ls nœuds dans le cas de pointe + incendie	.53
Tableau (IV-6) : Résultats de la simulation pour les nœuds du réseau. (Suite)	.54
Tableau (IV-6) : Résultats de la simulation pour les nœuds du réseau. (Suite)	.55
Tableau (IV-7): Résultats de la simulation pr ls conduites dans le cas de transit	.59
Tableau (IV-7) : Résultats de la simulation pour les conduites du réseau. (Suite)	.60
Tableau (IV-7) : Résultats de la simulation pour les conduites du réseau. (Suite)	.61
Tableau (IV-8) : Résultats de la simulation pr ls nœuds dans le cas de transit	.62
Tableau (IV-8) : Résultats de la simulation pour les nœuds du réseau. (Suite)	.63
Tableau (IV-8) : Résultats de la simulation pour les nœuds du réseau. (Suite)	.64
Chapitre VI : Organisation De Chantier	
Tableau(VI-1) : coefficient de foisonnement	.84
Tableau (VI-2) : Calcul des différents volumes de distribution	.85
Tableau (VI-3) : Calcul des volumes des déblais pour le réservoir projeté	.86
Tableau (VI-4) : Calcul du volume tout-venant pour le réservoir	86
Tableau (VI-5) : Calcul du volume du béton de propreté pour le réservoir	87
Tableau (VI-6) : Calcul du volume du béton armé pour le réservoir	87
Tableau (VI-7) : Calcul du volume du béton armé pour la coupole du réservoir	88
Tableau (VI-8) : Calcul du volume du remblai compacté du réservoir	88
Tableau (VI-9) : Coût des travaux du réseau de distribution	89
Tableau (VI-10) : Coût des travaux du réservoir projeté	90
Tableau (VI-11) : Bilan des coûts	90
Tableau (VI-12) : Capacité du godet en fonction du volume des terrassements	91
Tableau (VI-13): Temps de réalisation des opérations de distribution	91
Tableau (VI-14): Temps de réalisation des opérations du réservoir	92

Liste des Tableaux

Tableau (VI-15): Tâches qui précèdent et succèdent chaque opération de la distribution	.93
Tableau (VI-16) : Détermination des délais pour le réseau de distribution	.93
Tableau (VI-17) : Tâches qui précèdent et succèdent chaque opération du réservoir	.94
Tableau (VI-18): Détermination des délais pour le Réservoir.	94

Liste des Abréviations

AEP: Alimentation en Eau Potable.

α: Taux d'accroissement annuel de la population.

 α_{max} : coefficient qui dépendu niveau de vie de la population.

 β_{max} : coefficient qui dépend de nombre d'habitants.

°C : Degré Celsius.

 C_R : Cote radier.

 C_{Tp} : Cote trop plein.

D : Dotation moyenne journalière des consommateurs en (1/j/hab).

DA: Dinars Algérien.

DRE: Direction des Ressources en Eau.

 D_R : Diamètre du réservoir.

 D_{ext} : Diamètre extérieur de la conduite (m).

 D_{int} : Diamètre intérieur de la conduite (m).

 H_{inc} : hauteur d'incendie (m).

 $K_{max,h}$: Coefficient d'irrégularité de la consommation horaire maximal.

 $K_{max,i}$: Coefficient d'irrégularité de la consommation journalière maximale.

 $K_{min,i}$: Coefficient d'irrégularité de la consommation journalière minimale.

 $K_{min,h}$: coefficient d'irrégularité de la consommation horaire minimale

ΣL : Somme des longueurs de réseau en (m).

Ni : Le nombre de consommateurs.

PEHD: Polyéthylène Haute Densité.

 P_n : population pour l'horizon considéré.

 P_0 : population actuelle.

 $Q_{max,j}$: Consommation maximale journalière (m3/j).

 $Q_{min,j}$ Qmin j : Consommation minimale journalière (m3/j).

 $Q_{max,h}$: Le débit maximum horaire (m3 /h).

 $Q_{min,h}$: Le débit minimum horaire (m3 /h).

 Q_n : Débit au nœud considéré l/s.

 Q_r : Débit en route 1/s.

 Q_{sp} : Débit spécifique l/s/ml.

S: Section de la conduite (m2).

Liste des Abréviations

TTC : Toute Taxe Comprise

TVA: Taxe sur la Valeur Ajoutée

V: Vitesse d'écoulement en m/s.

 V_{inc} : Volume de réserve d'incendie (m3).

 V_{max} : Volume maximal du stockage pour la consommation (m3).

 $V_{tot,R}$: Volume total du réservoir (m3).

INTRODUCTION GENERALE

INTRODUCTION GENERALE:

L'eau a toujours été à la base de toute vie sur terre. Elle constitue l'élément essentiel dans toutes les civilisations que l'humanité a connues. Donc il est indispensable que cette eau soit utilisée d'une manière équitable, rationnelle et économique.

La cité intéressée par le projet n'avait aucun réseau de distribution d'eau potable pour satisfaire les besoins de ses habitants.

C'est dans ce contexte que s'inscrit le thème de mon mémoire de fin d'étude qui consiste à dimensionner le réseau d'alimentation en eau potable de la cité Ben Youb Hamza pour répondre confortablement à la demande projetée à notre horizon d'étude 2052. Pour cela le travail va être partagé en six (06) chapitres : Nous débuterons notre travail par une présentation générale du site ainsi que les caractéristiques de la région.

Ensuite nous procéderons à l'estimation de la population et des besoins en eaux à l'horizon 2052 dans le deuxième chapitre.

Le troisième chapitre consiste à la vérification de la capacité du réservoir existant et de prévoir d'autres réservoirs en cas de déficit.

Le quatrième chapitre sera consacré au calcul du réseau et à la modélisation du système d'AEP sous les conditions actuelles et futures à l'aide du logiciel EPANET et aussi sur la protection de notre conduite.

Le cinquième chapitre consiste à étudier la pose de canalisation.

Enfin, nous terminerons notre étude en faisant un devis estimatif un quantitatif qui sera le sixième et le dernier chapitre de notre projet.

Nous allons terminer notre travail par une conclusion générale qui résume les problèmes rencontrés et les solutions préconisées.

Chapitre I:

Présentation de la zone d'étude

I.1. Introduction:

Avant de réaliser toute projet d'Alimentation en Eau Potable, il est nécessaire de faire une étude du site pour connaître les caractéristiques et les facteurs qui influe sur la conception de ce projet, afin d'élaborer une conception efficace et durable.

Pour cela, nous devrons faire une reconnaissance de la situation et des structures de la région d'étude. A travers ce premier chapitre, nous allons faire la description de notre zone d'étude afin de savoir ses caractéristiques topographiques, géologiques et climatiques.

I.2. Situation géographique de la zone d'étude :

La commune de Baraki appartenant à la wilaya d'Alger, est située à environ 13 KM au Sud Est de la ville d'Alger (Chef-lieu de la Wilaya).

La cité Ben Youb Hamza est située à Baraki, Wilaya d'Alger, et couvre une surface de 80 Ha. Notre zone est délimitée comme suit :

Au nord: cité 13 hectares.

Au sud: autoroute 2éme rocade.

A l'est : terrain agricole. A l'ouest : cité 13 hectares.

Figure(I-1): situation géographique de la zone d'étude. (Source Google MAPS)

I.3. Les données naturelles de la zone d'étude :

I.3.1. Topographie du sol:

La zone d'étude est caractérisée par une nature géographique plate et une pente faible qui varie entre 0 à 6% et une altitude maximal 448 m.

I.3.2. Situation géologique :

La géologie intervient en tant que première discipline dans le contrôle de la qualité des eaux de surface et souterraines. Notre zone d'étude se situe dans la partie septentrionale de la chaine Tellienne de la Mitidja. Les sols sont constitués de limon, d'alluvions et de cailloutis. On peut observer à proximité de ses rives des marnes ainsi que des calcaires grés et poudingues de l'oued Ouchaia.

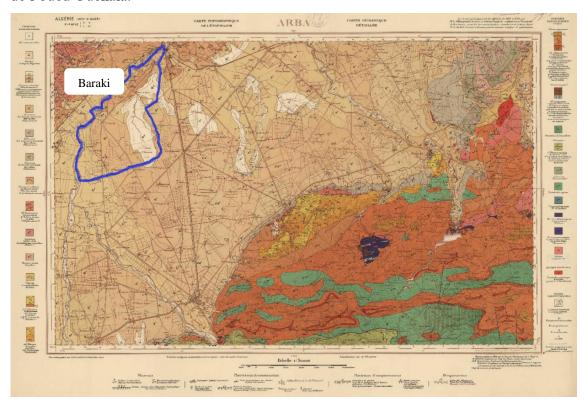


Figure (I-2): Carte géologique de la région de Baraki (L. Glangeaud, A. Aymé)

I.3.3. Sismicité tectonique du sol:

Le nord de l'Algérie est connu par l'activité sismique. Le territoire algérien est devisé en quatre zones :

Zone 0 : sismicité négligeable.

Zone I : sismicité faible.

Zone II-a : sismicité moyenne.

Zone II-b : sismicité élevée.

Zone III : sismicité très élevée

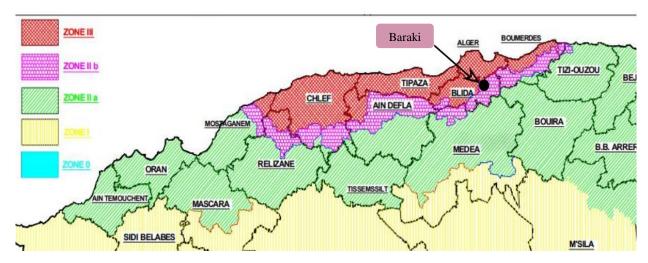


Figure (I-3) : carte de zonage sismique de l'Algérie (source R.P.A 2003)

La zone d'étude a une sismicité élevée (zone II-b), avec un dommage notable de sismicité. Il est indispensable de connaître la sismicité de cette dernière avant d'entamer un projet d'aménagement afin de réduire la vulnérabilité.

I.3.4. Aperçu climatique :

Le changement climatique a un impact sur le secteur d'eau et ça change d'une région à l'autre. Alors le climat est un facteur important pour tout projet d'alimentation en eau potable ou toute étude d'hydraulique. La commune de Baraki est caractérisée par un climat :

- Froid et humide en hivers.
- Chaud et sec en été.

I.3.5. Pluviométrie:

L'analyse des données climatiques mesurées à la station météorologique de la ville de BARAKI pendant la période 1971-2012, permet d'évaluer les températures mensuelles qui sont résumées sur le tableau (I-1).

Tableau (I-1): Pluies moyennes mensuelles.

	Sept	Oct	Nov	Déc	Jan	Fév	Mars	Avr	Mai	Juin	Juil	Aout
Pm(mm)	23.3	40.1	61.9	65.9	59.7	57.0	44.8	40.8	32.2	9.8	2.6	6.7

Source: O.N.M

I.3.6. Température :

La connaissance de la température de la région est nécessaire pour le bon choix du matériau.

L'air d'étude est caractérisé par une température moyenne mensuelle la plus souvent est de 11°C et en été elle est enregistrée maximale de 25,2°C en mois d'Aout.

Tableau (I-2): Températures moyennes mensuelles

Mois	J	F	M	A	M	J	J	A	S	О	N	D
T (°C)	11,0	11,8	12,8	14,6	17,6	21,2	24,3	25,2	23,2	19,4	15,3	12,1

Source: A.N.R.H

I.3.7. Humidité de l'air :

Dans le tableau suivant sont mentionnées les valeurs de l'humidité de l'air mensuelle.

Tableau (I-3): Humidités relatives mensuelles en %

Mois	J	F	M	A	M	J	J	A	S	О	N	D
$H_{moy}\%$	74,8	72,4	71,5	72,0	70,1	69,3	66,9	66,5	67,6	70,3	71,1	73,5

Source: A.N.R.H

I.3.8. Le Vent

Les vitesses du vent sont relativement modérées elles varient de 2.8 à 3.4 m/s.

Tableau (I-4): Vitesses du vent mensuelles en m/s

Mois	J	F	M	A	M	J	J	A	S	О	N	D
Vents en m/s	3.2	3.4	3.4	3.3	3.0	3.2	3.1	3.0	2.8	2.9	2.9	3.4

Source: O.N.M

I-4. Situation démographique :

Le recensement de la population de la cité Ben Youb Hamza entre 1998 et 2008 a donné un taux d'accroissement moyen de 2%. La population à l'horizon 2052 est calculée avec la relation (I-1).

$$P_n = P_0 * \left(1 + \frac{T}{100}\right)^n \dots \dots (I-1)$$

Avec:

 P_n : La population à l'horizon 2052.

 P_0 : La population de base (à l'horizon 2020).

n : nombre d'années, de l'année de base à l'horizon du projet (32ans).

T : taux d'accroissement pris égal à 2,00. (Selon l'office national des statistiques)

Tableau (**I-5**): Evaluation de la population.

horizon	2020	2052
Cité Ben Youb Hamza	3600 habitants	6784 habitants

Source: D.R.E.W

I.5. Situation hydraulique:

I.5.1. Alimentations en eau potable :

La commune de Baraki dispose de plusieurs sources à débit plus au moins importants. Les deux sources principales sont :

- Les forages des champs de captage de Chaouch Felit (BARAKI BENTHALA) qui alimentent la bâche de BARAKI ville de volume 3000 m3 ($C_R = 21,51m$) par adduction et le château d'eau d'oued adda de volume $1500m^3$ ($C_R = 55m$).
- La conduite de renforcement SPIK à partir de la station de traitement du barrage de KADARA

Notre zone d'étude n'est pas dotée de réseau d'AEP, toutes les habitations de cette cité ne sont pas raccordées au réseau de la ville.

I.5.2. Assainissements:

Notre zone d'étude est caractérisée par un réseau d'assainissement unitaire vétuste avec des rejets d'eau usées qui s'effectuent directement vers des fosses septiques individuelles.

I.6 Conclusion:

Après l'achèvement de la présentation de la zone d'étude, on peut dire que ce chapitre nous ait permis de connaître les caractéristiques du lieu et les facteurs qui influent sur la réalisation de notre projet, topographique, climatologique ainsi que la démographique. Aucun détail n'est négligeable afin d'affiner l'étude, ce qui va nous aider à effectuer un bon dimensionnement.

Chapitre II

Estimation des besoins en eau

II-1) Introduction:

La réalisation d'un projet d'alimentation en eau potable d'une agglomération exige une estimation des ressources et des besoins en eau nécessaire à la consommation pour les différentes catégories de consommateur en attribuant à chacune une norme fixe (dotation). Il est à noter que ces besoins varient suivant l'évolution démographique, l'amélioration de mode de vie et les normes d'hygiène.

II-2) Evaluation de la population à l'horizon d'étude

L'évaluation des besoins en eau aux différents horizons, sera faite sur la base de l'évolution de la population. Cette dernière sera calculée pour l'horizon 2052 avec un taux d'accroissement de 2,00% (DRE Alger) à l'aide de la loi géométrique donnée par la relation suivante :

$$P_n = P_0(1+\tau)^n \dots \dots (II-1)$$

Avec:

 P_n : Population future prise à l'horizon 2052.

 P_0 : Population de l'année de référence (2020).

 τ : Taux d'accroissement (2,00%). (selon l'office national des statistiques)

n : Nombre d'années entre l'année de référence et l'année de l'horizon de calcul.

Tableau (II-1): Estimation de la population.

Horizons	2020	2022	2052
Nombre d'Habitants	3600	3745,44	6784

(Source DREW)

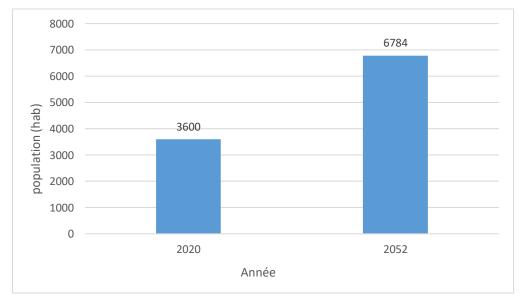


Figure II-1: Diagramme d'évolution de la population de la zone d'étude

II-3. Estimation des besoins en eau domestique :

II-3-1. Le débit moyen journalier

L'estimation du débit moyen de consommation domestique est exprimée par la formule suivante :

$$Q_{moy,j} = \frac{N_i * D_i}{1000} \left(\frac{m^3}{j}\right) \dots \dots (II - 2)$$

Avec:

 $Q_{moy,j}$: Consommation moyenne journalière en m^3/j

 D_i : Dotation journalière en l/j/habitant.

 N_i : Nombre de consommateurs (habitant).

Tableau(II-2): Récapitulatif des besoins domestiques.

Horizon	population	Dotation (l/j/hab.)	$Q_{moy,j} (m^3/j)$
2020	3600	120	432
2022	3745,44	125	468,18
2052	6784	180	1221,12

II-3-2. Le débit moyen journalier pour les équipements :

L'évaluation des besoins en eau des équipements est indispensable pour l'estimation de la quantité d'eau nécessaire à l'agglomération, afin d'éviter toute perturbation. Pour cela, la dotation moyenne journalière, est choisie selon chaque équipement.

Les besoins des équipements publics se calculent comme suit :

$$Q_{moy,j} = \sum \frac{N_i * D_i}{1000} \left(\frac{m^3}{j}\right) \dots \dots (II - 3)$$

A. Besoins scolaires:

Les besoins des différents équipements scolaires réunis sur la zone d'étude sont regroupés dans le Tableau (II-3).

Tableau (II-3): Tableau récapitulatif des besoins scolaires.

Equipements	Nombre d'unité	Unité	Dotation (l/s/unité)	$Q(m^3/j)$
Garderie	60	Enfant	20	1,2
primaire	200	Elève	20	4
CEM	500	Elève	30	15
				Total= $20,2m^3/j$

B. Besoins commerciaux:

Les besoins des différents équipements commerciaux réunis sur la zone d'étude sont regroupés dans le tableau (II-4).

Tableau (II-4): Tableau récapitulatif des besoins commerciaux.

Equipements	Nombre d'unité	Unité	Dotation(l/s/unité)	$Q(m^3/j)$
caféteria	2	unité	1500	3
restaurant	3	unité	1500	4,5
alimentation				
géneral	2	unité	300	0,6
pharmacie	1	unité	200	0,2
laibririe	1	unité	200	0,2
boucherie				
boucherie	1	unité	500	0,5
douche	30	personne	250	7,5
boulangerie	1	m	2000	2
salle de sport	300	personne	50	15
station de lavage	20	voiture	180	3,6
cabinet dentaire	5	lit	70	0,35
				Total= $37,45 \ m^3/j$

C. Besoins socioculturels:

Les besoins des différents équipements scolaires réunis sur la zone d'étude sont regroupés dans le Tableau (II-5).

Tableau (II-5): Tableau récapitulatif des besoins socioculturels.

Equipements	Nombre d'unité	Unité	Dotation (l/s/unité)	$Q(m^3/j)$
stade	700	m	20	14
Mosquée	900	Fidèle	25	22,5
air de jeu	700	m	10	7
poste	20	personne	30	0,6
				Total= $44,1m^3/j$

D. Récapitulation des besoins en eau totaux :

Dans le tableau (II-6), nous récapitulons les besoins journaliers des équipements proposés pour l'horizon 2052.

Tableau (II-6): Récapitulation des besoins en eaux totaux

besoin	Domestique	Scolaire	Socioculturel	Commercial	Total
Année	(m^3/j)	(m^3/j)	(m^3/j)	(m^3/j)	(m^3/j)
2052	1221,12	20,2	44,1	37,45	1322,87

II-4) Débit de fuite et de gaspillage :

Afin de prendre les fuites et les gaspillages en considération au niveau du réseau d'alimentation en eau potable et d'éviter toute risque d'insuffisance dans la consommation journalière, il est important de faire une majoration de 20% (tableau II-3). Ces fuites sont en fonction du type des conduites et de la nature du terrain.

$$Q_{fuite} = 20\% \ Q_{moy,j} \dots \dots \dots (II-3)$$

$$Q'_{moy,j} = 1.2 \ Q_{moy,j} \dots \dots (II - 4)$$

Tableau (II-7): Majoration de la consommation moyenne journalière.

Horizon	$Q_{moy,j}(m^3/j)$	Coefficient de majoration	$Q'_{moy,j}(m^3/j)$
2020	432	1,2	561,6
2022	468,18	1,2	608,634
2036	741,3	1,2	963,69
2052	1322,87	1,2	1587,444

II-5) Variation de la consommation journalière :

Durant la journée, la consommation d'eau n'est pas régulière, elle varie en présentant des maximums et des minimums. Ces variations sont caractérisées par des coefficients d'irrégularités K_{max} et K_{min} .

$$K_{max\;(min),j} = \frac{consommation\; maximale\;(minimale)\; journali\'ere}{consommation\; moyenne\; journali\'ere} = \frac{Q_{max\;(min),j}}{Q_{moy,j}} \dots \dots \dots (II-5)$$

II-5-1) Débit maximal journalier :

La consommation journalière maximale, représente le débit d'eau maximal du jour le plus chargé de l'année. Elle s'obtient par la relation suivante :

$$Q_{max,j} = K_{max,j} * Q'_{moy,j} (II - 6)$$

Avec

 $K_{max,j}$: Coefficient d'irrégularité journalier maximum, $K_{max,j} \in \{1.1 \sim 1.3\}$.

Tableau (II-8) : Variation de la consommation journalière maximale.

Horizon	$Q'_{moy,j} (m^3/j)$	$K_{max,j}$	$Q_{max,j} (m^3/j)$
2020	561,6	1,3	730,08
2022	608,634	1.3	791,22
2036	963,69	1,3	1252,8
2052	1587,456	1,3	2063,693

II-5-2) Débit minimal journalier :

La consommation journalière minimale, représente le débit du jour ou la consommation est la moins chargé de l'année. Elle est représentée par la relation suivante :

$$Q_{min,j} = K_{min,j} * Q'_{mov,j} (II - 7)$$

 $K_{min,j}$: Coefficient d'irrégularité journalière minimale, $K_{min,j} \in \{0.7 \sim 0.9\}$.

Tableau (II-9) : Variation de la consommation journalière minimale.

Horizon	$Q'_{moy,j} (m^3/j)$	$K_{min,j}$	$Q_{min,j} (m^3/j)$
2020	561,6	0,8	449,28
2022	608,634	0,8	486,91
2052	1587,456	0,8	1269,965

II-6) Variation des débits horaires :

II-6-1) Débit moyen horaire :

Ce débit correspond à un débit de consommation moyen pendant la journée la plus chargée. Il est donné par la formule par suivante :

$$Q_{moy,h} = \frac{Q_{max,j}}{24} [m^3/h] \dots \dots (II - 8)$$

 $Q_{moy,h}$: débit moyen horaire (m^3/h) .

 $Q_{max,h}$: débit maximum horaire (m^3/h) .

II-6-2) Débit maximal horaire :

C'est le débit correspondant à la consommation maximale de l'heure la plus chargée pendant la journée. Il est utilisé pour le dimensionnement du réseau de distribution à l'intérieur de l'agglomération, il est donné par la formule suivante :

$$Q_{max,h} = K_{max,h} * Q_{moy,h} \left[\frac{m^3}{h} \right] \dots \dots (II - 9)$$

Avec:

 $K_{max,h}$: coefficient d'irrégularité de la consommation horaire maximale et il est déterminé par la formule suivante :

$$K_{max,h} = \alpha_{max} * \beta_{max} \dots \dots (II - 10)$$

Avec: $\alpha_{max} \in \{1, 2 \sim 1, 4\}$

On prend : $\alpha_{max} = 1,3$

Tableau (II-10): Les valeurs de β_{max} en fonction de la population.

habitant	1000	1500	2500	4000	6000	10000	20000	30000
β	2	1,8	1,6	1,5	1,4	1,3	1,2	1,15

Tableau (**II-11**): Variation de la consommation horaire maximale.

Horizon	α_{max}	β_{max}	K _{max,h}	$Q_{moy,h} (m^3/h)$	$Q_{\text{max,h}} (m^3/h)$
2020	1,3	1,57	2,041	30,42	62,09
2022	1,3	1,56	2,028	32,97	66,93
2036	1,3	1,48	1,924	52,2	100,43
2052	1,3	1,38	1,716	85,99	154,26

II-6-3) Débit minimal horaire :

Ce débit correspond au débit de consommation de l'heure la moins chargée, il est donné par la formule suivante :

$$Q_{min,h} = K_{min,h} * Q_{moy,h} \dots \dots (II-11)$$

Avec:

 $K_{min,h}$: coefficient d'irrégularité de la consommation horaire minimum et il est déterminé par la formule suivante :

$$K_{min,h} = \alpha_{min} * \beta_{min} \dots \dots (II - 12)$$

Avec: $\alpha_{min} \in \{0.4 \sim 0.6\}$

On prend: $\alpha_{min}=0.6$

Tableau (II-12): Les valeurs de β_{min} en fonction de la population

population	1000	1500	2500	4000	6000	10000	20000	30000
β	0,1	0,1	0,1	0,2	0,25	0,4	0,5	0,6

Tableau (II-13): Variation de la consommation horaire minimale.

Horizon	α_{min}	$oldsymbol{eta_{min}}$	$K_{min,h}$	$Q'_{moy,h} (m^3/h)$	$Q_{min,h} (m^3/h)$
2020	0,6	0,173	0,104	45,63	4,746
2036	0,6	0,224	0,135	62,64	8,457
2052	0,6	0,28	0,168	85,99	14,446

II-7) Évaluation de la consommation horaire en fonction du nombre d'habitant :

La consommation d'une agglomération varie d'une heure à l'autre en fonction du nombre d'habitants. On montre l'évolution de la consommation horaire durant la journée dans le tableau ci-dessous :

$$Q_h = \frac{C_h * Q_{max,j}}{100} \dots \dots (II - 13)$$

Avec:

 Q_h : Débit horaire nécessaire.

 C_h %: Pourcentage horaire.

Tableau (II-14): Variation de la consommation horaire pour notre agglomération (2052).

	Aggloméra	tions	cumulé		
Heures	%	Q (m^3/h)	%	Q cumulé	
0-1	1,00	20,64	1,00	20,64	
1-2	1,00	20,64	2,00	41,27	
2-3	1,00	20,64	3,00	61,91	
3-4	1,00	20,64	4,00	82,55	
4-5	2,00	41,27	6,00	123,82	
5-6	3,00	61,91	9,00	185,73	
6-7	5,00	103,18	14,00	288,92	
7-8	6,50	134,14	20,50	423,06	
8-9	6,50	134,14	27,00	557,20	
9-10	5,50	113,50	32,50	670,70	
10-11	4,50	92,87	37,00	763,57	

Tableau (II-14): Variation de la consommation horaire pour notre agglomération (2052).

11-12	5,50	113,50	42,50	877,07
12-13	7,00	144,46	49,50	1021,53
13-14	7,00	144,46	56,50	1165,99
14-15	5,50	113,50	62,00	1279,49
15-16	4,50	92,87	66,50	1372,36
16-17	5,00	103,18	71,50	1475,54
17-18	6,50	134,14	78,00	1609,68
18-19	6,50	134,14	84,50	1743,82
19-20	5,00	103,18	89,50	1847,01
20-21	4,50	92,87	94,00	1939,87
21-22	3,00	61,91	97,00	2001,78
22-23	2,00	41,27	99,00	2043,06
23-24	1,00	20,64	100,00	2063,69

❖ La figure montre une courbe de la consommation totale durant la journée :

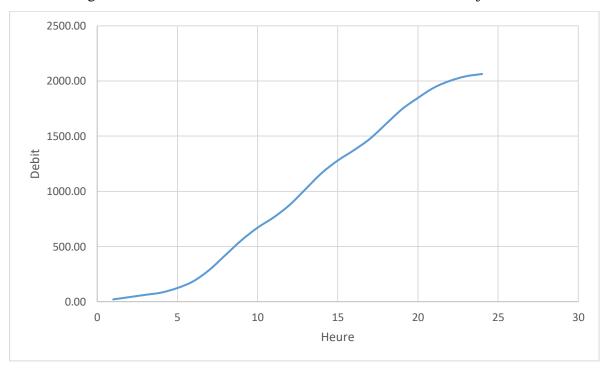


Figure (II-2) : Courbe des débits cumulés.

