REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE

MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE ECOLE NATIONALE SUPERIEURE D'HYDRAULIQUE -ARBAOUI Abdellah-

DEPARTEMENT AMENAGEMENT ET GENIE HYDRAULIQUE

MEMOIRE DE FIN D'ETUDES

En vue de l'obtention du diplôme d'Ingénieur d'Etat en Hydraulique

THEME DU PROJET

ETUDE DU COMPORTEMENT DE L'EVACUATEUR DE CRUE DU BARRAGE DE BAREK : UTILISATION D'UNE APPROCHE DETERMINISTE POUR L'ESTIMATION DU DEBIT DE CRUE (W.BLIDA)

<u>PRESENTE PAR :</u> DJELLOUL FATEH

Devant les membres du jury

Noms et Prénoms

M^r M. HASSANE

M^{me} A. ADDOU

M^r I. ZAIBAK

M^r A.ZEROUAL

M^{me}N. SAIL

Grade

M.C.B

M.A.A

M.A.A

M.A.B

M.A.A

Qualité

Président Examinatrice Examinatrice Examinateur Promoteur

septembre 2014

Septembre 2014

Remerciements

Avant tout, Je remercie Dieu le tout puissant, pour m'avoir donné la santé, le courage et la volonté d'étudier et pour m'avoir permis de réaliser ce modeste travail dans les meilleures conditions

Je tiens à remercier vivement tous ceux qui m'ont apporté leur soutien pour l'élaboration de ce Projet de fin d'étude, particulièrement :

A mon promoteur \mathcal{M}^r : ZEROUAL Ayoub de m'avoir enseigné tout le long de ma formation.

Aux membres du jury qui auront à juger et à apprécier ce travail.

A tout le corps enseignant, l'administration et le personnel de L'ENSH. A tous ceux qui ont contribué de près ou de Loin à ma formation.

Je tiens aussi à remercier mes amis qui m'ont aidé pendant la réalisation du projet.

DJELLOUL FATEH

DEDICACE

Je dédie ce travail :

Avant tout à mes chers parents AKILA et BAHRI, Qui m'ont soutenu durant toutes ces années de formation.

A Mes frères ; OKBA, NASRO, SAID, et LAKHDAR. Ma sœur IMANE.

> A toute la famille DJELLOUL et BERRAMDANE.

A tous mes amis sans exception et d'une façon spéciale a : LARBI, Adel , KhALIFA, KHALIL, FAYCEL, SOFIANE, CHAMSO, et tous les étudient de L'ENSH

DJELLOUL FATEH

ملخص:

ان الحاجة الى معرفة قيم كمية الندفق على مستوى الاحواض التي لا تتوفر على محطات هيدرومترية يثير العديد من المخاوف في مشاريع انجاز السدود وذلك لعدم القدرة على تحديد القيمة الذروة للتدفق وهذا ما يجعل تصميم السد عرضة للعديد من المشاكل المتعلقة بالأساليب التقريبية المستعملة في دراسة تصميمه

ولذلك يهدف عملنا هذا الى استخدام منهج حتمي لتحديد القيمة الذروة للتصريف المستعملة في تصميم مفيض سد براك الواقع على وادي زروالة في ولاية البليدة وسوف نقوم بالدراسة التقنية والهيدرولوجية لحوض السد والتي تمكننا من حساب القيمة الذروة للتدفق وسنقوم بدراسة نوعين مختلفين للمفيض واختيار الأقل تكلفة

Résumé :

Le besoin de connaître les débits sur des sites non jaugés correspond souvent à des préoccupations dans bon nombre de projets de conception des barrages, on ne dispose pas d'une station hydrométrique et d'enregistrements des débits permettant d'évaluer des crues de projet. Le dimensionnement d'ouvrages devient alors sujet aux incertitudes liées aux méthodes d'approximation. Le présent travail vise à utiliser une approche déterministe pour déterminer le débit de dimensionnement de l'évacuateur de crue du barrage BAREK sur Oued ZEROUALA (Wilaya de Blida). Pour ce faire, il fallait définir l'ensemble des paramètres, géomorphologiques, et climatiques du bassin versant et du sous bassin du barrage, suivi d'une étude géotechnique et hydrologique du site du barrage. Ceci nous a permis de dégager le débit de dimensionnement. Deux variantes de l'évacuateur ont été étudiées puis nous avons opté pour la variante la moins chère.

Abstract :

The need for the determination of discharge on ungauged sites to concerns in many design dams projects, it does not have a hydrometric station and recording discharge to assess flood project. The design of dams becomes subject of uncertainties related to approximation methods. The present work aims to use a deterministic approach to determine the design discharge of the spillway of the BAREK dam on Zerouala Wadi (Blida Wilaya). To do this, it was necessary to define all the parameters, geomorphologic and climatic of the basin and dams watershed, followed by a geotechnical and hydrological study of the dam site. This has identified the discharge design. Two variants of the spillway were studied at the end the cheapest variant was chosen.

Introduction général 1
Chapitre I : Présentation de la zone d'étude
Introduction 2
I.1 description général de l'aménagement 2
I.2 Synthèse de l'étude géologique et géotechnique 2
I.2.1 Géologie régional 2
I.2.2 Séismicité régional
I.2.3 Géologie du site de barrage
I.2.4 Forages
I.2.5 Essai de laboratoire 4
I.2.6 Caractéristique géométrique des roches de la fondation
I.2.7 Perméabilité de la fondation5
I.2.8 Evaluation des paramètres géotechniques5
Conclusion
Chapitre II : Etude hydrologique
Introduction
II.1 Caractéristiques du bassin versant
II.1.1 Caractéristiques morphologiques6
II.1.1.1Paramètres géométriques6
II.1.1.2 Paramètres de forme6
II.1.2 caractéristiques du réseau hydrographique :9
II.1.2.1 le réseau hydrographique :9
11.2 Caractéristiques climatiques11
II. 2. 1 Température11
II. 2. 2 Evaporation
II. 2. 3 Régimes des vents11
II. 2. 4 Pluviométrie
II. 2. 4. 1 Répartition moyenne mensuelle interannuelle des précipitations : 12
II. 2. 4. 2 Pluviométrie Ajustement des pluies maximales journalières:
II. 2. 4. 2. 2 La loi de LogNormal (Maximum de vraisemblances)
II. 2. 4. 2. 2. 3 La loi de GUMBEL 15
II. 2. 4. 3 Les pluies de courtes durées de différentes fréquences et leurs intensités 16
II.3 Etude des apports
II. 3. 1 Etudes des apports liquides17
II. 3. 1. 1 Apports moyens interannuels17

SOMMAIRE

II. 3. 1. 2 Caractéristiques de l'écoulement	. 19
II. 3. 1. 3 Apport fréquentiels	. 22
II. 3. 1. 4 Répartition de l'apport moyen annuel estimé à une probabilité de 80 %	. 23
II. 3. 2 Etude des Apports solides :	. 23
II.4 Calcul du volume mort	. 26
II.5 Etude des crues	. 28
II.5.1 Calcul des débits fréquentiels du bassin versant du barrage de Barek	. 28
II.5.1.1 Formule empiriques :	. 29
II.5.1.2 l'Analogie de station d'Ouled Ali	. 31
II.5.1.3 l'Approche déterministe :	. 33
II.5.1.3.1 Zone d'étude et banque des données	. 34
II.5.1.3.2 Ecoulement dans le bassin versant	. 35
II.5.1.3.3 Le logiciel RS-PDM	. 37
II.5.1.3.4 Résultats	. 39
II.5.1.3.5 Régression Linéaire Multiple	. 41
II.5.2 Hydrogramme de crue :	. 43
II. 6 Régularisation des débits	. 47
II. 6. 4. 1 Régularisation saisonnière sans tenir compte des pertes	. 51
II.6.4.2 Régularisation saisonnière en tenant compte des pertes :	. 52
II.7.Etude de laminage :	. 54
II.7.3. Méthode de Kotcherine	. 55
II.7.4. Etude de comparaison	. 59
II.8. Etude d'optimisation	. 61
II.8.1 La revanche	. 61
II. 8. 2 Le tassement	. 62
II.8.3 Largeur en crête	. 62
II.8.4 Calcul des coûts	. 63
II.9 Laminage pour un déversoir de largeur b=40mètres :	. 70
Conclusion	70

Chapitre III : Etude des variantes

III.1 L'importance des évacuateurs de crues	
III.2 Fonction des évacuateurs de crues	
III.3 Critères de choix d'un évacuateur de crue	
III.4 Classification des évacuateurs de crues	
III.4.1 Les évacuateurs à surface libre	73
III.4.2 Les évacuateurs de crues en charge	74

III.5 Etude des variantes	
III.5.1 Evacuateur latéral à entonnement latéral	
III.5.1.1 Canal d'amené	75
III.5.1. 2 Déversoir et canal latéral	76
III. 5. 1. 3Calcul du convergent	82
III.5.1.4 Coursier :	83
III.5.1.5 Bassin de dissipation	87
III.5.1.6 Canal de fuit	
III.5.2 Evacuateur latéral à déversoir en bec du canard	
III.5.2.1. paramètres géométriques de déversoir	90
III.5.2.2. Calcul hydraulique de déversoir et la boite d'écoulement	91
III. 5. 2 . 3 calcul du convergent	93
III.5.2.4. Canal d'approche	93
Conclusion	
Chapitre IV : Etude de stabilité de l'évacuateur de crue	
IV. 1 Objectif	
IV. 2 Etude de stabilité	
IV. 2. 1 Stabilité du déversoir	
IV. 2. 1. 1 Forces verticales	
IV. 2. 1. 2 Forces horizontales	
IV. 2. 1. 3 Stabilité au renversement	
IV. 2. 1. 4 Stabilité au glissement	
.IV. 2. 1. 5 Stabilité au poinçonnement	
IV. 2. 2 Stabilité des murs bajoyers	
IV. 2. 2. 1 Forces verticales	
IV. 2. 2. 2 Forces horizontales	
IV. 2. 2. 3 Stabilité au renversement	
IV. 2. 2. 4 Stabilité au glissement	103
IV. 2. 2. 5 Stabilité au poinçonnement	104
IV. 3 Calcul du ferraillage	
IV. 3. 1 Ferraillage du déversoir	
IV. 3. 1. 1 Rideau	
IV. 3. 2 Ferraillage des murs bajoyers	
IV. 3. 2. 1 Rideau	
Conclusion	

Chapitre V : organisation de chantier

Introduction	
V.1 Installation de chantier	
V.1.1 Définition d'un chantier	110
V.1.2 Rôle de l'installation de chantier	110
V.1.3 Travaux préparatoires et installation de l'entreprise	110
V.2 Les moyens de chantier :	
V.3 Planification des travaux	
V.4 Composition du projet	
V.5 Détermination du chemin critique	
V.6 coût de l'évacuateur de crue	
Conclusion	
Conclusion génaral	115

Liste des tableaux

Tableau II. 1 Paramètres géométriques du bassin versant.	6
Tableau II.2 Surfaces du bassin versant par tranches d'altitudes.	7
Tableau II.3 Différents types de reliefs des bassins versants selon la classification de	
<u>l'O.R.S.T.O.M.</u>	9
Tableau II.4 Répartition mensuelle des températures 2005 ÷ 2012	11
Tableau II.5 Répartition mensuelle de l'évaporation2005 ÷ 2012	11
Tableau II.6 Répartition mensuelle des vitesses des vents2005 ÷ 2012.	11
Tableau II.7 Coordonnées de la station d'OuIed Ali	2
Tableau II.8 Répartition mensuelles des pluies moyennes annuelles (1975 ÷ 2012) 1	2
Tableau II.9 Paramètres statistiques des pluies maximales journalières de la station d'Ouled	
<u>Ali.</u> 1	.3
Tableau II.10 Quantiles corresponds aux différentes périodes de retour. 1	4
Tableau II.11 Quantiles corresponds aux différentes périodes de retour. 1	5
Tableau II.12 Répartition mensuelle des apports dans la station d'ouled Ali 1	8
Tableau II.13 Apport moyenne interannuelle 1	8
Tableau II.14 Répartition mensuelles de l'apport moyen	9
Tableau II.15 Caractéristiques de l'écoulement 2	21
Tableau II-16 Paramètres statistique de la série des débits moyens mensuels.	22
Tableau II.17 Résultats de l'ajustement des débits moyen annuel à la loi de Pearson III. 2	22
Tableau II.18 Répartition mensuelle des apports2	23
Tableau II.19 Récapitulatif des résultats du volume mort 2	27
Tableau II.20 Récapitulatif des résultats de la formule Mallet- Gauthier	29
Tableau II.21 Résultats du calcul (Giandotti)	29
Tableau II.22 Récapitulatif des résultats de la formule Possenti.	30
Tableau II.23 : récapitulatif des résultats de débit de crue.	30
Tableau II.24 Caractéristiques de l'échantillon 3	31
Tableau II.25 Résultats de l'ajustement Log-normal 3	32
Tableau II.26 Débits de crues fréquentiels 3	32
Tableau II.27 Stations hydrométriques du bassin Côtier Algérois	34
Tableau II.28 Caractéristique du bassin versant de Côtier Algérois 3	36
TableauII.29 Résultats obtenus pour les différentes valeurs des paramètres bg, fc, b, td 3	39
Tableau II.30 Paramètres du modèle 'Pluie-Débit' du bassin de barrage BAREK	10
Tableau II.31 Série des débits maximums obtenus par le modèle « Pluie-débit »	11
Tableau II.32 Caractéristiques de l'échantillon	41

Tableau II.33 Résultats de l'ajustement Log-normal	. 42
Tableau II.34 Débits de crues fréquentiels.	. 42
Tableau II-35 Recommandations du Comité National Australien des Grands Barrages pour	r le
<u>calcul de la crue de projet.</u>	. 44
Tableau II.36 Répartition de l'apport moyen mensuel du bassin versant.	. 47
Tableau II.37 Répartition de l'apport moyen mensuel du transfert des eaux épurées.	. 47
Tableau II.38 Répartition de l'apport moyens mensuel.	. 47
Tableau II.39 Répartition des besoins moyennes mensuelles.	. 48
Tableau II.40 Calcul des volumes d'eau corresponds aux différentes hauteurs.	. 49
Tableau II.41 Détermination de la période à bonne hydraulicité	. 51
Tableau II.42 Débit de crues à évacuer correspondant à chaque lame hd	. 55
Tableau II.43 Débit de crues à évacuer correspondant à chaque lame hd	. 57
Tableau II.44 Débit de crues à évacuer correspondant à chaque lame hd	. 58
Tableau II.45 Résultat de calcul par la méthode de Kotcherine.	. 59
Tableau II.46 Hauteurs des vagues.	. 61
Tableau II.47 Calcul de la largeur en crête	. 62
Tableau II.48 Coût et volume de la digue	. 64
Tableau II.49 Résultats de calculs du coût du déversoir pour les différentes largeurs	. 65
TableauII.50 Résultats de calculs du coût du canal d'approche pour les différentes largeurs	66
Tableau II.51 Récapitulatif des coûts du coursier pour différentes largeurs déversant	. 67
Tableau II.52 Prix total de l'évacuateur pour les différentes largeurs déversant	. 67
Tableau II.53 Coût total pour les différentes largeurs déversant.	. 68
Tableau II.54 Caractéristiques du barrage.	. 69
Tableau II.55 Volumes et débit déversant.	. 69
Tableau II.56 Laminage	. 70
Tableau II.1 Coordonnées du quadrant aval de déversoir.	. 77
Tableau III. 2 Origines O, rayons de courbure R.	. 78
Tableau III.3 Récapitulatif du calcul du canal latéral.	. 81
Tableau III.4 Hauteur des murs bajoyers dans canal latéral.	. 82
Tableau III.5 Calcul de ligne d'eau par la méthode indirecte d'intégration numérique	. 84
Tableau III.6 Hauteur des murs bajoyers dans le coursier.	. 85
Tableau III.7 Vérification de phénomène d'aération dans le coursier.	. 86
Tableau III.8 Choix du type de bassin de dissipation selon l'USBR	. 87
Tableau III.9 Récapitulatif du calcul de la boite d'écoulement.	. 92
Tableau III.10 Calcul des vitesses pour chaque tronçon	. 95

Tableau IV.1 Valeurs des sous-pressions en chaque point.	98
Tableau V.1 Composition du projet.	. 113
Tableau V.2 Détermination du chemin critique par la méthode du tabeau.	. 114
Tableau V.3 Coût estimatif de l'évacuateur de crue	. 114

Liste des figures

Figure I.1 Emplacement du site du barrage de Barek	2
Figure II.1 Courbe hypsométrique du bassin versant	7
Figure II.2 Emplacement de la station d'Ouled Ali par rapport au barrage (image satellite)	12
Figure II.3 Répartition mensuelle des précipitations	13
Figure II.4 Ajustement à la loi LogNormal	14
Figure II.5 Ajustement à la loi Gumbel	15
Figure II.6 Répartition mensuelle des apports.	23
Figure II.7 loi log normal	32
Figure II.8 Sites de mesures sur le réseau d'écoulement du bassin versant Côtier Algérois	34
Figure II.9 Variations interannuelles du débit	35
Figure II.10 Variations journalière de débit	35
Figure II.11 Hydrogramme de calage du modèle sur station de Baghlia Figure II.12 loi log normal	38 42
Figure II.13 Zone urbain à l'aval du barrage	44
Figure II.14 Hydrogramme de crue à une probabilité de 0.01%.	45
Figure II.15 Hydrogramme de crue à une probabilité de 0.01%	45
Figure II.16 Hydrogramme de crue à une probabilité de 0.01%.	46
Figure II.17 Courbe Capacité-Hauteur du bassin versant.	49
Figure II.18 Courbe surface-capacité	52
Figure II.19 Principe du laminage	54
Figure II.20 Courbes $H= f(Q,q)$	56
Figure II.21 Courbes q laminé=f(Q,Vf)	56
Figure II.22 Courbes H=f(Q,q)	57
Figure II.23 Courbes q laminé=f(Q,Vf)	57
Figure II.24 Courbes H=f(Q,q)	58
Figure II.25 Courbes q laminé=f(Q,Vf)	58
Figure II.26 Variation de h _d en fonction de largeur	59
Figure II.27 Variation de q laminé en fonction de largeur	60
Figure II.28 Variation de volume forcé en fonction de largeur	60
Figure II.29 Principe de calcul du volume d'un barrage	63
Figure II.30 Courbe des débits déversant	69
Figure II.31 Hydrogramme des débits entrants et sortants	70
Figure III.1 Déversoir de type Bec de Canard du barrage Salaulim, Inde	74
Figure III.2 Déversoir en tulipe du barrage Harriman Whitingham, Amérique	74
Figure III.3 Description de l'évacuateur de crue latéral.	75
Figure III.4 Profil déversoir type Creager (H=1.21 m)	77

Figure III.5 Détail du quadrant amont. (Tous les chiffres par rapport à Hd=1 m.)	
Figure III.6 Déversoir à parement amont surplombant	78
Figure III.7 Tranches de calcul de la largeur déversant.	80
Figure III.8 Profil en longe du canal latéral	81
Figure III.9 Schéma général d'un convergent	82
Figure III.10 Graphique de la ligne d'eau dans le coursier	85
Figure III.11 Schéma de bassin de dissipation USBR type III	87
Figure III.12 Descriptions de déversoir en bec de canard	90
Figure III.13 Calcul de la boite d'écoulement.	91
Figure III.14 Profil en long de la boite d'écoulement	92
Figure III.15 schéma général d'un convergent	93
Figure III.16 Calcul des largeurs du canal d'approche de côté latéral gauche	94
Figure IV.1 Les forces qui agissent sur le déversoir	96
Figure IV.2 forces auxquelles soumis le mur	101

Liste des planches

Planche N°=1 : Coupe géologique du barrage de Barek (W.Blida)

Planche N°=2 : Plan de l'aménagement du barrage de Barek (W.Blida)

Planche $N^{\circ}=3$: Profil en long de la variante choisie (évacuateur de crue latéral à entonnement mixte avec un déversoir de type bec de canard).

Planche N°=4 : Planning des travaux.

Introduction générale

Il existe près de 400000 grands barrages (en 1982, 16800 en dehors de la Chine). Le taux des ruptures reste important puisqu'il correspond à 1.5 rupture par an et le pourcentage des incidents est 2 à 7 fois plus grand, suivant le type d'ouvrage. Donc si on leur donne une durée de vie de 100 ans, 4 barrages sur 1000 connaîtront une rupture. Les causes de rupture des barrages peuvent être dues aux problèmes techniques, naturels ou humains.

L'une des causes naturelles est les crues exceptionnelles, d'intensité supérieure à celle retenue pour le dimensionnement des ouvrages évacuateurs, appelée **crue de projet**. Le niveau de sécurité retenu est généralement compris entre la crue millénaire et la crue décamillénaire. Les barrages en remblai ne supportent pas la submersion et sont donc plus vulnérables aux débordements. La phase de chantier pour les barrages en construction est une période sensible aux risques de crue, car les ouvrages d'évacuation ne sont pas encore opérationnels.

L'estimation de la crue de dimensionnement et de la crue extrême d'un barrage pose des problèmes spécifiques liés au petit nombre et au type des données disponibles qui sont fournies par la nature suivant un processus aléatoire. De plus, les approches proposées pour analyser ces données sont diverses et font encore l'objet de recherches et parfois de débats.

Très souvent, les séries hydrométriques à traiter ne couvrent que quelques dizaines d'années, avec en général aucun événement exceptionnel, et elles se trouvent à distance du barrage et parfois inexistante.

La région du Blida située au Nord de l'Algérie englobe des richesses importantes notamment sur les plans agricoles. L'étude des besoins en eau pour l'agriculture de la Wilaya a montré que les ressources mobilisées sont encore insuffisantes. Pour faire face aux besoins futurs, le plan directeur d'aménagement intégré des ressources en eau de la direction de l'hydraulique de la Wilaya a recommandé la réalisation du barrage de BAREK situé sur l'Oued ZEROUALA (Ouled Ali).

Ce barrage, avec une retenue de 23 Hm3, permettra de régler le problème d'irrigation des périmètres avoisinants. Pour des raisons techniques et de sécurité des agglomérations, ce barrage nécessite l'installation d'un organe d'évacuation et de contrôle dit évacuateur de crue, son rôle est d'assurer le passage des crues exceptionnelles dans des conditions favorables à la sécurité.

L'objectif de notre étude est de développer une nouvelle méthode d'estimation de débit de projet pour les bassins non jaugés en se basant sur une approche déterministe. Ainsi, le mémoire présenté comporte, après une introduction, cinq chapitres répartis qui constituent deux phases principales du travail : une phase bibliographique sur l'étude hydrologique et l'estimation du débit de projet de barrage de Barek et une phase de conception de l'évacuateur de crue par le débit de projet déterminé par notre approche.

Chapitre I : Présentation de la zone d'étude

Introduction

Pour la réalisation d'un barrage, il est nécessaire avant tout de bien examiner les objectifs qui en découlent pour les caractéristiques de l'ouvrage à concevoir et son implantation, en tenant compte sur la bonne connaissance des conditions géologiques, géotechniques et hydrologiques du site

I.1 description général de l'aménagement

Le barrage de Barek se situe à une vingtaine de Km au sud-est d'Alger, à 4 Km de *Khemis El Khechena*, au coordonnées Lambert suivantes :

 $x = 369,216 \ km$; $x = 368,690 \ km$;

 $y = 552,307 \ km$; $y = 552,700 \ km$;

Figure I.1 Emplacement du site du barrage de Barek.

Le réservoir est destiné à l'irrigation des terres environnantes, et pour en faire, le barrage se base sur l'apport direct du bassin versant et celui du transfert des eaux épurées de la station d'épuration de Baraki (W. Alger).

I.2 Synthèse de l'étude géologique et géotechnique

I.2.1 Géologie régional

Dans le secteur Nord-Ouest de la carte de Larbaa (1/50000), la structure géologique est caractérisée par un flanc méridional de l'anticlinal du Sahel. La formation géologique la plus répandue est celle dite de la *Maison – Carrée (pliocène sup)*, une série de marnes argileuses avec intercalation de conglomérats, dont les couches plongent vers *NW*, au-dessous de la plaine de la *Mitidja*.

La *Mitidja* constitue un ample synclinal formé de terrains datés du *Pliocène sup*. (marnes de la *Maison – Carrée*, sables rouges et grès de *Birkhadem*), avec une couverture épaisse d'alluvions anciennes et récents.

Chapitre I

La flexure *Sud – Metidjienne* borde la plaine susdite le long d'une ligne qui passe par *Meftah* et *Khemis El Khechna*, où toutes les couches néogènes sont redressées.

Le djebel *Zerouala* constitue le flanc *NW* du grand anticlinal de *l'Atlas Blidéen*, ainsi que le flanc méridional du synclinal *Mitidjien*. Dans cette zone, l'érosion a découpé profondément la surface structurale primitive, en mettant à nu, sous le *Pliocène* et le *Miocène*, les formations éocènes et secondaires.

La structure géologique de la région envisagée à une genèse complexe due à la superposition de plusieurs phases tectoniques tertiaires.

Les plissements intéressants l'*Eocène supérieur* et les formations antérieures sont caractérisés par une série de plis orientés SW - NE, notamment le synclinal de l'Oued *Zerouala (Flysh* à pellites *Nummulites*), le dôme anticlinal d' *El Madène* (terrains de l'*Eocène* moyen et du primaire).

I.2.2 Séismicité régional

Le site du barrage de Barek se trouve dans la zone séismogène de Medea-Blida-Alger, et peut aussi ressentir des fortes secousses.

A ce sujet l'analyse faite par le bureau d'étude en utilisant la carte du risque séismique du GSHAP Ibero Maghreb Working Group, 1997 et les outils informatique, il en résulte que l'accélération de pointe au site du barrage est comprise entre 0.16 et 0.24 avec 90% de probabilité que cette valeur ne soit pas dépassée dans les prochains 50 ans.

I.2.3 Géologie du site de barrage

En rive droite, la vallée remonte le long d'un talus avec une inclinaison moyenne d'environ 13° jusqu'au sommet du Rass Harour (413 m NGA). Le versant de rive gauche appartient à la retombe méridionale. Zerouela présente des talus plus raides (22-28°). Il en résulte un profil asymétrique produit par conditions lithologique différentes. En effet, le versant de rive droite appartient au domaine des pélites et de marnes schisteuses tandis que le versant opposé est formé de marnes, grès et conglomérats qui peuvent etre attribué aux flysch à petites nummulites.

Il est évident que le fond de la vallée marque la limite entre deux lithofaciès principaux, notamment l'ensemble de schistes et grès en rive droite de l'oued et les marnes et conglomérats en rive gauche. Quatre linéaments tectoniques coupent transversalement le versant de rive gauche. Il s'agit des failles sub-verticales de direction N296°-340°, qui subdivisent le massif du Flysch à petites Nummulites et celui des Conglomérats et Grès cartenniens en blocs décalant de l'aval vers l'amont avec rejets d'une dizaine de mètres.

La formation schisto-gréseuse de rive droite est cachée par une couche de couverture colluviale avec blocs provenant de la désagrégation de barres de grès. Quant à la stabilité des pentes, on signale un glissement au pied du talus de l'oued Bezouz en rive droite (coordonnées 552 300/368 175) et un autre à l'aval de l'axe du barrage, en rive droite de l'oued Zerouela.

Les pélites et les marnes schisteuses de la rive droite sont imperméables, par contre, la série des conglomérats et des grés, en rive gauche est localement plus perméable.

I.2.4 Forages

Les forages de reconnaissance ont été exécutés en bonne partie près de l'axe du barrage, voir l'*annexe*(*I*.1)

I.2.5 Essai de laboratoire

Les différents paramètres des essais en laboratoire sont rapportés dans le tableau suivant :

						_							_
		PARAM. PHYSIQUES											
	1		С	LASS	IFICA	TION							
			Fanul	ométri	ie	Atter	rberg						
AGE	deur de ement	r (2-60 mm)	(006-2 mm)	(0.002-0.06)	(< 0.002 mm)	liquidité LL	plasticité IP	: USCS	nates	spécifique γ _s	é volumeγ	é séche ya	r en eau œ _n
SOND	Profon prélève	Gravie	Sable	Limon	Argile	Limite	Indice	Classi	Carboi	Poids	Densit	Densit	Teneu
tm-a	m	%	%	%	%	%	%		%	gcm ⁻³	tm-a	tm ^{-a}	%
PELIT	ES ET MARN	ES SC	HISTE	USES	(Ensen	nble SC	CHIST	ES et G	RES)				
SB1	20.76-21.21										2.32	2.2	5.45
SB1	23.4-23.6										2.22	2.17	2.41
SB3	5.72-6.12	0	7	68	25	35.3	13.36	CI		2.65	2.27	2.07	9.47
SB3	14.7-15.3	0	4	63	33	38.1	16.67	CL		2.68	2.09	1.94	7.7
SB3	33.39-34.07	0	3	70	27	32.3	13.09	CL		2.65	2.07	1.87	10.77
SB5	4.9-5.2	0	16	84	0	26.95	10.11	CL		2.68	1.84	1.73	6.32
MARN	ES DU FLYS	CHAF	PETITE	S NUM	MULIT	ES			-				
SB4	9.4-9.64	0	80	10	10	24.5	7.15	SC-CL		2.63	2.26	2.1	7.4
SB4	38.5-38.95	0	22	78	0	24.88	10.38	CL		2.62	2.34	2.22	6.18
SB6	9.57-10.12	0	39	42	19	29.6	12.51	CL		2.64	1.55	1.44	7.65
SB6	44.68-44.88	27	16	45	12	46.85	14.7	ML		2.67	2.1	1.79	17.18
SB7	6.6- 6.9	7	46	34	13	25.25	10.18	SC-CL		2.64	2.42	2.26	7.22
SB7	13.7-14.0	3	39	58	0	24.8	10.13	CL		2.7	2.48	2.34	5.71

I.2.6 Caractéristique géométrique des roches de la fondation

A partir de l'observation des carottes de sondage, il est possible de définir un indice de fracturation. Une méthode consiste à compter le nombre de fractures par mètre linéaire (ml) de forage et à mesurer en parallèle le taux de carottage t_c exprimé en % soit la longueur totale des carottes récupérées rapporté à la longueur totale du sondage. Un coefficient RQD (RockQuality Designation) est défini comme suit :

$$RQD = \frac{\sum longueurs \ des \ fragments \ de \ carottes > 10 \ cm}{longueur \ de \ la \ passe \ de \ sondage} * 100$$

Le *RQD* des pélites et des marnes schisteuses (forages *SB*1 et *SB*2, ensemble des schistes et grès) est inférieur à 10%, ce qui exprime une mauvaise qualité géomécanique du matériau, mais il est supérieur à 75% dans le forage *SB*5. Le complexe marneux de flysch à petites nummulites des forages *SB*4 et *SB*5 présente en général une bonne qualité géomécanique ($RQD_{MOY} > 75\%$); il n'en est pas de même pour les banc de conglomérats ($RQD = 51 \div 58\%$), ce qui révèle une faible résistance à la perforation.

