

The title (العنوان):

Contribution à l'analyse de la sécheresse dans le contexte du changement climatique en utilisant les copules.

The paper document Shelf mark (الشفرة) : 6-0011-17

<u>APA Citation</u> (توثيق APA):

Bali, Nouria (2017). Contribution à l'analyse de la sécheresse dans le contexte du changement climatique en utilisant les copules[Thèse de master, ENSH].

The digital repository of the Higher National School for Hydraulics "Digital Repository of ENSH" is a platform for valuing the scientific production of the school's teachers and researchers. Digital Repository of ENSH aims to limit scientific production, whether published or unpublished (theses, pedagogical publications, periodical articles, books...) and broadcasting

Digital Repository of ENSH is built on the open DSpace software platform and is managed by the Library of the National Higher School for Hydraulics. http://dspace.ensh.dz/jspui/

it online.

المستودع الرقمي للمدرسة الوطنية العليا للري هو منصة خاصة بتثمين الإنتاج العلمي لأساتذة و باحثي المدرسة.

يهدف المستودع الرقمي للمدرسة إلى حصر الإنتاج العلمي سواءكان منشورا أو غير منشور (أطروحات،مطبوعات بيداغوجية، مقالات الدوريات، كتب....) و بثه على الخط.

المستودع الرقمي للمدرسة مبني على المنصة المفتوحةDSpace و يتم إدارته من طرف مديرية المكتبة للمدرسة العليا للري.

كل الحقوق محفوظة للمدرسة الوطنية العليا للري.

REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE وزارة التعليم العالي والبحث العلمي Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

Département Hydraulique Urbaine

MEMOIRE DE MASTER

Pour l'obtention du diplôme de Master en Hydraulique

OPTION : Conception des Systèmes d'Alimentation en Eau Potable

THEME :

Contribution à l'analyse de la sécheresse dans le contexte du changement climatique en utilisant les copules

Présenté par : M^{elle} : BALI Nouria

DEVANT LES MEMBRES DU JURY

Nom et Prénom	Grade	Qualité
M ^{me} MEDDI Hind	M.C.B	Présidente
M ^r AMMARI Abdelhadi	M.C.B	Examinateur
M ^r BOUFEKANE Abdelmadjid	M.A.A	Examinateur
M ^{me} HOULI Samia	M.A.A	Examinatrice
M ^r ZEROUAL Ayoub	M.C.B	Promoteur

Mars 2017

Avant tout propos, nous remercions « Dieu » le tout puissant qui nous a donné sagesse et santé pour pouvoir réaliser ce travail.

Mon profond remerciement aux membres de jury pour avoir accepté d'examiner ce travail.

C'est avec un grand plaisir que j'exprime ma profonde gratitude et mes sincères remerciements à mon promoteur: Mr ZEROUAL. A. Je lui exprime ma reconnaissance pour ses précieux conseils qui m'ont permis de bénéficier de son expérience et d'acquérir de nombreuses connaissances tout le long de ce travail.

Également mes sincères reconnaissances et remerciements à Mr BOUKHLIFA. M pour sa bonne orientation.

Toute ma reconnaissance est adressée à tous les enseignants et le personnel de l'école nationale supérieure de l'hydraulique qui ont contribué à ma formation.

J'adresse mes remerciements les plus chaleureux à ma famille et ma bellefamille, pour son soutien et son encouragement durant mes études, sans oublier mon fiancé, qui n'a jamais hésité le moindre instant à se tenir à mes côtés afin de me soutenir, m'aider, et m'encourager.

Je remercie également Melle BOUABDELLI Senna et ma belle-sœur Leila pour leur soutien et leur aide précieux.

Enfin, tous ceux qui m'ont aidé de près ou de loin, que ce soit par leur amitié, leur conseils ou leurs soutien moral, qui trouveront dans ces quelque lignes l'expression de mes remerciements les plus vifs et les plus sincères. A tous ceux qui me sont chers.

Nouria B

ملخص:

يعتبر الجفاف أحد المخاطر الطبيعية الأكثر شيوعا في الجزائر مع ا ثاره السلبية على الزراعة والموارد المائية. تهدف هذه الدراسة إلى تحليل مخاطر الجفاف على مستوى حوضين مائيين متواجدين في شمال غرب الجزائر بالتحديد على مستوى مكتا وتفنا، اعتمادا على مؤشرين هما مؤشر هطول الأمطار (SPI) والمؤشر الهيدرومتري (SDI) ثم المقارنة بين خصائص الجفاف المترولوجى والهيدرولوجى.

يتميز الجفاف بمجموعة من الخصائص هي المدة، ، الخطورة والشدة. على غرار معظم المشاكل الهيدرولوجية، المتغيرات مثل هذه الخصائص ليست مرتبطة، الثنائيات كنموذج متعدد المتغيرات استخدمت مؤخرًا في الاقتصاد ، كما احتلت في الآونة الأخيرة مكانة كبيرة في الدراسة الهيدرولوجية. في هذا العمل قمنا بدراسة هذه الدالة لتحليل خصائص الجفاف اعتمادا على المؤشر الهيدرومتري حيث سمح لنا تطبيق هذه الدالة الثلاثية والمزدوجة بتقييم فترة عودة الجفاف في منطقة الدراسة.بعد ذلك قمنا بتقييم خصائص الجفاف في ظل تغيير المناخ باستخدام المعطيات المستخرجة من محاكاة النماذج المناخية الإقليمية كرداكس -افريقيا.

Résumé :

La sécheresse est l'un des risques naturels les plus courants en Algérie avec des effets négatifs sur l'agriculture et les ressources en eau. L'analyse de la sécheresse consiste généralement à caractériser sa sévérité, durée et intensité. Cette étude vise à analyser le risque de sécheresse au Nord-Ouest de l'Algérie, particulièrement sur ses deux grands bassins hydrographiques ; la Tafna et la Macta, en se basant sur deux indices à savoir : l'indice métrologique (SPI) et l'indice hydrométrique (SDI). Les caractéristiques calculées à partir de ces deux indices seront utilisées pour comparer la sècheresse métrologique et la sécheresse hydrologique. Par la suite, les caractéristiques de sécheresse calculées à partir de l'SDI sont adaptées aux copules pour obtenir les périodes de retour, tandis que l'SPI est utilisé pour évaluer dans le futur projeté les caractéristiques de la sécheresse sous changement climatique. Ce dernier a été calculé à partir des sorties du meilleur modèle choisit parmi les huit (08) modèles climatiques régionaux Cordex-Africa sur deux périodes future avec deux scénarios d'émissions du gaz à effet de serre RCP 4.5 et RCP 8.5.

Abstract:

Drought is one of the most common natural hazards in Algeria with negative effects on agriculture and water resources. The drought analysis consists of characterizing its severity, duration and intensity. This study aims to analyze the drought risk in northwestern Algeria, particularly on its two major watershed; the Tafna and Macta, based on two indices: the metrological index (SPI) and the hydrometric index (SDI). The characteristics calculated from these two indices will be used to compare the two types of drought namely: metrological drought and hydrological drought. Subsequently, the drought characteristics calculated from the SDI are adapted to the copulas to obtain the return periods, while the SPI is used to evaluate the characteristics of the drought under climate change in the future projected. The latter was calculated using the output of the best model selected from the eight Cordex-Africa regional

climate models using tow future periods (2006-2060 and 2045-2100) with tow Representative Concentration Pathway (RCP 4.5 and RCP 8.5) scenarios.

Chapitre I: Recherche bibliographique

Tableau I.1: Les avantages et les inconvénients de l'indice SPI.	7
Tableau I.2 : Les valeurs de l'indice des précipitations (SPI) (Mckee et al. 1993)	11
Tableau I.3: Définition des états de sécheresse hydrologique à l'aide de l'indice SDI	12
Tableau I.4: Modèles climatique régional et nom de l'institution des modèles de la circulat	tion
générale (Zeroual, 2010).	25

Chapitre II : Présentation de la zone d'étude

Tableau II.1 : Code et coordonnées des stations pluviométriques.	30
Tableau II.2: stations hydrométrique retenues dans l'étude.	31

Chapitre III : Analyse de la sécheresse hydrologique

Tableau III.1 : Comparaison de l'ajustement des différentes lois sur les données des apports à
différentes échelles du temps35
Tableau III.2 : Les caractéristiques de la sécheresse à l'échelle 3 mois pour la station de beni
bahdel43
Tableau III.3 : Les caractéristiques de la sécheresse à l'échelle 6 mois pour la station de beni_
bahdel44
Tableau III.4: Les caractéristiques de la sécheresse à l'échelle 12 mois pour la station de beni
Tableau III.5: Les caractéristiques de la sécheresse à l'échelle 6 mois pour la station de
Chouly
Tableau III.6: Les caractéristiques de la sécheresse à l'échelle 6 mois pour la station d'El
Haciabia
Tableau III.6(suite): Les caractéristiques de la sécheresse à l'échelle 6 mois pour la station
d'El Haciabia46
Tableau III.7: Les caractéristiques de la sécheresse à l'échelle 12 mois pour la station d'El
Haciabia
Tableau III.8: Résultats de l'ajustement des caractéristiques de la sécheresse à l'échelle de 3
mois pour la station de Beni bahdel47
Tableau III.9: Résultats de l'ajustement des caractéristiques de la sécheresse à l'échelle de 6
mois pour la station de Beni bahdel49
Tableau III.10: Résultats de l'ajustement des caractéristiques de la sécheresse à l'échelle de
12 mois pour la station de Beni bahdel50
Tableau III.11: Résultats de l'ajustement des caractéristiques de la sécheresse à l'échelle de 6
mois pour la station de Chouly51
Tableau III.12: Résultats de l'ajustement des caractéristiques de la sécheresse à l'échelle de 6
mois pour la station d'El Haciabia52
Tableau III.13: Résultats de l'ajustement des caractéristiques de la sécheresse à l'échelle de
12 mois pour la station d'El Haciabia53

Tableau III.14: Corrélation des caractéristiques de la sécheresse de la station de Beni bahdel.
Tableau III.15: Corrélation des caractéristiques de la sécheresse pour la station de Chouly55
Tableau III.16: Corrélation des caractéristiques de la sécheresse pour la station d'El Haciabia.
Tableau III.17: Estimation des paramètres de la copule tri-variée de Gumbel et t-copule56
Tableau III.18: Périodes de retour de chacune des caractéristiques de la sécheresse pour la
station de beni bahdel
Tableau III.19: Périodes de retour de chacune des caractéristiques de la sécheresse pour la
station de Chouly
Tableau III.20: Périodes de retour de chacune des caractéristiques de la sécheresse pour la
station d'El Haciabia
Tableau III.21 : Comparaison entre la conjointe période de retour de tri-variée et la période de
retour d'une une seule variable en utilisant t-copula pour la station de Chouly64
Tableau III.22 : Comparaison entre la conjointe période de retour de tri-variée et la période de
retour d'une une seule variable en utilisant t-copula pour la station d'El Haciabia65
Tableau III.23: Comparaison entre la conjointe période de retour tri-variée et la période de
retour d'une seule variable en utilisant t-copula pour la station de Beni bahdel

Chapitre IV: Évolution des caractéristiques des sécheresses sous changement climatique

 Tableau IV.1: Nombre des mois capturés par chaque modèle climatique
 85

 Tableau IV.2 : Les caractéristiques de la sécheresse à l'échelle 3mois pendant les périodes Tableau IV.2 (suite) : Les caractéristiques de la sécheresse à l'échelle 3 mois pendant les périodes futures (2006-2100) pour le scénario RCP4.5 pour la station de Beni bahde......87 Tableau IV.2 (suite et fin) : Les caractéristiques de la sécheresse à l'échelle 3 mois pendant les périodes futures (2006-2100) pour le scénario RCP4.5 pour la station de Beni bahdel.88 Tableau IV.3 : Les caractéristiques de la sécheresse à l'échelle 6 mois pendant les périodes Tableau IV.3 (suite et fin) : Les caractéristiques de la sécheresse à l'échelle 6 mois pendant les périodes futures (2006-2100) pour le scénario RCP4.5 pour la station de Beni bahdel.89 Tableau IV .4 : Les caractéristiques de la sécheresse à l'échelle 12 mois pendant les périodes futures (2006-2100) pour le scénario RCP4.5 pour la station de Beni bahdel90 Tableau IV .4 (suite et fin) : Les caractéristiques de la sécheresse à l'échelle 6 mois pendant les périodes futures (2006-2100) pour le scénario RCP4.5 pour la station de Beni bahdel.....91 Tableau IV .5 : Les caractéristiques de la sécheresse à l'échelle 6 mois pendant les périodes Tableau IV .5 (suite) : Les caractéristiques de la sécheresse à l'échelle 6 mois pendant les Tableau IV .5 (suite et fin) : Les caractéristiques de la sécheresse à l'échelle 6 mois pendant

Tableau V.6 : Les caractéristiques de la sécheresse à l'échelle 6 mois pendant les périodes Tableau V.6(suite et fin) : Les caractéristiques de la sécheresse à l'échelle 6 mois pendant les périodes futures (2006-2100) pour le scénario RCP4.5 pour la station d'El hacaiba......94 Tableau IV.7: Les caractéristiques de la sécheresse à l'échelle 12 mois pendant les périodes Tableau IV.8 : Les caractéristiques de la sécheresse à l'échelle 3 mois pendant les périodes Tableau IV.8 (suite) : Les caractéristiques de la sécheresse à l'échelle 3 mois pendant les périodes futures (2006-2100) pour le scénario RCP8.5 pour la station de Beni bahdel.97 Tableau IV.8 (suite et fin) : Les caractéristiques de la sécheresse à l'échelle 3 mois pendant les périodes futures (2006-2100) pour le scénario RCP8.5 pour la station de Beni bahdel.98 Tableau IV.9: Les caractéristiques de la sécheresse à l'échelle 6 mois pendant les périodes Tableau IV.9 (suite) : Les caractéristiques de la sécheresse à l'échelle 6 mois pendant les périodes futures (2006-2100) pour le scénario RCP8.5 pour la station de beni bahdel.99 Tableau IV.9 (suite et fin): Les caractéristiques de la sécheresse à l'échelle 6 mois pendant les périodes futures (2006-2100) pour le scénario RCP8.5 pour la station de beni bahdel100 Tableau IV.10: Les caractéristiques de la sécheresse à l'échelle 12 mois pendant les périodes futures (2006-2100) pour le scénario RCP8.5 pour la station de Beni bahdel.100 Tableau IV.10 (suite et fin): Les caractéristiques de la sécheresse à l'échelle 12 mois pendant les périodes futures (2006-2100) pour le scénario RCP8.5 pour la station de Beni bahdel. ..101 Tableau IV.11 : Les caractéristiques de la sécheresse à l'échelle 6 mois pendant les périodes Tableau IV.11 (suite et fin) : Les caractéristiques de la sécheresse à l'échelle 6 mois pendant les périodes futures (2006-2060) pour le scénario RCP8.5 pour la station de chouly.103 Tableau IV.12 : Les caractéristiques de la sécheresse à l'échelle 6 mois pendant les périodes futures (2006-2100) pour le scénario RCP8.5 pour la station d'El Haciabia.104 Tableau IV.12 (suite et fin) : Les caractéristiques de la sécheresse à l'échelle 6 mois pendant les périodes futures (2006-2100) pour le scénario RCP8.5 pour la stationd'El Haciabia105 Tableau IV.13 : Les caractéristiques de la sécheresse à l'échelle 12 mois pendant les périodes futures (2006-2100) pour le scénario RCP8.5 pour la station d'El Haciabia.107 Tableau IV.13 (suite et fin) : Les caractéristiques de la sécheresse à l'échelle 12 mois pendant les périodes futures (2006-2100) pour le scénario RCP8.5 pour la station d'El Haciabia...

107

Chapitre I : Recherche bibliographique

Figure I.1: Relation entre les différents types de sécheresse (Source : Centre national de lutte	
contre la sécheresse Université de Nebraska-Lincoln États-Unis d'Amérique)	5
Figure I.2: Exemple de transformation d'une fonction de répartition de la loi gamma en une	
distribution normal standardisée1	0
Figure I.3: Caractérisation des événements de sécheresse1	3
Figure I.4 : Teste de k-s2	0
Figure I.5 : Évolution temporelle du forçage radiatif anthropogénique entre 2000 et 2300 pou	r
les scénarios RCP (lignes continues) et comparaison aux scénarios SRES utilisés dans l'AR4	
(pointillé). (Tiré de IPCC 2013)2	2

Chapitre II : Présentation de la zone d'étude

Figure II.1 : Présentation des différents bassins étudiés	26
Figure II.2 : Bassin de la Tafna	27
Figure II.3: Bassin de la Macta.	29
0	

Chapitre III : Analyse de la sécheresse hydrologique

Liste des figures

Figure III.13 : Variation mensuelle de l'indice SDI à l'échelle de 6 mois pour la période de
temps de 1941-2009 pour la station de Beni bahdel
Figure III.14 : Variation mensuelle de l'indice SDI à l'échelle de 12 mois pour la période de
temps de 1941-2009 pour la station de Beni bahdel40
Figure III.15: Variation mensuelle de l'indice SDI à l'échelle de 6 mois pour la période de
temps de 1941-2009 pour la station de Chouly
Figure III.16: Variation mensuelle de l'indice SDI à l'échelle de 6 mois pour la période de
temps de 1941-2009 pour la station d'El Haciabia
Figure III.17: Variation mensuelle de l'indice SDI à l'échelle de 12 mois pour la période de
temps de 1941-2009 pour la station d'El Haciabia41
Figure III.18 : la période de retour conjoint TDS (à gauche) et TDS' (à droite) de la durée et
la sévérité de la sècheresse en utilisant la copule de Gumbel pour la station de Beni babdel
(Cas 1 · 3 mois) 60
Figure III 19 : la période de retour conjoint TDS (à gauche) et TDS' (à droite) de la durée et
la sévérité de la sècheresse en utilisant la copule de Gumbel pour la station de Beni babdel
(Cas 2: 6 mois)
Figure III 20 : la période de retour conjoint TDS (à gauche) et TDS' (à droite) de la durée et la
sévérité de la sècheresse en utilisant la conule de Gumbel pour la station de Beni babdel (Cas
$3 \cdot 12 \text{ mois}$
Figure III 21 : la période de retour conjoint TDS (à gauche) et TDS' (à droite) de la durée et la
sévérité de la sècheresse en utilisant la conule de Gumbel pour la station de Chouly(Cas 1 : 6
mois)
Eigura III 22 : la páriada da ratour conjuint TDS (à gaucha) at TDS' (à draita) da la durác at la
sévérité de la sècheresse en utilisent la conule de Cumbel la station d'El Hagishia (Cas 1 : 6
mois)
Eigure III 22 : la période de retour conjoint TDS (à gauche) et TDS' (à droite) de la durée et la
rigure III.25. la periode de retour conjoint <i>TDS</i> (a gauche) et <i>TDS</i> (a dione) de la durée et la
sevente de la secheresse en utilisant la copule de Guinder pour la station d'El Haciadia (Cas 2
Eisure III 24 : Valaure manageallas de l'indice SPI à l'échalle de 2 mais noum la station de Dani
Figure III.24 : Valeurs mensuelles de l'indice SPI à l'échelle de 3 mois pour la station de Beni
Dandel
Figure III.25 : Valeurs mensuelles de l'indice SPI à l'échelle de 6 mois pour la station de Beni
Dandel
Figure III.26 : valeurs mensuelles de l'indice SPI à l'échelle de 12 mois pour la station de
E = 11 27 - 1 - 11 - 1 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 =
Figure III.27 : valeurs mensuelles de l'indice SPI à l'échelle de 6 mois pour la station de
Figure III.28 : valeurs mensuelles de l'indice SPI à l'échelle de 6 mois pour la station d'El
Figure 111.29: valeurs mensuelles de l'indice SPI a l'echelle de 12 mois pour la pour la station
d'El Haciabia
Figure III.30 : Comparaison entre les caractéristiques de la sècheresse métrologique et la
secheresse hydrologique à l'échell e de 3,6 et 12 mois pour la station de Beni bahdel70

Figure III.31 : Comparaison entre les caractéristiques de la sècheresse métrologique et la sécheresse hydrologique à l'échelle de 6 mois pour la station de Chouly et à l'échelle de 6, 12 mois pour la station d'El Haciabia......70

Chapitre IV: Évolution des caractéristiques des sécheresses sous changement climatique

Figure IV.1 : Comparaison sur la période de référence (1951-2005) des précipitations mensuelles observées de la station de de Beni bahdel (rouge) et les simulations brutes des Figure IV.2 : Comparaison sur la période de référence (1951-2005) des précipitations mensuelles observées de la station de de Beni bahdel et les simulations brutes des modèles -Figure IV .3: Comparaison sur la période de référence (1951-2005) des précipitations mensuelles observées de la station de de Beni bahdel (rouge) et les simulations brutes des -Figure IV .4: Comparaison sur la période de référence (1951-2005) des précipitations mensuelles observées de la station de de Beni bahdel (rouge) et les simulations brutes des Figure IV .5 :Comparaison sur la période de référence (1951-2005) des précipitations mensuelles observées de la station de de Beni bahdel (rouge) et les simulations brutes des Figure IV .6 : Comparaison sur la période de référence (1951-2005) des précipitations mensuelles observées de la station de de Beni bahdel (rouge) et les simulations brutes des Figure IV .7: Comparaison sur la période de référence (1951-2005) des précipitations mensuelles observées de la station de de Beni bahdel (rouge) et les simulations brutes des Figure IV .8: Comparaison sur la période de référence (1951-2005) des précipitations mensuelles observées de la station de de Beni bahdel (rouge) et les simulations brutes des Figure IV .9: Comparaison sur la période de référence (1951-2005) des précipitations mensuelles observées de la station de Chouly et les simulations brutes des modèles -Figure IV .10: Comparaison sur la période de référence (1951-2005) des précipitations mensuelles observées de la station de Chouly et les simulations brutes des modèles CNRM-Figure IV .11: Comparaison sur la période de référence (1951-2005) des précipitations mensuelles observées de la station de de Chouly (rouge) et les simulations brutes des Figure IV .12: Comparaison sur la période de référence (1951-2005) des précipitations mensuelles observées de la station de de Chouly (rouge) et les simulations brutes des

Figure IV .13 : Comparaison sur la période de référence (1951-2005) des précipitations
mensuelles observées de la station de de Chouly (rouge) et les simulations brutes des
modèles HadGEM2-ES (bleu)
Figure IV .14: Comparaison sur la période de référence (1951-2005) des précipitations
mensuelles observées de la station de de Chouly (rouge) et les simulations brutes des
modèles MPI-ESM (bleu)
Figure IV .15: Comparaison sur la période de référence (1951-2005) des précipitations
mensuelles observées de la station de de Chouly (rouge) et les simulations brutes des
NorESM1-M (bleu)
Figure IV .16: Comparaison sur la période de référence (1951-2005) des précipitations
mensuelles observées de la station de de Chouly (rouge) et les simulations brutes des
modèles GFDL-ESM2M (bleu)
Figure IV .17: Comparaison sur la période de référence (1951-2005) des précipitations
mensuelles observées de la station d'El Haciabia et les simulations brutes des modèles
CanESM2 (bleu)
Figure IV .18: Comparaison sur la période de référence (1951-2005) des précipitations
mensuelles observées de la station d'El Haciabia et les simulations brutes des modèles
CNRM-CM5 (bleu)
Figure IV .19: Comparaison sur la période de référence (1951-2005) des précipitations
mensuelles observées de la station d'El Haciabia et les simulations brutes des modèles
CSIRO-Mk3 (bleu)
Figure IV .20: Comparaison sur la période de référence (1951-2005) des précipitations
mensuelles observées de la station d'El Haciabia et les simulations brutes des modèles
MIROC5 (bleu)
Figure IV .21: Comparaison sur la période de référence (1951-2005) des précipitations
mensuelles observées de la station d'El Haciabia et les simulations brutes des modèles
HadGEM2-ES (bleu)
Figure IV .22: Comparaison sur la période de référence (1951-2005) des précipitations
mensuelles observées de la station d'El Haciabia et les simulations brutes des modèles MPI-
ESM-LR (bleu)
Figure IV .23: Comparaison sur la période de référence (1951-2005) des précipitations
mensuelles observées de la station d'EL hacaiba et les simulations brutes des modèles
NorESM1-M (bleu)
Figure IV .24: Comparaison sur la période de référence (1951-2005) des précipitations
mensuelles observées de la station d'El Haciabia et les simulations brutes des modèles
GFDL-ESM2M (bleu)
Figure IV.25 :Les caractéristiques de la sècheresse dans les bassins de Beni Bahdel, Chouly et
d'El Haciabia à l'échelle de 3, 6 et 12 mois pendant la période 2006-2060 avec le scenario
RCP4.5 (RCA4 (CanESM2)
Figure IV.26 : Les caractéristiques de la sècheresse dans les bassins de Beni bahdel, Chouly et
d'El Haciabia à l'échelle de 3,6 et 12 mois pendant la période 2045-2100 avec le scenario
RCP4.5 (RCA4 (CanESM2)

Figure IV.27 : Les caractéristiques de la sècheresse dans les bassins de Beni bahdel, Chouly e	et
d'El Haciabia à l'échelle de 3,6 et 12 mois pendant la période 2006-2060 avec le scenario	
RCP8.5 (RCA4 (CanESM2)11	2
Figure IV.28. Les caractéristiques de la sècheresse dans les bassins de Beni bahdel, Chouly et	t
d'El Haciabia à l'échelle de 3 ,6 et 12 mois pendant la période 2045-2100 avec le scenario	
RCP8.5 (RCA4 (CanESM2)11	3

ANRH : Agence Nationale des Ressources Hydrauliques.

CORDEX: Coordinated Regional Climate Downscaling Experiment.

CQCJ : Comité des questions constitutionnelles et juridiques.

CMIP5: Coupled Model Intercomparison Project Phase 5.

ECDF : Empirical cumulative distribution function.

EDD : empirique downscaling statistique.

- **ETP** : Evapotranspiration potentielle.
- GIEC : groupe d'experts intergouvernemental sur l'évolution du climat.

GCM : Modèle climatique globale.

MRC : Modèle Climatique régionale.

PDF : probability distribution function.

PMRC : Programme mondial de recherche sur le climat.

RCA4: Rossby Centre Atmospheric.

RCP: Representative Concentration Pathways.

RCD: régional downscaling climatique.

SMHI :(Swedish Meteorological and Hydrological Institute).

SRES: Special Report on Emissions Scenarios.