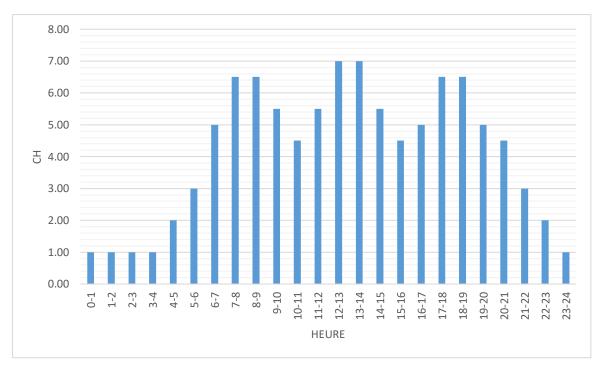


Figure (II-3): Régime de la consommation horaire (2052).

A partir du tableau (II-10), le débit de pointe de notre agglomération dans l'horizon 2052 est estimé à $144,46m^3/h$ entre 12h et 14h

II-8) Conclusion:

Notre objectif dans ce chapitre est l'estimation des besoins en eau potable domestiques de la zone d'étude à l'horizon 2052. Ce chapitre nous a permis de connaitre le régime de consommation horaire ainsi que la courbe cumulé utile pour la détermination du volume du réservoir.

Chapitre III:

Les réservoirs de stockage

III-1. Introduction:

Lors de la réalisation d'un réseau d'AEP (adduction et distribution), il est indispensable d'avoir un ouvrage de stockage, pour satisfaire les besoins en eau de l'agglomération qui sont variables dans le temps. Le réservoir sert à capter, stocker et distribué de l'eau à l'intérieure du réseau. Il a pour fonction essentiel la régulation entre le débit consommé et celui approvisionné. Le but de ce chapitre est de déterminer la capacité des ouvrages de stockage nécessaire à l'horizon de calcul et la comparer à la capacité déjà existante.

III-2. Les rôles d'un réservoir

Les réservoirs de stockage ont pour rôle essentiel de réguler la pression et le débit entre la phase de production (du forage vers le stockage) et la phase de consommation (du stockage à la consommation). Les réservoirs constituent une réserve qui permet d'assurer aux heures de pointe (le débit maximal demandé), de plus il peut aussi :

- * Régulariser le fonctionnement de pompage ;
- Emmagasiner l'eau pendant les heures de creuses ;
- * Régulariser la pression dans le réseau de distribution ;
- ❖ Stocker la réserve d'incendie ;
- ❖ Jouer le rôle de brise charge dans le cas d'une distribution étagée ;
- ❖ Jouer le rôle de relai.

III-3. Caractéristiques du réservoir

Le réservoir doit présenter les caractéristiques suivantes :

- **t** Etanchéité de la paroi intérieure pour éviter les fuites ;
- * Résistance contre les forces auxquels il est soumis ;
- ❖ Durabilité pendant une très longue durée contre le contact de l'eau.

III-4. Emplacement du réservoir :

L'emplacement du réservoir à pour condition l'assurance d'une pression suffisante aux abonnés au moment de pointe. Le meilleur emplacement n'est déterminé qu'après une étude technico-économique approfondie, en prenant en considération les conditions suivantes :

- ❖ L'alimentation du réseau de distribution doit se faire par gravité, le réservoir doit être construit à un niveau supérieur à celui de l'agglomération ; la cote du réservoir, plus précisément du radier doit se situer à un niveau supérieur à la plus haute côte piézométrique exigée dans le réseau.
- ❖ Ils doivent être placés à un niveau supérieur à celui de l'agglomération qu'ils desservent.

- L'altitude du réservoir, plus précisément du radier doit se situer à un niveau supérieur à la plus haute cote piézométrique exigée sur le réseau.
- ❖ Le site du réservoir doit être le plus proche possible de l'agglomération (économie) pouvant alimenter le point le plus défavorable.
- ❖ Il doit être construit sur des terrains stable et solides.

III-5. Classification des réservoirs :

III-5-1. Selon le matériau de construction :

- * Réservoir métalliques ;
- * Réservoir en maçonnerie ;
- * Réservoir en béton (armé, ordinaire ou précontraint).

III-5-2. Selon la situation des lieux :

- * Réservoir enterrés;
- * Réservoir semi-enterrés ;
- * Réservoir surélevés, sur tour.

III-5-3. Selon la forme géométrique :

- * Réservoir circulaires :
- * Réservoir rectangulaires ;
- * Réservoirs de forme quelconque

III-5-4. Selon l'utilisation:

- * Réservoir principal d'accumulation et stockage;
- * Réservoir d'équilibre (réservoir tampon);
- * Réservoir de traitement.

III-6. Choix du type de réservoir :

Notre étude consiste à maintenir un ouvrage de stockage d'eau pour satisfaire quantitativement les consommateurs de la région dans la venir.

Dans notre cas, puisque c'est une zone presque plane, on prend un réservoir surélevé (château d'eau).

Le choix de type est basé sur les avantages suivants :

- La sécurité de l'alimentation et la qualité de l'eau
- Le coût global de la construction, de l'exploitation et de la maintenance ;
- L'intégration dans le système de distribution d'eau ;
- La durabilité de l'ouvrage prenant en compte le comportement des riverains (vandalisme) et les aléas (risque sismique, météorologique)

III-7. Equipements des réservoirs :

Les réservoirs sont équipés des systèmes d'arrivé, de départ, de vidange et de trop plein, ainsi qu'un mécanisme de régulation de capteur du niveau d'eau dans la cuve commandant le fonctionnement des pompes qui l'alimentent en eau. Les réservoirs alimentés à partir d'adduction gravitaire seront commandés par robinet à flotteur ou obturateur.

Un réservoir doit être équipé par :

- ❖ Conduite d'arriver ou d'alimentation (d'adduction) ;
- Conduite de départ ou de distribution ;
- Conduite de vidange ;
- Conduite de trop plein ;
- Conduite de by-pass ;
- Système de matérialisation de la réserve d'incendie.

III-7-1. Conduite d'arrivée :

Cette conduite, doit arriver dans un réservoir surélevé en haut. La conduite est munie d'un flotteur à son arrivée, afin d'arrêter la pompe dans le cas de l'adduction par refoulement, où il ferme le robinet dans le cas d'adduction gravitaire. Cette arrivée permet le renouvellement d'eau par mélange en créant des perturbations et un écoulement par rouleaux.

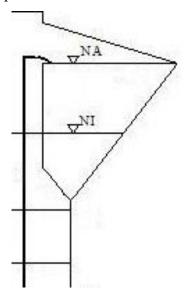


Figure (III-1): Conduite d'amené.

III -7-2. Conduite de distribution :

La conduite de départ ou de distribution est mise à l'opposé de la conduite d'arrivée. Elle est placée 15 à 20cm au-dessus du radier afin d'éviter l'entrainement des dépôts. Cette conduite est munie d'une crépine pour éviter le phénomène de vortex pour empêcher la pénétration des matières en suspension.

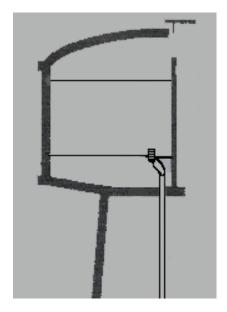
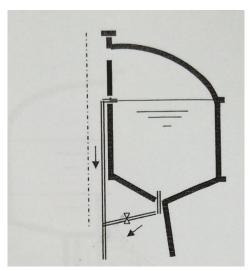


Figure (III-2): Conduite de distribution.


(Alimentation en eau potable des agglomérations, Mr SALAH.B ,2014).

III-7-3. Trop-plein:

Cette conduite assure l'évacuation de l'excès d'eau arrivée au réservoir en cas de défaillance du système d'arrêt de pompage. L'extrémité de cette conduite doit être en forme de siphon afin d'éviter l'introduction de certains corps nocifs dans la cuve.

III-7-4. Vidange:

La conduite vidange se trouve au point bas du réservoir et reliée généralement à la conduite de trop-plein. Elle est nécessaire pour le nettoyage et l'inspection ainsi que les éventuelles réparations. Elle contient un robinet vanne qui doit été nettoyé après chaque vidange.

Figure (III-3) : Conduite du trop-plein et de vidange (Alimentation en eau potable des agglomérations, Mr SALAH.B ,2014).

III-7-5. By-pass:

Le by-pass est un dispositif qui relie la conduite d'amenée d'eau et la conduite de départ. On l'utilise lorsqu'on désire assurer la distribution pendant la vidange ou la réparation du réservoir.

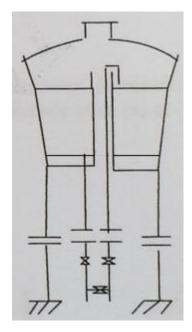


Figure (III-3): Conduite du By-pass.

(Alimentation en eau potable des agglomérations, Mr SALAH.B ,2014).

III-7-6. Matérialisation de la réserve d'incendie :

La réserve d'incendie doit être toujours disponible afin de répondre aux besoins urgents dus aux éventuels incendies. Pour conserver cette réserve d'incendie et éviter son passage dans la distribution nous adopterons un système de tuyauterie qui permet d'interrompre l'écoulement une fois le niveau de la réserve d'incendie est atteinte.

On distingue deux types de dispositions :

III-7-6-1. Système siphon :

- ❖ En service normal, la vanne (1) est ouverte, le siphon se désamorce dès que le niveau de la réserve d'incendie est atteint et ce grâce à l'évent ouvert à l'air libre ; ainsi l'eau se trouvant au voisinage du fond est constamment renouvelé.
- En cas d'incendie, on ouvre la vanne (2) pour pouvoir exploiter cette réserve, une vanne
 (3) supplémentaire est prévue pour permettre les répartitions sans vider le réservoir

III-7-6-2. Le système à deux prises :

Rarement utilisé du fait d'existence d'une couche d'eau morte.

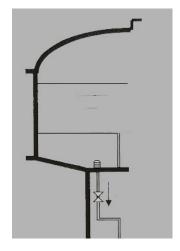


Figure (III-4): Matérialisation de la réserve d'incendie.

(Alimentation en eau potable des agglomérations, Mr SALAH.B ,2014).

III-8. Calcul de l'ouvrage de stockage :

Le réservoir projeté doit assurer la distribution vers notre zone d'étude pour un pompage d'une durée de 20 heures (15h-19h). Le nombre d'habitants de l'agglomération est de : 6784 habitants et la consommation maximale journalière est de : 2063,693 m3 /j.

Pour assurer le rôle du réservoir, il doit avoir une capacité suffisante. En règle générale, la capacité est calculée pour satisfaire les variations journalières du débit de consommation en tenant compte le jour de plus forte consommation et de la réserve d'eau destinée à l'incendie.

III-8-1. Calcul analytique de la capacité du réservoir :

Cette méthode se base sur le régime de la consommation tout au long de la journée et le temps du fonctionnement de la pompe. Elle consiste, pour chaque heure de la journée, à calculer le résidu dans le réservoir. Le tableau (IV-1) détermine la différence pour chaque heure de stockage entre l'apport et la consommation.

Tableau (III-1): Evaluation de la capacité du stockage

Heure	Consommatio	Appor	Cumul	Cumul	Stockage	Déstockage
S	n %	t %	consommation %	apport %	surplus	Déficit
0-1	1	5	1	5	4	
1-2	1	5	2	10	8	
2-3	1	5	3	15	12	
3-4	1	5	4	20	16	
4-5	2	5	6	25	19	
5-6	3	5	9	30	21	
6-7	5	5	14	35	21	
7-8	6,5	5	20,5	40	19,5	

Tableau (III-1): Evaluation de la capacité du stockage (suite).

8-9	6,5	5	27	45	18	
9-10	5,5	5	32,5	50	17,5	
10-11	4,5	5	37	55	18	
11-12	5,5	5	42,5	60	17,5	
12-13	7	5	49,5	65	15,5	
13-14	7	5	56,5	70	13,5	
14-15	5,5	5	62	75	13	
15-16	4,5	0	66,5	75	8,5	
16-17	5	0	71,5	75	3,5	
17-18	6,5	0	78	75		3
18-19	6,5	0	84,5	75		9,5
19-20	5	5	89,5	80		9,5
20-21	4,5	5	94	85		9
21-22	3	5	97	90		7
22-23	2	5	99	95		4
23-24	1	5	100	100	0	0

Le volume total du réservoir est déterminé par la formule suivante :

$$V_T = V_u + V_{inc} \quad [m^3] \ \dots \dots \dots (III-1)$$

 V_u : volume utile (m^3)

 V_{inc} : volume d'incendie estimé à 120 (m^3)

$$V_{u} = \frac{V_{max} + |V_{min}|}{100} * Q_{max,j} [m^{3}] \dots \dots (III - 2)$$
$$V_{u} = \frac{21 + 9.5}{100} * 2063,693$$

 $V_u = 629,43m^3$

$$V_T = 629,43 + 120 = 749,43 \ m^3$$

On prendra une valeur normalisée de : $V_{tot} = 800 \ m^3$.

Le réservoir existant (R_1 =1500 m^3) qui alimente la partie Est de la commune de Baraki, une partie de Baraki ville et notre agglomération est largement insuffisant, donc on propose un autre château d'eau avec une capacité $R_2 = 800 \ m^3$.

III-8-2. Dimensionnement du réservoir R2 :

III-8-2-1. La section du réservoir :

Pour une hauteur de 5m, on détermine la section qui est :

$$V = S* H.......(III - 3)$$

S: la section du réservoir (m^2) .

V : Volume total du réservoir (m^3) .

H: hauteur d'eau dans le réservoir (m).

III-8-2-2. Le diamètre du réservoir :

$$S = \frac{\pi * D^2}{4} \dots \dots (III - 4)$$
$$D = \sqrt{\frac{4*S}{\pi}} \dots \dots (III - 5)$$

D'où

III-8-2-3. La hauteur de la réserve d'incendie :

$$H_{\rm inc} = \frac{V_{\rm inc}}{S} \dots \dots (III - 6)$$

 H_{inc} : hauteur de la réserve d'incendie (m).

 V_{inc} : le volume de la réserve d'incendie (m^3)

III-8-2-4. La hauteur totale du réservoir :

$$H_T = H + H_{inc} + R \dots \dots (III - 7)$$

 H_T : hauteur totale du réservoir (m).

H : hauteur d'eau dans la cuve (m).

R: marge de sécurité (R= 0,5)

III-8-2-5. La cote du réservoir :

$$C_{pn} = C_{pm} + \sum_{i=n}^{m} \Delta H_i \dots \dots (III - 8)$$

$$C_{p,R2} = C_{p,n2} + \sum_{i=R2}^{2} \Delta H_i$$

 $C_{p,R2}$: cote piézométrique du réservoir R2

 $C_{p,n2}$: cote piézométrique du point défavorable.

 $\sum_{i=R_2}^2 \Delta H_i$: la somme des pertes de charge de la canalisation principale.

Le tableau (III-2) nous montre les caractéristiques du réservoir R2 qu'on a calculé.

Tableau (III-2): Caractéristique du réservoir R2 calculé.

$V(m^3)$	$S_R(m^3)$	$H_R(\mathbf{m})$	$D_R(m)$	$V_{inc}(m^3)$	$H_{inc}(m)$	$H_{tot}(\mathbf{m})$	Cote du radier (m)
800	160	5	14,28	120	0,75	6,25	42

III-9. Entretien des réservoirs et hygiène :

L'hygiène et la sécurité se sont des normes importantes et exigées dans les réservoirs afin de protéger l'eau et éviter toute apparition de pollution en provenance de l'extérieur et pour éviter d'éventuelles fissures. Par conséquent, les réservoirs doivent :

- Comporter une couverture qui protège l'eau contre les variations de température et l'introduction des corps étrangers;
- ❖ Avoir un périmètre de protection afin d'éviter tout rapprochement d'animaux ou d'individus étrangers (sauf le personnel) ;
- Ltre éclairés en laissant quelques ouvertures munies d'épaisses plaques de verre ;
- ❖ De procéder à un nettoyage au moins annuel du réservoir ;
- ❖ Avoir les robinets de puisage pour faciliter le contrôle de l'eau ;
- Etre aérés par les orifices de grillage.

III-10. Conclusion:

En conclusion, nous pouvons dire que le rôle du réservoir est important dans la réalisation d'un réseau d'AEP (stockage et distribution). La prise en charge du volet sécurité est primordiale et nécessite des réflexions qui dépassent l'étude à l'utilisation finale pour se rendre compte de toutes les éventualités et éviter la défaillance. Ce chapitre a pour but de vérifier la capacité de stockage du réservoir existant et s'il y a intérêt de projeter un autre réservoir ou non. Selon les calculs fait, nous avons conclu que le réservoir existant est insuffisant et ne va pas satisfaire les besoins en eau de notre zone à long terme. Pour cela on doit projeté un autre réservoir circulaire d'une capacité de $800m^3$.

Chapitre IV:

Dimensionnement du réseau de distribution

IV-1. Introduction:

Dans le but d'assurer les besoins en eau aux consommateurs à partir d'un ouvrage de stockage, il est indispensable d'effectuer un réseau de distribution à l'aide de canalisations sur lequel des branchements seront piqués. Les canalisations doivent avoir un diamètre optimal permettant d'assurer le débit de pointe et une pression de service suffisante à chaque instant.

IV-2. Le réseau de distribution :

IV-2-1. Structure des réseaux :

Les principaux éléments d'un réseau de distribution sont :

- Les conduites, Les branchements.
- **Les accessoires (vannes, compteurs...).**
- Les pièces spéciales (coudes, raccordements, ...)

IV-2-2. Classification des réseaux d'AEP:

IV-2-2-1. Réseau maillé:

Le réseau maillé est constitué d'une série de tronçons formant des boucles. Il permet une alimentation de retour. Ainsi, il est plus sécurisé dans l'alimentation en cas de rupture d'une conduite, il suffit de l'isoler et tous les abonnés situés à l'aval seront alimentés par les autres conduites. La répartition des pressions et des débits est uniforme dans tout le réseau. Ce réseau est plus coûteux et plus difficile à calculer mais préférable au réseau ramifié, pour la commodité et la sécurité qu'il procure.

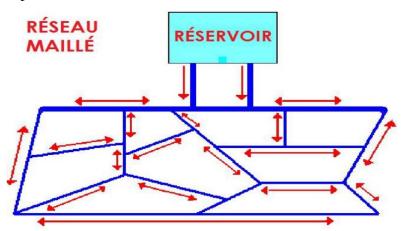


Figure (IV-1): Schéma du réseau maillé

IV-2-2-2. Réseau ramifié :

Un réseau ramifié est constitué d'une conduite principale et des conduites secondaires branchées tout le long de la conduite principale. Ce type de réseau n'assure aucune alimentation en retour.

De ce fait, Il suffit qu'une panne se produise sur la conduite principale, toute la population à l'aval sera privée d'eau. Il présente l'avantage d'être économique, mais manque de sécurité et de souplesse en cas de rupture.

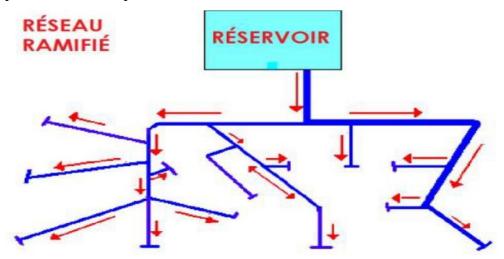


Figure (IV-2): Schéma du réseau ramifié

IV-2-2-3. Réseau mixte (combiné) :

Le réseau mixte est constitué d'une partie ramifiée et une autre maillée. Ce type est utilisé pour desservir les quartiers en périphérie de l'agglomération par les ramifications issues des mailles utilisées dans le centre.

IV-2-2-4. Réseau étagé:

Ce réseau est caractérisé par les différences de niveau très importantes ; ce qui fait la distribution de l'eau par le réservoir donne des fortes pressions au point le plus bas. En effet ce système nécessite une installation d'un réservoir intermédiaire alimenté par le premier qui permet de régulariser la pression dans le réseau.

IV-2-2-5. Réseau à alimentation distincte :

Les réseaux d'alimentations distincts distribuent, d'une part, l'eau potable destinée à tous les besoins domestiques, et d'autre part, l'eau non potable réservée aux usages industriels et aux lavages et arrosages des rues et plantations.

IV-2-3. Principe du tracé du réseau :

- ❖ La conception du réseau de distribution est une procédure délicate. Elle exige à prendre certaines précautions et respecter quelques conditions, qui sont les suivantes :
- * Repérer les quartiers les plus denses de la population.
- * Repérer les consommateurs importants (débit concentre).
- ❖ Déterminer l'itinéraire (sens) principale pour assurer la distribution aux consommateurs.

- Tracer les conduites maitresses, elles doivent être situées sur les côtes les plus élevées pour bien répartir l'eau.
- ❖ Et pour définir le tracé final, on doit prendre en considération les points suivants :
- ❖ Minimiser le nombre de passage difficile (chemin de fer, rivières, ...)
- **!** Eviter les pentes trop fortes et les zones rocheuses.

Le type de réseau retenu :

Dans le cadre d'étude purement technique et économique, pour une meilleure utilisation des infrastructures et pour une distribution raisonnable de l'eau, nous avons opté à un réseau maillé.

IV-2-4. Choix du système de la distribution :

Dans l'alimentation en eau potable ; on distingue deux principaux systèmes de distribution

- Système à réservoir de tête.
- Système à contre réservoir ou à injection directe.

Dans notre cas nous avons opté pour le système à contre réservoir.

IV-2-5. Choix du type des matériaux :

Pour faire le choix du type de matériau à utiliser pour la réalisation du réseau ; il faut prendre en considération les paramètres suivants :

- Le diamètre.
- La pression du service à supporter par le matériau.
- Les conditions de pose et de transport.
- **!** Le prix.
- La durée de vie du matériau.
- La disponibilité de ce dernier sur le marché.

Dans notre cas nous avons opté pour les conduites en PEHD, suite à ces caractéristiques mécaniques et hydrauliques. On peut citer :

- * Facilité de pose (flexible);
- Fiables au niveau des branchements ;
- * Répond parfaitement aux normes de potabilité ;
- ❖ Durée de vie plus de 50ans ;
- ❖ Bonne caractéristique hydraulique (rugosité très faible) ;
- Disponibilité dans le marché.

IV-3. Calcul hydraulique du réseau de distribution :

Les conduites devront transiter les eaux avec un fort débit lors de la pointe et ainsi lors la consommation est minimale.

Le dimensionnement et la détermination des débits dans un réseau s'effectuent de la manière suivante :

- ❖ Déterminer la longueur de chaque tronçon du réseau ;
- ❖ Déterminer le débit spécifique et les débits routes dans chaque tronçon ;
- * Déterminer les débits supposés concentrés aux nœuds.

IV-3-1. Détermination des débits de dimensionnement :

Le système projeté dans notre zone d'étude est le système de distribution avec deux réservoirs surélevés (contre réservoir). Pour la détermination des différents paramètres hydrauliques du réseau on va étudier les trois cas : cas de pointe, cas de pointe + incendie et le cas de transit.

IV-3-1-1. Débit spécifique :

C'est le volume d'eau consommé à travers un mètre linéaire de canalisation par unité de temps. Il est donné par la relation :

$$q_{sp} = \frac{Q_p}{\sum L_i} [(l/s)/m] \dots \dots (IV - 1)$$

 Q_p : débit de pointe de la zone (l/s)

 $\sum L_i$: somme des longueurs des tronçons du réseau (m)

IV-3-1-2. Débits en route :

Le débit en route est le débit circulant à travers un tronçon et supposé être consommé d'une façon uniforme sur toute la longueur de ce dernier. Il est donné par la relation suivante :

$$Q_{ri} = q_{sp} * L_i[l/s] (IV - 2)$$

Q_{ri}: débit en route dans le tronçon i (l/s);

 L_i : longueur du tronçon (m)

IV-3-1-3. Débit nodal:

Les débits nodaux sont des débits concentrés en chaque nœud pour alimenter la population répartie autour de la moitié des tronçons des conduites ayant en commun les nœuds considérés. Ils sont déterminés par la relation suivante :

$$Q_{ni} = 0.5 * \sum Q_{ri} + * \sum Q_{conc} \left[\frac{l}{s} \right] \dots \dots (IV - 3)$$

Q_{ni}: débit du nœud concerné (1/s)

 $\sum Q_{ri}$: somme des débits en route des tronçons qui entourent le nœud (i), (l/s)

 $\sum\!Q_{conc}$: débit concentré au nœud (i), (l/s)

A. Cas de pointe :

D'après les résultats du tableau (II-10), donnant la consommation horaire de notre agglomération, on constate que l'heure de pointe est entre 12h à 14h.

On a le débit de pointe : $Q_{pte} = 144,46 \frac{m^3}{h}$

Ce qui donne : $q_{sp} = \frac{144,46*1000}{9238,12*3600} = 0,0043 \text{ l/s/ml}$

Les résultats de calcul des débits aux nœuds dans le cas de pointe sont représentés dans le tableau (IV-1).

Tableau (IV-1): Détermination des débits aux nœuds dans le cas de pointe.

nœuds	conduites	longueur (m)	debit spécifique (l/s/m)	Qr(l/s)	Qn (1/s)
n1	n9	318,4		1,389	0,694
n2	R			0,000	2,370
	n84	1086,21		4,739	
n3	n4	33,31		0,145	0,777
	n38	322,8		1,408	
n4	n3	33,31		0,145	0,854
	n5	41,73		0,182	
	n37	316,3		1,380	
n5	n4	41,73		0,182	0,851
	n6	34,29		0,150	
	n36	314,1		1,370	
n6	n5	34,29		0,150	0,866
	n7	46,85	0.0042	0,204	
	n35	315,8	0,0043	1,378	
n7	n6	46,85		0,204	0,835
	n8	20,67		0,090	
	n34	315,3		1,376	
n8	n7	20,67		0,090	0,593
	n9	18,4		0,080	
	n108	232,65		1,015	
n9	n8	18,4		0,080	0,791
	n10	25,59		0,112	
	n1	318,4		1,389	
n10	n9	25,59		0,112	0,604
	n11	40,22		0,175	
	n27	211		0,921	
n11	n10	40,22		0,175	0,222
	n12	9,936		0,043	
	n63	51,45		0,224	
n12	n11	9,936		0,043	0,130
	n75	22,44		0,098	
	n98	27,2		0,119	

Tableau (IV-1): Détermination des débits aux nœuds dans le cas de pointe (suite).

n13	n14	26,47		0,115	0,302
	n39	89,77		0,392	
	n101	22,4		0,098	
n14	n13	26,47		0,115	0,303
	n15	16,1		0,070	
	n65	96,26		0,420	
n15	n14	16,1		0,070	0,291
	n16	20,43		0,089	
	n40	96,74		0,422	
n16	n15	20,43		0,089	0,286
	n17	12,11		0,053	
	n66	98,58		0,430	
n17	n16	12,11		0,053	0,301
	n18	27,98		0,122	
	n41	97,94		0,427	
n18	n17	27,98		0,122	0,287
	n19	9,426		0,041	
	n67	94		0,410	
n19	n18	9,426	0,0043	0,041	0,312
	n20	28,47	0,0073	0,124	
	n42	104,9		0,458	
n20	n19	28,47		0,124	0,295
	n21	6,638		0,029	
	n68	100,3		0,438	
n21	n20	6,638		0,029	0,310
	n22	29,05		0,127	
	n104	106,2		0,463	
n22	n21	29,05		0,127	0,611
	n23	38,41		0,168	
	n43	104,9		0,458	
	n44	107,6		0,469	
n23	n22	38,41		0,168	0,609
	n24	27,55		0,120	
	n45	109,9		0,479	
	n46	103,5		0,452	
n24	n23	27,55		0,120	0,328
	n25	15,95		0,070	
	n47	107		0,467	
n25	n24	15,95		0,070	0,555
	n26	23,91		0,104	
	n48	103,9		0,453	
	n49	110,8		0,483	
n26	n25	23,91		0,104	0,427
	n87	23,09		0,101	
	n88	148,7		0,649	

Tableau (IV-1): Détermination des débits aux nœuds dans le cas de pointe (suite).

n27	n10	211		0,921	0,700
	n28	36,03]	0,157	7
	n70	73,78		0,322	
n28	n27	36,03]	0,157	0,291
	n29	30,03		0,131	
	n69	67,41		0,294	
n29	n28	30,03	1	0,131	0,266
	n30	20,85	1	0,091	
	n33	70,85		0,309	
n30	n29	20,85		0,091	0,263
	n31	23,97		0,105	
	n32	75,6		0,330	7
n31	n30	23,97		0,105	0,119
11.0 1	n89	5,5		0,024	
	n83	25,04		0,109	
n32	n30	75,6	1	0,330	0,165
n33	n29	70,85	1	0,309	0,155
n34	n7	315,3	-	1,376	0,688
n35	n6	315,8	0.0042	1,378	0,689
n36	n5	314,1	0,0043	1,370	0,685
n37	n4	314,1	-	1,380	0,690
n38	n3	322,8	-	1,408	1,045
1130	n91	156,3	-	0,682	1,043
n39	n13	89,77	-	0,392	0,196
n40	n15	96,74	-	0,422	0,170
n40	n17	97,94	-	0,427	0,211
n42	n19	104,9	-	0,458	0,214
n43	n22	104,9	-	0,458	0,229
n44	n22	104,5	-	0,469	0,225
n45	n23	107,0	-	0,479	0,233
n46	n23	109,9	-		
		103,3	-	0,452	0,226
n47	n24		-	0,467	0,233
n48 n49	n25	103,9	-	0,453	0,227
n50	n25	110,8	-	0,483	0,242
1130	n51	20,44	-	0,089	0,435
	n98	147,1	-	0,642	4
n51	n105	32,03	-	0,140	0.211
n51	n50	20,44	-	0,089	0,311
	n52	90,21	-	0,394	4
50	n106	32,09	-	0,140	0.107
n52	n51	90,21	-	0,394	0,197
n53	n54	17,02	-	0,074	0,037
n54	n53	17,02	-	0,074	0,241
	n55	60,84	-	0,265	4
	n56	32,7		0,143	

Tableau (IV-1): Détermination des débits aux nœuds dans le cas de pointe (suite).