En ce qui concerne l'altération, on retient que le substratum rocheux est en général modérément altéré (MW - SW) dans les premiers mètres $(3 \div 5 m)$ à partir de la base de la couverture éluviale ou colluviale.

I.2.7 Perméabilité de la fondation

Les essais d'eau en pression, exécutés dans les forages *SB*5, révèlent que l'ensemble des schistes et grès est pratiquement étanches (*perméabilité* < 1 *UL*). Il en est presque de même pour la marne du flysch à petites nummulites des forages *SB*4 et *SB*5. Tandis que les bancs de conglomérats des mêmes forages sont perméables ($8 \div 88$ *UL*).

A l'état actuel des connaissances, l'écran d'étanchéité pourrait être limité à l'injection de liaison en rive droite et à un voile normal dans la zone d'appui de rive gauche, qui devra être poussé jusqu'à la profondeur 40 m.

I.2.8 Evaluation des paramètres géotechniques

Pour le calcul de la capacité portante des sols de fondation et du substratum rocheux, nous avons évalués les paramètres géotechniques qui sont basés sur, les classifications (voir *annexe I*.2), les résultats des essais en laboratoire (voir *annexe I*.2), les observations du comportement de la roche dans la nature ainsi que les comparaisons avec les valeurs empiriques pour les roches et les sols semblables. Les résultats sont présentés dans l'*annexe(I*.2)

Conclusion

On peut conclure que les conditions morphologiques et géotechniques sont favorables à l'exécution d'un barrage en matériaux meubles. En particulier la rive gauche présente le bon choix pour l'installation de notre évacuateur de crue,

Chapitre II : Etude Hydrologique

Introduction

L'hydrologie est la science de la terre qui s'intéresse au cycle de l'eau, c'est-à-dire aux échanges entre l'atmosphère, la surface terrestre et son sous-sol.

Au titre des échanges entre l'atmosphère et la surface terrestre, l'hydrologie s'intéresse aux précipitations (pluie et neige), à la transpiration des végétaux et à l'évaporation directe de la couche terrestre superficielle.

L'hydrologie de surface étudie le ruissellement, les phénomènes d'érosion, les écoulements des cours d'eau et les inondations. Le dimensionnement des ouvrages hydrauliques est toujours lié à une bonne estimation du volume d'eau, des débits disponibles ainsi que des débits extrêmes (crues ou étiages).

II.1 Caractéristiques du bassin versant

II.1.1 Caractéristiques morphologiques

II.1.1.1Paramètres géométriques

Les différents paramètres géométriques du bassin versant sont résumés dans le tableau suivant :

Tableau II. 1 Paramètres géométriques du bassin versant.

Surface du bassin versant	25.09 Km ²
Périmètre du bassin versant	21.01 Km
Longueur du talweg principal	8.36 Km

II.1.1.2 Paramètres de forme

II.1.1.2.1 Indice de compacité (indice de Gravelius)

Cet indice caractérise la forme du bassin versant (allongé, ramassé).

$$K_c = \frac{P}{\sqrt{S}} * 0.282 \tag{II. 1}$$

 K_c = indice de compacité ; P = périmètre du bassin versant ;

S = superficie du bassin versant.

$$K_c = \frac{21.01}{\sqrt{25.09}} * 0.282 = 1.18$$

II.1.1.2.2 Coefficient d'allongement

$$Ca=(L^2/S)$$
 (II. 2)

L : la longueur du talweg principal e

S= superficie du bassin versant.

 $Ca=(8.35^2/25.09)=2.78$

<u>Chapitre II</u>

II. 1. 1. 2. 3 Le relief

Il est caractérisé par la courbe hypsométrique.

Altitude (m)	Altitude moyen (m)	Si (m ²)	Si (%)	Surface cumulé (%)
809-750	779.5	11875.6	2.06	2.06
750-700	725	105284	6.88	8.94
700-650	675	181540	8.65	17.59
650-600	625	721396.5	11.18	28.77
600-550	575	1535430	13.19	41.96
550-500	525	1763710	14.41	56.38
500-450	475	2747750	15.55	71.93
450-400	425	3915566.8	10.91	82.84
400-350	375	3628281	7.01	89.85
350-300	325	3321430	6.10	95.95
300-250	275	2815020	2.87	98.81
250-200	225	2176850	0.72	99.53
200-150	175	1732910	0.42	99.95
150-120	135	518827	0.05	100.00

A partir du de cette courbe on détermine :

- 1. L'altitude à 95% de la surface, $H_{95} = 196 m$.
- 2. L'altitude à 50% de la surface (l'altitude médiane), $H_{50} = 400 m$.
- 3. L'altitude à 5% de la surface, $H_5 = 620 m$.

<u>Chapitre II</u>

4. L'altitude moyenne est ainsi définie : $\overline{H} = \frac{\sum S_i * \overline{H_i}}{s}$ (II. 3)

On trouve \overline{H} = 376.68 m

II.1.1.2.4 Rectangle équivalent

Il permet de comparer les bassins versant entre eux du point de vue écoulement.

$$L = \frac{K_c * \sqrt{S}}{1.12} * \left(1 + \sqrt{1 - \left(\frac{1.12}{K_c}\right)^2} \right)$$
(II. 4)

$$l = \frac{K_c * \sqrt{S}}{1.12} * \left(1 - \sqrt{1 - \left(\frac{1.12}{K_c}\right)^2} \right)$$
(II. 5)

On trouve

L=6.93 km l=3.61 km

II.1.1.2.5 Indice de pente global :

Il est défini par :
$$I_g = \frac{\Delta}{L}$$
 (II. 6)

 Δ : Est la dénivelée totale. Mais en réalité on prend $\Delta = H_5 - H_{95} = 620 - 196$

L: Est la longueur de rectangle équivalent

$$I_{pg} = 50.71 \, {}^{\text{m}}/{}_{\text{km}}$$

II. 1. 1. 2. 6 Indice de pente moyenne :

Il est défini par
$$:I_m = \frac{\Delta H}{L} = \frac{H_{max} - H_{min}}{L}$$
 (II. 7)
 $I_m = \frac{809 - 120}{8.36 * 10^3} = 0.082$

II. 1. 1. 2. 7 Dénivelée spécifique D_s

La dénivelée spécifique permet l'utilisation de la classification de l'O.R.S.T.O.M qui permet de définir les différents types de relief des bassins versants quelque soient leurs superficies.

Tableau II.5 Differents types de reliefs des bassins versants selon la classification de l'O.K.S. I.O.	n la classification de l'O.R.S.T.O.M.
---	---------------------------------------

<i>R</i> ₁	Relief très faible	$D_{s} < 10 \ m$
R ₂	Relief faible	$10 < D_s < 25 m$
R ₃	Relief assez faible	$25 < D_s < 50 m$
R_4	Relief modéré	$50 < D_s < 100 m$
R_5	Relief assez fort	$100 < D_s < 250 m$
R_6	Relief fort	$250 < D_s < 500 m$
<i>R</i> ₇	Relief très fort	$D_{s} > 500 m$

La dénivelée spécifique est ainsi définie :

$$D_s = I_g * \sqrt{S} \tag{II.8}$$

$$D_s = 59.63 * \sqrt{25.09} = 298.68 \text{ m}.$$

D'après le tableau on peut dire que le relief est fort. $(250 < D_s = 298.68 < 500 m)$.

II.1.2 Caractéristiques du réseau hydrographique :

II.1.2.1 Réseau hydrographique :

II.1.2.1.1 densité de drainage :

$$D_d = \frac{\Sigma L_i}{S} \tag{II. 9}$$

 ΣL_i : Longueur totale de tous les cours d'eau égale à 95.22 km

S : surface du BV

$$Dd=3.79 \text{km}/\text{km}^2$$

II.1.2.1.2 densité des thalwegs élémentaires

$$F1 = \frac{N_1}{S}$$
(II.10)

Avec N1 c'est le nombre des thalwegs d'ordre 1.

F1=6.82

II.1.2.1.3 Coefficient de torrentialité

Ct=Dd*F1

Ct=26.18

(II.11)

II.1.2.1.4 Rapport de confluence

$$R_c = \frac{N_i}{N_{i+1}} \tag{II.12}$$

Cours d'eau d'ordre 1 et 2 : $R_{c1} = \frac{168}{38} = 4.42$

Cours d'eau d'ordre 2 et 3 : $R_{c2} = \frac{38}{10} = 3.8$

<u>Chapitre II</u>

Cours d'eau d'ordre 3 et 4 : $R_{c3} = \frac{10}{3} = 3.33$

Cours d'eau d'ordre 4 et 5 : $R_{c4} = \frac{3}{2} = 1.5$

II.1.2.1.5 Longueur moyenne des versants

$$Li = \frac{L}{2*Dd}$$
(II.13)

Avec : L c'est la longueur du rectangle équivalent en Km.

Li=1.10

II.1.2.1.6 Pente moyenne du cours d'eau principale Ic

Elle exprime le rapport entre la dénivelée et la longueur comprise entre deux points suffisamment éloignés du cours d'eau principal. Elle est donnée par la formule suivante :

$$\bar{I} = \frac{\Delta H}{\Delta l} \tag{II.14}$$

Avec :

 $\Delta H =$ la dénivelée entre deux points suffisamment eloignés.

 $\Delta l =$ la longueur qui sépare les deux points.

$$\bar{I} = \frac{602 - 122}{8.36} = 5.74 \%$$

II.1.2.2 Temps de concentration

Le temps de concentration des eaux sur un bassin versant se définit comme le maximum de durée nécessaire à une goutte d'eau pour parcourir le chemin hydrologique entre un point du bassin et l'exutoire de ce dernier. Pour ce paramètre on tient compte des caractéristiques géométriques et morphologiques du bassin. On le calcul à partir des formules empiriques :

II. 1. 2. 2. 1 Formule de Kirpich :

$$T_c = 0.0195 * L^{0.77} * I^{-0.385}$$

Avec : T_c = temps de concentration en (min).

$$\begin{split} L &= \text{longueur du talweg principal en (m).} \\ I &= \text{pente moyenne du talweg principal } \frac{m}{m}. \\ T_c &= 0.0195 * L^{0.77} * I^{-0.385} = 61.36 \min = 1.02 h \end{split}$$

(II.15)

II. 1. 2. 2. 2 Formule de Ventura

$$Tc = 76.3 * \sqrt{\frac{s}{l}}$$
(II.16)

Avec : T_c = temps de concentration en (min).

S = suraface de bassin versant en Km²

I = pente moyenne du talweg principal %

$$Tc = 76.3 * \sqrt{\frac{25.09}{5.74}} = 159.52 \text{ min} = 2.65 \text{ h}$$

II. 1. 2. 3 Commentaire

Sur la base des résultats, nous proposons d'adopter les deux formules par ce que sont acceptable pour bassin de même superficie comme notre bassin. Mais par mesure de sécurité on prend le cas le plus défavorable qui est le résultat de la formule de Kirpich ($T_c = 1.02 h$).

II. 2 Caractéristiques climatiques

II. 2. 1 Température (Température moyenne annuelle =18.79 °C)

Tableau II.4 Répartition mensuelle des températures (2005 ÷ 2012)

Mois	Sept.	Oct.	Nov.	Déc.	Jan.	Fév.	Mars	Avr.	Mai	Juin	Juil.	Aout
Т	24.5	21.2	16.3	13.1	11.1	12.6	14.1	15.4	19.3	23.5	27.1	27.3
(°C)												
T (%)	10,86	9,40	7,23	5,81	4,92	5,59	6,25	6,83	8,56	10,42	12,02	12,11

Source ANRH

II. 2. 2 Evaporation (Evaporation moyenne annuelle =123.25 mm).

Tableau II.5 Répartition mensuelle de l'évaporation(2005 ÷ 2012)

Mois	Sept.	Oct.	Nov.	Déc.	Jan.	Fév.	Mars	Avr.	Mai	Juin	Juil.	Aout
Eva (mm)	147	103	60	44	47	64	101	129	166	195	222	201
Eva	9.94	6.96	4.06	2.97	3.18	4.33	6.83	8.72	11.22	13.18	15.01	13.59
(%)												

Source ANRH

II. 2. 3 Régimes des vents (vitesses annuelles moyenne est de 2.63(*Km/h*))

V							with	7 1 1 1.	Iviai	Juin	Juli.	Aout
(Km/h) 2,5	2,53	2,55	2,79	2,96	2,82	2,67	3,50	3,42	3,26	2,74	3,35	2,53

Tableau II.6 Répartition mensuelle des vitesses des vents $(2005 \div 2012)$

Source ANRH

II.2.4 Pluviométrie

II. 2. 4. 1 Répartition moyenne mensuelle interannuelle des précipitations :

Dans notre cas nous avons les données de la station d'Oued Ali dont les coordonnées sont données dans le tableau suivant :

Tableau II.7 Coordonnées de la station d'OuIed Ali

Station	Code	X(Km)	Y(Km)	Z(Km)
Oued ALI	020627	553	371.65	67

Source ANRH

Figure II.2 Emplacement de la station d'Ouled Ali par rapport au barrage (image satellite)

La répartition des pluies moyennes mensuelles interannuelles (Station de Ouled Ali) :

Tableau II.8 Répartition mensuelles des pluies moyennes annuelles $(1975 \div 2012)$.

Mois	Sept.	Oct.	Nov.	Déc.	Jan.	Fév.	Mars	Avr.	Mai	Juin	Juil.	Aout	Total
P (mm)	24.08	53.95	86.78	92.70	79.31	73.36	56.19	63.78	49.22	7.71	2.49	4.50	594.06
P (%)	4.05	9.08	14.61	15.60	13.35	12.35	9.46	10.74	8.29	1.30	0.42	0.76	100.00

Source ANRH

La pluie moyenne interannuelle est de 594.06 mm.

Figure II.3 Répartition mensuelle des précipitations

II. 2. 4. 2 Pluviométrie Ajustement des pluies maximales journalières:

L'ajustement des pluies maximales journalières de la station d'Oued Ali a été effectué par le logiciel *Hyfran*. La série des pluies maximales journalière est donnée (*l'annexe II*. 1).

II. 2. 4. 2. 1 Les paramètres statistiques de l'échantillon

L'ensemble des caractéristiques statistiques de l'échantillon sont résumées dans le tableau ciaprès :

Nombre d'observations	36
Minimum	26.2
Maximum	78.2
Moyenne	48.3
Ecart-type	12.1
Médiane	47.0
Coefficient de variation	0.250
Coefficient d'asymétrie	0.393
Coefficient d'aplatissement	2.80

Tableau II.9 Paramètres statistiques des pluies maximales journalières de la station d'Ouled Ali.

II. 2. 4. 2. 2 La loi de LogNormal (Maximum de vraisemblances)

La distribution LogNormal découle d'une modification apportée de la distribution normale afin d'étudier le logarithme de la variable aléatoire X. on requiert une telle procédure lorsque la variable aléatoire à l'étude s'étend sur plusieurs ordre de grandeurs.

La fonction de densité de probabilité s'écrit :

$$f_{y}(x) = \frac{1}{x\sqrt{2\pi\sigma_{y}^{2}}} \exp\left[-\frac{1}{2} (\frac{\ln(x) - \mu_{y}}{\sigma_{y}})^{2}\right]$$
(II. 17)

Figure II.4 Ajustement à la loi LogNormal

Les quantiles corresponds aux différentes périodes de retour sont résumés dans le tableau ciaprès

Période de	Probabilité au	Précipitations	Ecart-type	Intervalle de
retour (ans)	non dépassement	(mm)		confiance (95%)
10000.0	0.9999	121.08	14.69	92.274 - 149.88
5000.0	0.9998	115.67	13.45	89.306 - 142.03
2000.0	0.9995	108.52	11.85	85.290 - 131.75
1000.0	0.9990	103.11	10.68	82.167 - 124.04
500.0	0.9980	97.666	9.54	78.957 - 116.38
200.0	0.9950	90.404	8.09	74.543 - 106.27
100.0	0.9900	84.820	7.03	71.039 - 98.600
50.0	0.9800	79.111	6.00	67.347 - 90.874
20.0	0.9500	71.258	4.70	62.054 - 80.462
10.0	0.9000	64.936	3.76	57.569 - 72.302
5.0	0.8000	58.024	2.89	52.364 - 63.684
2.0	0.5000	46.795	1.99	42.887 - 50.703

Tableau II.10 Quantiles corresponds aux différentes périodes de retour.

II. 2. 4. 2. 2. 3 La loi de GUMBEL

Elle a été initialement conçue de façon à décrire les valeurs extrêmes d'un ensemble d'échantillons d'une population donnée telles les précipitations, les crues ou encore les vitesses de vent maximales annuelles. La fonction de densité de probabilité de la distribution de Gumbel s'écrit :

$$f_{y}(x) = \frac{1}{\alpha} \exp\left[-\frac{x-\varepsilon}{\alpha} - \exp(-\frac{x-\varepsilon}{\alpha})\right]$$
(I. 18)

Figure II.5 Ajustement à la loi Gumbel

Les quantiles corresponds aux différentes périodes de retour sont résumés dans le tableau ci-après :

Période de	Probabilité au non	Précipitations	Ecart-type	Intervalle de
retour (ans)	dépassement	(mm)		confiance (95%)
10000.0	0.9999	142.08	13.93	114.77 - 169.39
5000.0	0.9998	134.58	12.94	109.20 - 159.95
2000.0	0.9995	124.66	11.64	101.84 - 147.48
1000.0	0.9990	117.16	10.66	96.269 - 138.04
500.0	0.9980	109.65	9.67	90.688 - 128.61
200.0	0.9950	99.720	8.38	83.292 - 116.15
100.0	0.9900	92.193	7.41	77.674 - 106.71
50.0	0.9800	84.638	6.44	72.019 - 97.257
20.0	0.9500	74.556	5.16	64.432 - 84.680
10.0	0.9000	66.767	4.21	58.514 - 75.020
5.0	0.8000	58.647	3.27	52.242 - 65.053

 Tableau II.11 Quantiles corresponds aux différentes périodes de retour.

II. 2. 4. 2. 4 Qualité de l'ajustement

Il y'a toujours des écarts entres les fréquences expérimentales des valeurs observées et les fréquences théoriques calculées à partir d'une fonction de distribution choisie. Plusieurs méthodes existent pour évaluer la qualité de l'ajustement d'une fonction de distribution théorique à un échantillon particulier, mais aucune n'est entièrement fiable. La stratégie consiste donc souvent à faire usage de plusieurs méthodes à la fois.

II. 2. 4. 2. 5 Conclusion

L'évaluation de la qualité de l'ajustement montre que les deux lois sont adéquates. Dans ce cas-là on opte la loi de Gumbel puisque le nuage de point plus proche à la droite de Gumbel.

II. 2. 4. 3 Les pluies de courtes durées de différentes fréquences et leurs intensités

Le calcul des pluies de courtes durées pour différentes fréquences a été effectué par la relation de Body exprimé par :

$$P_{ct,p\%} = P_{max,p\%} * \left(\frac{t}{24}\right)^b \tag{II. 19}$$

 $P_{max,p\%}$: Pluie maximale journalière pour une fréquence voulue ;

 $P_{ct,p\%}$: Pluie de courte durée de fréquence égale celle de $P_{max,p\%}$;

t: Durée de la pluie en heure ;

b: Exposant climatique (b = 0.556).

L'intensité de la pluie est donnée par la relation suivante :

$$I = \frac{P_{tc}}{t}$$
(II. 20)

Les différentes valeurs de des pluies de courtes durées et leurs intensités sont résumées dans le tableau en *annexe II*. 2. Pour la représentation graphique voir l'*annexe II*. 2. *Figure*. 1 et l'*annexe II*. 2 . *Figure*. 2

II.3 Etude des apports

II. 3. 1 Etudes des apports liquides

II. 3. 1. 1 Apports moyens interannuels

L'estimation des paramètres hydrologiques nécessaires au dimensionnellement des ouvrages s'est faite suivant l'approche par les formules empiriques et la méthode d'analogie.

II. 3. 1. 1. 1 Formule empirique

a. Formule de l'ANRH

$$A_{moy} = 0.915 \cdot P_{moy}^{2.684} \cdot S^{0.842}$$
 [10⁶ m³] (II.21)

P_{moy}: Pluie moyenne annuelle [m].

S : Superficie du bassin versant [Km²].

AN : $A_{mov} = 0.915 \cdot 0.594^{2.684} \cdot 25.09^{0.842} = 3.41 \text{ Mm}^3$

b. Formule de MEDINGUER

$$L_e = 1,024 (P_{moy} - 0,26)^2$$
 (II.22)

Le : Lame d'eau écoulée [mm].

P : Pluie moyenne annuelle [m].

A₀=L_e s

S : Superficie du bassin versant [Km²].

AN : $A_{mov} = 25,09 \times 1,024 \times (0.594 - 0,26)^2 = 2.87 \text{ Mm}^3$

c. Formule de SAMIE

$$L_{e} = P_{moy}^{2} \left(293 - 2, 2\sqrt{S} \right)$$
(II.23)

$$\begin{split} P_{moy} : & \text{Pluie moyenne annuelle en [m] ;} \\ S : & \text{Surface du bassin versant en [km2] ;} \\ L_e : & \text{Lame d'eau écoulée en [mm].} \\ & \text{AN : } A_{moy} = 25.09 \times 0.594^2 \left(293 - 2.2\sqrt{25.09}\right) = 2.50 \text{ Mm}^3 \end{split}$$

d. Formule de Deri II $A_0 = 0,513 \cdot P_{moy}^{2,683} \cdot D_d^{-0.5} \cdot S^{-0.842} \quad [10^6 \text{ m}^3] \quad (II.24)$

P_{moy}: Pluie moyenne annuelle [m].

S : Superficie du bassin versant [Km²].

 $D_d \ : Densité \ de \ drainage \ [km/km^2].$

AN : $A_0 = 0.513 \cdot 0.594^{2.683} \cdot 3.79^{0.5} \cdot 25.09^{0.842} = 3.72 \text{ Mm}^3$

(II.26)

II. 3. 1. 1. 2 Méthode d'analogie

Cette méthode s'est basée sur les données mesurées par la station hydrométrique OULED ALI située à 2km le l'axe du barrage (Figure III.03). Pour cette raison on doit déterminer le bassin versant qui caractérisant la station et cela dans le but d'estimer les débits à l'axe du barrage en faisant multiplié les débits de la station par un facteur de réduction définit par :

$$F = \frac{S_{\text{barek}}}{S_{\text{ouled ali}}} = \frac{25.09}{33.50} = 0.75$$
(II.25)

Avec : S_{barek} = surface du BV de Barek en km².

S _{ouled ali} = surface du BV de la station hydrométrique en km^2 .

L'apport moyen annuel du site est calculé par la formule suivante :

Tableau II.12 Répartition mensuelle des apports dans la station d'ouled Ali

Mois	sept	oct	nov	dec	jan	fev	mars	avril	mai	juin	juillet	aout	total
Apport (Mm3)	0.023	0.252	0.463	1.163	1.080	0.916	0.982	0.745	0.444	0.044	0.012	0.015	6.14
Apport en %	0.38	4.10	7.55	18.94	17.59	14.93	16.00	12.14	7.23	0.71	0.20	0.24	100

A N : $A_{site} = 6.14 * 0.75$

A Barek = 4.61 Mm^3

Les résultats de calcul sont récapitulés dans le Tableau III.13

 Tableau II.13 Apport moyenne interannuelle

FORMULE	A ₀ (M m ³)
ANRH	3.41
MEDINGUER	2.87
SAMIE	2.50
DERI II	3.72
METHODE D'ANALOGIE	4.61
MOYENNE	3.42

<u>Chapitre II</u>

Commentaire :

Vu les résultats des différentes méthodes qui varient d'une méthode à une autre. On a choisi celle qui est la plus commode donc on adopte A_0 = 4.61 Mm³ donnée par la méthode d'analogie qui est la plus proche de la moyenne des autres valeurs et pour la mesure de sécurité.

	Tableau II.14	Répartition	mensuelles	de l'a	pport	moyen
--	---------------	-------------	------------	--------	-------	-------

Mois	Sept.	Oct.	Nov.	Déc.	Jan.	Fév.	Mars	Avr.	Mai	Juin	Juil.	Aout	Total
A (%)	4.05	9.08	14.61	15.60	13.35	12.35	9.46	10.74	8.29	1.30	0.42	0.76	100
A (Mm ³)	0.187	0.419	0.674	0.719	0.615	0.569	0.436	0.495	0.382	0.060	0.019	0.035	4.61

II. 3. 1. 2 Caractéristiques de l'écoulement

II. 3. 1. 2. 1 Module de l'écoulement (Me) :

Il est donné par :

$$M_e = \frac{A_0}{T}$$
(II.27)

A₀ : Apport moyen annuel [litres].

T : Temps d'une année en [secondes] "T = $31,536.10^6$ secondes".

AN;

M_e=146.18 l/s

II. 3. 1. 2. 2 Module de l'écoulement relatif ou spécifique (M0)

$$\mathbf{M}_{0} = \frac{\mathbf{M}_{e}}{\mathbf{S}}$$
(II.28)

 M_0 : Module de l'écoulement ([l/s].

 $S: \quad Superficie \ du \ bassin \ [Km^2].$

AN;

 $M_0 = 5.83 \ l/s/km^2$

II. 3. 1. 2. 3 Lame d'eau écoulée :

$$L_e = \frac{A_0}{S}$$
(II.29)

S : Superficie du bassin.

AN;

L_e=183.74 mm

II. 3. 1. 2. 4 Coefficient de l'écoulement

Il est donné par :

$$C_e = \frac{L_e}{P_{moy}}$$
(II.30)

P_{moy}: Pluie moyenne annuelle en [mm];

Le : Lame d'eau écoulée en [mm].

AN;

II. 3. 1. 2. 5 Coefficient de variation :

Pour le calcul du coefficient de variation C_V et en absence d'une série d'observation, on doit utiliser les formules empiriques.

II. 3. 1. 2. 5.1 Formule de SOKOLOVSKY

On a: $Cv = 0, 78 - 0, 29 \log 10 M_0 - 0,063 \log 10 (S + 1)$ (II.31)

S : Superficie du bassin (Km2).

M₀: Module de l'écoulement relatif [l/s/km²].

<u>A.N :</u>

 $Cv = 0.78 - 0.29 \log 10 (3.63) - 0.063 \log 10 (25.09 + 1)$

II. 3. 1. 2. 5.2 Formule d'OURKGUIPROVODKHO

$$C_{v} = \frac{0.7}{M_{0}^{-0.127}}$$
(II.32)

 M_0 : Module de l'écoulement relatif [l/s/km²].

<u>A.N:</u>

 $C_v = \frac{0.7}{3.63^{-0.127}} = 0.88$

II. 3. 1. 2. 5.3 Formule de L'ANTONOV

$$C_{v} = \frac{0.7}{(S+1000)^{0.097}}$$
(II.33)

S : Superficie du bassin en [km²].
<u>AN :</u>

 $C_v = \frac{0.7}{(5.09 + 1000)^{0.097}} = 0.36$

$$C_{\rm V} = 0.36$$

II. 3. 1. 2. 5.4 Formule de KRISTEKLY MENKEL

$$Cv = \frac{0.83}{(S^{0.06} \cdot M_0^{0.27})}$$
(II.34)

M₀ : module de l'écoulement relatif [l/s/km²].

S : Superficie du bassin en [km²].

<u>AN :</u>

$$C_{V=}0.43$$

Les résultats des calculs des caractéristiques de l'écoulement sont récapitulés dans le tableau suivant :

 Tableau II.15 Caractéristiques de l'écoulement

Modu	le de l'écoulement (Me)	146.18 l/s			
Module de l'écou	llement relatif ou spécifique (M0)	5.83 l/s/km2			
L	ame d'eau écoulée	183.74 mm			
	Coefficient de l'écoulement		0.31		
Coefficient de variation	SOKOLOVSKY	0.47			
	OURKGUIPROVODKHOZ	0.88	0.53		
	L'ANTONOV	0,36			
	KRISTEKLY MENKEL	0.43			

II. 3. 1. 2. 5. 6 Conclusion

Le coefficient de variation moyen calculé à base des formules empiriques sera donc : **Cv=0,88** donnée par la formule OURKGUIPROVODKHOZ.

II. 3. 1. 3 Apport fréquentiels

L'estimation fréquentielle des apports à partir des apports moyens annuels peut se faire avec l'application de la fonction de distribution *Pearson III* donnée par la formule suivante :

$$A_{p\%} = K_{p\%} * A_0 = (K_{p\%} * C_v + 1) * A_0$$
(II. 35)

Avec : $K_{p\%}$: Fonction de Rybkine-Foster.

 $A_{p\%}$: Débit de fréquence donnée(Mm^3).