Chapitre I : Recherche bibliographique

I.1. La sécheresse
I.1.1 Définition de la sécheresse
I.1.2. La relation entre les différents types de la sécheresse4
I.1.3. Les indices de la sécheresse5
I.1.3.1. Indice de précipitation normalisé6
I.1.3.1.1.Méthode de calcul
I.1.3.2.Indices Hydrométriques (Streamflow Drought Index (SDI))11
I.1.3.2.1.Méthode de calcul11
I.1.4.Caractérisation de la sécheresse12
I.2. les copules
I.2.1. Définitions
I.2.2.Les familles de copule14
I.2.2.1. La copule de Gumbel14
I.2.2.2. Copule de Student15
I.2.3. Mesures de dépendance16
I.2.3.1.Coefficient de corrélation de Kendall16
I.2.3.2.Le coefficient de corrélation de Pearson16
I.2.4. Estimation paramétrique16
I.2.4.1.La méthode des moments16
I.2.4.2.Méthode du maximum de vraisemblance (MLE)17
I.2.4.3.Inférence sur les marginales (IFM)
I.2.5. Test de validité de l'ajustement
I.2.5.1.Principe de test de Kolmogorov-Smirnov
I.3. Les modèles climatiques
I.3.1.Les modèles et scénarios utilisés dans la 5 ^{éme} évaluation du changement climatique21
I.3.2.Les changements observés dans le climat dans les derniers siècles confirmés par le 56me rapport
I.3.3.Modèle climatique23
I.3.3.1.Définition
I.3.3.2.Modèle climatique globale (GCM)23
I.3.3.3.Modèle Climatique régionale (MRC)24

Chapitre II : Présentation de la zone d'étude

II.1. Présentation de la zone d'étude	
II.1. 1. La Tafna	27
II.1.1.Bassin versant de la Macta	
II.2. Choix de l'air d'étude	29
II.3. Choix des stations	29
II.4. Données pluviométriques et hydrométriques	

Chapitre III : Analyse de la sécheresse hydrologique

III.1 Analyse de sécheresse hydrologique par application de copule	
III.1.1.Calcul de l'indice hydrométrique 'SDI'	32
III.1.2.Calculs des caractéristiques de la sécheresse hydrologique	42
III.1.3 Ajustement des caractéristiques de la sécheresse hydrologique	47
III.1.3. Application de la copule bi-varie tri-variée sur les caractéristiques de la séch	eresse
III.1.4. Périodes de retour	
III.1.4. 1.Période de retour uni variable	
III.1.4. 2.Période de retour multi variable	
III.2.Comparaison entre les caractéristiques de la sècheresse métrologique et la séch hydrologique	eresse
III.2.1Calcul de l'indice de précipitation normalisé SPI	

Chapitre IV: Évolution des caractéristiques des sécheresses sous changement climatique

I.1. Méthodologie	72
VI.2. Comparaison entre l'évolution des précipitations mensuelles observées et simulées endant la période 1951-2005	72
I.3. Résultat	88
VI.3.1 Evolution des caractéristiques de la sécheresse pendant les périodes 2006-2060 et 2045-2100 Erreur ! Signet non défini.	85
Conclusion générale11	4

L'impact des changements climatiques sur les ressources en eau a fait l'objet de nombreux travaux à travers le monde pour pouvoir mettre en place des scénarios de gestion de ces ressources.

Cet impact est illustré par les événements de sécheresse de plus en plus marquée et dont le nombre ne cesse d'augmenter, ce qui semble particulièrement sévère durant les deux à trois dernières décennies sur le Sahel et l'Afrique du Sud (Dai et al. 1998). Au cours des 50 dernières années, l'Afrique a subi une des plus fortes variations de la pluviométrie observées à l'échelle du globe. De ce fait la sécheresse a toujours été présente dans l'histoire des pays du Maghreb. Ce qui a été prouvés dans les études antérieurs (Safi H., 1990, Agoumi A. & al. 1999, Meddi H., Meddi M., 2009 etc.). Le Maroc a été, marqué par les sécheresses des années 1940, ainsi que la Tunisie. L'Algérie a connu dans le passé des périodes d'intenses sécheresses, comme ce fut le cas au début du 20ème siècle, entre 1910 et 1940. Durant ces 30 dernières années, ces pays ont subi de plein fouet ce phénomène qui s'est manifesté par un déficit pluviométrique sur l'ensemble de la région.

La région Nord-Ouest de l'Algérie en particulier, a souffert de cette péjoration pluviométrique récurrente et persistante, aux conséquences souvent dramatiques sur les conditions de vie de la population, notamment rurale. Ces impacts négatifs sur, le régime d'écoulement des oueds, l'alimentation de la nappe phréatique et le niveau de remplissage des barrages ont constitué un des principaux aspects.

L'objectif principal de ce travail est d'analyser le risque de la sécheresse dans le contexte du changement climatique dans deux bassins versants du Nord-Ouest de l'Algérie afin de suivre son évolution et de saisir son incidence sur les ressources en eau. Nous essayerons de caractériser la sécheresse, de la quantifier et enfin d'étudier sa variation temporelle.

Dans ce contexte, notre travail vise à :

Faire une étude bibliographique selon trois axes principaux ; la première étape comprenne la définition, les types et les caractéristiques de la sécheresse aussi les indices de suivi de ce phénomène utilisés dans cette étude, la seconde entame les fonctions copules, et en dernier une discussion détaillée sur les modèles climatiques.

Après la présentation de la zone d'étude, les sécheresses hydrologiques ont été identifiées en utilisant l'indice de sécheresse SDI. Les caractéristiques de ce dernier serons tirées et adaptées aux copules pour obtenir les périodes de retour de sévérité-durée-intensité. Nous adopterons après l'indice SPI afin d'identifier la relation sécheresse météorologique, sécheresse hydrologique dans les bassins versant en question.

Nous évaluerons en dernier dans le futur projeté les caractéristiques de la sécheresse sous changement climatique à l'aide de l'indice SPI. Nous allons pouvoir calculer ce dernier à partir du meilleur modèle choisit parmi les huit (08) modèles climatiques régionaux. **Chapitre I : Recherche bibliographique**

Le présent chapitre s'articule autour de trois axes :

- Première partie : une recherche bibliographique comprenant la définition, les types et les caractéristiques de la sécheresse aussi les indices du suivi de ce phénomène utilisés dans cette étude ;
- Deuxième partie : une discussion détaillée sur les fonctions copules utilisés dans notre étude ;
- > Troisième partie : Dans cette section, il s'agira des modèles climatiques.

I.1. La sécheresse

I.1.1 Définition de la sécheresse

Il n'existe toujours pas à l'heure actuelle de définition précise et reconnue par tous concernant la sécheresse. Toutefois, la communauté scientifique, et notamment l'American Meteorological Society, s'accorde sur le fait qu'une sécheresse est caractérisée par une absence prolongée ou un déficit marqué en eau par rapport à la normale (Boken, 2005 ; Heim, 2002 ; Palmer, 1965). Dans la littérature, la distinction est souvent faite selon le point de vue envisagé. Si seul le déficit de précipitations est considéré, on parle de sécheresse météorologique (Boken, 2005 ; Keyantash & Dracup, 2002). Il serait plus rigoureux de qualifier ce type de sécheresse de climatique puisque résultant de la persistance de conditions météorologiques sèches, à l'échelle du mois ou de l'année. Si une attention particulière est portée à l'eau disponible dans le sol pour les végétaux, on parle de sécheresse agricole (Boken, 2005 ; Keyantash & Dracup 2002). Tandis que lorsque l'accent est mis sur le déficit du stock en eau de surface ou de sub surface (cours d'eau, réservoirs, nappes, etc.), on parle de sécheresse hydrologique (Boken, 2005 ; Keyantash & Dracup, 2002). Par contre la Sécheresse socio-économique , diffère fortement des autres types de sécheresse du fait qu'elle reflète la relation entre l'offre et la demande de certaines denrées ou de certains biens économiques (eau, fourrage pour le bétail, énergie hydroélectrique, etc.) qui sont tributaires des précipitations. L'offre varie annuellement en fonction des précipitations ou de l'eau disponible ; la demande varie également et est souvent associée à une évolution positive due, par exemple, à une augmentation de la population, au développement ou à d'autres facteurs.

I.1.2. La relation entre les différents types de la sécheresse

Les relations réciproques entre ces différents types de sécheresse sont illustrées à la figure I.1. Les sécheresses de type agricole, hydrologique ou socioéconomique sont décalées dans le temps par rapport aux sécheresses de type météorologique, parce que les effets produits dans ces secteurs sont liés à l'approvisionnement en eau de surface et en eau souterraine. Il faut souvent plusieurs semaines avant que l'insuffisance des précipitations se traduise par un déficit d'humidité du sol et que les cultures, les pâturages et les parcours commencent d'en pâtir. La persistance d'un temps sec pendant plusieurs mois entraîne une diminution de débit des cours d'eau, une baisse de niveau des réservoirs et des lacs et, éventuellement, un abaissement de la nappe phréatique. De plus, si la sécheresse persiste pendant un certain laps de temps, elle se transforme en une sécheresse de type agricole, hydrologique et socioéconomique, avec ses effets connexes. La sécheresse a pour conséquence non seulement de réduire les apports d'eau permettant de réalimenter les sources d'approvisionnement en eau de surface et en eau souterraine, mais aussi d'augmenter considérablement la demande concernant ces ressources. Comme on le voit à la figure I.1, il est assez difficile d'établir un lien direct entre les principaux types de sécheresse et l'insuffisance des précipitations, du fait que l'alimentation en eau assurée par les systèmes d'approvisionnement superficiels et souterrains est influencée par la façon dont ces systèmes sont gérés.

Figure I.1: Relation entre les différents types de sécheresse (Source: Centre national de lutte contre la sécheresse Université de Nebraska-Lincoln États-Unis d'Amérique).

Dans la suite de ce travail, nous nous sommes limités à l'analyse de la sécheresse météorologique et hydrologique, moins complexe et plus proche des préoccupations du géographe - climatologue.

I.1.3. Les indices de la sécheresse

À l'origine, un indice climatique est une combinaison d'au moins deux variables décrivant l'état de l'atmosphère pour caractériser le climat d'un lieu (Beltrando, 1995). Les variables les plus utilisées sont les précipitations, la température, le débit, la pression atmosphérique et l'évapotranspiration. Progressivement, les indices ont incorporé des informations de plus en plus nombreuses et complexes, résultant de traitements antérieurs et provenant même parfois de disciplines connexes. Aujourd'hui, les indices climatiques sont utilisés dans de multiples domaines différents, dont la sécheresse.

Ces indices assurent le suivi de la sécheresse et la détection à différents stades de son évolution. Ils constituent également un excellent moyen de communication avec le public et un outil de décision pour le gouvernement. La plupart de ces indices ont été proposés par les chercheurs pour quantifier la sévérité de la sécheresse qui sont liés à des variables hydrométéorologiques. Parmi les indices de sécheresse les plus populaires on a :

- ✓ L'indice Palmer (Palmer, 1965) ;
- ✓ L'indice de l'approvisionnement en eau de surface (Shafer et Dezman, 1982) ;
- ✓ l'indice standardisé de précipitation (McKee et al. 1993) ;
- ✓ L'indice de sécheresse effective (Byun et Wilhite, 1999) ;
- ✓ L'indice de sécheresse des débits (Nalbantis et Tsakiris, 2009) ;
- ✓ L'indice hydrologique normalisé (Sharma et Panu, 2010) ;
- ✓ L'indice normalisé de l'évapotranspiration maximale (Vicente-Serrano et al. 2010);
- ✓ L'indice régional de la zone de sécheresse (Fleig et al. 2011) ;
- ✓ L'indice agricole de référence de la sécheresse (Woli et al. 2012).

Chaque indice a ses propres forces et faiblesses. Mishra et Singh (2010) ont fait un examen exhaustif des différents indices de sécheresse résumant leur utilité et les limites. Par ailleurs, une bonne critique sur les indices de sécheresse base de télédétection est donnée par Bayarjargal et al. (2006) et Niemeyer (2008).

Dans notre étude nous avons décidé de concentrer nos efforts uniquement sur l'application du SPI et SDI. En effet, ces derniers présentent de très nombreux avantages par rapport à ces concurrent, principalement une bien meilleure flexibilité, des calculs sensiblement plus simples, et des résultats aisément comparables dans l'espace et dans le temps. De surcroît, ils sont plus transparents et conservent mieux la dimensionnalité des données (Keyantash & Dracup, 2002). D'ailleurs, selon Keyantash et Dracup (2002), le SPI est actuellement l'outil le plus efficace pour l'analyse de la sécheresse météorologique. Ce choix se justifier aussi par l'accessibilité aux données.

I.1.3.1. Indice de précipitation normalisé

Le SPI, quant à lui, est un indice statistique de type probabiliste. Il a été mis au point par l'université du Colorado au début des années 90 (McKee, 1993).Hayes et ses collaborateurs (1999) ont répertorié un certain nombre d'avantages et inconvénients en faveur de l'utilisation SPI, qui sont :

Les avantages	Les inconvénients
- Sa grande simplicité. En effet, il n'est basé	- L'indice SPI ne repose que sur les relevés de
que sur les précipitations, les calculs sont	précipitations;
rapides et intuitifs ;	- Le bilan hydrique du sol n'étant pas pris en
- Le SPI est versatile : on peut aisément	compte, l'indice ne permet pas le calcul du
adapter l'échelle temporelle en fonction du	rapport évapotranspiration/évapotranspiration
type d'évaluation ;	potentielle (ET/ETP).
- Les résultats sont cohérents dans l'espace	- Un autre point délicat concerne la
en raison des caractéristiques de la loi	calibration. En effet, il faut disposer d'une
normale sur laquelle il est basé. Ainsi, une	série suffisamment longue et de qualité pour
sécheresse extrême à la même probabilité	réaliser l'ajustement de la distribution et
d'occurrence sous nos latitudes que dans	calibrer ainsi le SPI. McKee et ses
les régions arides ou semi-arides ;	collaborateurs (1993), tout comme Guttman
- Il est efficace tant l'hiver que l'été, et n'est	(1999), recommandent de disposer d'au
pas affecté par l'effet de la topographie	moins 30 ans de données de qualité (de
puisqu'il ne prend pas en compte l'eau	préférence, sur 50 à 60 ans), voire plus.
dans le sol.	- Le choix de la distribution utilisée pour
	modéliser les données est fondamental. À
	cet effet, la distribution gamma est
	globalement acceptée car elle s'ajuste
	généralement bien aux données de
	précipitations. Cela n'est cependant pas
	toujours le cas au niveau des régions arides
	et semi-arides (Ntale & Gan, 2003).

Tableau I.1: Les avantages et les inconvénients de l'indice SPI.

I.1.3.1.1.Méthode de calcul

Le SPI est obtenu en ajustant une densité de probabilité appropriée à la distribution de fréquences des précipitations moyennées sur une échelle temporelle définie. Traditionnellement, les échelles temporelles les plus souvent utilisées sont 3, 6, 9, 12 et 24 mois en fonction du type de sécheresse étudié. L'ajustement se fait séparément pour les 12 mois de l'année afin de conserver la saisonnalité. Ensuite, chaque densité de probabilité cumulée est transformée en une distribution normale standardisée en appliquant la loi normale inverse de moyenne nulle et d'écart-type unitaire.

En d'autres mots, le SPI pour un total de précipitations de x mm est le quantile gaussien (Q_{σ}) de la valeur de la fonction de répartition de la loi statistique (F) s'ajustant aux données, prise en x [équations (I.1)].

$$SPI = [Q_Q F(x)]$$
(I.1)

Enfin, chaque valeur du SPI est reliée à un degré de sévérité repris dans le tableau I.2. Thom (1958) a constaté que la fonction de densité de probabilité de gamma de deux paramètres correspond mieux à la série chronologique de précipitation. La distribution de gamma est définie par sa fonction de densité de probabilité ou de fréquence :

Où α est un facteur de forme, β est un facteur d'échelle et x est la quantité de précipitation.

 Γ (α) est la fonction de gamma qui se définit comme :

$$\Gamma(\alpha) = \int_0^\infty y^{\alpha-1} e^{-y} dy....(I.3)$$

L'ajustement de la distribution gamma aux données requiert donc de déterminer α et β . Ils peuvent être estimés de la sorte (Thom, 1958)

$$\widehat{\alpha} = \frac{1}{4A} \left(1 + \sqrt{1 + \frac{4A}{3}} \right) \dots (I.4)$$

$$\widehat{\beta} = \frac{\overline{x}}{\widehat{\alpha}} \dots (I.5)$$

Où, pour *n* observations :

$$A = \ln(\overline{x}) - \frac{\sum \ln(x)}{n}....(I.6)$$

En intégrant la fonction densité de probabilité sur x, en injectant les valeurs de α et β estimées respectivement dans les équations (I.4) et (I.5), on obtient une expression de la probabilité cumulée G(x) qui détermine la probabilité d'observer telle quantité de précipitations ou une quantité inférieure pour un mois et une échelle temporelle donnés :

$$G(x) = \int_0^x g(x) dx = \frac{1}{\widehat{\beta}^{\widehat{\alpha}} \Gamma(\widehat{\alpha})} \int_0^x x^{\widehat{\alpha} - 1} e^{-x/\widehat{\beta}} dx.....(I.7)$$

Laissant le $t = x/\hat{\beta}$, cette équation devient la fonction gamma inachevée :

$$\mathbf{G}(\mathbf{x}) = \frac{1}{\Gamma(\hat{\alpha})} \int_0^x t^{\hat{\alpha}-1} e^{-t} dt....(\mathbf{I.8})$$

La distribution gamma n'étant pas définie pour x = 0, et le cas où le total des précipitations est nul sur l'échelle temporelle définie pouvant se produire, la probabilité cumulée devient :

$$H(x) = q + (1 - q)G(x)....(I.9)$$

Où,

q = P(x = 0) > 0 Est la probabilité d'obtenir des précipitations nulles. H(x) Est ensuite transformée en une distribution normale standardisée qui correspond à la valeur du SPI.

Cette transformation est illustrée à la figure I.2. Cette conversion peut être approximée en utilisant la formule suivante élaborée par Abramowitz (1965) :

Z =SPI = -
$$\left(t - \frac{C_0 + C_1 t + C_2 t^2}{1 - d_1 t + d_2 t^2 + d_3 t^3}\right)$$
 for $0 < H(x) \le 0.5....(I.10)$

Z = SPI = +
$$\left(t - \frac{C_0 + C_1 t + C_2 t^2}{1 - d_1 t + d_2 t^2 + d_3 t^3}\right)$$
 for 0.5 < $H(x) \le 1.0....$ (I.11)

Où:

$$t = \sqrt{ln\left(\frac{1}{\left(H(x)\right)^2}\right)} \text{ For } 0 < H(x) \le 0.5....(I.12)$$

$$t = \sqrt{ln\left(\frac{1}{(1-H(x))^2}\right)}$$
 For 0.5 < $H(x) \le 1.0.....$ (I.13)

Et:

 $c_0 = 2.515517, c_1 = 0.802853, c_2 = 0.010328,$ $d_1 = 1.432788, d_2 = 0.189269,$ $d_3 = 0.001308$ (Mishra and Desai 2005).

Figure I.1: Exemple de transformation d'une fonction de répartition de la loi gamma en une distribution normal standardisée.

Valeurs du SPI	Catégories de sécheresse
2.0 et plus	Extrêmement humide
De 1.5 à 1.99	Très humide
De 1.0 à 1.49	Modérément humide
De -0.99 à 0.99	Proche de la normale
De -1.0 à -1.49	Modérément sec
De -1.5 à -1.99	Très sec
-2 et moins	Extrêmement sec

Tableau I.2 : Les valeurs de l'indice des précipitations (SPI) (Mckee et al. 1993).

I.1.3.2.Indices Hydrométriques (Streamflow Drought Index (SDI))

L'SDI a été développée la première fois par Nalbantis et Tsakiris (2009) pour caractériser la sécheresse hydrologique en Grèce, et a été également examinée dans les autres régions comprenant les Etats-Unis, Inde, l'Iran, l'Irak et Taïwan de la Chine (Madadgar et Moradkhani, 2013 ; Tabari et autres, 2013 ; Al-Faraj et autres, 2014 ; Manikandan et Tamilmani, 2015 ; Yeh et autres, 2015).

SDI maintient l'avantage de la simplicité et l'efficacité. Les données sur les débits constituent en fait le seul paramètre requis. Il est basé sur les volumes de débit cumulatif pour les périodes de chevauchement de trois, six, neuf et douze mois à l'intérieur de chaque année hydrologique.

I.1.3.2.1.Méthode de calcul

Nalbantis (2008), le calcul de SDI nécessite le calcul des apports cumulés et de procéder après de la même manière que dans le calcul de SPI pour la période de référence étudier dans chaque année. Cette méthode permettra de définir SDI à différentes échelles du temps de 1 mois jusqu'à les quatre saisons, En outre, selon Nalbantis (2008), chaque année est affecté par une seule valeur de SDI.

Pour Nalbantis (2008), le calcul de SDI est basé sur les apports mensuel observé *Vi*, pour une période de référence **k** de **i**ème année comme suit :

$$SDI_{i,k} = \left(\frac{y_{i,k} - \overline{y_k}}{s_{y,k}}\right) i = 1, 2, ..., k = 1, 2, 3, 4.....(I.14)$$
$$y_{i,K} = \ln(V_{i,k}), i=1, 2, ...; et k = 1, 2, 3, 4....(I.15)$$

Avec $y\overline{k}$ et sy, sont la moyenne et l'écart type des valeurs de yi, **T** est le nombre d'année. $V_{i,k}$, est le cumul des apports pour une période de référence (**k**) dans l'année (**i**).

Les différentes classes d'indices SDI et leur signification sont identifiées dans le tableau suivant :

	Tableau I.3: Définition	des états de	sécheresse	hydrologique	à l'aide de	l'indice SDI.
--	-------------------------	--------------	------------	--------------	-------------	---------------

Etat	Description	Catégories de sécheresse
0	Humide	SDI =0
1	Sécheresse légère	-1< SDI< 0.0
2	Sécheresse modérée	-1.5< SDI< -1.0
3	Sécheresse sevère	-2 < SDI< -1.5
4	Sécheresse extrême	SDI < -2.0

I.1.4.Caractérisation de la sécheresse

L'analyse de la sécheresse revient en fait, à la prise en considération de sa durée ainsi que de sa sévérité et de son intensité (Sibou, 2005).

• La durée L(s) : est la longueur de la période dans laquelle les valeurs de l'indice de la sécheresse sont inférieures à certain seuil. Ce seuil est généralement déterminé par la communauté scientifique suivant l'indice utilisé.

 $L(s) = I_f - I_i + 1....(I.16)$

Avec:

 $I_f = \text{fin de l'intervalle considéré ;} \\ I_i = \text{début du même intervalle considéré.}$

• La sévérité D(s) : est définie comme étant la somme des déviations, par rapport au seuil de troncature, des apports durant la période détectée comme sèche.

 $D(s) = \sum d(i)$ (I.17)

• L'intensité (Is) : parfois appelé magnitude, est définie comme le rapport entre la sévérité et la durée de sécheresse (Dingman 1994 ; Shiau 2006).

Une autre caractéristique importante de la sécheresse est le temps interarrival, qui est définie comme le temps entre le début d'une sécheresse et le début de la suivante (Shiau 2006). La figure I .3 explique les différentes caractéristiques de la sécheresse.

Figure I.3: Caractérisation des événements de sécheresse (Source: J. H. Sung eT E.-S. Chung (2014).Development of streamflow drought severity–duration–frequency curves using the threshold level method).

Dans cette partie nous avons pu expliquer la définition de la sécheresse, ses différents types et ses caractéristiques brièvement. Pour analyser ces derniers dans notre zone d'étude nous utiliserons les fonctions copules.

I.2. les copules

I.2.1. Définitions

Une copule est une fonction de répartition C à $p \ge 2$ dimensions dont chacune des marges est uniforme sur l'intervalle (0, 1). Étant donné une telle copule, on peut facilement construire une loi multi variée de marges F1, . . ., F_p arbitraires en posant :

$(x1,x2,...,xp) = [F1(x1), (x2),..., (xp)], x1,x2,...,xp \in R$(I.18)

De plus, un résultat obtenu par Sklar (1959) montre que cette façon de procéder est en fait complètement générale, en ce sens que toute fonction de répartition F à p dimensions peut s'écrire sous la forme (I.18). De plus, la copule en question est unique dans la mesure où les marges F1, . . ., F p sont continués.

I.2.2.Les familles de copule

Il y a plusieurs familles des copules y compris :

- elliptique (Gaussiénne et Student) ;
- Archimédienne (Clayton, Gumbel, Franc, et Ali-Mihail-Haq) ;
- les valeurs extrêmes (Gumbel, Husler-Reiss, Galambos, Tawn, et t-EV);
- > autre familles (Placett, et Farlie-Gumbel-Mordenstrern) (Yan et al.2009).

Les copules Archimédienne et elliptique sont les deux familles les plus utilisé.

Dans cette partie une attention particulière est accordée aux deux copules qui nous intéressent dans le cadre de cette étude, à savoir : la copule de Student et la copule de Gumbel.

I.2.2.1. La copule de Gumbel

Elle appartient à la famille des copules archimédiennes et son générateur, permet de modéliser les dépendances extrêmes. En effet, la copule de Gumbel appréhende les dépendances positives et possède la caractéristique de pouvoir représenter des risques dont la structure de dépendance est plus accentuée sur la queue supérieure.

S'écrit (*u*) ($\ln(u)$) $\alpha \phi = - \operatorname{avec} \alpha > 1$ et $u \in [0,1]$. La copule de Gumbel s'écrit donc :

$$C(u_{1,...,u_{d_{i}}}) = exp\left(-\left[(-\sum_{i=1}^{d}(-ln(u_{i}))^{\alpha}\right]^{1/\alpha}\right) \quad (I.19)$$

Bien qu'existante pour tout entier positif, l'expression explicite de la densité de cette copule est généralement complexe notamment pour des lois multi-variées. Nous proposons dans la suite une méthode afin de calculer cette densité. On part de l'expression générale : d

$$C(u_{1,\ldots,u_{d_i}}) = (\emptyset)^{-1^{(d)}} (\emptyset(u_1) + \cdots + \emptyset(u_d) \prod_{i=1}^d \emptyset'(u_i) \dots (I.20)$$

où

La détermination de la forme analytique de cette densité est délicate car le calcul de la dérivée d'ordre d de $_1\phi$ – est lourd et complexe. La majorité des travaux réalisés à ce sujet se contentent généralement d'étudier la densité bi-variée. La démarche que nous proposons sous forme d'algorithme, permet de calculer numériquement la dérivée d'ordre d de $_1\phi$ – et nous

permet donc de calculer numériquement la densité de la copule. La méthode consiste à calculer, par récurrence, pour tout réel $u \in \Re$ la dérivée d'ordre *d* en fonction des dérivées jusqu'à l'ordre d -1. Plus précisément, nous procédons pour chaque $1 \le n \le d$ au calcul des dérivées de 1 ϕ -d'ordre 1,..., n -1 pour en déduire ensuite la dérivée d'ordre *n*. Par récurrence on calcule ainsi la dérivée d'ordre *d* pour chaque $u \in \Re$. Cette démarche se base sur la formule de Leibniz qui s'écrit pour deux fonctions dérivables en $u \in \Re$:

$$(f_g)^{(n)}(u) = \sum_{k=0}^n {n \choose k} f^{(k)}(u) g^{(n-k)}(u) \dots (I.22)$$

Que l'on utilise avec $(\emptyset^{-1})'(u) = -\beta \emptyset^{-1}(u)u^{\beta-1}$ on en déduit en notant $g(u) = u^{\beta-1}$ que pour tout $1 \le n$:

$$(\emptyset^{-1})^{(n)}(\mathbf{u}) = ((\emptyset^{-1})')^{(n-1)}(\mathbf{u}) = (-\beta\emptyset^{-1} * g)^{(n-1)}(\mathbf{u}) - \beta\sum_{k=0}^{n-1} \binom{n-1}{k} (\emptyset^{-1})^{(k)}(\mathbf{u})g^{(n-k-1)}(\mathbf{u}) \dots$$
(I.23)

On a par ailleurs $\mathbf{g}^{(\mathbf{n}-\mathbf{k})}(\mathbf{u}) = \mathbf{u}^{\beta-1-\mathbf{k}} \prod_{i=1}^{\mathbf{k}} (\beta-i)$. On note que la dérivée d'ordre *d* de \emptyset^{-1} est entièrement définie par les dérivées d'ordres inférieurs de \emptyset^{-1} et par les dérivées de *g*.

Donc par récurrence il est simple de calculer la dérivée d'ordre *d* de. Ce résultat nous donne la possibilité de calculer numériquement la densité d-variée de la copule de Gumbel et nous permet d'étudier donc la structure de dépendance qu'elle implique.