		1 _			
n55	n54	60,84		0,265	0,133
n56	n54	60,84		0,265	0,347
	n57	80,37		0,351	
	n58	17,65		0,077	
n57	n56	80,37		0,351	0,175
n58	108	81,2		0,354	0,434
	n56	17,65		0,077	
	n59	100		0,436	
n59	n58	100		0,436	0,397
	n60	42,04		0,183	
	n61	40,13		0,175	
n60	n59	42,04		0,183	0,100
n61	n59	40,13		0,175	0,318
	n62	66,15		0,289	
	n63	39,54		0,173	
n62	n61	66,15		0,289	0,144
n63	n11	51,45		0,224	0,299
	n61	39,54	0,0043	0,173	
	n64	46	0,0043	0,201	
n64	n63	46		0,201	0,100
n65	n14	96,26		0,420	0,210
n66	n16	98,58		0,430	0,215
n67	n18	94		0,410	0,205
n68	n20	100,3		0,438	0,219
n69	n28	67,41		0,294	0,147
n70	n27	73,78		0,322	0,161
n71	n72	68,2		0,298	0,149
n72	n71	68,2		0,298	0,260
	n74	29,93		0,131	
	n77	21,01		0,092	
n73	n74	67,12		0,293	0,146
n74	n72	29,93		0,131	0,317
	n73	67,12		0,293	
	n99	48,26		0,211	
n75	n12	22,44		0,098	0,049
n76	n77	67,12		0,293	0,146
n77	n72	21,01		0,092	0,276
	n76	67,12		0,293	
	n79	38,42		0,168	
n78	n79	69,52		0,303	0,152
n79	n77	38,42		0,168	0,324
	n78	69,52		0,303	
	n81	40,45		0,176	
n80	n81	71,56		0,312	0,156

Tableau (IV-1): Détermination des débits aux nœuds dans le cas de pointe (suite).

n81	n79	40,45		0,176	0,540
	n80	71,56		0,312	- 9-
	n82	135,5		0,591	
n82	n81	135,5		0,591	0,296
n83	n31	25,04		0,109	0,289
	n91	25,57		0,112	- ,
	n92	82,05		0,358	
n84	n85	27,39		0,120	2,429
	n2	1086,21		4,739	,
n85	n84	27,39		0,120	0,326
	n86	37,07		0,162	Ź
	n95	84,95		0,371	
n86	n85	37,07		0,162	0,343
	n87	32,85		0,143	Ź
	n96	87,19		0,380	
n87	n26	23,09		0,101	0,310
	n86	32,85	0,0043	0,143	Ź
	n97	86,33	0,0043	0,377	
n88	n26	148,7		0,649	0,602
	n89	42,96		0,187	,
	n94	84,36		0,368	
n89	n31	5,5		0,024	0,295
	n88	42,96		0,187	
	n93	86,95		0,379	
n90	n91	86,59		0,378	0,189
n91	n38	156,3		0,682	0,586
	n83	25,57		0,112	
	n90	86,59		0,378	
n92	n83	82,05		0,358	0,179
n93	n89	86,95		0,379	0,190
n94	n88	84,36		0,368	0,184
n95	n85	84,95		0,371	0,185
n96	n86	87,19		0,380	0,190
n97	n87	86,33		0,377	0,188
n98	n12	27,2		0,119	0,397
	n50	147,1		0,642	
	n99	7,888		0,034	
n99	n74	48,26		0,211	0,206
	n98	7,888		0,034	
	n100	38,17		0,167	
n100	n99	38,17		0,167	0,307
	n107	73,57		0,321	
	n102	28,85		0,126	

n101	n13	22,4		0,098	0,257
	n107	12,57		0,055	
	n103	82,7		0,361	
n102	n100	28,85		0,126	0,063
n103	n101	82,7		0,361	0,180
n104	n21	106	0.0043	0,462	0,231
n105	n50	105,5	0,0043	0,460	0,230
n106	n51	106,51	, , , , , ,	0,465	0,232
n107	n100	12,57		0,055	0,188
	n101	73,55		0,321	
n108	n8	232,65		1,015	0,685
	n58	81,2		0,354	

Tableau (IV-1): Détermination des débits aux nœuds dans le cas de pointe (suite).

B. Cas de pointe + incendie :

Cette situation est similaire à la situation de pointe, sauf que le nœud n6 est considéré comme le plus défavorable en raison de son éloignement et qui doit assurer un débit de 17 l/s.

$$Q_N = 0.866 + 17 = 17.866 \text{ l/s}$$

C. Cas de transit :

Dans ce cas on suppose que la consommation est minimale et que l'agglomération est seulement alimentée par le château d'eau existant, et le château d'eau projeté en cours de remplissage.

Donc on a:

$$q_{sp} = \frac{20,64*1000}{3600*9238} = 0,00062 \text{ l/s/ml}$$

Les résultats de calcul des débits aux nœuds dans le cas de pointe sont représentés dans le tableau (IV-2).

Tableau (IV-2): Détermination des débits aux nœuds dans le cas de transit.

nœuds	conduites	longueur (m)	debit spécifique (l/s/m)	Qr(l/s)	Qn (1/s)
n1	n9	318,4		0,201	0,100
n2	R			0,000	0,338
	n84	1086,21		0,677	
n3	n4	33,31	0,00062	0,021	0,111
	n38	322,8	0,00002	0,201	
n4	n3	33,31		0,021	0,122
	n5	41,73		0,026	
	n37	316,3		0,197	

Tableau (IV-2) : Détermination des débits aux nœuds dans le cas de transit (suite).

n5	n4	41,73		0,026	0,122
	n6	34,29		0,021	
	n36	314,1		0,196	
n6	n5	34,29		0,021	0,124
	n7	46,85		0,029	
	n35	315,8		0,197	
n7	n6	46,85		0,029	0,119
	n8	20,67		0,013	
	n34	315,3		0,196	
n8	n7	20,67		0,013	0,085
	n9	18,4		0,011	
	n58	232,65		0,145	
n9	n8	18,4		0,011	0,113
	n10	25,59		0,016	
	n1	318,4		0,198	
n10	n9	25,59		0,016	0,086
	n11	40,22	0.00063	0,025	
	n27	211	0,00062	0,131	
n11	n10	40,22		0,025	0,032
	n12	9,936		0,006	
	n63	51,45		0,032	
n12	n11	9,936		0,006	0,019
	n75	22,44		0,014	
	n98	27,2		0,017	
n13	n14	26,47		0,016	0,043
	n39	89,77		0,056	
	n101	22,4		0,014	
n14	n13	26,47		0,016	0,043
	n15	16,1		0,010	
	n65	96,26		0,060	
n15	n14	16,1		0,010	0,042
	n16	20,43		0,013	
	n40	96,74		0,060	
n16	n15	20,43		0,013	0,041
	n17	12,11		0,008	
	n66	98,58		0,061	
n17	n16	12,11		0,008	0,043
	n18	27,98		0,017	
	n41	97,94		0,061	
n18	n17	27,98		0,017	0,041
	n19	9,426		0,006	
	n67	94		0,059	

Tableau (IV-2) : Détermination des débits aux nœuds dans le cas de transit (suite).

n19	n18	9,426		0,006	0,044
	n20	28,47		0,018	
	n42	104,9		0,065	
n20	n19	28,47		0,018	0,042
	n21	6,638		0,004	
	n68	100,3		0,063	
n21	n20	6,638		0,004	0,044
	n22	29,05		0,018	
	n104	106,2		0,066	
n22	n21	29,05		0,018	0,087
	n23	38,41		0,024	
	n43	104,9		0,065	
	n44	107,6		0,067	
n23	n22	38,41		0,024	0,087
	n24	27,55]	0,017	
	n45	109,9		0,068	
	n46	103,5]	0,065	
n24	n23	27,55]	0,017	0,047
	n25	15,95	0,00062	0,010	
	n47	107	3,0000	0,067	
n25	n24	15,95]	0,010	0,079
	n26	23,91]	0,015	
	n48	103,9		0,065	
	n49	110,8]	0,069	
n26	n25	23,91]	0,015	0,061
	n87	23,09]	0,014	
	n88	148,7		0,093	
n27	n10	211]	0,131	0,100
	n28	36,03]	0,022	
	n70	73,78]	0,046	
n28	n27	36,03]	0,022	0,042
	n29	30,03]	0,019	
	n69	67,41		0,042	
n29	n28	30,03		0,019	0,038
	n30	20,85]	0,013	
	n33	70,85		0,044	
n30	n29	20,85		0,013	0,038
	n31	23,97		0,015	
	n32	75,6		0,047	
n31	n30	23,97] [0,015	0,017
	n89	5,5]	0,003	
	n83	25,04		0,016	
n32	n30	75,6] [0,047	0,024
n33	n29	70,85] [0,044	0,022
n34	n7	315,3		0,196	0,098

Tableau (IV-2): Détermination des débits aux nœuds dans le cas de transit (suite).

25		215 0		0.107	0.000
n35	n6	315,8	-	0,197	0,098
n36	n5	314,1	-	0,196	0,098
n37	n4	316,3	-	0,197	0,099
n38	n3	322,8	-	0,201	0,149
20	n91	156,3	-	0,097	0.020
n39	n13	89,77		0,056	0,028
n40	n15	96,74		0,060	0,030
n41	n17	97,94	_	0,061	0,031
n42	n19	104,9		0,065	0,033
n43	n22	104,9		0,065	0,033
n44	n22	107,6		0,067	0,034
n45	n23	109,9		0,068	0,034
n46	n23	103,5		0,065	0,032
n47	n24	107		0,067	0,033
n48	n25	103,9		0,065	0,032
n49	n25	110,8		0,069	0,035
n50	n51	20,44	0,00062	0,013	0,062
	n98	147,1	0,00002	0,092	
	n105	32,03		0,020	
n51	n50	20,44		0,013	0,044
	n52	90,21		0,056	
	n106	32,09		0,020	
n52	n51	90,21		0,056	0,028
n53	n54	17,02]	0,011	0,005
n54	n53	17,02]	0,011	0,034
	n55	60,84]	0,038	
	n56	32,7		0,020	
n55	n54	60,84	_	0,038	0,019
n56	n54	60,84	_	0,038	0,049
	n57n	80,37		0,050	
	n58	17,65		0,011	
n57	n56	80,37		0,050	0,025
n58	108	81,2		0,051	0,062
	n56	17,65		0,011	
	n59	100		0,062	
n59	n58	100		0,062	0,057
	n60	42,04		0,026	
	n61	40,13]	0,025	
n60	n59	42,04]	0,026	0,013
n61	n59	40,13]	0,025	0,045
	n62	66,15]	0,041	
	n63	39,54]	0,025	
n62	n61	66,15	1	0,041	0,021

Tableau (IV-2): Détermination des débits aux nœuds dans le cas de transit (suite).

		1			
n63	n11	51,45		0,032	0,043
	n61	39,54		0,025	
	n64	46		0,029	
n64	n63	46		0,029	0,014
n65	n14	96,26		0,060	0,030
n66	n16	98,58		0,061	0,031
n67	n18	94		0,059	0,029
n68	n20	100,3		0,063	0,031
n69	n28	67,41		0,042	0,021
n70	n27	73,78		0,046	0,023
n71	n72	68,2		0,043	0,021
n72	n71	68,2		0,043	0,037
	n74	29,93		0,019	
	n77	21,01		0,013	
n73	n74	67,12		0,042	0,021
n74	n72	29,93		0,019	0,045
	n73	67,12	0,00062	0,042	
	n99	48,26		0,030	
n75	n12	22,44		0,014	0,007
n76	n77	67,12		0,042	0,021
n77	n72	21,01		0,013	0,039
	n76	67,12		0,042	
	n79	38,42		0,024	
n78	n79	69,52		0,043	0,022
n79	n77	38,42		0,024	0,046
	n78	69,52		0,043	
	n81	40,45		0,025	
n80	n81	71,56		0,045	0,022
n81	n79	40,45		0,025	0,077
	n80	71,56		0,045	
	n82	135,5		0,084	
n82	n81	135,5		0,084	0,042
n83	n31	25,04		0,016	0,041
	n91	25,57		0,016	
	n92	82,05		0,051	
n84	n85	27,39		0,017	0,347
	n2	1086,21		0,677	
n85	n84	27,39		0,017	0,047
	n86	37,07		0,023	
	n95	84,95		0,053	
n86	n85	37,07		0,023	0,049
	n87	32,85		0,020	
	n96	87,19		0,054	

Tableau (IV-2): Détermination des débits aux nœuds dans le cas de transit (suite).

n87	n26	23,09		0,014	0,044
	n86	32,85		0,020	
	n97	86,33		0,054	
n88	n26	148,7		0,093	0,086
	n89	42,96		0,027	
	n94	84,36		0,053	
n89	n31	5,5		0,003	0,042
	n88	42,96		0,027	
	n93	86,95		0,054	
n90	n91	86,59		0,054	0,027
n91	n38	156,3		0,097	0,084
	n83	25,57		0,016	
	n90	86,59		0,054	
n92	n83	82,05		0,051	0,026
n93	n89	86,95		0,054	0,027
n94	n88	84,36		0,053	0,026
n95	n85	84,95	0,00062	0,053	0,026
n96	n86	87,19		0,054	0,027
n97	n87	86,33		0,054	0,027
n98	n12	27,2		0,017	0,057
	n50	147,1		0,092	
	n99	7,888		0,005	
n99	n74	48,26		0,030	0,029
	n98	7,888]	0,005	
	n100	38,17]	0,024	
n100	n99	38,17]	0,024	0,044
	n107	73,57]	0,046	
	n102	28,85]	0,018	
n101	n13	22,4]	0,014	0,037
	n107	12,57	1	0,008	·
	n103	82,7	1	0,052	
n102	n100	28,85		0,018	0,009
n103	n101	82,7]	0,052	0,026
n104	n21	106]	0,066	0,033
n105	n50	105,5]	0,066	0,033
n106	n51	106,51]	0,066	0,033
n107	n100	12,57]	0,008	0,027
	n101	73,55]	0,046	
n108	n8	232,65		0,145	0,098
	n58	81,2]	0,051	

IV-3-2. Répartition arbitraire des débits :

Plusieurs logiciels ont été développés dans le but de subvenir aux besoins des ingénieurs et concepteurs dans le domaine hydraulique. Ces logiciels ont comme rôle de simuler et faire des calculs fastidieux. Nous citons les plus connus : WATERCAD, PORTEAU et EPANET Pour faciliter les calculs nous utilisions le logiciel EPANET, qui donne par la suite les résultats ci-dessous.

IV-3-3. Présentation du logiciel EPANET :

EPANET est un logiciel sert à l'analyse des systèmes de distribution d'eau potable. Ce logiciel simule le comportement hydraulique et qualitative de l'eau sur de longues durées dans les réseaux sous pressions.

Un réseau est défini comme un ensemble de tuyaux, nœuds, pompes, vannes, bâches et réservoirs sur EPANET. Ce dernier peut calculer différentes variables tel que le débit et la vitesse dans chaque tuyau et la pression dans chaque nœud.

IV-3-3-1. Les étapes d'utilisation du logiciel EPANET :

A.Première étape :

Consiste à représenter le tracé du réseau qu'on a dessiné au préalable sur le plan de masse par le logiciel d'AutoCAD, ensuite l'exporter à EPANET à partir d'EPACAD sous forme d'un métafichier (*.dxf), et enfin l'enregistrer.

B. Deuxième étape :

Consiste à ouvrir EPANET et d'importer le métafichier, en l'insérant comme fond d'écran, ensuite choisir et définir l'unité de calcul puis d'introduire quelques données de base.

C.Troisième étape :

Dans cette étape, on introduit les différentes données de notre réseau :

Au niveau des nœuds:

- ❖ La cote du nœud par rapport à un plan de référence.
- ❖ La demande en eau (débit au nœud).

Au niveau des arcs :

- Les nœuds initial et final ;
- Le diamètre ;
- **❖** La longueur ;
- Le coefficient de rugosité.

Au niveau des réservoirs :

- **!** Le diamètre :
- ❖ Les niveaux initial, minimal et maximal de l'eau.

IV-3-3-2. Résultats de la simulation du réseau avec EPANET :

On a lancé une simulation après avoir introduit les altitudes et les débits au niveau des nœuds, ainsi que les longueurs, les diamètres et la rugosité au niveau des tuyaux

Après plusieurs tâtonnements des diamètres des conduites, afin d'avoir la vitesse de chaque conduite dans l'intervalle [0,5 – 1.5 m/s], vu que les pressions aux nœuds ne dépassent pas 60 m.c.e (6 bars) alors notre choix c'est porté sur des conduites en PEHD PN 10.

A. Cas de pointe :

Les diamètres et les vitesses des conduites :

Les résultats de la simulation obtenus sont regroupés dans le tableau (IV-3).

Tableau (IV-3): Résultats de la simulation pour les conduites du réseau dans le cas de pointe

					Perte de
	Longueur	D_{int}	Débit	Vitesse	charge
Link ID	m	mm	LPS	m/s	m
Pipe p3	33.31	96.8	4.05	0.55	0,112
Pipe p4	41.73	96.8	2.51	0.34	0,059
Pipe p5	34.29	96.8	0.97	0.13	0,009
Pipe p6	46.85	96.8	-0.59	0.10	0,005
Pipe p7	20.67	96.8	-2.11	0.30	0,022
Pipe p8	18.4	96.8	-1.23	0.19	0,008
Pipe p9	22.59	96.8	-2.71	0.37	0,037
Pipe p10	40.22	96.8	-0.70	0.10	0,006
Pipe p11	9.936	96.8	-0.10	0.01	0,000
Pipe p12	26.47	96.8	-6.56	0.89	0,211
Pipe p13	16.1	96.8	-7.07	0.96	0,147
Pipe p14	20.43	96.8	-7.58	1.03	0,211
Pipe p15	12.11	96.8	-8.08	1.10	0,141
Pipe p16	27.98	96.8	-8.59	1.17	0,364
Pipe p17	9.426	96.8	-9.08	1.23	0,136
Pipe p18	28.47	141	-9.62	0.62	0,074
Pipe p19	6.638	141	-10.14	0.65	0,019
Pipe p20	29.05	141	-10.68	0.68	0,091
Pipe p21	38.41	141	-11.75	0.75	0,143
Pipe p22	27.55	141	-12.83	0.82	0,120
Pipe p23	15.95	141	-13.39	0.86	0,075
Pipe p24	23.91	141	-14.41	0.92	0,129
Pipe p25	211	79.2	-2.61	0.53	0,846

Tableau (IV-3) : Résultats de la simulation pour les conduites du réseau (suite)

Pipe p26	36.03	79.2	-3.48	0.71	0,241
Pipe p27	30.03	79.2	-3.91	0.79	0,249
Pipe p28	20.85	79.2	-4.33	0.88	0,207
Pipe p30	75.6	44	0.17	0.11	0,040
Pipe p31	70.85	44	0.16	0.10	0,034
Pipe p32	315.3	44	-0.69	0.45	1,983
Pipe p33	315.8	44	-0.69	0.45	1,993
Pipe p34	314.1	44	0.69	0.45	1,960
Pipe p35	316.3	44	-0.69	0.45	1,999
Pipe p36	322.8	96.8	-4.83	0.66	1,478
Pipe p37	89.77	44	-0.20	0.13	0,064
Pipe p38	96.74	44	-0.21	0.14	0,078
Pipe p39	97.94	44	-0.21	0.14	0,081
Pipe p40	104.9	44	-0.23	0.15	0,098
Pipe p41	104.9	44	-0.23	0.15	0,098
Pipe p42	107.6	44	-0.23	0.15	0,104
Pipe p43	109.9	44	-0.24	0.16	0,111
Pipe p44	103.5	44	-0.23	0.15	0,094
Pipe p45	107	44	0.23	0.15	0,103
Pipe p46	103.9	44	-0.23	0.15	0,095
Pipe p47	110.8	44	-0.24	0.16	0,113
Pipe p48	20.44	44	0.74	0.49	0,146
Pipe p49	90.21	44	0.20	0.13	0,065
Pipe p50	16.1	141	5.67	0.36	0,016
Pipe p51	60.84	44	-0.13	0.09	0,022
Pipe p52	32.7	141	5.30	0.34	0,029
Pipe p53	80.37	44	0.17	0.12	0,047
Pipe p55	17.65	141	4.77	0.31	0,013
Pipe p56	100	96.8	2.18	0.30	0,112
Pipe p57	42.04	44	0.10	0.07	0,007
Pipe p58	40.13	96.8	1.69	0.23	0,028
Pipe p59	66.15	44	-0.14	0.09	0,028
Pipe p60	39.54	96.8	1.22	0.17	0,016
Pipe p61	46	44	0.10	0.07	0,007
Pipe p62	51.45	96.8	0.83	0.11	0,010
Pipe p63	96.26	44	-0.21	0.14	0,077
Pipe p64	98.58	44	-0.22	0.14	0,082
Pipe p65	94	44	-0.20	0.13	0,072
Pipe p66	100.3	44	-0.22	0.14	0,086
Pipe p67	67.41	44	0.15	0.10	0,030
Pipe p68	72 70	44	0.16	0.11	0,038
1 ipc poo	73.78				
Pipe p69	68.2	44	-0.15	0.10	0,031
		44 44	-0.15 -0.15	0.10 0.10	0,031 0,022

Tableau (IV-3): Résultats de la simulation pour les conduites du réseau (suite)

Pipe p72	67.12	44	-0.15	0.10	0,029
Pipe p73	69.52	44	-0.15	0.10	0,032
Pipe p74	71.56	44	-0.16	0.10	0,034
Pipe p75	135.5	44	-0.30	0.19	0,195
Pipe p76	40.45	44	-0.99	0.65	0,487
Pipe p77	38.42	44	-1.47	0.97	0,931
Pipe p78	21.01	44	-1.89	1.24	0,803
Pipe p79	29.93	55.4	-2.30	0.95	0,534
Pipe p81	27.39	176.2	29.65	1.22	0,186
Pipe p82	37.07	176.2	29.14	1.20	0,244
Pipe p83	32.85	176.2	28.61	1.17	0,209
Pipe p84	23.09	176.2	28.11	1.15	0,142
Pipe p85	42.96	141	12.48	0.80	0,178
Pipe p94	156.3	141	-5.87	0.38	0,167
Pipe p95	148.7	141	13.27	0.85	0,688
Pipe p96	25.57	141	-6.65	0.43	0,034
Pipe p98	27.2	96.8	-0.29	0.04	0,001
Pipe p99	7.888	96.8	-2.09	0.28	0,008
Pipe p100	38.17	96.8	-5.06	0.69	0,190
Pipe p102	22.4	96.8	6.06	0.82	0,155
Pipe p103	48.26	55.4	-2.76	1.15	1,199
Pipe p104	28.85	44	-0.07	0.05	0,002
Pipe p105	82.7	44	0.18	0.12	0,051
Pipe p106	147.1	44	1.41	0.92	3,297
Pipe p107	106.2	44	0.23	0.15	0,100
Pipe p108	32.03	44	-0.23	0.15	0,030
Pipe p109	32.09	44	-0.23	0.15	0,030
Pipe C3	23.97	79.2	-4.76	0.97	0,283
Pipe C4	5.5	141	12.00	0.77	0,021
Pipe C5	25.04	141	7.11	0.46	0,038
Pipe C6	315.20	44	-0.69	0.46	2,014
Pipe C2	12.57	96.8	5.63	0.76	0,076
Pipe C7	73.55	96.8	5.44	0.74	0,418
Pipe C8	232.65	96.8	-1.47	0.20	0,128
Pipe C9	81.20	96.8	-2.16	0.29	0,089
Pipe C11	424.22	400	-34.45	0.90	1,281
Pipe C14	1089.21	176.2	32.08	1.32	8,561
Pipe C12	84.95	44	-0.19	0.12	0,054
Pipe C13	87.19	44	-0.19	0.12	0,058
Pipe C15	86.33	44	-0.19	0.12	0,057
Pipe C16	84.36	44	-0.18	0.12	0,054
Pipe C17	86.95	44	-0.19	0.12	0,058
Pipe C18	82.05	44	-0.18	0.12	0,050
Pipe C19	86.59	44	-0.19	0.12	0,058
Pipe C1	100.23	141	5.71	0.37	0,101

Les altitudes et les pressions au niveau des nœuds :

Les résultats de la simulation obtenus sont regroupés dans le tableau (IV-4).

Tableau (IV-4): Résultats de la simulation pour les nœuds du réseau.