 A_0 : Débit moyen annuel (Mm^3)

 C_{v} : Coefficient de variation.

Les paramètres statistique de la série des débits moyens mensuels transposés de la station de Oued Ali (voir l'*annexe II*.3) sont données dans le tableau suivant :

Nombre d'observations	20
Minimum	0.09
Maximum	11.9
Moyenne	3.82
Ecart-type	3.02
Médiane	4.20
Coefficient de variation	0.791
Coefficient d'asymétrie	1.31
Coefficient d'aplatissement	3.86

Tableau II-16 Paramètres statistique de la série des débits moyens mensuels.

Les résultats de l'ajustement sont portés dans le tableau suivant, pour la représentation graphique voir l'*annexe II*.4.

Tableau II.17 Résultats de l'ajustement des apport moyen annuel à la loi de Pearson III.

Période de retour	Probabilité au non	Apport (Mm ³)	Intervalle de confiance
(ans)	dépassement		(95%)
50	0.98	11.90	5.55-18.2
20	0.95	9.63	5.48-13.8
10	0.90	7.86	5.00-10.7
5	0.80	5.98	3.89-8.07
2	0.50	3.17	1.51-4.83

Commentaire

D'après le tableau précédent nous avons : $A_{80\%} = 5.98 Mm^3$

II. 3. 1.4 Répartition mensuelle de l'apport moyen annuel estimé à une probabilité de 80 %

La répartition mensuelle de l'apport moyen annuel estimé un une probabilité de 80 % suit la même répartition mensuelle des précipitations on a donc :

Tableau II.18 Répartition mensuelle des apports

Mois	Sept.	Oct.	Nov.	Déc.	Jan.	Fév.	Mars	Avr.	Mai	Juin	Juil.	Aout	Total
A _{80%}													
(Mm ³)	0.24	0.54	0.87	0.93	0.80	0.74	0.57	0.64	0.50	0.08	0.03	0.05	5.98

Figure II.6 Répartition mensuelle des apports.

II. 3. 2 Etude des Apports solides :

II. 3. 2. 1 Apports solides en suspension :

II. 3. 2. 1. 1 Formule de Tixeront

Cette formule donne l'apport solide moyen annuel en suspension :

$$T_s = \alpha * L_r^{0.15} \tag{II.36}$$

Où : T_s : Transport solide moyen annuel en suspension $\binom{t}{Km^2}$ an.

 L_r : Lame d'eau ruisselée(mm).

 α : Paramètre caractérisant la perméabilité du bassin versant, dans notre cas on prend

$$\alpha = 350.$$

$$T_s = 350 * 183,74^{0.15} = 756.06 \binom{t}{Km^2} an$$

En tenant compte du poids spécifique moyen des sédiments $\gamma = 1.4 \left(\frac{t}{m^3} \right)$.

Le volume annuel est estimé comme suit :

$$V_{s} = \frac{T_{s} * S}{\gamma}$$

$$V_{s} = \frac{765.06 * 25.09}{1.4} = 13711.05 \left(\frac{m^{3}}{an}\right)$$
(II. 37)

Où : S : Surface du bassin versant (Km^2)

II. 3. 2. 1. 2 Formule de Fournier

Le transport solide est donné par la formule suivante :

$$E_{s} = \frac{1}{36} \left(\frac{P_{m}^{2}}{P_{a}}\right)^{2.65} \left(\frac{h^{2}}{S}\right)^{0.46}$$
(II.38)

Avec : E_s : érosion spécifique (t/Km²an)

 P_m : Pluie mensuelle du mois le plus pluvieux (mm). $P_m = 92.7 \text{ mm}$.

 P_a : Pluie moyenne annuelle (mm) $P_a = 594.06$ mm.

 $h=45\%(H_{max} - H_{min})(m);$

H_{max}: Altitude maximale =809 m.

 H_{min} : Altitude minimale = 120 m.

S : Surface du bassin versant (km^2) S= 25.09 Km².

A.N :

$$E_{s} = \frac{1}{36} \left(\frac{92.7}{594.06}\right)^{2.65} \left(\frac{310.05^{2}}{25.09}\right)^{0.46} = 1468.64 \ tonnes /_{Km^{2}.an}$$

Es=1468.64 t/km²/an

$$A_s = E_s \cdot S \tag{II.39}$$

S: superficie du bassin versant en Km².

$$A_s = 36848.28$$
 t/An.
 $V_s = \frac{A_s}{\gamma} = \frac{36848.28}{1.4} = 26320.2 (m^3/an)$

II. 3. 2. 1. 3 Formule de Garavilovitch

Cette relation largement utilisée en Algérie, elle fait intervenir des caractéristiques physiques et un indice climatique du bassin versant.

$$T_0 = T_{sp} * G_m \tag{II. 40}$$

$$T_{sp} = T * P_{moy} * \pi * \sqrt{Z^3}$$
(II. 41)

$$T = \sqrt{\frac{t}{10}} + 1 \tag{II. 42}$$

$$T = \sqrt{\frac{18.79}{10}} + 1 = 2.37$$

$$G_m = \frac{\left(\sqrt{P} + H_{moy}\right)}{0.2 * (L+10)}$$
(II. 43)

$$G_m = \frac{\left(\sqrt{P} + H_{moy}\right)}{0.2 * (L+10)} = \frac{\left(\sqrt{21.01} + 0.37668\right)}{0.2 * (8.35+10)} = 1.35$$
$$T_{sp} = 2.37 * 594.06 * \pi * \sqrt{0.3^3} = 727.03$$

$$T_{0} = 726.79 * 1.35 = 982.64 \binom{t/_{Km^{2}}}{an}$$

Avec:
$$T_{0} : \text{Taux d'abrasion} \binom{t/_{Km^{2}}}{an}.$$

 T_{sp} : Le taux de la production annuel des matériaux en $\binom{m^3}{Km^2}_{an}$.

 G_m : Taux de rétention des sédiments produits par le bassin.

- *T* : Coefficient thermique.
- *Z* : Coefficient d'érosion relative en fonction de la description du bassin versant (z=0.3).

P_{moy}: Pluie moyenne annuelle (mm).

- t : Température moyenne annuelle (°C). $t = 18.79^{\circ}C$
- *P* : Périmètre du bassin versant (Km). P = 21.01 km.
- *L* : Longueur du talweg principal (Km). $L = 8.35 \ km$.
- H_{moy} : Altitude moyenne (km). $H_{moy} = 0.376687 km$.

En appliquant la formule (I - 29) on trouve :

$$V_{s} = \frac{T_{a} * S}{\gamma} = \frac{982.64 * 25.09}{1.4} = 17610.41 \left(\frac{m^{3}}{an}\right)$$

(II.45)

Commentaire

En comparant les trois résultats trouvés nous remarquons une convergence entre les résultats de Tixeront , Fournier et *Gravilovitch*, et pour mesure de sécurité nous avons choisi la formule de Fournier

II. 4 Calcul du volume mort

Le volume mort est un volume constant qui ne participe pas à la régularisation des débits. Il est destiné à être occupé par les apports solides. Il existe plusieurs formules pour le calcul de ce dernier :

II. 4. 1 Formule de Tixeront

Le volume mort est donné par la formule suivante :

$$V_M = (1.05 \div 1.10) \frac{Q_S \ast T}{\gamma_S}$$
(II. 44)

Avec : $Q_S = T_S * S$

- Q_s : Le débit solide (t/an).
- γ_s : Poids spécifique de la vase humide ($\gamma_s = 1,6 \ t/m^3$).
- T: Durée de vie du barrage (50 ans).

$$T_s$$
: Le transport solide $\binom{t}{Km^2}/an$

$$S$$
: Surface du bassin versant (km^2).

$$Q_S = 765.06 * 25.09 = 19195.35 \left(\frac{t}{an}\right)$$

$$Vm = 1.1 * \frac{19195.35 * 50}{1.4} = 754103.25 m^3$$

 $V_m = 0.75(Mm^3)$

II. 4. 2 Méthode liée à l'érosion spécifique :

Le volume s'obtient par la formule suivante :

$$V_M = \frac{E_S * S * T}{\gamma_S}$$
(II. 46)

Avec : E_s : Erosion spécifique (t/km²/an).

T : Durée de vie du barrage (50 ans).

 γ_s : Poids spécifique des sédiments (1,4 t/m³).

S : Surface du bassin versant (Km²).

A.N :

$$V_M = \frac{1468.46*25.09*50}{1.4} = 1316006.34 \text{ m}3$$

V_m=1.32 Mm³

II. 4. 3 Formule de Garavilovitch

Le volume mort est donné par la relation ci-après :

$$V_M = \frac{T_0 * S * T}{\gamma_S} \tag{II.47}$$

Avec : T_0 : Taux d'abrasion $\binom{t}{Km^2}/an$.

T: Durée de vie du barrage (50 ans);

S: Surface du bassin versant (Km^2);

 γ_s : Poids spécifique de la vase humide.

$$V_M = \frac{982.65 \times 25.09 \times 50}{1.6} = 770455.29 \ m^3 = 0.77 \ Mm^3$$

$$V_m = 0.77 (Mm^3)$$

Les résultats obtenus par les différentes méthodes sont représentés dans le tableau III.19.

Tableau II.19 Récapitulatif des résultats du volume mort

FORMULE	VOLUME (Mm ³)
METHODE LIEE A L'EROSION SPECIFIQUE (FOURNIER)	1.32
TIXERONT	0.75
GRAVILOVITCH	0.77

Commentaire

On opte pour la relation de fournier pour des raisons de sécurité donc le volume mort de notre barrage est environ 1.32 Mm^3 .

II. 5 Etude des crues

Les débits spécifiques maximums se caractérisent par un rabattement avec l'augmentation de la superficie du bassin versant. Aussi, le zonage vertical a une grande influence sur la distribution des caractéristiques physiques de surface, pluviométriques et hydrologiques. En général, la pluviométrie et le ruissellement superficiel augmentent avec l'accroissement de l'altitude. D'où les débits maxima spécifiques augmentent avec l'altitude et diminuent avec l'augmentation de la superficie des bassins versants.

L'estimation des crues révèle une grande importance pour la sécurité de l'ouvrage à implanter.

Les paramètres définissants une crue sont :

1-le débit maximum de la crue (débit de pointe).

2-le volume de crue.

3-la forme de la crue.

4-le temps de base.

II.5.1 Calcul des débits fréquentiels du bassin versant du barrage de Barek

L'estimation de la crue de dimensionnement et de la crue extrême d'un barrage pose des problèmes spécifiques liés au petit nombre et au type des données disponibles qui sont fournies par la nature suivant un processus aléatoire. De plus, les approches proposées pour analyser ces données sont diverses et font encore l'objet de recherches et parfois de débats.

Très souvent, les séries hydrométriques à traiter ne couvrent que quelques dizaines d'années, avec en général aucun événement exceptionnel, et elles se trouvent à distance du barrage. On se trouve alors confronté à plusieurs difficultés :

1. Comment extrapoler des séries trop courtes, ne disposant le plus souvent d'informations que sur des événements plus ou moins courants ?

2. Comment estimer les débits maximums dans le cas des bassins non jaugés ?

La méthodologie à appliquer pour résoudre le problème diffère suivant que le bassin versant est jaugé ou ne l'est pas. Le bassin du barrage de Barek, appartient au grand bassin du Côtier algérois, n'a aucune station hydrométrique.

Dans notre travail, nous avons alors décidé d'utiliser toutes les méthodes qui peuvent être utilisées à savoir :

- 1. Les formules empiriques
- 2. La méthode d'analogie
- 3. L'approche déterministe

II.5.1.1 Formule empiriques :

II.5.1.1.1 Formule de MALLET-GAUTHIER :

$$Q_{\max,p\%} = \frac{2 \cdot K \cdot \log(1 + A.P_{moy}) \cdot S \cdot \sqrt{1 + 4\log T - \log S}}{\sqrt{L}}$$
(II.48)

 $Q_{\max,p\%}$: Débit maximum pour une fréquence donnée (m³/s).

: Pluie moyenne annuelle [m]. P_{mov}

S : Superficie du bassin versant $[Km^2]$.

L : Longueur du talweg principal [Km].

K : coefficient dépendant des caractéristiques du bassin varie entre 1 et 3 [K = 2].

A : Paramètre du bassin varie entre 20 et 30 [A = 25].

T : période de retour [an].

$$Q_{\max,p\%} = \frac{2 \times 2 \times \log(1+25 \times 0.594) \times 25.09 \sqrt{1+4\log T - \log 25.09}}{\sqrt{8.36}}$$

Tableau II.20 Récapitulatif des résultats de la formule Mallet-Gauthier.

Période de retour (an)	5	10	20	50	100	1000	10000
Q_{max} (m ³ /s)	64.52	79.09	91.36	105.41	114.91	141.96	164.62

II.5.1.1.2 Formule de Giandotti

$$Q_{\max p\%} = \frac{160.S.(H_{moy} - H_{\min})^{1/2}}{4(S)^{1/2} + 1.5L}.P_{tc}$$
(II.48)

- $Q_{\max(\%)}$: Débit maximum de crue en (m3/s) de même fréquence que celle de la pluie de courte durée.
- *S* : Superficie du bassin versant en km2
- *L* : Longueur du talweg principal en km.
- *Hmoy, Hmin*: Altitudes moyennes et minimales (en m).
- *Ptc*: Pluies de courte durée correspondante au temps de concentration en (m)

Tableau II.21 Résultats du calcul (Giandotti)

Période de retour	5	10	20	50	100	1000	10000
P_{ct} (mm)	59	67	75	85	92	117	142
$Q_{\max p\%}:(m^3/s)$	115.84	131.88	147.27	167.18	182.10	231.42	280.64

II.5.1.1.3 Formule de POSSENTI

$$Q_{p\%} = \frac{\mu \cdot P_{maxj\%} \cdot S}{L}$$
(II.49)

P_{max p%} : Pluie maximale journalière correspondante à la période de retour donnée [m].

 μ : Coefficient compris entre 700 et 800 [μ = 750]

L : Longueur du cours d'eau principal (Km).

A.N:

$$\mathbf{Q}_{\max\%} = \frac{750 \times 25.09}{8.35}$$
 Pmax j% = 2253 .60 Pmaxj%

Tableau II.22 Récapitulatif des résultats de la formule Possenti.

Période de	5	10	20	50	100	1000	10000
retour (an)							
P _{max} j % (mm)	58.647	66.767	74.556	84.638	92.193	117.16	142.08
Q_{max} (m ³ /s)	132.17	150.47	168.02	190.74	207.77	264.03	320.19

Tableau II.23 : récapitulatif des résultats de débit de crue.

Formule	Q 20% (m ³ /s)	Q 10% (m ³ /s)	Q 5% (m ³ /s)	Q 2% (m ³ /s)	Q 1% (m ³ /s)	Q 0.1% (m ³ /s)	Q 0.01% (m ³ /s)
Formule de MALLET- GAUTHIER	65	79	91	105	115	142	165
Formule de Giandotti	116	132	147	167	182	231	281
Formule de POSSENTI	132	150	168	191	208	264	320

II.5.1.2 l'Analogie de station d'Ouled Ali

Elles se basent sur la comparaison avec des bassins versants régionaux sur lesquels existent des données hydrologiques Ces méthodes consistent à extrapoler le débit de projet au site non jaugé à partir des données observées dans un bassin jaugé qui lui est hydrologiquement comparable.

On se base dans cette comparaison sur les paramètres qui définissent géométriquement et morphologiquement le bassin : forme, pentes et indices de pente, paramètres du rectangle équivalent, caractéristiques du relief ,densité de drainage et rapport de confluence ainsi que des paramètres climatiques , géologiques et pédologiques renseignant sur les types de précipitations, les perméabilités des sols, la nature de végétation.

Toutes ces informations sont capables d'aider l'ingénieur à comprendre le comportement hydrologique du bassin et par conséquent son régime d'écoulement.

La méthode des débits spécifiques consiste à évaluer le débit Q_B recherché à partir de Q_A en tenant compte uniquement de l'influence respective des surfaces des bassins versants.

Cela revient donc à négliger les autres facteurs qui contribuent au comportement hydrologique de chacun des bassins : nature sol et végétation, topographie,

Elle suppose que si ces facteurs sont identiques pour les deux bassins,

Cette méthode est définie par la relation :

$$\frac{Q(T)_{station}}{S_{station}} = \frac{Q(T)_{site}}{S_{site}}$$
(II.50)

Avec :

 $Q(T)_{station}$: Le débit de crue de la période de retour donnée pour la station d'Ouled ali

 $Q(T)_{sito}$: Le débit de crue de la période de retour donnée pour le site de Barek

 $S_{station}$: la surface du BV de la station hydrométrique en km² (S=33.5 km2)

 S_{site} : La surface du BV de Barek en km² (S=25.09 km2)

L'ajustement de la série des débits maximaux à la loi log-normal avec le logiciel HYFRAN.

Tableau II.24 Caractéristiques de l'échantillo	n
--	---

Nombre d'observations	20
Minimum	2.82
Maximum	48.6
Moyenne	24.3
Ecart-type	12.8
Médiane	26.1
Coefficient de variation	0.527
Coefficient d'asymétrie	0.134
Coefficient d'aplatissement	1.95

Les résultats de l'ajustement par la loi de «Log-normal » sont résumés dans le tableau suivant :

Période de retour	Probabilité au non	Débit max (m^3/s)	Ecart-type
(ans)	dépassement		
10000	0.9999	311	148
1000	0.9990	196	79.3
100	0.9900	111	36.1
50	0.9800	91.1	27
20	0.9500	67.3	17.3
10	0.9000	51.5	11.6
5	0.8000	37.2	37.2
2	0.5000	20	20

Figure II.7 loi log normal.

Tableau	II.26	Débits	de	crues	fréq	uentiels
---------	--------------	--------	----	-------	------	----------

Période de retour	2	5	10	20	50	100	1000	10 000
Q _{max} (m ³ /s) station d'Ouled ali	20	37	52	67	91	111	196	311
Q _{max} (m ³ /s) Site de barrage	15	28	39	50	68	83	147	233

II.5.1.3 Approche déterministe

Le besoin de connaître les débits sur des sites non jaugés correspond souvent à des préoccupations d'ordre opérationnel : dans bon nombre de projets d'ingénierie par exemple, on ne dispose pas d'une station hydrométrique et d'enregistrements des débits permettant d'évaluer des crues de projet. Le dimensionnement d'ouvrages devient alors sujet aux incertitudes liées aux méthodes d'approximation ou d'interpolation utilisées pour estimer ces débits caractéristiques. La réponse du bassin versant à des événements pluvieux étant en partie le résultat des caractéristiques de celui-ci, il a paru tout à fait naturel de relier les valeurs de certaines variables hydrologiques (crue de période de retour donnée par exemple) à des descripteurs du bassin tels que pédologie, géologie, physiographie ou couvert végétal.

Ainsi, dans ce travail une méthodologie est adoptée consistant non seulement à caler les paramètres du modèle 'Pluie-débit' sur une période de pluies et de débits connus mais aussi à développer une approche permettant de prédire les débits de bassin du barrage de BAREK (cours d'eau non jaugé). Le bassin versant "Côtier Algérois" est pris comme zone d'étude. Son réseau hydrographique est très développé avec un réseau de stations hydrométriques très lâche. Pour le calage du modèle, un modèle probabiliste de distribution de l'humidité du sol (PDM) est calé à partir des pluies fournis et des jaugeages réalisés. Pour la prédiction des débits dans les cours d'eau non jaugés les paramètres du modèle 'PDM' et les paramètres hydroclimatiques et morphométriques du bassin versant sont mises à l'épreuve par régression multiple linéaire.

II.5.1.3.1 Zone d'étude et banque des données

Le bassin Côtier Algérois est situé au Nord de l'Algérie. Il couvre une grande partie du littoral Algérien et s'étend sur une superficie de 14 000 km2. Géographiquement, il s'inscrit entre les latitudes 36°1′ et 36°5′ Nord et entre les longitudes 5° et –0°4′ Ouest. Pour l'ensemble du bassin, le climat est de type méditerranéen et les hauteurs de précipitations moyennes annuelles varient de 500 à 1000 mm. Le paysage de la région d'étude est diversifié, caractérisé par un relief montagneux très accidenté. Les données pluviométriques sont disponibles pour 42 stations pluviométriques réparties aléatoirement dans l'espace étudié et sont relativement bien distribuées sur la période (1973–2011). 19 stations hydrométriques ont été sélectionnées pour la réalisation de cette étude. Les données disponibles pour ces 19 bassins sont présentées au tableau II.27.

Figure II.8 Sites de mesures sur le réseau d'écoulement du bassin versant Côtier Algérois

No.	Station	Code	Pluies	Débits
	hydrométrique		journalières	journaliers
01	Sidi Akkacha	020207	1983-2008	1983-2008
02	Bordj Gobrini	020301	1974-1990	1974-1990
03	Hadjout	020318	1982-1990	1982-1990
04	Mesdour	020331	1983-2004	1983-2004
05	Pont RN11	020323	1974-2006	1974-2006
06	Ouled Ali	020627	1973-2008	1973-2008
07	RN24	020808	1986-2011	1986-2011
08	El Affroun	021007	1970-1993	1970-1993
09	Attatba	021011	1981-2011	1981-2011
10	Boumedfaa	021006	1987-1993	1987-1993
11	Amont des gorges	021126	1970-2006	1970-2006
12	Fer a cheval	021201	1981-2011	1981-2011
13	Rocher des pigeons	021301	1977-2009	1977-2009
14	Barraki	021418	1973-2007	1973-2007
15	Larabaa	021402	1973-1993	1973-1993
16	Freha	021605	1986-2011	1986-2011
17	RN30	021715	1986-2011	1986-2011
18	Belloua	021803	1987-1998	1987-1998
19	Baghlia	022001	1986-1998	1986-1998

Tableau II.2	7 Stations	hydrométri	ques du ba	assin Côtie	r Algérois
		•			<u> </u>

II.5.1.3.2 Ecoulement dans le bassin versant

Le régime hydrologique du bassin versant du Côtier Algérois se caractérise par une irrégularité interannuelle au vu des fortes valeurs du coefficient de variation. Cette variabilité observée, fluctuant entre 8 et 45% est due essentiellement au caractère irrégulier de l'apport pluvial des cours d'eau. L'apport moyen annuel est estimé à 1516 Hm3, soit une lame d'eau écoulée annuelle de 145 mm et un déficit de 77%. Les caractéristiques hydrauliques des Oueds et des sections de jaugeage sont importantes à connaître pour le tarage. La figure suivante montre la variation interannuelle dans quelques stations.

Figure II.9 Variations interannuelles du débit

Figure II.10 Variations journalière de débit

Les caractéristiques hydromorphometriques des bassins sont données dans le tableau suivant :

Station	$S(km^2)$	T	$D_1(l_{rm}/l_{rm}^2)$	I (m/km)	I (mm)	P(mm)	$C_{P} %$	$O(m^{3/s})$
Station	5 (KIII)	I c	$D_{d}(\text{KIII/KIII})$	1 pg (III/KIII)	Le (IIIII)	I (IIIII)	CC /0	Q m (111 / 3)
020301	213	1,2	3,1	6,65	141	566	24.9	0.95
021006	336	1,16	2,5	5,54	53	445	12	0.57
021011	680	1,35	2,6	3,07	89	539	16.5	1.92
021126	316	1,17	3,3	5,67	190	717	26.4	1.9
021201	1900	1,19	2,8	2,62	58	565	10.3	3.49
021301	387	1,06	5,2	7,53	267	728	36.7	3.28
021418	970	1,28	3	3,02	140	570	24.6	4.32
022001	2390	1,14	2,7	3,78	201	692	29.1	15.26
020318	72	1,15	3,4	6,96	53	512	10.3	0.12
021007	395	1,27	2,5	4,33	89	550	16.3	1.12
020323	55	0,67	3,6	6,84	115	548	20.9	0.2
020627	37	1,1	2,8	10,92	162	577	28.1	0.19
021803	1490	1,12	3,5	5,29	169	729	23.2	7.98
020207	295	1,27	4,7	3,19	49	485	10.01	0.46
020808	35	1,27	5,5	12,66	351	1095	32.1	0.39
021402	130	1,15	5	6,42	138	564	24.5	0.57
020331	213	1,21	5	5,8	41	516	8	0.28
021715	460	1,17	3,3	7,59	280	850	32.9	4.08
021605	100	1.18	3.4	8.38	329	973	33.8	1.04

 Tableau II.28
 Caractéristique du bassin versant de Côtier Algérois

Avec :

- **S** : Surface drainée par la station (Km²),
- I c : indice de compacité,
- **Dd** : Densité de drainage,
- I _{pg} Indice de pente globale,
- Le : lame d'eau (mm)
- **P**: Précipitation moyenne interannuel (mm),
- C_e : Coefficient d'écoulement (%).

II.5.1.3.3 Logiciel RS-PDM

Le logiciel RS-PDM \bigcirc 6.0 édité par Wallingford Software met en œuvre la méthode proposée par Moore (1985). Le principe de ce modèle est d'attribuer une " capacité de stockage C " en tout point du bassin versant. Les paramètres de la fonction de densité de probabilité de la variable "C" (fonction de Pareto) sur le bassin versant font partie des paramètres calibrables. La production de ruissellement dépend en chaque point du stock initial d'eau, des précipitations reçues, de l'évapotranspiration.

La percolation profonde est également prise en compte au-delà d'un niveau donné d'humidité dans le sol. Le ruissellement se produit lorsque le bilan de ces différents flux dépasse la valeur "C" en ce point.

Le débit à l'exutoire est composé du ruissellement de surface (transfert rapide) et d'un apport hypodermique lent. Les routages sont simulés par différentes fonctions de transfert entre réservoirs successifs dont les paramètres peuvent eux aussi être l'objet de calibration. Bien que la configuration du modèle permette des calibrages de paramètres avec intervention de l'opérateur, le principe a été de ne pas y recourir et de laisser le logiciel se calibrer par défaut sur les paramètres indiqués.

Les paramètres du modèle PDM sont :

- **bg** : contrôle la capacité de recharge de la nappe ;
- **fc** : contrôle le volume de ruissellement ;
- **b** : exposant de la fonction de Pareto qui contrôle la répartition spatiale de la capacité de stockage du sol ;
- td : time delay, permet de déplacer l'hydrogramme selon l'axe du temps.

Pour rappel, le calage automatique des paramètres du modèle est utilisé. Pour chaque bassin versant, les résultats des simulations et des validations sont analysés par la comparaison des séries chronologiques de débits observés et simulés,

II.5.1.3.4 Résultats

La comparaison des débits simulés aux débits observés sur la station de Baghlia dans le bassin Côtier Sebaou Maritime (2390 km²) suivant le mode calage automatique " sur plusieurs évènements est montrée à la figure II.11. Des graphiques similaires sont obtenus concernant les autres stations hydrométriques.

Figure II.11 Hydrogramme de calage du modèle sur le sous bassin versant de Baghlia

Les paramètres de calage du modèle 'Pluie-Débit' (PDM) des 19 stations sont donnés dans le tableau suivant :

Tableau II.29 Résultats obtenus pour les différentes valeurs des paramètres bg, fc, b, td et R

Station	code	bg	fc	Td	b	R
Bordj Gobrini	020301	2.67	1.65	1.89	2.97	0.71
Boumedfaa	021006	3.10	1.34	2.13	2.87	0.88
Attatba	021011	2.89	1.46	3.09	3.00	0.80
Amont des gorges	021126	2.38	1.79	2.13	3.05	0.73
Fer à cheval	021201	3.11	1.35	5.97	3.19	0.86
Rocher des pigeons	021301	2.25	2.04	2.28	3.15	0.73
Barraki	021418	2.66	1.64	3.78	3.12	0.71
Baghlia	022001	2.21	1.83	7.20	3.47	0.75
Hadjout	020318	3.25	1.33	1.47	2.82	0.88
El Affroun	021007	2.87	1.46	2.35	2.94	0.80
Pont RN11	020323	2.92	1.55	1.21	2.85	0.76
Ouled Ali	020627	2.49	1.72	1.41	2.95	0.81
Belloua	021803	2.54	1.72	4.97	3.25	0.74
Sidi Akkacha	020207	3.51	1.32	2.08	2.87	0.89
RN24	020808	1.71	2.25	1.51	3.22	0.77
Larabaa	021402	3.03	1.63	1.66	2.94	0.72
Mesdour	020331	3.61	1.28	1.84	2.84	0.82
RN30	021715	1.80	2.07	2.50	3.20	0.73
Freha	021605	1.49	2.20	1.63	3.19	0.69

II.5.1.3.5 Régression Linéaire Multiple

L'analyse de la régression permet d'étudier la relation statistique qui existe entre les bg, fc, b, td de chaque station hydrométrique (19 stations) (variable dépendante) et les paramètres morphométriques et hydroclimatiques de ces stations (variables indépendantes).