I.2.2.2. Copule de Student

La copule de Student (*t copula*) est la copule sous-jacente à une distribution multi-variée de Student. Cette structure de dépendance capte les dépendances extrêmes positives et négatives. Elle est construite de la même manière que la copule gaussienne mais à partir de la distribution de Student centrée réduite. La fonction de densité de la copule de Student *d*variée, s'écrit pour tout $(U_1,...,U_d) \in [0.1]^d$:

$$C(u_{1,\dots,u_{d_{j}}}, u_{d_{j}}) = \frac{f_{v,\Sigma}(t_{v}^{-1}(u_{1}),\dots,t_{v}^{-1}(u_{d}))}{\prod_{i=1}^{d} f_{v}(t_{v}^{-1}(u_{i}))}.$$
(I.24)

La fonction de distribution t_v^{-1} est l'inverse de la distribution de Student centrée réduite uni- variée à v degrés de liberté. La fonction $f_{v,\Sigma}$ est la densité de probabilité de la loi de Student centrée réduite, Σ sa matrice de corrélation et f_v est la densité uni-variée de la loi de Student centrée réduite ($\Sigma = 1$).

I.2.3. Mesures de dépendance

Munissons-nous d'une distribution à deux variables. Généralement, la mesure d'une plus ou moins bonne corrélation entre elles est effectuée avec le coefficient de corrélation de Pearson, au besoin en utilisant un changement de variable si la liaison n'est pas linéaire.

Parfois, cet outil devient inopérant. On se tourne alors vers une corrélation de Kendall, un coefficient souvent utilisé est celui de Spearman. Mais ce dernier n'est pas toujours très pertinent.

I.2.3.1. Coefficient de corrélation de Kendall

Le coefficient du taux de Kendall est défini comme (Djehiche B. 2004) :

$$\tau = \frac{(nombre \ de \ concordant \ paires) - (nombre \ de \ discordant \ paires)}{\frac{1}{2}n(n-1)}.....(I.25)$$

On dit que les deux paires (x1, y1) et (x2, y2) sont en concordance si :

$$(x1 - x2)(y1 - y2) > 0$$
 (I.26)

Et en discordance si :

(x1 - x2)(y1 - y2) < 0(I.27)

I.2.3.2.Le coefficient de corrélation de Pearson

Le coefficient de corrélation de Pearson entre deux variables aléatoires réelles X et Y est défini par la covariance Cov(X, Y) divisé par le produit de leurs écarts-types, σ_Y .

$$\rho_{X,Y} = corr(X,Y) = \frac{cov(X,Y)}{\sigma_X \sigma_Y} = \frac{E[(X-\mu_X)(Y-\mu_Y)]}{\sigma_X \sigma_Y}.$$
(I.28)Q

I.2.4. Estimation paramétrique

I.2.4.1.La méthode des moments

Cette méthode consiste à estimer les paramètres βi ,=1,..., des lois marginales et le paramètre α de la copule par la méthode des moments, i.e.

Résoudre le système des n équations à n inconnues :

1

$$\begin{cases} X_{t}=f(\beta_{1},...,\beta_{n}) \\ S^{2}_{t}=g(\beta_{1},...,\beta_{n}) \\ \mu_{3,t}=h(\beta_{1},...,\beta_{n}) \\ \vdots \\ \vdots \end{cases}$$
(I.29)

- Ou n désigne la dimension de α; *f*, *g* et *h* sont les expressions des moments (ordinaire) d'ordre 1,2 et 3 en fonction des paramètres β*i*. Répéter cette étape pour toutes les marginales.
- Inverser le taux de Kendall ou le rho de Spearman pour obtenir le paramètre α de la copule.

I.2.4.2. Méthode du maximum de vraisemblance (MLE)

Soit $\{x^{t_1}, \dots, x^{t_n}\}^{T_{i=1}}$ l'échantillon de fonction de répartition multi-variée H (x; θ) qui dépend du vecteur des paramètres $\theta \in \Theta \subset \mathbb{R}^p$; le théorème de Sklar nous donne :

H
$$(x_1,...,x_n) = (F1 (x_1),...,F_n (x_n))$$
(I.30)

Et

Ou

$$\mathcal{C}(u_1, \dots u_n) = \frac{\partial \mathcal{C}(u_1, \dots u_n)}{\partial u_1, \dots u_n}.$$
(I.33)

Désigne la densité de la copule d-dimensionnelle $(u_1, ..., u_n; \theta)$ et fi sont les densités des fonctions de répartition marginales Fi.

La fonction log– vraisemblance $L(X, \theta) = \sum_{t=1}^{T} lnf(x_i^1, \dots, x_i^n)$ de l'échantillon $\{x_{i_1}^1, \dots, x_{i_n}^t\}_{i=1}^T$ donnée par :

$$L(x,\theta)) = \sum_{t=1}^{T} \ln C(F_1(x_1^T;\theta), \dots, (F_n(x_n^t;\theta)) + \sum_{t=1}^{T} \ln f_1(x_1^t;\theta) + \dots + \sum_{t=1}^{T} \ln f_n(x_n^t;\theta) \dots (I.34)$$

L'estimateur de maximum de vraisemblance de θ est donné par :

$$\boldsymbol{\theta}^{MLE}$$
=arg max L ($\boldsymbol{x}, \boldsymbol{\theta}$) (I.35)

I.2.4.3.Inférence sur les marginales (IFM)

La méthode du maximum de vraisemblance peut engendrer des temps de calcul très longs pour une copule multidimensionnelle car l'estimation des paramètres des lois marginales et des paramètres de la copule se fait d'une façon simultanée. En outre, une éventuelle erreur d'estimation des marginales peut rendre erronée l'estimation de la copule car elles interviennent directement dans la fonction vraisemblance.

Joe et Xu (1996) notent cependant que la représentation par la copule permet de séparer les paramètres spécifiques aux distributions marginales ($\beta_{1,...,\beta_n}$) et les paramètres communs de la structure de dépendance α . Ils suggèrent une estimation à deux étapes (voir Shih et Louis(1995));

Nous estimons les paramètres $\beta_{1,...,\beta_n}$ des lois marginales dans un premier temps étant donné ces estimations, nous estimons ensuite le paramètre de la copule.

Cette méthode d'estimation est appelée par Shih et Louis [60] «two-stage parametric ML method». Joe et Xu [45] utilisent le terme «inference functions for margins»(IFM).

Nous pouvons donc écrire $\theta = (\alpha, \beta_{1,...,\beta_{n}})$ par conséquent

$$H(x_1,x_2,\ldots,x_n;\theta)=C[F_1(x_1;\beta_1),\ldots,F_n(x_n;\beta_n);\alpha,\beta_1,\ldots,\beta_n] \dots (I.36)$$

Notons C $(u_1,...,u_n)$ la contrepartie paramétrique de la densité de la copule. L'approche par maximum de vraisemblance réduit à la maximisation à la quantité suivante :

$$L(x,\alpha,\beta_1,\ldots\ldots,\beta_n)) = \sum_{t=1}^T ln \ C(F_1(x_1^T;\beta_1),\ldots,(F_n(x_n^t;\beta_n);\alpha) + \sum_{t=1}^T ln \ f_1(x_1^t;\beta_1) + \cdots + \sum_{t=1}^T ln \ f_n(x_n^t;\beta_n)) + \sum_{t=1}^T ln \ f_n(x_n^t;\beta_n) + \sum_{t=1}^T l$$

(I.37)

Ainsi, au lieu de chercher le maximum global

$$\widehat{\alpha}^{\,MLE}, \widehat{\beta}_{1}^{MLE}, \dots, \widehat{\beta}_{n}^{MLE} = arg_{\alpha, \beta_{1}^{max}, \dots, \beta_{2}}L(x, \alpha, \beta_{1}, \dots, \beta_{n}) \dots \dots (I.38)$$

On peut effectuer en deux étapes la procédure d'estimation des paramètres :

On estime la distribution marginale uni variée :

Puis on peut estimer α en tenant compte des estimateurs obtenus ci-dessus :
L'estimateur IFM des paramètres du modèle est alors défini de la façon suivante :

Joe (1997) a montré que l'estimateur IFM vérifié également dans les conditions de régularité la propriété de la normalité asymptotique, on a :

$$\sqrt{T(\widehat{\theta}_{IFM} - \theta_0)} \to \aleph(0, g(\theta_0)) \dots (I.42)$$

Ou (θ_0) est la matrice de l'information de godambe

 $g(\theta_0) = D^{-1}M(D^{-1})'$ (I.44)

Avec

$$D = E \frac{\partial g(\theta)}{\partial g(\theta')}....(I.45)$$

 (θ) n'est rien d'autre que la fonction score définie comme suit :

$$\frac{\partial L_1}{\partial \alpha_1}, \frac{\partial L_1}{\partial \alpha_2}, \dots, \frac{\partial L_n}{\partial \alpha_n}, \frac{\partial L_c}{\partial \theta_c}.$$
 (I.46)

I.2.5. Test de validité de l'ajustement

Le test de Kolmogorov-Smirnov (ks test) est utilisé pour cette étude pour mesurer la qualité de l'ajustement pour les distributions marginales sur la base des hypothèses nulles et alternatives (Ricci, 2005).

Le test de K-S est l'un des tests d'adéquation non paramétriques les plus courants (avec le khi² mais ce dernier perd davantage d'information). Il permet de comparer une distribution observée avec une autre, ou avec une distribution connue de type loi de probabilité. Notamment, ce test donne une bonne indication d'ajustement à une loi normale. De plus, il s'adapte aux échelles ordinales et il est de ce fait très utilisé dans les études de marché. Son principal défaut est de ne pas être très efficace dans les queues de distribution.

I.2.5.1.Principe de test de Kolmogorov-Smirnov

Le principe est simple. On mesure l'écart maximum qui existe entre la fonction de répartition observée (ou tout simplement des fréquences cumulées) et la fonction de répartition théorique (ou tout autre fonction inconnue sous forme analytique).

Sous l'hypothèse H_0 , cet écart est faible et la répartition des observations s'intègre bien dans une distribution donnée. Un calcul « manuel » nécessite l'utilisation d'une table de Kolmogorov (au-dessous d'une trentaine d'observations) : il suffit alors de comparer la distance maximale à la valeur idoine de la table. Cette valeur tabulée prend en compte l'effectif et le seuil de risque « alpha ».

Un petit graphique permet de bien visualiser ce qu'on cherche à faire :

Figure I.4 : Teste de k-s.

La flèche verte mesure l'écart maximum entre les observations (en bleu) et la fonction de répartition connue rouge.

I.3. Les modèles climatiques

Le 5^{éme} rapport de groupe d'experts intergouvernemental sur l'évolution du climat (GIEC) utilise un nouvel ensemble de nouvelle simulation des impacts futurs du changement climatiques, à partir d'une gamme de différentes hypothèses de scénario possibles d'évolution des missions.

I.3.1.Les modèles et scénarios utilisés dans la 5^{éme} évaluation du changement climatique

Les projections des changements dans le système climatique sont faites en utilisant une gamme de modèles climatiques qui simulent les changements en se basant sur un ensemble de scénarios de forçage radiatif d'origine anthropique. Une nouvelle série de scénarios, les scénarios RCP (Représentative Concentration Pathways), ont été utilisés pour les simulations des modèles climatiques réalisées pour ce 5ème rapport ; ils comprennent généralement des composantes tant économiques, démographiques que de l'énergie et du climat (IPCC, 2013).

Les émissions futures de gaz à effet de serre (GES), de particules d'aérosols et d'autres sources de forçage radiatif tels que les changements d'utilisation des sols (forêts, cultures) dépendent de facteurs socio-économiques, et peuvent être influencés par des accords géopolitiques au niveau mondial dans le but de contrôler les émissions et évoluer vers leur atténuation. Les scénarios utilisés dans cette évaluation, qui explorent ce que ces émissions pourraient être, ont des cibles différentes d'ici 2100 en termes de forçage radiatif, qui va d'un scénario d'«atténuation forte» à un scénario de croissance continue des émissions.

Les trajectoires représentatives des concentrations de gaz à effet de Serre élaborées par le groupe d'experts intergouvernemental sur l'évolution du climat, le GIEC, dans le 5^{ème} phase du projet d'inter-comparaison des modèles couplés (AR5) renferment un très sombre futur pour l'humanité toute entière et une multitude de formes de vies (IPCC 2013). Les RCP sont des scénarios de l'évolution des concentration de GES (dioxyde de carbone ou CO2, méthane ou CH4, protoxyde d'azote ou N2O...), d'aérosol et de gaz chimiquement actifs, dans l'atmosphère sur la période 2006-2100, avec une extrapolation jusqu'à 2300 (IPCC 2013). Les scénarios sont présumés être tous directement liés aux émissions de CO2 ; plus on émet du carbone, plus il fera chaud. Actuellement l'Humanité est en plein sur la trajectoire du pire des cas, le RCP8.5 qui nous amènera à un réchauffement Global moyen de 2°C pour l'an 2050 (IPCC 2013). Au nombre de quatre, ils ont été sélectionnés sur la base de 300 scénarios publiés dans la littérature de façon à couvrir une palette aussi large que possible des trajectoires futures de forçage radiatif envisageables. Chacun de ces quatre scénarios RCP est étiqueté en fonction du forçage radiatif qu'il atteint en 2100 : 2.6 W/m², 4.5 W/m², 6 W/m² et 8.5 W/m². La figure I.1 représente ces scénarios, de même que les scénarios «SRES» anciennement utilisés dans le Quatrième Rapport d'Évaluation (AR4) de 2007.

Le scénario le plus optimiste, le RCP2.6 (très faibles émissions ≈490ppm CO2 equiv), augmente jusqu'à 3,0 Wm⁻² puis descend à 2,6 Wm⁻² en 2100. Les scénarios RCP4.5 (faibles émissions ≈650 ppm CO2 equiv) et RCP6.0 (émissions moyennes ≈850 ppm CO2 equiv) se stabilisent respectivement à 4,2 Wm⁻² et à 6,0 Wm⁻² après 2100, alors que le scénario RCP8.5 (très hautes émissions ≈1370 ppm CO2 equiv) atteint 8,3 Wm⁻² en 2100 sur une trajectoire montante. Ces scénarios ne sont pas associés à des scénarios socioéconomiques précis comme l'étaient les scénarios «SRES» utilisés précédemment. Ils représentent plutôt des projections pouvant être réalisées par plus d'un scénario socioéconomique sous-jacent atteignant des émissions de GES et des valeurs de forçage radiatif similaires.

Figure I.5 : Évolution temporelle du forçage radiatif anthropogénique entre 2000 et 2300 pour les scénarios RCP (lignes continues) et comparaison aux scénarios SRES utilisés dans l'AR4 (pointillé). (Tiré de IPCC 2013).

I.3.2.Les changements observés dans le climat dans les derniers siècles confirmés par le 5éme rapport

Devant les incertitudes caractérisant la science de climat, les énoncés et les résultats donnés dans chaque rapport de GIEC sont accompagnées des formulations spécifiques pour exprimer le degré d'incertitude à lequel sont liées. Dans ce paragraphe on va citer juste les observations pratiquement (probable à 99-100%).

- Augmentation des températures de surface globale de la terre de 0.85°C ;
- L'océan au-dessus d'une profondeur de 700 m s'est réchauffé au cours de 20^e siècle ;

- A partir des années 1970, la planète est en déséquilibre énergétique avec plus d'énergie provenant du soleil entrant dans l'atmosphère qu'en sortant ;
- L'humidité de la basse atmosphère a augmenté depuis 1970 ;
- Des changements ont été observés dans les propriétés de l'océan (son réchauffement, des changements dans sa salinité, une augmentation dans sa teneur en carbone et son acidité, une diminution dans sa concentration en O₂) au cours de ces 40 dernières années ;
- Les concentrations atmosphériques des gaz à effet de serre s'écartent vers le haut de la gamme de concentration mesurées dans les carottes de glaces ;
- Fonte des glaces terrestres.

En plus de ces modifications observées et confirmées à 99%, il y a d'autres dont l'incertitude est un peu grande.

Les facteurs subissaient une modification dans leurs évolutions jouent un rôle déterminant dans la circulation générale. Pour le moment aucune observation ou mesure à démonter un changement irréversible dans le système climatique suite à la modification de ces facteurs. Puisque le surplus d'énergie (93%) est absorbé par les océans, impliquant une augmentation de leur niveau par dilatation thermique. Mais, une grande majorité des chercheurs fondent leurs théorie sur la modélisation et la simulation avancent que pour un certains éléments du système climatiques il existe un point où un changement brusque pourrait se produire une fois un certain seuil atteint. Et c'est le futur redoutable pour notre système. Par exemple, des changements dans la circulation méridienne océanique atlantique pourraient produire de brusque changement climatique à l'échelle mondiale et sur le climat de l'Europe et de l'Amérique du nord.

I.3.3.Modèle climatique

I.3.3.1.Définition

Un modèle est une modélisation mathématique du climat dans une zone géographique donnée.

I.3.3.2.Modèle climatique globale (GCM)

Modélise le climat à grande échelle, et peut fournir des informations de prévision fiable sur des échelles de l'ordre de 1000 par 1000 Km, couvrant ce qui pourrait être un paysage largement différent (de très montagneux aux plaines côtières plates, par exemple) avec un potentiel très variable pour les inondations, les sècheresses ou d'autres évènements extrêmes. Ces modèles peuvent nous fournir des projections de la façon dont le climat de la terre peut changer à l'avenir. Ces résultats sont la principale motivation pour la communauté .internationale de prendre des décisions sur l'atténuation des changements climatiques.

(http://www.clm-community.eu/index.php?menuid=254).

I.3.3.3.Modèle Climatique régionale (MRC)

Contrairement au modèle climatique globale, les modèles climatiques régionaux (MRC) et empirique downscaling statistique (EDD) appliqué sur une zone limitée et entrainée par GCM peut fournir des informations sur des zones à petite échelle ce qui nous permettent d'évaluer l'impact du changement climatique et de procéder aux planifications et de suggérer les moyens d'adaptations dans nombreuse régions vulnérables du monde. Ajouté à cela, les RCD (régional downscaling climatique) fournissent des projections avec beaucoup plus de détails et une représentation plus précise des évènements extrêmes localisés.

Dans la présente étude on a opté pour les sorties de modèle climatique régional pour étudier l'évaluation des caractéristiques futures des sécheresses sous changement climatique au Nord-Ouest de l'Algérie, vu la résolution de ces modèles qui est beaucoup plus fine que les GCM. De même, les MRC sont destinés pour l'étude de l'impact du changement climatique, le cadre dans lequel s'inscrit notre étude.

Le modèle retenu se trouve dans la liste des modèles régionaux utilisés dans le projet CORDEX (Coordinated Regional Climate Downscaling Experiment ; Giorgi et al.2009, Jones et al. 2011). Un projet coparrainé par le PMRC (Programme mondial de recherche sur le climat), la commission européenne et du GIEC pendant la conférence internationale sur le climat régional en 2013.

Le programme CORDEX utilise les nouveaux profils représentatifs d'évolutions des concentrations de gaz à effets de serre, d'ozone et de précurseurs des aérosols (**RCP** : **R**epresentative Concentration Pathways) définis par le GIEC (Giorgi et al, 2009; Mondon et al, 2013). Ces prescriptions valant pour le XXIème siècle et au-delà correspondent à des efforts plus ou moins grands de réduction des émissions de GES au niveau mondial.

Cependant les simulations prioritaires faites dans cadre du programme CORDEX ne concernent que deux des RCP définis, qui sont les scénarios 4.5 et 8.5. Ces scénario particuliers correspondent aux scénarios B1 et A1B des anciens profils d'évolution des GES (SRES) (Ardoin-Bardin, 2004). Ils représentent respectivement des schémas plus optimistes et peu optimistes de l'évolution du climat pour le 21ième siècle.

Dans notre travail, les simulations de précipitations mensuelles du modèle climatique régional du Rossby centre sur l'Afrique RCA4 ont été utilisées, cette base de données est obtenue à partir du modèle régionale de l'institut suédois de météorologie et d'hydrologie (SMHI), utilisant la condition aux limites de huit modèles de la circulation général (MCG) atmosphère-océan (AO) de la limite de dix modèles de la 5éme phase couplés (CMIP5) (tableau I.5). L'ensemble des données simulées, couvre la période 1951-2100, et sont simulées selon :

• un aspect historique (ou période historique) où les simulations s'étendent de

1951 à 2005, sans prise en compte des scénarios de RCP. Cette période sert généralement de période de référence pour l'évaluation des sorties des modèles climatiques.

• Un aspect futur où les simulations sont effectuées suivant les deux RCP 4.5 et

8.5. Les données de la période future s'étendent de 2006 à 2100, et sont donc utilisées pour l'analyse d'impacts des évolutions futures des caractéristiques de la sécheresse.

MCR(MCG)	Nom de l'institution de GCM (pays)
RCA4 (Can ESM2)	CCCma (canada)
RCA4 (CNRM-CM5)	CNRM-CERFACS (France)
RCA4 (IPSL-CM5A)	IPSL(France)
RCA4(MIROC5)	MIROC(Japan)
RCA4 (HadGEM2-ES)	MOHC(UK)
RCA4 (MPI-ESM-LR)	MPI-M(Germany)
RCA4 (NorESM1-M)	NCC (Norway)
RCA4 (GFDL-ESM2M)	NOAA-GFDL(USA)

Tableau I.4: Modèles climatique régional et nom de l'institution des modèles de la circulation générale (Zeroual, 2010).

MCR (MCG : Modèles climatique régional (modèles de la circulation générale).

Chapitre II : Présentation de la zone d'étude

Introduction

L'Algérie et en particulier la région Nord-Ouest a connu plusieurs sécheresses durant le dernier siècle. La dernière a été caractérisée par son intensité et son impact sensible sur la ressource en eau et le rendement des cultures (meddi.2009).Pour procéder à l'analyse du risque de la sécheresse dans le contexte du changement climatique, nous devons constituer la base de données sur laquelle l'étude sera fondée après la présentation de la zone d'étude.

II.1. Présentation de la zone d'étude

Notre zone d'étude est située dans la partie Nord-Ouest de l'Algérie, elle regroupe deux grands bassin versants, à savoir le bassin de Tafna et le bassin de Macta, ces deux bassins appartiennent à l'ensemble de l'Oranie-Chott Cherguie (A. BOUANANI, 2004). L'aire d'étude présente une irrégularité flagrante entre bassins et même entre les unités d'un bassin. Devant une telle hétérogénéité, chaque bassin sera représenté séparément afin de bien décrire ses spécificités en terme des paramètres qui influent et déterminent le type de la réponse hydrologique.

Figure II. 1: Présentation des différents bassins étudiés.

II.1. 1. La Tafna

Le bassin versant de la Tafna est comptabilisé parmi les grands bassins versants du Nord-Ouest algérien, il est compris entre 1°et 2° de longitude ouest et de 34°5 à 35°3de latitude nord. Il s'étend sur la totalité de la wilaya de Tlemcen sur une superficie de 7245 km². Subdivisé en trois grandes parties :

- ➢ partie orientale avec comme principaux affluents l'oued Isser et l'oued Sikkak);
- partie occidentale comprenant la Haute Tafna (oued Sebdou et oued Khemis) et l'oued Mouilah ;
- partie septentrionale : qui débute pratiquement du village Tafna et s 'étend jusqu'à la plage de Rachgoune, embouchure de la Tafna sur la mer. Les oueds Boukiou, Boumessaoud et Zitoun sont les principaux affluents de cette partie. (A.KHALDI, 2005).

Les sous bassins de la Tafna présentent, dans l'ensemble une forme assez ramassé dont la disposition du relief, ainsi que l'abondance des roches imperméables, ont combiné leurs effets pour donner naissance à un réseau hydrographique dense, variant de 0,5 à 2,9 selon l'importance des sous bassins (Ghenim, 2001). L'Oued Tafna prend sa source dans la région de Maghnia, et longe les piémonts sud des monts de Traras suivant une direction SW-NE.

Le bassin est assez bien drainé en amont, en raison des formations géologiques formant le bassin, dont la grande partie est constitué de marne, de calcaire et de dolomie Karstique. En revanche, les zones plaines sont moins drainées à cause de la nature alluviale des formations géologiques favorisant l'infiltration au détriment de ruissellement.

Figure II.2 : Bassin de la Tafna.

II.1.1.Bassin versant de la Macta

Situé en Algérie occidentale est constitué de seize sous bassins. Il est délimité au Nord-Ouest par la chaîne montagneuse du Tessala au sud par les hauts plateaux de Ras-el-Ma et les plaines de Maalifs, à l'Est par les plateaux du Telagh et les monts de Tlemcen qui sont le prolongement des monts de Beni-Chaugrane. (A.KHALDI, 2005).Il est compris entre 34° 28' et 35° 87'3 de latitude nord est 0° 52' et 1° 2' de longitude ouest.il s'étend sur une superficie de 14 390 km².

Il est drainé par deux principaux cours d'eau : l'oued Mebtouh, à l'ouest et l'oued El Hammam à l'est. Il associe trois régions distinctes :

- la basse plaine littorale, présente des altitudes ordinairement inférieures à 9 m, ce qui favorise la présence de plans d'eau, de marais et de steppes ;
- les massifs, qui constituent la plus grande partie du bassin versant. Ce bassin est bordé à l'ouest et au nord-ouest par les monts de Tessala, les monts des Beni-Chougrane occupent une bonne partie de sa zone moyenne ;
- > les larges plaines alluviales insérées dans les massifs montagneux de Sidi Bel Abbès.

C'est un bassin d'effondrement entouré par plusieurs reliefs, et notamment par :

- Les Monts des Beni Chougrane au nord et à l'ouest ;
- Les Monts de Saida au sud ;
- A l'est, le bassin de la Macta, limité par une barrière imperméable de marnes et d'argiles. (PNE, 2010).

Figure II.3: Bassin de la Macta.

II.2. Choix de l'air d'étude

Notre zone d'étude est située dans la partie Nord-Ouest de l'Algérie, elle englobe les bassins versants de la Tafna, la Macta, Le choix se justifier par l'ampleur de la sécheresse au cours de ces derniers années sur cette zone (MEDDI, 2010). Outre, cette parie regroupe de nombreuses plaines fertiles avec un recours de plus en plus intense a l'irrigation, au déterminent de l'équilibre des ressources en eau (MEDDI, 2009). Ajoutant la grande population concentrée dans l'air d'étude, où les besoins en eau s'accroissent d'année en année. Un tel contexte nécessite des études bien précises sur l'évolution des paramètres climatiques, dans le but de connaitre en mieux les circonstances futures 'afin de mettre en œuvre des outils de gestions efficaces et durables. (ZEROUAL, 2017).

II.3. Choix des stations

Pour un bassin versant donné ou une région donnée, les stations pluviométriques et hydrométriques sont installées dans des conditions propres et forment le réseau d'observation. Les données relatives aux stations sont d'une haute importance pour les statistiques climatiques, la planification, la gestion des ressources et les projets de construction (A. KHALDI ,2005).

Pour un bon traitement des données recueillies, il est nécessaire et indispensable que la période de collecte soit suffisamment longue, autrement dit l'échantillon doit être suffisamment grand (El Ouissi A. 2004). Pour assurer une bonne représentation de notre

région, nous avons d'abord travaillé sur 4 stations pluviométriques et hydrométriques ayant des périodes aussi longues que possibles et réparties d'une façon plus ou moins uniforme sur toute la zone.

Les stations hydrométriques ont étés choisi selon un échantillonnage stratifié et le choix de nos stations n'a pas été aléatoire, les stations où l'effet anthropique sur le régime hydrométrique est bien évidant sont écartées ainsi celle qui se trouve près des ouvrages hydrauliques en raison de l'impact de la régulation sur le comportement des oueds, on ajoutant la disponibilité des données. Sous ces trois conditions les quatre stations ont été sélectionnées.

Les donnés pluviométriques et hydrométriques utilisées dans cette étude proviennent de l'Agence Nationale des Ressources Hydraulique (A.N.R.H) d'Alger.

II.4. Données pluviométriques et hydrométriques

La localisation et les caractéristiques des stations pluviométriques et hydrométriques utilisées dans cette étude, sont présentées sur les tableaux II.1 et II.2, ce nombre semble satisfaisant, puisque ces stations sont implantées, assez régulièrement sur les deux bassins versants concernés par cette étude. Deux stations sur le bassin de la Tafna et deux sur le bassin de la Macta.