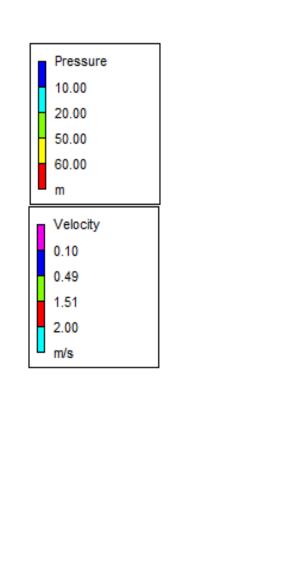

	Elévation	Demande	Cote piézométrique	Pression
Node ID	m	LPS	m	m.c.e
June n3	26	0.78	46.78	20.78
June n4	25.87	0.85	46.66	20.79
June n5	25.81	0.85	46.60	20.79
Junc n6	25.69	0.87	46.60	20.91
June n7	25.79	0.84	46.60	20.81
Junc n8	25.78	0.59	46.62	20.84
Junc n9	25.76	0.79	46.63	20.87
Junc n10	25.75	0.60	46.67	20.92
Junc n11	25.82	0.22	46.67	20.85
June n12	25.79	0.13	46.67	20.88
June n13	25.02	0.30	47.52	22.50
Junc n14	25.14	0.30	47.73	22.59
June n15	25.15	0.29	47.88	22.73
Junc n16	25.21	0.29	48.09	22.88
Junc n17	25.15	0.30	48.23	23.08
Junc n18	25.11	0.29	48.60	23.49
Junc n19	25	0.31	48.73	23.73
June n20	24.81	0.30	48.81	24.00
June n21	24.83	0.31	48.82	23.99
June n22	24.67	0.61	48.91	24.24
June n23	24.37	0.61	49.06	24.69
June n24	24.36	0.33	49.18	24.82
June n25	24.54	0.56	49.25	24.71
June n26	24.94	0.43	49.38	24.44
June n27	24.92	0.70	47.51	22.59
June n28	24.84	0.29	47.76	22.92
June n29	24.77	0.27	48.00	23.23
June n30	24.82	0.26	48.21	23.39
June n32	24.41	0.17	48.17	23.76
June n33	24.63	0.16	47.97	23.34
June n34	24.62	0.69	44.62	20.00
June n35	24.60	0.69	44.60	20.00

Tableau (IV-4) : Résultats de la simulation pour les nœuds du réseau. (Suite)

June n36	24.82	0.69	44.64	19.82
June n37	24.75	0.69	44.66	19.91
June n38	24.43	1.04	48.26	23.83
June n39	25.26	0.20	47.46	22.20
Junc n40	24.92	0.21	47.80	22.88
June n41	25.11	0.21	48.15	23.04
June n42	24.75	0.23	48.63	23.88
June n43	24.78	0.23	48.82	24.04
June n44	24.71	0.23	48.81	24.10
June n45	24.43	0.24	48.95	24.52
June n46	24.75	0.23	48.96	24.21
June n47	24.52	0.23	49.08	24.56
June n48	24.44	0.23	49.16	24.72
June n49	24.16	0.24	49.14	24.98
June n50	25.91	0.44	43.38	17.47
June n51	25.99	0.31	43.23	17.24
June n52	26.04	0.20	43.17	17.13
June n53	26.10	0.04	46.90	20.80
June n54	26.06	0.24	46.88	20.82
June n55	26.01	0.13	46.86	20.85
June n56	26.14	0.35	46.85	20.71
June n57	26.08	0.17	46.81	20.73
June n58	26.15	0.43	46.84	20.69
June n59	26.03	0.40	46.73	20.70
Junc n60	25.86	0.10	46.72	20.86
June n61	25.98	0.32	46.70	20.72
June n62	25.97	0.14	46.67	20.70
June n63	25.78	0.30	46.68	20.90
June n64	25.70	0.10	46.68	20.98
June n65	25.33	0.21	47.66	22.33
June n66	25.33	0.22	48.01	22.68
June n67	25.23	0.20	48.52	23.29
June n68	25.11	0.22	48.72	23.61
June n69	24.64	0.15	47.73	23.09
June n70	24.76	0.16	47.48	22.72
June n71	25.70	0.15	44.92	19.22
June n72	25.23	0.26	44.95	19.72
June n73	25.70	0.15	45.46	19.76
June n74	25.59	0.32	45.48	19.89

Tableau (IV-4) : Résultats de la simulation pour les nœuds du réseau. (Suite)

` ,		1	`	
June n75	25.91	0.06	46.67	20.76
June n76	25.19	0.15	44.12	18.93
June n77	25.20	0.28	44.15	18.95
June n78	25.72	0.15	43.18	17.46
June n79	25.05	0.32	43.21	18.16
Junc n80	24.94	0.16	42.69	17.75
June n81	24.82	0.54	42.73	17.91
June n82	24.25	0.30	42.53	18.28
June n83	24.58	0.29	48.46	23.88
June n84	23.68	2.43	50.16	26.48
June n85	23.89	0.33	49.98	26.09
June n86	24.36	0.34	49.73	25.37
June n87	24.22	0.31	49.52	25.30
June n88	24.32	0.60	48.69	24.37
June n89	24.58	0.30	48.51	23.93
June n90	24.24	0.19	48.36	24.12
June n91	24.47	0.59	48.42	23.95
June n92	24.09	0.18	48.41	24.32
June n93	24.02	0.19	48.46	24.44
June n94	23.91	0.18	48.64	24.73
June n95	23.11	0.19	49.92	26.81
June n96	23.6	0.19	49.67	26.07
June n97	23.45	0.19	49.47	26.02
June n98	25.69	0.40	46.67	20.98
June n99	25.58	0.21	46.68	21.10
June n100	25.22	0.31	46.87	21.65
June n101	25.06	0.26	47.37	22.31
June n102	24.89	0.07	46.87	21.98
June n103	25.05	0.18	47.32	22.27
Junc n104	24.64	0.23	48.72	24.08
June n105	25.91	0.23	43.35	17.44
Junc n106	26.10	0.23	43.20	17.10
June n31	24.58	0.12	48.49	23.91
Junc n1	24.65	0.69	44.62	19.97
June N107	25.18	0.19	47.29	22.11
Junc N108	26.16	0.69	46.75	20.59
Junc n2	21.3	2.37	58.72	37.42
Tank 1	55	-34.45	60.00	5.00
Tank 2	42	-5.71	47.00	5.00

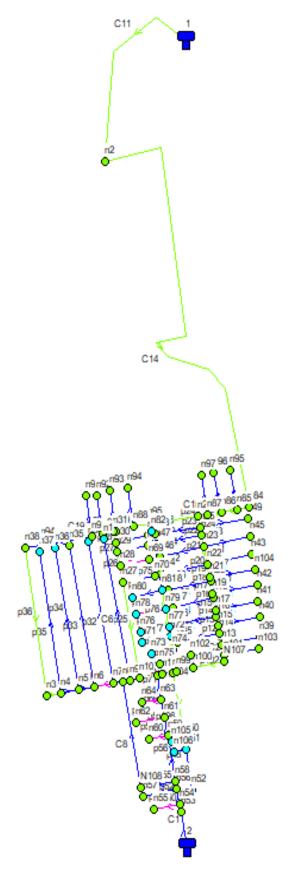


Figure (IV-3): Vitesse et pression pour le cas de pointe (Réseau maillé)

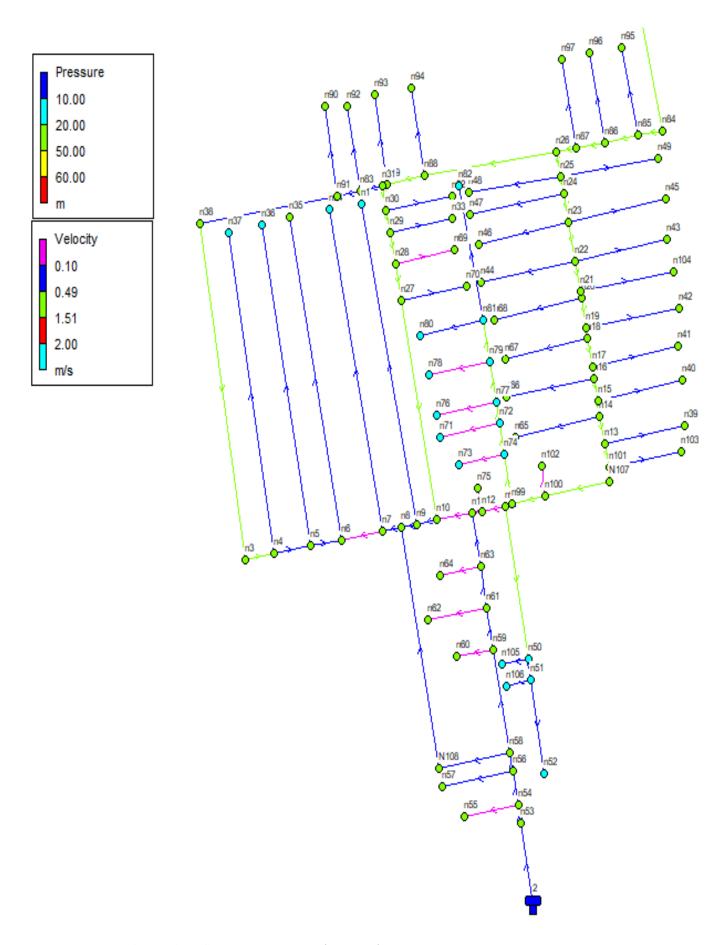


Figure (IV-4): Numérotation des nœuds pour le cas de pointe (Réseau maillé)

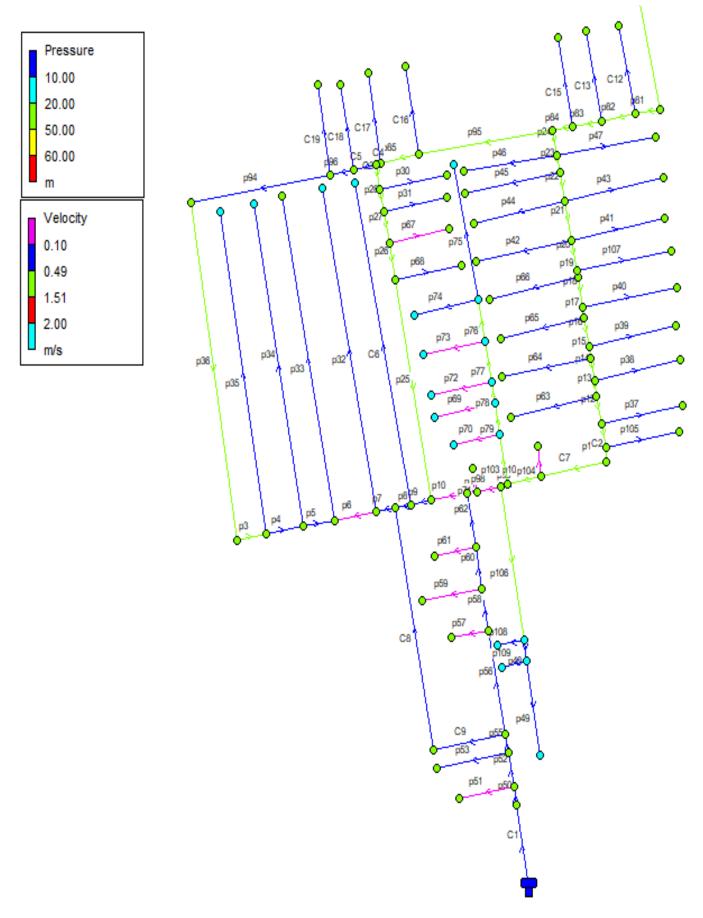


Figure (IV-5): Numérotation des conduites pour le cas de pointe (Réseau maillé)

B. Cas de pointe + incendie :

Les diamètres et les vitesses des conduites :

Les résultats de la simulation obtenus sont regroupés dans le tableau (IV-5) :

Tableau (IV-5): Résultats de la simulation pour les conduites dans le cas de pointe + incendie

	Longueur	D_{int}	Débit	Vitesse	Perte de charge
Link ID	m	mm	LPS	m/s	m
Pipe p3	33.31	96.8	7.49	1.02	0,338
Pipe p4	41.73	96.8	5.95	0.81	0,279
Pipe p5	34.29	96.8	4.41	0.60	0,134
Pipe p6	46.85	96.8	-14.14	1.92	1,517
Pipe p7	20.67	96.8	-15.67	2.13	0,808
Pipe p8	18.4	96.8	-8.51	1.16	0,235
Pipe p9	22.59	96.8	-9.99	1.36	0,388
Pipe p10	40.22	96.8	-7.58	1.03	0,417
Pipe p11	9.936	96.8	-0.87	0.12	0,002
Pipe p12	26.47	96.8	-7.33	1.00	0,258
Pipe p13	16.1	96.8	-7.85	1.07	0,177
Pipe p14	20.43	96.8	-8.35	1.13	0,252
Pipe p15	12.11	96.8	-8.85	1.20	0,166
Pipe p16	27.98	96.8	-9.36	1.27	0,425
Pipe p17	9.426	96.8	-9.86	1.34	0,157
Pipe p18	28.47	141	-10.40	0.67	0,085
Pipe p19	6.638	141	-10.91	0.70	0,022
Pipe p20	29.05	141	-11.45	0.73	0,103
Pipe p21	38.41	141	-12.53	0.80	0,160
Pipe p22	27.55	141	-13.60	0.87	0,133
Pipe p23	15.95	141	-14.16	0.91	0,083
Pipe p24	23.91	141	-15.19	0.97	0,141
Pipe p25	211	79.2	-3.01	0.61	1,091
Pipe p26	36.03	79.2	-3.87	0.79	0,293
Pipe p27	30.03	79.2	-4.31	0.88	0,296
Pipe p28	20.85	79.2	-4.73	0.96	0,243
Pipe p30	75.6	44	0.17	0.11	0,040
Pipe p31	70.85	44	0.16	0.10	0,034
Pipe p32	315.3	44	-0.69	0.45	1,983
Pipe p33	315.8	44	-0.69	0.45	1,993
Pipe p34	314.1	44	0.69	0.45	1,960
Pipe p35	316.3	44	-0.69	0.45	1,999

Tableau (IV-5) : Résultats de la simulation pour les conduites du réseau. (Suite)

			-		
Pipe p36	322.8	96.8	-8.27	1.12	3,916
Pipe p37	89.77	44	-0.20	0.13	0,064
Pipe p38	96.74	44	-0.21	0.14	0,078
Pipe p39	97.94	44	-0.21	0.14	0,081
Pipe p40	104.9	44	-0.23	0.15	0,098
Pipe p41	104.9	44	-0.23	0.15	0,098
Pipe p42	107.6	44	-0.23	0.15	0,104
Pipe p43	109.9	44	-0.24	0.16	0,111
Pipe p44	103.5	44	-0.23	0.15	0,094
Pipe p45	107	44	0.23	0.15	0,103
Pipe p46	103.9	44	-0.23	0.15	0,095
Pipe p47	110.8	44	-0.24	0.16	0,113
Pipe p48	20.44	44	0.74	0.49	0,146
Pipe p49	90.21	44	0.20	0.13	0,065
Pipe p50	16.1	141	18.06	1.16	0,131
Pipe p51	60.84	44	-0.13	0.09	0,022
Pipe p52	32.7	141	17.68	1.13	0,255
Pipe p53	80.37	44	0.17	0.12	0,047
Pipe p55	17.65	141	17.16	1.10	0,131
Pipe p56	100	96.8	8.29	1.13	1,220
Pipe p57	42.04	44	0.10	0.07	0,007
Pipe p58	40.13	96.8	7.79	1.06	0,438
Pipe p59	66.15	44	-0.14	0.09	0,028
Pipe p60	39.54	96.8	7.33	1.00	0,386
Pipe p61	46	44	0.10	0.07	0,007
Pipe p62	51.45	96.8	6.93	0.94	0,454
Pipe p63	96.26	44	-0.21	0.14	0,077
Pipe p64	98.58	44	-0.22	0.14	0,082
Pipe p65	94	44	-0.20	0.13	0,072
Pipe p66	100.3	44	-0.22	0.14	0,086
Pipe p67	67.41	44	0.15	0.10	0,030
Pipe p68	73.78	44	0.16	0.11	0,038
Pipe p69	68.2	44	-0.15	0.10	0,031
Pipe p70	51.18	44	-0.15	0.10	0,022
Pipe p71	22.44	44	-0.06	0.04	0,002
Pipe p72	67.12	44	-0.15	0.10	0,029
Pipe p73	69.52	44	-0.15	0.10	0,032
Pipe p74	71.56	44	-0.16	0.10	0,034
Pipe p75	135.5	44	-0.30	0.19	0,195
Pipe p76	40.45	44	-0.99	0.65	0,487
Pipe p77	38.42	44	-1.47	0.97	0,931
Pipe p78	21.01	44	-1.89	1.24	0,803
Pipe p79	29.93	55.4	-2.30	0.95	0,534

Tableau (IV-5) : Résultats de la simulation pour les conduites du réseau. (Suite)

Pipe p81	27.39	176.2	34.26	1.41	0,243
Pipe p82	37.07	176.2	33.75	1.38	0,320
Pipe p83	32.85	176.2	33.22	1.36	0,275
Pipe p84	23.09	176.2	32.72	1.34	0,188
Pipe p85	42.96	141	16.32	1.05	0,290
Pipe p94	156.3	141	-9.31	0.60	0,381
Pipe p95	148.7	141	17.11	1.10	1,093
Pipe p96	25.57	141	-10.09	0.65	0,072
Pipe p98	27.2	96.8	-1.06	0.14	0,008
Pipe p99	7.888	96.8	-2.87	0.39	0,014
Pipe p100	38.17	96.8	-5.83	0.79	0,245
Pipe p102	22.4	96.8	6.84	0.93	0,192
Pipe p103	48.26	55.4	-2.76	1.15	1,199
Pipe p104	28.85	44	-0.07	0.05	0,002
Pipe p105	82.7	44	0.18	0.12	0,051
Pipe p106	147.1	44	1.41	0.92	3,297
Pipe p107	106.2	44	0.23	0.15	0,100
Pipe p108	32.03	44	-0.23	0.15	0,030
Pipe p109	32.09	44	-0.23	0.15	0,030
Pipe C3	23.97	79.2	-5.16	1.05	0,327
Pipe C4	5.5	141	15.83	1.01	0,035
Pipe C5	25.04	141	10.56	0.68	0,077
Pipe C6	315.20	44	-0.69	0.46	2,014
Pipe C2	12.57	96.8	6.40	0.87	0,096
Pipe C7	73.55	96.8	6.21	0.84	0,530
Pipe C8	232.65	96.8	-7.75	1.05	2,512
Pipe C9	81.20	96.8	-8.44	1.15	1,023
Pipe C11	424.22	400	-39.06	1.02	1,608
Pipe C14	1089.21	176.2	36.69	1.50	10,947
Pipe C12	84.95	44	-0.19	0.12	0,054
Pipe C13	87.19	44	-0.19	0.12	0,058
Pipe C15	86.33	44	-0.19	0.12	0,057
Pipe C16	84.36	44	-0.18	0.12	0,054
Pipe C17	86.95	44	-0.19	0.12	0,058
Pipe C18	82.05	44	-0.18	0.12	0,050
Pipe C19	86.59	44	-0.19	0.12	0,058
Pipe C1	100.23	141	18.10	1.16	0,817

Les altitudes et les pressions au niveau des nœuds :

Les résultats de la simulation obtenus sont regroupés dans le tableau (IV-6) :

Tableau (IV-6): Résultats de la simulation pour les nœuds dans le cas de pointe + incendie

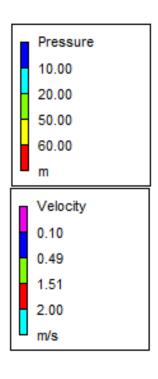

	Elévation	Demande	Head	Pression
Node ID	m	LPS	m	m.c.e
June n3	26	0.78	40.55	14.55
Junc n4	25.87	0.85	40.22	14.35
Junc n5	25.81	0.85	39.94	14.13
Junc n6	25.69	17.87	39.80	14.11
Junc n7	25.79	0.84	41.32	15.53
Junc n8	25.78	0.59	42.13	16.35
Junc n9	25.76	0.79	42.37	16.61
Junc n10	25.75	0.60	42.75	17.00
June n11	25.82	0.22	43.17	17.35
Junc n12	25.79	0.13	43.17	17.38
June n13	25.02	0.30	44.26	19.24
Junc n14	25.14	0.30	44.51	19.37
June n15	25.15	0.29	44.69	19.54
Junc n16	25.21	0.29	44.94	19.73
Junc n17	25.15	0.30	45.11	19.96
Junc n18	25.11	0.29	45.53	20.42
Junc n19	25	0.31	45.69	20.69
June n20	24.81	0.30	45.78	20.97
June n21	24.83	0.31	45.80	20.97
June n22	24.67	0.61	45.90	21.23
June n23	24.37	0.61	46.06	21.69
Junc n24	24.36	0.33	46.19	21.83
June n25	24.54	0.56	46.28	21.74
June n26	24.94	0.43	46.42	21.48
June n27	24.92	0.70	43.84	18.92
Junc n28	24.84	0.29	44.14	19.30
Junc n29	24.77	0.27	44.43	19.66
June n30	24.82	0.26	44.67	19.85
June n32	24.41	0.17	44.63	20.22
June n33	24.63	0.16	44.40	19.77
June n34	24.62	0.69	39.34	14.72
June n35	24.60	0.69	37.81	13.21
June n36	24.82	0.69	37.98	13.16
June n37	24.75	0.69	38.22	13.47
June n38	24.43	1.04	44.47	20.04

Tableau (IV-6) : Résultats de la simulation pour les nœuds du réseau. (Suite)

June n39	25.26	0.20	44.19	18.93
June n40	24.92	0.21	44.61	19.69
June n41	25.11	0.21	45.03	19.92
June n42	24.75	0.23	45.59	20.84
June n43	24.78	0.23	45.80	21.02
June n44	24.71	0.23	45.80	21.09
June n45	24.43	0.24	45.95	21.52
June n46	24.75	0.23	45.97	21.22
June n47	24.52	0.23	46.09	21.57
June n48	24.44	0.23	46.18	21.74
June n49	24.16	0.24	46.16	22.00
June n50	25.91	0.44	39.88	13.97
June n51	25.99	0.31	39.74	13.75
June n52	26.04	0.20	39.67	13.63
June n53	26.10	0.04	46.18	20.08
June n54	26.06	0.24	46.05	19.99
June n55	26.01	0.13	46.03	20.02
June n56	26.14	0.35	45.80	19.66
June n57	26.08	0.17	45.75	19.67
June n58	26.15	0.43	45.67	19.52
June n59	26.03	0.40	44.45	18.42
Junc n60	25.86	0.10	44.44	18.58
June n61	25.98	0.32	44.01	18.03
June n62	25.97	0.14	43.98	18.01
June n63	25.78	0.30	43.62	17.84
June n64	25.70	0.10	43.62	17.92
June n65	25.33	0.21	44.44	19.11
June n66	25.33	0.22	44.86	19.53
June n67	25.23	0.20	45.46	20.23
June n68	25.11	0.22	45.69	20.58
June n69	24.64	0.15	44.11	19.47
June n70	24.76	0.16	43.81	19.05
June n71	25.70	0.15	41.43	15.73
June n72	25.23	0.26	41.46	16.23
June n73	25.70	0.15	41.97	16.27
June n74	25.59	0.32	41.99	16.40
June n75	25.91	0.06	43.17	17.26
June n76	25.19	0.15	40.63	15.44
June n77	25.20	0.28	40.66	15.46
June n78	25.72	0.15	39.69	13.97

Tableau (IV-6) : Résultats de la simulation pour les nœuds du réseau. (Suite)

Junc n79	25.05	0.32	39.73	14.68
Junc n80	24.94	0.16	39.20	14.26
June n81	24.82	0.54	39.24	14.42
June n82	24.25	0.30	39.04	14.79
June n83	24.58	0.29	44.92	20.34
Junc n84	23.68	2.43	47.44	23.76
June n85	23.89	0.33	47.20	23.31
June n86	24.36	0.34	46.88	22.52
June n87	24.22	0.31	46.61	22.39
June n88	24.32	0.60	45.33	21.01
June n89	24.58	0.30	45.04	20.46
Junc n90	24.24	0.19	44.79	20.55
Junc n91	24.47	0.59	44.85	20.38
Junc n92	24.09	0.18	44.87	20.78
June n93	24.02	0.19	44.98	20.96
Junc n94	23.91	0.18	45.27	21.36
June n95	23.11	0.19	47.15	24.04
June n96	23.6	0.19	46.82	23.22
June n97	23.45	0.19	46.55	23.10
June n98	25.69	0.40	43.18	17.49
Junc n99	25.58	0.21	43.19	17.61
June n100	25.22	0.31	43.44	18.22
June n101	25.06	0.26	44.06	19.00
June n102	24.89	0.07	43.44	18.55
June n103	25.05	0.18	44.01	18.96
Junc n104	24.64	0.23	45.70	21.06
June n105	25.91	0.23	39.85	13.94
June n106	26.10	0.23	39.71	13.61
June n31	24.58	0.12	45.00	20.42
Junc n1	24.65	0.69	40.35	15.70
June N107	25.18	0.19	43.97	18.79
June N108	26.16	0.69	44.64	18.48
Junc n2	21.3	2.37	58.39	37.09
Tank 1	55	-39.06	60.00	5.00
Tank 2	42	-18.10	47.00	5.00

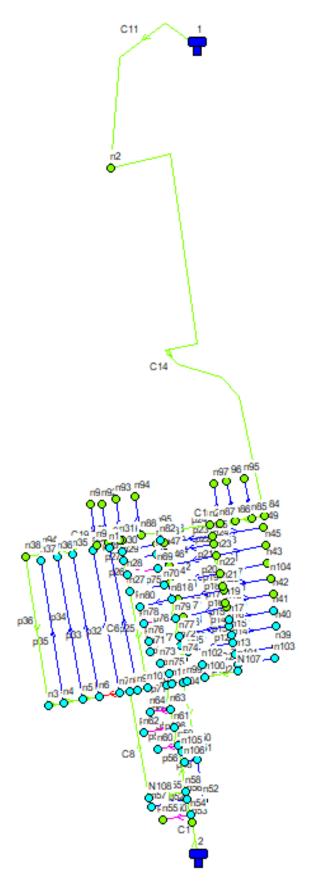


Figure (IV-6): Vitesse et pression pour le cas de pointe + incendie (Réseau maillé).

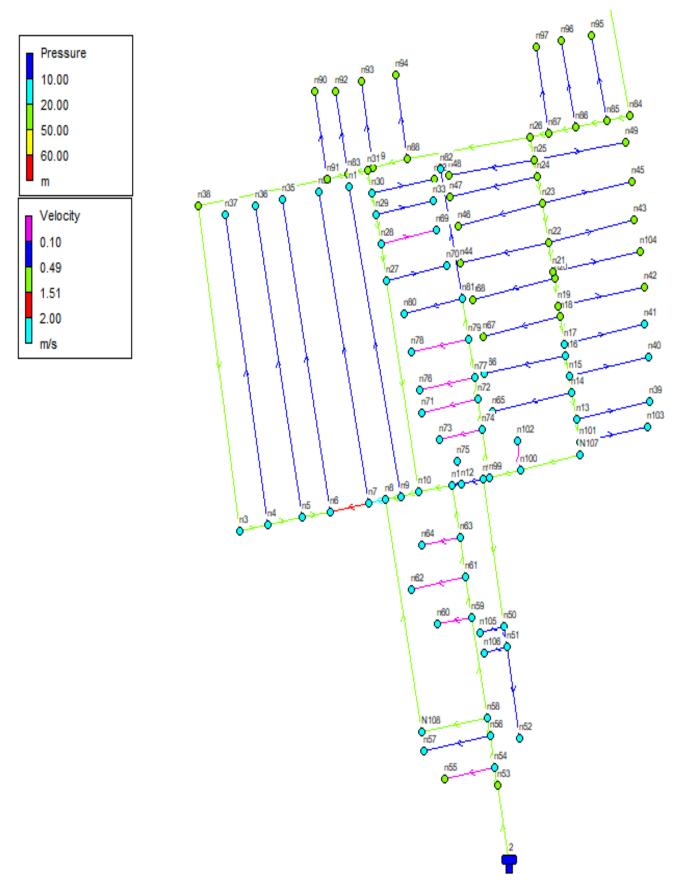


Figure (IV-7): Numérotation des nœuds pour le cas de pointe + incendie (Réseau maillé).

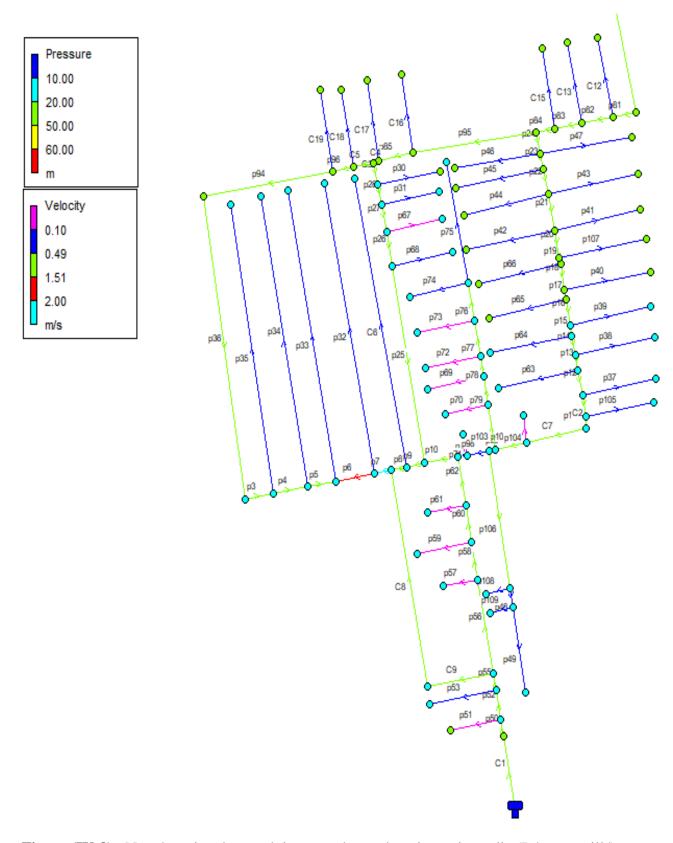


Figure (IV-8): Numérotation des conduites pour le cas de pointe + incendie (Réseau maillé).