Les variables explicatives de base utilisées sont les paramètres hydroclimatiques du cours d'eau : coefficient d'écoulement (C_e), précipitation moyenne (P) et débit moyen (Q_m). D'autres paramètres sont liés à la morphologie et aux écoulements sont : l'indice de compacité de Gravelius (I_C), la densité de drainage (D_d) ; l'indice de pente de Roche (Ip), surface de bassin (S)

Plusieurs modèles de régression possibles ont été établis et examinés dans cette étude. Le choix du meilleur modèle est basé le meilleur coefficient de détermination R_p^2 avec les p-1 variables indépendantes avec une régression pas à pas. En se basant sur les combinaisons possibles des paramètres, les résultats aboutissent à établir les relations suivantes avec un coefficient de corrélation supérieure à 0,71 :

•
$$b_g = 4.77*10^{-3}*C_e + 0.18*D_d - 0.0068*L_e + 2.95$$
 (II.51)

•
$$f_c = 4.85*10^{-5}*P - 00254*D_d + 2.52*10^{-3}*L_e + 0.00578*C_e + 1.12$$
 (II.52)

•
$$T_d = 2.45 * 10^{-3} * S + 0.529 I_c + 0.003 * C_e + 0.657$$
 (II.53)

•
$$b = 0.095 * I_c + 1.322 * 10^{-3} L_e + 1.95 * 10^{-4} * S + 2.625$$
 (II.54)

Les paramètres du modèle 'Pluie-Débit' **du bassin** de barrage BAREK sont obtenus à partir des formules (II.51), (II.52), (II.53), et (II.54) en utilisant les caractéristiques du bassin de barrage BAREK (Tableau III.30)

Tableau II.30 Paramètres du modèle 'Pluie-Débit' du bassin de barrage BAREK

Paramètre	bg	f_c	b	T _d
Bassin de barrage BAREK	2.38	1.62	2.98	1.34

On fixe les valeurs des paramètres du modèle pluie-débit pour simuler les débits journaliers du bassin du barrage à partir des précipitations journalières de la station d'Ouled Ali. Après la simulation ont déterminé les débits maximum du bassin (Tableau II.31)

Année	Débit maximum	Année	Débit maximum
	(m ³ /s)		(m³/s)
1979-1980	77	1994 -1995	15
1980-1981	16	1995 -1996	28
1981-1982	17	1996 -1997	61
1982-1983	55	1997 -1998	30
1983-1984	23	1998 -1999	28
1984 -1985	55	1999 -2000	67
1985 -1986	141	2000 -2001	28
1986 -1987	19	2001 -2002	20
1987 -1988	17	2002 -2003	70
1988-1989	12	2003 -2004	51
1989 -1990	47	2004 -2005	65
1990 -1991	78	2005 -2006	49
1991 -1992	54	2006 -2007	75
1992 -1993	23	2007 -2008	66
1993 -1994	47	2008-2009	15

Tableau II.31 Série des débits maximums obtenus par le modèle « Pluie-débit »

Les caractéristiques de la série est données dans le tableau suivant :

Tableau II.32 Caractéristiques de l'échantillon

Nombre d'observations	30
Minimum	12
Maximum	141
Moyenne	46.3
Ecart-type	27.9
Médiane	48
Coefficient de variation	0.603
Coefficient d'asymétrie	1.26
Coefficient d'aplatissement	4.98

Les résultats de l'ajustement à la loi «Log-normal » sont résumés dans le tableau suivant :

Période de retour (ans)	Probabilité au non	Débit max (m^3/s)	Intervalle de confiance
10000	depassement	100	()570)
10000	0.9999	400	143-657
1000	0.9990	266	122-417
100	0.9900	162	93.7-240
50	0.9800	136	84.2-197
20	0.9500	104	70.9-147
10	0.9000	82.6	60.1-113
5	0.8000	62.1	48.4-82.9
2	0.5000	36	30.0-47.4

Tableau II.33 Résultats de l'ajustement Log-normal

Figure II.12 loi log normal.

Tableau II.34	Débits de crues	fréquentiels.

Période de retour	2	5	10	20	50	100	1000	2000	10 000
Q_{max} (m ³ /s)	36	62.1	82.6	104	136	162	266	303	400

(II.56)

II.5.2 Hydrogramme de crue :

L'hydrogramme de crue est une identité de la crue, il nous donne les

Caractéristiques principales de la crues tel que :

- * volume de la crue.
- * La durée de la crue.
- * Le débit maximum de la crue (débit de pointe).

Pour le tracer de l'hydrogramme de crue, on a suivi la méthode de Sokolovski qui divise l'hydrogramme en deux parties non symétriques, une est calculée à partir du temps de montée et l'autre à partir du temps de la décrue.

La forme des crues (temps de montée et de décrue) est déterminée à l'aide de la méthode de SOKOLOVSKY, qui assimile l'hydrogramme de crue a deux équations paraboliques l'une pour le temps de montée et définie par :

II. 5. 2. 1 Méthode de Sokolovsky

Skolovsky Considère que l'hydrogramme de crue présente deux branches de courbes, l'une pour la montée et l'autre pour la décrue. Chaque une d'elle a sa propre équation :

Pour la montée :
$$Q_m = Q_{max,p\%} \left(\frac{t}{t_m}\right)^n$$
 (II. 55)

Pour la décrue : $Q_d = Q_{max,p\%} \left(\frac{t_d - t}{t_d}\right)^m$

Avec : n=2 et m=3;

 Q_m : Débit instantané de la montée $(m^3/_S)$;

 Q_d : Débit instantané de la décrue $({m^3/_S})$;

 $Q_{max,p\%}$: Débit maximum de fréquence donnée en $(m^3/_S)$;

 t_m : Temps de la montée de la crue en heures ;

 t_d : Temps de la décrue en heures.

 $t_m = t_c = 1.02 h; t_d = 2 * 1.02 h = 2.04 h;$ Le temps de base est donné comme suit :

 $T_b = t_m + t_d$; Avec : $t_d = \gamma * t_m$

- pour $S \leq 50Km^2$; on $a: \gamma = 2$
- pour des petits bassin versants non boisés, sol peu perméable, on a: $\gamma = 2 \div 2.5$
- pour des bassin versants boisés perméable on a: $\gamma = 3 \div 4$

II. 5. 3 Choix de la crue de projet

Le choix de la crue de projet dépend du degré de risque admis en cas de dépassement de celle-ci. Il intervient à la fois sur la sécurité du barrage et sur le dimensionnement des ouvrages d'évacuation et de la réserve supplémentaire nécessaire au laminage de la crue.

La première tâche dans la détermination d'une crue de projet est de fixer le degré de sécurité qui sera à la base de son estimation. Idéalement, ce choix devrait reposer sur des considérations techniques et économiques liées à l'aménagement.

Tableau II-35 Recommandations du Comité National Australien des Grands Barrages pour le calcul de la crue de projet.

Catégories des dommages supplémentaires	Crue de projet (probabilité de dépassement
	annuelle)
Elevés (pertes de vies, dommages	PMF÷1/10 000
considérables).	
Importants (pas de pertes de vies humaines,	$1/10\ 000 \div 1/1000$
dommages importants).	
Faibles (pas de pertes de vies humaines,	1/1000÷1/100
dommages légers).	

En se basant sur le tableau précédent, nous optons pour une crue de probabilité de 0.01% (T=10000 ans) pour des raisons de sécurité. Vu la présence d'une zone urbaine à l'aval du barrage

Figure II.13 Zone urbaine à l'aval du barrage

Nous avons déterminé l'hydrogramme de crue pour les trois débits choisi (Débit minimal ; Débit de l'approche déterministe ; Débit de la méthode d'analogie)

II. 5. 3. 1 Débit de la Formule de MALLET-GAUTHIER (débit minimal)

Le débit de la méthode : Q $_{0.01\%}$ = 164 m³/S

L'hydrogramme de crues de probabilité de 0.01% en fonction de temps par la méthode de *Sokolovsky*.

Figure II.14 Hydrogramme de crue à une probabilité de 0.01%.

II. 5. 3. 2 Débit de l'approche déterministe

Le débit pour l'approche : Q $_{0.01\%}$ = 400 m³/S

L'hydrogramme de crues de probabilité de 0.01% en fonction de temps par la méthode de *Sokolovsky*.

II. 5. 3. 3 Débit de la méthode d'analogie

Le débit pour la méthode d'analogie : Q $_{0.01\%}$ = 233 m³/S

L'hydrogramme de crues de probabilité de 0.01% en fonction de temps par la méthode de *Sokolovsky*.

Figure II.16 Hydrogramme de crue à une probabilité de 0.01%.

II. 6 Régularisation des débits

Le barrage *Barek*, situé dans la Willaya de Blida est destiné à accumulé, au but d'irrigation, les eaux usées épurées de la ville d'Alger.

II. 6. 1 Répartition mensuelle de l'apport 80%

II. 6. 1. 1 apport du bassin versant :

Tableau II.36 Répartition de l'apport moyen mensuel du bassin versant.

Mois	Sept.	Oct.	Nov.	Déc.	Jan.	Fév.	Mars	Avr.	Mai	Juin	Juil.	Aout	Total
A _{80%}													
(%)	4.05	9.08	14.61	15.60	13.35	12.35	9.46	10.74	8.29	1.30	0.42	0.76	100
A _{80%}													
(Mm^{3})	0.24	0.54	0.87	0.93	0.80	0.74	0.57	0.64	0.50	0.08	0.03	0.05	5.98

Source ANRH

L'apport de 80% est de 5.98 (Mm^3)

II. 6. 1. 2 Apport du transfert d'eaux usées épurées :

Tableau II.37 Répartition de l'apport moyen mensuel du transfert des eaux épurées.

Mois	Sept	Oct.	Nov.	Déc.	Jan.	Fév.	Mars	Avr.	Mai	Juin	Juil.	Aout
Apport transfer (Mm ³)	4.41	4.55	4.41	4.55	4.55	4.11	4.55	4.41	4.55	4.41	4.55	4.55

Source ANRH

L'apport annuel est de 53.60 (Mm^3)

II. 6. 1. 3 La somme

La somme des deux apports est donnée dans le tableau suivant :

 Tableau II.38
 Répartition de l'apport moyens mensuel.

Mois	Sept.	Oct.	Nov.	Déc.	Jan.	Fév.	Mars	Avr.	Mai	Juin	Juil.	Aout	An.
A _{80%} (Mm ³)	0.24	0.54	0.87	0.93	0.8	0.74	0.57	0.64	0.5	0.08	0.03	0.05	5.98
apport transfert (<i>Mm</i> ³)	4.41	4.55	4.41	4.55	4.55	4.11	4.55	4.41	4.55	4.41	4.55	4.55	53.6
Total (<i>Mm</i> ³)	4.65	5.09	5.28	5.48	5.35	4.85	5.12	5.05	5.05	4.49	4.58	4.6	59.58

Source ANRH

II. 6.2 Répartition mensuelle des besoins

Mois	Sept	Oct	Nov.	Déc	Jan.	Fév	Mars	Avr	Mai	Juin	Juil	Aout	An.
Irrigation (Mm ³)	7.29	1.52	0.00	0.00	0.00	0.00	1.52	3.04	5.07	7.61	11.67	12.68	50.73
Ecologique (Mm ³)	0.08	0.08	0.08	0.08	0.08	0.07	0.08	0.08	0.08	0.08	0.08	0.08	0.95
Total (U _{80%}) en (Mm ³)	7.37	1.6	0.08	0.08	0.08	0.07	1.6	3.12	5.15	7.69	11.75	12.76	51.68

 Tableau II.39
 Répartition des besoins moyennes mensuelles.

Source ANRH

II. 6.3 Courbes Capacité – Hauteur – Surface:

Le calcul approximatif des volumes a été fait par l'expression suivante :

Le volume élémentaire compris entre deux courbes de niveaux consécutives est :

$$\Delta V_i = \frac{S_{i-1} + S_i}{2} * \Delta H \tag{II.57}$$

Avec :

 ΔH : La différence d'altitude entre deux courbes de niveau consécutives H_i et H_{i-1} .

 S_i : Surface du plan d'eau correspond à la courbe de niveau H_i .

 S_{i-1} : Surface du plan d'eau correspond à la courbe de niveau H_{i-1} .

Le volume initial qui se trouve près du lit de l'Oued est pris égal à :

Le premier volume : $V_1 = \frac{2}{3} * S_1 * \Delta H_1$;

Le deuxième volume : $V_2 = \Delta V_1 + \left(\frac{S_1 + S_2}{2}\right) * \Delta H_2$;

Le nième volume : $V_n = V_{n-1} + \left(\frac{S_{i-1}+S_i}{2}\right) * \Delta H_n$.

Tableau II.40 Calcul des volumes d'eau corresponds aux différentes hauteurs.

L'altitude (m)	Surface (m ²)	Volume (Mm ³)
120	0	0
125	0,0415	0.1383
130	0.1108	0.5191
135	0.1962	1.2866
140	0.3093	2.5503
145	0.4847	4.5353
150	0.6147	7.2833
155	0.7854	10.7830
160	0.925	15.0590
165	1.092	20.1015
170	1.2508	25.9585
175	1.415	32.6230
180	1.635	40.2480
185	1,839	48.9330
190	2.063	58.6880
195	2.271	69.5230

Figure II.17 Courbe Capacité-Hauteur du bassin versant.

II. 6. 4 Calcul du volume utile :

Dans notre cas nous avons un l'apport dépasse la consommation, alors on fait une régularisation saisonnière. Pour ce faire nous aurons besoin de :

- L'apport interannuel $A_{80\%}$.
- La consommation totale.
- Le volume mort de la retenue.

Parmi les différentes méthodes de calcul du volume utile on a choisi de travailler avec la méthode de 'Bilan d'eau'' :

Procédé de calcul:

- Détermination de la période à bonne hydraulicité ;
- Détermination des périodes excédentaires et déficitaires sur un cycle hydrologique ;
- Calcul des volumes excédentaires et déficitaires V_s et V_d;
- Détermination du type de fonctionnement de la retenue et calcul du volume utile.

Nous avons : $V_{rf} = V_{ri} + (W - U)$

(II. 58)

Avec : V_{rf} : Volume de remplissage final ;

 V_{ri} : Volume de remplissage initial ;

W: Apport (Mm^3) ;

U: Consommation (Mm^3) .

II. 6. 4. 1 Régularisation saisonnière sans tenir compte des pertes

La capacité utile détermine le niveau de remplissage possible de la retenue dans les conditions normale d'exploitation c'est-à-dire la côte au niveau normale de la retenue NNR.

L'alternance de la période de remplissage ou de restitution s'appelle temps de fonctionnement, à ce dernier s'ajoutent les consignes d'exploitation qui sont au nombre de deux :

• 1ère Consigne d'exploitation :

Elle consiste à remplir le barrage jusqu'au niveau normale de la retenue (NNR) lors des crues et à le restituer après. L'excèdent d'eau est déversé par l'évacuateur de surface.

On fixe le niveau de remplissage initial et on détermine le remplissage final pour chaque mois en tenant compte du NNR et du niveau du volume mort NVM que l'en doit pas dépasser.

• 2ème Consigne d'exploitation :

Cette consigne consiste à faire évacuer les eaux excédentaires à travers la vidange de fond. Remplir et ensuite restituer au consommateur. Pour déterminer la période à bonne hydraulicité on calcule la différence entre les apports mensuels et la consommation mensuelle ; la période à bonne hydraulicité commence à partir du mois où on a la plus grande série des (+).comme le montre le tableau suivant :

Mois	Sept.	Oct.	Nov.	Déc.	Jan.	Fév.	Mars	Avr.	Mai	Juin	Juil.	Aout
A _{80%}												
(Mm ³)	4.65	5.09	5.28	5.48	5.35	4.85	5.12	5.05	5.05	4.49	4.58	4.6
U _{80%}												
(Mm ³)	7.37	1.6	0.08	0.08	0.08	0.07	1.6	3.12	5.15	7.69	11.75	12.76
A _{80%}												
-												
U _{80%}	-2.72	3.49	5.2	5.4	5.27	4.78	3.52	1.93	-0.1	-3.2	-7.17	-8.16

Tableau II.41 Détermination de la période à bonne hydraulicité.

On voit bien que la période à bonne hydraulicité est du mois de octobre jusqu'au mois d'avril.

II.6.4.1 Régularisation saisonnière sans tenir compte des pertes :

Voir dans l'annexe II.5 Tableau 1 : Régularisation saisonnière sans tenir compte des pertes.

On a les résultats suivants :

V_s>V_d

Fonctionnement à un temps

 $V_s=29.59 \text{ Hm}^3$ et $V_d=21.35 \text{ Mm}^3$

Excédent : $S = W_{80\%}$ - $U_{80\%} = 29.59-21.35 = 8.24 Mm3$

Alors :

 $V_u = V_d = 21.35 \text{ Mm}^3$

Le volume normal de la retenue sera :

 $V_{NNR} = Vu + Vm = 21.35 + 1.32 = 22.67 Mm^3$

II.6.4.2 Régularisation saisonnière en tenant compte des pertes :

Les pertes dans la retenue sont de deux sortes :

a) Pertes par évaporation :

On a:
$$V_{ep}=E_s*S_{moy}$$
 (II.59)

V_{ep} : volume perdu à cause de l'évaporation.

E_s : Evaporation mensuelle (m).

 S_{moy} : Surface du plan d'eau correspond au volume moyen (V_{moy}). Elle est déterminée sur la courbe S=f(V).

 V_{moy} : volume moyen $\left[V_{moy} = \frac{V_{rf,i} + V_{rf,i+1}}{2}\right]$.

 $V_{rf,i}$ et $V_{rf,i+1}$: les volumes de la retenue de deux mois successifs.

b) Pertes par infiltration :

Le volume mensuel des pertes par infiltration est donné par :

$$Vinf = (\delta * Vmoy)/100$$
 (II.60)

V_{inf} : volume perdu à cause de l'infiltration.

δ : Coefficient qui dépendant des conditions hydrogéologiques de la cuvette

Pour notre cas =1.5 (sol à moyenne perméabilité)

$$V_{\text{moy}}$$
: volume moyen $\left[V_{\text{moy}} = \frac{V_{\text{rf},i} + V_{\text{rf},i+1}}{2}\right]$

 $V_{rf,i}$ et $V_{rf,i+1}$:les volumes de la retenue de deux mois successives.

Figure II.18 Courbe surface-capacité

II.6.4.2.1 premiere approximation :

Excédent:
$$S'=W_{80\%}-(U_{80\%}+\Pi)=59.59-54.95=4.64 \text{ Mm}^3$$
 S'=4.64 Mm³

 $V_s=27.64 \text{ Mm}^3 \text{et } V_d=22.99 \text{ Mm}^3$; $V_s > V_d$ donc la retenue fonctionne à un temps.

Alors : $V'_{u}=V_{d}=22.99 \text{ Mm}^{3}$

Le volume normal de la retenue sera :

$$V'_{NNR} = V'u + Vm = 22.99 + 1.32 = 24.31 Mm^3$$

1- Estimation de l'erreur :

On a:
$$\zeta = \frac{V'u - Vu}{V'u}.100$$

 ζ =7.13 > 5 % donc la condition n'est pas vérifiée.

II.6.4.2.2 deuxieme approximation

Excédent: $S''=W_{80\%}-(U_{80\%}+\Pi)=59.59-54.99=4.6 \text{ Mm}^3$ S"=4.6 Mm³

 $V_s=27.62 \text{ Mm}^3 \text{et } V_d=23.02 \text{ Mm}^3$; $V_s > V_d$ donc la retenue fonctionne à un temps.

Alors :
$$V''_u = V_d = 23.02 \text{ Mm}^3$$

Le volume normal de la retenue sera :

 $V'_{NNR} = V'u + Vm = 23.02 + 1.32 = 24.34 Mm^3$

 $V"_{NNR} = 24.34 \text{ Mm}^3$ NNR= 168.62 m NGA.

II.6.4.2.3 Estimation de l'erreur :

AN: $\zeta = 0.13\% < 5\%$ donc la condition est vérifiée.

Note : La représentation des deux consignes d'exploitations est représentée dans l'annexe III.5 Tableau 2.

$$V'_{u} = 22.99 \text{ Mm}^{3}$$

 $V''_{u} = 23.02 \text{ Mm}^{3}$

II.7.Etude de laminage :

Dans ce partie nous avons déterminé le hauteur déversé et le débit déversé pour les différente débit par la Méthode de Kotcherine pour faire une comparisant entre les trois méthodes de calcule du débit :

- 1. Débit de la formule de MALLET-GAUTHIER : $Q_{0.01\%}$ =165 m3/s
- 2. Débit de la méthode d'analogie : $Q_{0.01\%}$ =233 m3/s
- 3. Débit de la méthode d'approche : $Q_{0.01\%}$ =400 m3/s

II.7.1 Laminage des crues :

On appel laminage d'une crue la réduction du débit de pointe de son hydrogramme de crue par les moyens artificiels et cela à travers un réservoir. Le laminage à un rôle important dans le fonctionnement adéquat de l'ouvrage, sa sécurité d'une part, d'une autre part d'optimiser le cout de l'ouvrage d'évacuation et de contrer les inondations à l'aval.

II.7.2 Principe du laminage :

Volume entrant = volume emmagasiner + volume sortant

$$Qe^*dt = S^*dh + q_d^*dt$$
 (II.61)

Avec :

Qe: le débit entrant de la crue.

S : la surface du plan d'eau de la cuvette.

qe : le débit évacuer.

Figure II.19 Principe du laminage.

II.7.3. Méthode de Kotcherine

La méthode se base sur les principes suivants :

1-l'hydrogramme de crue est considéré comme un triangle ou un trapèze.

2-les débits transitant par l'évacuateur de crue se déversent selon une fonction linéaire.

3-le laminage commence avec le remplissage de la cuvette au niveau NNR ;

4-les pertes par infiltration et évaporation sont considérées comme nulles au moment de la crue.

II.7.3.1 Calcul du débit déversant pour différents valeurs de hd et b :

Le procédé de calcul consiste à :

- Donner des différentes valeurs des lames d'eau hd,
- Définir la cote PHE pour chaque lame,
- A l'aide de la courbe capacité-hauteur ; on détermine le volume VPHE relatif à chaque PHE.
- Définir le volume en charge pour chaque lame.
- Déterminer le volume de la crue pour l'hydrogramme ayant une forme triangulaire :

$$V c = 0.5 \times Q_{\max p\%} \times T$$
 (II.62)

- A l'aide de la formule $q_{\text{max}p\%}=0.85*Q_{\text{max}p\%}\times(1-V_f/V_{cr})$ (II.63)
- Déterminer le débit de crues à évacuer correspondant à chaque lame hd.

$$q = mb\sqrt{2g}H_0^{3/2}$$
 (II.64)

Avec :

- m : Coefficient de débit
- b : Largeur de déversoir
- H₀: la charge globale
- g : l'accélération de pesanteur (g=9.81 m²/s)

II.7.3.1.1 Débit de Formule de MALLET-GAUTHIER : Q0.01%=165 m3/s

Tableau II.42 Débit de crues à évacuer correspondant à chaque lame hd

					qmax,p% (m3/s)									
					b en m									
hd (m)	PHE (m)	Vphe(Mm3)	Vf (Mm3)	qmax(m3/s)	10	20	30	40	50	60	70	80	90	100
0.2	168.82	24.35	0.01	138.39	1.94	3.88	5.82	7.77	9.71	11.65	13.59	15.53	17.47	19.41
0.4	169.02	24.58	0.24	102.81	5.49	10.98	16.47	21.96	27.45	32.94	38.44	43.93	49.42	54.91
0.6	169.22	24.81	0.47	67.05	10.09	20.17	30.26	40.35	50.44	60.52	70.61	80.70	90.79	100.87
0.8	169.42	25.05	0.71	31.29	15.53	31.06	46.59	62.12	77.65	93.18	108.71	124.24	139.77	155.30
0.9	169.52	25.16	0.82	13.41	18.53	37.06	55.59	74.13	92.66	111.19	129.72	148.25	166.78	185.31
0.95	169.57	25.22	0.88	4.47	20.10	40.19	60.29	80.39	100.48	120.58	140.68	160.78	180.87	200.97

Figure II.20 Courbes H= f (Q,q)

Figure II.21 Courbes q laminé=f(Q,Vf)
II.7.3.1.2 Débit de méthode d'analogie : Q_{0.01%}=233 m3/s

Tableau II.43 Débit de crues à évacuer correspondant à chaque lame hd

						qmax,p% (m3/s)								
									be	nm				
hd (m)	NPHE (m)	VPHE (Mm3)	Vf (Mm3)	qmax (m3/s)	10	20	30	40	50	60	70	80	90	100
0.2	168.82	24.58	0.24	162.19	1.94	3.88	5.82	7.77	9.71	11.65	13.59	15.53	17.47	19.41
0.4	169.02	24.81	0.47	126.50	5.49	10.98	16.47	21.96	27.45	32.94	38.44	43.93	49.42	54.91
0.6	169.22	25.04	0.70	90.81	10.09	20.17	30.26	40.35	50.44	60.52	70.61	80.70	90.79	100.87
0.8	169.42	25.28	0.94	55.12	15.53	31.06	46.59	62.12	77.65	93.18	108.71	124.24	139.77	155.30
1	169.62	25.51	1.17	19.43	21.70	43.41	65.11	86.82	108.52	130.23	151.93	173.63	195.34	217.04
1.1	169.72	25.63	1.29	1.58	25.04	50.08	75.12	100.16	125.20	150.24	175.28	200.32	225.36	250.40

Figure II.22 Courbes H=f(Q,q)

Figure II.23 Courbes q laminé=f (Q,V_f)

II.7.3.1.3 Débit de méthode d'approche : Q_{0.01%}=400 m³/s

Tableau II.44 Débit de crues à évacuer correspondant à chaque lame hd

					amay nº/ (m2/c)									
						qmax,p% (m3/s)								
								-	be	nm	-			-
hd (m)	PHE (m)	VPHE(Mm3)	Vf (Mm3)	qmax (m3/s)	10	20	30	40	50	60	70	80	90	100
0.2	168.82	24.58	0.24	303.79	1.94	3.88	5.82	7.77	9.71	11.65	13.59	15.53	17.47	19.41
0.4	169.02	24.81	0.47	267.75	5.49	10.98	16.47	21.96	27.45	32.94	38.44	43.93	49.42	54.91
0.6	169.22	25.04	0.70	231.70	10.09	20.17	30.26	40.35	50.44	60.52	70.61	80.70	90.79	100.87
0.8	169.42	25.28	0.94	195.66	15.53	31.06	46.59	62.12	77.65	93.18	108.71	124.24	139.77	155.30
1	169.62	25.51	1.17	159.62	21.70	43.41	65.11	86.82	108.52	130.23	151.93	173.63	195.34	217.04
1.2	169.82	25.75	1.41	123.58	28.53	57.06	85.59	114.12	142.66	171.19	199.72	228.25	256.78	285.31
1.4	170.02	25.99	1.65	85.68	35.95	71.91	107.86	143.81	179.77	215.72	251.67	287.63	323.58	359.53
1.6	170.22	26.26	1.92	44.67	43.93	87.85	131.78	175.71	219.63	263.56	307.48	351.41	395.34	439.26
1.8	170.42	26.53	2.19	3.65	52.41	104.83	157.24	209.66	262.07	314.49	366.90	419.32	471.73	524.15

Figure II.24 Courbes H=f(Q,q)

Figure II.25 Courbes q laminé=f(Q,Vf)

II.7.4. Etude de comparaison

Les résultats de l'étude du laminage des crues millénaires de quelques largeurs du déversoir pour les différents débits sont résumés dans le tableau suivant :

	H	Hauteur(m)			aminé (n	n ³ /s)	Volume forcé (Mm ³)		
	Q=400	Q=233	Q=165	Q=400	Q=233	Q=165	Q=400	Q=233	Q=165
Largeur(m)	(m3/s)	(m3/s)	(m3/s)	(m3/s)	(m3/s)	(m3/s)	(m3/s)	(m3/s)	(m3/s)
10	1.61	0.98	0.87	44	21	18	1.93	1.16	0.79
20	1.43	0.90	0.80	76	38	32	1.7	1.06	0.71
30	1.30	0.83	0.74	100	50	42	1.53	0.97	0.64
40	1.21	0.78	0.69	118	61	50	1.42	0.91	0.58
50	1.14	0.73	0.65	131	68	58	1.33	0.86	0.53
60	1.07	0.70	0.62	143	75	64	1.26	0.82	0.5
70	1.03	0.66	0.59	152	80	69	1.2	0.77	0.46
80	1.00	0.63	0.56	154	85	75	1.15	0.74	0.43
90	0.96	0.60	0.54	164	89	78	1.08	0.7	0.4
100	0.88	0.58	0.52	178	94	81	1.03	0.68	0.38

 Tableau II.45 Résultat de calcul par la méthode de Kotcherine.

La variation de l'étude du laminage des crues millénaires pour les différents débits représente les figures suivantes :

Figure II.26 Variation de h_d en fonction de largeur

Figure II.27 Variation de q laminé en fonction de largeur

Figure II.28 Variation de volume forcé en fonction de largeur

Conclusion :

On continue notre étude par le débit donné par l'approche déterministe

<u>Chapitre II</u>

II.8. Etude d'optimisation

Le but de l'étude d'optimisation est de déterminer la largeur optimale de l'évacuateur de crue correspondante à la hauteur optimale de la digue, afin d'obtenir le devis le plus économique de l'aménagement.

Le calcul consiste à évaluer le coût approximatif de l'ouvrage pour les différentes largeurs déversant correspondantes aux différentes hauteurs de la digue

Dans notre étude nous avons choisi le laminage de débit d'approche déterministe

II.8.1 La revanche

C'est la distance verticale entre la crête de la digue et le plan d'eau de la retenue(NPHE). Elle est en fonction de la hauteur des vagues H, de la vitesse du vent U et de la vitesse de propagation des vagues V dans la retenue.

La revanche minimale est donnée par la relation suivante :

$$R = H + \frac{V^2}{2g} \tag{II.64}$$

La hauteur des vagues H est estimée à l'aide des formules suivantes :

II.8.1 .1 Formule de Stevenson

$H = 0.75 + 0.34 F^{0.5} - 0.26 F^{0.25}$	(11.65
11 = 0.73 + 0.341 = 0.201	(11.0)

F: le fetch F = 2.4 Km (II.66)

II.8.1 .2 Formule de Molitor

 $H = 0.75 + 0.032 (U.F)^{0.5} - 0.27 F^{0.25}$ (II.67)

U : la vitesse du vent mesurée en Km/h ; U=3.5 Km/h.

II.8.1 .3 Formule de Mallet-paquant $H = 0.5 + 0.33 (F)^{0.5}$ (II.68)

Les résultats de calcul sont regroupés dans le tableau suivant :

Tableau II.46 Hauteurs des vagues.