Code de la	Coordon	nées (degré)	période d	bassin	
station	Latitude	Longitude	Début	fin	
11-02-01	34.974	-0.734	1936	2006	Т М
11-03-04	35.057	0.885	1936	2010	La Macta
16-04-03	34.337	-1.496	1941	2010	Lo Tofno
16-03-03	34.864	-1,682	1953	2010	La Talha

Tableau II.1 : Code et coordonnées des stations pluviométriques.

Codo do la	oda da la		rdonnées I	Mise on		
station	Oued	X (Km)	Y (Km)	altitude(m)	service	bassin
11-01-01	Mekerra	183,50	161,65	950	1962	
11-03-01	Mekerra	194,25	215,60	485	1962	La Macta
16-04-02	Tafna	149,65	181,00	700	1972	Lo Tofno
16-06-01	Chouly	115,00	164,60	666	1941	La raina

Tableau II.2: Stations hydrométrique retenues dans l'étude.

Pour chacun des bassins les données climatiques se présentent comme suit :

Le bassin de la Tafna : Le climat du bassin de la Tafna s'apparente à celui de toute la région méditerranéenne de l'Afrique du Nord, il est doux et humide. La température moyenne annuelle est d'environ 15.5° C en été. Les deux mois les plus chauds sont juillet et août, et ont une température moyenne de 26° C (Dekkiche A; 1998).

Le bassin de la Macta : En général, le bassin de la Macta subit l'influence méditerranéenne au Nord et continentale au Sud où le climat est aride et sec avec des hivers froids et des étés chauds. Les précipitations annuelles dans la région varient entre 280 mm dans la partie Sud du bassin et 350 mm dans les montagnes de Beni-Cheugrane. Les années les plus humides peuvent avoir des précipitations 3 à 4 fois supérieures à celle des années les plus sèches. (A. KHALDI, 2005).

Conclusion

Le bassin Tafna et de la Macta, confrontés à des problèmes de gestion et du développement durable de ses ressources en eau. Les niveaux élevés de déficit pluviométrique et des pénuries d'eau ont déjà été expérimentés dans cette région (Maddi et al. 2010) et ils destinent à s'aggraver dans l'avenir (Zeroual et al. 2013). Afin de surveiller les conditions de la sécheresse hydrologique à long terme dans ces bassins, la technique des copules a été appliquée en utilisant l'indice hydrométrique (SDI) qui est le but de chapitre suivant.

Chapitre III : Analyse de la sécheresse hydrologique

Introduction

Après le calcul des valeurs de l'SDI à partir des séries des apports à différentes échelles du temps sur la période de référence (1941-2009), les caractéristiques de la sécheresse sont tirées et adaptées aux copules pour obtenir les périodes de retour de sévérité-durée-intensité. Par la suite l'indice de sécheresse météorologique SPI est calculé pour la même période pour étudier la relation entre les caractéristiques de l'SPI, comme un indice climatologique, et les caractéristiques de l'SDI, comme un indice hydrologique de sécheresse. Afin de vérifier la possibilité de représenter l'indice de la sècheresse hydrologique par l'indice de la sécheresse métrologique.

III.1Analyse de sécheresse hydrologique par application de copule

III.1.1.Calcul de l'indice hydrométrique 'SDI'

Dans notre travail nous calculerons l'indice SDI selon Madadgar et al, (2013) présenté dans le chapitre I. Dont Les données des apports cumulés seront ajustées sur les distributions Gamma (McKee et al. 1993), exponentielle, Weibull et la distribution Log-Normale (Nalbantis 2008 ; Shukla et Wood, 2008), pour les trois échelles de temps (3, 6, 12 mois), afin de sélectionner la meilleure distribution.

Figure III.1: Apport cumulés à différentes échelles et leur fonction de distribution cumulative empirique (ecdf) pour La station de Beni Bahdel.

Figure III.2: Apport cumulés à différentes échelles et leur fonction de distribution cumulative empirique (ecdf) pour La station de Chouly.

Figure III.3: Apport cumulés à différentes échelles et leur fonction de distribution cumulative empirique (ecdf) pour La station de d'El Haciabia.

Figure III.4: Apport cumulés à différentes échelles et leur fonction de distribution cumulative empirique (ecdf) pour station de Sidi bel Abbés.

Le tableau III.1 montre la comparaison entre les ajustements des différentes lois sur les données des apports à différentes échelles du temps. Le test de Kolmogorov-Smirnov 'Ks' est utilisé pour tester la qualité de l'ajustement pour les différentes distributions supposées. L'hypothèse nulle du test Ks est que les données observées proviennent de la distribution proposée, et par conséquent, les valeurs p-values élevées (>0.05) sont considérées comme une tendance à accepter l'hypothèse nulle ($\alpha = 5$ %).

Ks-test	p-value						
	3-mois	6-mois	12-mois				
	La station de Beni bahdel						
Gamma	2.9361e-07	4.2273e-05	0.0287				
Log-normal	0.1717	0.0649	7.7512e-05				
Normal	1.1051e-33	1.1157e-19	1.8181e-08				
exponentielle	1.1051e-33	1.5289e-05	1.3413e-11				
weibull	1.1051e-33	2.3526e-04	0.0772				
	La station	de Chouly					
Gamma	1.2436e-05	0.3350	5.0080e-08				
Log-normal	0.0051	7.3953e-05	4.0858e-15				
Normal	9.1544e-36	4.4741e-20	6.5371e-07				
exponentielle	2.4137e-11	0.1267	4.1203e-10				
weibull	0.0012	0.3440	3.2896e-06				
	La station d'	El Haciabia					
Gamma		0.0341	2.2354e-05				
Log-normal		0.8429	0.0578				
Normal	1.3444e-28	1.0384e-15	1.7602e-16				
exponentielle	2.8728e-09	6.4849e-04	1.1606e-16				
weibull		0.0202	3.8005e-06				
La station de Sidi bel abbés							
Gamma	3.4348e-10	9.9285e-08	2.6724e-12				
Log-normal	0.0021	0.0052	1.7331e-06				
Normal	5.3204e-28	1.0233e-25	1.2922e-23				
exponentielle	6.7638e-29	2.0231e-42	1.8858e-60				
weibull	2.0313e-09	1.8810e-10	3.5489e-12				

Tableau III.1 : Comparaison de l'ajustement des différentes lois sur les données des apports à différentes échelles du temps.

Selon les valeurs de p-values, les données des apports de la station de Beni bahdel s'ajustent mieux à la distribution log-normale à l'échelle (3 et 6 mois) et avec la loi de Weibull à l'échelle de 12 mois. Pour la station de Chouly, les données des apports à l'échelle de 6 mois s'ajustent mieux à la distribution Gamma et à la distribution de Weibull, à l'échelle de (3 et 12) mois ne s'ajustent avec aucune loi (p-values 0.05). Pour la station d'El Haciabia les données des apports à l'échelle (6 et 12 mois) s'adaptent à la distribution log-normale et à l'échelle de 3 mois ne s'ajustent avec aucune loi.

Selon les valeurs de p-values, les données des apports de la station de Sidi bel Abbés à l'échelle (3, 6 et 12 mois) ne s'ajustent avec aucune loi (p-values <0.05).

Les figures suivantes montrent la comparaison entre la fonction de distribution cumulative empirique (ecdf) et la fonction de densité de probabilité (pdf) avec celles des déférentes distributions à l'échelle de 3,6 et 12 mois pour les trois stations.

Figure III.5: Comparaison entre ECDF et PDF avec celles de la distribution log-normale à l'échelle de 3 mois pour la station de Beni bahdel.

Figure III.6 : Comparaison entre ECDF et PDF avec celles de la distribution log-normale à l'échelle de 6 mois pour la station de Beni bahdel.

Figure III.7 : Comparaison entre ECDF et PDF avec celles de la distribution Weibull à l'échelle de 12mois pour la station de Beni bahdel.

Figure III.8 : Comparaison entre ECDF et PDF avec celles de la distribution Gamma à l'échelle de 6 mois pour la station de Chouly.

Figure III.9: Comparaison entre ECDF et PDF avec celles de la distribution Weibull à l'échelle de 6 mois pour la station de Chouly.

Figure III.10 : Comparaison entre ECDF et PDF avec celles de la distribution log-normale à l'échelle de 6 mois pour la station de d'El Haciabia.

Figure III.11: Comparaison entre ECDF et PDF avec celles de la distribution log-normale à l'échelle de 12 mois pour la station de d'El Haciabia.

Une fois que la distribution appropriée est adaptée aux données des apports cumulés, le calcul des valeurs de l'indice SDI procède selon l'équation. (I.14). Les figures suivantes représentent le diagramme à moustache des valeurs de l'SDI calculées à différents échelles du temps.

Figure III.12 : Variation mensuelle de l'indice SDI à l'échelle de 3 mois pour la période de temps de 1941-2009 pour la station de Beni bahdel.

Figure III.13: Variation mensuelle de l'indice SDI à l'échelle de 6 mois pour la période de temps de 1941-2009 pour la station de Beni bahdel.

Figure III.14: Variation mensuelle de l'indice SDI à l'échelle de 12 mois pour la période de temps de 1941-2009 pour la station de Beni bahdel.

Figure III.15 : Variation mensuelle de l'indice SDI à l'échelle de 6 mois pour la période de temps de 1941-2009 pour la station de Chouly.

Figure III.16: Variation mensuelle de l'indice SDI à l'échelle de 6 mois pour la période de temps de 1941-2009 pour la station d'El Haciabia.

Figure. III. 17: Variation mensuelle de l'indice SDI à l'échelle de 12 mois pour la période de temps de 1941-2009 pour la station d'El Haciabia.

Selon les valeurs mensuelles de l'indice SDI présentées dans les figures ci-dessus nous constatons à l'échelle de 6 mois (figure III.1):

La valeur minimale (SDI=-2.36) a été observé durant le mois d'août dans la station de Beni Bahdel, au mois de mai (SDI=-3.12) dans la station de Chouly et au mois de septembre (SDI=-3.43) dans la station de El hacaiba.

Le mois de février, mai, septembre et octobre sont considérés comme mois secs par rapport à la moyenne de l'SDI et les autres comme humide dans la station d'El Haciabia. Pour les autres stations nous considérons tous les mois humide.

III.1.2. Calculs des caractéristiques de la sécheresse hydrologique

Pour trouver les marginales des variables (la durée, la sévérité et l'intensité) de la sécheresse hydrologique, ces variables devraient être d'abord calculées manuellement à partir des valeurs de l'indice SDI pour les trois stations. Les résultats à l'échelle de 3 et 6 et 12mois sont respectivement présentés dans les tableaux suivants :

année	Durée (mois)	Sévérité	Intensité	Temps interarrival (mois)
févr43	8	3,302	0,413	10
déc44	2	0,146	0,073	
juin-44	6	2,958	0,493	6
mars-45	3	0,767	0,256	9
nov45	3	1,255	0,418	8
déc47	2	0,550	0,275	13
févr52	1	0,055	0,055	62
févr55	2	0,203	0,102	36
mai-57	6	2,014	0,336	27
nov58	2	0,489	0,245	18
juin-59	2	0,080	0,040	7
oct59	5	1,065	0,213	4
janv61	3	0,577	0,192	15
mars-64	6	2,266	0,378	38
mars-65	7	1,443	0,206	12
oct67	2	0,140	0,070	31
juin-75	2	0,041	0,021	92
nov76	1	0,005	0,005	17
août-77	1	0,008	0,008	9
janv80	11	3,961	0,360	13
mars-81	23	17,317	0,753	14
janv84	14	14,524	1,037	34
juin-85	8	4,563	0,570	17
juin-86	4	1,226	0,307	12
févr87	38	51,871	1,365	8
août-90	10	9,600	0,960	42
oct91	31	39,919	1,288	14
juil94	8	4,759	0,595	33
nov95	23	39,311	1,709	16
déc98	23	30,178	1,312	25
déc00	11	8,012	0,728	24
févr01	8	8,286	1,036	14
mars-02	7	3,988	0,570	13
janv03	59	74,948	1,270	10
févr09	3	0,225	0,075	73

Tableau III.2 : Les caractéristiques de la sécheresse à l'échelle 3 mois pour la station de Beni bahdel.

année	Durée (mois)	Sévérité	Intensité	Temps interarrival (mois)
mars-43	12	4,966	0,414	17
août-44	10	1,785	0,179	1 /
août-57	5	1,038	0,208	156
nov59	5	0,695	0,139	27
mai-64	8	2,683	0,335	54
mai-65	6	1,360	0,227	12
févr80	39	26,384	0,677	177
mars-84	15	14,600	0,973	49
sept85	7	2,027	0,290	18
oct86	45	53,141	1,181	13
déc91	9	6,856	0,762	50
janv92	31	33,731	1,088	13
nov94	7	2,479	0,354	34
janv96	73	91,460	1,253	14
mai-02	69	89,469	1,297	76
juin-09	1	0,008	0,008	85

Tableau III.3 : Les caractéristiques de la sécheresse à l'échelle 6 mois pour la station de Beni bahdel.

Tableau III.4: Les caractéristiques de la sécheresse à l'échelle 12 mois pour la station de
Beni bahdel.

année	Durée (mois)	Sévérité	Intensité	Temps interarrival (mois)
juil43	27	7,623	0,282	257
déc65	15	3,711	0,247	
nov77	1	0,002	0,002	155
sept80	38	28,764	0,757	34
juil84	21	12,424	0,592	46
avr87	45	50,903	1,131	33
juil91	47	29,932	0,637	51
mai-96	148	200,718	1,356	58

année	Durée (mois)	Sévérité	Intensité	Temps interarrival (mois)
mai-43	8	1,820	0,228	265
juin-65	4	0,420	0,105	
juin-66	4	0,427	0,107	12
févr70	4	0,226	0,057	44
mars-81	8	1,400	0,175	133
juin-82	34	12,715	0,374	15
déc86	3	0,509	0,170	42
janv87	40	28,282	0,707	13
ianv91	8	3.569	0.446	48
févr92	29	16.783	0.579	13
oct94	6	1.946	0.324	32
févr -96	147	236 908	1.612	16
	16	16 380	1.024	150
a0ut-08	10	10,309	1,024	

 Tableau III.5 : Les caractéristiques de la sécheresse à l'échelle 6 mois pour la station de Chouly.

Tableau III.6: Les caractéristiques de la sécheresse à l'échelle 6 mois pour la station d'ElHaciabia.

année	Durée (mois)	Sévérité	Intensité	Temps interarrival (mois)
mai-62	13	6,418	0,494	21
févr64	18	22,940	1,274	21
févr66	11	4,570	0,415	24
mai-68	22	20,809	0,946	27
févr71	9	8,863	0,985	33
oct72	1	0,037	0,037	20
sept73	9	4,606	0,512	11
janv75	5	1,795	0,359	16
juil77	7	3,460	0,494	30
août-78	10	5,743	0,574	13
janv80	11	2,799	0,254	17
févr82	7	6,438	0,920	25
août-83	15	18,034	1,202	18
sept85	14	3,875	0,277	25
déc88	9	7,356	0,817	27
oct88	8	4,486	0,561	10

année	Durée (mois)	Sévérité	Intensité	Temps interarrival (mois)
janv90	3	0,500	0,167	15
mai-91	41	44,761	1,092	16
juil96	5	0,802	0,160	62
mai-97	6	3,630	0,605	10
avr00	10	18,653	1,865	35
févr03	6	1,634	0,272	34
sept04	10	10,967	1,097	19

Tableau III.6 (suite et fin): Les caractéristiques de la sécheresse à l'échelle 6 mois pour la station d'El Haciabia.

Tableau III.7: Les caractéristiques of	de la sécheresse à l'échelle	12 mois pour la station d'El
	Haciabia.	

année	Durée (mois)	Sévérité	Intensité	Temps interarrival (mois)
nov62	55	42,886	0,780	69
août-68	26	24,440	0,940	
juil71	7	1,408	0,201	35
nov73	29	6,858	0,236	28
févr78	6	0,481	0,080	51
nov78	30	10,642	0,355	9
déc84	37	26,510	0,716	61
juin-88	18	10,812	0,601	54
nov91	39	59,660	1,530	41
août-97	2	0,104	0,052	69
juil00	9	1,549	0,172	35
déc05	12	6,818	0,568	53

Sur la base de l'analyse des quatre caractéristiques de la sécheresse aux différentes échelles du temps au cours de 1940-2009 pour les trois stations :

À l'échelle du trois mois le sous bassin de Beni bahdel avait connu 35 épisodes de sécheresse, avec une durée maximale de 59 mois, sévérité maximale de 74.95 et une intensité maximale de 1.71, et 16 épisodes de sécheresse, avec une durée maximale de 73 mois, sévérité maximale de 91.46 et une intensité maximale de 1.29 à l'échelle du six mois, à l'échelle de 12 mois elle avait connu 8 épisodes de sécheresse, avec une durée maximale de 148 mois, sévérité maximale de 200.71 et une intensité maximale de 1.36.

Pour la station de Chouly, à l'échelle de 6 mois, on recense 13 événements secs pour une durée maximale de 147 mois, sévérité minimale de 236 et une intensité maximale de 1.61.

À l'échelle du 6 mois la station d'El Haciabia avait connu 23 épisodes de sécheresse, avec une durée maximale de 41 mois, sévérité maximale de 44.76 et une intensité maximale de 1.86 et 12 épisodes de sécheresse, avec une durée maximale de 55 mois, sévérité maximale de 59.66 et une intensité maximale de 1.52 à l'échelle du 12 mois.

Donc au cours des 69 années étudiés, L'analyse de la durée des épisodes de sécheresse montre que celle-ci varie d'une échelle de temps à une autre et d'une station a une autre, à l'échelle du six mois, la station d'El Haciabia a connu la plus longue épisode de sécheresse avec 23 de séquences sèches consécutives. Cependant, la station de Chouly contienne la plus longue durée de sécheresse.

III.1.3 Ajustement des caractéristiques de la sécheresse hydrologique

Les quatre caractéristiques de la sécheresse (durée, sévérité, temps interarrival et l'intensité) sont mise à l'épreuve sous cinq distributions à savoir : la distribution exponentielle, Log-normal, Weibull et la distribution gamma. Le test de Kolmogorov-Smirnov (ks) est utilisé pour déterminer et vérifier la fiabilité de l'ajustement de ces caractéristiques avec les quatre distributions proposées.

Les résultats des paramètres de l'ajustement avec les quatre lois et le p-value de test KS pour les trois stations sont présentés dans les tableaux suivants :

Distribution		Paramèt	res de la lo	P-value	Ks	h					
La durée											
Exponentiel	Mu	9.85714			0.3097	0.1584	0				
Log normal	Mu	1.71772	sigma	1.06888	0.6631	0.1188	0				
Gamma	scale	1.01057	shape	9.75409	0.3018	0.1596	0				
Weibull	scale	9.55988	shape	0.944001	0.4248	0.1437	0				
Normal	Mu	9.85714	sigma	12.3435	0.0082	0.2741	1				
	Sévérité										
Exponentiel	Mu	9.43008			3.3687e-04	0.3438	1				
Log normal	Mu	0.39113	sigma	2.41922	0.9819	0.0746	0				
Gamma	scale	0.361096	shape	26.1151	0.5073	0.1346	0				
Weibull	scale	4.61176	shape	0.493714	0.9770	0.0764	0				
Normal	Mu	9.43008	sigma	17.2291	0.0010	0.3211	1				
Intensité											
Exponentiel	Mu	0.506652			0.9102	0.0908	0				
Log normal	Mu	-1.32659	sigma	1.44157	0.3378	0.1546	0				
Gamma	scale	0.903602	shape	0.560703	0.9646	0.0802	0				
Weibull	scale	0.499475	shape	0.965419	0.9644	0.0802	0				
Normal	Mu	0.506652	sigma	0.466202	0.2076	0.1751	0				
Temps interarrival											
Exponentiel	Mu	0.1740			2.0789e-31	1.0000	1				
Log normal	Mu	2.85146	sigma	0.728156	0.5922	0.1276	0				
Gamma	scale	1.95967	shape	11.6466	0.2103	0.1771	0				
Weibull	scale	25.1166	shape	1.33631	0.2268	0.1740	0				
Normal	Mu	22.8235	sigma	19.789	2.9700e-09	0.5338	1				

Tableau III.8: Résultats de l'ajustement des caractéristiques de la sécheresse à l'échelle de 3
mois pour la station de Beni bahdel.

Selon les p-valus présentés dans le tableau III.8, la distribution Log normal est la plus adaptée pour la durée, la sévérité et le temps interarrival et la distribution gamma pour l'intensité.

Distribution		Paramètro	es de la loi	P-value	Ks	h			
La durée									
Exponentiel	Mu	21.375			0.5126	0.1954	0		
Log normal	Mu	2.50647	sigma	1.13867	0.7958	0.1529	0		
Gamma	scale	1.03452	shape	20.6617	0.4757	0.2012	0		
Weibull	scale	21.1945	shape	0.982241	0.5515	0.1894	0		
Normal	Mu	21.375	sigma	23.2175	0.0981	0.2957	0		
			Sévéri	ité					
Exponentiel	Mu	20.7927			0.0142	0.3789	1		
Log normal	Mu	1.51808	sigma	2.34519	0.8216	0.1487	0		
Gamma	scale	0.429059	shape	48.4612	0.6198	0.1793	0		
Weibull	scale	12.8274	shape	0.558856	0.7571	0.1589	0		
Normal	Mu	20.7927	sigma	31.0043	0.0289	0.3508	1		
			Intens	ité					
Exponentiel	Mu	0.586428			0.8221	0.1486	0		
Log normal	Mu	-0.988386	sigma	1.27682	0.7226	0.1641	0		
Gamma	scale	1.23981	shape	0.472997	0.9173	0.1301	0		
Weibull	scale	0.62233	shape	1.22353	0.8959	0.1349	0		
Normal	Mu	0.586428	sigma	0.443567	0.4000	0.2139	0		
Temps interarrival									
Exponentiel	Mu	53			0.5058	0.2026	0		
Log normal	Mu	3.57279	sigma	0.912299	0.6997	0.1728	0		
Gamma	scale	1.40114	shape	37.8262	0.6323	0.1830	0		
Weibull	scale	56.0487	shape	1.15202	0.7616	0.1632	0		
Normal	Mu	53	sigma	51.7715	0.3732	0.2256	0		

Tableau III.9: Résultats de l'ajustement des caractéristiques de la sécheresse à l'échelle de 6mois pour la station de Beni bahdel.

Selon les p-valus présentés dans le tableau III.9, la distribution la plus adaptée pour la durée, la sévérité est Log normal, la distribution gamma pour l'intensité, et la distribution Weibull pour le temps interarrival.

Distribution		Paramètre	es de la lo	P-value	Ks	h			
La durée									
Exponentiel	Mu	42.75			0.8142	0.2081	0		
Log normal	Mu	3.1675	sigma	1.45008	0.6102	0.2507	0		
Gamma	scale	0.983776	shape	43.455	0.8173	0.2073	0		
Weibull	scale	42.8019	shape	1.00298	0.8126	0.2084	0		
Normal	Mu	42.75	sigma	45.2888	0.2571	0.3376	0		
			Sévér	ité					
Exponentiel	Mu	41.7596			0.6487	0.2427	0		
Log normal	Mu	1.95132	sigma	3.52699	0.3782	0.3030	0		
Gamma	scale	0.373651	shape	111.761	0.8960	0.1873	0		
Weibull	scale	25.9467	shape	0.514006	0.9106	0.1829	0		
Normal	Mu	41.7596	sigma	66.4157	0.3124	0.320	0		
Intensité									
Exponentiel	Mu	0.625558			0.6783	0.2366	0		
Log normal	Mu	-1.21618	sigma	2.11581	0.2470	0.3410	0		
Gamma	scale	0.795071	shape	0.786795	0.5920	0.2545	0		
Weibull	scale	0.622558	shape	0.982687	0.6680	0.2387	0		
Normal	Mu	0.625558	sigma	0.456345	0.9822	0.1490	0		
Temps interarrival									
Exponentiel	Mu	90.5714			0.4448	0.3054	0		
Log normal	Mu	4.20518	sigma	0.786254	0.5188	0.2873	0		
Gamma	scale	1.8102	shape	50.034	0.3439	0.3324	0		
Weibull	scale	99.0022	shape	1.29031	0.3890	0.3198	0		
Normal	Mu	90.5714	sigma	84.6342	0.2446	0.3641	0		

Tableau III.10: Résultats de l'ajustement des caractéristiques de la sécheresse à l'échelle de12 mois pour la station de Beni bahdel.

Selon les p-valus présentés dans le tableau III.10, la distribution la plus adaptée pour la durée est l'exponentiel, la distribution Weibull pour la sévérité, la distribution Normal pour l'intensité, et Log normal pour le temps interarrival.

Distribution		Paramètre	es de la lo	P-value	Ks	h			
La durée									
Exponentiel	Mu	23.9231			0.0901	0.3311	0		
Log normal	Mu	2.43332	sigma	1.16028	0.4055	0.2352	0		
Gamma	scale	0.800324	shape	29.8917	0.2071	0.2824	0		
Weibull	scale	20.6793	shape	0.811659	0.3568	0.2450	0		
Normal	Mu	23.9231	sigma	39.0586	0.1664	0.2961	0		
			Sévér	ité					
Exponentiel	Mu	24.7227			0.0027	0.4810	1		
Log normal	Mu	1.228	sigma	2.04896	0.9051	0.1465	0		
Gamma	scale	0.341092	shape	72.481	0.4936	0.2190	0		
Weibull	scale	9.52506	shape	0.485841	0.7985	0.1683	0		
Normal	Mu	24.7227	sigma	64.3648	0.0212	0.4010	1		
			Intens	sité					
Exponentiel	Mu	0.454363			0.9615	0.1296	0		
Log normal	Mu	-1.20532	sigma	0.972845	0.9990	0.0942	0		
Gamma	scale	1.34283	shape	0.338362	0.9699	0.1259	0		
Weibull	scale	0.478286	shape	1.13961	0.9899	0.1128	0		
Normal	Mu	0.454363	sigma	0.445201	0.6085	0.1997	0		
Temps interarrival									
Exponentiel	Mu	65.25			0.4841	0.2292	0		
Log normal	Mu	3.61958	sigma	1.06942	0.6384	0.2025	0		
Gamma	scale	1.02972	shape	63.3665	0.4641	0.2329	0		
Weibull	scale	63.7771	shape	0.956801	0.5542	0.2168	0		
Normal	Mu	65.25	sigma	78.2271	0.1016	0.3373	0		

Tableau III.11: Résultats de l'ajustement des caractéristiques de la sécheresse à l'échelle de 6mois pour la station de Chouly.

Selon les p-valus présentés dans le tableau III.11, la distribution la plus adaptée pour les quatre caractéristiques de la sécheresse est Log normal.

Distribution	Paramètres de la loi			P-value	Ks	h				
La durée										
Exponentiel	Mu	10.8696			0.0416	0.2818	1			
Log normal	Mu	2.16411	sigma	0.721532	0.7541	0.1341	0			
Gamma	scale	2.40724	shape	4.51536	0.6558	0.1463	0			
Weibull	scale	12.1397	shape	1.52245	0.5292	0.1620	0			
Normal	Mu	10.8696	sigma	8.09211	0.1407	0.2327	0			
			Sévér	ité						
Exponentiel	Mu	8.83362			0.7496	0.1346	0			
Log normal	Mu	1.48489	sigma	1.49466	0.4371	0.1744	0			
Gamma	scale	0.848996	shape	10.4048	0.8953	0.1137	0			
Weibull	scale	8.37887	shape	0.897551	0.9324	0.1064	0			
Normal	Mu	8.83362	sigma	10.2841	0.0879	0.2528	0			
	Intensité									
Exponentiel	Mu	0.668676			0.3584	0.1861	0			
Log normal	Mu	-0.679222	sigma	0.873024	0.7070	0.1400	0			
Gamma	scale	1.95683	shape	0.341714	0.9276	0.1075	0			
Weibull	scale	0.742166	shape	1.54443	0.9598	0.0995	0			
Normal	Mu	0.668676	sigma	0.445677	0.5020	0.1656	0			
Temps interarrival										
Exponentiel	Mu	23.0909			0.0062	0.3515	1			
Log normal	Mu	3.03834	sigma	0.452072	0.9963	0.0809	0			
Gamma	scale	5.10661	shape	4.52177	0.9973	0.0791	0			
Weibull	scale	26.1591	shape	2.15828	0.8847	0.1179	0			
Normal	Mu	23.0909	sigma	11.5672	0.7272	0.1404	0			

Tableau III.12: Résultats de l'ajustement des caractéristiques de la sécheresse à l'échelle de 6mois pour la station d'El Haciabia.