C.Cas de transit :

Les diamètres et les vitesses des conduites :

Les résultats de la simulation obtenus sont regroupés dans le tableau (IV-7) :

Tableau (IV-7): Résultats de la simulation pour les conduites dans le cas de transit.

	Longueur	D_{int}	Débit	Vitesse	Perte de charge
Link ID	m	mm	LPS	m/s	m
Pipe p3	33.31	96.8	5.82	0.79	0,214
Pipe p4	41.73	96.8	5.60	0.76	0,250
Pipe p5	34.29	96.8	5.37	0.73	0,191
Pipe p6	46.85	96.8	5.15	0.70	0,241
Pipe p7	20.67	96.8	4.93	0.67	0,098
Pipe p8	18.4	96.8	-2.52	0.34	0,026
Pipe p9	22.59	96.8	-2.74	0.37	0,037
Pipe p10	40.22	96.8	1.52	0.21	0,024
Pipe p11	9.936	96.8	-7.38	1.00	0,098
Pipe p12	26.47	96.8	-8.30	1.13	0,323
Pipe p13	16.1	96.8	-8.37	1.14	0,199
Pipe p14	20.43	96.8	-8.44	1.15	0,257
Pipe p15	12.11	96.8	-8.51	1.16	0,155
Pipe p16	27.98	96.8	-8.59	1.17	0,363
Pipe p17	9.426	96.8	-8.66	1.18	0,124
Pipe p18	28.47	141	-8.73	0.56	0,062
Pipe p19	6.638	141	-8.81	0.56	0,015
Pipe p20	29.05	141	-8.88	0.57	0,065
Pipe p21	38.41	141	-9.04	0.58	0,089
Pipe p22	27.55	141	-9.19	0.59	0,066
Pipe p23	15.95	141	-9.27	0.59	0,039
Pipe p24	23.91	141	-9.42	0.60	0,060
Pipe p25	211	79.2	-4.34	0.88	2,108
Pipe p26	36.03	79.2	-4.47	0.91	0,378
Pipe p27	30.03	79.2	-4.53	0.92	0,323
Pipe p28	20.85	79.2	-4.59	0.93	0,230
Pipe p30	75.6	44	0.02	0.02	0,002
Pipe p31	70.85	44	0.02	0.01	0,001
Pipe p32	315.3	44	-0.10	0.07	0,050
Pipe p33	315.8	44	-0.10	0.07	0,051
Pipe p34	314.1	44	0.10	0.07	0,050
Pipe p35	316.3	44	-0.10	0.07	0,051

Tableau (IV-7) : Résultats de la simulation pour les conduites dans le cas de transit (suite).

•	,		1		`
Pipe p36	322.8	96.8	-5.93	0.81	2,143
Pipe p37	89.77	44	-0.03	0.02	0,003
Pipe p38	96.74	44	-0.03	0.02	0,003
Pipe p39	97.94	44	-0.03	0.02	0,004
Pipe p40	104.9	44	-0.03	0.02	0,004
Pipe p41	104.9	44	-0.03	0.02	0,004
Pipe p42	107.6	44	-0.03	0.02	0,004
Pipe p43	109.9	44	-0.03	0.02	0,004
Pipe p44	103.5	44	-0.03	0.02	0,004
Pipe p45	107	44	0.03	0.02	0,004
Pipe p46	103.9	44	-0.03	0.02	0,004
Pipe p47	110.8	44	-0.04	0.02	0,004
Pipe p48	20.44	44	0.10	0.07	0,004
Pipe p49	90.21	44	0.03	0.02	0,003
Pipe p50	16.1	141	-15.75	1.01	0,102
Pipe p51	60.84	44	-0.02	0.01	0,001
Pipe p52	32.7	141	-15.81	1.01	0,208
Pipe p53	80.37	44	0.03	0.02	0,002
Pipe p55	17.65	141	-15.88	1.02	0,113
Pipe p56	100	96.8	-8.67	1.18	1,323
Pipe p57	42.04	44	0.01	0.01	0,000
Pipe p58	40.13	96.8	-8.74	1.19	0,539
Pipe p59	66.15	44	-0.02	0.01	0,001
Pipe p60	39.54	96.8	-8.81	1.20	0,538
Pipe p61	46	44	0.01	0.01	0,001
Pipe p62	51.45	96.8	-8.87	1.20	0,708
Pipe p63	96.26	44	-0.03	0.02	0,003
Pipe p64	98.58	44	-0.03	0.02	0,004
Pipe p65	94	44	-0.03	0.02	0,003
Pipe p66	100.3	44	-0.03	0.02	0,004
Pipe p67	67.41	44	0.02	0.01	0,001
Pipe p68	73.78	44	0.02	0.02	0,002
Pipe p69	68.2	44	-0.02	0.01	0,001
Pipe p70	51.18	44	-0.02	0.01	0,001
Pipe p71	22.44	44	-0.01	0.00	0,000
Pipe p72	67.12	44	-0.02	0.01	0,001
Pipe p73	69.52	44	-0.02	0.01	0,001
Pipe p74	71.56	44	-0.02	0.01	0,001
Pipe p75	135.5	44	-0.04	0.03	0,007
Pipe p76	40.45	44	-0.14	0.09	0,017
Pipe p77	38.42	44	-0.21	0.14	0,030
Pipe p78	21.01	44	-0.27	0.18	0,026
Pipe p79	29.93	44	-0.33	0.22	0,051
	•				

Tableau (IV-7) : Résultats de la simulation pour les conduites dans le cas de transit (suite).

Pipe p82 37.07 176.2 20.74 0.85 0.131 Pipe p83 32.85 176.2 20.66 0.85 0.116 Pipe p84 23.09 176.2 20.59 0.84 0.081 Pipe p85 42.96 141 11.00 0.70 0.142 Pipe p94 156.3 141 -6.08 0.39 0.177 Pipe p95 148.7 141 11.11 0.71 0.500 Pipe p96 25.57 141 -6.19 0.40 0.030 Pipe p98 27.2 96.8 -7.40 1.01 0.270 Pipe p99 7.888 96.8 -7.66 1.04 0.083 Pipe p100 38.17 96.8 -8.08 1.10 0.444 Pipe p102 22.4 96.8 8.23 1.12 0.269 Pipe p103 48.26 44 -0.39 0.26 0.14 Pipe p104 28.85 44 -0.01 0.01 0.00 </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>						
Pipe p83 32.85 176.2 20.66 0.85 0.116 Pipe p84 23.09 176.2 20.59 0.84 0.081 Pipe p85 42.96 141 11.00 0.70 0.142 Pipe p94 156.3 141 -6.08 0.39 0.177 Pipe p95 148.7 141 11.11 0.71 0.500 Pipe p96 25.57 141 -6.19 0.40 0.030 Pipe p98 27.2 96.8 -7.40 1.01 0.270 Pipe p99 7.888 96.8 -7.66 1.04 0.083 Pipe p100 38.17 96.8 -8.08 1.10 0.444 Pipe p102 22.4 96.8 8.23 1.12 0.269 Pipe p103 48.26 44 -0.39 0.26 0.114 Pipe p104 28.85 44 -0.01 0.01 0,000 Pipe p105 82.7 44 0.03 0.02 0,001 <td>Pipe p81</td> <td>27.39</td> <td>176.2</td> <td>20.81</td> <td>0.85</td> <td>0,098</td>	Pipe p81	27.39	176.2	20.81	0.85	0,098
Pipe p84 23.09 176.2 20.59 0.84 0.081 Pipe p85 42.96 141 11.00 0.70 0.142 Pipe p94 156.3 141 -6.08 0.39 0.177 Pipe p95 148.7 141 -1.11 0.71 0.500 Pipe p96 25.57 141 -6.19 0.40 0.030 Pipe p98 27.2 96.8 -7.40 1.01 0.270 Pipe p99 7.888 96.8 -7.66 1.04 0.083 Pipe p100 38.17 96.8 -8.08 1.10 0.444 Pipe p102 22.4 96.8 8.23 1.12 0.269 Pipe p103 48.26 44 -0.39 0.26 0.114 Pipe p104 28.85 44 -0.01 0.01 0.000 Pipe p105 82.7 44 0.03 0.02 0.02 Pipe p105 32.03 44 -0.03 0.02 0.001	Pipe p82	37.07	176.2	20.74	0.85	0,131
Pipe p85 42.96 141 11.00 0.70 0,142 Pipe p94 156.3 141 -6.08 0.39 0,177 Pipe p95 148.7 141 11.11 0.71 0,500 Pipe p96 25.57 141 -6.19 0.40 0,030 Pipe p98 27.2 96.8 -7.40 1.01 0,270 Pipe p99 7.888 96.8 -7.66 1.04 0,083 Pipe p100 38.17 96.8 -8.08 1.10 0,444 Pipe p102 22.4 96.8 8.23 1.12 0,269 Pipe p103 48.26 44 -0.39 0.26 0,114 Pipe p104 28.85 44 -0.03 0.02 0,002 Pipe p105 82.7 44 0.03 0.02 0,002 Pipe p106 147.1 44 0.20 0.13 0,109 Pipe p107 106.2 44 0.03 0.02 0,004	Pipe p83	32.85	176.2	20.66	0.85	0,116
Pipe p94 156.3 141 -6.08 0.39 0,177 Pipe p95 148.7 141 11.11 0.71 0,500 Pipe p96 25.57 141 -6.19 0.40 0,030 Pipe p98 27.2 96.8 -7.40 1.01 0,270 Pipe p99 7.888 96.8 -7.66 1.04 0,083 Pipe p100 38.17 96.8 -8.08 1.10 0,444 Pipe p102 22.4 96.8 8.23 1.12 0,269 Pipe p103 48.26 44 -0.39 0.26 0,114 Pipe p104 28.85 44 -0.01 0.01 0,000 Pipe p105 82.7 44 0.03 0.02 0,002 Pipe p106 147.1 44 0.20 0.13 0,109 Pipe p107 106.2 44 0.03 0.02 0,001 Pipe p108 32.03 44 -0.03 0.02 0,001	Pipe p84	23.09	176.2	20.59	0.84	0,081
Pipe p95 148.7 141 11.11 0.71 0,500 Pipe p96 25.57 141 -6.19 0.40 0,030 Pipe p98 27.2 96.8 -7.40 1.01 0,270 Pipe p99 7.888 96.8 -7.66 1.04 0,083 Pipe p100 38.17 96.8 -8.08 1.10 0,444 Pipe p102 22.4 96.8 8.23 1.12 0,269 Pipe p103 48.26 44 -0.39 0.26 0,114 Pipe p104 28.85 44 -0.01 0.01 0,000 Pipe p105 82.7 44 0.03 0.02 0,002 Pipe p106 147.1 44 0.20 0.13 0,109 Pipe p107 106.2 44 0.03 0.02 0,001 Pipe p108 32.03 44 -0.03 0.02 0,001 Pipe C3 23.97 79.2 -4.65 0.94 0,271	Pipe p85	42.96	141	11.00	0.70	0,142
Pipe p96 25.57 141 -6.19 0.40 0,030 Pipe p98 27.2 96.8 -7.40 1.01 0,270 Pipe p99 7.888 96.8 -7.66 1.04 0,083 Pipe p100 38.17 96.8 -8.08 1.10 0,444 Pipe p102 22.4 96.8 8.23 1.12 0,269 Pipe p103 48.26 44 -0.39 0.26 0,114 Pipe p104 28.85 44 -0.01 0.01 0,000 Pipe p105 82.7 44 0.03 0.02 0,002 Pipe p106 147.1 44 0.20 0.13 0,109 Pipe p107 106.2 44 0.03 0.02 0,004 Pipe p108 32.03 44 -0.03 0.02 0,001 Pipe C3 23.97 79.2 -4.65 0.94 0,271 Pipe C4 5.5 141 10.93 0.70 0,018 <tr< td=""><td>Pipe p94</td><td>156.3</td><td>141</td><td>-6.08</td><td>0.39</td><td>0,177</td></tr<>	Pipe p94	156.3	141	-6.08	0.39	0,177
Pipe p98 27.2 96.8 -7.40 1.01 0,270 Pipe p99 7.888 96.8 -7.66 1.04 0,083 Pipe p100 38.17 96.8 -8.08 1.10 0,444 Pipe p102 22.4 96.8 8.23 1.12 0,269 Pipe p103 48.26 44 -0.39 0.26 0,114 Pipe p104 28.85 44 -0.01 0.01 0,000 Pipe p105 82.7 44 0.03 0.02 0,002 Pipe p106 147.1 44 0.20 0.13 0,109 Pipe p107 106.2 44 0.03 0.02 0,004 Pipe p108 32.03 44 -0.03 0.02 0,001 Pipe p109 32.09 44 -0.03 0.02 0,001 Pipe C3 23.97 79.2 -4.65 0.94 0,271 Pipe C4 5.5 141 10.93 0.70 0,018 <tr< td=""><td>Pipe p95</td><td>148.7</td><td>141</td><td>11.11</td><td>0.71</td><td>0,500</td></tr<>	Pipe p95	148.7	141	11.11	0.71	0,500
Pipe p99 7.888 96.8 -7.66 1.04 0,083 Pipe p100 38.17 96.8 -8.08 1.10 0,444 Pipe p102 22.4 96.8 8.23 1.12 0,269 Pipe p103 48.26 44 -0.39 0.26 0,114 Pipe p104 28.85 44 -0.01 0.01 0,000 Pipe p105 82.7 44 0.03 0.02 0,002 Pipe p106 147.1 44 0.20 0.13 0,109 Pipe p107 106.2 44 0.03 0.02 0,004 Pipe p108 32.03 44 -0.03 0.02 0,001 Pipe p109 32.09 44 -0.03 0.02 0,001 Pipe C3 23.97 79.2 -4.65 0.94 0,271 Pipe C4 5.5 141 10.93 0.70 0,018 Pipe C5 25.04 141 6.26 0.40 0,030	Pipe p96	25.57	141	-6.19	0.40	0,030
Pipe p100 38.17 96.8 -8.08 1.10 0,444 Pipe p102 22.4 96.8 8.23 1.12 0,269 Pipe p103 48.26 44 -0.39 0.26 0,114 Pipe p104 28.85 44 -0.01 0.01 0,000 Pipe p105 82.7 44 0.03 0.02 0,002 Pipe p106 147.1 44 0.20 0.13 0,109 Pipe p107 106.2 44 0.03 0.02 0,004 Pipe p108 32.03 44 -0.03 0.02 0,001 Pipe p109 32.09 44 -0.03 0.02 0,001 Pipe C3 23.97 79.2 -4.65 0.94 0,271 Pipe C4 5.5 141 10.93 0.70 0,018 Pipe C5 25.04 141 6.26 0.40 0,030 Pipe C6 315.20 44 -0.10 0.07 0,050	Pipe p98	27.2	96.8	-7.40	1.01	0,270
Pipe p102 22.4 96.8 8.23 1.12 0,269 Pipe p103 48.26 44 -0.39 0.26 0,114 Pipe p104 28.85 44 -0.01 0.01 0,000 Pipe p105 82.7 44 0.03 0.02 0,002 Pipe p106 147.1 44 0.20 0.13 0,109 Pipe p107 106.2 44 0.03 0.02 0,004 Pipe p108 32.03 44 -0.03 0.02 0,001 Pipe p109 32.09 44 -0.03 0.02 0,001 Pipe C3 23.97 79.2 -4.65 0.94 0,271 Pipe C4 5.5 141 10.93 0.70 0,018 Pipe C5 25.04 141 6.26 0.40 0,030 Pipe C6 315.20 44 -0.10 0.07 0,050 Pipe C7 73.55 96.8 8.16 1.11 0,149	Pipe p99	7.888	96.8	-7.66	1.04	0,083
Pipe p103 48.26 44 -0.39 0.26 0,114 Pipe p104 28.85 44 -0.01 0.01 0,000 Pipe p105 82.7 44 0.03 0.02 0,002 Pipe p106 147.1 44 0.20 0.13 0,109 Pipe p107 106.2 44 0.03 0.02 0,004 Pipe p108 32.03 44 -0.03 0.02 0,001 Pipe p109 32.09 44 -0.03 0.02 0,001 Pipe C3 23.97 79.2 -4.65 0.94 0,271 Pipe C4 5.5 141 10.93 0.70 0,018 Pipe C5 25.04 141 6.26 0.40 0,030 Pipe C6 315.20 44 -0.10 0.07 0,050 Pipe C2 12.57 96.8 8.16 1.11 0,149 Pipe C7 73.55 96.8 7.37 1.00 2,288	Pipe p100	38.17	96.8	-8.08	1.10	0,444
Pipe p104 28.85 44 -0.01 0.01 0,000 Pipe p105 82.7 44 0.03 0.02 0,002 Pipe p106 147.1 44 0.20 0.13 0,109 Pipe p107 106.2 44 0.03 0.02 0,004 Pipe p108 32.03 44 -0.03 0.02 0,001 Pipe p109 32.09 44 -0.03 0.02 0,001 Pipe C3 23.97 79.2 -4.65 0.94 0,271 Pipe C4 5.5 141 10.93 0.70 0,018 Pipe C5 25.04 141 6.26 0.40 0,030 Pipe C6 315.20 44 -0.10 0.07 0,050 Pipe C2 12.57 96.8 8.16 1.11 0,149 Pipe C7 73.55 96.8 7.37 1.00 2,288 Pipe C8 232.65 96.8 7.27 0.99 0,779	Pipe p102	22.4	96.8	8.23	1.12	0,269
Pipe p105 82.7 44 0.03 0.02 0,002 Pipe p106 147.1 44 0.20 0.13 0,109 Pipe p107 106.2 44 0.03 0.02 0,004 Pipe p108 32.03 44 -0.03 0.02 0,001 Pipe p109 32.09 44 -0.03 0.02 0,001 Pipe C3 23.97 79.2 -4.65 0.94 0,271 Pipe C4 5.5 141 10.93 0.70 0,018 Pipe C5 25.04 141 6.26 0.40 0,030 Pipe C6 315.20 44 -0.10 0.07 0,050 Pipe C2 12.57 96.8 8.16 1.11 0,149 Pipe C7 73.55 96.8 8.14 1.11 0,866 Pipe C8 232.65 96.8 7.27 0.99 0,779 Pipe C9 81.20 96.8 7.27 0.99 0,779	Pipe p103	48.26	44	-0.39	0.26	0,114
Pipe p106 147.1 44 0.20 0.13 0,109 Pipe p107 106.2 44 0.03 0.02 0,004 Pipe p108 32.03 44 -0.03 0.02 0,001 Pipe p109 32.09 44 -0.03 0.02 0,001 Pipe C3 23.97 79.2 -4.65 0.94 0,271 Pipe C4 5.5 141 10.93 0.70 0,018 Pipe C5 25.04 141 6.26 0.40 0,030 Pipe C6 315.20 44 -0.10 0.07 0,050 Pipe C2 12.57 96.8 8.16 1.11 0,149 Pipe C7 73.55 96.8 8.14 1.11 0,866 Pipe C8 232.65 96.8 7.37 1.00 2,288 Pipe C9 81.20 96.8 7.27 0.99 0,779 Pipe C14 1089.21 176.2 21.16 0.87 3,997	Pipe p104	28.85	44	-0.01	0.01	0,000
Pipe p107 106.2 44 0.03 0.02 0,004 Pipe p108 32.03 44 -0.03 0.02 0,001 Pipe p109 32.09 44 -0.03 0.02 0,001 Pipe C3 23.97 79.2 -4.65 0.94 0,271 Pipe C4 5.5 141 10.93 0.70 0,018 Pipe C5 25.04 141 6.26 0.40 0,030 Pipe C6 315.20 44 -0.10 0.07 0,050 Pipe C2 12.57 96.8 8.16 1.11 0,149 Pipe C7 73.55 96.8 8.14 1.11 0,866 Pipe C8 232.65 96.8 7.37 1.00 2,288 Pipe C9 81.20 96.8 7.27 0.99 0,779 Pipe C11 424.22 400 -21.50 0.56 0,543 Pipe C12 86.59 44 -0.03 0.02 0,003	Pipe p105	82.7	44	0.03	0.02	0,002
Pipe p108 32.03 44 -0.03 0.02 0,001 Pipe p109 32.09 44 -0.03 0.02 0,001 Pipe C3 23.97 79.2 -4.65 0.94 0,271 Pipe C4 5.5 141 10.93 0.70 0,018 Pipe C5 25.04 141 6.26 0.40 0,030 Pipe C6 315.20 44 -0.10 0.07 0,050 Pipe C2 12.57 96.8 8.16 1.11 0,149 Pipe C7 73.55 96.8 8.14 1.11 0,866 Pipe C8 232.65 96.8 7.37 1.00 2,288 Pipe C9 81.20 96.8 7.27 0.99 0,779 Pipe C11 424.22 400 -21.50 0.56 0,543 Pipe C12 86.59 44 -0.03 0.02 0,003 Pipe C13 82.05 44 -0.03 0.02 0,003	Pipe p106	147.1	44	0.20	0.13	0,109
Pipe p109 32.09 44 -0.03 0.02 0,001 Pipe C3 23.97 79.2 -4.65 0.94 0,271 Pipe C4 5.5 141 10.93 0.70 0,018 Pipe C5 25.04 141 6.26 0.40 0,030 Pipe C6 315.20 44 -0.10 0.07 0,050 Pipe C2 12.57 96.8 8.16 1.11 0,149 Pipe C7 73.55 96.8 8.14 1.11 0,866 Pipe C8 232.65 96.8 7.37 1.00 2,288 Pipe C9 81.20 96.8 7.27 0.99 0,779 Pipe C11 424.22 400 -21.50 0.56 0,543 Pipe C12 86.59 44 -0.03 0.02 0,003 Pipe C13 82.05 44 -0.03 0.02 0,003	Pipe p107	106.2	44	0.03	0.02	0,004
Pipe C3 23.97 79.2 -4.65 0.94 0,271 Pipe C4 5.5 141 10.93 0.70 0,018 Pipe C5 25.04 141 6.26 0.40 0,030 Pipe C6 315.20 44 -0.10 0.07 0,050 Pipe C2 12.57 96.8 8.16 1.11 0,149 Pipe C7 73.55 96.8 8.14 1.11 0,866 Pipe C8 232.65 96.8 7.37 1.00 2,288 Pipe C9 81.20 96.8 7.27 0.99 0,779 Pipe C11 424.22 400 -21.50 0.56 0,543 Pipe C14 1089.21 176.2 21.16 0.87 3,997 Pipe C12 86.59 44 -0.03 0.02 0,003 Pipe C13 82.05 44 -0.03 0.02 0,003	Pipe p108	32.03	44	-0.03	0.02	0,001
Pipe C4 5.5 141 10.93 0.70 0,018 Pipe C5 25.04 141 6.26 0.40 0,030 Pipe C6 315.20 44 -0.10 0.07 0,050 Pipe C2 12.57 96.8 8.16 1.11 0,149 Pipe C7 73.55 96.8 8.14 1.11 0,866 Pipe C8 232.65 96.8 7.37 1.00 2,288 Pipe C9 81.20 96.8 7.27 0.99 0,779 Pipe C11 424.22 400 -21.50 0.56 0,543 Pipe C14 1089.21 176.2 21.16 0.87 3,997 Pipe C12 86.59 44 -0.03 0.02 0,003 Pipe C13 82.05 44 -0.03 0.02 0,003	Pipe p109	32.09	44	-0.03	0.02	0,001
Pipe C5 25.04 141 6.26 0.40 0,030 Pipe C6 315.20 44 -0.10 0.07 0,050 Pipe C2 12.57 96.8 8.16 1.11 0,149 Pipe C7 73.55 96.8 8.14 1.11 0,866 Pipe C8 232.65 96.8 7.37 1.00 2,288 Pipe C9 81.20 96.8 7.27 0.99 0,779 Pipe C11 424.22 400 -21.50 0.56 0,543 Pipe C14 1089.21 176.2 21.16 0.87 3,997 Pipe C12 86.59 44 -0.03 0.02 0,003 Pipe C13 82.05 44 -0.03 0.02 0,003	Pipe C3	23.97	79.2	-4.65	0.94	0,271
Pipe C6 315.20 44 -0.10 0.07 0,050 Pipe C2 12.57 96.8 8.16 1.11 0,149 Pipe C7 73.55 96.8 8.14 1.11 0,866 Pipe C8 232.65 96.8 7.37 1.00 2,288 Pipe C9 81.20 96.8 7.27 0.99 0,779 Pipe C11 424.22 400 -21.50 0.56 0,543 Pipe C14 1089.21 176.2 21.16 0.87 3,997 Pipe C12 86.59 44 -0.03 0.02 0,003 Pipe C13 82.05 44 -0.03 0.02 0,003	Pipe C4	5.5	141	10.93	0.70	0,018
Pipe C2 12.57 96.8 8.16 1.11 0,149 Pipe C7 73.55 96.8 8.14 1.11 0,866 Pipe C8 232.65 96.8 7.37 1.00 2,288 Pipe C9 81.20 96.8 7.27 0.99 0,779 Pipe C11 424.22 400 -21.50 0.56 0,543 Pipe C14 1089.21 176.2 21.16 0.87 3,997 Pipe C12 86.59 44 -0.03 0.02 0,003 Pipe C13 82.05 44 -0.03 0.02 0,003	Pipe C5	25.04	141	6.26	0.40	0,030
Pipe C7 73.55 96.8 8.14 1.11 0,866 Pipe C8 232.65 96.8 7.37 1.00 2,288 Pipe C9 81.20 96.8 7.27 0.99 0,779 Pipe C11 424.22 400 -21.50 0.56 0,543 Pipe C14 1089.21 176.2 21.16 0.87 3,997 Pipe C12 86.59 44 -0.03 0.02 0,003 Pipe C13 82.05 44 -0.03 0.02 0,003	Pipe C6	315.20	44	-0.10	0.07	0,050
Pipe C8 232.65 96.8 7.37 1.00 2,288 Pipe C9 81.20 96.8 7.27 0.99 0,779 Pipe C11 424.22 400 -21.50 0.56 0,543 Pipe C14 1089.21 176.2 21.16 0.87 3,997 Pipe C12 86.59 44 -0.03 0.02 0,003 Pipe C13 82.05 44 -0.03 0.02 0,003	Pipe C2	12.57	96.8	8.16	1.11	0,149
Pipe C9 81.20 96.8 7.27 0.99 0,779 Pipe C11 424.22 400 -21.50 0.56 0,543 Pipe C14 1089.21 176.2 21.16 0.87 3,997 Pipe C12 86.59 44 -0.03 0.02 0,003 Pipe C13 82.05 44 -0.03 0.02 0,003	Pipe C7	73.55	96.8	8.14	1.11	0,866
Pipe C11 424.22 400 -21.50 0.56 0,543 Pipe C14 1089.21 176.2 21.16 0.87 3,997 Pipe C12 86.59 44 -0.03 0.02 0,003 Pipe C13 82.05 44 -0.03 0.02 0,003	Pipe C8	232.65	96.8	7.37	1.00	2,288
Pipe C14 1089.21 176.2 21.16 0.87 3,997 Pipe C12 86.59 44 -0.03 0.02 0,003 Pipe C13 82.05 44 -0.03 0.02 0,003	Pipe C9	81.20	96.8	7.27	0.99	0,779
Pipe C12 86.59 44 -0.03 0.02 0,003 Pipe C13 82.05 44 -0.03 0.02 0,003	Pipe C11	424.22	400	-21.50	0.56	0,543
Pipe C13 82.05 44 -0.03 0.02 0,003	Pipe C14	1089.21	176.2	21.16	0.87	3,997
	Pipe C12	86.59	44	-0.03	0.02	0,003
Ping C15 96.05 44 0.02 0.02 0.002	Pipe C13	82.05	44	-0.03	0.02	0,003
Pipe C15	Pipe C15	86.95	44	-0.03	0.02	0,003
Pipe C16 84.36 44 -0.03 0.02 0,003	Pipe C16	84.36	44	-0.03	0.02	0,003
Pipe C17 84.95 44 0.03 0.02 0,003	Pipe C17	84.95	44	0.03	0.02	0,003
Pipe C18 87.19 44 -0.03 0.02 0,002	Pipe C18	87.19	44	-0.03	0.02	0,002
	•	86.33	44	-0.03	0.02	0,003
Pipe C1 80.54 141 -15.75 1.01 0,633	Pipe C1	80.54	141	-15.75	1.01	0,633

Les altitudes et les pressions au niveau des nœuds :

Les résultats de la simulation obtenus sont regroupés dans le tableau (IV-8).