Formule	H (m)				
Stevenson	0.95				
Molitor	0.51				
Mallet-paquant	1.01				

On adopte donc la valeur de H=1.01 m pour la sécurité.

La vitesse de propagation des vagues est donnée par la relation de Gaillard :

(II.69)

V = 1.5 + 2H

H : hauteur des vagues (en m).

V= 3.52 m/s

Donc la revanche sera R = 1.64 m

La revanche séismique est de 1 m pour les barrages dont la hauteur dépasse les 45 m.

II. 8. 2 Le tassement

Le tassement se calcule par les formules suivantes :

$$T = 0.015 * H_b$$
 (II. 70)

$$T = 0.001 * H_b^{3/2}$$
(II. 71)

T : Tassement de la crête du barrage.

 H_b : Hauteur du barrage.

Les tassements sont estimés à 0.73m

Donc la revanche retenue est : R=1.64+1+0.73=3.37m on prend de R=3.5m

II.8.3 Largeur en crête

La largeur en crête peut être évaluée à l'aide des formules suivantes :

• F	ormule T.KNAPPEN	$b=1.65H_{b}^{0.5}$	(II.72)
• F	ormule E.F.PREECE	$b=1.1H^{0.5}+1$	(II.73)
• F	ormule PRATIQUE	b=(5/3).H ^{0.5}	(II.74)
• F	ormule SIMPLIFIEE	$b=3.6.H^{1/3}-3$	(II.75)

Les résultats de calcul selon les différentes relations sont récapitulés ci-après :

Tableau II.47 Calcul de la largeur en crête

b(m)	h(m)	q m3/s	Hb	b (knappen)	b (Preece)	b (simplifiée)	b (moy)	adapté
10	2	60	54.72	12.21	9.14	10.67	10.67	
20	1.7	92	54.42	12.17	9.11	10.64	10.64	
30	1.45	115	54.17	12.14	9.10	10.62	10.62	11 m
40	1.3	130	54.02	12.13	9.08	10.61	10.61	
50	1.2	140	53.92	12.12	9.08	10.60	10.60	

II.8.4 Calcul des coûts

II.8.4.1 Calcul de la digue

En premier lieu, on calcule le volume de la digue pour les différentes lames déversantes afin de déterminer son coût.

- ✓ tracer le profil longitudinal du barrage et on va choisir des sections à travers le barrage.
- ✓ On détermine la hauteur de la digue connaissant la cote de crête et celle au pied du barrage.
- ✓ Calcul de la largeur au pied du barrage au droit de la section

Bpi=b+(m1+m2)*Hbi

(II.76)

b : largeur en crête

Bpi : largeur du pied du barrage au droit de la section i

Et m1 et m2 sont le fruit du talus amont et aval.

- ✓ Calcul de la section S = ((b+Bpi)/2) * Hbi.
- ✓ Calcul du volume total du barrage Vb= \sum Vi avec Vi= ((Si+Si+1)/2)*d)

Figure II.29 Principe de calcul du volume d'un barrage

On a aussi : Hb = NNR - Cf + hdév + R + t**(II.77)**

b (m)	10	20	30	40	50	60	70	80	90	100
$a \max(m^{3}/s)$	44	76	100	118	131	143	152	154	164	178
h d (m)	1.61	1.43	1.3	1.21	1.14	1.07	1.03	1	0.96	0.88
H barrage (m)	53.73	53.55	53.42	53.33	53.26	53.19	53.15	53.12	53.08	53
cote de crête (m)	173.73	173.55	173.42	173.33	173.26	173.19	173.15	173.12	173.08	173
surface N°1 (m ²)	0	0	0	0	0	0	0	0	0	0
surface N°2 (m ²)	3572	3532	3504	3484	3469	3454	3445	3438	3430	3412
surface N°3 (m ²)	7033	6983	6946	6921	6902	6882	6871	6863	6852	6830
surface N°4 (m ²)	8530	8475	8435	8408	8387	8365	8353	8344	8332	8308
surface N°5 (m ²)	7304	7253	7216	7191	7171	7151	7140	7131	7120	7098
surface N°6 (m ²)	4058	4017	3987	3967	3951	3935	3926	3919	3910	3892
surface N°7 (m ²)	0	0	0	0	0	0	0	0	0	0
istance N°1 (m)	60.68	60.16	59.78	59.52	59.32	59.11	59.00	58.91	58.79	58.56
distance N°2 (m)	62.65	62.65	62.65	62.65	62.65	62.65	62.65	62.65	62.65	62.65
distance N°3	64.3	64.3	64.3	64.3	64.3	64.3	64.3	64.3	64.3	64.3
(m) distance Nº4	71.08	71.08	71.08	71.08	71.08	71.08	71.08	71.08	71.08	71.08
(m)			,		,	,	,	,	,	,
distance N°5 (m)	63.06	63.06	63.06	63.06	63.06	63.06	63.06	63.06	63.06	63.06
distance N°6	72.75	72.19	71.79	71.52	71.30	71.09	70.96	70.87	70.75	70.50
(M)	108377	106251	104732	103689	102881	102078	101621	101279	100824	99917
volume N°2 (m ³)	332202	329381	327351	325949	324860	323774	323153	322688	322069	320832
volume N°2 (m ³)	500350	496959	494516	492829	491518	490209	489462	488902	488156	486666
volume N°4 (m ³)	562757	558978	556256	554375	552915	551457	550624	550000	549169	547508
volume N°5 (m ³)	358253	355339	353242	351793	350669	349546	348905	348425	347785	346507
volume N°6 (m ³)	147598	144989	143123	141840	140847	139858	139295	138874	138314	137197
volume (m3)	2009536	1991896	1979220	1970475	1963691	1956922	1953061	1950168	1946316	1938626
Coûts (MDA)	804	797	792	788	785	783	781	780	779	775
Longueur (m)	394.52	393.44	392.66	392.12	391.71	391.29	391.05	390.87	390.63	390.15

Remarque :

Pour les fruits des talus de la digue amont et aval on prend respectivement 3.0 et 2.5 mètres, et pour Le prix du mètre cube du remblai est estimé à 400 DA. [A.N.B.T].

(II.79)

II.8.4.2 Calcul du coût de l'évacuateur de crues

II.8.4.2 .1 Cout du déversoir

On opte pour le déversoir type « Creager » ce dernier s'adapte mieux à la lame d'eau de façon que celle-ci ne puisse pas se décoller et n'exerce pas d'effort sur le parement. Le déversoir sera construit en béton armé. La section transversale du déversoir est donnée par:

$$\frac{\mathbf{Y}}{\mathbf{H}} = 0,47 \cdot \left(\frac{\mathbf{X}}{\mathbf{H}}\right)^{1,80} \tag{II.78}$$

Avec : H : Charge sur le seuil (m). Y : Ordonnée du profil (m).

X : Abscisse du profil (m).

Le volume du déversoir sera donc :

Vdev=S*b

S : Section transversale (m^2).

b : Largeur déversant (m).

Le prix du mètre cube du béton armé est estimé à 25000DA.

Profile N°	b(m)	H dever(m)	S (m ²)	V (m ³)	Coûts(MDA)
1	10	1.61	4.8	48	1.20
2	20	1.43	4.5	90	2.25
3	30	1.3	4.35	130.5	3.26
4	40	1.21	4.125	165	4.13
5	50	1.14	4.05	202.5	5.06
6	60	1.07	3.9	234	5.85
7	70	1.03	3.825	267.75	6.69
8	80	1	3.675	294	7.35
9	90	0.96	3.6	324	8.10
10	100	0.88	3.45	345	8.63

Tableau II.49 Résultats de calculs du coût du déversoir pour les différentes largeurs

II.8.4.2 .2 Coût du canal d'approche

Tableau II.50 Résultats de calculs du coût du canal d'approche pour les différentes largeurs

N°	b (m)	h d (m)	H _{ca} (m)	Surface (m ²)	Volume de béton (m ³)	Coût du canal d'approche (MDA)
1	10	1.61	5.25	157.5	78.75	1.97
2	20	1.43	5.07	152.1	76.05	1.90
3	30	1.3	4.94	148.2	74.1	1.85
4	40	1.21	4.85	145.5	72.75	1.82
5	50	1.14	4.78	143.4	71.7	1.79
6	60	1.07	4.71	141.3	70.65	1.77
7	70	1.03	4.67	140.1	70.05	1.75
8	80	1	4.64	139.2	69.6	1.74
9	90	0.96	4.6	138	69	1.73
10	100	0.88	4.52	135.6	67.8	1.70

Le canal d'approche est un dispositif qui permet de réduire au minimum les pertes de charges et de guider calmement la crue vers le seuil déversant. Il est de forme rectangulaire avec une charge d'eau « H » et une revanche de 1.64 m avec 2 m comme hauteur de pelle.

D'où la hauteur totale du mur : $Hca = h_d + R + P$ (II.80)

« L » est déterminée d'après la topographie est égale à 30 m et « e » est prise égale à 0,5m.

D'où le volume du canal d'approche est estimé par :

$$V = S.e = L. H_{ca}.e$$
 (II.81)

II.8.4.2 .3 Coût du coursier

On opte pour un coursier de section rectangulaire avec une longueur approximative qui est 330 m.

Le volume du béton de coursier est donné par :

$$V_{b\acute{e}ton} = S_{b\acute{e}ton} \times L_{coursier}$$
(II.82)

L'épaisseur du radier et des murs bajoyers est prise égale à 0,5 mètres.

Largeur du coursier est donnée par :

$$\mathbf{b}_{cou} = \left(\mathbf{Q}_{e,max}\right)^{0,4} \tag{II.83}$$

NIO	h (m)	q laminé	b _c (m)	Volume de béton	Coût du coursier
1	D (III)	(m ³ /s)		(m ³)	(MDA)
1	10	44	4.543	1622	40.56
2	20	76	5.654	1758	43.95
3	30	100	6.310	1866	46.65
4	40	118	6.741	1937	48.43
5	50	131	7.029	1985	49.62
6	60	143	7.280	2026	50.66
7	70	152	7.460	2056	51.40
8	80	154	7.499	2062	51.56
9	90	164	7.690	2094	52.35
10	100	178	7.946	2136	53.40

Tableau II.51 Récapitulatif des coûts du coursier pour différentes largeurs déversant

Tableau II.52 Prix total de l'évacuateur pour les différentes largeurs déversant.

N°	b (m)	h _d (m)	Н ь (m)	Canal d'approche (MDA)	Coût Déversoir (MDA)	Coût Coursier (MDA)	Coût Excavation (MDA)	Coût total du l'évacuateur (MDA)
1	10	1.61	53.73	1.97	1.20	40.56	0.91	44.64
2	20	1.43	53.55	1.90	2.25	43.95	1.79	49.88
3	30	1.3	53.42	1.85	3.26	46.65	2.64	54.40
4	40	1.21	53.33	1.82	4.13	48.43	3.49	57.86
5	50	1.14	53.26	1.79	5.06	49.62	4.34	60.81
6	60	1.07	53.19	1.77	5.85	50.66	5.19	63.46
7	70	1.03	53.15	1.75	6.69	51.40	6.04	65.88
8	80	1	53.12	1.74	7.35	51.56	6.89	67.53
9	90	0.96	53.08	1.73	8.10	52.35	7.74	69.91
10	100	0.88	53	1.70	8.63	53.40	8.59	72.31

b (m)	h _d (m)	H _b (m)	coût de la digue (MDA)	Evacuateur de crue (MDA)	Coût Total (MDA)
10	1.61	53.73	803.81	44.64	848.45
20	1.43	53.55	796.76	49.88	846.64
30	1.3	53.42	791.69	54.40	846.09
40	1.21	53.33	788.19	57.86	846.05
50	1.14	53.26	785.48	60.81	846.29
60	1.07	53.19	782.77	63.46	846.23
70	1.03	53.15	781.22	65.88	847.10
80	1	53.12	780.07	67.53	847.60
90	0.96	53.08	778.53	69.91	848.43
100	0.88	53	775.45	72.31	847.76

Tableau II.53 Coût total pour les différentes largeurs déversant.

D'après le tableau on trouve les paramètres suivants :

- **≻** b=40m.
- ≻ H=1.21m
- ▶ q=118 m³/s.
- ≻ H_b=53.33 m
- \blacktriangleright Cote en crête =173.33 m

Tableau II.54 Caractéristiques du barrage.

Dénomination	Unités	Valeurs
Volume mort	Mm ³	1.32
Volume utile	Mm ³	23.02
Volume au NNR	Mm ³	24.34
Cote du fond	m NGA	120
Cote NNR	m NGA	168.62
Cote NPHE	m NGA	169.83
Cote en crête	m NGA	173.33
Largeur en crête	М	11
Largeur du déversoir	М	40
Charge déversée	М	1.21

II.9 Laminage pour un déversoir de largeur b=40mètres :

Connaissent cette largeur, la courbe des débits déversant en fonction de la variation du volume d'eau au-dessus du déversoir est calculé et tracée.

Cote (m)	H _d (m)	q (m ³ /s)	1/2.q.T (m ³)	V f (Mm ³)	v+1/2.q.T (Mm ³)
	(111)	(11173)	(111)	(191111)	
168.62	0	0.00	0.00	0.00	0.00
168.72	0.1	2.75	4941.72	0.12	0.13
168.82	0.2	7.77	13977.29	0.24	0.25
168.92	0.3	14.27	25677.93	0.35	0.38
169.02	0.4	21.96	39533.75	0.47	0.51
169.12	0.5	30.69	55250.10	0.59	0.64
169.22	0.6	40.35	72628.15	0.71	0.78
169.32	0.7	50.85	91521.92	0.82	0.91
169.42	0.8	62.12	111818.34	0.94	1.05
169.52	0.9	74.13	133426.42	1.06	1.19
169.62	1	86.82	156270.89	1.17	1.33
169.72	1.1	100.16	180288.12	1.29	1.47
169.82	1.2	114.12	205423.42	1.41	1.61
169.92	1.3	128.68	231629.09	1.53	1.76
170.02	1.4	143.81	258863.09	1.64	1.90

Tableau II.55 Volumes et débit déversant.

On trace la courbe des débits déversant en fonction de la variation du volume d'eau au-dessus du déversoir Figure II.31

Tableau II.56 Laminage. Annexe (III.6)

Figure II.31 Hydrogramme des débits entrants et sortants

Conclusion

L'étude hydrologique effectuée nous a permis d'avoir tous les caractéristiques et paramètres essentiels (crue, précipitation, bassin versant), qui seront des éléments fondamentaux dans le dimensionnement du barrage.et pour notre étude hydrologique nous avons déterminé le débit de crue pour l'approche déterministe ($Q_{0.01\%}$ =400 m³/s), et faire une comparaison entre les différentes méthodes de l'estimation de débit. Et comme on dit toujours, le dimensionnement des ouvrages hydrauliques est lié à une bonne estimation des volumes d'eau et des débits disponibles et extrêmes.

Chapitre III : Etude des Variantes

III.1 L'importance des évacuateurs de crues

Le dessein basique d'un évacuateur de crues, consiste à offrir un moyen de contrôle et d'acheminement de l'écoulement du réservoir au pied aval du barrage. L'évacuateur de crue peut être utiliser pour fournir un moyen de contrôle et de prévention d'inondations que ce soit en combinaison avec les pertuis ou les vidanges de fond, ou, dans certains cas, en tant que la seule structure de contrôle des crues.

Si l'on excepte les quelques retenues dont le remplissage est complètement maitrisé, un barrage est toujours équipé d'un évacuateur de crue. Quelques barrages poids ou poids-voute, en maçonnerie ou en béton, sont entièrement déversant : l'évacuateur de crue est alors le barrage luimême.

L'importance de l'évacuateur est très variable d'un type de barrage à l'autre :

- Pour un barrage en remblai, l'évacuateur est absolument fondamental, car un tel barrage ne résiste pas aux déversements ;
- Un barrage poids en maçonnerie ou en béton résiste habituellement bien aux déversements. Cependant, surtout lorsque sa hauteur est faible, sa stabilité est fortement liée au niveau atteint par les plus hautes eaux. En outre, un déversement peu dégrader un remblai de confortement aval et diminuer la stabilité de l'ouvrage ;
- Un barrage voute résiste habituellement bien aux déversements. C'est le type de barrage qui tolère le mieux à une sous-évaluation de la crue de projet ;
- Un barrage à contreforts est à considérer de ce point de vue comme une variante du barrage poids.

III.2 Fonction des évacuateurs de crues

La fonction de l'évacuateur de crues est de permettre d'évacuer, en toute sécurité, les eaux excédentaires qui arrivent dans la retenue. Ces eaux excédentaires sont :

- Les crues sur le ou les cours d'eau qui alimentent la retenue, ainsi que le ruissellement direct sur la retenue ;
- Pour les retenues alimentées par pompage ou dérivation, les débits excédentaires dérivés vers la retenue : erreur d'arrêt d'alimentation à retenue pleine, débit dérivé supérieur aux prévisions ;

III.3 Critères de choix d'un évacuateur de crue

Le nombre et la variété des critères de choix et de conception d'un évacuateur de crues donnent naissance à une diversité de types d'évacuateurs et de leurs équipements. C'est précisément l'art de l'ingénieur de concevoir des dispositifs d'évacuation à la fois économiques et surs, qui s'adaptent bien aux conditions imposées.

Le choix d'un évacuateur de crue résulte le plus souvent d'un compromis entre de nombreuses contraintes. Mis à part le souci du coût de construction et la disponibilité en main d'œuvre, les facteurs intervenants dans le choix des évacuateurs de crues sont :

- La qualité des prévisions de crues, dont la fiabilité est liée à l'étendue et à la valeur des informations collectées dans le passé en ce qui concerne le régime du cours d'eau et les précipitations exceptionnelles du site. En général, les évacuateurs de crue de surface sont le plus usités en cas d'incrédibilité de telles études, puisque le débit reste contrôlé par le seuil d'entrée pour tous les niveaux au-dessus du niveau normal de retenue, contrairement aux évacuateurs en charge, dont la capacité diminue au fur et à mesure que la capacité du réservoir augmente ;
- La conception du barrage, dont l'influence est grandiose quant à la possibilité d'incorporer tout ou une partie des évacuateurs. en effet, les barrages en remblai contrairement à ceux en béton, requièrent des évacuateurs séparés pour lesquels la réorientation du flot déversant à l'aval pose constamment un problème difficile ;
- Les conditions topographiques et géologiques, dont la mesure ou un site peut naturellement être favorable à un évacuateur de surface non vanné ou à des ouvrages souterrains avec ou sans possibilité de mise en charge ;
- L'intensité de la séismicité de la zone d'aménagement ; dont la mesure où il y a eu identification des zones assujetties aux d'une part aux glissements de terrain et les écroulements en masse, et d'une autre part, les instabilités souterraines et les chutes de blocs.
- Les possibilités de suivi et d'entretien, dépendant de la durée entassée de fonctionnement et de la susceptibilité du développement des dégradations par cavitation et abrasion ;

• L'utilisation à l'aval du barrage ;

Sur un autre registre, les incertitudes de l'hydrologie, mais aussi les difficultés de mise en œuvre et d'entretien conduisent presque toujours à écarter les évacuateurs en charge de type tulipe.

Souvent, les objectifs visés d'un projet et ces effets sociaux, environnementaux, et économiques influencent le dimensionnement hydraulique de l'évacuateur de crue. Une optimisation de la conception et l'exploitation nécessite un bon sens du concepteur de la précision, fiabilité des calculs, délicatesse, et des variations possibles des données utilisées. L'importance croissante des considérations environnementales, nécessite que le concepteur maintienne une liaison approchée avec d'autres disciplines pour s'assurer que l'aspect environnemental ainsi que d'autres objectifs sont satisfais lors du dimensionnement.

III.4 Classification des évacuateurs de crues

Un barrage, s'il retient les écoulements, doit aussi conserver la faculté d'évacuer les crues exceptionnelles. Mais il faut que cette évacuation ait lieu sans que la lame d'eau ne le submerge car il aurait toute chance d'être gravement endommagé ou détruit. On prévoit alors un organe d'évacuation à fonctionnement automatique appelé évacuateurs de crues.

III.4.1 Les évacuateurs à surface libre

III.4.1.1 Les évacuateurs à seuil libre

D'une manière générale, un évacuateur de surface est constitué :

- D'un déversoir ou seuil au-dessus duquel la lame d'eau peut s'écouler. Il se développe en général linéairement, mais il peut également être curviligne ;
- D'un chenal dans lequel débite le seuil. Son axe peut être parallèle au seuil (entonnement latéral) ou perpendiculaire à celui-ci 'entonnement frontal) ;
- D'un coursier dont la pente est plus forte, permettant ainsi à l'eau de rattraper la différence de cote entre le niveau de la retenue et le lit de la rivière à l'aval ;
- D'un ouvrage dissipateur qui permet d'abattre l'énergie érosive de l'eau ;

Il peut exister des cas où le déversoir des surfaces couvre la totalité du barrage. On parle alors de barrages déversant. Sur cette catégorie d'ouvrage, le talus aval, qui joue alors le rôle de coursier, doit être protégé en conséquence.

III.4.1.2 Les déversoirs à entonnement latéral

Le critère de choix de ce type d'ouvrage est essentiellement topographique. En effet, si les versants sont à forte pente, un déversoir à entonnement frontal suppose des volumes de béton importants. Le déversoir à entonnement latéral, situé en rive et dont l'axe longitudinal est parallèle à celui de la vallée, occupera une emprise notablement plus réduite.

Cependant il faut prévoir un coursier relativement long pour restituer les eaux dans le lit mineur et éviter ainsi l'érosion. Ce problème peut être tourné si l'on a l'opportunité de placer le déversoir sur un col, l'entonnement sera alors le plus souvent frontal, ce qui permet le déversent dans une vallée voisine. Ainsi, si la topographie l'autorise, le coursier peut être plus réduit et de plus, en cas de crue exceptionnelle, les éventuels affouillements ne menacent pas directement le barrage.

D'un point de vue constructif, ce sont aussi des évacuateurs en béton, dont le seuil débite dans une « boite » aux parois verticales en béton armé, qui est raccordée au coursier. L'axe du coursier est ainsi parallèle au seuil.

III.4.1.3 Le déversoir en béton armé de type « bec de canard »

Le « bec de canard », qui n'est qu'une variante du déversoir à entonnement latéral (en fait il est mixte, « un peu frontal et beaucoup latéral ») est constitué d'un seuil présentant une partie curviligne, généralement semi circulaire, et deux parties rectilignes de chaque côté. Mais, pour simplifier la mise en œuvre, on peut aussi concevoir des seuils qui se développent en plan selon trois côtés d'un rectangle allongé.

Figure III.1 Déversoir de type Bec de Canard du barrage Salaulim, Inde

Dans un cas comme dans l'autre, ce seuil constitue la partie supérieure d'une « boite » dans laquelle le matelas d'eau permet d'amortir l'énergie de chute. Le débit transite ensuite dans un coursier en béton posé sur le talus aval de la digue et dont la pente permet de rejoindre le pied aval du barrage ou un dispositif de dissipation d'énergie restitue le débit dans le lit mineur du marigot.

III.4.2 Les évacuateurs de crues en charge

III.4.2.1 *Le déversoir tulipe*

Un évacuateur de crue en tulipe ou en puits, est un ouvrage par lequel l'eau y pénètre horizontalement par une corolle, et qui ensuite dévale verticalement à travers un puits avant d'être évacuer au pied aval du barrage par une conduite ou une galerie sous remblai horizontale, quasihorizontale ou inclinée.

La loi de débit est similaire à celle des évacuateurs de surface linéaires en écoulement dénoyé. Lorsqu'il est noyé, il se comporte comme un orifice à veine moulée.

Le déversoir en lui-même est circulaire ou semi-circulaire. Il se prolonge par un puits suivi d'une galerie ou d'une conduite. Ce type d'ouvrage équipera le plus souvent de grands barrages.

Figure III.2 Déversoir en tulipe du barrage Harriman Whitingham, Amérique

III.5 Etude des variantes

D'après les conditions géologiques, topographiques et économiques, s'impose d'étudié deux variantes qui sont :

- ✓ Evacuateur latéral à entonnement latéral.
- ✓ Evacuateur latéral à déversoir en bec de canard.

III.5.1 Evacuateur latéral à entonnement latéral

L'évacuateur de crue latéral constitue des éléments suivants :

- Canal d'amenée
- Un déversoir.
- Auge de réception (boite).
- > Convergent
- ➢ Un coursier.
- ➢ Un bassin de dissipation.
- Canal de fuite (canal de réstitution).

Figure III.3 Description de l'évacuateur de crue latéral.

III.5.1.1 Canal d'amené

✓ La vitesse d'approche

La vitesse dans le canal d'approche est donnée par la formule suivante :

$$V = \frac{Q}{S}$$
(III.1)

Avec : Q : Débit à évacuer (m^3/s) .

S : section mouillée (section rectangulaire en m²).

$$\mathbf{S} = (\mathbf{P} + \mathbf{H})^* \mathbf{B} \tag{III.2}$$

H : Charge déversant.

B : Largeur de déversoir.

P : Hauteur de pelle. $0.4 \prec \frac{P}{H} \leq 1.6$

On va prendre : $\frac{P}{H} = 1,5$ et P = 1.82 m. \rightarrow **P=2 m.**

$$V = \frac{Q}{(P + H) \times B} = \frac{115,55}{(2 + 1.21) \times 40} = 0.9 \text{ m/s}.$$

V < V _{adm}=3.10 m/s. (voir l'annexe III.1), Alors pas de risque d'érosion.

✓ Pente du canal d'approche :

Pour un régime uniforme on a :

$$Q = \frac{1}{n} * S * R^{2/3} I_0^{1/2}$$
(III.3)
Alors : $I_0 = (\frac{n * V}{R^{2/3}})^2$
 $R = \frac{S}{\chi}$

Où: Q : débit déversant, (m^3/s) .

S : section mouillée, (m^2) .

R : rayon hydraulique, (m).

n : coefficient de Manning (n=0.03 pour le canal roche de section prismatique)

I_o : pente du fond.

 $\boldsymbol{\chi}$: Périmètre mouillé du canal rectangulaire.

$$I_0 = \left(\frac{0,03*0,9}{2,77^{\frac{2}{3}}}\right)^2 = 0.00019$$
 Io=0,00019.

III.5.1. 2 Déversoir et canal latéral

Les propriétés de l'écoulement dans un déversoir est dépendant de la forme géométrique de ce dernier, pour cela on a opté pour un déversoir à paroi mince de profil Creager pour éviter le phénomène de cavitation.

✓ Quadrant aval :

Les coordonnées du profil déversoir sont déterminées à l'aide de l'expression suivante :

$$\frac{y}{H} = 0.47 * \left(\frac{x}{H}\right)^{1.85}$$
(III.4)

X/H	Y/H	Y'/H
0.000	0.152	-1.006
0.121	0.044	-0.972
0.242	0.008	-0.934
0.363	0.000	-0.895
0.484	0.008	-0.849
0.726	0.073	-0.750
0.968	0.178	-0.618
1.210	0.310	-0.460
1.452	0.476	-0.265
1.694	0.684	-0.036
2.057	1.056	0.369
2.420	1.494	0.839
3.025	2.372	1.815
3.630	3.417	3.025
4.235	4.620	4.429

Tableau II.1 Coordonnées du quadrant aval de déversoir.

Figure III.4 Profil déversoir type Creager (H=1.21 m).

✓ Quadrant amont

La figure suivante présente la proposition pour le parement amont du l'**USCE** (United States Army, Corps of Engineers), 1958. La courbe du la crête se compose de trois arcs circulaires.

Figure III.5 Détail du quadrant amont. (Tous les chiffres par rapport à Hd=1 m.)

Le tableau suivant montre les origines O, rayons de courbure R et domaines de validité relatifs à H_d pour le quadrant amont.

i	Oi	R _i
1	(-0.5682/-0.3196)	0,094
2	(-0.2467/-0.5146)	0,47
3	(0/-1,175)	1.175

Tableau III. 2 Origines O, rayons de courbure R.

Le parement amont peut être modifié en ménagent une saillie, c.-à-d. une masse importante peut être éliminée si elle n'est pas requise pour la stabilité de l'ensemble de la structure.

Selon l'**USCE** les recommandations pour le déversoir à parement amont surplombant sont : $\frac{M}{N} = 1/2$ et $\frac{M}{H_d} \ge 0.6$.

On prend : M = 0.75 m, et N = 0.50 m.

Alors :
$$\frac{M}{H_d} > 0.6$$

✓ Rayon de raccordement du déversoir :

Dans le cas où P < 10 m on prend R = 0.5* P.

On a : P = 2 m < 10 m.

D'où : R = 0.5*2 ce qui donne : R = 1 m.

✓ Calcul hydraulique :

Au point du vue hydraulique des auges prismatiques sont préférables, mais pour des raisons économiques on a choisie de dimensionner une auge divergente en direction de l'écoulement.

Etapes du calcul :

- On divise la largeur déversant en 10 tronçons et on établit les distances partielles de l'origine jusqu'à chaque site x_i.
- On fixe la vitesse moyenne de l'eau au bout de la tranchée et celle de la fin, en suit en détermine les vitesses moyennes aux différents sites x_i.
- Débits spécifique :

$$q = \frac{Q}{B}$$
(III.5)

$$q = \frac{115.55}{40} = 2.89m^3 / s.ml.$$

• Le débit de chaque site est déterminer par :

$$\mathbf{Q}_i = \mathbf{q}^* \mathbf{x}_i \tag{III.6}$$

x_i : Section mouillée aux sites

$$S_i = \frac{Q_i}{V_i} \quad (\mathbf{m}^2).$$
(III.7)

• Largeur du canal de restitution aux sites x_i :

$$b_i = L_1 + \frac{x_{i*} \left(L_0 - L_1 \right)}{L}$$
(III.8)

• Largeur du coursier

 $L_c = Q^{0.4} = 115.55^{0.4} = 6.69$ m. Pour éviter le phénomène de cavitation on opte pour $L_c = 12$ m.