Selon les p-valus présentés dans le tableau III.12, la distribution la plus adaptée pour la durée et le temps interarrival est gamma, et la distribution Weibull pour l'intensité et la sévérité.
Distribution	Paramètres de la loi				P-value	Ks	h	
La durée								
Exponentiel	Mu	22.5			0.7407	0.1851	0	
Log normal	Mu	2.77598	sigma	0.972476	0.7126	0.1900	0	
Gamma	scale	1.62801	shape	13.8206	0.8043	0.1736	0	
Weibull	scale	24.6496	shape	1.40446	0.8731	0.1597	0	
Normal	Mu	22.5	sigma	16.2229	0.8809	0.1579	0	
			Sévér	ité				
Exponentiel	Mu	16.0142			0.4213	0.2411	0	
Log normal	Mu	1.9236	sigma	1.72496	0.6117	0.2070	0	
Gamma	scale	0.590655	shape	27.1126	0.9693	0.1310	0	
Weibull	scale	13.1067	shape	0.709069	0.9583	0.1359	0	
Normal	Mu	16.0142	sigma	18.9485	0.2716	0.2748	0	
Intensité								
Exponentiel	Mu	0.519312			0.8472	0.1652	0	
Log normal	Mu	-1.05102	sigma	1.0266	0.7588	0.1819	0	
Gamma	scale	1.40674	shape	0.369159	0.9061	0.1519	0	
Weibull	scale	0.556996	shape	1.24063	0.9437	0.1412	0	
Normal	Mu	0.519312	sigma	0.432075	0.8702	0.1603	0	
		Te	mps inte	erarrival				
Exponentiel	Mu	45.9091			0.0796	0.3657	0	
Log normal	Mu	3.71126	sigma	0.581714	0.6300	0.2125	0	
Gamma	scale	4.49268	shape	10.2186	0.7300	0.1948	0	
Weibull	scale	51.2793	shape	2.90496	0.8486	0.1717	0	
Normal	Mu	45.9091	sigma	18.3872	0.9202	0.1545	0	

Tableau III.13: Résultats de l'ajustement des caractéristiques de la sécheresse à l'échelle de12 mois pour la station d'El Haciabia.

Selon les p-valus présentés dans le tableau III.13, la distribution la plus adaptée pour la durée et le temps inter-arrival est normal, la distribution Weibull pour l'intensité et la distribution gamma pour la sévérité.

Une fois que les distributions des variables de sécheresse sont caractérisées, les copules bi- variées et tri -variés en particulier la copule de Gumbel (de la famille archimédienne) et tcopule (de la famille Elliptique) sont adaptées pour évaluer la période de retour des sécheresses conjointement et conditionnelle dans la zone d'étude.

Pour appliquer la copule de Gumbel, la corrélation deux à deux entre les trois variables de la sécheresse est calculée afin de choisir la plus élevée. Pour cela le coefficient de corrélation

de Pearson et la corrélation de tau de Kendall ont été appliqués aux variables deux à deux (Durée –Sévérité, Durée–Intensité et Sévérité–Intensité).

III.1.3. Application de la copule bi-varie tri-variée sur les caractéristiques de la sécheresse

La copule tri-variée est exprimée comme suit :

$$C_{1}[C_{2}(u_{1}, u_{2}), u_{3}] = exp\left\{-\left[(-lnu_{1})^{\theta_{2}} + (-lnu_{2})^{\theta_{2}}\right]^{\frac{\theta_{1}}{\theta_{2}}} + (-lnu_{3})^{\theta_{1}}\right\}^{\frac{1}{\theta_{1}}} (III.1)$$

Etant donné que θ_2 représente la dépendance existant entre la paire la plus corrélés (u_1 , u_2), en premier temps la corrélation entre les trois paires des trois caractéristiques de la sécheresse doivent être calculées.

Le tableau III.14 résume les valeurs de coefficient de corrélation de Pearson et le Tau de Kendall entre toutes les paires possibles des trois caractéristiques de la sécheresse.

	Pearson	Kendall's Tau			
3 mois					
Durée – Sévérité	0,979**	0,903**			
Durée – Intensité	0,794**	0,788**			
Sévérité –Intensité	0,821**	0,889**			
6 mois					
Durée – Sévérité	0,985**	0,891**			
Durée – Intensité	0,855**	0,790**			
Sévérité –Intensité	0,861**	0,900			
12 mois					
Durée – Sévérité	0,985**	0,857**			
Durée – Intensité	$0,830^{*}$	0,786**			
Sévérité –Intensité	0,811*	0,929**			

Tableau III.14: Corrélation des caractéristiques de la sécheresse de la station de Beni bahdel.

Pearson		Kendall's Tau
	6 mois	
Durée – Sévérité	0,979**	0,774**
Durée – Intensité	0,863**	0,694**
Sévérité –Intensité	0,844**	0,923**

Tableau III.15: Corrélation des caractéristiques de la sécheresse pour la station de Chouly.

Tableau III.16: Corrélation des caractéristiques de la sécheresse pour la station d'El Haciabia.

	Pearson	Kendall's Tau		
6 mois				
Durée – Sévérité	0,917**	0,649**		
Durée – Intensité	$0,\!454^{*}$	0,423**		
Sévérité –Intensité	0,707**	0,779**		
	12 mois			
Durée – Sévérité	0,828**	0,848**		
Durée – Intensité	$0,674^{*}$	0,697**		
Sévérité –Intensité	0,924**	0,848		

* : La corrélation est significative au niveau 0,01.

Les résultats dans les tableaux en dessus mènent également à la conclusion que la sévérité et la durée ont la plus forte corrélation, la méthode de détermination des paramètres, illustré dans le chapitre 1, est utilisée pour estimer les paramètres θ 1 et θ 2 dans la copule tri-variée de Gumbel, ainsi que pour estimer la matrice de la corrélation et le degré de liberté pour le t copule. Les paramètres estimés de tri-variée de Gumbel et t-copule sont résumés dans le tableauIII.18.

		Param	ètre estimé			
	La statio	n de Beni I	Bahdel			
	3 mois	(6 mois	12 mois		
Gumbel copula	$\theta_1 = 4,69; \theta_2 = 3,99$	$\theta_1 = 5,4$	$45; \theta_2 = 4,31$	$\theta_1 = 5,29; \theta_2 = 2,42$		
t-copula	$\begin{bmatrix} 1 & 0.95 & 0.91 \\ 0.95 & 1 & 0.98 \\ 0.91 & 0.98 & 1 \end{bmatrix}$ nu =3.4517e+07	$\begin{bmatrix} 1\\ 0.97\\ 0.92\\ nu = 3 \end{bmatrix}$	0.97 0.92 1 0.98 0.98 1 3.4517e+07	$\begin{bmatrix} 1 & 0.97 & 0.79 \\ 0.97 & 1 & 0.78 \\ 0.79 & 0.78 & 1 \end{bmatrix}$ $nu = 3.0013e+07$		
La station de Chouly						
		6	o mois			
Gumbel copula	$\theta 1 = 5,52; \theta 2 = 1,58$					
t-copula	$\begin{bmatrix} 1 & 0.98 & 0.66 \\ 0.98 & 1 & 0.74 \\ 0.66 & 0.74 & 1 \end{bmatrix}$					
		nu = 3	3.7354e+07			
	La statio	on d'El Ha	ciabia			
	6 mois			12 mois		
Gumbel copula	$\theta_1 = 3,42; \theta_2 = 1,$,98	$\theta_1 = 3,15; \theta_2 = 2,23$			
t-copula	$\begin{bmatrix} 1 & 0.90 & 0.6 \\ 0.90 & 1 & 0.8 \\ 0.63 & 0.88 & 1 \end{bmatrix}$	53] 38]	$\begin{bmatrix} 1 & 0.87 & 0.63 \\ 0.87 & 1 & 0.92 \\ 0.63 & 0.92 & 1 \end{bmatrix}$			
	<i>nu</i> = 4.9651		<i>nu</i> =3.4410e+07			

Tableau III.17: Estimation des paramètres de la copule tri-variée de Gumbel et t-copule.

III.1.4. Périodes de retour

La période de retour de certains événements de sécheresse s'associe d'habitude avec une probabilité de dépassement d'une valeur fixée. Contrairement à l'analyse fréquentielle des crues, un événement de sécheresse peut arriver plusieurs fois en un an et aussi se prolonger plus qu'une année, alors, le temps inter-arrival est une caractéristique de sécheresse nécessaire à inclure pour estimer les périodes de retour de sécheresse. Le temps inter-arrival est défini comme le temps entre le début d'une sécheresse et le début de la suivante :

III.1.4. 1. Période de retour uni variable

Les périodes de retour peuvent être séparément définies pour les trois variables (durée, sévérité et intensité) (Shiau et 2001 Shen) comme suit :

$$T_{S} = \frac{E(l)}{1 - F_{S}(s)}$$
; $T_{D} = \frac{E(l)}{1 - F_{D}(d)}$; $T_{I} = \frac{E(l)}{1 - F_{I}(i)}$

Où

- *Ts* est la période de retour des sécheresses avec sévérité supérieure ou égale à certaines valeurs ;

- TD est la période de retour des sécheresses d'une durée supérieure ou égale à certains mois ;

- *T*¹ est la période de retour des sécheresses avec une intensité supérieure ou égal à certaines valeurs ;

- E (L) est le temps Inter-arrival attendu de la sécheresse.

Le tableau suivant résume les périodes de retour unique de 3, 5, 10, 20, 50 et 100 ans de la sévérité, la durée et l'intensité de la sécheresse.

Tableau III.18: Périodes de retour de chacune	e des caractéristiques de la sécheresse pour la
station de B	eni bahdel.

Périodes de	quantile	sévérité	Durée	Intensité
retour				
le tem	ps moyen de l'	inter-arrival=	22,824 (3 m	ois)
3	0,366	3,8	0,62	0,214
5	0,620	7,9	3,2	0,481
10	0,810	14,3	12,4	0,852
20	0,905	22,7	35,4	1,227
50	0,962	37,3	108,2	1,729
100	0,981	51,2	223,9	2,113
le t	emps moyen d	e l'inter-arriva	l= 53 (6 mois)	
3	-0,472	-	_	-
5	0,117	3,2	0,5	0,101
10	0,558	14,5	6,5	0,508
20	0,779	29,5	27,7	0,874
50	0,912	57,4	108,4	1,346
100	0,956	85,8	252,7	1,697
le ten	nps moyen de l	l'inter-arrival=	90,57 (12 mo	is)
3	-1,516	-	-	-
5	-0,510	-	-	-
10	0,245	11,3	2,1	0,312
20	0,623	41,5	25	0,768
50	0,849	81	86	1,098
100	0,925	111,8	166	1,285

Périodes de retour	quantile sévérité		Durée	Intensité	
le temps moyen de l'inter-arrival= 65,25 (6 mois)					
3	-0,813	-	-	-	
5	-0,088	-	-	-	
10	0,456	10,1	2,9	0,268	
20	0,728	22,9	11,5	0,542	
50	0,891	47,7	44	0,994	
100	0,946	74,2	92	1,436	

Tableau III.19: Périodes de retour de chacune des caractéristiques de la sécheresse pour la station de Chouly.

Tableau III.20: Périodes de retour de chacune des caractéristiques de la sécheresse pour la station d'El Haciabia.

Périodes de retour	quantile	quantile sévérité		Intensité		
le temps moyen de l'inter-arrival= 23,09 (6 mois)						
	r		r			
3	0,359	6,6	3,4	0,432		
5	0,615	10,7	7,9	0,721		
10	0,808	16,3	14,7	1,028		
20	0,904	22,4	21,7	1,291		
50	0,962	31,5	31,3	1,599		
100	0,981	39	39,4	1,822		
le temps m	oyen de l'inte	er-arrival=45,	91 (12 mois)			
3	-0,275	-	-	-		
5	0,235	10,8	2,1	2,05		
10	0,617	27,3	13,2	12,2		
20	0,809	36,7	27,5	26,8		
50	0,923	45,7	47,9	48,6		
100	0,962	51,4	64,9	68,8		

III.1.4. 2. Période de retour multi variable

III.1.4. 2.1. Périodes de retour à deux variables

Puisque des événements de sécheresse sont caractérisés par la sévérité et la durée, la Périodes de retour uni variable peuvent donner des résultats sous ou au-dessus prévus. Par conséquent il est important de calculer les périodes de retour conjointes.

Shiau 2003 a proposé une méthodologie pour déterminer les périodes de retour conjointes bivariées en considérant les deux variables : la durée et la sévérité.

Les périodes de retour conjointent de la durée et de la sévérité de la sécheresse peuvent être caractérisées par deux cas : période de retour pour D≥d et S ≥s ; période de retour pour D≥d ou S ≥s. Sur la base des copules, les périodes de retour conjoint des événements de la sécheresse sont décrites comme suit :

$$T_{DS} = \frac{E(l)}{P(D \ge d, S \ge s)} = \frac{E(l)}{1 - F_D(d) - F_s(s) + F_{DS}(d, s)} = \frac{E(l)}{1 - F_D(d) - F_s(s) + C(F_D(d), Fs(s))}$$

$$T_{DS}' = \frac{E(l)}{P(D \ge d \text{ or } S \ge s)} = \frac{E(l)}{1 - F_{DS}(d, s)} = \frac{E(l)}{1 - C(F_{D}(d), Fs(s))}$$

Avec *T*_{DS} est la période de retour conjointe pour D \geq d et S \geq s ; *T*_{DS}' est la période de retour conjointe pour D \geq d ou S \geq s.

Puisqu'il existe plusieurs combinaisons de durée et la sévérité de la sécheresse qui aboutit à la même période de référence, les périodes de retour commun sont mises en évidence dans les lignes de contour comme le montre les abaques des figures suivantes :

Figure III.18 : la période de retour conjoint *TDS* (à gauche) et *TDS'* (à droite) de la durée et la sévérité de la sècheresse en utilisant la copule de Gumbel pour la station de Beni bahdel (Cas 1 : 3 mois).

Figure III.19 : la période de retour conjoint *TDS* (à gauche) et *TDS'* (à droite) de la durée et la sévérité de la sècheresse en utilisant la copule de Gumbel pour la station de Beni bahdel (Cas 2 : 6 mois).

Figure III.20 : la période de retour conjoint *TDS* (à gauche) et *TDS'* (à droite) de la durée et la sévérité de la sècheresse en utilisant la copule de Gumbel pour la station de Beni bahdel (Cas 3 : 12 mois).

Figure III.21 : la période de retour conjoint *TDS* (à gauche) et *TDS*' (à droite) de la durée et la sévérité de la sècheresse en utilisant la copule de Gumbel pour la station de Chouly

(Cas 1 : 6 mois).

Chapitre III : analyse de la sécheresse hydrologique

Figure III.22 : la période de retour conjoint *TDS* (à gauche) et *TDS*' (à droite) de la durée et la sévérité de la sècheresse en utilisant la copule de Gumbel la station d'El Haciabia

(Cas 1 : 6 mois).

Figure III.23: la période de retour conjoint *TDS* (à gauche) et *TDS'* (à droite) de la durée et la sévérité de la sècheresse en utilisant la copule de Gumbel pour la station d'El Hacaiba

(Cas 2 : 12 mois).

III.1.4. 2.2. Périodes de retour tri-variées

De même, nous pouvons obtenir des périodes de retour définies pour le cas tri-varié, qui se présente comme suit :

$$T_{DSI} = \frac{E(l)}{P(D \ge d, S \ge s, I \ge i)}$$

=
$$\frac{E(l)}{1 - F_D(d) - F_s(s) + F_I(i) + F_{DS}(d, s) + F_{DI}(d, i) + F_{SI}(s, i) - F_{DSI}(d, s, i)}{E(l)}$$

=
$$\frac{E(l)}{1 - F_D(d) - F_s(s) - F_I(i) + F_{DS}(d, s) + F_{DI}(d, i) + F_{IS}(i, s) + C(F_D(d), F_S(s), F_I(i))}$$

Avec *T*_{DSI} est la période de retour conjointe pour D \geq d et S \geq s et I \geq i. La période de retour Conjointe pour D \geq d ou S \geq s ou I \geq i est défini comme suit :

$$T_{DSI}' = \frac{E(l)}{1 - F_{DSI}(d, s, i)} = \frac{E(l)}{1 - C(F_{D}(d), Fs(s)F_{I}(i))}$$

Tablea	u III.21 : Co	omparai	son ent	e la c	conjointe	e périod	e de	retour	tri-va	ariée	et la	périod	le de
1	etour d'une	seule v	ariable	en uti	ilisant t-	copula p	our	la stati	on de	Beni	i bah	del.	

Période de retour	Tri-variés t-copule				
unique (année)	Période de retour pour <i>TDSI</i>	Période de retour pour <i>TDSI</i>			
(diffice)	(année)	(année)			
	3 mois	(
3	1,83	1,83			
5	1,833	1,833			
10	13,242	7,603			
20	27,840	14,160			
50	75,971	33,336			
100	161,715 64,243				
6 mois					
3	4,417	4,417			
5	4,417	4,417			
10	11,911	8,659			
20	26,170	16,212			
50	69,014	37,254			
100	4,417	4,417			
1000	4,417	4,417			
	12 mois				
3	1,875	7,500			
5	2,968	7,500			
10	11,486	8,799			
20	29,349	15,062			
50	95,546	33,252			
100	211,662	61,049			

Le tableau si dessus montre la comparaison entre la période de retour conjointe de trivariée en utilisant t-copula et la période de retour d'une seule variable. Par exemple, si on ne considère qu'une seule variable à l'échelle de trois mois, puis la période de retour est égale à 20 ans ce qui signifie que la sévérité est supérieure à 22.7, la durée est plus longue que 35.4 mois, et l'intensité est supérieure à 1.227 (tableau III.18). Mais si on considère le comportement conjointe de ces trois variables, nous pouvons constater que la période de retour pour le cas $S \ge 22.7$ et $D \ge 35.4$ et $I \ge 1.227$ est égale à 27 ans, alors que la période de retour pour le cas $S \ge 22.7$ ou $D \ge 35.4$ ou $I \ge 1.227$ est égal à 14 ans.

Tableau III.22 : Comparaison entre la conjointe période de retour de tri-variée et la périodede retour d'une une seule variable en utilisant t-copula pour la station de Chouly.

Période de retour	Tri-variés t-copule					
(année)	Période de retour pour <i>TDSI</i> (année)	Période de retour pour <i>TDSI'</i> (année)				
6 mois						
3	5,438	5,438				
5	4,302	5,438				
10	5,438	5,438				
20	5,438	5,438				
50	5,438	5,438				
100	5,438	5,438				

Tableau III.23 : Comparaison entre la conjointe période de retour de tri-variée et la périod	e
de retour d'une une seule variable en utilisant t-copula pour la station d'El Haciabia.	

Période de retour	Tri-variés t-copule						
(année)	Période de retour pour <i>TDSI</i> (année)	Période de retour pour <i>TDSI'</i> (année)					
6 mois							
3	1,917	1,917					
5	1,917	1,917					
10	17,554	6,648					
20	42,405	12,519					
50	138,067	30,082					
100	336,270	58,723					
12 mois							
3	2,055	3,750					
5	3,750	3,750					
10	11,977	7,223					
20	26,556	13,066					
50	67,938	28,549					
100	146,283	54,633					

III.2.Comparaison entre les caractéristiques de la sècheresse métrologique et la sécheresse hydrologique

Comme on a déjà mentionné dans le chapitre I :

La sécheresse météorologique est due à la réduction naturelle de la pluviométrie sur une région donnée pendant une année ou sur plusieurs années successives.

La sécheresse hydrologique est la réduction de l'écoulement superficiel dans les cours d'eau et, par conséquent, elle conduit à une diminution des volumes stockés dans les ouvrages hydrauliques et à une baisse naturelle du niveau d'eau dans les nappes souterraines.

Le présent chapitre a pour objectif d'identifier et de caractériser ces deux types de sécheresses et d'étudier l'impact de la sécheresse météorologique sur la sécheresse hydrologique. Aussi, d'évaluer la coïncidence des épisodes de sècheresse hydrologique avec la sécheresse métrologique. Les données pour quantifier ce dernier à long terme (précipitations) sont disponibles pour la majorité des bassins Algérien, alors que la sécheresse hydrologique, basé sur les séries de débit, présente des lacunes surtout pendant la période 1990-2000.

III.2.1Calcul de l'indice de précipitation normalisé SPI

Le calcul des valeurs mensuelles de l'indice SPI pour les trois stations pluviométriques procède selon les équations présentées dans le chapitre I. l'évolution des valeurs mensuelles de l'indice SPI (l'échelle de 3,6 et 12) pour la période de **1941-2010** sont représentées dans les figures suivantes :

Figure III.24 : Valeurs mensuelles de l'indice SPI à l'échelle de 3 mois pour la station de Beni bahdel.

Chapitre III : analyse de la sécheresse hydrologique

Figure III.25 : Valeurs mensuelles de l'indice SPI à l'échelle de 6 mois pour la station de Beni bahdel.

Figure III.26 : Valeurs mensuelles de l'indice SPI à l'échelle de 12 mois pour la station de Beni bahdel.

Figure III.27 : Valeurs mensuelles de l'indice SPI à l'échelle de 6 mois pour la station de Chouly.

Figure III.29: Valeurs mensuelles de l'indice SPI à l'échelle de 12 mois pour la pour la station d'El Haciabia.

Nous avons calculé l'indice SPI pour les précipitations tombées sur les bassins du Tafna et Macta dès 1941 jusqu'à 2010. Les résultats montrent l'existence de nombreuses séquences sèches tout le long de la période analysée, et qu'on a une dominance des années sèches bien remarquable, on note aussi que l'indice SPI entre cette période peut atteindre (-2.409), ce qui explique l'existence des années extrêmement sèches , La récurrence des années sèches s'accélère et la longévité de la période sèche également , tandis que celle des années humides a évolué inversement dont les figures les montrent clairement.

Nous remarquons aussi que les séquences à tendance sèche et à tendance humide n'apparaissent pas toujours à la même date pour les trois stations. À partir des années 1975, les périodes sèches sont de plus en plus longues et cela pour les trois stations à l'échelle de 6 mois.

Les caractéristiques essentielles des sécheresses hydrologiques (eaux souterraines, débits) et météorologiques (précipitations) sont liées à leur durée et à leur sévérité, la comparaison entre les caractéristiques de la sècheresse métrologique et la sécheresse hydrologique à l'échelle de 3, 6 et 12 mois pour les trois stations de la zone d'étude sont représentées dans les figures suivantes :

Figure III.30: Comparaison entre les caractéristiques de la sècheresse métrologique et la sécheresse hydrologique à l'échelle e de 3 ,6 et 12 mois pour la station de Beni bahdel.

Figure III.31 : Comparaison entre les caractéristiques de la sècheresse métrologique et la sécheresse hydrologique à l'échelle de 6 mois pour la station de Chouly et à l'échelle de 6, 12 mois pour la station d'El Haciabia.

Entre deux sécheresses, la durée et sévérité varient considérablement. On ne peut pas mettre en évidence une tendance bien définie dans le temps entre les deux. En s'appuyant sur les données observées sur les trois stations, il se dégage que la sécheresse hydrologique est plus accentuée que la sécheresse météorologique en sévérité et en durée.

Introduction

Dans ce chapitre nous étudierons les évènements de la sècheresse sur trois stations pluviométriques situées au Nord-Ouest de l'Algérie en termes de la sévérité et de la durée en utilisant les projections futures sous deux types de scénarios d'émission par les différents modèles régionaux CORDEX-Africa à 0,44°x0,44°. Pour ce faire, nous extrairons les données des précipitations mensuelles de chaque station pluviométrique (nombre de trois) à partir des sorties de huit (08) modèles régionaux climatiques CORDEX-Africa pendant la période (1951-2005). La fonction de répartition cumulative empirique (ecdf) de ces données des précipitations sera comparée aux ecdf de précipitations observées sur la même période (1951-2005). Cela permettra de tester la capacité de ces modèles à reproduire les précipitations observées dans la période historique et de choisir le meilleur modèle qu'on va utiliser dans le futur (2005-2100). Pour la période future deux période ont été prise (2005-2060 et 2045-2100) et deux scénarios seront principalement utilisés à savoir le RCP4.5 et le RCP8.5.

VI.1. Méthodologie

L'objectif de cette étude est d'évaluer l'impact du changement climatique sur la sécheresse météorologique en adoptant l'indice de sécheresse : SPI. L'application de l'analyse de la sécheresse sur cet indice, nous permet de caractériser la durée et la sévérité de la sécheresse pour les périodes futures. La procédure consiste à calculer SPI et à identifier les trois caractéristiques de la sécheresse. Les détails de calcul de SPI se trouvent au chapitre I.

VI.2. Comparaison entre l'évolution des précipitations mensuelles observées et simulées pendant la période 1951-2005.

Avant de procéder à l'étude des caractéristiques de la sécheresse dans le futur, on a d'abord comparé le climat (précipitations) observé pendant la période 1951-2005 au moyen de l'ensemble de données observées au niveau des trois stations à celles simulées au moyen des huit (08) modèles climatiques utilisés dans le cadre du programme CORDEX-Africa (tableau I.4) afin de tester leur capacité à reproduire le climat observé et son évolution. Pour cela, la fonction de répartition cumulative empirique (ecdf) des données mensuelles des précipitations des trois stations sera comparée aux données de modèles climatiques sur la période (1951-2005). Les ecdf calculées au moyen des précipitations moyennes mensuelles observées au

niveau des trois stations durant la période 1951-2005 et celles de données des huit (08) modèles climatiques sont présentées dans les figures suivantes :

Figure IV.1 : Comparaison sur la période de référence (1951-2005) des précipitations mensuelles observées de la station de de Beni bahdel (rouge) et les simulations brutes des modèles CanESM2 (bleu).

Figure IV.2 : Comparaison sur la période de référence (1951-2005) des précipitations mensuelles observées de la station de de Beni bahdel et les simulations brutes des modèles -CNRM-CM5 (bleu).

Figure IV .3: Comparaison sur la période de référence (1951-2005) des précipitations mensuelles observées de la station de de Beni bahdel (rouge) et les simulations brutes des -CSIRO-Mk3 (bleu).

Figure IV .4: Comparaison sur la période de référence (1951-2005) des précipitations mensuelles observées de la station de de Beni bahdel (rouge) et les simulations brutes des modèles MIROC5 (bleu).

Figure IV .5 : Comparaison sur la période de référence (1951-2005) des précipitations mensuelles observées de la station de de Beni bahdel (rouge) et les simulations brutes des modèles HadGEM2-ES (bleu).

Figure IV .6 : Comparaison sur la période de référence (1951-2005) des précipitations mensuelles observées de la station de de Beni bahdel (rouge) et les simulations brutes des modèles MPI-ESM-LR (bleu).

Figure IV .7: Comparaison sur la période de référence (1951-2005) des précipitations mensuelles observées de la station de de Beni bahdel (rouge) et les simulations brutes des modèles NorESM1-M (bleu).

Figure IV .8: Comparaison sur la période de référence (1951-2005) des précipitations mensuelles observées de la station de de Beni bahdel (rouge) et les simulations brutes des modèles GFDL-GFDL (bleu).

Figure IV .9: Comparaison sur la période de référence (1951-2005) des précipitations mensuelles observées de la station de Chouly et les simulations brutes des modèles - CanESM2 (bleu).

Figure IV .10: Comparaison sur la période de référence (1951-2005) des précipitations mensuelles observées de la station de Chouly et les simulations brutes des modèles CNRM-CM5 (bleu).