Tableau (IV-8): Résultats de la simulation pour les nœuds dans le cas de transit.

	Elévation	Demande	Head	Pression
Node ID	m	LPS	m	m.c.e
June n3	26	0.11	51.99	25.99
June n4	25.87	0.12	51.78	25.91
June n5	25.81	0.12	51.53	25.72
Junc n6	25.69	0.12	51.34	25.65
June n7	25.79	0.12	51.10	25.31
Junc n8	25.88	0.09	51.00	25.12
Junc n9	25.76	0.11	51.03	25.27
Junc n10	25.75	0.09	51.06	25.31
June n11	25.82	0.03	51.04	25.22
June n12	25.79	0.02	51.14	25.35
Junc n13	25.02	0.04	53.22	28.20
Junc n14	25.14	0.04	53.54	28.40
June n15	25.15	0.04	53.74	28.59
Junc n16	25.21	0.04	54.00	28.79
Junc n17	25.15	0.04	54.15	29.00
Junc n18	25.11	0.04	54.51	29.40
Junc n19	25	0.04	54.64	29.64
Junc n20	24.81	0.04	54.70	29.89
June n21	24.83	0.04	54.71	29.88
June n22	24.67	0.09	54.78	30.11
June n23	24.37	0.09	54.87	30.50
Junc n24	24.36	0.05	54.93	30.57
June n25	24.54	0.08	54.97	30.43
Junc n26	24.94	0.06	55.03	30.09
June n27	24.92	0.10	53.17	28.25
Junc n28	24.84	0.04	53.55	28.71
June n29	24.77	0.04	53.87	29.10
June n30	24.82	0.04	54.10	29.28
June n32	24.41	0.02	54.10	29.69
June n33	24.63	0.02	53.87	29.24
June n34	24.62	0.10	51.05	26.43
June n35	24.60	0.10	51.29	26.69
June n36	24.82	0.10	51.48	26.66
June n37	24.75	0.10	51.73	26.98
June n38	24.43	0.15	54.14	29.71

Tableau (IV-8): Résultats de la simulation pour les nœuds dans le cas de transit (suite)

June n39	25.26	0.03	53.21	27.95
Junc n40	24.92	0.03	53.74	28.82
June n41	25.11	0.03	54.15	29.04
June n42	24.75	0.03	54.63	29.88
June n43	24.78	0.03	54.78	30.00
June n44	24.71	0.03	54.78	30.07
June n45	24.43	0.03	54.86	30.43
June n46	24.75	0.03	54.86	30.11
June n47	24.52	0.03	54.93	30.41
Junc n48	24.44	0.03	54.97	30.53
June n49	24.16	0.04	54.97	30.81
Junc n50	25.91	0.06	51.30	25.39
June n51	25.99	0.04	51.29	25.30
June n52	26.04	0.03	51.29	25.25
June n53	26.13	0.00	47.51	21.38
June n54	26.06	0.03	47.61	21.55
June n55	26.37	0.02	47.61	21.24
June n56	26.14	0.05	47.82	21.68
June n57	26.08	0.03	47.82	21.74
June n58	26.15	0.06	47.93	21.78
June n59	26.03	0.06	49.25	23.22
June n60	25.86	0.01	49.25	23.39
June n61	25.98	0.05	49.79	23.81
June n62	25.97	0.02	49.79	23.82
June n63	25.78	0.04	50.33	24.55
Junc n64	25.70	0.01	50.33	24.63
June n65	25.33	0.03	53.54	28.21
June n66	25.33	0.03	53.99	28.66
June n67	25.23	0.03	54.51	29.28
Junc n68	25.11	0.03	54.70	29.59
Junc n69	24.64	0.02	53.55	28.91
Junc n70	24.76	0.02	53.17	28.41
June n71	25.70	0.02	51.32	25.62
Junc n72	25.23	0.04	51.32	26.09
June n73	25.70	0.02	51.37	25.67
June n74	25.59	0.05	51.38	25.79
June n75	25.91	0.01	51.14	25.23
June n76	25.19	0.02	51.30	26.11
June n77	25.20	0.04	51.30	26.10
June n78	25.72	0.02	51.27	25.55

Tableau (IV-8): Résultats de la simulation pour les nœuds dans le cas de transit (suite)

June n79 25.05 0.05 51.27 26.22 June n80 24.94 0.02 51.25 26.31 June n81 24.82 0.08 51.25 26.43 June n82 24.25 0.04 51.25 27.00 June n83 24.58 0.04 54.34 29.76 June n84 23.68 0.35 55.46 31.78 June n85 23.89 0.05 55.36 31.47 June n86 24.36 0.05 55.23 30.87 June n87 24.22 0.04 55.11 30.89 June n88 24.32 0.09 54.53 30.21 June n89 24.58 0.04 54.39 29.81 June n90 24.24 0.03 54.31 30.07 June n91 24.47 0.09 54.31 30.25 June n92 24.09 0.03 54.34 30.25 June n93 24.02 0.03 54.39 30.37					
Junc n81 24.82 0.08 51.25 26.43 Junc n82 24.25 0.04 51.25 27.00 Junc n83 24.58 0.04 54.34 29.76 Junc n84 23.68 0.35 55.46 31.78 Junc n85 23.89 0.05 55.36 31.47 Junc n86 24.36 0.05 55.23 30.87 Junc n87 24.22 0.04 55.11 30.89 Junc n88 24.32 0.09 54.53 30.21 Junc n89 24.58 0.04 54.39 29.81 Junc n90 24.24 0.03 54.31 30.07 Junc n91 24.47 0.09 54.31 30.07 Junc n92 24.09 0.03 54.34 30.25 Junc n93 24.02 0.03 54.34 30.25 Junc n94 23.91 0.03 54.39 30.37 Junc n95 23.11 0.03 55.36 32.25	June n79	25.05	0.05	51.27	26.22
Junc n82 24.25 0.04 51.25 27.00 Junc n83 24.58 0.04 54.34 29.76 Junc n84 23.68 0.35 55.46 31.78 Junc n85 23.89 0.05 55.36 31.47 Junc n86 24.36 0.05 55.23 30.87 Junc n87 24.22 0.04 55.11 30.89 Junc n88 24.32 0.09 54.53 30.21 Junc n89 24.58 0.04 54.39 29.81 Junc n90 24.24 0.03 54.31 30.07 Junc n91 24.47 0.09 54.31 30.07 Junc n92 24.09 0.03 54.34 30.25 Junc n93 24.02 0.03 54.39 30.37 Junc n94 23.91 0.03 54.39 30.37 Junc n95 23.11 0.03 55.36 32.25 Junc n96 23.6 0.03 55.23 31.63 <	June n80	24.94	0.02	51.25	26.31
Junc n83 24.58 0.04 54.34 29.76 Junc n84 23.68 0.35 55.46 31.78 Junc n85 23.89 0.05 55.36 31.47 Junc n86 24.36 0.05 55.23 30.87 Junc n87 24.22 0.04 55.11 30.89 Junc n88 24.32 0.09 54.53 30.21 Junc n89 24.58 0.04 54.39 29.81 Junc n90 24.24 0.03 54.31 30.07 Junc n90 24.47 0.09 54.31 30.07 Junc n91 24.47 0.09 54.31 30.25 Junc n92 24.09 0.03 54.34 30.25 Junc n93 24.02 0.03 54.39 30.37 Junc n94 23.91 0.03 54.53 30.62 Junc n95 23.11 0.03 55.36 32.25 Junc n96 23.6 0.03 55.23 31.63 <	June n81	24.82	0.08	51.25	26.43
Junc n84 23.68 0.35 55.46 31.78 Junc n85 23.89 0.05 55.36 31.47 Junc n86 24.36 0.05 55.23 30.87 Junc n87 24.22 0.04 55.11 30.89 Junc n88 24.32 0.09 54.53 30.21 Junc n89 24.58 0.04 54.39 29.81 Junc n90 24.24 0.03 54.31 30.07 Junc n91 24.47 0.09 54.31 30.07 Junc n91 24.47 0.09 54.31 30.25 Junc n92 24.09 0.03 54.34 30.25 Junc n93 24.02 0.03 54.39 30.37 Junc n94 23.91 0.03 54.33 30.62 Junc n95 23.11 0.03 55.36 32.25 Junc n96 23.6 0.03 55.23 31.63 Junc n97 23.45 0.03 55.11 31.66 <	June n82	24.25	0.04	51.25	27.00
Junc n85 23.89 0.05 55.36 31.47 Junc n86 24.36 0.05 55.23 30.87 Junc n87 24.22 0.04 55.11 30.89 Junc n88 24.32 0.09 54.53 30.21 Junc n89 24.58 0.04 54.39 29.81 Junc n90 24.24 0.03 54.31 30.07 Junc n91 24.47 0.09 54.31 29.84 Junc n92 24.09 0.03 54.34 30.25 Junc n93 24.02 0.03 54.39 30.37 Junc n94 23.91 0.03 54.53 30.62 Junc n95 23.11 0.03 55.36 32.25 Junc n96 23.6 0.03 55.23 31.63 Junc n97 23.45 0.03 55.11 31.66 Junc n98 25.69 0.06 51.41 25.72 Junc n100 25.22 0.04 51.93 26.71	June n83	24.58	0.04	54.34	29.76
Junc n86 24.36 0.05 55.23 30.87 Junc n87 24.22 0.04 55.11 30.89 Junc n88 24.32 0.09 54.53 30.21 Junc n89 24.58 0.04 54.39 29.81 Junc n90 24.24 0.03 54.31 30.07 Junc n91 24.47 0.09 54.31 29.84 Junc n92 24.09 0.03 54.34 30.25 Junc n93 24.02 0.03 54.39 30.37 Junc n94 23.91 0.03 54.53 30.62 Junc n95 23.11 0.03 55.36 32.25 Junc n96 23.6 0.03 55.23 31.63 Junc n97 23.45 0.03 55.11 31.66 Junc n98 25.69 0.06 51.41 25.72 Junc n100 25.22 0.04 51.93 26.71 Junc n101 25.06 0.04 52.95 27.89	June n84	23.68	0.35	55.46	31.78
Junc n87 24.22 0.04 55.11 30.89 Junc n88 24.32 0.09 54.53 30.21 Junc n89 24.58 0.04 54.39 29.81 Junc n90 24.24 0.03 54.31 30.07 Junc n91 24.47 0.09 54.31 29.84 Junc n92 24.09 0.03 54.34 30.25 Junc n93 24.02 0.03 54.39 30.37 Junc n94 23.91 0.03 54.53 30.62 Junc n95 23.11 0.03 55.36 32.25 Junc n96 23.6 0.03 55.23 31.63 Junc n97 23.45 0.03 55.11 31.66 Junc n98 25.69 0.06 51.41 25.72 Junc n100 25.22 0.04 51.93 26.71 Junc n101 25.06 0.04 52.95 27.89 Junc n102 24.89 0.01 51.93 27.04	June n85	23.89	0.05	55.36	31.47
Junc n88 24.32 0.09 54.53 30.21 Junc n89 24.58 0.04 54.39 29.81 Junc n90 24.24 0.03 54.31 30.07 Junc n91 24.47 0.09 54.31 29.84 Junc n92 24.09 0.03 54.34 30.25 Junc n93 24.02 0.03 54.39 30.37 Junc n94 23.91 0.03 54.53 30.62 Junc n95 23.11 0.03 55.36 32.25 Junc n96 23.6 0.03 55.23 31.63 Junc n97 23.45 0.03 55.11 31.66 Junc n98 25.69 0.06 51.41 25.72 Junc n99 25.58 0.03 51.49 25.91 Junc n100 25.22 0.04 51.93 26.71 Junc n101 25.06 0.04 52.95 27.89 Junc n102 24.89 0.01 51.93 27.04	June n86	24.36	0.05	55.23	30.87
Junc n89 24.58 0.04 54.39 29.81 Junc n90 24.24 0.03 54.31 30.07 Junc n91 24.47 0.09 54.31 29.84 Junc n92 24.09 0.03 54.34 30.25 Junc n93 24.02 0.03 54.39 30.37 Junc n94 23.91 0.03 54.53 30.62 Junc n95 23.11 0.03 55.36 32.25 Junc n96 23.6 0.03 55.23 31.63 Junc n97 23.45 0.03 55.21 31.66 Junc n98 25.69 0.06 51.41 25.72 Junc n99 25.58 0.03 51.49 25.91 Junc n100 25.22 0.04 51.93 26.71 Junc n101 25.06 0.04 52.95 27.89 Junc n102 24.89 0.01 51.93 27.04 Junc n103 25.05 0.03 52.95 27.90	June n87	24.22	0.04	55.11	30.89
Junc n90 24.24 0.03 54.31 30.07 Junc n91 24.47 0.09 54.31 29.84 Junc n92 24.09 0.03 54.34 30.25 Junc n93 24.02 0.03 54.39 30.37 Junc n94 23.91 0.03 54.53 30.62 Junc n95 23.11 0.03 55.36 32.25 Junc n96 23.6 0.03 55.23 31.63 Junc n97 23.45 0.03 55.11 31.66 Junc n98 25.69 0.06 51.41 25.72 Junc n99 25.58 0.03 51.49 25.91 Junc n100 25.22 0.04 51.93 26.71 Junc n101 25.06 0.04 52.95 27.89 Junc n102 24.89 0.01 51.93 27.04 Junc n103 25.05 0.03 52.95 27.90 Junc n104 24.64 0.03 54.71 30.07	June n88	24.32	0.09	54.53	30.21
Junc n91 24.47 0.09 54.31 29.84 Junc n92 24.09 0.03 54.34 30.25 Junc n93 24.02 0.03 54.39 30.37 Junc n94 23.91 0.03 54.53 30.62 Junc n95 23.11 0.03 55.36 32.25 Junc n96 23.6 0.03 55.23 31.63 Junc n97 23.45 0.03 55.11 31.66 Junc n98 25.69 0.06 51.41 25.72 Junc n99 25.58 0.03 51.49 25.91 Junc n100 25.22 0.04 51.93 26.71 Junc n101 25.06 0.04 52.95 27.89 Junc n102 24.89 0.01 51.93 27.04 Junc n103 25.05 0.03 52.95 27.90 Junc n104 24.64 0.03 54.71 30.07 Junc n105 25.91 0.03 51.29 25.19	June n89	24.58	0.04	54.39	29.81
Junc n92 24.09 0.03 54.34 30.25 Junc n93 24.02 0.03 54.39 30.37 Junc n94 23.91 0.03 54.53 30.62 Junc n95 23.11 0.03 55.36 32.25 Junc n96 23.6 0.03 55.23 31.63 Junc n97 23.45 0.03 55.11 31.66 Junc n98 25.69 0.06 51.41 25.72 Junc n99 25.58 0.03 51.49 25.91 Junc n100 25.22 0.04 51.93 26.71 Junc n101 25.06 0.04 52.95 27.89 Junc n102 24.89 0.01 51.93 27.04 Junc n103 25.05 0.03 52.95 27.90 Junc n104 24.64 0.03 54.71 30.07 Junc n105 25.91 0.03 51.30 25.39 Junc n10 24.58 0.02 54.37 29.79	June n90	24.24	0.03	54.31	30.07
Junc n93 24.02 0.03 54.39 30.37 Junc n94 23.91 0.03 54.53 30.62 Junc n95 23.11 0.03 55.36 32.25 Junc n96 23.6 0.03 55.23 31.63 Junc n97 23.45 0.03 55.11 31.66 Junc n98 25.69 0.06 51.41 25.72 Junc n99 25.58 0.03 51.49 25.91 Junc n100 25.22 0.04 51.93 26.71 Junc n101 25.06 0.04 52.95 27.89 Junc n102 24.89 0.01 51.93 27.04 Junc n103 25.05 0.03 52.95 27.90 Junc n104 24.64 0.03 54.71 30.07 Junc n105 25.91 0.03 51.30 25.39 Junc n106 26.10 0.03 51.29 25.19 Junc n1 24.65 0.10 50.98 26.33	June n91	24.47	0.09	54.31	29.84
Junc n94 23.91 0.03 54.53 30.62 Junc n95 23.11 0.03 55.36 32.25 Junc n96 23.6 0.03 55.23 31.63 Junc n97 23.45 0.03 55.11 31.66 Junc n98 25.69 0.06 51.41 25.72 Junc n99 25.58 0.03 51.49 25.91 Junc n100 25.22 0.04 51.93 26.71 Junc n101 25.06 0.04 52.95 27.89 Junc n102 24.89 0.01 51.93 27.04 Junc n103 25.05 0.03 52.95 27.90 Junc n104 24.64 0.03 54.71 30.07 Junc n105 25.91 0.03 51.30 25.39 Junc n106 26.10 0.03 51.29 25.19 Junc n31 24.58 0.02 54.37 29.79 Junc n10 25.18 0.03 52.80 27.62 <td>June n92</td> <td>24.09</td> <td>0.03</td> <td>54.34</td> <td>30.25</td>	June n92	24.09	0.03	54.34	30.25
Junc n95 23.11 0.03 55.36 32.25 Junc n96 23.6 0.03 55.23 31.63 Junc n97 23.45 0.03 55.11 31.66 Junc n98 25.69 0.06 51.41 25.72 Junc n99 25.58 0.03 51.49 25.91 Junc n100 25.22 0.04 51.93 26.71 Junc n101 25.06 0.04 52.95 27.89 Junc n102 24.89 0.01 51.93 27.04 Junc n103 25.05 0.03 52.95 27.90 Junc n104 24.64 0.03 54.71 30.07 Junc n105 25.91 0.03 51.30 25.39 Junc n106 26.10 0.03 51.29 25.19 Junc n31 24.58 0.02 54.37 29.79 Junc n1 24.65 0.10 50.98 26.33 Junc N108 26.16 0.10 48.71 22.55 <td>June n93</td> <td>24.02</td> <td>0.03</td> <td>54.39</td> <td>30.37</td>	June n93	24.02	0.03	54.39	30.37
Junc n96 23.6 0.03 55.23 31.63 Junc n97 23.45 0.03 55.11 31.66 Junc n98 25.69 0.06 51.41 25.72 Junc n99 25.58 0.03 51.49 25.91 Junc n100 25.22 0.04 51.93 26.71 Junc n101 25.06 0.04 52.95 27.89 Junc n102 24.89 0.01 51.93 27.04 Junc n103 25.05 0.03 52.95 27.90 Junc n104 24.64 0.03 54.71 30.07 Junc n105 25.91 0.03 51.30 25.39 Junc n106 26.10 0.03 51.29 25.19 Junc n31 24.58 0.02 54.37 29.79 Junc n1 24.65 0.10 50.98 26.33 Junc N107 25.18 0.03 52.80 27.62 Junc N108 26.16 0.10 48.71 22.55 <td>June n94</td> <td>23.91</td> <td>0.03</td> <td>54.53</td> <td>30.62</td>	June n94	23.91	0.03	54.53	30.62
Junc n97 23.45 0.03 55.11 31.66 Junc n98 25.69 0.06 51.41 25.72 Junc n99 25.58 0.03 51.49 25.91 Junc n100 25.22 0.04 51.93 26.71 Junc n101 25.06 0.04 52.95 27.89 Junc n102 24.89 0.01 51.93 27.04 Junc n103 25.05 0.03 52.95 27.90 Junc n104 24.64 0.03 54.71 30.07 Junc n105 25.91 0.03 51.30 25.39 Junc n106 26.10 0.03 51.29 25.19 Junc n31 24.58 0.02 54.37 29.79 Junc n1 24.65 0.10 50.98 26.33 Junc N107 25.18 0.03 52.80 27.62 Junc N108 26.16 0.10 48.71 22.55 Junc n2 21 0.34 59.46 38.46	June n95	23.11	0.03	55.36	32.25
Junc n98 25.69 0.06 51.41 25.72 Junc n99 25.58 0.03 51.49 25.91 Junc n100 25.22 0.04 51.93 26.71 Junc n101 25.06 0.04 52.95 27.89 Junc n102 24.89 0.01 51.93 27.04 Junc n103 25.05 0.03 52.95 27.90 Junc n104 24.64 0.03 54.71 30.07 Junc n105 25.91 0.03 51.30 25.39 Junc n106 26.10 0.03 51.29 25.19 Junc n31 24.58 0.02 54.37 29.79 Junc n1 24.65 0.10 50.98 26.33 Junc N107 25.18 0.03 52.80 27.62 Junc N108 26.16 0.10 48.71 22.55 Junc n2 21 0.34 59.46 38.46 Tank 1 55 -21.50 60.00 5.00 <td>June n96</td> <td>23.6</td> <td>0.03</td> <td>55.23</td> <td>31.63</td>	June n96	23.6	0.03	55.23	31.63
Junc n99 25.58 0.03 51.49 25.91 Junc n100 25.22 0.04 51.93 26.71 Junc n101 25.06 0.04 52.95 27.89 Junc n102 24.89 0.01 51.93 27.04 Junc n103 25.05 0.03 52.95 27.90 Junc n104 24.64 0.03 54.71 30.07 Junc n105 25.91 0.03 51.30 25.39 Junc n106 26.10 0.03 51.29 25.19 Junc n31 24.58 0.02 54.37 29.79 Junc n1 24.65 0.10 50.98 26.33 Junc N107 25.18 0.03 52.80 27.62 Junc N108 26.16 0.10 48.71 22.55 Junc n2 21 0.34 59.46 38.46 Tank 1 55 -21.50 60.00 5.00	June n97	23.45	0.03	55.11	31.66
Junc n100 25.22 0.04 51.93 26.71 Junc n101 25.06 0.04 52.95 27.89 Junc n102 24.89 0.01 51.93 27.04 Junc n103 25.05 0.03 52.95 27.90 Junc n104 24.64 0.03 54.71 30.07 Junc n105 25.91 0.03 51.30 25.39 Junc n106 26.10 0.03 51.29 25.19 Junc n31 24.58 0.02 54.37 29.79 Junc n1 24.65 0.10 50.98 26.33 Junc N107 25.18 0.03 52.80 27.62 Junc N108 26.16 0.10 48.71 22.55 Junc n2 21 0.34 59.46 38.46 Tank 1 55 -21.50 60.00 5.00	June n98	25.69	0.06	51.41	25.72
Junc n101 25.06 0.04 52.95 27.89 Junc n102 24.89 0.01 51.93 27.04 Junc n103 25.05 0.03 52.95 27.90 Junc n104 24.64 0.03 54.71 30.07 Junc n105 25.91 0.03 51.30 25.39 Junc n106 26.10 0.03 51.29 25.19 Junc n31 24.58 0.02 54.37 29.79 Junc n1 24.65 0.10 50.98 26.33 Junc N107 25.18 0.03 52.80 27.62 Junc N108 26.16 0.10 48.71 22.55 Junc n2 21 0.34 59.46 38.46 Tank 1 55 -21.50 60.00 5.00	June n99	25.58	0.03	51.49	25.91
Junc n102 24.89 0.01 51.93 27.04 Junc n103 25.05 0.03 52.95 27.90 Junc n104 24.64 0.03 54.71 30.07 Junc n105 25.91 0.03 51.30 25.39 Junc n106 26.10 0.03 51.29 25.19 Junc n31 24.58 0.02 54.37 29.79 Junc n1 24.65 0.10 50.98 26.33 Junc N107 25.18 0.03 52.80 27.62 Junc N108 26.16 0.10 48.71 22.55 Junc n2 21 0.34 59.46 38.46 Tank 1 55 -21.50 60.00 5.00	June n100	25.22	0.04	51.93	26.71
Junc n103 25.05 0.03 52.95 27.90 Junc n104 24.64 0.03 54.71 30.07 Junc n105 25.91 0.03 51.30 25.39 Junc n106 26.10 0.03 51.29 25.19 Junc n31 24.58 0.02 54.37 29.79 Junc n1 24.65 0.10 50.98 26.33 Junc N107 25.18 0.03 52.80 27.62 Junc N108 26.16 0.10 48.71 22.55 Junc n2 21 0.34 59.46 38.46 Tank 1 55 -21.50 60.00 5.00	June n101	25.06	0.04	52.95	27.89
Junc n104 24.64 0.03 54.71 30.07 Junc n105 25.91 0.03 51.30 25.39 Junc n106 26.10 0.03 51.29 25.19 Junc n31 24.58 0.02 54.37 29.79 Junc n1 24.65 0.10 50.98 26.33 Junc N107 25.18 0.03 52.80 27.62 Junc N108 26.16 0.10 48.71 22.55 Junc n2 21 0.34 59.46 38.46 Tank 1 55 -21.50 60.00 5.00	June n102	24.89	0.01	51.93	27.04
Junc n105 25.91 0.03 51.30 25.39 Junc n106 26.10 0.03 51.29 25.19 Junc n31 24.58 0.02 54.37 29.79 Junc n1 24.65 0.10 50.98 26.33 Junc N107 25.18 0.03 52.80 27.62 Junc N108 26.16 0.10 48.71 22.55 Junc n2 21 0.34 59.46 38.46 Tank 1 55 -21.50 60.00 5.00	June n103	25.05	0.03	52.95	27.90
Junc n106 26.10 0.03 51.29 25.19 Junc n31 24.58 0.02 54.37 29.79 Junc n1 24.65 0.10 50.98 26.33 Junc N107 25.18 0.03 52.80 27.62 Junc N108 26.16 0.10 48.71 22.55 Junc n2 21 0.34 59.46 38.46 Tank 1 55 -21.50 60.00 5.00	June n104	24.64	0.03	54.71	30.07
Junc n31 24.58 0.02 54.37 29.79 Junc n1 24.65 0.10 50.98 26.33 Junc N107 25.18 0.03 52.80 27.62 Junc N108 26.16 0.10 48.71 22.55 Junc n2 21 0.34 59.46 38.46 Tank 1 55 -21.50 60.00 5.00	June n105	25.91	0.03	51.30	25.39
Junc n1 24.65 0.10 50.98 26.33 Junc N107 25.18 0.03 52.80 27.62 Junc N108 26.16 0.10 48.71 22.55 Junc n2 21 0.34 59.46 38.46 Tank 1 55 -21.50 60.00 5.00	June n106	26.10	0.03	51.29	25.19
Junc N107 25.18 0.03 52.80 27.62 Junc N108 26.16 0.10 48.71 22.55 Junc n2 21 0.34 59.46 38.46 Tank 1 55 -21.50 60.00 5.00	June n31	24.58	0.02	54.37	29.79
Junc N108 26.16 0.10 48.71 22.55 Junc n2 21 0.34 59.46 38.46 Tank 1 55 -21.50 60.00 5.00	Junc n1	24.65	0.10	50.98	26.33
Junc n2 21 0.34 59.46 38.46 Tank 1 55 -21.50 60.00 5.00	June N107	25.18	0.03	52.80	27.62
Tank 1 55 -21.50 60.00 5.00	June N108	26.16	0.10	48.71	22.55
	Junc n2	21	0.34	59.46	38.46
Tank 3 42 15.75 47.00 5.00	Tank 1	55	-21.50	60.00	5.00
	Tank 3	42	15.75	47.00	5.00

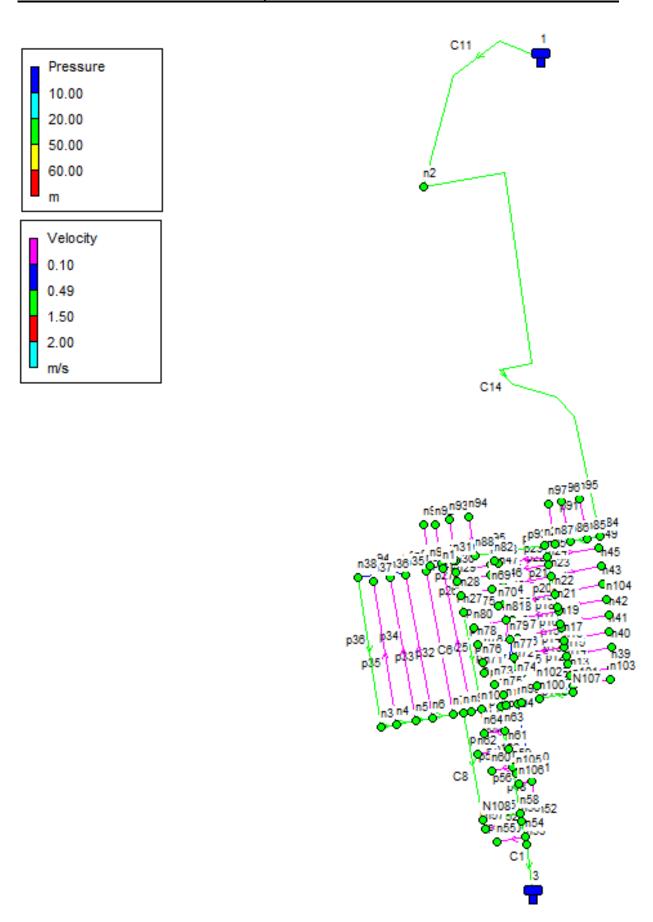


Figure (IV-9): Vitesse et pression pour le cas de transit (Réseau maillé).