Selon la topographie on prend les rapports suivants : $\frac{L_0}{L_c} = 1$ et $\frac{L_1}{L_0} = 0,80$.

Donc :

 $L_0 = 12 m \text{ et } L_1 = 9.5 m.$

Figure III.7 Tranches de calcul de la largeur déversant.

Profondeur d'eau aux sites :

$$h_i = \left(\frac{Q_i}{V \times bi}\right) \tag{III.9}$$

Avec m : pente du profile déversoir assimilé à un plan (m=1/3).

Pente du fond de chaque site :

$$I_{i} = \frac{V_{i}^{2}}{C_{i}^{2} * R_{i}}$$
(III.10)

V_i: Vitesse moyenne aux sites x_i.

R_i: Rayon hydraulique à chaque site x_i.

 C_i : Coefficient de charge à chaque site x_i .

$$C_i = \frac{1}{n} * R^{1/6}$$
(III.11)

n: Coefficient de Manning en (s/m^{1/2}). Pour le béton on prend n=0.013 s/m^{1/2}.

Pertes de charge de chaque site :

$\Delta hi = Ii.\Delta Xi$	(III.12)
Avec : $\Delta Xi = Xi - Xi-1$.	

Une fois que nous avons déterminé les hauteurs d'eau h_i et les pertes de charge de chaque tronçon, on détermine les côtes de la surface libre et les côtes du fond de la tranchée.

	Xi (m)	Qi (m3/s)	V (m/s)	b(m)	h _n (m)	S (m2)	P(m)	R (m)	С	I	Δ Η (m)	hc (m)	côte P.E (m)	côte de fond (m)
10	40	116	4.00	12	2.41	28.91	16.82	1.72	77.71	0.0015	0.0062	2.11	169.10	166.69
9	36	104	3.82	11.75	2.32	27.24	16.39	1.66	77.28	0.0017	0.0067	2.00	169.10	166.79
8	32	92	3.64	11.5	2.21	25.40	15.92	1.60	76.75	0.0019	0.0075	1.87	169.11	166.90
7	28	81	3.46	11.25	2.08	23.38	15.41	1.52	76.11	0.0017	0.0069	1.74	169.11	167.04
6	24	69	3.28	11	1.92	21.13	14.84	1.42	75.31	0.0020	0.0080	1.59	169.12	167.20
5	20	58	3.10	10.75	1.73	18.63	14.22	1.31	74.27	0.0019	0.0077	1.43	169.13	167.39
4	16	46	2.92	10.5	1.51	15.82	13.51	1.17	72.89	0.0015	0.0059	1.25	169.13	167.62
3	12	35	2.74	10.25	1.23	12.64	12.72	0.99	70.93	0.0020	0.0079	1.05	169.14	167.90
2	8	23	2.56	10	0.90	9.01	11.80	0.76	67.88	0.0023	0.0093	0.82	169.14	168.24
1	4	12	2.25	9.75	0.53	5.14	10.80	0.48	62.72	0.0027	0.0108	0.52	169.83	168.62

Tableau III.3 Récapitulatif du calcul du canal latéral.

Le régime d'écoulement fluvial dans le canal latéral est vérifié hn>hc

Le profil en longe du canal latéral est représenté dans la figure suivant :

(III.14)

✓ Détermination de la hauteur des murs bajoyers pour le canal latéral :

Les hauteurs des murs bajoyers sont détermine comme suit :

$$H_{baj} = H + R \tag{III.13}$$

Avec : R : Revanche (m).

 $R = 0.06 + 0.05 * V * H^{(1/3)}$

Et d'après la ligne d'eau les hauteurs des murs varient dans chaque tronçon de coursier en fonction de la profondeur d'eau et la vitesse de l'écoulement.

Le calcul des hauteurs des murs sont représentées dans le tableau suivant :

Tableau III.4Hauteur des murs bajoyers dans canal latéral.

L (m)	H (m)	V (m/s)	R (m)	$H_{baj}(m)$
4	0.53	2.25	0.98	1.51
8	0.84	2.75	1.14	1.98
12	1.13	3	1.25	2.38
16	1.47	3	1.35	2.82
20	1.54	3.5	1.39	2.93
24	1.68	3.75	1.44	3.12
28	1.92	3.75	1.49	3.41
32	2.01	4	1.52	3.53
36	2.21	4	1.56	3.77
40	2.41	4	1.60	4.01

III. 5. 1. 3Calcul du convergent

a. La longueur du convergent

La longueur du convergent est estimée par la formule suivante :

 l_1 : La largeur au plafond du bief amont en m. $l_1=12m$

 l_2 : La largeur au plafond de la section de contrôle en m, c'est la largeur du coursier au même temps. $L_2=10$ Le convergent

Figure III.9 Schéma général d'un convergent.

L'angle \propto est calcul par la formule suivante :

$$\alpha = \tan^{-1} \frac{1}{2F_1} \left(\frac{L_1}{L_2} - 1 \right)$$
(III.15)

$$\alpha = \tan^{-1} \frac{1}{2*0.82} \left(\frac{12}{10} - 1\right) = 7^{\circ}$$
$$\tan \alpha = \frac{(\Delta l / 2)}{L} \text{ donc : La longueur du convergent est : L = 8.2m}$$

b. La profondeur à la fin du convergent

La section d'écoulement intermédiaire entre le convergent et le coursier est une section de contrôle. Le tirent d'eau dans cette section égale à la profondeur critique. C'est un changement du type d'écoulement du fluvial à l'écoulement torrentiel. Par une application numérique dans la formule de la profondeur critique on aura :

$$h = h_c = \sqrt[3]{\frac{Q^2}{g * b^2}} = \sqrt[3]{\frac{115.55^2}{9.81 * 10^2}} = 2.39 m$$

III.5.1.4 Coursier :

Le passage de chenal d'écoulement au coursier se fait avec une rupture de pente afin d'assuré de passer d'un écoulement fluvial à un écoulement torrentiel dans le coursier.

La pente du coursier est de 12.6 %, avec une longueur de 330 m.

✓ Largeur de coursier

L coursier =115.55 $^{0.4}$ =10m

✓ **Profondeur critique**

La profondeur critique pour une section rectangulaire est calculée par la formule suivante :

$$h_{c} = \sqrt[3]{\frac{Q_{\max, p\%}^{2}}{g^{*}b^{2}}}$$
(III.16)

Alors : h_c= 2.39 m.

✓ Pente critique

La pente critique est donnée par la formule suivante :

$$I_{cr} = \left(\frac{Q_{\max, p\%}^{*}(b+2h_{c})^{3/2}}{K(b^{*}h_{c})^{5/3}}\right)$$
(III.17)

$$I_{cr} = \left(\frac{115.55 * (10 + 2 * 2.39)^{2/3}}{71 * (10 * 2.39)^{5/3}}\right) = 0.049$$

✓ Profondeur normal

Pour un écoulement uniforme la hauteur normale est déduite par la formule de Chézy :

$$Q = S * C * \sqrt{R * I} \tag{III.18}$$

Par itération on trouve : h_n=0.66 m.

On à : $h_n < h_c$ et $I_c < I_n$ alors le régime d'écoulement est torrentiel. (Type de courbe de remous **S2**).

✓ Calcul de la ligne d'eau

• Méthode indirecte d'intégration numérique :

Cette méthode est une solution de l'équation différentielle du mouvement pour les canaux prismatiques, l'équation à résoudre, en considérant dQ/dx=0, est :

$$dy/dx = (S_0 - S_f)/(1 - Fr^2)$$
(III.19)

Avec : S_0 : pente du fond.

S_f: pente de la ligne d'énergie.

En tenant compte de l'hypothèse que la pente de la ligne d'énergie S_f peut être calculée pour chaque profondeur en utilisant l'équation de Manning. L'équation devient en différences finies :

$$\frac{\Delta y}{\Delta x} = \frac{S_0 - (n^2 Q^2) / (A^2 R^{4/3})}{1 - (Q^2 B) / (g A^3)}$$
(III.20)

On donne des valeurs arbitraires à y_i et on calcul la distance Δx correspondante aux profondeurs

 y_i , et on calcul la profondeur moyenne : $y_{moy} = \frac{y_i + y_{i+1}}{2}$.

Cette valeur permet de calculer la section mouillée moyenne et le rayon hydraulique moyen, on calcul Δx à chaque valeur de y_i, utilisant y moy, et en l'ajoute à Δx cumulés jusqu'à cette étape si la somme est supérieur à la longueur L, et on continue avec une valeur de y_i' > y_i jusqu'à trouver la somme de Δx égal à la longueur L de coursier.

Dans notre cas toujours $y_i < y_0$ (courbe de remous type S2).

Les résultats de calcul sont représentées dans le tableau suivant :

Tableau III.5 Calcul de ligne d'eau par la méthode indirecte d'intégration numérique.

	S _{moy}	R _{moy}	Fr ²	1-Fr ²	n^2Q^2	n^2Q^2	Δx (m)	L (m)
Y (m)	(m²)	(m)			$A^2 R^{4/3}$	$S_0 - \frac{1}{A^2 R^{4/3}}$		
2.39						·		
2.33	23.60	1.60	1.04	-0.04	0.0022	0.1238	-0.0172	0.02
2.27	23.00	1.58	1.12	-0.12	0.0023	0.1237	-0.0576	0.07
2.21	22.40	1.55	1.21	-0.21	0.0025	0.1235	-0.1025	0.18
1.67	17.00	1.27	2.77	-1.77	0.0057	0.1203	-0.8828	4.34
1.61	16.40	1.23	3.09	-2.09	0.0063	0.1197	-1.0457	5.39
1.55	15.80	1.20	3.45	-2.45	0.0071	0.1189	-1.2365	6.62
1.37	14.00	1.09	4.96	-3.96	0.0102	0.1158	-2.0521	11.87
1.01	10.40	0.86	12.10	-11.10	0.0255	0.1005	-6.6248	36.98
0.89	9.20	0.78	17.48	-16.48	0.0373	0.0887	-11.1492	56.60
0.83	8.60	0.73	21.40	-20.40	0.0461	0.0799	-15.3171	71.92
0.77	8.00	0.69	26.58	-25.58	0.0579	0.0681	-22.5278	94.44
0.71	7.40	0.64	33.59	-32.59	0.0740	0.0520	-37.6022	132.05
0.633	6.33	0.56	53.53	-52.53	0.1212	0.0048	-10.8477	318.96
0.632	6.32	0.56	53.79	-52.79	0.1218	0.0042	-12.4736	331.01

Figure III.10 Graphique de la ligne d'eau dans le coursier.

✓ Détermination de la hauteur des murs bajoyers

Les hauteurs des murs bajoyers sont détermine comme suit :

$$H_{baj} = H + R \tag{III.21}$$

Avec : R : Revanche (m).

$$R = 0.06 + 0.05 * V * H^{(1/3)}$$
(III.22)

Et d'après la ligne d'eau les hauteurs des murs varient dans chaque tronçon de coursier en fonction de la profondeur d'eau et la vitesse de l'écoulement.

Le calcul des hauteurs des murs sont représentées dans le tableau suivant :

Tableau III.6 Hauteur des murs bajoyers dans le coursier.

L (m)	H (m)	V (m/s)	R (m)	H _{baj} (m)
0	2.390	4.83	0.38	2.77
30	1.050	11.00	0.62	1.67
60	0.900	12.84	0.68	1.58
90	0.770	15.01	0.75	1.52
120	0.720	16.05	0.78	1.50
150	0.700	16.51	0.79	1.49
180	0.680	16.99	0.81	1.49
210	0.630	18.34	0.85	1.48
240	0.640	18.05	0.84	1.48
270	0.640	18.05	0.84	1.48
300	0.635	18.20	0.84	1.48
330	0.632	18.28	0.84	1.48

Vérification des phénomènes d'aération et les vagues roulantes le long de coursier Aération de coursier

L'écoulement à grande vitesse dans le coursier présent un risque élevé de dégâts liés à l'érosion du fond suit à la cavitation, le phénomène d'aération commence à partir d'une section ou $V > V_{\rm cr}$.

Vcr est donnée par la formule de VOINITCH SYANOGENSKY :

$$V_{cri} = 6.63.\sqrt{g.R.\cos\theta}.\sqrt{1 + \frac{0.0011}{R^2}}.\left(1 + \frac{8.71.n}{R^{1/6}}\right)$$
(III.23)

Avec :V_{cr} : La vitesse critique.

 θ : Angle d'inclinaison du radier du coursier.

R : Rayon hydraulique.

n : Coefficient de rugosité. (n=0.014).

Le calcul de V_{cr} pour chaque section dans le coursier est représenté dans le tableau suivant :

Section	Y (m)	R (m)	Vcr (m/s)	V (m/s)	Vcr > V
0	2.390	1.617	29.26	4.83	vérifié
1	1.050	0.868	21.68	11.00	vérifié
2	0.900	0.763	20.38	12.84	vérifié
3	0.770	0.667	19.12	15.01	vérifié
4	0.720	0.629	18.59	16.05	vérifié
5	0.700	0.614	18.37	16.51	vérifié
6	0.680	0.599	18.15	16.99	vérifié
7	0.630	0.560	17.58	18.34	Non vérifié
8	0.640	0.567	17.69	18.05	Non vérifié
9	0.640	0.567	17.69	18.05	Non vérifié
10	0.635	0.563	17.63	18.20	Non vérifié
11	0.632	0.561	17.60	18.28	Non vérifié

Tableau III.7 Vérification de phénomène d'aération dans le coursier.

La condition d'écoulement non aéré à la fin coursier est non vérifie donc on doit chercher à augmenter la rugosité de ce dernier pour avoir une vitesse d'écoulement inférieur à la vitesse admissible.

- Rugosité artificielle de coursier

Elle permet de réduire les vitesses d'écoulement dans le coursier et la possibilité de passage de régime torrentiel au régime fluvial, plusieurs types de rugosité artificielle existent : rugosité en mono zigzag ou en double zigzag, rugosité en redans le long de coursier, rugosité de bord sous forme de poutres normales.....etc.

- Coefficient de rugosité :

$$K = \frac{1}{C}$$
 et $C = \frac{1}{n} * R^{1/6}$.

$$K = \frac{n}{R^{1/6}} = \frac{\sqrt{Ri}}{V_{adm}} = 0.0192.$$

Alors le coefficient de rugosité doit être supérieur à 0.0192 pour éviter l'écoulement airé et non apparition de phénomène des vagues roulantes.

III.5.1.5 Bassin de dissipation

L'écoulement d'eau dans le coursier jusqu'au niveau de pied du barrage attient souvent une vitesse très élevée, ce débit à haute vitesse peut endommager, par son importante quantité d'énergie cinétique le lit naturel de la rivière, la seul manière de contrôler l'écoulement à haute vitesse est de dissiper une partie de l'énergie mécanique et d'obtenir avec le bassin de dissipation un écoulement à vitesse convenable dans le lit de la rivière.

D'après les tests réalisés par l'USBR « The Bureau of Réclamation » : le bassin de dissipation le plus favorable dépend du type de ressaut.

Fourchette du nombre de Froude	Type de ressaut hydraulique
$1 \le F_r \le 1.7$	Ressaut ondulé
$1.7 \le F_r \le 2.5$	Ressaut faible de petites apparaitions en surface
$2.5 \le F_r \le 4.5$	Ressaut oscillant
$4.5 \le F_r \le 9$	Ressaut stable
$F_r \ge 9$	Ressaut fort (écoulement très turbulent)

Tableau III.8 Choix du type de bassin de dissipation selon l'USBR.

La vitesse d'écoulement à l'entrée du bassin de dissipation est de 18.28 m³/s >15m³/s, et le nombre de Froude est de 7.34 >4.5. Donc, d'après l'USBR ; le bassin de dissipation le plus favorable est un bassin à ressaut de type III. Les abaques de calcul du tirant d'eau aval et la longueur du bassin sont représentés dans l'annexe III.2

Figure III.11 Schéma de bassin de dissipation USBR type III.

D'après l'abaque :

$$\frac{y_2}{y_1} = \frac{1}{2} * \left(\sqrt{1 + 8F_r^2} - 1\right) = 9.90 ; y_2 = 9.90 * 0.632 = 6.26 m$$

$$\frac{L}{y_2} = 4.1 ; L = 4.1 * 6.26 = 25.66 \text{ donc} : L = 26 m$$

Avec : y_1 : Tirant d'eau avant le ressaut ;

 y_2 : Tirant d'eau après le ressaut ;

L : Longueur du ressaut.

les dimensions des blocs de chute sont:

$$h_1 = a_1 = e_1 = y_1 = 0.63 m$$
;

Avec : h_1 : La hauteur du bloc de chute,

 a_1 : L'épaisseur du bloc de chute,

 e_1 : L'espacement entre deux blocs de chutes successives.

* Le nombre des blocs de chute $=\frac{10-(\frac{0.63}{2})}{2*0.63}=7.68$ blocs ;

On va opter pour 8 blocs de chute.

les dimensions des seuil denté sont:

 $h_2 = 0.02 * y_2 = 0.2 * 6.26 = 1.25 m$

 $a_2 = e_2 = 0.15 * y_2 = 0.15 * 6.26 = 0.94 m$

Avec : h_2 : La hauteur du bloc de chute,

 a_2 : L'épaisseur du bloc de chute,

 e_2 : L'espacement entre deux blocs de chutes successives.

Le nombre des seuil denté $=\frac{10}{2*0.94}=6$ blocs ;

On va opter pour 10 seuils denté.

III.5.1.6 Canal de fuit

Le canal de fuite fait suite directement au bassin de dissipation, il sert a conduire l'eau jusqu'au cours d'eau naturel

Le canal de fuite projeté est de section trapézoïdal de largeur b=10m, fruits des talus m=1

- Profondeur critique :

$$h_{c} = \left(1 - \frac{\sigma_{cr}}{3} + 0.015 * \sigma_{cr}^{2}\right) * K$$

$$Avec : K = \sqrt[3]{\frac{Q^{2}}{g * b^{2}}} = \sqrt[3]{\frac{115.55^{2}}{9.81 * 10^{2}}} = 2.38$$

$$Et : \sigma_{cr} = \frac{K * m}{10} = \frac{2.38 * 1}{10} = 0.239$$

Alors : $h_c = 2.20$ m.

- Pente critique

$$I_{cr} = \frac{Q^2}{S_{cr}^2 * C_{cr}^2 * R_{cr}}$$
(III.25)

Avec : S_{cr} : surface mouillée. S_{cr} =26.84 m².

$$R_{cr} : \text{Rayon hydraulique} : R_{cr} = \frac{S_{cr}}{P_{cr}} = \frac{26.84}{16.22} = 1.65 m$$
$$C_{cr} : \text{Coefficient de Chézy} : C_{cr} = \frac{1}{n} * R^{1/6} = \frac{1}{0.014} * 1.65^{1/6} = 77.68$$

D'où : $I_{cr} = 0.00186$.

- Profondeur normal :

La profondeur normal est de : $h_n=0.63$ m.

- Vitesse dans le canal :

$$V = \frac{Q}{S} = \frac{115.55}{(10+0.63)*0.63}$$
 17.25 m/s.

III.5.2 Evacuateur latéral à déversoir en bec du canard

Est un évacuateur à entonnement mixte, un peu frontal et beaucoup latéral, il est constitué d'un seuil en plan présent trois partie rectilignes (rectangle ou trapèze allongé), ou une seul partie semi-circulaire et deux rectilignes de chaque côté. Il a d'avantage d'économie de l'évacuateur à entonnement frontal, les déversoirs en bec de canard sont généralement projetés sur les flancs des barrages en terre ou en enrochement, car la réduction considérable est réalisée de l'excavation du canal d'approche et du chenal d'écoulement.

Le débit déversant par un déversoir en bec de canard est inférieur à celui d'une crête rectiligne pour une longueur équivalente, ceci est rendu compte par un coefficient de décharge réduit du déversoir en bec de canard dû à l'effet faisant le coin de déversoir par rapport à celui du déversoir droit standard ayant le même profil de crête.

Le procédé est expliqué ci-dessous :

- 1) Après avoir connaitre les paramètres hydrauliques de déversoir (Q_{max} , h_d , et la largeur L_0), on opte pour une configuration de déversoir en bec de canard rectangulaire ou trapézoïdale telle que sa longueur L_1 est supérieur à L_0 .
- 2) Calcul d'effet faisant le coin $l_d = \frac{e}{1-f}$. où e et f sont en fonction de l'angle φ de coin de déversoir en bec de canard, suivant l'annexe III.4.
- 3) Calcul de coefficient de réduction : $C_r = 1 \frac{2l_d}{L_1}$.
- 4) Le débit déversé est calculé par : $Q_1 = C_r \cdot C_d \cdot L_1 \cdot h_d \cdot \sqrt{2 \cdot g}$

Avec : C_d : coefficient de débit ($C_d=0.49$).

- 5) Si $Q_1 \neq Q_{max}$, répètent le calcul avec d'autre longueur L_i jusqu'à ce que le débit calculé égale au débit de projet.
- 6) La longueur total de déversoir : $L_d = 2L_{d1} + L_{d2}$.avec $L_{d2} > 2*l_d$.

III.5.2.1. paramètres géométriques de déversoir

Plusieurs dispositions sont possibles dans le choix des paramètres géométriques de déversoir en bec de canard, cependant on va adopter un déversoir à seuil en plan trapézoïdal avec un angle de coin de 100°.

✓ Calcul de coefficient de réduction de débit

On a :
$$l_d = \frac{e}{1-f}$$
 (e = 0.39 et f = 0.86 dans l'abaque (annexe III.3).

Alors : $l_d = 2,71$ m.

$$C_r = 1 - \frac{2l_d}{L_1}$$
 et : $Q_1 = C_r \cdot C_d \cdot L_1 \cdot h_d^{3/2} \cdot \sqrt{2 \cdot g}$

Par itérations on à calculer Cr correspondant à Q_1 qu'est égal à Q_{max} :

 $C_r = 0.88$ Et $L_1 = 45.5$ m.

✓ Détermination des cotes de déversoir :

Plusieurs combinaisons de L_{d1} et de L_{d2} sont possibles, et celle que des ajustements meilleurs les conditions d'emplacement peuvent être adopté.

Figure III.12 Descriptions de déversoir en bec de canard.

III.5.2.2. Calcul hydraulique de déversoir et la boite d'écoulement

On adopte un déversoir de profile Creager qui a l'avantage d'éviter le phénomène de cavitation.

Etapes de calcul :

• On divise la boite d'écoulement en 10 tronçons, chaque tronçon de 2m de longueur vers le sens d'écoulement.

Figure III.13 Calcul de la boite d'écoulement.

• Calcule de débit spécifique et le débit de chaque site x_i :

$$q = \frac{Q}{L_d} \rightarrow q = \frac{115.55}{45.5} = 2.54m^3 / s$$

 $Q_i = q_0 + q.X_i$ Avec : $q_0 = q_i L_{d2} = 2.59 \times 6 = 15.24 m^3 / s.$

• Calcule la section mouillée, et la largeur de la boite d'écoulement de chaque site x_i.

$$S_{i} = \frac{Q_{i}}{V_{i}}$$
 Et $b_{i} = L_{d2} + \frac{x_{i} \cdot (L_{0} - L_{d2})}{L_{d1}}$

• Calcul de la profondeur d'eau et la pente de chaque site x_i:

$$H_i = \frac{Q_i}{b_i \times V_i}$$

La pente du fond est calculée par la formule suivante : $I_i = \frac{V_i^2}{C_i^2 \cdot R_i}$

La perte de charge est calculer par :

.

$$\Delta$$
 hi = Ii. Δ xi

$$\Delta Xi = Xi - Xi - 1.$$

Les résultats de calcul hydraulique de la boite sont représentés dans le tableau suivant :
	Xi (m)	Qi m3/s)	V (m/s)	b(m)	h(m)	S (m2)	P(m)	R(m)	С	Δ H (m)	Ι	Hc (m)	côte P.E (m)	côte de fond (m)
10	20	115.5	4.40	12	2.19	26.26	16.38	1.60	76.81	0.0041	0.0020	2.11	169.45	167.26
9	18	105.4	4.28	11.4	2.16	24.62	15.72	1.57	76.51	0.0040	0.0020	2.06	169.45	167.29
8	16	95.44	4.17	10.8	2.12	22.90	15.04	1.52	76.15	0.0039	0.0020	2.00	169.46	167.34
7	14	85.39	4.05	10.2	2.07	21.07	14.33	1.47	75.71	0.0039	0.0019	1.93	169.46	167.39
6	12	75.35	3.94	9.6	1.99	19.14	13.59	1.41	75.17	0.0039	0.0019	1.84	169.46	167.47
5	10	65.30	3.82	9	1.90	17.09	12.80	1.34	74.51	0.0039	0.0020	1.75	169.47	167.57
4	8	55.25	3.71	8.4	1.78	14.91	11.95	1.25	73.67	0.0041	0.0020	1.64	169.47	167.70
3	6	45.20	3.59	7.8	1.61	12.59	11.03	1.14	72.59	0.0043	0.0021	1.51	169.48	167.86
2	4	35.16	3.47	7.2	1.41	10.12	10.01	1.01	71.13	0.0047	0.0024	1.34	169.48	168.07
1	2	25.11	3.30	6.6	1.15	7.61	8.91	0.85	69.16	0.0053	0.0027	1.14	169.48	168.33
0	0	15.07	3	6	0.87	5.20	7.73	0.67	66.45	0.0057	0.0028	0.86	169.83	168.62

Tableau III.9 Récapitulatif du calcul de la boite d'écoulement.

Le régime d'écoulement fluvial dans la boite est vérifié hn>hc

Figure III.14 Profil en long de la boite d'écoulement.

III. 5.2.3 calcul du convergent

a. La longueur du convergent

La longueur du convergent est estimée par la formule suivante :

- l_1 : La largeur au plafond du bief amont en m. $l_1=12m$
- l₂ : La largeur au plafond de la section de contrôle en m, c'est la largeur du coursier. L₂=10

Figure III.15 schéma général d'un convergent.

L'angle \propto est calcul par la formule suivante :

$$\alpha = \tan^{-1} \frac{1}{2F_1} (\frac{L_1}{L_2} - 1)$$

$$\alpha = \tan^{-1} \frac{1}{2*0.90} (\frac{12}{10} - 1) = 6.33^{\circ}$$

$$\tan \alpha = \frac{(\Delta l / 2)}{L} \text{ donc} : \text{La longueur du convergent est} : L = 9 \text{ m}$$

b.La profondeur à la fin du convergent :

La section d'écoulement intermédiaire entre le convergent et le coursier est une section de contrôle. Le tirent d'eau dans cette section égale à la profondeur critique. C'est un changement du type d'écoulement du fluvial à l'écoulement torrentiel. Par une application numérique dans la formule de la profondeur critique on aura :

$$h = h_c = \sqrt[3]{\frac{Q^2}{g * b^2}} = \sqrt[3]{\frac{115.55^2}{9.81 * 10^2}} = 2.39 m$$

• NB : le coursier et le bassin de dissipation ont le même tracé

III.5.2.4. Canal d'approche

Le canal d'approche sera a conçu de façon à limiter les vitesses moyennes d'approche à fin de réduire au minimum les pertes de charge et le risque d'érosion, et de guider calmement les crues vers le seuil de déversement.

Calcul de la vitesse d'approche

• Côté frontal :

On a
$$0.4 < \frac{P}{H} \le 1.6$$
 on va prendre P=2 m, Alors $0.4 < \frac{P}{H} = \frac{2}{1.21} \le 1.6$.
 $V = \frac{Q}{S} = \frac{q.L_{d2}}{(P+H) \times L_{d2}} = \frac{2,51 \times 6}{(2+1.21) \times 6}$ $V = 0.78$ m/s.

 $V < V_{adm}$ 3.10 m/s. (l'annexe III.1), Alors pas de risque d'érosion.

• Côté latéral droite :

$$V = \frac{Q}{S} = \frac{q.L_{d1}}{(P+H) \times L_{d1}} = \frac{2,51 \times 20}{(2+1.21) \times 20} \qquad V = 0.78 \text{ m/s}$$

Pour (P+H)>3m. V_{adm} :=3.10 m/s ; V= 0.78 m/s < V_{adm} (pas de risque d'érosion).

• Côté latéral gauche

Le principe se base sur le calcul de la largeur à l'entrée du coin du canal L_1 pour laquelle la vitesse d'approche soit vérifiée la condition de non érosion, après avoir fixé la hauteur de pelle ; on doit vérifier la condition pour chaque tronçon.

Figure III.16 Calcul des largeurs du canal d'approche de côté latéral gauche.

On a
$$0.4 < \frac{P}{H} \le 1.6$$
 on va prendre P=2m, Alors $0.4 < \frac{P}{H} = \frac{2}{1.21} = 1.6$.
 $V_i = \frac{Q_i}{S_i} = \frac{q.(L_{d1} - x_i)}{(P + H)^* L_i}$
 $V_1 = \frac{2.51 \times 20}{L_1 \times (2 + 1.21)} \le 3.10m / s \longrightarrow L_1 \ge 5.04m$ Donc L1= 6m.
 $L_0 = L_1 - L_{d1} \times \sin(\varphi - 90) = 6 - 20 \times \sin(10) = 2.5m \longrightarrow L_0 = 2.5 m$

•
$$L_i = L_1 - \frac{x_i \cdot (L_1 - L_0)}{L_{d_1}}$$

Si la condition de non érosion n'est pas vérifiée dans tous les tronçons on va augmenter la largeur L_1 jusqu'à ce que toutes les vitesses soient inférieures à la vitesse admissible.