Figure IV .11: Comparaison sur la période de référence (1951-2005) des précipitations mensuelles observées de la station de de Chouly (rouge) et les simulations brutes des modèles CSIRO-Mk3 (bleu).

Figure IV .12: Comparaison sur la période de référence (1951-2005) des précipitations mensuelles observées de la station de de Chouly (rouge) et les simulations brutes des modèles MIROC5 (bleu).

Figure IV .13 : Comparaison sur la période de référence (1951-2005) des précipitations mensuelles observées de la station de de Chouly (rouge) et les simulations brutes des modèles HadGEM2-ES (bleu).

Figure IV .14: Comparaison sur la période de référence (1951-2005) des précipitations mensuelles observées de la station de de Chouly (rouge) et les simulations brutes des modèles MPI-ESM (bleu).

Figure IV .15: Comparaison sur la période de référence (1951-2005) des précipitations mensuelles observées de la station de de Chouly (rouge) et les simulations brutes des NorESM1-M (bleu).

Figure IV .16: Comparaison sur la période de référence (1951-2005) des précipitations mensuelles observées de la station de de Chouly (rouge) et les simulations brutes des modèles GFDL-ESM2M (bleu).

Figure IV .17: Comparaison sur la période de référence (1951-2005) des précipitations mensuelles observées de la station d'EL Haciabia et les simulations brutes des modèles CanESM2 (bleu).

Figure IV .18: Comparaison sur la période de référence (1951-2005) des précipitations mensuelles observées de la station d'EL Haciabia et les simulations brutes des modèles CNRM-CM5 (bleu).

Figure IV .19: Comparaison sur la période de référence (1951-2005) des précipitations mensuelles observées de la station d'EL Haciabia et les simulations brutes des modèles CSIRO-Mk3 (bleu).

Figure IV .20: Comparaison sur la période de référence (1951-2005) des précipitations mensuelles observées de la station d'EL Haciabia et les simulations brutes des modèles MIROC5 (bleu).

Figure IV .21: Comparaison sur la période de référence (1951-2005) des précipitations mensuelles observées de la station d'EL Haciabia et les simulations brutes des modèles HadGEM2-ES (bleu).

Figure IV .22: Comparaison sur la période de référence (1951-2005) des précipitations mensuelles observées de la station d'EL Haciabia et les simulations brutes des modèles MPI-ESM-LR (bleu).

Figure IV .23: Comparaison sur la période de référence (1951-2005) des précipitations mensuelles observées de la station d'EL Haciabia et les simulations brutes des modèles NorESM1-M (bleu).

Figure IV .24: Comparaison sur la période de référence (1951-2005) des précipitations mensuelles observées de la station d'EL Haciabia et les simulations brutes des modèles GFDL-ESM2M (bleu).

Le tableau suivant montre le nombre des mois dont la concordance entre ecdf des observations (stations) et ecdf des modèles climatiques est significatif :

MCR (MCG)	Nombre des mois /12mois			
	Station de Beni	Station de Chouly	Station d'El	
	bahdel		hacaiba	
RCA4 (CanESM2)	9	10	9	
RCA4 (CNRM-CM5)	7	9	6	
RCA4 (IPSL-CM5A)	7	6	5	
RCA4 (MIROC5)	7	8	5	
RCA4 (HadGEM2-ES)	6	9	6	
RCA4 (MPI-ESM-LR)	7	9	5	
RCA4 (NorESM1-M)	6	8	5	
RCA4 (GFDL-ESM2M)	5	7	5	

Tableau IV.1: Nombre des mois capturés par chaque modèle climatique.

A partir des 24 figures et du tableau IV.1, on observe que le modèle climatique RCA4 (CanESM2) parvient à simuler de manière satisfaisante les précipitations moyennes mensuelles (9mois/12 pour les stations de Beni bahdel et d'El hacaiba et (10/12mois) pour la station de Chouly).

VI.3. Résultat

VI.3.1 Evolution des caractéristiques de la sécheresse pendant les périodes 2006-2060 et 2045-2100.

Les tableaux ci-dessous récapitulent les caractéristiques de la sécheresse pendant les périodes futures pour les deux scénarios :

Scénario RCP 4.5

Tableau IV.2 : Les caractéristiques de la sécheresse à l'échelle 3mois pendant les périodesfutures (2006-2100) pour le scénario RCP4.5 pour la station de Beni bahdel.

Année	Durée	sévérité	intensité	Année	Durée	sévérité	intensité
Alliee	(mois)				(mois)		
	Période (2	006-2060)			Période (2	045-2100)	
mai-06	4	3,960	0,990	mai-46	1	0,106	0,106
oct06	1	0,294	0,294	sept46	8	8,904	1,113
mai-07	1	0,617	0,617	sept47	11	13,141	1,195
avr08	1	0,435	0,435	déc49	2	2,434	1,217
juin-08	5	4,977	0,995	mai-49	2	2,787	1,394
mars-10	1	0,464	0,464	déc50	1	1,016	1,016
févr11	3	1,131	0,377	févr50	1	0,649	0,649
août-11	4	2,211	0,553	juil50	3	1,750	0,583
sept12	2	1,156	0,578	janv51	3	1,538	0,513
févr13	4	3,285	0,821	août-51	5	3,764	0,753
août-13	9	3,918	0,435	févr52	7	4,054	0,579
oct14	2	0,794	0,397	juin-53	11	6,483	0,589
avr15	8	3,784	0,473	oct54	6	2,614	0,436
oct16	4	0,863	0,216	mai-55	3	0,929	0,310
août-17	4	1,929	0,482	janv56	8	3,715	0,464
août-18	1	0,079	0,079	févr57	3	1,424	0,475
déc19	1	0,545	0,545	juil57	1	0,350	0,350
févr19	6	4,001	0,667	sept57	4	3,087	0,772
nov19	2	2,236	1,118	mars-58	3	3,764	1,255
avr31	9	4,502	0,500	nov58	3	1,893	0,631
janv23	1	0,040	0,040	sept59	2	1,260	0,630
juil23	6	5,627	0,938	sept60	3	3,924	1,308
août-24	1	0,435	0,435	janv61	11	10,408	0,946
juil25	1	0,494	0,494	juil62	2	1,116	0,558
déc26	2	0,908	0,454	févr63	5	5,036	1,007
mai-26	3	4,123	1,374	août-63	1	0,186	0,186
nov26	1	0,106	0,106	févr64	1	0,053	0,053
janv27	1	0,283	0,283	avr64	3	1,766	0,589
août-27	4	5,279	1,320	août-64	4	4,336	1,084
mars-28	3	2,169	0,723	janv65	8	9,901	1,238
sept28	4	2,600	0,650	févr66	5	6,173	1,235
juin-29	2	1,475	0,738	nov66	4	1,453	0,363
janv30	4	1,810	0,453	juin-67	4	3,208	0,802
juin-30	1	0,350	0,350	déc68	1	0,067	0,067
oct30	8	7,458	0,932	mai-86	4	0,966	0,241
sept31	1	0,322	0,322	nov68	1	0,267	0,267
nov31	1	0,378	0,378	mars-69	1	0,524	0,524
janv32	1	0,425	0,425	nov69	6	6,375	1,063

Année	Durée	sévérité	intensité	Année	Durée	sévérité	intensité
	(mois)	0.06.2060		(mois)			
inil 21	Feriode (2	2 959	0.642	$\begin{array}{c c} & \text{Periode} (2043-2100) \\ \hline \\ \text{sopt} \ 70 & 3 & 1.034 \\ \end{array}$			0.245
Juii51	1	3,030	0,045	sept70	3	1,034	0,545
sept55	1	0,020	0,020	iony 72	2	6.246	0,812
110V35	/	2,195	0,514	$\int \frac{Janv72}{ant}$	1	0,540	0,907
fárm 25	1	0,147	0,147	sept72	4	2,421	0,003
10VI55	1	0,324	0,324	av173	<u> </u>	0.150	0,322
av155	1	1,910	0,132	sept75	1	0,139	0,139
sept55	<u> </u>	1,019	0,000	110V75	/	0,700	1,233
Julli-50		1,115	0,337	Jull74	1 6	0,139	0,139
inal-57	4	0,797	0,199	nov/4	0	3,789	0,032
Juin-38	5	2,131	0,710	aout-75	1	0,020	0,020
mars-39	5	1,752	0,350	janv76	14	15,920	1,137
dec40	5	2,/14	0,543	Juin- / /	8	8,163	1,020
juin-40	4	1,954	0,489	avr/8	6	7,952	1,325
janv41	1	0,742	0,742	dec/9	9	8,066	0,896
ma1-41	1	0,294	0,294	janv80	3	2,064	0,688
dec42	3	2,771	0,924	aout-80	2	1,644	0,822
aout-42	10	5,777	0,578	janv81	3	1,358	0,453
juin-43	1	0,026	0,026	sept81		16,976	1,543
août-43	13	10,244	0,788	nov82	6	6,667	1,111
oct44	16	20,130	1,258	août-83	3	0,940	0,313
mai-46	1	0,106	0,106	déc84	5	4,502	0,900
sept46	8	8,904	1,113	août-84	6	10,871	1,812
sept47	11	13,141	1,195	avr85	2	1,079	0,540
déc49	2	2,434	1,217	sept85	2	0,561	0,280
mai-49	2	2,787	1,394	oct86	1	0,159	0,159
déc50	1	1,016	1,016	déc87	1	1,273	1,273
févr50	1	0,649	0,649	mai-87	6	2,965	0,494
juil50	3	1,750	0,583	juin-88	4	3,272	0,818
janv51	3	1,538	0,513	janv89	2	0,471	0,236
août-51	5	3,764	0,753	mai-89	4	3,309	0,827
févr52	7	4,054	0,579	oct89	1	0,524	0,524
juin-53	11	6,483	0,589	févr90	6	5,025	0,838
oct54	6	2,614	0,436	sept90	14	17,091	1,221
mai-55	3	0,929	0,310	déc92	1	0,425	0,425
janv56	8	3,715	0,464	mars-92	6	6,588	1,098
févr57	3	1,424	0,475	sept93	4	3,591	0,898
juil57	1	0,350	0,350	janv94	6	4,758	0,793

Tableau IV.2 (suite) : Les caractéristiques de la sécheresse à l'échelle 3 mois pendant les périodes futures (2006-2100) pour le scénario RCP4.5 pour la station de Beni bahdel.
Année	Durée (mois)	sévérité	intensité	Année	Durée (mois)	sévérité	intensité	
	Période (2	006-2060)		Période (2045-2100)				
sept57	4	3,087	0,772	nov94	2	0,799	0,399	
mars-58	3	3,764	1,255	mai-95	3	2,866	0,955	
nov58	3	1,893	0,631	nov95	1	0,350	0,350	
sept59	2	1,260	0,630	janv96	3	1,511	0,504	
sept60	3	3,924	1,308	mai-96	1	0,554	0,554	
				juil96	4	5,195	1,299	
				déc97	6	3,235	0,539	
				oct97	7	3,323	0,475	
				mars-99	1	0,132	0,132	
				juil99	4	3,678	0,919	
				déc00	1	2,130	2,130	
				avr00	4	5,392	1,348	

Tableau IV.2 (suite et fin) : Les caractéristiques de la sécheresse à l'échelle 3 mois pendant les périodes futures (2006-2100) pour le scénario RCP4.5 pour la station de Beni bahdel.

Tableau IV.3 : Les caractéristiques de la sécheresse à l'échelle 6 mois pendant les périodes futures (2006-2100) pour le scénario RCP4.5 pour la station de Beni bahdel.

	Durée				Durée			
Année	(mois)	sévérité	intensité	Année	(mois)	sévérité	intensité	
	Période (2	006-2060)		Période (2045-2100)				
mai-06	6	3,696	0,616	mars-46	1	0,311	0,311	
janv07	1	0,040	0,040	août-46	1	0,026	0,026	
août-07	1	0,464	0,464	oct46	8	9,311	1,164	
juin-08	8	6,845	0,856	nov47	10	14,475	1,447	
févr11	1	0,040	0,040	oct48	1	0,350	0,350	
avr11	1	0,067	0,067	janv49	1	0,256	0,256	
juin-11	6	2,826	0,471	févr50	1	0,120	0,120	
janv12	1	0,455	0,455	oct51	11	8,543	0,777	
oct12	1	0,053	0,053	août-53	11	6,306	0,573	
déc13	18	9,268	0,515	nov54	10	3,895	0,390	
juin-15	6	3,519	0,587	mars-55	7	4,383	0,626	
oct17	2	1,447	0,723	mai-57	3	1,210	0,403	
janv18	1	0,368	0,368	sept57	11	7,129	0,648	
févr19	6	3,533	0,589	déc59	1	0,147	0,147	
sept19	3	1,334	0,445	févr59	1	0,147	0,147	
juil21	7	5,028	0,718	déc60	1	0,425	0,425	
août-23	6	5,133	0,855	oct60	17	0,454	0,027	
nov24	1	0,079	0,079	juil62	1	0,239	0,239	

	Durée				Durée		
Année	(mois)	sévérité	intensité	Année	(mois)	sévérité	intensité
	Période (2	006-2060)			Période (2	045-2100)	
mars-55	2	0,053	0,027	oct62	17	0,524	0,031
juin-26	6	2,404	0,401	févr63	7	6,042	0,863
sept27	13	6,165	0,474	avr64	20	18,324	0,916
nov28	2	1,268	0,634	mars-66	8	6,069	0,759
févr30	6	2,114	0,352	janv67	2	1,061	0,530
sept30	18	10,297	0,572	août-67	5	3,542	0,708
oct32	3	2,624	0,875	août-68	1	0,378	0,378
déc34	7	2,315	0,331	nov68	1	0,378	0,378
févr35	2	0,297	0,148	juin-69	1	0,159	0,159
juin-36	1	0,350	0,350	déc70	7	6,344	0,906
sept36	1	0,053	0,053	août-71	1	0,079	0,079
août-37	2	0,514	0,257	févr72	11	9,986	0,908
juil38	1	0,079	0,079	févr73	4	1,415	0,354
sept38	1	0,322	0,322	juil73	1	0,649	0,649
mai-39	3	1,007	0,336	sept73	1	0,267	0,267
févr40	12	6,178	0,515	déc74	8	9,386	1,173
févr42	3	1,283	0,428	oct74	1	0,239	0,239
sept42	6	4,844	0,807	déc75	7	3,399	0,486
sept43	29	40,738	1,405	mars-76	12	19,161	1,597
mars-46	1	0,311	0,311	avr77	2	0,552	0,276
août-46	1	0,026	0,026	sept77	25	28,500	1,140
oct46	8	9,311	1,164	nov79	1	0,239	0,239
nov47	10	14,475	1,447	janv80	3	1,463	0,488
oct48	1	0,350	0,350	mai-81	1	0,464	0,464
janv49	1	0,256	0,256	déc82	17	25,864	1,521
févr50	1	0,120	0,120	nov83	19	17,948	0,945
oct51	11	8,543	0,777	juil85	4	0,853	0,213
août-53	11	6,306	0,573	janv86	1	0,311	0,311
nov54	10	3,895	0,390	oct86	1	0,106	0,106
mars-55	7	4,383	0,626	déc87	1	0,545	0,545
mai-57	3	1,210	0,403	août-87	5	2,751	0,550
sept57	11	7,129	0,648	juil88	3	1,534	0,511
déc59	1	0,147	0,147	avr90	8	5,502	0,688
févr59	1	0,147	0,147	janv90	25	30,038	1,202
déc60	1	0,425	0,425	mars-92	1	0,174	0,174
oct60	17	0,454	0,027	mai-92	4	4,664	1,166
				mars-93	16	12,029	0,752
				juil95	3	1,041	0,347
				févr96	17	13,226	0,778
				déc98	5	2,763	0,553

Tableau IV.3 (suite et fin) : Les caractéristiques de la sécheresse à l'échelle 6 mois pendant les périodes futures (2006-2100) pour le scénario RCP4.5 pour la station de Beni bahdel.

Année	Durée (mois)	sévérité	intensité	Année	Durée (mois)	sévérité	intensité
	Période (2	2006-2060)	1		Période (2	045-2100)	1
nov06	3	0,379	0,126	oct46	28	25,910	0,925
mars-07	2	0,596	0,298	avr49	2	0,133	0,067
août-08	9	3,580	0,398	oct51	1	0,040	0,040
août-11	7	2,776	0,397	mars-52	7	4,929	0,704
mai-12	1	0,311	0,311	févr54	8	4,401	0,550
mars-13	18	11,034	0,613	nov54	3	0,895	0,298
nov14	1	0,106	0,106	mars-55	1	0,515	0,515
déc16	1	0,040	0,040	mai-55	5	2,359	0,472
avr18	2	0,187	0,094	avr56	1	0,339	0,339
juil18	1	0,013	0,013	juin-57	5	1,379	0,276
avr19	10	4,745	0,474	févr57	1	0,013	0,013
janv22	2	1,292	0,646	oct57	17	9,873	0,581
avr26	1	0,013	0,013	févr61	19	17,827	0,938
juin-26	2	0,569	0,284	janv63	9	4,442	0,494
sept26	3	0,373	0,124	nov35	2	0,279	0,139
janv27	2	0,214	0,107	sept64	31	31,458	1,015
oct27	1	0,067	0,067	juil67	6	2,664	0,444
févr28	12	5,415	0,451	déc70	14	7,194	0,514
juin-29	1	0,228	0,228	févr11	45	30,989	0,689
avr30	2	0,160	0,080	mars-76	1	0,067	0,067
août-30	20	15,977	0,799	mai-76	47	62,298	1,325
août-32	5	1,020	0,204	mai-81	1	0,067	0,067
juin-34	2	0,743	0,371	févr82	15	23,567	1,571
sept34	1	0,013	0,013	mai-84	19	20,490	1,078
juin-36	1	0,093	0,093	janv86	1	0,256	0,256
avr39	2	0,214	0,107	mars-86	1	0,093	0,093
janv40	4	0,699	0,175	juin-86	1	0,067	0,067
juil40	7	4,168	0,595	déc87	1	0,120	0,120
mars-41	1	0,174	0,174	févr88	1	0,067	0,067
mai-41	2	0,268	0,134	avr88	1	0,147	0,147
août-42	7	2,765	0,395	juil88	1	0,147	0,147
mai-43	5	0,845	0,169	mai-89	3	0,307	0,102
déc44	33	49,561	1,502	sept89	36	45,973	1,277
oct46	28	25,910	0,925	févr93	2	0,436	0,218
avr49	2	0,133	0,067	sept93	12	11,813	0,984
oct51	1	0,040	0,040	oct94	3	0,732	0,244
mars-52	7	4,929	0,704	janv96	28	18,556	0,663

Tableau IV.4: Les caractéristiques de la sécheresse à l'échelle 12mois pendant les périodesfutures (2006-2100) pour le scénario RCP4.5 pour la station de Beni bahdel

Année	Durée (mois)	sévérité	intensité	Année	Durée (mois)	sévérité	intensité	
	Période (2	.006-2060)		Période (2045-2100)				
févr54	8	4,401	0,550	oct99	14	8,133	0,581	
nov54	3	0,895	0,298					
mars-55	1	0,515	0,515					
mai-55	5	2,359	0,472					
avr56	1	0,339	0,339					
juin-57	5	1,379	0,276					
févr57	1	0,013	0,013					
oct57	17	9,873	0,581					

Tableau IV.4 (suite et fin) : Les caractéristiques de la sécheresse à l'échelle 12 mois pendant les périodes futures (2006-2100) pour le scénario RCP4.5 pour la station de Beni bahdel.

Tableau IV .5 : Les caractéristiques de la sécheresse à l'échelle 6 mois pendant les périodes futures (2006-2100) pour le scénario RCP4.5 pour la station de Chouly.

Année	Durée	sévérité	intensité	Année	Durée	sévérité	intensité		
	(mo1s)				(mois)				
	Période (2	006-2060)	1	Période (2045-2100)					
août-06	3	1,672	0,557	mars-46	14,319	0,955			
mai-07	2	0,318	0,159	nov47	10	11,214	1,121		
août-07	2	2,335	1,167	oct48	4	3,961	0,990		
juil08	1	0,350	0,350	janv49	3	0,159	0,053		
sept08	1	0,294	0,294	déc50	3	1,012	0,337		
févr11	1	0,013	0,013	sept50	7	8,056	1,151		
avr11	4	1,172	0,293	oct51	11	7,190	0,654		
févr13	9	6,009	0,668	sept53	11	8,575	0,780		
déc14	2	0,696	0,348	sept54	1	0,524	0,524		
avr14	2	0,253	0,126	nov54	10	6,459	0,646		
août-14	1	0,350	0,350	mars-56	6	3,176	0,529		
nov14	1	0,294	0,294	nov56	1	0,106	0,106		
oct15	1	1,568	1,568	févr57	6	1,740	0,290		
oct16	4	1,838	0,459	oct57	2	1,765	0,883		
sept17	5	4,530	0,906	mars-58	1	0,093	0,093		
sept18	2	1,045	0,522	juin-58	4	3,278	0,819		
déc19	1	0,339	0,339	nov58	3	0,834	0,278		
févr19	8	6,571	0,821	nov60	1	0,822	0,822		
nov19	1	0,026	0,026	janv61	10	7,756	0,776		
juil21	2	0,948	0,474	oct62	1	0,554	0,554		
oct21	4	2,600	0,650	déc63	9	10,649	1,183		

Annéo	Durée	sáváritá	intancitá	Δημόρ	Durée	sáváritá	intancitá
Alliee	(mois)	sevenie	intensite	Annee	(mois)	severne	intensite
	Période (2	006-2060)			Période (2	045-2100)	1
sept23	4	3,234	0,808	mars-64	20	17,125	0,856
oct24	2	2,049	1,024	févr66	13	10,392	0,799
août-26	1	0,494	0,494	oct67	2	0,842	0,421
oct26	2	0,894	0,447	août-68	1	0,898	0,898
janv27	1	0,311	0,311	juin-69	3	0,725	0,242
sept27	1	0,132	0,132	déc70	12	13,855	1,155
nov27	1	1,221	1,221	janv71	1	0,147	0,147
févr28	3	0,280	0,093	août-71	2	0,802	0,401
juin-28	2	1,150	0,575	janv72	7	4,204	0,601
déc29	1	0,814	0,814	sept72	1	0,106	0,106
févr30	35	25,412	0,726	juil73	27	28,305	1,048
déc34	9	3,953	0,439	févr76	17	20,764	1,221
oct34	1	0,053	0,053	nov77	29	31,915	1,101
févr35	1	0,040	0,040	janv81	1	0,013	0,013
nov35	1	0,494	0,494	oct81	13	17,092	1,315
août-37	2	0,512	0,256	déc83	7	5,950	0,850
oct38	3	0,331	0,110	nov83	10	7,846	0,785
févr39	8	2,969	0,371	nov84	4	2,816	0,704
janv40	6	2,725	0,454	avr85	1	0,093	0,093
sept40	1	0,350	0,350	sept85	1	0,750	0,750
déc41	2	0,662	0,331	déc87	1	0,742	0,742
janv42	2	0,241	0,120	août-87	5	2,063	0,413
oct42	2	0,795	0,397	mai-89	3	0,132	0,044
sept43	1	0,026	0,026	sept89	2	2,562	1,281
déc44	26	32,620	1,255	févr90	6	3,045	0,508
mars-46	15	14,319	0,955	sept90	1	0,682	0,682
nov47	10	11,214	1,121	déc91	24	33,551	1,398
oct48	4	3,961	0,990	janv93	4	2,552	0,638
janv49	3	0,159	0,053	juin-93	1	0,494	0,494
déc50	3	1,012	0,337	oct93	1	0,938	0,938
sept50	7	8,056	1,151	mai-94	7	3,670	0,524
oct51	11	7,190	0,654	juil95	26	17,621	0,678
sept53	11	8,575	0,780	déc98	9	4,785	0,532
sept54	1	0,524	0,524	déc00	1	1,161	1,161
nov54	10	6,459	0,646	avr00	2	0,333	0,166
mars-56	6	3,176	0,529	juil00	4	3,632	0,908
nov56	1	0,106	0,106	-			

Tableau IV .5 (suite) : Les caractéristiques de la sécheresse à l'échelle 6 mois pendant les périodes futures (2006-2100) pour le scénario RCP4.5 pour la station de Chouly.

Tableau IV .5 (suite et fin) : Les caractéristiques de la sécheresse à l'échelle 6 mois pendant
les périodes futures (2006-2100) pour le scénario RCP4.5 pour la station de Chouly.

Année	Durée (mois)	sévérité	intensité	Année	Durée (mois)	sévérité	intensité
	Période (2	006-2060)			Période (2	045-2100)	
févr57	6	1,740	0,290				
oct57	2	1,765	0,883				
mars-58	1	0,093	0,093				
juin-58	4	3,278	0,819				
nov58	3	0,834	0,278				
nov60	1	0,822	0,822				

Tableau IV.6 Les caractéristiques de la sécheresse à l'échelle 6 mois pendant les périodes futures (2006-2100) pour le scénario RCP4.5 pour la station d'El Haciabia.

Année	Durée (mois)	sévérité	intensité	Année	Durée (mois)	sévérité	intensité		
	Période (2	006-2060)	I	Période (2045-2100)					
juin-06	1	0,079	0,079	mars-46	1	0,147 0,147			
août-06	3	2,330	0,777	oct46	8	8,759	1,095		
avr07	9	8,952	0,995	déc48	8	7,545	0,943		
juin-08	5	5,114	1,023	déc49	2	0,743	0,371		
févr11	8	3,527	0,441	mai-49	1	0,267	0,267		
avr12	2	0,308	0,154	août-49	1	0,715	0,715		
nov12	1	0,132	0,132	sept50	1	0,079	0,079		
févr13	9	5,572	0,619	déc51	2	0,321	0,161		
déc14	6	2,903	0,484	oct51	11	12,260	1,115		
août-15	3	1,071	0,357	août-53	14	8,253	0,589		
oct16	1	0,822	0,822	nov54	1	0,026	0,026		
janv17	1	0,201	0,201	mars-55	1	0,067	0,067		
sept17	3	1,377	0,459	juil55	1	0,106	0,106		
août-18	3	1,484	0,495	janv56	19	14,819	0,780		
févr19	10	7,666	0,767	févr58	6	3,696	0,616		
juil21	2	0,879	0,440	nov58	1	0,053	0,053		
oct21	4	0,806	0,201	févr19	1	0,368	0,368		
oct23	4	2,065	0,516	déc60	1	0,013	0,013		
mars-26	2	0,160	0,080	déc61	11	11,189	1,017		
juin-26	6	2,512	0,419	déc63	7	3,312	0,473		
août-27	12	10,107	0,842	mai-64	1	0,132	0,132		
sept28	1	0,026	0,026	juil64	16	15,648	0,978		
nov28	2	0,673	0,337	févr66	8	4,483	0,560		

Annáo	Durée	sáváritá	intonsitó	Annáo	Durée	sáváritá	intonsitá
Allilee	(mois)	sevente	intensite	Annee	(mois)	severne	mensie
	Période (2	006-2060)		P	ériode (20	45-2100)	-
févr30	24	23,183	0,966	déc67	4	2,420	0,605
oct32	3	1,444	0,481	août-67	5	1,286	0,257
janv34	1	0,013	0,013	juil68	2	0,562	0,281
mars-34	1	0,228	0,228	juin-69	1	0,350	0,350
juin-34	1	0,053	0,053	août-69	1	0,186	0,186
juil35	5	1,445	0,289	nov69	9	8,008	0,890
janv36	2	0,540	0,270	sept70	2	0,767	0,383
juin-36	1	0,132	0,132	févr72	1	0,283	0,283
août-37	2	0,954	0,477	avr72	9	7,263	0,807
nov38	1	0,494	0,494	févr73	1	0,120	0,120
mars-39	7	5,478	0,783	mai-73	1	0,106	0,106
nov39	15	7,791	0,519	juil73	3	0,893	0,298
oct42	2	0,966	0,483	nov73	16	14,265	0,892
janv43	2	0,214	0,107	avr75	1	0,147	0,147
sept43	29	30,534	1,053	juin-75	1	0,026	0,026
mars-46	1	0,147	0,147	mars-76	1	0,013	0,013
oct46	8	8,759	1,095	juin-76	42	44,828	1,067
déc48	8	7,545	0,943	janv80	2	1,047	0,523
déc49	2	0,743	0,371	févr81	4	1,608	0,402
mai-49	1	0,267	0,267	déc82	18	23,298	1,294
août-49	1	0,715	0,715	nov83	8	7,412	0,926
sept50	1	0,079	0,079	nov84	13	8,879	0,683
déc51	2	0,321	0,161	janv86	1	0,147	0,147
oct51	11	12,260	1,115	déc87	1	0,256	0,256
août-53	14	8,253	0,589	avr88	1	0,040	0,040
nov54	1	0,026	0,026	juin-88	5	3,386	0,677
mars-55	1	0,067	0,067	juin-89	32	41,795	1,306
juil55	1	0,106	0,106	avr92	5	3,184	0,637
janv56	19	14,819	0,780	févr93	6	2,540	0,423
févr58	6	3,696	0,616	sept93	11	17,580	1,598
nov58	1	0,053	0,053	juil95	7	4,170	0,596
févr59	1	0,368	0,368	mars-96	3	0,320	0,107
déc60	1	0,013	0,013	août-96	1	0,682	0,682
				déc97	8	8,113	1,014
				déc98	5	3,553	0,711
				févr99	2	0,348	0,174
				mai-99	1	0,079	0,079

Tableau V.6 (suite et fin): Les caractéristiques de la sécheresse à l'échelle 6 mois pendant les périodes futures (2006-2100) pour le scénario RCP4.5 pour la station d'El Haciabia.