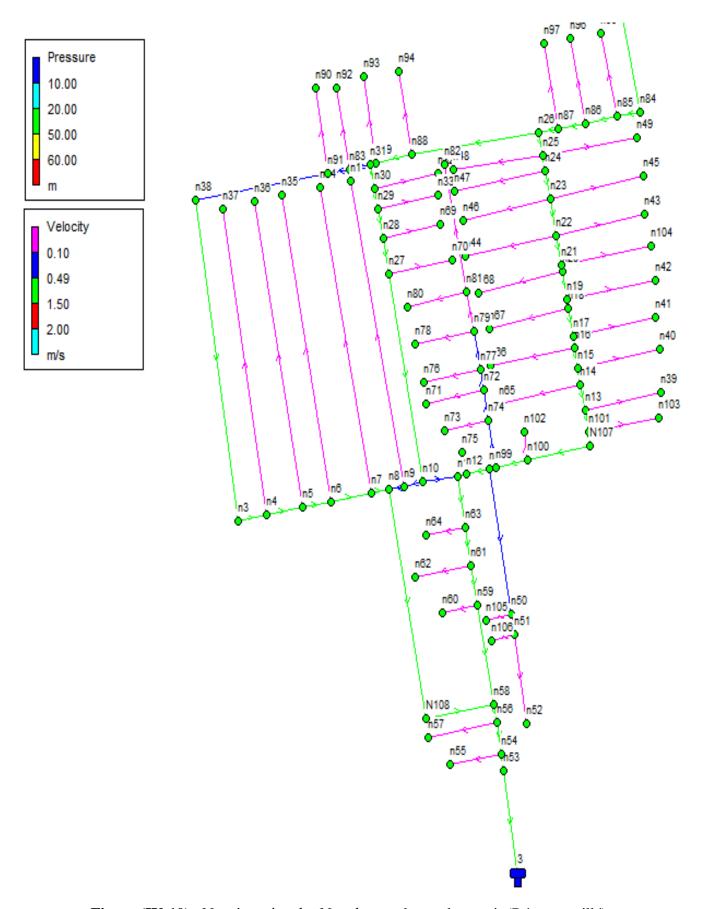


Figure (IV-10): Numérotation des Nœuds pour le cas de transit (Réseau maillé).

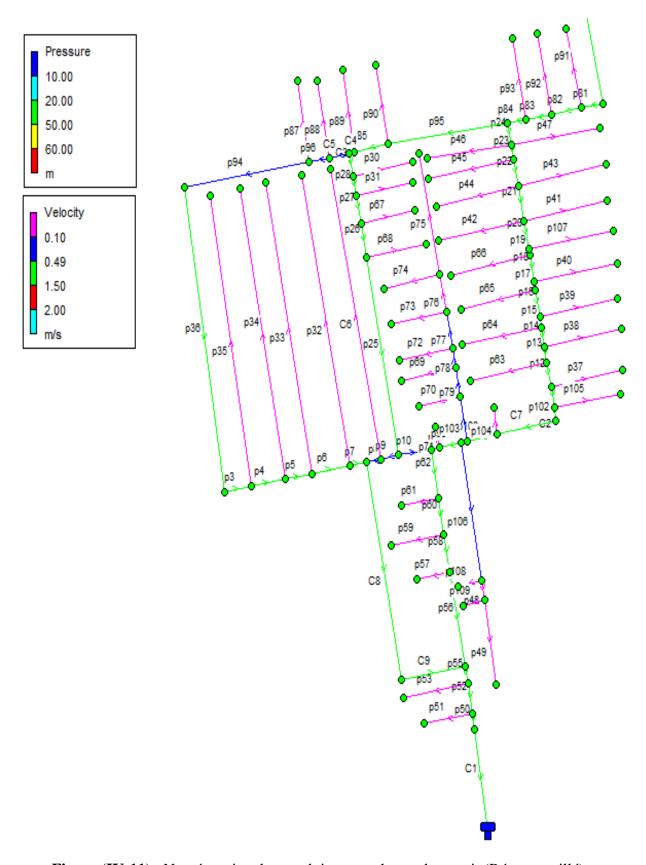


Figure (IV-11): Numérotation des conduites pour le cas de transit (Réseau maillé).

IV-3-3-3. Interprétation des résultats :

A.Cas de pointe :

- ❖ Les vitesses : en général sont acceptables sauf dans quelques tronçons la vitesse est inférieure à 0.5m/s. De ce fait, il est nécessaire de faire une vidange périodique
- **Les pressions** : sont dans les normes ;

B. Cas de pointe + incendie :

- **❖ Les vitesses :** on a une variation (augmentation ou diminution) par rapport au cas de pointe mais la plus part sont comprises, entre [0.5 : 2] m/s. même jusqu'à 2,13m/s.
- ❖ Les pressions : on a eu une diminution de pression par rapport au cas de pointe mais reste toujours dans les normes.

C.Cas de transit:

- **❖ Les vitesses :** on a une augmentation par rapport au cas de pointe mais la plus part sont comprises, entre [0.5 : 1.6] m/s.
- ❖ Les pressions : on a eu une augmentation de pression par rapport au cas de pointe mais reste toujours dans les normes.

IV-4. Les équipements du réseau de distribution :

Sur l'ensemble des canalisations formant le réseau, plusieurs organes sont installés afin de :

- ❖ Assurer la continuité de l'écoulement ;
- * Régulariser et mesurer les vitesses ;
- Protéger les conduites.

IV-4-1. Les accessoires

Dans un réseau de distribution, il est indispensable d'utiliser les appareils de mesure et les accessoires notamment pour un meilleur fonctionnement et une meilleure gestion.

IV-4-1-1. Robinets vannes:

Ce sont des appareils de sectionnement placés au niveau des canalisations. Ils permettent l'isolement des différents tronçons du réseau lors d'une réparation sur l'un d'entre eux et aussi le réglage des débits.

Leurs manœuvres s'effectuent:

Manuellement à partir d'une clef dite « béquille » ;

Électriquement pour des robinets de grand dimension;

On distingue plusieurs types de vannes qui satisfont à des besoins variés :

A. Vanne à coin (à opercule) :

Ce sont des appareils de sectionnement qui doivent être complètement ouvertes ou fermées. Elles sont installées sur les conduites afin de faire un isolement et utilisées pour les petits diamètres de 40 à 300mm.

Figure (IV-12): Robinets vanne à opercule.

B. Vannes papillons:

Ce sont des appareils qui peuvent servir au sectionnement que pour le réglage de débit. Ce type de robinet permet un arrêt automatique et rapide en cas de rupture de conduite. Elles sont utilisées pour les gros diamètres (350 mm et plus). Elle occasionne une faible perte de charge.

Cette vanne est placée au niveau des points de piquage.

Figure (IV-13): Vanne papillon.

C. Vannes de décharge :

Ces robinets sont situés aux points bas pour permettre la vidange des conduites. Cette évacuation se fait soit dans un égout soit dans une fossé ou en plein d'air (cas d'une conduite en compagne). Ce robinet sera posé dans un regard en maçonnerie facilement accessible.

IV-4-1-2. Ventouses :

Ce sont des organes de dégazages misent aux points hauts de la canalisation pour l'évacuation de l'air accumulé ainsi que pour l'admission de l'air à la conduite lorsqu'on procède sa vidange (protection contre la mise en dépression).

Figure (IV-14): Ventouse

IV-4-1-3. Bouches ou poteau d'incendie :

Les bouches ou les poteaux d'incendie doivent être raccordés sur les conduites capables d'assurer un débit minimum 17 (l/s) avec une pression de 10 m (1 bar). Ces derniers seront installés en bordure des trottoirs espacés de 200à 300 m et répartis suivant l'importance des risques imprévus.

IV-4-1-4. Clapets:

C'est un accessoire qui permet la circulation de l'eau dans un seul sens. Ils sont souvent disposés à la sortie des pompes et les canalisations de distribution.

Figure (IV-15): Clapet anti- retours.

IV-4-1-5. Organes de mesure :

A.Mesure de débit :

Le réseau de distribution nécessite l'emplacement des appareils de mesure de débit, qui seront installés dans des points adéquats, et servent à l'évaluation du rendement du réseau de distribution et au contrôle de la consommation.

Au niveau des installations hydrauliques, on distingue des appareils traditionnels tel que :

- **❖** Le diaphragme ;
- **!** Le venturi;
- **\Lambda** La tuyère.

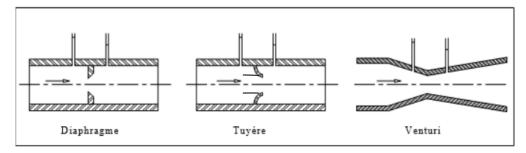


Figure (IV-16): Débitmètres déprimogènes.

(Alimentation en eau potable des agglomérations, Mr B.SALAH, 2014).

Et d'autre modernes qui sont les plus utilisés comme le débit mètre et les compteurs.

B.Mesure de la pression :

La mesure de pression est nécessaire pour quantifier la pression dans les canalisations. Cette pression se mesure par des manomètres :

- ❖ Manomètre à soufflet : ils présentent l'avantage d'éliminer le danger de gel et leurs inconvénients résident dans leurs sensibilités aux vibrations et au sur chauffage.
- Manomètre à capsule : ils sont destinés à la mesure des baisses pressions sur des gaz propres et non corrosifs.
- Manomètre à membrane : ils sont utilisés principalement pour la mesure de faibles pressions positives ou négatives de fluides gazeux ou liquides.
- ❖ Manomètre à aiguilles : L'avantage de cette transmission est la facilité d'étalonnage et son inconvénient réside dans usure rapide de la denture surtout si le manomètre subit des vibrations.

IV-5. Conclusion:

Dans ce chapitre, nous avons dimensionné le réseau de distribution de type maillé à l'aide du logiciel EPANET.

Les vitesses et les pressions sont dans les normes, cela permettra de satisfaire les besoins en eau des habitants. Les tuyaux sont en PEHD type PN 10 avec des diamètres variables.

Pour les vitesses faibles, il nécessaire de faire une vidange périodique pour éviter le colmatage et la sédimentation dans les conduites.

Chapitre V Pose de canalisation

V-1. Introduction:

La pose de canalisation joue un rôle très important dans la protection des conduites, leurs durabilités, leurs stabilisations et leurs bons fonctionnements. Pour cela, il est indispensable de connaître les différentes techniques de pose de canalisation qui dépendent de la nature des terrains.

V-2. Type de pose de canalisation :

Le principe de pose de la canalisation est pratiquement le même, par contre le mode de pose est variable d'un terrain à l'autre et du type de canalisation. Afin de répondre au critère de bonne mise en œuvre, il existe plusieurs variantes de pose de conduites :

- ❖ La Pose dans un terrain ordinaire ;
- ❖ La Pose dans un terrain peu consistant ;
- ❖ La Pose dans un terrain marécageux ;
- ❖ La Pose en galerie ;
- ❖ Traversée d'une rivière ;
- La Pose sans ouverture de tranchée
- **\Delta** La pose en pente.

Le choix s'effectue en fonction de la topographie du terrain et sa nature, la disposition des lieux et des différents obstacles qui peuvent être rencontrés.

V-2-1. La Pose dans un terrain peu consistant :

Si la pose de conduite doit se faire dans un mauvais terrain, il est nécessaire de la mettre sur une semelle en béton armé ou non avec interposition d'un lit de sable.

Figure (V-1) : Pose de conduite en tranchée dans un terrain peu consistant (Alimentation en eau potable des agglomérations, Mr B.SALAH ,2014).

V-2-2. La Pose dans un terrain marécageux :

Il est prévu dans la tranchée un moyen de drainage recouvert d'un lit de gravier puis d'un lit de pose en béton sur lequel repose la canalisation.

V-2-3. La Pose en galerie :

Un canal est prévu pour évacuer l'eau stagnante dans la galerie et la rejeter dans l'égout voisin. Les canalisations de petit diamètre sont posées sur un manchon et celle de grand diamètre reposent sur des tasseaux en béton. Les vannes d'arrêt sont placées des deux côtés de la route.

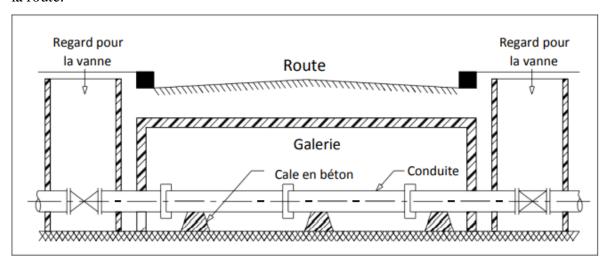


Figure (V-2): Pose de conduite en galerie.

V-2-4. Traversée d'une rivière :

La pose de canalisation à la traversée d'une rivière demande certains travaux confortatifs en fonction de l'état de la traversée et de l'importance de l'adduction :

L'existence d'un pont route servira comme support de la canalisation, ou celle-ci sera accrochée au tablier.

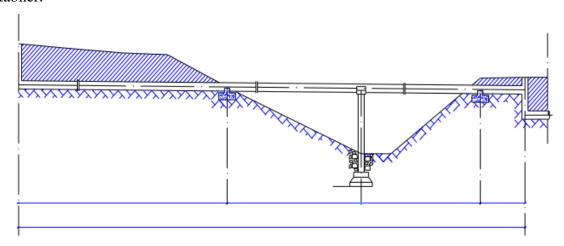


Figure (V-3): Traversée d'une rivière par pont.

V-2-5. La Pose sans ouverture de tranchée :

Les techniques de pose sans ouverture de tranchée sont les plus répandues en milieu urbain lors de l'existence d'obstacles délicats. On distingue deux technique :

V-2-5-1. Pose par fonçage :

Le fonçage consiste à pousser des tubes en acier (fourreau) dans le sol qui seront assemblées les uns aux autres, au fur et à mesure de leur progression, à l'aide d'un rail de guidage. On extrait ensuite les déblais, à l'aide d'une hydro cureuse.

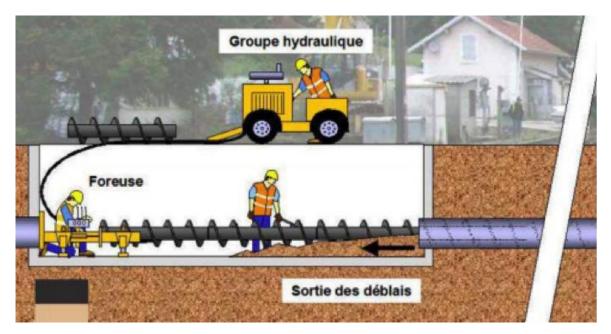


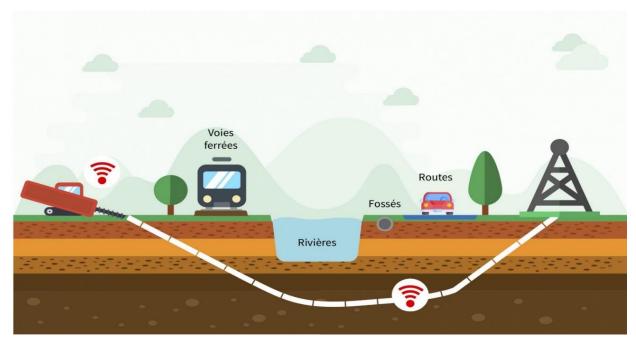
Figure (V-4): Pose par fonçage.

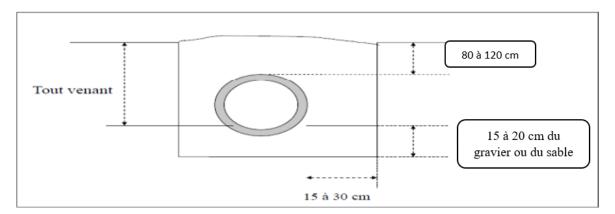
V-2-5-2. Forage dirigé :

Cette technique de pose est utilisée pour les petits diamètres en assemblant les canalisations dans la surface et les tirées dans le trou alésé à l'aide d'un fluide de forage.

Elle est réalisée en faisant une reconnaissance soigneuse du sous-sol.

Ce forage consiste à réaliser un trou pilote à l'aide d'une tête pilotée et orientable, entraine derrière elle un train de tiges en rotation, qui creuse le terrain en faisant des alésages successifs afin d'agrandir le trou pilote jusqu'à la dimension souhaitée.




Figure (V-5): Pose par forage dirigé.

V-2-6. La pose en pente :

Au-delà d'une certaine pente, les frottements entre la canalisation et la terres sont insuffisants pour maintenir la conduite, il convient alors d'équilibrer la composante axiale de gravité par l'utilisation de butées d'encrage ou de joints verrouillés, les deux techniques pouvant être associées.

V-2-7. La Pose dans un terrain ordinaire :

- ❖ Dans ce terrain la pose se fait dans une tranchée avec une largeur minimale de 60cm et une profondeur qui varie entre 80 à 120cm afin de mettre le lit de pose, la conduite et le remblai.
- ❖ Le fond de la tranchée doit avoir un lit de sable de 15à 20cm d'épaisseur.
- ❖ Le soudage des joints se fait au fond de la tranchée en calant la canalisation soit avec des butées ou des tronçons de madrier.
- ❖ La tranchée doit être remblayée, jusqu'à 0,30 m au-dessus de la conduite, par couches successives bien tassées.

Figure (V-6) : Pose de conduite en tranchée dans un terrain ordinaire (Alimentation en eau potable des agglomérations, Mr B.SALAH ,2014).

V-3. Systèmes de raccordement :

Notre réseau est en PEHD, et pour ce type de matériau, il existe trois (03) types de raccordements :

V-3-1. La soudure par électro-fusion

Cette technique permet le raccordement des tubes de diamètres égaux ou de diamètres différents. Les raccords électro soudables sont des pièces en PE équipées d'une résistance intégrée à la surface interne du raccord qui, après assemblage, se trouve au contact de la pièce à raccorder.

Après grattage, nettoyage et positionnement des pièces à raccorder, les bornes de soudage permettent le raccordement via un appareil de soudage.

V-3-2. La soudure bout à bout (polyfusion) :

La polyfusion est une méthode de soudure de tubes et raccords en PEHD de même épaisseur et de même pression nominale. La soudure bout à bout peut être utilisée pour tout diamètre à partir de 90mm.

V-3-3. Les raccords mécaniques :

Le raccordement par compression utilise des raccords à visser. Ces derniers peuvent être en plastique ou en laiton. Selon la dimension des tubes, il existe des raccords de différents diamètres.

Il existe donc des raccords en polyéthylène destinés à :

- L'introduction dans la conduite d'un débit supplémentaire ou son soutirage.
- ❖ Le changement de diamètre de la conduite.
- ❖ Le changement de direction de la conduite.
- L'assemblage des tubes.

Pour notre réseau on aura besoin de :

A.Les Tés:

Ce sont des accessoires de forme T, utilisés pour soutirer ou ajouter un débit d'une canalisation. Ils sont rencontrés au niveau des réseaux maillés, ramifiés et des canalisations d'adduction en cas de piquage. Les tés se présentent soit à trois emboîtements, soit à deux emboîtements et brides

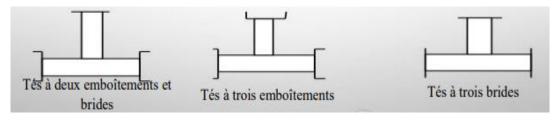


Figure (IV-7): Les Tés

(Alimentation en eau potable des agglomérations, Mr B.SALAH, 2014).

B.Les cônes:

Ce sont des organes de raccordement utilisés pour relier les conduites de diamètres différents. On distingue :

- Des cônes à deux emboitements ;
- Des cônes à emboitement et bride.

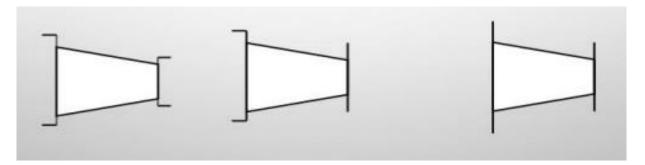


Figure (IV-8): Les Cônes

(Alimentation en eau potable des agglomérations, Mr B.SALAH, 2014).

C.Les coudes:

Ce sont des accessoires utilisés dans les réseaux maillés et ramifiés pour le changement de direction de la conduite. Généralement, les coudes sont maintenus par des massifs de butées, convenablement dimensionnés.

On distingue des coudes à deux emboîtements ou bien à emboîtements et à bout lisse. Ils existent en différents angles 20° , 45° (1/8), 90° (1/4)....

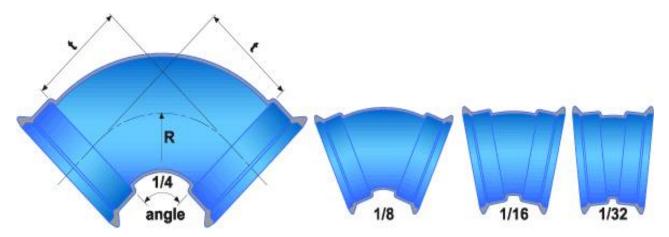


Figure (IV-9): Les Coudes

D.Les joints:

Ils sont utilisés pour assurer l'étanchéité des jointures des tuyaux et faire face aux sollicitations mécaniques et chimiques. Ces joints constituent la partie la plus fragile de la canalisation à cause de leur souplesse ; tout mouvement du tuyau s'articule sur le joint, ce qui provoque en lui des usures mécaniques.

Il existe trois principaux types de joints :

- Mécaniques,
- ❖ À emboîtement
- ❖ À bride.

E. Manchon:

Il est utilisé pour le raccordement des accessoires et des appareillages. Il se présente à bouts lisses des deux extrémités, à deux emboitements, à emboitement et à bout lisse, à deux brides, à brides et bout lisse, à emboitement et bride. On les rencontre surtout au niveau des montages des appareils accessoires (robinet-vannes).

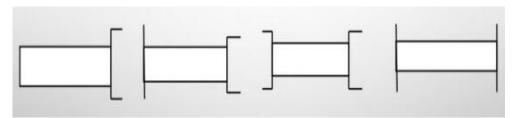


Figure (IV-10): Les Manchons

(Alimentation en eau potable des agglomérations, Mr B.SALAH, 2014).

F. Croix:

Ces pièces sont utilisées au niveau des nœuds pour croiser des canalisations de sens perpendiculaire. Elles peuvent être à brides complètement ou à manchons et à brides. On les rencontre au niveau du réseau maillé et ramifié.

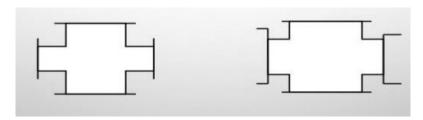


Figure (IV-11): Les Croix

(Alimentation en eau potable des agglomérations, Mr B.SALAH ,2014).

V-4. Conclusion:

Dans ce chapitre, nous avons parlé des différents types de pose de canalisation qui jouent un rôle important dans la protection des conduites. Pour notre zone d'étude, il est recommandé de suivre les étapes de pose de canalisation dans un terrain ordinaire.

Chapitre VI Organisation De Chantier

VI-1. Introduction:

Vu les problèmes rencontré lors de la réalisation d'un projet, la surestimation ou la sous-estimation des couts de ses ouvrages composant, il est indispensable d'estimer le cout du projet avant la réalisation. L'organisation de chantier est le point qu'on doit suivre pour déterminer les moyens nécessaires pour assurer la réalisation des travaux à exécuter dans les bonnes conditions avant d'aller sur chantier et avant le commencement de la réalisation.

L'organisation du chantier détermine la durée la plus courte et le cout minimiser pour la réalisation des travaux.

VI-2. Exécution des travaux :

Les principales opérations à exécuter pour la pose des canalisations sont :

- Vérification, manutention des conduites.
- ❖ Décapage de la couche végétale.
- * Réalisation des tranchées et des fouilles.
- ❖ Aménagement du lit de pose.
- Pose de conduite.
- ❖ Assemblage des conduites.
- * Remblai des tranchées.
- Compactage.
- Désinfection du réseau.

VI-2-1. Vérification, manutention des conduites :

Les produites préfabriqués font l'objet sur le chantier de vérification portant sur :

- Les quantités ;
- L'aspect du contrôle d'intégrité;
- ❖ Le marquage en cas de défaut.

VI-2-2. Décapage de la couche végétale :

Avant de commencer l'excavation des tranchés, on doit d'abord passer par la première opération qui est le décapage de la terre végétale. Cette opération consiste à éliminer la couche superficielle du sol (végétal et organique).

VI-2-3. Réalisation des tranchées et des fouilles :

Les travaux d'excavation se réalise mécaniquement de l'aval vers l'amont. Sa largeur doit être supérieure au diamètre extérieur de la conduite avec un espacement de 30cm entre les parois de la tranchée et la conduite.

La profondeur de la tranchée doit dépasser sa largeur et elle est entre 80cm à 120 cm afin de :

- ❖ Protéger la conduite du risque d'écrasement sous l'effet des charges et des surcharges
- Protéger la conduite contre les variations de la température
- Protéger la conduite contre le gel.

VI-2-3-1. La largeur de la tranchée :

La largeur de la tranchée est donnée par la relation suivante :

$$B = D + (2 \times 0.30) [m] (VI - 1)$$

B: largeur de la tranchée (m).

D : diamètre de la conduite (m).

VI-2-3-2. La profondeur de la tranchée :

La profondeur est donnée par la formule suivante :

$$H = D + h + e [m] (VI - 2)$$

Avec:

H: la profondeur de la tranchée (m);

D: diamètre de la conduite (m);

e: profondeur du lit de pose (m);

h: hauteur du remblai au-dessus de la conduite (m)

VI-2-4. Aménagement du lit de pose :

Les conduites doivent être posées sur un lit de pose de 10 cm à 20 cm d'épaisseur qui se compose généralement de sable bien nivelé. Mais si le terrain est peu consistant, le fond de la tranchée sera consolidé, chaque conduite sera posée sur une semelle en béton armé avec interposition d'un lit de sable.

VI-2-5. Pose de conduite :

Après la mise du lit de pose, on passe à la pose de la conduite qui répond aux opérations suivantes :

- ❖ Avant la mise en place, il faut nettoyer le lit des tranchées ;
- ❖ La mise de la conduite doit être manipulé avec soin ;
- ❖ Il faut vérifier régulièrement l'alignement des tuyaux et les caler pour les aligner ;
- ❖ A chaque arrêt de travail, la fermeture des conduites avec un bouchon temporaire est exigée pour éviter l'introduction des corps étrangers.

VI-2-6. Assemblage des conduites :

L'assemblage des conduites circulaires se fait par les joints à emboitement à l'aide d'une bague renforcée d'une armature

VI-2-7. Essaie d'étanchéité sur les joints et les conduites :

Une fois la conduite est posée au fond de la tranchée, un essai d'étanchéité est effectué sur des tronçons de longueur maximale 500 m à l'aide d'une pompe d'essai. Ce test doit durer environ 30 minutes, la variation de pression ne doit pas dépasser 0,2 bar.

VI-2-8. Remblai de tranché:

Après avoir effectué la pose de canalisation dans la tranchée, on procède au remblayage qui doit s'effectuer par couches de 20 à 30 cm. Cette méthode comprend deux phases :

Le remblai d'enrobage : il est de 10 à 15 cm au-dessus de la génératrice supérieure, il comprend le lit de pose, l'assise, le remblai initial.