\mathbf{N}°	Xi (m)	Li (m)	Qi (m ³ /s)	Si (m ²)	V (m/s)
0	0	6.00	50.2	19.26	2.61
1	2	5.65	47.69	18.70	2.55
2	4	5.30	42.67	17.57	2.43
3	6	4.95	37.65	16.45	2.29
4	8	4.60	32.63	15.33	2.13
5	10	4.25	27.61	14.20	1.94
6	12	3.90	22.59	13.08	1.73
7	14	3.55	17.57	11.96	1.47
8	16	3.20	12.55	10.83	1.16
9	18	2.85	7.53	9.71	0.78
10	20	2.50	2.51	8.59	0.29

 Tableau III.10 Calcul des vitesses pour chaque tronçon.

Conclusion

Après cette étude, nous arrivons à la conclusion que les deux variantes sont réalisables, cependant, la première qui est l'évacuateur latéral à entonnement latéral présente un volume d'excavation très important et ensuite l'instabilité des talus par rapport à la première, d'où notre choix est porté sur la deuxième variante qui est l'évacuateur de crue latéral à entonnement frontal avec un déversoir de type bec de canard

Chapitres IV : Etude de stabilité de l'évacuateur de crue

IV. 1 Objectif

L'objectif de ce chapitre est de connaitre l'état de stabilité de l'évacuateur de crue, après avoir déterminés toutes les charges auxquelles il est soumis, ensuite faire le calcul du ferraillage.

IV. 2 Etude de stabilité

L'étude de stabilité a pour de vérifier la stabilité de l'évacuateur contre le renversement, glissement et au poinçonnement.

On va faire les calculs pour une tranche de 1 m.

IV. 2. 1 Stabilité du déversoir

Les forces qui agissent sur le déversoir sont les suivantes :

Figure IV.1 Les forces qui agissent sur le déversoir.

IV. 2. 1. 1 Forces verticales

a. Les forces des sous pressions

Pour déterminer ces forces on doit faire une étude des infiltrations, parmi les méthodes utilisées dans ce but, on peut citer la méthode de Bligh. Nous avons supposé que le sol homogène et isotrope

a. 1 Prédimensionnement de l'ouvrage hydrotechnique :

a. 1. 1Avant radier

• Longueur :

 $l_{ar} = (0\div2)*h_1$

 h_1 : Etant la charge d'eau au bief amont ; $H_1 = H + P = 1.21 + 2 = 3.21 m$

 $l_{ar} = 0.5 * 3.21 = 1.61 m$

• épaisseurs

• $T_{ar1} = ?$

On a pour :

$$\begin{cases} h_1 \le 5m & \to T_{ar1} = (0.4 \div 0.5) \ m \\ 5 < h_1 \le 10m \ \to T_{ar1} = (0.4 \div 0.6) \ m \\ h_1 \ge 10m \ \to T_{ar1} = 0.75 \ m \end{cases}$$

Notre cas c'est le deuxième, on prend :

$$T_{ar1} = 0.45m$$

•
$$T_{ar2} = ?$$

 $T_{ar2} = 0.75 + 0.05H_1 = 0.75 + 0.05 * 3.21 = 0.91 \, m$

a. 1. 2 Radier :

• longueur :

 $L_r = (1.25 \div 2.5) * H_1 = 1.25 * 3.21 = 4.02 m$

- épaisseurs :
 - $T_{r1} = ?$

 $T_{r1} = (0.25 \div 0.30) * H_1 = 0.25 * 3.21 = 0.80 m$

• $T_{r2} = ?$

 $T_{r2} = (0.13 \div 0.15) * H_1 = 0.13 * 3.21 = 0.42 m$

• $T_{r4} = ?$

 $T_{r4} = T_{r1} - 0.5 = 0.80 - 0.5 = 0.30 m$

• *S* =?

 $S = T_{r1} = 0.80 m$

• $S_1 et S_2 = ?$

 $S_1 = S_2 = T_{r2} + 0.5 = 0.42 + 0.5 = 0.92 m$

a. 2 Méthode du contour linéaire dite « méthode de Bligh »

LRCD=longueur du contour déployé ;

LC_{Théo.B}=longueur théorique de Bligh.

 $\textit{LC}_{\textit{Théo}.\textit{B}} = C \ast \Delta H$; $\Delta H = H_1 - H_2 = 3.21 - 1.21 = 2 \ m$

C : Constante de Bligh dépend du sol ; C=3

 $LC_{Th\acute{e}o.B} = C * \Delta H = 3 * 2 = 6 m$

$$\begin{split} D_{9-8} &= 0.45m; D_{8-7} = 1.68m; D_{7-6} = 0.39m; D_{6-5} = 0.92m\\ D_{5-4} &= 0.707m; D_{4-3} = 1.54m; D_{3-2} = 0.707m; D_{2-1} = 0.92m; D_{1-0} = 0.92m \end{split}$$

LRCD = 0.45 + 1.68 + 0.39 + 0.92 + 0.707 + 1.54 + 0.707 + 0.92 + 0.92 = 8.23m

 $LRCD > LC_{Théo,B}$, donc la condition est vérifiée.

Le calcul des sous pression se fait comme suit :

Connaissant les valeurs de Δh et *LRCD*

Telle que :

 t_x : epaisseur du radier

 γ_{ω} : Poids spécifique de l'eau =1000 Kgf/m3

 γ_b : Poids spécifique du béton =2400 Kgf/m3

N : coefficient de sécurité varie entre 0.85 et 1.25 selon la classe de l'ouvrage.

 $t_x = 0.714 * h_x$

Le tableau suivant récapitule les valeurs des sous pression en chaque point :

Tableau IV.1 Valeurs des sous-pressions en chaque point.

Point	0	1	2	3	4	5	6	7	8	9
$l_x(m)$	0	1	2	3	4	5	6	7	8	9
$h_x(m)$	0	0.45	2.13	2.51	3.44	4.14	5.68	6.39	7.31	8.23
T _{BILIGH} (m)	0	0.11	0.52	0.61	0.84	1.01	1.38	1.55	1.78	2.00
$T_{pré}(m)$	0	0.10	0.46	0.54	0.75	0.90	1.23	1.39	1.59	1.79
$T_d(m)$	0	1	1	0.8	1	1.25	1.25	0.6	0.5	0

a. 3 Force de souspression hydrodynamiques : $F_{sp}^{h} = \gamma_{w} * S_{sp}^{h} * l$

Avec : γ_w : Poids volumique de l'eau ; $\gamma_w = 1.0 T/m^3$

 S_{sp}^{h} : Epure des sous-pressions ; $S_{sp}^{h} = 8.88 m^{2}$

 $F^h_{sp} = \gamma_w * S^h_{sp} = 1.0 * 23.59 * 1 = 8.88t$

a. 4 Force de pression statique: $F_{sp}^s = \gamma_w * S_{sp}^s * l$

Avec : γ_w : Poids volumique de l'eau ; $\gamma_w = 1.0 T/m^3$

 S_{sp}^s : Epure des sous-pressions ; $S_{sp}^s = 9.89m^2$

 $F_{sp}^{s} = \gamma_{w} * S_{sp}^{s} = 1.0 * 9.88 * 1 = 9.89 t$

 $F_{sp} = F_{sp}^h + F_{sp}^s = 8.88 + 9.89 = 18.77t$

b. Poids du rideau : $P_r = \gamma_b * S_r * l$

Avec : γ_b : Poids volumique du béton ; $\gamma_b = 2.4 T/m^3$

 S_r : Surface du rideau ; $S_r = 0.89 \ m^2$

 $P_r = \gamma_b * S_r = 2.4 * 0.89 * 1 = 0.89 t$

c. Poids de la semelle : $P_s = \gamma_b * S_s * l$

Avec : γ_b : Poids volumique du béton ; $\gamma_b = 2.4 T/m^3$

 S_s : Surface de la semelle ; $S_s = 14.98 m^2$

 $P_s = \gamma_b * S_s = 2.4 * 14.98 * 1 = 35.95 t$

d. Poids de l'eau amont : $P_w^{am} = \gamma_w * S_{w.am} * l$

Avec : γ_w : Poids volumique de l'eau ; $\gamma_w = 1.0 T/m^3$

 S_w^{am} : Surface de l'eau en amont ; $S_w^{am} = 4.82 m^2$

 $P_w^{am} = \gamma_{bw} * S_w^{am} = 1.0 * 4.82 * 1 = 4.82 t$

e. Poids de l'eau aval : $P_w^{av} = \gamma_w * S_w^{av} * l$

Avec : γ_w : Poids volumique de l'eau ; $\gamma_w = 1.0 T/m^3$

 S_w^{av} : Surface de l'eau avale ; $S_w^{av} = 2.2 m^2$ $P_w^{av} = \gamma_w * S_w^{am} = 1.0 * 18.45 * 1 = 2.2 t$

IV. 2. 1. 2 Forces horizontales

a. Poussée de l'eau en amont : $F_w^{am} = S_w^{am} * \gamma_w * 1$;

Avec : γ_w : Poids volumique de l'eau ; $\gamma_w = 1.0 T/_{m^3}$

 S_w^{am} : Epure des pressions de l'eau en amont ; $S_w^{am} = 5.15 m^2$

 $F_w^{am} = 1.0 * 5.15 * 1 = 25.0 t$

b. Poussée de l'eau en aval: $F_w^{av} = S_w^{av} * \gamma_w * 1$;

Avec : γ_b : Poids volumique de l'eau ; $\gamma_w = 1.0 T/m^3$

 S_w^{av} : Epure des pressions de l'eau en aval ; $S_w^{av} = 0.73 m^2$

 $F_w^{av} = 1.0 * 0.73 * 1 = 0.73 t$

IV. 2. 1. 3 Stabilité au renversement

Le principe de la vérification de la stabilité au renversement est de vérifier que le mur sous l'effet des charges verticales et horizontales ne pivote pas autour de l'arrête A. pour que le mur soit stable, on prend $\frac{M_s}{M_r} > 1 \div 3$;

Avec :

 M_s : La somme des moments des forces stabilisatrices.

 M_r : Le somme des moments des forces déstabilisatrices.

$$M_s = P_r * 3.12 + P_s * 2.01 + P_w^{am} * 4.83 + P_w^{av} * 1.98 + F_w^{av} * 1.61 = 128.78 t.m$$
$$M_r = F_{sp} * 2.2 + F_w^{am} * 2.07 = 18.72 * 2.2 + 5.15 * 2.07 = 51.84 t.m$$

 $\frac{M_s}{M_r} = \frac{128.78}{51.84} = 2.48 > 1 \div 3$; Donc la stabilité au renversement est vérifiée.

IV. 2. 1. 4 Stabilité au glissement

Pour que le mur soit stable au glissement il faut que :

 $\frac{\sum \text{Forces horizontales}}{\sum \text{forces verticales}} \le \theta;$

 θ : Coefficient de frottement du sol par rapport au béton ($\theta > 0.7$).

$$\sum F_v = P_r + P_w^{am} + P_w^{av} + P_s - F_{sp} = 8.88 + 4.82 + 2.2 + 35.95 - 18.72 = 33.13t$$

$$\sum F_h = F_w^{am} + F_w^{av} = 5.15 - 0.73 = 4.42 t$$

$$\frac{\sum \text{Forces horizontales}}{\sum \text{forces varticular}} = \frac{4.42}{22.13} = 0.13 < 0.7 \text{ Donc la stabilité au glissement est vérifiée}$$

 \sum forces verticales 33.13

.IV. 2. 1. 5 Stabilité au poinçonnement

C'est la vérification que les contraintes transmises par la base de la semelle au sol sont inférieur à $\overline{\sigma_{sol}} = 2 \ bars$.

Calcul de N :

$$N = \sum F_{v} = P_{r} + P_{w}^{am} + P_{w}^{av} + P_{s} - F_{sp} = 33.13 \text{ t}$$

Calcul de M_G :

$$M_G = \sum Moment /_G$$
 des orces verticales et horizontales.

G : Centre de gravité de la base de la semelle.

$$M_G = -P_r * 0.6 - P_w^{am} * 2.91 + P_w^{av} * 1.4 - P_s * 1.33 + F_{sp} * 1.83 + F_w^{am} * 2.27 - F_w^{av} * 3.46$$

$$M_G = 20.67 t.m$$

Le calcul de σ_1 et σ_2 :

$$\begin{cases} \sigma_1 = \frac{N}{100\beta} + \frac{6M_G}{100\beta^2} = \frac{33130}{100 * 563} + \frac{6 * 20.67 * 10^5}{100 * 563^2} = 0.98 \text{ bars} \\ \sigma_2 = \frac{N}{100\beta} - \frac{6M_G}{100\beta^2} = \frac{33130}{100 * 563} - \frac{6 * 20.67 * 10^5}{100 * 563^2} = 0.196 \text{ bars} \end{cases}$$

Donc la stabilité au poinçonnement est vérifiée.

IV. 2. 2 Stabilité des murs bajoyers

Les murs bajoyers travaillent comme les murs de soutènements, ils s'opposent à la poussée des terres et celle de l'eau, pour le renversement et le glissement le cas le plus défavorable c'est quand il y'a pas de l'eau. Quant au poinçonnement le cas le plus défavorable c'est lors de la crue.

IV. 2. 2. 1 Forces verticales

a. Poids du rideau : $P_r = \gamma_b * S_r * l$

Avec : γ_b : Poids volumique du béton ; $\gamma_b = 2.4 T/_{m^3}$

 S_r : Surface du rideau ; $S_r = 1.39 m^2$

 $P_r = \gamma_b * S_r = 2.4 * 1.39 * 1 = 3.32 t$

b. Poids de la semelle : $P_s = \gamma_b * S_s * l$

Avec : γ_b : Poids volumique du béton ; $\gamma_b = 2.4 \ T/_{m^3}$

 S_s : Surface de la semelle ; $S_s = 6 m^2$

 $P_s = \gamma_b * S_s = 2.4 * 6 * 1 = 14.4 t$

c. Poids des terres: $P_t = \gamma_t * S_t * l$

Avec : γ_t : Poids volumique du béton ; $\gamma_t = 1.15 T/m^3$

 S_t : Surface des terres ; $S_t = 1.39 m^2$

 $P_t = \gamma_t * S_t * l = 1.15 * 1.39 * 1 = 1.6 t$

d. Poids des surcharges : $P_{sr} = s * S_{sr} * l$

Avec :s : valeur règlementaire des surcharges ; $s = 1 \frac{T}{m^2}$

 S_{sr} : Surface des surcharges ; $S_{sr} = 1.39 m^2$

 $P_{sr} = 1.0 * 1.5 * 1 = 2.08 t$

e. Poids de l'eau : $P_w = \gamma_w * S_w * l$

Avec : γ_b : Poids volumique de l'eau ; $\gamma_w = 1.0 T/m^3$

 S_w : Surface de l'eau ; $S_w = 23.9 m^2$

 $P_w = \gamma_b * S_w = 1.0 * 23.9 * 1 = 23.9 t$

IV. 2. 2. 2 Forces horizontales

a. Poussée des terres : $F_t = A_P * S_t * \gamma_t * 1$;

Avec : $A_P = tg^2 \left(\frac{\pi}{4} - \frac{\varphi}{2}\right)$;

 ϕ : Angle de frottement ; $\phi=30^\circ$; $A_P=0.33$;

 γ_t : Poids volumique de l'eau ; $\gamma_t = 1.15~^{T}\!/_{m^3}$

 $F_t = 0.33 * 1.15 * 1.26 * 1 = 1.46 t$

b. Poussée de l'eau: $F_w = S_w * \gamma_w * 1$;

Avec : γ_w : Poids volumique de l'eau ; $\gamma_w = 1.0 T/_{m^3}$

 S_w : Epure des pressions de l'eau en aval ; $S_w = 2.85 m^2$

 $F_w = 1.0 * 2.85 * 1 = 2.85t$

c. Poussée des surcharges: $F_{sr} = A_P * s * H$;

Avec : $A_P = 0.33$;

H: La hauteur du mur ; H = 2.77 m ;

s : Valeur règlementaire des surcharges ; s = $1 \frac{T}{m^2}$

 $F_{sr} = 0.33 * 1.0 * 6 = 0.91 t$

IV. 2. 2. 3 Stabilité au renversement

Le principe de la vérification de la stabilité au renversement est de vérifier que le mur sous l'effet des charges verticales et horizontales ne pivote pas autour de l'arrête A. pour que le mur soit stable, on prend $\frac{M_s}{M_m} > 1 \div 3$;

Avec : M_s : La somme des moments des forces stabilisatrices.

 M_r : Le somme des moments des forces déstabilisatrices.

$$\begin{split} M_s &= P_r * 11.25 + P_s * 6 + P_t * 11.75 + P_{sr} * 11.75 = 167.11 \ t. \ m \\ M_r &= F_t * 0.92 + F_{sr} * 1.39 = 1.46 * 0.92 + 0.91 * 1.39 = 2.6 \ t. \ m \\ \frac{M_s}{M_r} &= \frac{167.11}{2.6} > 1.5 \ ; \ \text{Donc la stabilité au renversement est vérifiée.} \end{split}$$

IV. 2. 2. 4 Stabilité au glissement

Pour que le mur soit stable au glissement il faut que :

 $\frac{\sum \text{Forces horizontales}}{\sum \text{forces verticales}} \le \theta \ ;$

 θ : Coefficient de frottement du sol par rapport au béton ($\theta > 0.7$).

$$\sum F_{\nu} = P_r + P_s + P_t + P_{sr} = 3.32 + 14.4 + 1.6 + 2.09 = 21.41 \text{ t}$$
$$\sum F_h = F_t + F_{sr} = 1.46 + 0.91 = 2.37 \text{ t}$$
$$\frac{\sum \text{Forces horizontales}}{\sum \text{forces verticales}} = \frac{2.37}{21.41} = 0.11 < 0.7$$

Donc la stabilité au glissement est vérifiée.

IV. 2. 2. 5 Stabilité au poinçonnement

C'est la vérification que les contraintes transmises par la base de la semelle au sol sont inférieur à $\overline{\sigma_{sol}} = 2 \ bars$.

Calcul de N :

$$\sum F_{v} = P_{r} + P_{s} + P_{t} + P_{sr} + P_{w} = 3.32 + 14.4 + 1.6 + 2.09 + 23.9 = 45.31 \text{ t}$$

Calcul de M_G :

$$M_G = \sum Moment /_G$$
 des orces verticales et horizontales.

G : Centre de gravité de la base de la semelle.

$$M_G = P_r * 5.25 + P_t * 5.75 + P_{sr} * 5.75 - F_{sr} * 1.89 - F_t * 1.42 - P_w * 1.0 + F_w * 1.3$$

$$M_G = 14.66 t.m$$

$$\begin{cases} \sigma_1 = \frac{N}{100\beta} + \frac{6M_G}{100\beta^2} = \frac{45310}{100*950} + \frac{6*(14.66*10^5)}{100*950^2} = 0.57 \text{ bars} \\ \sigma_2 = \frac{N}{100\beta} - \frac{6M_G}{100\beta^2} = \frac{45310}{100*950} - \frac{6*(14.66*10^5)}{100*950^2} = 0.37 \text{ bars} \end{cases}$$

Donc la stabilité au poinçonnement est vérifiée

IV. 3 Calcul du ferraillage

IV. 3. 1 Ferraillage du déversoir

IV. 3. 1. 1 Rideau

Le rideau est considéré comme une console, encastrée dans la semelle, et soumis aux pressions des terres et de la surcharges, il y'a lieu de multiplier les charges ^par des coefficients de pondération :

- 1.35 pour les charges permanentes (pressions des terres) ;
- 1.5 pour les charges variables (pressions de la surcharge).

Pour économiser les aciers, il y'a lieu de calculer les moments à $\frac{h}{2}$.

a. Calcul des moments :

• moment d'encastrement à la base du radier

$$M_{h} = 1.35 * F_{w}^{am} * \frac{h}{3} - 1.35 * F_{w}^{av} * \frac{h}{3}$$
$$M_{h} = 1.35 * 5.15 * \frac{3.21}{3} - 1.35 * 0.73 * \frac{1.21}{3} = 7.04 m.t$$

comprimés.

moment d'encastrement à mi – hauteur du radier •

$$M_{\frac{h}{2}} = 1.35 * F_w^{am} * \frac{h}{6} - 1.35 * F_w^{av} * \frac{h}{6}$$
$$M_{\frac{h}{2}} = 1.35 * 5.15 * \frac{3.21}{6} - 1.35 * 0.73 * \frac{1.21}{6} = 3.52 m.t$$

b. Calcul des aciers

b.1 A l'encastrement

 $M_h = 7.04 \ m.t$

La section qui reprend ce moment est telle que :

Hauteur de la section h = 1m; largeur de la section b=1m

D'où : d = 100 - e ; e : enrobage (e=5 cm) ; d=95cm

$$\mu = \frac{M}{\overline{\sigma_{bc}} * b * d^2} = \frac{7.04 * 10^5}{153 * 100 * 95^2} = 0.0051$$

 $\overline{\sigma_{bc}}$: Contrainte admissible à la compression du béton ;

$$\begin{split} \varepsilon_l &= \frac{f_e}{\gamma_s * E_s} = \frac{4000}{1.15 * 2 * 10^6} = 0.00174 \\ \alpha_l &= \frac{3.5}{3.5 + 1000 * \varepsilon_l} = \frac{3.5}{3.5 + 1000 * 0.00174} = 0.668 \\ \mu_l &= 0.8 * \alpha_l - 0.32 * \alpha_l^2 = 0.8 * 0.668 - 0.32 * 0.668^2 = 0.392 \\ \mu &= 0.0051 < \mu_l = 0.392 ; \text{Donc la section ne comportera pas d'aciers comprimé} \\ \mu &= 0.0051 < 0.186 ; \text{Donc la section pivote autour du pivot A, et } 1000\varepsilon_l = 10 ; \\ \text{Alors : } \sigma_s &= \frac{f_e}{\gamma_s} = \frac{4000}{1.15} = 3478.26 \text{ bars }; \sigma_s : \text{limite d'élasticité.} \end{split}$$

Pour
$$\mu = 0.0051$$
 on a : $\alpha = \frac{1 - \sqrt{1 - 2\mu}}{0.8} = \frac{1 - \sqrt{1 - 2*0.0051}}{0.8} = 0.0074$;
 $\beta = 1 - 0.4 * \alpha = 1 - 0.4 * 0.0074 = 0.99$

D'où : la section d'acier à l'encastrement :

$$A = \frac{M}{\beta * d * \sigma_s} = \frac{7.04 * 10^5}{0.99 * 95 * 3478.26} = 2.15 \left(\frac{cm^2}{m} \right)$$

b.2 A mi – hauteur

$$M_{\frac{h}{2}} = 3.52 m.t$$

comprimés.

La section qui reprend le moment est telle que :

Hauteur de la section h = 1m; largeur de la section b=1m

D'où : d = 100 - e ; e : enrobage (e=5 cm) ; d=95 cm

$$\mu = \frac{M}{\overline{\sigma_{bc}} * b * d^2} = \frac{3.52 * 10^5}{153 * 100 * 95^2} = 0.0025$$

 $\overline{\sigma_{bc}}$: Contrainte admissible à la compression du béton ;

$$\begin{split} \varepsilon_l &= \frac{f_e}{\gamma_s * E_s} = \frac{4000}{1.15 * 2 * 10^6} = 0.00174 \\ \propto_l &= \frac{3.5}{3.5 + 1000 * \varepsilon_l} = \frac{3.5}{3.5 + 1000 * 0.00174} = 0.668 \\ \mu_l &= 0.8 * \propto_l - 0.32 * \alpha_l^2 = 0.8 * 0.668 - 0.32 * 0.668^2 = 0.392 \\ \mu &= 0.0025 < \mu_l = 0.392 ; \text{Donc la section ne comportera pas d'aciers comprimé} \\ \mu &= 0.0025 < 0.186 ; \text{Donc la section pivote autour du pivot A, et } 1000\varepsilon_l = 10 ; \\ \text{Alors : } \sigma_s &= \frac{f_e}{\gamma_s} = \frac{4000}{1.15} = 3478.26 \text{ bars }; \sigma_s : \text{limite d'élasticité.} \end{split}$$

Pour $\mu = 0.0193$, on a : $\alpha = \frac{1 - \sqrt{1 - 2\mu}}{0.8} = \frac{1 - \sqrt{1 - 2*0.0025}}{0.8} = 0.038$;

 $\beta = 1 - 0.4 * \alpha = 1 - 0.4 * 0.038 = 0.98$

D'où : la section d'acier à l'encastrement :

$$A = \frac{M}{\beta * d * \sigma_s} = \frac{3.52 * 10^5}{0.99 * 95 * 3478.26} = 1.06 \left(\frac{cm^2}{m} \right)$$

c. Choix des aciers

c. 1 Diamètres des aciers existants

 $1T6 = 0.2826 \ cm^2$; $1T8 = 0.5 \ cm^2$; $1T10 = 0.785 \ cm^2$;

c. 2 Nombre et espacement des aciers

• A l'encastrement : $A = 2.15 \text{ cm}^2/\text{m}$ $e = \frac{100}{n}$; $n = \frac{\text{section trouveé}}{\text{section d'un barre}} + 1$

T6: n = 9; e = 11 cm, T8: n = 6; e = 17 cm, T10: n = 4; e = 25 cm,

• A mi – hauteur : A = 1.06 cm^2/m

T6: n = 5; e = 20cm, T8: n = 4; e = 25 cm, T10: n = 3; e = 355 cm,

c. 3 Le choix

A l'encastrement on va prendre des barres de T10 : n = 4; e = 25 cm.

A mi-hauteur on va prendre des barre de T8: n = 4; e = 25 cm.

IV. 3.2 Ferraillage des murs bajoyers

IV. 3. 2. 1 Rideau

Le rideau est considéré comme une console, encastrée dans la semelle, et soumis aux pressions des terres et de la surcharges, il y'a lieu de multiplier les charges ^par des coefficients de pondération :

- 1.35 pour les charges permanentes (pressions des terres) ;
- 1.5 pour les charges variables (pressions de la surcharge).

Pour économiser les aciers, il y'a lieu de calculer les moments à $\frac{h}{2}$.

a. Calcul des moments

• moment d'encastrement à la base du radier

$$M_h = 1.35 * F_t * \frac{h}{3} + 1.5 * F_{sr} * \frac{h}{2}$$
$$M_h = 1.35 * 1.46 * \frac{2.77}{3} + 1.5 * 0.91 * \frac{2.77}{2} = 3.71 m.t$$

• moment d'encastrement à mi – hauteur du radier

$$M_{\frac{h}{2}} = 1.35 * F_t * \frac{h}{6} + 1.5 * F_{sr} * \frac{h}{4}$$
$$M_{\frac{h}{2}} = 1.35 * 1.46 * \frac{2.77}{6} + 1.5 * 0.91 * \frac{2.776}{4} = 1.85m.t$$

b. Calcul des aciers

b. 1 A l'encastrement

$$M_h = 3.71 \, m. t$$

La section qui reprend ce moment est telle que :

Hauteur de la section h =0.5m ; largeur de la section b=1m

D'où : d = 50 - e; e : enrobage (e=5 cm) ; d=45cm

$$\mu = \frac{M}{\overline{\sigma_{bc}} * b * d^2} = \frac{3.71 * 10^5}{153 * 100 * 45^2} = 0.012$$

 $\overline{\sigma_{bc}}$: Contrainte admissible à la compression du béton ;

;

$$\varepsilon_{l} = \frac{f_{e}}{\gamma_{s} * E_{s}} = \frac{4000}{1.15 * 2 * 10^{6}} = 0.00174$$

$$\alpha_{l} = \frac{3.5}{3.5 + 1000 * \varepsilon_{l}} = \frac{3.5}{3.5 + 1000 * 0.00174} = 0.668$$

$$\mu_{l} = 0.8 * \alpha_{l} - 0.32 * \alpha_{l}^{2} = 0.8 * 0.668 - 0.32 * 0.668^{2} = 0.392$$

$$\mu = 0.012 < \mu_{l} = 0.392 \text{ ; Donc la section ne comportera pas d'aciers comprimés.}$$

$$\mu = 0.012 < 0.186 \text{ ; Donc la section pivote autour du pivot A, et 1000}\varepsilon_{l} = 10 \text{ ;}$$
Alors : $\sigma_{s} = \frac{f_{e}}{\gamma_{s}} = \frac{4000}{1.15} = 3478.26 \text{ bars }; \sigma_{s} \text{ : limite d'élasticité.}$
Pour $\mu = 0.0193$, on a : $\alpha = \frac{1 - \sqrt{1 - 2\mu}}{0.8} = \frac{1 - \sqrt{1 - 2 * 0.012}}{0.8} = 0.015 \text{ ;}$

$$\beta = 1 - 0.4 * \alpha = 0.93$$

D'où : la section d'acier à l'encastrement :

$$A = \frac{M}{\beta * d * \sigma_s} = \frac{3.71 * 10^5}{0.93 * 45 * 3478.26} = 2.55 \left(\frac{cm^2}{m} \right)$$

b.2 A mi – hauteur

 $M_{\frac{h}{2}} = 1.85 \, m. t$

La section qui reprend le moment est telle que :

Hauteur de la section h =0.5m ; largeur de la section b=1m

D'où : d = 0.5 - e ; e : enrobage (e=5 cm) ; d=45 cm

$$\mu = \frac{M}{\overline{\sigma_{bc}} * b * d^2} = \frac{1.85 * 10^5}{153 * 100 * 45^2} = 0.006$$

 $\overline{\sigma_{bc}}$: Contrainte admissible à la compression du béton ;

$$\varepsilon_{l} = \frac{f_{e}}{\gamma_{s} * E_{s}} = \frac{4000}{1.15 * 2 * 10^{6}} = 0.00174$$

$$\alpha_{l} = \frac{3.5}{3.5 + 1000 * \varepsilon_{l}} = \frac{3.5}{3.5 + 1000 * 0.00174} = 0.668$$

$$\mu_{l} = 0.8 * \alpha_{l} - 0.32 * \alpha_{l}^{2} = 0.8 * 0.668 - 0.32 * 0.668^{2} = 0.392$$

$$\mu = 0.006 < \mu_{l} = 0.392$$
; Donc la section ne comportera pas d'aciers comprimés.