Année	Durée (mois)	sévérité	intensité	Année	Durée (mois)	sévérité	intensité	
	Période (2	2006-2060)		Période (2045-2100)				
févr07	21	9,554	0,455	oct46	28	15,867	0,567	
déc09	1	0,067	0,067	juin-49	1	0,067	0,067	
janv10	1	1,924	1,924	févr50	1	0,311	0,311	
juil11	3	0,915	0,305	mars-52	11	9,218	0,838	
oct12	2	0,415	0,207	mai-55	1	0,013	0,013	
mars-13	16	8,393	0,525	juil55	1	0,013	0,013	
févr19	12	9,955	0,830	janv56	38	21,677	0,570	
janv22	1	0,484	0,484	mars-61	10	10,300	1,030	
avr26	1	0,013	0,013	mars-63	7	1,180	0,169	
juin-26	2	0,484	0,242	nov63	2	0,173	0,086	
sept26	2	0,241	0,120	août-64	32	24,080	0,752	
févr27	1	0,120	0,120	juin-67	6	1,919	0,320	
sept27	2	0,053	0,027	déc70	14	11,027	0,788	
déc28	13	8,963	0,689	févr72	1	0,147	0,147	
févr30	26	25,676	0,988	mai-72	17	8,014	0,471	
nov35	1	0,186	0,186	nov73	20	19,595	0,980	
janv36	2	0,832	0,416	août-75	1	0,067	0,067	
avr39	22	17,026	0,774	juin-76	48	52,817	1,100	
mars-52	28	35,248	1,259	avr81	2	0,377	0,188	
oct46	28	15,867	0,567	nov81	51	43,454	0,852	
juin-49	1	0,067	0,067	juil88	4	0,670	0,168	
févr50	1	0,311	0,311	janv89	1	0,013	0,013	
mars-52	11	9,218	0,838	oct89	35	46,521	1,329	
févr54	14	6,401	0,457	janv93	24	26,824	1,118	
mai-55	1	0,013	0,013	juil95	2	0,107	0,053	
juil55	1	0,013	0,013	déc96	6	2,643	0,440	
janv56	38	21,677	0,570	août-96	3	0,363	0,121	
				févr97	15	12,612	0,841	
				oct99	14	12,422	0,887	

Tableau IV.7: Les caractéristiques de la sécheresse à l'échelle 12 mois pendant les périodes futures (2006-2100) pour le scénario RCP4.5 pour la station d'El Haciabia.

≻ RCP 8.5

Tableau IV.8: Les caractéristiques de la sécheresse à l'échelle 3 mois pendant les périodes futures (2006-2100) pour le scénario RCP8.5 pour la station de Beni bahdel.

Année	Durée (mois)	sévérité	intensité	Année	Durée (mois)	sévérité	intensité
	Période (2	2006-2060)			Période (2	045-2100)	
sept06	3	3,149	1,050	avr45	19	14,623	0,770
janv07	3	2,378	0,793	févr47	1	1,409	1,409
juil07	1	0,494	0,494	juin-47	2	0,682	0,341
mars-08	8	4,923	0,615	déc48	1	1,273	1,273
juil09	1	0,159	0,159	mai-48	1	0,212	0,212
mai-10	4	1,713	0,428	sept48	1	0,682	0,682
juil11	1	0,132	0,132	avr49	6	5,809	0,968
sept11	1	0,079	0,079	nov49	2	0,728	0,364
févr12	2	0,346	0,173	juin-30	1	0,106	0,106
oct12	4	2,358	0,590	août-50	1	0,132	0,132
avr13	3	1,943	0,648	janv51	5	3,311	0,662
déc14	8	7,274	0,909	déc52	3	1,351	0,450
nov14	2	0,795	0,397	sept52	3	1,048	0,349
juin-15	4	1,949	0,487	mars-53	3	1,442	0,481
oct16	3	2,469	0,823	août-53	4	2,925	0,731
nov17	4	2,602	0,650	févr54	4	2,617	0,654
oct18	3	2,160	0,720	sept54	1	0,212	0,212
janv71	8	9,138	1,142	déc55	1	0,040	0,040
déc21	1	0,147	0,147	avr55	6	4,357	0,726
juil21	8	7,882	0,985	janv56	3	3,359	1,120
juin-22	6	3,450	0,575	juin-56	6	5,710	0,952
juin-23	9	5,665	0,629	juin-57	5	2,147	0,429
juil24	1	0,026	0,026	janv58	1	0,608	0,608
sept24	3	2,210	0,737	juin-58	1	0,267	0,267
mars-25	6	4,114	0,686	oct58	3	0,962	0,321
mars-26	6	2,141	0,357	sept59	2	1,844	0,922
avr27	2	1,661	0,831	nov60	1	0,617	0,617
sept27	7	4,781	0,683	janv61	2	0,387	0,194
juil28	1	0,267	0,267	mai-61	8	5,439	0,680
oct28	1	0,026	0,026	juin-62	3	3,502	1,167
févr29	3	1,970	0,657	nov62	5	2,646	0,529
août-29	3	2,860	0,953	oct63	7	5,245	0,749
juin-30	1	0,239	0,239	août-64	1	0,524	0,524
oct30	9	6,601	0,733	oct64	1	0,053	0,053

Année	Durée (mois)	sévérité	intensité	Année	Durée (mois)	sévérité	intensité
	Dárioda (?	$\frac{1}{2006}$			Dárioda (?	0.45, 2100	
fávr -33	1	0.132	0.132	mars_65	1 c110uc (2	7 180	1 107
iuin-33	8	6 777	0,132	déc -66	6	4 860	0.810
$\int \frac{1}{34}$	1	1 117	1 117	iany -67	5	4,000 1 3/19	0,870
nov -35	3	1,117	0.360	sent -67	1	0 322	0,370
avr - 36	5	5 768	1 1 5 4	avr -68	1	0,322	0,322
avr. 30	3	2 733	0.911	avi. 00 2001-68	3	1 753	0,400
avr38	3	2,730	0.913	iuin-69	6	6.607	1,101
oct38	3	3.698	1.233	mars-70	1	1,117	1,117
mars-39	1	0.132	0.132	mai-70	1	0.026	0.026
nov39	1	0.079	0.079	iuil70	2	0.669	0.335
ianv40	7	7.269	1.038	déc71	2	2.635	1.318
nov40	6	5,035	0,839	juin-71	5	3,075	0,615
mars-42	2	0,371	0,186	sept72	3	4,706	1,569
juin-42	4	3,126	0,782	janv73	12	11,886	0,990
sept43	1	0,026	0,026	févr74	4	3,156	0,789
nov43	1	0,186	0,186	déc75	12	10,612	0,884
janv44	1	0,067	0,067	mars-76	6	5,532	0,922
avr44	5	3,635	0,727	janv77	21	12,580	0,599
oct44	1	0,212	0,212	févr79	1	0,053	0,053
avr45	19	14,623	0,770	avr79	4	1,523	0,381
févr47	1	1,409	1,409	nov79	3	1,193	0,398
juin-47	2	0,682	0,341	mai-80	1	0,106	0,106
déc48	1	1,273	1,273	août-80	1	0,585	0,585
mai-48	1	0,212	0,212	déc81	2	0,160	0,080
sept48	1	0,682	0,682	mai-81	1	0,053	0,053
avr49	6	5,809	0,968	août-81	6	4,616	0,769
nov49	2	0,728	0,364	août-82	2	0,514	0,257
juin-30	1	0,106	0,106	déc83	6	4,462	0,744
août-50	1	0,132	0,132	sept83	3	0,974	0,325
janv51	5	3,311	0,662	mars-58	9	12,339	1,371
déc52	3	1,351	0,450	févr85	3	1,550	0,517
sept52	3	1,048	0,349	sept85	19	22,079	1,162
mars-53	3	1,442	0,481	oct87	1	0,186	0,186
août-53	4	2,925	0,731	janv88	14	13,572	0,969
févr54	4	2,617	0,654	juin-89	4	4,205	1,051
sept54	1	0,212	0,212	nov89	18	23,987	1,333
déc55	1	0,040	0,040	oct91	4	3,723	0,931

Tableau IV.8 (suite) : Les caractéristiques de la sécheresse à l'échelle 3 mois pendant les périodes futures (2006-2100) pour le scénario RCP8.5 pour la station de Beni bahdel.

Année	Durée (mois)	sévérité	intensité	Année	Durée (mois)	sévérité	intensité	
	Période (2	006-2060)		Période (2045-2100)				
avr55	6	4,357	0,726	mai-92	3	1,991	0,664	
janv56	3	3,359	1,120	déc93	3	3,423	1,141	
juin-56	6	5,710	0,952	août-93	10	13,084	1,308	
juin-57	5	2,147	0,429	déc95	6	5,913	0,985	
janv58	1	0,608	0,608	déc96	8	11,756	1,470	
juin-58	1	0,267	0,267	nov96	11	6,143	0,558	
oct58	3	0,962	0,321	nov97	6	9,422	1,570	
sept59	2	1,844	0,922	août-98	8	7,550	0,944	
nov60	1	0,617	0,617	mai-99	2	0,238	0,119	
				déc00	4	4,220	1,055	
				mai-00	1	0,132	0,132	
				sept00	1	0,106	0,106	

Tableau IV.8 (suite et fin) : Les caractéristiques de la sécheresse à l'échelle 3 mois pendant les périodes futures (2006-2100) pour le scénario RCP8.5 pour la station de Beni bahdel.

Tableau IV.9: Les caractéristiques de la sécheresse à l'échelle 6 mois pendant les périodes futures (2006-2100) pour le scénario RCP8.5 pour la station de Beni bahdel.

Année	Durée (mois)	sévérité	intensité	Année	Durée (mois)	sévérité	intensité	
	Période (2	006-2060)	1	Période (2045-2100)				
nov06	9	4,975	0,553	juin-45	21	18,950	0,902	
oct07	1	0,378	0,378	mai-47	1	0,554	0,554	
juin-08	6	5,283	0,881	juil47	1	0,406	0,406	
juil10	3	0,533	0,178	juin-49	7	8,032	1,147	
sept11	2	0,132	0,066	janv51	5	2,578	0,516	
févr12	1	0,093	0,093	avr52	1	0,228	0,228	
oct12	4	1,536	0,384	sept52	4	1,336	0,334	
mars-13	6	1,845	0,307	févr53	18	6,587	0,366	
janv14	8	6,574	0,822	déc55	1	0,339	0,339	
août-15	2	0,561	0,280	mars-55	21	16,887	0,804	
oct16	3	1,350	0,450	juil57	1	0,053	0,053	
déc18	4	1,243	0,311	sept57	5	3,721	0,744	
oct18	1	0,079	0,079	nov58	1	0,267	0,267	
déc19	1	0,067	0,067	déc60	1	0,455	0,455	
févr19	1	0,339	0,339	févr61	1	0,608	0,608	
avr20	5	6,559	1,312	mai-61	8	7,484	0,936	
oct20	1	0,106	0,106	sept62	8	5,088	0,636	
août-21	16	12,053	0,753	août-64	1	0,159	0,159	
juin-23	10	7,322	0,732	mai-65	8	6,827	0,853	

Année	Durée (mois)	sévérité	intensité	Année	Durée (mois)	sévérité	intensité	
	Période (2	006-2060)		Période (2045-2100)				
oct25	2	0,834	0,417	mars-66	4	3,419	0,855	
janv25	9	5,428	0,603	janv67	1	0,040	0,040	
mai-26	5	1,767	0,353	mars-67	7	4,087	0,584	
déc28	4	3,961	0,990	août-68	6	1,805	0,301	
juin-28	1	0,322	0,322	juil69	9	6,642	0,738	
oct28	1	0,435	0,435	juin-70	2	0,852	0,426	
févr29	3	0,854	0,285	oct70	1	0,132	0,132	
nov29	3	1,410	0,470	août-71	6	3,311	0,552	
janv31	6	6,283	1,047	sept72	1	0,079	0,079	
juin-33	9	9,319	1,035	nov72	19	21,327	1,122	
janv35	5	1,622	0,324	mars-75	11	13,325	1,211	
juil35	1	0,079	0,079	avr76	8	5,594	0,699	
juin-36	4	3,342	0,835	mars-77	21	16,451	0,783	
oct37	4	0,860	0,215	avr79	2	0,225	0,113	
mars-38	3	0,563	0,188	juil79	1	0,554	0,554	
juil38	9	3,242	0,360	sept79	1	0,159	0,159	
févr40	17	15,053	0,885	août-80	1	0,524	0,524	
juin-42	7	4,612	0,659	déc81	1	0,120	0,120	
janv44	1	0,013	0,013	août-81	6	5,300	0,883	
avr44	8	4,184	0,523	déc83	7	5,125	0,732	
juin-45	21	18,950	0,902	janv84	17	16,477	0,969	
mai-47	1	0,554	0,554	déc88	17	26,849	1,579	
juil47	1	0,406	0,406	janv88	42	51,691	1,231	
juin-49	7	8,032	1,147	nov91	3	1,970	0,657	
janv51	5	2,578	0,516	août-92	1	0,406	0,406	
avr52	1	0,228	0,228	févr93	1	0,013	0,013	
sept52	4	1,336	0,334	sept93	9	13,561	1,507	
févr53	18	6,587	0,366	févr95	7	4,435	0,634	
déc55	1	0,339	0,339	févr96	8	12,710	1,589	

Tableau IV.9 (suite) : Les caractéristiques de la sécheresse à l'échelle 6 mois pendant les périodes futures (2006-2100) pour le scénario RCP8.5 pour la station de Beni bahdel.

Année	Durée (mois)	sévérité	intensité	Année	Durée (mois)	sévérité	intensité
	Période (2	.006-2060)		Période (2045-2100)			
mars-55	21	16,887	0,804	févr97	29	26,410	0,911
juil57	1	0,053	0,053	janv00	5	3,881	0,776
sept57	5	3,721	0,744	juil00	1	0,186	0,186
nov58	1	0,267	0,267				#DIV/0!
déc60	1	0,455	0,455				#DIV/0!

Tableau IV.9 (suite et fin): Les caractéristiques de la sécheresse à l'échelle 6 mois pendant les périodes futures (2006-2100) pour le scénario RCP8.5 pour la station de Beni bahdel.

Tableau IV.10 Les caractéristiques de la sécheresse à l'échelle 12 mois pendant les périodesfutures (2006-2100) pour le scénario RCP8.5 pour la station de Beni bahdel.

Année	Durée (mois)	sévérité	intensité	Année	Durée (mois)	sévérité	intensité	
	Période (2	.006-2060)		Période (2045-2100)				
févr07	2	0,348	0,174	févr45	2	0,457	0,228	
mai-07	8	3,402	0,425	nov45	21	25,306	1,205	
avr08	1	0,120	0,120	nov47	2	0,145	0,073	
juin-08	10	3,758	0,376	nov49	7	4,595	0,656	
déc10	2	-3,327	-1,663	janv51	5	1,401	0,280	
mars-12	1	0,067	0,067	sept52	3	0,863	0,288	
nov12	3	0,507	0,169	mars-53	19	10,410	0,548	
avr13	21	11,729	0,559	nov54	2	0,821	0,411	
oct20	4	2,391	0,598	mars-55	24	19,688	0,820	
sept21	15	12,439	0,829	avr57	1	0,093	0,093	
déc24	8	5,119	0,640	déc58	5	1,961	0,392	
sept24	2	0,187	0,094	juin-58	1	0,174	0,174	
févr25	9	5,191	0,577	juin-60	1	0,067	0,067	
déc26	1	0,093	0,093	juil61	8	6,163	0,770	
janv28	2	0,402	0,201	juin-62	1	0,040	0,040	
juin-28	5	2,212	0,442	janv63	5	3,425	0,685	
févr29	1	0,013	0,013	mars-64	1	0,201	0,201	
avr29	1	0,640	0,640	mai-64	7	4,691	0,670	

Année	Durée (mois)	sévérité	intensité	Année	Durée (mois)	sévérité	intensité	
	Période (2	006-2060)		Période (2045-2100)				
avr29	1	0,640	0,640	mai-64	7	4,691	0,670	
avr31	1	0,013	0,013	mai-65	4	1,320	0,330	
juil31	3	1,175	0,392	oct65	9	8,159	0,907	
sept33	7	6,279	0,897	sept66	2	0,408	0,204	
mai-35	1	0,120	0,120	janv67	1	0,067	0,067	
juil35	2	0,406	0,203	mai-67	1	0,228	0,228	
avr38	12	5,040	0,420	juil67	6	1,981	0,330	
juil39	1	0,093	0,093	janv69	2	0,349	0,175	
avr40	15	15,335	1,022	juin-69	15	8,240	0,549	
août-41	1	0,120	0,120	déc71	1	0,425	0,425	
sept42	6	1,599	0,266	avr71	1	0,040	0,040	
avr44	9	3,859	0,429	août-71	4	1,935	0,484	
févr45	2	0,457	0,228	janv72	4	1,057	0,264	
nov45	21	25,306	1,205	déc73	18	24,240	1,347	
nov47	2	0,145	0,073	juil74	2	0,297	0,148	
nov49	7	4,595	0,656	juin-75	49	46,237	0,944	
janv51	5	1,401	0,280	oct79	1	0,067	0,067	
sept52	3	0,863	0,288	déc80	2	0,728	0,364	
mars-53	19	10,410	0,548	mars-80	1	0,093	0,093	
nov54	2	0,821	0,411	août-80	1	0,040	0,040	
mars-55	24	19,688	0,820	févr82	3	0,907	0,302	
avr57	1	0,093	0,093	mars-83	1	0,147	0,147	
déc58	5	1,961	0,392	mai-83	7	3,144	0,449	
juin-58	1	0,174	0,174	janv84	1	0,228	0,228	
juin-60	1	0,067	0,067	mars-85	19	20,993	1,105	
				nov85	19	28,953	1,524	
				mai-88	45	69,945	1,554	
				mai-92	1	0,013	0,013	
				févr93	1	0,425	0,425	
				sept93	12	10,657	0,888	
				juin-95	6	1,447	0,241	
				janv96	58	51,682	0,891	

Tableau IV.10 (suite et fin): Les caractéristiques de la sécheresse à l'échelle 12 mois pendant les périodes futures (2006-2100) pour le scénario RCP8.5 pour la station de Beni bahdel.

Année	Durée (mois)	sévérité	intensité	Année	Durée (mois)	sévérité	intensité
	Période (2	2006-2060)			Période (2	045-2100)	
janv07	7	3,4120	0,4874	juin-26	3	1,5087	0,5029
juil08	5	1,9906	0,3981	oct45	13	7,6711	0,5901
sept10	2	0,9087	0,4543	déc47	8	6,3047	0,7881
sept11	1	0,0527	0,0527	oct47	1	0,2666	0,2666
oct12	13	10,5927	0,8148	déc48	1	0,0133	0,0133
déc14	9	6,7590	0,7510	juil49	7	3,8769	0,5538
déc15	1	0,1470	0,1470	août-50	1	0,0264	0,0264
nov16	2	1,3547	0,6774	janv51	6	2,8535	0,4756
mars-17	1	0,3963	0,3963	déc52	1	0,4253	0,4253
nov17	5	3,6039	0,7208	févr52	1	0,6735	0,6735
oct18	1	0,5237	0,5237	avr52	1	0,0933	0,0933
déc19	4	1,6495	0,4124	juil52	1	0,0527	0,0527
févr20	7	7,3665	1,0524	sept52	3	3,9858	1,3286
déc21	1	0,2283	0,2283	janv53	7	2,3504	0,3358
oct21	1	0,4937	0,4937	sept53	2	2,2499	1,1250
janv22	6	1,7635	0,2939	mai-54	4	2,5288	0,6322
nov22	1	0,3777	0,3777	mars-55	7	5,1030	0,7290
juin-23	1	0,4350	0,4350	nov55	9	10,6059	1,1784
sept23	6	5,4425	0,9071	sept56	3	1,8867	0,6289
mars-25	9	5,9345	0,6594	sept57	9	3,9030	0,4337
juin-26	4	1,2708	0,3177	août-58	6	2,5469	0,4245
août-27	1	0,1855	0,1855	oct59	1	0,3496	0,3496
janv28	3	1,7771	0,5924	oct60	1	0,0264	0,0264
mai-28	2	0,4805	0,2402	sept61	1	0,2394	0,2394
avr29	5	3,1284	0,6257	nov61	2	2,3697	1,1849
janv31	5	3,0139	0,6028	sept62	8	5,0583	0,6323
août-32	1	0,0791	0,0791	nov63	12	12,8540	1,0712
déc33	16	4,9912	0,3120	mai-65	16	13,9477	0,8717
févr35	7	2,6759	0,3823	janv67	8	7,0255	0,8782

Tableau IV.11: Les caractéristiques de la sécheresse à l'échelle 6 mois pendant les périodesfutures (2006-2060) pour le scénario RCP8.5 pour la station de Chouly.

Année	Durée (mois)	sévérité	intensité	Année	Durée (mois)	sévérité	intensité
	Dárioda (?	006.2060)			Dériode (?	0.45(2100)	
iuin-36	1 c110uc (2	4 7499	0 7916	iuil -68	1	0 1321	0.1321
oct - 37	3	0.8253	0,7751	sent -68	1	0.0264	0.0264
févr -38	7	2,9499	0.4214	sept. 60	3	3 8699	1 2900
févr -40	17	22,1866	1 3051	mars-70	1	0.0666	0.0666
iuil42	1	0.0791	0.0791	déc71	2	0.7552	0.3776
oct42	3	1.8546	0.6182	août-71	4	4.0082	1.0021
avr44	7	3,1067	0,4438	janv72	1	0,0400	0,0400
juin-26	3	1,5087	0,5029	sept72	1	0,1056	0,1056
oct45	13	7,6711	0,5901	nov72	1	0,4062	0,4062
déc47	8	6,3047	0,7881	janv73	12	12,4810	1,0401
oct47	1	0,2666	0,2666	févr74	8	4,1915	0,5239
déc48	1	0,0133	0,0133	nov74	13	8,4010	0,6462
juil49	7	3,8769	0,5538	mars-76	7	6,8798	0,9828
août-50	1	0,0264	0,0264	avr77	10	8,1248	0,8125
janv51	6	2,8535	0,4756	mai-78	1	0,1056	0,1056
déc52	1	0,4253	0,4253	sept78	4	2,4861	0,6215
févr52	1	0,6735	0,6735	févr79	1	0,3677	0,3677
avr52	1	0,0933	0,0933	juil79	1	0,1056	0,1056
juil52	1	0,0527	0,0527	sept42	5	2,9802	0,5960
sept52	3	3,9858	1,3286	août-80	1	0,2394	0,2394
janv53	7	2,3504	0,3358	oct80	4	0,8326	0,2082
sept53	2	2,2499	1,1250	août-81	5	5,0892	1,0178
mai-54	4	2,5288	0,6322	févr83	12	10,3168	0,8597
mars-55	7	5,1030	0,7290	avr84	8	5,2465	0,6558
nov55	9	10,6059	1,1784	janv85	9	2,4679	0,2742
sept56	3	1,8867	0,6289	nov85	20	33,6650	1,6832
sept57	9	3,9030	0,4337	janv88	14	15,2151	1,0868
août-58	6	2,5469	0,4245	avr89	1	0,0133	0,0133
oct59	1	0,3496	0,3496	nov89	1	0,8217	0,8217
oct60	1	0,0264	0,0264	févr90	19	27,0683	1,4246
				janv92	1	0,4844	0,4844
				août-92	3	2,5380	0,8460
				déc93	3	2,8494	0,9498
				sept93	1	0,0791	0,0791
				nov93	10	13,7681	1,3768
				déc95	51	59,6804	1,1702
				nov99	7	6,2655	0,8951

Tableau IV.11 (suite et fin) : Les caractéristiques de la sécheresse à l'échelle 6 mois pendant les périodes futures (2006-2060) pour le scénario RCP8.5 pour la station de Chouly.

Année	Durée (mois)	sévérité	intensité	Année	Durée (mois)	sévérité	intensité	
	Période (2	.006-2060)	I	Période (2045-2100)				
déc07	4	2,352	0,588	juin-45	3	0,702	0,234	
mai-07	3	0,865	0,288	oct45	13	12,854	0,989	
juin-08	6	3,669	0,611	mai-47	4	1,268	0,317	
sept10	2	0,573	0,286	oct47	1	0,106	0,106	
oct12	23	18,380	0,799	juin-49	7	5,057	0,722	
sept15	1	0,186	0,186	févr50	1	0,013	0,013	
oct16	3	1,632	0,544	févr51	4	2,073	0,518	
mars-17	1	0,228	0,228	févr52	1	0,396	0,396	
oct17	6	3,969	0,662	avr52	1	0,283	0,283	
oct18	3	1,305	0,435	juil52	1	0,106	0,106	
mars-20	6	7,874	1,312	sept52	15	12,354	0,824	
oct30	1	0,159	0,159	janv54	7	2,327	0,332	
juil21	10	8,138	0,814	mars-55	7	4,093	0,585	
juin-22	1	0,026	0,026	nov55	13	15,467	1,190	
août-22	4	1,512	0,378	sept57	6	3,892	0,649	
juin-23	1	0,106	0,106	nov58	3	1,044	0,348	
août-23	8	7,498	0,937	déc60	1	0,040	0,040	
févr25	9	5,738	0,638	févr61	1	0,120	0,120	
avr26	6	2,077	0,346	avr61	9	6,803	0,756	
mai-27	1	0,026	0,026	août-62	9	7,862	0,874	
déc28	4	4,505	1,126	nov63	8	5,798	0,725	
juin-28	1	0,267	0,267	août-64	3	0,649	0,216	
oct28	1	0,494	0,494	mai-65	16	14,506	0,907	
avr29	1	0,311	0,311	janv67	8	6,150	0,769	
nov29	3	1,302	0,434	juil68	3	0,883	0,294	
janv31	6	6,115	1,019	nov38	2	0,443	0,222	
mai-33	10	7,737	0,774	août-69	8	6,453	0,807	
janv35	7	1,157	0,165	janv72	1	0,067	0,067	
juil36	2	1,815	0,907	sept72	21	21,391	1,019	

Tableau IV.12: Les caractéristiques de la sécheresse à l'échelle 6 mois pendant les périodesfutures (2006-2100) pour le scénario RCP8.5 pour la station d'El Haciabia.