Le remblai supérieur : on continue à remblayer par des couches successives de 0.25m compactées l'une après l'autre à l'aide des engins,

VI-2-9. Compactage:

Une fois le remblai est fait, on doit effectuer un compactage qui consiste à étaler la terre pour assurer la protection de la conduite

VI-2-1. Désinfection du réseau :

Lors de la pose de canalisation, la poussière peut être introduites dans les canalisations, et pour éliminer l'existence de ces corps étrangers dans la conduite, il est indispensable de rincer le réseau avant la mise en service.

VI-3. Choix des engins :

Pour avoir un meilleur rendement et une meilleure rentabilité des travaux, le choix des engins est nécessaire, car chaque opération a un engin qui lui convient.

VI-3-1. Pour le décapage de la terre végétale :

Pour le décapage de la terre végétale, l'engin utilisé dans les terrains faciles à décapé est la niveleuse. Par contre dans les terrains difficiles on utilise le Bulldozer

VI-3-2. Pour l'excavation des tranchées :

Pour cette opération on utilise une pelle équipée en retro qui convient à tous les types du terrain. Cet engin est utilisé à grande échelle grâce au bon rendement et à la qualité du travail qu'il peut fournir.

VI-3-3. Pour le remblaiement des tranchées :

L'engin qui convient cette opération c'est le chargeur. Cet engin permet de remblayer les fouilles, les casiers et la tranchée après la pose de conduite et si les travaux ne sont pas très importants, on utilise le rétro chargeur.

VI-3-4. Pour le compactage :

Lors cette opération on utilise le compacteur à rouleaux lisses qui sert à tasser les remblais des surfaces étroites.

VI-4. Calcul des volumes :

VI-4-1. Volume du décapage de la couche végétale :

$$V_{d\acute{e}c} = B \times H \times L \dots (VI - 3)$$

 $V_{d\acute{e}c}$: volume de la couche végétale (m^3) .

B : largeur de la couche végétale (m).

H : profondeur de la couche végétale (On prend H=0,1m).

L : longueur de la couche végétale (m).

VI-4-2. Volume du déblai des tranchées :

$$V_d = L \times B \times H \dots (VI - 4)$$

 V_d : volume du déblai des tranchées (m^3) .

L : longueur totale de la tranchée (m).

B: largeur de la tranchée (m).

H: profondeur de la tranchée (m).

VI-4-3. Volume occupé par le lit de sable :

$$V_{ls} = e \times L \times B \dots \dots (VI - 5)$$

 V_{ls} : volume du lit de sable (m^3) .

e : épaisseur de la couche de sable (on prend e=0,2m).

L : longueur totale de la tranchée (m).

B: largeur de la tranchée (m).

VI-4-4. Volume occupé par les conduites :

$$V_{cond} = \left(\frac{\pi \times D_{ext}}{4}\right) \times L \dots \dots (VI - 6)$$

 V_{cond} : volume de la conduite (m^3) .

 D_{ext} : diamètre extérieur de la conduite (m).

L : longueur totale de la tranchée (m).

VI-4-5. Volume du remblai de protection :

$$V_{rem} = V_d - (V_{cond} + V_{déc} + V_{ls}) \dots \dots (VI - 7)$$

 V_{rem} : volume du remblai (m^3) .

VI-4-6. Volume excédentaire :

$$V_{exc} = V_f - V_{rem} \dots \dots (VI - 8)$$

 V_{exc} : volume du sol excédentaire (m^3) .

 V_f : volume du sol foisonné.

 V_{rem} : volume du remblai

Sachant que : $V_f = V_d * K_f \dots \dots (VI - 9)$

 V_f : volume du sol foisonné (m^3) .

 V_d : volume du déblai (m^3) .

 K_f : coefficient de foisonnement

Tableau(VI-1): coefficient de foisonnement

Type de sol	K_f
Sable, matériaux fins	1,08-1,17
Limon argileux	1,14-1,28
Argile	1,25 -1,30

(Source : Métré de terrassement-cours génie civil)

La texture de notre zone d'étude est Limoneuse, contient des limons. Pour cela on prends K_f =1,25

Le tableau (VI-2) montre le calcul des différents volumes :

Tableau (VI-2): Calcul des différents volumes

Ø	Longueur	largeur	hauteur	V déblai	V pose de lit de	V conduite	V cv	V remblai	V foi	Vex (m3)
(mm)	(m)	(m)	(m)	(m3)	sable (m3)	(m3)	(m3)	(m3)	(m3)	
50	5409,26	0,65	1,25	4395,02	703,20	10,62	351,60	3377,74	5593,78	2164,18
63	78,19	0,66	1,26	65,47	10,37	0,24	5,18	49,68	81,84	32,16
90	321,88	0,69	1,29	286,51	44,42	2,05	22,21	217,83	358,13	140,30
110	1469,6	0,725	1,325	1366,87	208,68	13,96	104,34	1039,89	1708,59	668,70
160	740,728	0,76	1,36	765,62	112,59	14,89	56,30	581,84	957,02	375,18
200	1218,61	0,8	1,4	1364,84	194,98	38,26	97,49	1034,11	1706,05	671,94
	la :	somme		8244,34	1274,24	80,92	637,12	6252,96	10305,42	4052,46

VI-5. Calcul des volumes des travaux de réservoir projeté :

Dans le système d'alimentation en eau potable de note agglomération on a un seul réservoir à projeter de capacité 800 m³ avec un diamètre intérieur de 14,28 et une hauteur de 7m.

Il est recommandé de prendre :

- ❖ Le diamètre d'excavation doit être supérieur à celui du réservoir de 2 m
- ❖ L'épaisseur du lit de tout-venant est de : 0,3 m.
- ❖ L'épaisseur du béton de propreté est de : 0,15 m.
- \clubsuit La ceinture supérieure est de section carrée 0,5*0,5 m^2 .
- ❖ L'épaisseur de la coupole est de 0,1 m.
- ❖ L'acrotère à 0,5 m de hauteur.

VI-5-1. Calcul de volume des déblais :

Le volume total des déblais est estimé par la relation suivante :

$$V_{d\acute{e}blai} = (\frac{\pi * D_{exc}^2}{4}) * h_{exc}$$

 $V_{d\acute{e}blai}$: Volume total des déblais (m^3) .

 D_{exc} : Diamètre d'excavation, $D_{exc} = D_{ext} + 2$ (m).

 D_{ext} : Diamètre extérieur du réservoir (m), $D_{ext} = D_{int} + (2 * 0.5)$.

 h_{exc} : Profondeur d'excavation (m), h_{exc} = 2 m.

Tableau (VI-3): Calcul des volumes des déblais pour le réservoir projeté

Réservoir	D_{int}	D_{ext}	D_{exc}	H_{exc}	V_{deb}
$R_{projet\acute{ ext{e}}}$	14,50	15,50	17,50	2,00	480,81

VI-5-2. Calcul de volume de tout-venant :

Le volume du tout-venant est donné par la formule suivante :

$$V_{tv} = \left(\frac{\pi * D_{exc}^2}{4}\right) * e_{tv}$$

 V_{tv} : Volume du tout-venant en (m^3) .

 e_{tv} : Epaisseur de la couche du tout-venant en m.

On prend une épaisseur de 0.3 m.

Tableau (VI-4): Calcul du volume tout-venant pour le réservoir.

Réservoir	D_{int}	D_{ext}	D_{exc}	e_{exc}	V_{tv}
$R_{projet\acute{ heta}}$	14,50	15,50	17,50	0,30	72,12

VI-5-3. Calcul de volume de béton de propreté

La pose du béton de propreté sera étendue de 0.5 m des parois extérieures du réservoir. Le volume du béton de propreté est calculé par la formule suivante :

$$V_{bp} = (\frac{\pi * D_{bp}^{2}}{4}) * e_{bp}$$

 V_{bp} : Volume du béton de propreté en (m^3) .

 D_{bp} : Diamètre de la couche du béton de propreté en m. Donc, $D_{bp}=D_{ext}+1$.

 e_{bp} : Epaisseur de la couche du béton de propreté en m. on prend une épaisseur de $0.15~\mathrm{m}$.

Tableau (VI-5): Calcul du volume du béton de propreté pour le réservoir.

Réservoir	D_{int}	D_{ext}	D_{bp}	e_{bp}	V_{bp}
$R_{projet\acute{ heta}}$	14,50	15,50	16,50	0,15	32,06

VI-5-4. Calcul de volume de béton armé

Les éléments des réservoirs dont le béton armé est le matériau de construction sont :

- * Radier.
- ❖ Voiles.
- Ceintures supérieures.
- Coupole.
- Maçonnerie des chicanes des réservoirs.

Les éléments du réservoir, ayant des formes circulaires, sont estimés par la formule (VI-) :

$$V_{ba} = \pi * (\frac{D_{ext}^2 - D_{int}^2}{4}) * H$$

Dext: Diamètre extérieur de l'élément du réservoir en m.

Dint: Diamètre intérieur de l'élément du réservoir en m.

H : Hauteur de l'élément du réservoir en m.

Tableau (VI-6) : Calcul du volume du béton armé pour le réservoir.

Eléments	D_{ext}	D_{int}	Н	V_{ba}
Radier	15,50	-	0,50	94,30
Voile	15	14,50	4	46,32
Ceinture supérieure	15	14,50	0,50	5,79
Acrotère	15	14,80	0,50	2,34
	148,74			

Coupole

La coupole est une calotte sphérique de rayon :

$$R = \frac{f^2 + (\frac{D}{2})^2}{2 * f}$$

Avec:

R : Rayon de la coupole (m).

D : Diamètre du réservoir (m).

f : Flèche de la coupole (m).

Avec le volume du béton armé de la coupole :

$$V_c = 2 * \pi * R * f * e_c$$

 V_c : Volume du béton armé de la coupole (m^3) .

 e_c : Epaisseur de la coupole (m).

Tableau (VI-7): Calcul du volume du béton armé pour la coupole du réservoir

Réservoir	D	R	V_c
$R_{projet\acute{e}}$	14,5	16,31	17,41

VI-5-5. Calcul de volume de remblai compacté

Le volume du remblai est égal au vide restant, après coulage du béton armé des voiles, entre ces derniers et les limites d'excavation :

$$V_{remblai} = \pi * \left(\frac{D_{exc}^{2} - D_{ext}^{2}}{4}\right) * h$$

 $V_{remblai}$: Volume du remblai compacté en (m^3) .

 D_{ext} : Diamètre extérieur du réservoir en m.

 h_{exc} : Profondeur d'excavation en m.

Tableau (VI-8): Calcul du volume du remblai compacté du réservoir

Réservoir	D_{int}	D_{ext}	D_{exc}	H_{exc}	V_{rem}
$R_{projet\acute{e}}$	14,5	15,5	17,5	2	103,62

VI-6. Calcul des coûts des travaux :

Les coûts des travaux du réseau de distribution et du réservoir sont mentionnés dans les tableaux (VI-9) et (VI-10).

Tableau (VI-9) : Coût des travaux du réseau de distribution.

N°	désignation	unité	quantité	prix unitaire (DA)	Montant (DA)				
A	Travaux de terrassement								
1	Décapage terre végétal	m^3	637,12	120,00	76454,56				
2	Déblai	m^3	8244,34	600,00	4946602,59				
3	Lit de sable	m^3	1274,24	1200,00	1529091,18				
4	Remblai	m^3	6252,96	600,00	3751775,18				
5	Evacuation du déblai excédentaire	m^3	4052.46	120,00	486295,61				
В	Canalisation								
	Canalisati	on en	PEHD PN	10					
	Ø50	ml	5409,3	128,66	695955,39				
	Ø63	ml	78,19	203,80	15935,12				
	Ø90	ml	321,88	381,88	122919,53				
	Ø110	ml	1469,6	721,36	1060110,66				
	Ø160	ml	740,73	1181,58	875229,39				
	Ø200	ml	1218,6	1848,65	2252783,38				
		•	,	НТ	15813152,63				

Tableau (VI-10): Coût des travaux du réservoir projeté.

N°	Désignation	unité	quantité	Prix unitaire (Da)	Montant (Da)	
1	Déblais	m^3	480,81	500,00	240406,25	
2	Tout venant	m^3	72,12	600,00	43273,13	
3	Béton propreté	m^3	32,06	8000,00	256459,50	
4	Béton armé	m^3	166,15	35000,00	5815385,98	
5	Remblais	m^3	103,62	400,00	41448,00	
	Total HT					

Le tableau (VI-11) présente le cout total de notre projet.

Tableau (VI-11): Bilan des coûts.

Désignation	Montant (DA)	
Réseau de distribution	15813152,63	
Réservoir	6396972,85	
Total (HT)	22210125,48	
TVA 19%	4219923,84	
TTC	26.430.049,32	

VI-7. Planification des travaux

Avant d'entamer la réalisation des travaux sur le chantier, il est indispensable de faire une planification qui consiste à designer la meilleure façon d'utiliser avec économie de la main d'œuvre, et les moyens matériels.

L'objectif de la planification est d'assurer que tout le travail sera fait :

- ❖ Dans un ordre correct (bonne succession des opérations du réseau) ;
- ❖ Sans retard;
- Aussi économique que possible.

VI-7-1. Durée des tâches :

Pose de conduite : 0.5 Km/jour.

Lit de sable : 0.75 Km/jour.

Epreuve de joint de canalisation : 0.5 Km/jour.

Remblai compacté: 0.5 Km/jour.

Excavation : Connaissant le volume de la terre à excaver et le rendement de l'engin, le temps d'exploitation sera :

$$T = \frac{V}{R_p} \quad \dots \dots \dots (VI - 10)$$

V: Volume du sol excavé (m^3) .

 R_p : Capacité du godet (m^3 /jour).

$$R_p = \frac{3600 * q * K_R * K_t}{T_c * K_f} \dots \dots (VI - 11)$$

 K_R : Coefficient de remplissage du godet. On prend $K_R = 0.8$.

 K_t : Coefficient d'utilisation du temps. Il dépend de la nature du sol. On prend $K_t = 0.8$.

 K_f : Coefficient de foisonnement du sol, soit Kf = 1.25.

 T_c : La durée d'un cycle de remplissage du godet. On prend Tc = 20 s.

q: Capacité du godet (m^3) . On prend $q = 0.35 m^3$.

Tableau (VI-12): Capacité du godet en fonction du volume des terrassements

Volume excavé (m^3) .	≤10000	≥10000	>20000	>100000
Capacité du godet (m ³)	0,25 - 0,35	0,5-0,65	1 – 1,25	1,5

VI-7-1-1. Distribution:

Les taches de réalisation de la distribution et leurs durées sont mentionnées dans le tableau (VI-13).

Tableau (VI-13): Temps de réalisation des opérations de distribution.

Notation	Opération	Durée (jour)
A	Préparation du chantier	10
В	Piquetage	8
С	Décapage de la terre végétale	11
D	Exécution des tranchées	29
Е	Aménagement du lit de pose	12
F	Mise en place de canalisation	22
J	Assemblage des tuyaux	8
Н	Essaie d'étanchéité pour les conduites et des joints	18
I	Remblaiement de la tranchée	22
J	Compactage	10
K	Clôture	5

VI-7-1-2. Réservoir :

Les taches de réalisation du réservoir et leurs durées sont mentionnées dans le tableau (VI-14).

Tableau (VI-14): Temps de réalisation des opérations du réservoir.

Notation	opération	durée
L	Excavation	2
M	Pose du tout venant	2
N	Coulage du béton de propreté	3
О	Coulage du béton armé du radier	8
P	Coulage du béton armé du voile	30
Q	Coulage du béton armé de la ceinture supérieure	20
S	Coulage du béton armé de la coupole	10
T	Remblayage et compactage	2
U	Maçonnerie et finition générale	4
V	Evacuation des débris et nettoyage	1

VI-7-1-2. Planification des travaux par la méthode du graphe (diagramme de Gantt)

La théorie des graphes consiste à résoudre tous les problèmes d'ordonnancement, et la détermination des plannings, notamment le diagramme de Gantt. Il fut élaboré dans les années 1890 par l'ingénieur polonais Karol Adamiecki. Ce diagramme, couramment utilisé en gestion de projet, est l'un des outils les plus efficaces pour représenter visuellement l'état d'avancement des différentes activités (tâches) qui constituent un projet. On utilise le logiciel Microsoft Project pour tracer les diagrammes de Gantt.

Ce diagramme permet donc de visualiser d'un seul coup d'œil :

- Les différentes tâches à envisager
- ❖ La date de début et la date de fin de chaque tâche
- La durée escomptée de chaque tâche
- ❖ Le chevauchement éventuel des tâches, et la durée de ce chevauchement
- La date de début et la date de fin du projet dans son ensemble

Les opérations qui précèdent et succèdent chaque opération dans le tableau (VI-15) et (VI-17).

Tableau (VI-15): Tâches qui précèdent et succèdent chaque opération de la distribution.

Operations	précède	succède
A		В
В	A	С
С	В	D
D	С	Е
Е	D	F
F	Е	G
G	F	Н
Н	G	I
I	Н	J
J	I	K
K	J	

La détermination des délais par la méthode du tableau :

Tableau (VI-16) : Détermination des délais pour le réseau de distribution.

		DP DPP		DP		DP DPP		
opération	TR	DCP	DFP	DCPP	DFPP	MT		
A	10	0	10	0	10	0		
В	8	10	18	10	18	0		
С	11	18	29	18	29	0		
D	29	29	58	29	58	0		
Е	12	58	70	58	70	0		
F	22	70	92	70	92	0		
J	8	92	100	92	100	0		
Н	18	100	118	100	118	0		
I	22	118	140	118	140	0		
J	10	140	150	140	150	0		
K	5	150	155	150	155	0		

avec

✓ TR : Temps de réalisation.

✓ DCP : Date de commencement au plus tôt.

✓ DFP : Date de finissement au plus tôt.

✓ DCPP : Date de commencement au plus tard.

✓ DFPP : Date de finissement au plus tard

✓ MT : Marge totale.

❖ Le chemin critique du projet est : A-B-C-D-E-F-J-H-I-J-K.

❖ Avec un temps de réalisation : 155 jours ouvrables.

Tableau (VI-17): Tâches qui précèdent et succèdent chaque opération du réservoir.

opération	TR	précède	succède
L	2		M
M	2	L	N
N	3	M	О
0	8	N	P
P	30	О	Q
Q	20	Р	S
S	10	Q	T
T	2	S	U
U	4	T	V
V	1	U	

La détermination des délais par la méthode du tableau :

Tableau (VI-18) : Détermination des délais pour le Réservoir.

			DP	DPP		
opération	TR	DCP	DFP	DCPP	DFPP	MT
L	4	0	4	0	4	0
M	3	4	7	4	7	0
N	2	7	9	7	9	0
О	25	9	34	9	34	0
P	25	34	59	34	59	0
Q	30	59	89	59	89	0
S	37	89	126	89	126	0
T	3	126	129	126	129	0
U	19	129	148	129	148	0
V	2	148	150	148	150	0

❖ Le chemin critique du projet est : L-M-N-O-P-Q-S-T-U-V.

❖ Avec un temps de réalisation : 82 jours ouvrables.

❖ Diagramme de planification des travaux de la distribution :

opération	Durée (jour)	15 jours	30 jours	45 jours	60 jours	75 jours	90 jours	105 jours	120 jours	135 jours	150 jours	155 jours
A	10											
В	8											
С	11											
D	29											
Е	12											
F	22											
G	8					·						
Н	18											
I	22											
J	10											
K	5											

❖ Figure (VI-7) : Diagramme de GANTT de la distribution.

: chemin critique

Donc la durée totale de notre projet est de 155 jours.

❖ Diagramme de planification des travaux du réservoir :

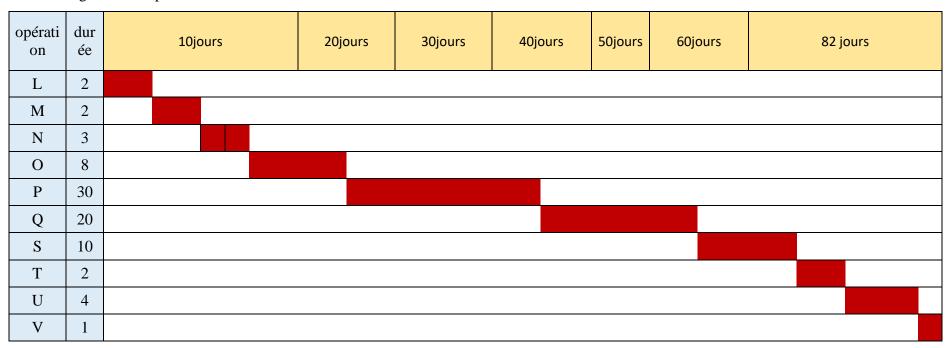


Figure (VI-7) : Diagramme de GANTT du Réservoir.

: chemin critique

Donc la durée totale de notre projet est de 82 jours.

Conclusion:

Dans ce chapitre, nous avons estimé les volumes nécessaires des travaux, et aussi le coût total en T.T.C du projet à 26.430.049 DA soit vingt-six millions quatre cent trente mille quarante-neuf dinars algériens. D'autre part, nous avons établi une planification des travaux, qui est nécessaire pour le bon déroulement du projet, dont la durée de sa réalisation est estimée à 155 jours ouvrable.

CONCLUSION GENERALE

CONCLUSION GENERALE:

A travers l'étude que nous avons présenté, nous avons donné en premier lieu un aperçu général sur les problèmes du système d'alimentation en eau potable de la cité Ben youb Hamza ville de Baraki.

En commençant par la récolte des données nécessaires, qui nous mène à une simple description de la zone d'étude et à une estimation des différents besoins en eau pour l'horizon 2052, dont la population atteindra 6784 habitants avec une estimation de ses besoins à long terme de 2063,693 m³/j soit 23,89 l/s

Les ouvrages de stockage sont dimensionnés selon les besoins en eau estimés. Par conséquent, après avoir calculé la capacité du réservoir et en tenant compte du réservoir de stockage existant R1500, un réservoir d'une capacité de 800 m³ est projeté, son emplacement est choisi de telle sorte à assurer une alimentation gravitaire.

Lors de l'étude du réseau de distribution, nous avons opté pour un réseau maillé comme mode de distribution avec des conduites en PEHD PN 10 bars. Le réseau en question a été simulé à l'aide de, logiciel EPANET pour les trois cas cas : débit de pointe sans et avec le débit d'incendie et le cas de transit.

Nous avons achevé notre travail par la citation des moyens de pose de canalisation et le calcul des devis estimatif et quantitatif du projet qui est estimé à 26.430.049 DA soit vingt-six millions quatre cent vingt mille cent quarante-sept dinars algériens, avec une durée de sa réalisation estimée à 155 jours ouvrables.

Cette étude nous a permis de mettre en pratique toutes les connaissances que nous avons acquises durant notre cycle de formation de l'Hydraulique, et aussi, nous espérons que ce mémoire sera utile aux étudiants à venir dans le domaine de l'alimentation en eau potable.

Référence Bibliographique :

- ❖ BONIN J. (1986) Captage, Réseaux d'adduction, Réservoir, Réseaux de distribution, Equipements, Petites centrales hydraulique, Edition Eyrolles, Paris.
- ❖ BONIN J. (1986) Hydraulique urbaine aux agglomérations de petite et moyenne importance, Edition Eyrolles, Paris.
- ❖ DUPONT, A. (1979). « Hydraulique urbaine » : ouvrages de transport, élévation et distribution des eaux », Tome II, Edition Eyrolles.
- ❖ SALAH, B. (1993). « Polycopie d'alimentation en eau potable », Edition ENSH, Soumaa.
- ❖ Catalogue technique du groupe CHIALI.

Mémoires de fin d'études :

- ❖ TRIDI, M. (2021). RENFORCEMENT DU SYSTEME D'AEP DE SOUK EL TENINE (W. TIZI-OUZOU)). Mémoire d'ingénieur d'état, ENSH.
- ❖ BABACI, M. (2021). DIMENSIONNEMENT DU RESEAU D'ALIMENTATION EN EAU POTABLE DE LA ZONE BOUKERROUCHA (W. BOUMERDES). Mémoire d'ingénieur d'état, ENSH.
- ❖ CHEKHAB, F. et KAYA, N. (2021). Dimensionnement du réseau d'AEP de la ville d'Oued Recache Wilaya de Khenchela. Mémoire de fin d'études, Université de OUM EL BOUAGHI

Annexes

Annexe (I)

 $\textbf{Annexe} \; \textbf{(I)} : \text{R\'epartition horaire des pourcentages du d\'ebit maximum journalier}$

	Nombre d'habitants					
Heures	<10000	10000 à	50000 à	> 100000	Aggl.de type	
	<10000	50000	100000	<i>></i> 100000	rural	
0-1	1.00	1.50	3.00	3.35	0.75	
1-2	1.00	1.50	3.20	3.25	0.75	
2-3	1.00	1.50	2.50	3.30	1.00	
3-4	1.00	1.50	2.60	3.20	1.00	
4-5	2.00	2.50	3.50	3.25	3.00	
5-6	3.00	3.50	4.10	3.40	5.50	
6-7	5.00	4.50	4.50	3.85	5.50	
7-8	6.50	5.50	4.90	4.45	5.50	
8-9	6.50	6.25	4.90	5.20	3.50	
9-10	5.50	6.25	5.60	5.05	3.50	
10-11	4.50	6.25	4.80	4.85	6.00	
11-12	5.50	6.25	4.70	4.60	8.50	
12-13	7.00	5.00	4.40	4.60	8.50	
13-14	7.00	5.00	4.10	4.55	6.00	
14-15	5.50	5.50	4.20	4.75	5.00	
15-16	4.50	6.00	4.40	4.70	5.00	
16-17	5.00	6.00	4.30	4.65	3.50	
17-18	6.50	5.50	4.10	4.35	3.50	
18-19	6.50	5.00	4.50	4.40	6.00	
19-20	5.00	4.50	4.50	4.30	6.00	
20-21	4.50	4.00	4.50	4.30	6.00	
21-22	3.00	3.00	4.80	4.20	3.00	
22-23	2.00	2.00	4.60	3.75	2.00	
23-24	1.00	1.50	3.30	3.70	1.00	
Total	100%	100%	100%	100%	100%	

(Source cours SALAH.B)

Annexes

Annexe (II)

Annexe (II): Liste des prix des tuyaux PEHD PN10.

Code	Désignation Article	Unité	Prix HT	Prix TTC
110030201	Tube PEHD Ø 20 PN 10 EP 2.0 mm	ml	34.32	40.15
110030251	Tube PEHD Ø 25 PN 10 EP 2.0 mm	ml	43.78	51.23
110030321	Tube PEHD Ø 32 PN 10 EP 2.0 mm	ml	55.10	64.47
110070401	Tube PEHD Ø 40 PN 10 EP 2.4 mm	ml	83.50	97.69
110070501	Tube PEHD Ø 50 PN 10 EP 3.0 mm	ml	128.66	150.53
110070631	Tube PEHD Ø 63 PN 10 EP 3.8 mm	ml	203.8	238.48
110070751	Tube PEHD Ø 75 PN 10 EP 4.5 mm	ml	289.41	338.61
110070901	Tube PEHD Ø 90 PN 10 EP 5.4 mm	ml	381.88	446.80
110071101	Tube PEHD Ø 110 PN 10 EP 6.6 mm	ml	568.93	665.64
110071251	Tube PEHD Ø 125 PN 10 EP 7.4 mm	ml	721.36	843.99
110071601	Tube PEHD Ø 160 PN 10 EP 9.5 mm	ml	1181.58	1382.45
110072001	Tube PEHD Ø 200 PN 10 EP 11.9 mm	ml	1848.65	2162.92
110072501	Tube PEHD Ø 250 PN 10 EP 14.8 mm	ml	2869.93	3357.81
110073151	Tube PEHD Ø 315 PN 10 EP 18.7 mm	ml	4322.93	5057.83
110074001	Tube PEHD Ø 400 PN 10 EP 23.7 mm	ml	6936.23	8115.39
110075001	Tube PEHD Ø 500 PN 10 EP 29.7 mm	ml	10783.03	12616.15
110076301	Tube PEHD Ø 630 PN 10 EP 37.4 mm	ml	17077.20	19980.32

Source: Service commercial CHIALI, 2021.