Année	Durée (mois)	sévérité	intensité	Année	Durée (mois)	sévérité	intensité	
	Période (2	2006-2060)		Période (2045-2100)				
nov37	2	0,468	0,234	juil74	1	0,350	0,350	
mars-38	9	2,624	0,292	mars-75	45	26,095	0,580	
mars-39	1	0,120	0,120	avr77	20	11,285	0,564	
févr40	16	13,180	0,824	juil79	1	0,026	0,026	
juin-42	7	5,305	0,758	sept79	1	0,212	0,212	
sept43	2	0,159	0,079	déc80	2	0,854	0,427	
avr44	1	0,201	0,201	déc81	1	0,256	0,256	
juin-44	6	2,476	0,413	août-81	6	6,387	1,064	
juin-45	3	0,702	0,234	févr83	10	6,021	0,602	
oct45	13	12,854	0,989	janv84	1	0,147	0,147	
mai-47	4	1,268	0,317	avr84	14	9,899	0,707	
oct47	1	0,106	0,106	déc86	18	30,091	1,672	
juin-49	7	5,057	0,722	janv88	42	45,847	1,092	
févr50	1	0,013	0,013	nov91	3	0,294	0,098	
févr51	4	2,073	0,518	août-92	2	0,656	0,328	
févr52	1	0,396	0,396	déc93	3	2,068	0,689	
avr52	1	0,283	0,283	sept93	9	11,333	1,259	
juil52	1	0,106	0,106	déc95	9	8,333	0,926	
sept52	15	12,354	0,824	nov95	1	0,212	0,212	
janv54	7	2,327	0,332	janv96	9	13,605	1,512	
mars-55	7	4,093	0,585	janv97	29	32,509	1,121	
nov55	13	15,467	1,190	déc00	6	3,384	0,564	
sept57	6	3,892	0,649					
nov58	3	1,044	0,348					
déc60	1	0,040	0,040					

Tableau IV.12 (suite et fin) : Les caractéristiques de la sécheresse à l'échelle 6 mois pendant les périodes futures (2006-2100) pour le scénario RCP8.5 pour la station d'El Haciabia.

Année	Durée (mois)	sévérité	intensité	Année	Durée (mois)	sévérité	intensité	
Période (2006-2060)				Période (2045-2100)				
mai-07	4	2,057	0,514	févr45	2	0,187	0,093	
nov07	1	0,026	0,026	nov45	22	17,853	0,811	
sept08	2	0,294	0,147	nov47	2	0,717	0,359	
déc09	1	0,368	0,368	avr48	1	0,256	0,256	
févr09	1	0,174	0,174	nov49	7	3,616	0,517	
nov12	3	0,292	0,097	févr51	4	1,482	0,371	
mars-13	22	22,709	1,032	août-52	26	19,317	0,743	
juil20	9	5,525	0,614	déc55	1	0,201	0,201	
sept21	15	9,280	0,619	juin-55	23	20,131	0,875	
oct23	9	3,725	0,414	janv58	4	1,657	0,414	
avr25	15	6,961	0,464	juin-61	8	5,185	0,648	
sept26	2	0,403	0,201	janv64	1	0,013	0,013	
janv28	3	0,750	0,250	mars-64	8	5,375	0,672	
juin-28	5	2,759	0,552	juil65	1	0,040	0,040	
avr29	1	0,640	0,640	nov65	26	23,826	0,916	
déc30	2	0,160	0,080	janv69	1	0,201	0,201	
mars-31	7	1,978	0,283	juil69	1	0,067	0,067	
juin-33	10	5,492	0,549	oct69	2	0,633	0,316	
avr35	2	0,268	0,134	janv70	8	5,240	0,655	
juil35	2	0,241	0,121	déc71	1	0,311	0,311	
avr38	12	4,819	0,402	oct72	1	0,040	0,040	
mai-40	14	13,113	0,937	déc73	22	27,234	1,238	
août-41	1	0,013	0,013	janv75	1	0,228	0,228	
sept42	7	2,128	0,304	juin-75	45	35,656	0,792	
avr44	8	2,187	0,273	avr79	2	0,213	0,107	
févr45	2	0,187	0,093	oct79	1	0,013	0,013	
nov45	22	17,853	0,811	janv80	1	0,545	0,545	
nov47	2	0,717	0,359	mars-80	1	0,425	0,425	
avr48	1	0,256	0,256	févr82	2	0,080	0,040	
nov49	7	3,616	0,517	mai-83	26	20,305	0,781	

Tableau IV.13 : Les caractéristiques de la sécheresse à l'échelle 12 mois pendant les périodesfutures (2006-2100) pour le scénario RCP8.5 pour la station d'El Haciabia.

Année	Durée (mois)	sévérité	intensité	Année	Durée (mois)	sévérité	intensité
Période (2006-2060)				Période (2045-2100)			
févr51	4	1,482	0,371	nov85	23	29,459	1,281
août-52	26	19,317	0,743	mai-88	44	57,364	1,304
déc55	1	0,201	0,201	sept92	1	0,040	0,040
juin-55	23	20,131	0,875	janv93	2	1,102	0,551
janv58	4	1,657	0,414	oct93	2	0,359	0,180
				févr94	11	7,193	0,654
				févr95	59	68,188	1,156
				févr00	2	0,652	0,326
				mai-00	6	1,815	0,303

Tableau IV.13 (suite et fin) : Les caractéristiques de la sécheresse à l'échelle 12 mois pendant les périodes futures (2006-2100) pour le scénario RCP8.5 pour la station d'El Haciabia.

Sur la base de l'analyse des quatre caractéristiques de la sécheresse aux différentes échelles du temps dans les périodes futures pour le deux scénarios futures :

- Période (2006-2060)
- Scénario RCP 4.5

À l'échelle du trois mois le sous bassin de Beni bahdel avait connu 80 épisodes de sécheresse, avec une durée maximale de 16 mois, sévérité maximale de 20.13 et une intensité maximale de 1.39, et 54 épisodes de sécheresse, avec une durée maximale de 29 mois, sévérité maximale de 40.73 et une intensité maximale de 1.44 à l'échelle du six mois, à l'échelle de 12 mois elle avait connu 45 épisodes de sécheresse, avec une durée maximale de 33 mois, sévérité maximale de 49.56 et une intensité maximale de 1.50.

Pour la station de Chouly, à l'échelle de 6 mois, on recense 63 événements secs pour une durée maximale de 35 mois, sévérité minimale de 32.62 et une intensité maximale de 1.57.

À l'échelle du 6 mois la station d'El Haciabia avait connu 56 épisodes de sécheresse, avec une durée maximale de 29 mois, sévérité maximale de 30.53 et une intensité maximale de 1.11 et 26 épisodes de sécheresse, avec une durée maximale de 38 mois, sévérité maximale de 35.24 et une intensité maximale de 1.94 à l'échelle du 12 mois.

Donc au cours de cette période , L'analyse de la durée des épisodes de sécheresse montre que celle-ci varie d'une échelle de temps à une autre et d'une station a une autre, à l'échelle du six mois, la station de Chouly a connu la plus longue épisode de sécheresse avec 63 de séquences sèches consécutives. Cependant, la station de Beni bahdel contienne la plus longue durée de sécheresse.

Scénario RCP 8.5

À l'échelle du trois mois le sous bassin de Beni bahdel avait connu 71épisodes de sécheresse, avec une durée maximale de 19 mois, sévérité maximale de 14.62 et une intensité maximale de 1.41, et 53 épisodes de sécheresse, avec une durée maximale de 21 mois, sévérité maximale de 18.95 et une intensité maximale de 1.31 à l'échelle du six mois, à l'échelle de 12 mois elle avait connu 42 épisodes de sécheresse, avec une durée maximale de 24 mois, sévérité maximale de 25.30 et une intensité maximale de 1.21.

Pour la station de Chouly, à l'échelle de 6 mois, on recense 59 événements secs pour une durée maximale de 17 mois, sévérité minimale de 22.18 et une intensité maximale de 1.33.

À l'échelle du 6 mois la station d'El Haciabia avait connu 54 épisodes de sécheresse, avec une durée maximale de 23 mois, sévérité maximale de 18.38 et une intensité maximale de 1.32 et 35 épisodes de sécheresse, avec une durée maximale de 26 mois, sévérité maximale de 22.07 et une intensité maximale de 1.03 à l'échelle du 12 mois.

Donc au cours de cette période, L'analyse de la durée des épisodes de sécheresse montre que celle-ci varie d'une échelle de temps à une autre et d'une station a une autre, à l'échelle du six mois, la station de Chouly a connu la plus longue épisode de sécheresse avec 59 de séquences sèches consécutives. Cependant, la station d'El Haciabia contienne la plus longue durée de sécheresse.

- Période (2060-2100)
- Scénario RCP 4.5

À l'échelle du trois mois le sous bassin de Beni bahdel avait connu 87 épisodes de sécheresse, avec une durée maximale de 14 mois, sévérité maximale de 17.09 et une intensité maximale de 2.13, et 60 épisodes de sécheresse, avec une durée maximale de 25 mois, sévérité maximale de 30.04 et une intensité maximale de 1.6 à l'échelle du six mois, à l'échelle de 12 mois elle avait connu 38

épisodes de sécheresse, avec une durée maximale de 47 mois, sévérité maximale de 62.49 et une intensité maximale de 1.57.

Pour la station de Chouly, à l'échelle de 6 mois, on recense 57 événements secs pour une durée maximale de 29 mois, sévérité minimale de 33.55 et une intensité maximale de 1.39.

À l'échelle du 6 mois la station d'El Haciabia avait connu 60 épisodes de sécheresse, avec une durée maximale de 42 mois, sévérité maximale de 44.83 et une intensité maximale de 1.60 et 28 épisodes de sécheresse, avec une durée maximale de 51 mois, sévérité maximale de 52.83 et une intensité maximale de 1.33 à l'échelle du 12 mois.

Donc au cours de cette période, L'analyse de la durée des épisodes de sécheresse montre que celle-ci varie d'une échelle de temps à une autre et d'une station a une autre, à l'échelle du six mois, la station d'El Haciabia et Beni bahdel ont connu la plus longue épisode de sécheresse avec 60 de séquences sèches consécutives. Cependant, la station d'El Hacaiba contienne la plus longue durée de sécheresse.

Scénario RCP 8.5

À l'échelle du trois mois le sous bassin de Beni bahdel avait connu 83 épisodes de sécheresse, avec une durée maximale de 21 mois, sévérité maximale de 23.99 et une intensité maximale de 1.55, et 51 épisodes de sécheresse, avec une durée maximale de 42 mois, sévérité maximale de 21.69 et une intensité maximale de 1.59 à l'échelle du six mois, à l'échelle de 12 mois elle avait connu 49 épisodes de sécheresse, avec une durée maximale de 58 mois, sévérité maximale de 69.94 et une intensité maximale de 1.55.

Pour la station de Chouly, à l'échelle de 6 mois, on recense 66 événements secs pour une durée maximale de 51 mois, sévérité minimale de 59.68 t une intensité maximale de 39.86.

À l'échelle du 6 mois la station d'El Haciabia avait connu 51 épisodes de sécheresse, avec une durée maximale de 45 mois, sévérité maximale de 45.85 et une intensité maximale de 1.67 et 39 épisodes de sécheresse, avec une durée maximale de 59 mois, sévérité maximale de 68.18 et une intensité maximale de 1.304 à l'échelle du 12 mois.

Donc au cours cette période, L'analyse de la durée des épisodes de sécheresse montre que celle-ci varie d'une échelle de temps à une autre et d'une station a une autre, à l'échelle du six mois, la station de Chouly a connu la plus longue épisode de sécheresse avec 66 de séquences sèches consécutives. Et elle contienne la plus longue durée de sécheresse.

Il est à signaler que pour chacune des stations et chacune des échelles étudiées, que seuls les résultats du modèle précédemment retenu RCA4 (CanESM2) seront présentés.

Les caractéristiques de la sécheresse (sévérité-durée) dans les stations étudiées pour les deux périodes futures 2006-2060 et 2045-2100 obtenues par les deux scénarios sont présentées dans les figures IV.25, IV.26, IV.27 et IV.28.

Les caractéristiques de la sécheresse simulées par le modèle retenu ont montré une augmentation en nombre et en durée d'évènement de sécheresse dans toutes les échelles étudiées. En effet, le modèle RCA4 (CanESM2) prédit, pour les périodes 2006-2060 et 2045-2100, avec les deux scenarios RCP4.5 et RCP8.5, une stabilisation dans la sévérité de la sécheresse par rapport à la période 1951-2005 dans les stations étudiées. L'augmentation de la durée et le nombre d'évènement de la sécheresse a augmenté en passant du scénario RCP4.5 au scénario RCP8.5 et de la période 2006-2060 à la période 2045-2100.

Figure IV.25 :Les caractéristiques de la sècheresse dans les bassins de Beni Bahdel, Chouly et d'El Haciabia à l'échelle de 3 , 6 et 12 mois pendant la période 2006-2060 avec le scenario RCP4.5 (RCA4 (CanESM2).

Figure IV.26 : Les caractéristiques de la sècheresse dans les bassins de Beni bahdel, Chouly et d'El Haciabia à l'échelle de 3 ,6 et 12 mois pendant la période 2045-2100 avec le scenario RCP4.5 (RCA4 (CanESM2).

Figure IV.27 : Les caractéristiques de la sècheresse dans les bassins de Beni bahdel, Chouly et d'El Haciabia à l'échelle de 3 ,6 et 12 mois pendant la période 2006-2060 avec le scenario RCP8.5 (RCA4 (CanESM2).

Figure IV.28. Les caractéristiques de la sècheresse dans les bassins de Beni bahdel, Chouly et d'El Haciabia à l'échelle de 3 ,6 et 12 mois pendant la période 2045-2100 avec le scenario RCP8.5 (RCA4 (CanESM2).

Conclusion

Au terme de ce travail, mené sur les deux principaux bassins versant de l'Ouest algérien (Tafna – Macta) et aux nuances climatiques variées, nous avons essayé d'analyser le risque de la sécheresse dans le contexte du changement climatique.

Dans cette étude deux indices relatifs à la sécheresse sont proposés et calculés à savoir l'indice SPI comme un indice climatologique et l'indice SDI comme un indice hydrologique,

Afin de vérifier la possibilité de représenter la sècheresse hydrologique par la sécheresse métrologique.

L'étude a été portée sur l'analyse conjointe des caractéristiques de la sécheresse à savoir : la durée, la gravité et l'intensité de la sécheresse hydrologique définie par l'indice SDI.

Selon les valeurs mensuelles de ce dernier dans les trois stations étudié à différentes échelles, on a constaté qu'à l'échelle de 6 mois :

La plus sévère sécheresse a été observée durant le mois d'août dans la station de Beni Bahdel, au mois de mai dans la station de Chouly et au mois de septembre dans la station d'El hacaiba.

Le mois de février, mai, septembre et octobre sont considérés comme mois secs par rapport à la moyenne de l'SDI et les autres comme humide dans la station d'El hacaiba. Pour les autres stations nous considérons tous les mois humide.

Sur la base de l'analyse des quatre caractéristiques de la sécheresse hydrologique aux différentes échelles du temps au cours de 1940-2009 pour les trois stations :

À l'échelle du trois mois le sous bassin de Beni bahdel avait connu 35 épisodes de sécheresse au cours de 1940-2009, avec une durée maximale de 59 mois, sévérité maximale de 74.95 et une intensité maximale de 1.71, et 16 épisodes de sécheresse, avec une durée maximale de 73 mois, sévérité maximale de 91.46 et une intensité maximale de 1.29 à l'échelle du six mois, à l'échelle de 12 mois il avait connu 8 épisodes de sécheresse, avec une durée maximale de 148 mois, sévérité maximale de 200.71 et une intensité maximale de 1.36.

Pour la station de Chouly, on recense 13 événements secs pour une durée maximale de 147, sévérité minimale de 236 et une intensité maximale de 1.61 mois à moyen terme.

À l'échelle du 6 mois la maximale de 44.76 et une intensité maximale de 1.86, et 12 épisodes de sécheresse, avec une durée maximale de 55 mois, sévérité maximale de 59.66 et une intensité maximale de 1.52 à l'échelle du 12mois.

Conclusion

Dont au cours des 86 années étudies, L'analyse de la durée des épisodes de sécheresse montre que celle-ci varie d'une échelle de temps à une autre et d'une station a une autre, la station d'El Hacaiba a connu la plus long période de sécheresse avec 23 mois de séquences sèches consécutives à l'échelle du six mois.

Les principaux résultats d'estimation de la probabilité conditionnelle et la période de retour de la sécheresse hydrologique à partir de ces caractéristiques montrent qu'aussi bien t-copule ou la copule du Gumbel sont adaptés à l'analyse de la sécheresse en Algérie. Cela est dû essentiellement à la queue de la copule de Gumbel et t-copule qui sont habituellement considérée comme appropriée pour estimer les événements extrêmes. Ceci est également soutenu par la proximité des contours de copule bivariate marginale avec des données observées.

Avec la copule bivariée de Gumbel sur durée-sévérité, nous avons conduit la conditionnelle distribution de la sévérité de la sécheresse compte tenu de la durée de la sécheresse pour les événements historiques et futurs. Cela, nous a permet de construire deux abaques aux différentes échelles pour déterminer la période de retour de la durée et de la sévérité de la sècheresse pour les stations de Beni bahdel, Chouly et El hacaiba.

Les résultats d'analyser de l'indice standardisé des précipitations (SPI) sur les bassins du Tafna et Macta dès 1941 jusqu'à 2010 montrent l'existence de nombreuses séquences sèches tout le long de la période analysée, et qu'on a une dominance des années sèches bien remarquable, on note aussi que l'indice SPI entre cette période peut atteindre (-2.409), ce qui explique l'existence des années extrêmement sèches , la récurrence des années sèches s'accélère et la longévité de la période sèche également , tandis que celle des années humides a évolué inversement.

Nous remarquons aussi que les séquences à tendance sèche et à tendance humide n'apparaissent pas toujours à la même date pour les trois stations. À partir des années 1975, les périodes sèches sont de plus en plus longues et cela pour les trois stations à l'échelle de 6 mois.

Le résultat de l'indice SPI a été comparé aux résultats de l'SDI, Entre deux sécheresses, la durée et sévérité varient considérablement. On ne peut pas mettre en évidence une tendance bien définie dans le temps entre les deux. En s'appuyant sur les données observées sur les trois stations, il se dégage que la sécheresse hydrologique est plus accentuée que la sécheresse météorologique en sévérité et en durée

Conclusion

L'étude des évènements de la sècheresse en termes de la sévérité et de la durée en utilisant les projections futures sous deux types de scénarios d'émission à savoir le RCP4.5 et le RCP8.5 par les différents modèles régionaux CORDEX-Africa à 0,44°x0,44°. Nous a permet de constaté que le modèle climatique RCA4 (CanESM2) parvient à simuler de manière satisfaisante les précipitations moyennes mensuelles sur la période de référence (1951-2005).

Les caractéristiques de la sécheresse simulées par le modèle retenu ont montré une augmentation en nombre et en durée d'évènement de sécheresse dans toutes les échelles étudiées. En effet, le modèle RCA4 (CanESM2) prédit, pour les périodes 2006-2060 et 2045-2100, avec les deux scenarios RCP4.5 et RCP8.5, une stabilisation dans la sévérité de la sécheresse par rapport à la période 1951-2005 dans les stations étudiées. L'augmentation de la durée et le nombre d'évènement de la sécheresse a augmenté en passant du scénario RCP4.5 au scénario RCP8.5 et de la période 2006-2060 à la période 2045-2100.

Abramowitz M, Stegun IA (1964). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables.

A

Armel, K. (2010). Structure de dépendance des générateurs de scénarios économiques-Modélisation et simulation. Mémoire d'Actuariat.

Armel, K., Planchet, F., & Kamega, A. (2011). Quelle structure de dépendance pour un générateur de scénarios économiques en assurance? Impact sur le besoin de capital. Bulletin Français d'Actuariat, 11(22).

В

Barbe, P., Genest, C., Ghoudi, K. et Rémillard, B. (1996). On Kendall'sprocess. Journal of MultivariateAnalysis, 58:197–229.

Bădiliță, C. (2005). Métamorphoses de l'antichrist chez les pères de l'église (Vol. 116).

Editions Beauchesne

Beltrando G. & Chemery L. 1995. Dictionnaire du climat, Collection Références Larousse,

Paris, 344.

BOUANANI, A. (2004). Hydrologie, transport solide et modélisation étude de quelques sous bassins de la Tafna (NW–Algérie) (Doctoral dissertation, Université de Tlemcen). BELKACEM, Z. (2015). Contribution à l'étude du cortège floristique de l'espèce Juniperus oxycedrus (Cupréssacées) dans la région de Tlemcen (Doctoral dissertation).

Bigot, S., & Rome, S. (2012). Les climats régionaux: observation et modélisation.

Béliveau, J. (2006). Analyse fréquentielle multi variée de la pointe, du volume et de la durée de la crue (Doctoral dissertation, Université Laval).

Boken V.K. 2005. Agricultural drought and its monitoring and prediction: some concepts. Boken, V.K., Cracknell A.P. & Heathcote R.L. (éditeurs): Monitoring and Predicting Agricultural Drought: A Global Study, Oxford-New-York: Oxford University Press, 3-10

С

Cadoux, D., & Loizeau, J. M. (2004). "Copules et dépendances: application pratique à la détermination du besoin en fonds propres d" un assureur non vie". Bulletin Français d'Actuariat, 6(12), 173-208.

D

Daki, Y., Zahour, G., Lachgar, R., & El Hadi, H. (2016). Caractérisation De La Sécheresse Climatique Du Bassin Versant D'oum Er Rbia (Maroc) Par Le Biais De L'indice De Précipitation Standardisé (SPI). European Scientific Journal, 12(14).

Durante F. & Sempi C., Copula Theory: An Introduction., Dans :Jaworski, P., Durante, F., Haerdle, W., Rychlik, T. :(eds). Copula Theory and Its Applications, Proceedings of the Workshop, Warsaw 25-26 sept 2009, Springer, Dordrecht (2010).

E
Edwards DC, McKee TB (1997) Characteristics of 20th century drought in the United States at multiple time scales.
En Climat De Type Soudanais: Cas De L'extrême Nord-Ouest De La Cote D'ivoire. Larhyss Journal Issn 1112-3680, (18).
EL OUISSI.A. (2004). impact des changements climatiques sur les ressources hydriques et la diversité biologique. Memoir de magister, C.U.Mascara.
F
Fermanian, JD. (2005). Goodness-of-fit tests for copulas. Journal of Multivariate Analysis, 95:119–152.
G
Gafsi, M. (2007). Exploitations agricoles familiales en Afrique de l'Ouest et du Centre: enjeux, caractéristiques et éléments de gestion. Editions Quae.
Gao, L., & Zhang, Y. (2016). Spatio-temporal variation of hydrological drought under climate change during the period 1960–2013 in the Hexi Corridor, China. Journal of Arid Land, 8(2), 157-171.
Genest, C. et MacKay, R. J. (1986). Copules archimédiennes et familles de
Lois bidimensionnelles dont les marges sont données. La revue canadienne de statistique 14:145–159.
Guttman N.B. 1999. Accepting the Standardized Precipitation Index: a calculation algorithm, Journal of the American Water Resources Association, 35 (2), 311–322.
Н
Hayes M.J., Svoboda M.D., Wilhite D.A. & Vanyarkho O.V. 1999. Monitoring the 1996 drought using the Standardized Precipitation Index, Bulletin of the American Meteorological Society, 25 (1), 3367–3370.
Hallouz, F., Meddi, M., & Mahé, G. (2012). Relation débit liquide-transport de matières en
suspension dans le bassin de l'Oued Mina en Algérie.
I
IPCC, 2007: Climate change 2007: The physical Science basis. Contribution of working
group I to the Fourth Assesssment, Solomon S., D. Qin, M. Manning, Z. Chen, M. Marquis,
K.B. Averyt, M. Tignor and H.L. Miller (eds.). Canmbridge University Press, Cambridge,
United Kingdom and New York, NY, USA, 996.
IPCC, 2013 : Climate Change 2013. Publication du Volume 1 du 5e Rapport d'évaluation
du GIEC, Cambridge Univ. Press, Cambridge, U.K.
K

Khaldi, A. (2005). Impacts de la sécheresse sur le régime des écoulements souterrains dans les massifs calcaires de l'Ouest Algérien" Monts de Tlemcen-Saida. These de doctorat, université d'Oran, Algérie.

Klein, T. (2009). Comparaison des sécheresses estivales de 1976 et 2003 en Europe occidentale à l'aide d'indices climatiques. Bulletin de la Société géographique de Liège, 53, 75-86.

L

Lloyd-Hughes B, Saunders MA (2002) A drought climatology for Europe. Int J Climatol 22:1571–1592. doi: 10.1002/joc.846

Layelmam, M. (2008). Calcul des indicateurs de sécheresse à partir des images NOAA/AVHRR.

Μ

MCKee T.B., Doesken N.J. & Kleist J. 1993. The relationship of drought frequency and duration to time scales, Proceedings of the 8th Conference on Applied Climatology, 17-22 January 1993, Anaheim, California, 179–184.

Mishra AK, Desai VR (2005) Drought forecasting using stochastic models. Stoch Environ Res Risk Assess 19:326–339. doi: 10.1007/s00477-005-0238-4.

Meddi, M., Hubert, P., & Bendjoudi, H. (2002, Octobre). Evolution du régime

pluviométrique du Nord-Ouest de l'Algérie. In Actes du colloque international sur l'eau

dans le Bassin Méditerranéen : Ressources et développement Durable, Tunisie.

Meddi, M., & Hubert, P. I. E. R. R. E. (2003). Impact de la modification du régime pluviométrique sur les ressources en eau du Nord-Ouest de l'Algérie. IAHS publication, 229-235.

Meddi, H., & Meddi, M. (2009). Etude De La Persistance De La Sècheresse Au Niveau De Sept Plaines Algériennes Par Utilisation Des Chaines De Markov (1930-2003).

Meddi, M. M., Assani, A. A., & Meddi, H. (2010). Temporal variability of annual rainfall

in the Macta and Tafna catchments, Northwestern Algeria. Water Resources

Management, 24(14), 3817-3833.

MEDDI, H., & MEDDI, M. (2013). Etude de la persistance de la sécheresse au niveau de sept plaines algériennes par utilisation des chaînes de Markov (1930-2003).

Ν

Ρ

Ntale H.K. & Gan T.W. 2003. Drought indices and their application to East Africa, International Journal of Climatology, 23 (11), 1335–1357

Palmer W.C. 1965. Meteorological drought. U.S. weather bureau research paper 45, Washington DC, 58.

Pita López, M. F. (2001). Un nouvel indice de sécheresse pour les domaines

méditerranéens: application au bassin du Guadalquivir (sud-ouest de l'Espagne). In 13e colloque de l'Association internationale de climatologie, Nice, 6-9 septembre 2000, 225-233. Association Internationale de Climatologie.

S

Sklar, A. (1959). Fonctions de répartition à n dimensions et leurs marges. Publications de l'Institut de statistique de l'Université de Paris, 8:229–231.

Szczypta, C. (2012). Hydrologie spatiale pour le suivi des sécheresses du bassin méditerranéen (Doctoral dissertation, INPT).

SORO, G., ANOUMAN, D., BI, T. G., SROHOROU, B., & SAVANE, I. (2014).

Caractérisation Des Séquences De Sècheresse Météorologique A Diverses Echelles De

Sung, J. H., & Chung, E. S. (2014). Development of streamflow drought severity–duration– frequency curves using the threshold level method. Hydrology and Earth System Sciences, Sibou Tarik, 2005 : Caractérisation hydro-climatique et agronomique de la sécheresse dans

le bassin d'Oum-er-rabia. Institut Agronomique et Vétérinaire Hassn II- Mémoire de 3^{ème}