 $\mu = 0.006 < 0.186$; Donc la section pivote autour du pivot A, et $1000\varepsilon_l = 10$;

Alors :
$$\sigma_s = \frac{f_e}{\gamma_s} = \frac{4000}{1.15} = 3478.26 \text{ bars}$$
; σ_s : limite d'élasticité.

Pour
$$\mu = 0.0193$$
, on a : $\alpha = \frac{1 - \sqrt{1 - 2\mu}}{0.8} = \frac{1 - \sqrt{1 - 2 + 0.006}}{0.8} = 0.007$;

 $\beta=1-0.4*\alpha=~0.99$

D'où : la section d'acier à l'encastrement :

$$A = \frac{M}{\beta * d * \sigma_s} = \frac{1.85 * 10^5}{0.99 * 45 * 3478.26} = 1.20 \left(\frac{cm^2}{m} \right)$$

c. Choix des aciers :

c. 1 Diamètres des aciers existants :

$$1T6 = 0.2826 \ cm^2$$
; $1T8 = 0.5 \ cm^2$; $1T10 = 0.785 \ cm^2$; $1T12 = 1.13 \ cm^2$;

c. 2 Nombre et espacement des aciers :

• A l'encastrement :
$$A = 2.55 \text{ cm}^2/\text{m}$$

 $e = \frac{100}{n}$; $n = \frac{\text{section trouveé}}{\text{section d'un barre}} + 1$

T6: n = 10; e = 10 cm, T8: n = 7; e = 14 cm, T10: n = 4; e = 25 cm,

• A mi – hauteur : A = 1.20 cm^2/m

T6: n = 7; e = 14 cm, T8: n = 4; e = 25 cm, T10: n = 2; e = 50 cm.

c.3 Le choix

A l'encastrement on va prendre des barres de T8 : n = 7; e = 14 cm.

A mi-hauteur on va prendre des barre de T6: n = 7; e = 14cm.

Conclusion

Après le calcul de stabilité de l'évacuateur au :

- Glissement,
- Poinçonnement
- Renversement

On a arrivé à la conclusion que ce dernier va résister aux différentes forces

Chapitre V:

Organisation de chantier

Introduction

L'organisation de chantier permet de connaitre le délai de réalisation du barrage, ainsi que d'estimer les coûts et les moyens humaines et matérielles nécessaire pour la réalisation de cet ouvrage.

V.1 Installation de chantier

V.1.1 Définition d'un chantier

C'est à la fois le lieu où on construit notre ouvrage et dans lequel en s'installe. Un chantier est limitée dans l'espace et dans le temps.

V.1.2 Rôle de l'installation de chantier

Organisation et le déroulement des travaux :

- ✓ Ordonner le chantier : Gain de temps, Évite les pertes (matériaux) et double emplois (matériels).
- ✓ Améliore la sécurité : humaine + matériel et Améliore la qualité.
- ✓ Positionner les éléments : Organiser les déplacements des engins et des véhicules dans le chantier et bien positionner les livraisons et Positionner les réseaux en utilisant des grillages avertisseurs et des bandes de couleurs normalisées.

V.1.3 Travaux préparatoires et installation de l'entreprise

Il n'existe pas de modèle type pour aménager un chantier, une installation rationnel permet de respecter les délais imposer, et d'éviter le gaspillage de d'œuvre.

a. Installations du chantier

- ✓ clôture de terrain avec signalisation extérieur elle comporte
- ✓ Plusieurs accès contrôlé par des loges de gradient et des barrières.
- ✓ Une signalisation routière aux abords les accès pour indiquer l'entrée et sortie les engins.
- ✓ Des voies d'accès et de circulation intérieure.
- ✓ Signalisation intérieurs : elle comporte les sens de circulation des engins prévisions te danger éventuel (passage du câble électrique pour les consigne de sécurité individuel, la port de casque, de masque anti poussière, lunette de protection).
- ✓ Emplacement des chemins de roulement de grue.

On peut distinguer les installations suivantes :

b. Installations destinées au personnel

- \checkmark les dortoirs.
- ✓ les réfectoires.
- \checkmark les installations sanitaires et les bureaux de chantier.

c. Installations destinées au stockage des matériaux

- ✓ Magasin central : c'est un lieu de dépôt de petit matériel.
- ✓ Les matières consommables et les articles sensibles aux intempéries.
- ✓ Aire de stockage protégé.
- ✓ Aire de stockage non protégé.

d. Installations destinées à la réparation des engins

En général, les grosses réparations ne se font pas sur le chantier lui-même, mais il importe de disposer d'un atelier suffisamment bien équipé pour assurer l'entretien courant et les réparations d'urgence des différents matériels.

e. Installation destinée pour la préfabrication

Pour cette installation, elle est constituée des hangars munis de matériel nécessaire permettant la réalisation des éléments de l'ouvrage tels que les poutres, dalles, conduites.

V.2 Les moyens de chantier :

La construction d'une digue en terre nécessite l'utilisation de nombreux engins mécaniques destiné à scarifier, excaver, transporter, niveler et compacter les matériaux. On peut distinguer le matériel de compactage, la fonction les caractéristiques principales et le rendement des différents engins de terrassement et de compactage susceptible d'être utilisés lors de la réalisation du petit barrage.

a. Les moyens humains

En ce qui concerne les moyens humains pour la réalisation de l'ouvrage, on doit justifier la mise en œuvre du personnel compétent pour la réalisation des études préalables et pour la construction en précisant leurs titres et leurs compétences

b. Les engins de terrassement (Voire annexes V.1)

Le matériel général de terrassement comprend les engins traditionnels mis en œuvre pour la constitution des fouilles d'assise du barrage, l'extraction et le transport des matériaux et la réalisation des finitions, se fait appel aux engins suivants :

- La grue pour soulever et maintenir en suspension des matériaux extrêmement lourds.
- Le bulldozer pour araser une surface non plate.
- La pelle mécanique hydraulique pour creuser des tranchées et charger des matériaux.
- La décapeuse, aussi appelée scraper.
- La niveleuse, aussi appelée grader.
- Le camion de chantier.
- Chargeur à pneu ou à chenilles.

c. Le matériel de bétonnage

On utilise le plus souvent des bétonnières pour la fabrication du béton nécessaire pour la construction des ouvrages en béton (évacuateur, tour de prise, canal de dérivation....)

V.3 Planification des travaux

C'est un moyen de chercher constamment la meilleure façon d'utiliser avec économie la main d'œuvre et les autres moyens de mise en œuvre pour assurer l'efficacité de l'action à entreprendre, son objectif est de s'assurer que les travaux se font dans un ordre correct à temps, aussi économique que possible. Le travail de planification passe par les étapes suivantes :

- Collection des informations concernant les plans d'architecture, le cahier des charges, les normes de travail, les prix des matériaux...;
- Décomposer le projet en opérations (ferraillage, collage, etc.) ;
- Prévoir la relation entre opérations (relation logique ou préférentielle) ;
- Attribuer des durées (temps de réalisation pour chaque opération).

Il existe deux techniques de planifications à savoir :

- Méthodes basées sur le réseau (réseau à flèches ou à nœuds) :
 - Méthode C.P.M (méthode du chemin critique) ;
 - Méthode P.E.R.T (Program Evaluation an Review Technical).
- Méthodes basées sur le graphique :
 - Méthode linéaire (Ligne of balance technic) ;
 - Méthode des barres.
- Méthode basées sur le tableau.

Le choix de la méthode de calcul repose essentiellement sur le type d'ouvrage à construire. Il est préférable dans le cas où les opérations se suivent comme dans notre cas d'opter pour la méthode C.P.M.

Les paramètres indispensables dans l'exécution de cette méthode sont les suivants :

- DCP : date de commencement au plus tôt ;
- DCPP : date de commencement au plus tard ;
- DFP : date de finition au plus tôt ;
- DFPP : date de finition au plus tard ;
- TR : temps de réalisation ;
- MT : marge totale.

Tels que :

$$\begin{cases}
DFP = DCP + TR \\
DCPP = DFPP - TR \\
MT = DFPP - DFP \\
DCP_i + TR = DFP_i \\
DFP_i = DCP_{i+1}
\end{cases}$$

Le chemin critique (C.C) est le chemin qui donne la durée totale du projet (DTR) reliant les opérations dont la marge totale est nulle.

V.4 Composition du projet

Le tableau ci-après montre les différentes opérations de notre projet ainsi que leur temps de réalisation :

Tableau V.1 Composition du projet.

Travaux	Opérations	Durées (mois)
Installation du chantier	А	3
Dérivation provisoire	В	9
Excavation barrage	С	7
Appareillage d'auscultation	D	19
Recharge et noyau	Е	18
Evacuateur de crue	F	9
Tour des prises	G	9
Conduite de vidange et d'irrigation	Н	3
Matériels électromécanique	Ι	3
Mise en eau du barrage	J	5

V.5 Détermination du chemin critique

Pour la détermination du chemin critique on applique les méthodes suivantes :

V.5.1 Méthode du réseau à nœuds

Le calcul par cette méthode de réseau à nœuds est illustré dans la planche N° =4.

V.5.2 Méthode de réseau à flèches

Le calcul par cette méthode de réseau à flèches est donné dans la planche N° =4.

V.5.3 Méthode du tableau

Elle s'applique sur le tabeau suivant :

Onémation	ТР	DP DP		DFP		
Operation	IK	DCP	DFP	DCPP	DFPP	
12	3	0	3	0	3	0
23	9	3	12	3	12	0
34	9	12	21	26	35	14
37	12	12	24	26	38	14
35	7	12	19	12	19	0
46	3	21	24	35	38	14
47	3	21	24	35	38	14
57	18	19	37	19	38	1
58	19	19	38	19	38	0
67	0	24	24	38	38	0
87	0	38	38	38	38	0
79	5	38	43	38	43	0

Tableau V.2 Détermination du chemin critique par la méthode du tabeau.

D'après le tableau précédent le temps de réalisation est de 43 mois.

Le diagramme de Gant est donnée dans la planche N°=4.

V.6 coût de l'évacuateur de crue

Tableau V.3 Coût estimatif de l'évacuateur de crue

	Volume	Prix unitaire	Montant (DA)
		(DA)	
betonnage	Volume de béton= $3490.32 m^3$	25000 DA/ m^3	87257812.5
Excavation	Volume des déblais=4811.76 m ³	500 DA/ m^3	2405880

Le coût total sans compter le coût du ferraillage est de : 89663692.5 DA

Conclusion

D'après la planification éffectuée, le barrage se terminera dans un delai de 43 mois. Afin de respecter ce délai, il faut :

- La disponibilité des matériaux de construction ;
- Le bon rendement ddes oeuvriers et des engins ;
- Abscence de problèmes et contraintes.

Conclusion générale

Dans notre étude de comportement de l'évacuateur de crue du barrage de *Barek* sur l'Oued *Zeroula* (W.Blida), nous avons utilisé une approche déterministe pour l'estimation du débit de crue pour notre bassin qui est non jaugé par la modèle pluie-débit « PDM » caler sur les paramètres du modèle 'Pluie-Débit' du bassin de barrage BAREK.

Après l'estimation de débit de projet nous avons étudié deux variantes de l'évacuateur de crue ; notre choix est la variante latéral à entonnement frontal avec un déversoir de type bec de canard, cette variante représente la meilleure solution technico-économique, vu que la projection d'un évacuateur latéral à entonnement latéral dans la rive gauche, causera un volume d'excavation important et l'instabilité des rives par la suite.

Une modélisation physique est souvent nécessaire pour faire un calcul hydraulique bien détaillé, étudier le comportement du déversoir bec de canard, et aussi pour vérifier les phénomènes hydrauliques dans le coursier. Alors les différentes valeurs trouvées sont sous réserve.

Références bibliographiques

- **CIGB.** Choix de la crue de projet ; méthodes actuelles. Bulletin 82. 1984.
- HASSANE.M. «Guide méthodologique de calcul hydraulique de l'évacuateur de crue à entonnement latéral » 'Ecole nationale supérieure de l'hydraulique Blida 1995'
- J-M DURAND .Technique des petits barrages en Afrique sahélienne et équatorial 'Edition Cemagref.
- KHATSURIA, R. M. Hydraulics of spillways and energy dissipators.USA.2005
- KHATSURIA, R. M; ET all, Design of duckbill spillway and reversed sloping curved stilling basin,
- Musy, A. & Higy, C. Hydrologie appliquée. Editions HGA, Bucharest, Hongrie.
- **R.J.MOOR.** The PDM rainfall-runoff model
- **SAAD**, **B**. Hydraulique et hydrologie. 2^{ème} édition. Cannada.2008
- **TOUAIBIA, B**; **BENLAOUKLI, B**. Introduction au dimensionnement des retenues collinaires. ENSH Blida.
- TOUAIBIA, B, Manuel pratique d'hydrologie. ENSH Blida. Mars 2004
- Zerrouk, N. E ; Marche, C. Les évacuateurs de crues en labyrinthe .1995.

Sites internet :

- <u>http://echo2.epfl.ch/e-drologie/</u>
- <u>http://books.google.fr/</u>
- <u>http://fr.wikipedia.org/</u>
- <u>http://www.epfl.ch/tsd/</u>

ANNEXES

Annexe I.1

Les forages exécutés le long de l'axe du barrage :

Forage SB1 (rive droite)

0.0 - 8.0 m	: Grès désagrégé et marnes
8.0 - 17.0 m	: Marne schisteuse avec intercalations de grès (Schistes et Gréés)
17.0 - 18.0 m	: Grès fracturé
18.0 - 24.3 m	: Pélites très schisteuses
24.3 - 32.0 m	· Marne schisteuse

- 32.0 36.0 m : Marne fissurée
- 36.0 47.6 m : Pélites très schisteuses
- 47.6 96.0 m : Marne schisteuse et gréseuse, gris

Forage SB2 (rive droite)

0.0 - 7.60 m	: Sable/gravier limoneux avec cailloux (Colluvions)
7.6 - 59.38 m	: Marne schisteuse (Schistes et Gréés)

Forage SB3 (fond d'oued, rive droite)

0.0 - 3.76 m	: Sable/gravier limoneux avec cailloux
3.76 - 20.19 m	: Marne grisâtre à brune (Schistes et Gréés)
20.2 - 21.99 m	: Banc de grès ferrugineux
21.99 - 30.0 m	: Marnes et grès ferrugineux
30.0 - 34.6 m	: Marne grisâtre

Forage SB4 (rive gauche)

0.0 - 1.5 m	: Sol argilo-limoneux organique
1.5 - 12.0 m	: Marne et grès (Flysch à petites Nummulites)
12.0 - 18.0 m	: Conglomérat
18.0 - 22.5 m	: Marne
22.5 - 26.5 m	: Conglomérat
26.5 - 29.5 m	: Marne oxydée
29.5 - 44.0 m	: Marne brune
44.0 - 49.0 m	: Conglomérat
49.0 - 57.0 m	: Marne brune
57.0 - 58.8 m	: Grès et conglomérat
58.8 - 87.5 m	: Marne grise à verdâtre et brune

Forage SB5, incliné de 30° vers NE (rive droite)

0.0 - 2.6 m	: Marnes argileuse altérée avec restes végétaux
2.6 - 26.0 m	: Marne gréso-quartzeuses (Schistes et Gréés)

Forage SB6 (rive gauche)

0.0 - 1.50 m	: Terre végétale et limon argileux avec gravier
1.50 - 6.5 m	: Conglomérat désagrégé et marne au fond (Flysch à petites
Nummulites)	
6.5 - 9.0 m	: Argile marneuse et marne
9.0 - 22.9 m	: Marne argileuse rougeâtre
22.9 - 24.5 m	: Marne argileuse avec gravier isolé
24.5 - 32.0 m	: Marne argileuse rougeâtre
32.0 - 38.0 m	: Conglomérat et marne rougeâtre
38.0 - 39.5 m	: Marne argileuse rougeâtre
39.5 - 41.0 m	: Conglomérat et marne avec gravier isolé
41.0 - 44.0 m	: Marne rougeâtre avec gravier isolé
41.0 - 47.0 m	: Marne, gréés et gravier

Forage SB7, incliné de 30° vers S (rive gauche)

0.0 - 6.49 m	: Sable/gravier (Alluvions)										
6.49 - 13.0 m	: Conglomérats	et	marne	rougeâtre	(Flysch	à	petites				
Nummulites)											
13.0 - 21.1 m	: Marne rougeâtre										
21.1 - 29.4 m	: Marne schisteuse	e (Sc	histes et G	iréés)							

Forage SB8, incliné de 45° (rive droite)

0.0 - 5.3 m	: Argile sableuse et graveleuse et marne
5.3 - 11.7 m	: Marne schisteuse (Schistes et Gréés)
11.7 - 14.8 m	: Marno-calcaires
14.8 - 17.0 m	: Pélites très schisteuses

Annexe I.2

Fondation

Alluvions de l'oued Zerouela

Densité humide:	$1.95-2.1 \text{ t/m}^3$ 2.15-2.3 t/m ³					
Cohésion c'	$0 t/m^2$					
Angle de frottement :	26°-34°					
Colluvions et éboulis argileux						
Densité humide:	1.8-2.05 t/m ³					
Densité saturée:	1.9-2.15 t/m ³					
Cohésion, c':	0.0-0.3 bar					
Angle de frottement :	19°-24°					
Marnes modérément altérées du Flysch à	petites Nummulites					
Densité humide:	$1.9-2.2 \text{ t/m}^3$					
Densité saturée:	2.0-2.3 t/m ³					
Cohésion, c':	0.4-06 bar					
Angle frottement ':	22°- 26°					
Marnes saines du Flysch à petites Numme	<u>ulites</u>					
Densité humide:	2.2-2.4 t/m ³					
Densité saturée:	2.3-2.5 t/m ³					
Cohésion, c':	0.8-1.5 bar					
Angle frottement ':	30°-33°					
Pélites et marnes schisteuses modérément	altérées (ensemble Schistes et Grès)					
Densité humide:	1.95-2.1 t/m ³					
Densité saturée:	2.05-2.2 t/m ³					
Cohésion, c':	0.2-0.4 bar					
Remblais :						
Argile de noyau						
Densité humide:	1.9 t/m ³					
Densité saturée:	2.0 t/m ³					
Cohésion, c':	0 bar					
Angle de frottement :	19°					
Tout-venant alluvionnaire et conglomérat	<u>s réduits</u>					
Densité humide:	2.1-2.2 t/m ³					
Densité saturée:	2.3-2.4 t/m ³					
Cohésion, c':	0 bar					
Angle de frottement :	34°-36°					

Annexe II.1

	Sept.	Oct.	Nov.	Déc.	Jan.	Fév.	Mars	Avr.	Mai	Juin	Juil.	Aout	max
1975	18.6	16.6	33.2	24.1	42	41.5	11	9.4	24.9	14.5	4.5	4.5	42
1976	8	21.1	20	27.9	11.5	10.3	13.1	36.5	15.9	3.8	1	2.5	36.5
1977	7.5	7.7	37.6	1.7	24	13	18	46.6	41.2	4.6	1.9	3.1	46.6
1978	8.2	28.9	33.3	16.6	29.8	35.6	43.5	10.5	3.9	2	1.9	2.5	43.5
1979	8.3	15.1	30.2	36.1	28	18.6	35.7	50	10.7	1	0	8	50
1980	0.6	11	44.6	57.3	25	10	19.1	16.8	24.6	0	0	19	57.3
1981	0.9	19.5	3	31.7	26.5	27.9	12.5	9.3	15.3	6	0	0	31.7
1982													
1983	0	21.7	5.1	38.7	45.5	22.1	11.4	15.2	43.3	14.7	0	0	45.5
1984	13.7	56.1	19.8	34.6	26.1	19.3	35.7	3	17	1	0	0	56.1
1985	31.4	20.4	58.8	25.1	12.6	26.3	59.5	14	0.5	18	16.8	0	59.5
1986	31.4	19.5	29.9	52.8	16.4	22.6	3.9	2	4.7	24.6	0	0.8	52.8
1987	15.6	20.6	31	20.2	10.1	14.1	41.2	11.1	17.6	16.3	0	0	41.2
1988	29	6.2	56.7	58	15.3	12.3	18.2	23	7.3	3.2	0	0	58
1989	17	12.2	6.5	26.2	13.5	0	5.9	16.1	20.3	12	19.7	0	26.2
1990	1.5	8	13.5	28.2	29.1	26	19.1	13.2	26	4.2	0	2.8	29.1
1991	51.1	37.5	20.7	2.9	63.8	20.6	29.6	32.4	33.5	2.2	5	0	63.8
1992	2	37.8	75.2	12.8	13.5	22.2	12.6	19	23	0	1	0	75.2
1993	18.1	41.2	35.6	37.7	58.1	19.6	0	22.6	0	1.2	0	3.1	58.1
1994													
1995	9	14.3	21.7	24.2	25.9	57.1	22.5	56.7	11	33.2	2.5	1.4	57.1
1996	12.9	44.6	5.8	11	15	16.6	9.2	32.3	9.7	5.9	2.7	11.8	44.6
1997	22.6	45.7	55.2	32.2	17.3	36.1	15.1	44.5	52	4.9	0	2.2	55.2
1998	9.7	14	37.4	38	42.3	38.4	15.4	5.1	1	2.5	0	2.6	42.3
1999	18.3	22.5	24.9	38.7	11.8	2.1	21.5	12	27.5	0	0	0	38.7
2000	9.2	33.5	20.3	25.7	36.1	14.7	0.2	14.5	1.5	0	0	0	36.1
2001	2.7	0.6	21.5	22.1	18	8.9	17.2	29.9	9	0	2.1	10.6	29.9
2002	10.5	20.5	37.5	49.5	40.8	32.5	14.5	32.1	13.8	2	0	0	49.5
2003	24.2	17.1	24.2	22.2	37.2	25.4	16.2	23.8	42.7	0	5.1	0	42.7
2004	5.1	26.5	57.2	30	33.2	22	14.3	10.3	1	0	0	0	57.2
2005	6.9	30.1	18.1	19.6	20.6	30.8	12.3	3.1	53.2	0	0	2.9	53.2
2006	3.2	13.5	26.4	35.9	2.6	14.1	22.5	30.1	3	8.4	1.2	0	35.9
2007	40.5	34.7	62.5	24.9	8.3	5	19	20.9	21.1	0.8	4.5	0	62.5
2008	10.3	40	35.9	20.6	34.1	6.9	15.3	19.9	9.1	0	0	0	40
2009	42.5	10.8	16.6	34	27	10.1	34.4	15.1	10.9	10	0	19.9	42.5
2010	16.1	27.4	51.5	38.5	24.9	34.1	22	19.6	26.2	16.3	0	0	51.5
2011	12.8	10.6	38.7	22.6	19.6	47.5	36	41.5	10.7	0	0	40.2	47.5
2012	1.2	31.5	12.1	7.4	18	32.5	11.8	38	78.2	0	0	16.3	78.2
Mean	14.46	23.31	31.17	28.60	25.65	22.13	19.71	22.23	19.76	5.93	1.94	4.28	

 Tableau : Série des pluies maximales journalières mensuelles et annuelles.

période	10	10 20)	50		100		1000		10000	
F (%)	10)	5		2		1		0.1		0.01	
$P_{max,p\%}$	67	7	75		85		92		117		142	
t (h)	$P_{ct,p\%}(mm)$	$I(^{mm}/h)$	$P_{ct,p\%}$	Ι								
0.5	7.76	15.52	8.66	17.33	9.84	19.67	10.71	21.43	13.61	27.23	16.51	33.02
1	11.41	11.41	12.74	12.74	14.46	14.46	15.75	15.75	20.02	20.02	24.27	24.27
1.02	11.53	11.31	12.88	12.63	14.62	14.33	15.93	15.61	20.24	19.84	24.54	24.06
2	16.77	8.39	18.73	9.36	21.26	10.63	23.16	11.58	29.43	14.71	35.69	17.84
3	21.01	7.00	23.46	7.82	26.63	8.88	29.01	9.67	36.87	12.29	44.71	14.90
4	24.66	6.16	27.53	6.88	31.25	7.81	34.04	8.51	43.26	10.82	52.47	13.12
5	27.91	5.58	31.17	6.23	35.38	7.08	38.54	7.71	48.98	9.80	59.40	11.88
6	30.89	5.15	34.49	5.75	39.16	6.53	42.65	7.11	54.20	9.03	65.73	10.96
7	33.65	4.81	37.58	5.37	42.66	6.09	46.47	6.64	59.05	8.44	71.62	10.23
8	36.25	4.53	40.48	5.06	45.95	5.74	50.05	6.26	63.61	7.95	77.14	9.64
9	38.70	4.30	43.22	4.80	49.06	5.45	53.44	5.94	67.91	7.55	82.36	9.15
10	41.04	4.10	45.82	4.58	52.02	5.20	56.66	5.67	72.01	7.20	87.32	8.73
11	43.27	3.93	48.32	4.39	54.85	4.99	59.75	5.43	75.93	6.90	92.08	8.37
12	45.41	3.78	50.71	4.23	57.57	4.80	62.71	5.23	79.69	6.64	96.64	8.05
13	47.48	3.65	53.02	4.08	60.19	4.63	65.56	5.04	83.32	6.41	101.04	7.77
14	49.48	3.53	55.25	3.95	62.72	4.48	68.32	4.88	86.82	6.20	105.29	7.52
15	51.41	3.43	57.41	3.83	65.17	4.34	70.99	4.73	90.22	6.01	109.41	7.29
16	53.29	3.33	59.51	3.72	67.56	4.22	73.59	4.60	93.51	5.84	113.40	7.09
17	55.12	3.24	61.55	3.62	69.87	4.11	76.11	4.48	96.72	5.69	117.29	6.90
18	56.90	3.16	63.54	3.53	72.13	4.01	78.57	4.36	99.84	5.55	121.08	6.73
19	58.63	3.09	65.47	3.45	74.33	3.91	80.96	4.26	102.89	5.42	124.77	6.57
20	60.33	3.02	67.37	3.37	76.48	3.82	83.31	4.17	105.87	5.29	128.38	6.42
21	61.99	2.95	69.22	3.30	78.58	3.74	85.60	4.08	108.78	5.18	131.91	6.28
22	63.61	2.89	71.03	3.23	80.64	3.67	87.84	3.99	111.63	5.07	135.37	6.15
23	65.21	2.84	72.81	3.17	82.66	3.59	90.04	3.91	114.42	4.97	138.76	6.03
24	66.77	2.78	74.56	3.11	84.64	3.53	92.19	3.84	117.16	4.88	142.08	5.92

Annexe II – 2

Tableau : Valeurs des pluies de courtes durées et leurs intensités.

Fig.1 : Représentation graphique des pluies de courtes durées.

Fig.2 : courbes IDF (Intensité/Durée/Fréquence)

Annexe II.3

Tableau : Apport moyens mensuel de la station d'Oued Ali et apport moyens mensuel transposés.

ANNEE	Sept.	Oct.	Nov.	Déc.	Jan.	Fév.	Mars	avril	mai	juin	Juil.	aout	An.	An. Trans
1976 - 1977	0,00	0,08	0,20	0,75	0,37	0,23	0,06	0,63	0,16	0,16	0,00	0,00	2,62	1.97
1979 - 1980	0,04	0,18	1,42	0,90	1,73	0,23	0,55	0,86	0,64	0,01	0,00	0,00	6,57	4.93
1980 - 1981	0,00	0,00	0,00	5,22	7,75	0,80	0,74	0,46	0,90	0,00	0,00	0,00	15,86	11.90
1981 - 1982	0,00	0,00	0,00	0,00	0,44	1,50	0,00	0,00	0,25	0,00	0,00	0,00	2,19	1.64
1982 - 1983	0,00	0,34	2,60	2,00	0,00	0,72	0,00	0,00	0,00	0,00	0,00	0,00	5,66	4.25
1985 - 1986	0,00	0,03	0,74	0,22	0,23	0,65	3,54	0,22	0,07	0,02	0,00	0,00	5,73	4.30
1987 - 1988	0,00	0,04	0,05	0,04	0,09	0,04	0,55	0,00	0,00	0,00	0,00	0,00	0,82	0.62
1988 - 1989	0,01	0,00	0,01	2,15	0,24	0,06	0,02	0,79	0,05	0,00	0,00	0,00	3,33	2.50
1989 - 1990	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,24	0,00	0,00	0,00	0,24	0.18
1992 - 1993	0,00	0,00	0,07	0,38	0,30	0,17	1,05	0,24	0,17	0,00	0,00	0,00	2,38	1.79
1993 - 1994	0,00	0,00	0,14	0,61	1,69	0,29	0,10	0,07	0,00	0,00	0,00	0,00	2,90	2.18
1999 - 2000	0,00	0,00	0,09	5,54	0,07	0,01	0,00	0,07	0,00	0,00	0,00	0,00	5,79	4.34
2000 - 2001	0,00	0,00	0,16	0,09	1,72	0,17	0,07	0,00	0,00	0,00	0,00	0,00	2,21	1.66
2001 - 2002	0,00	0,00	0,00	0,00	0,01	0,00	0,01	0,10	0,00	0,00	0,00	0,00	0,12	0.09
2002 - 2003	0,00	0,00	0,36	3,34	3,12	3,02	0,84	2,59	0,20	0,00	0,00	0,00	13,47	10.10
2003 - 2004	0,00	0,00	0,00	0,19	1,05	0,02	1,12	0,51	2,67	0,30	0,00	0,00	5,87	4.40
2004 - 2005	0,00	0,00	0,34	1,34	1,67	1,77	1,01	0,36	0,03	0,00	0,00	0,00	6,51	4.88
2005 - 2006	0,00	0,00	0,00	0,24	1,50	2,33	0,64	0,00	0,85	0,00	0,00	0,00	5,56	4.17
2007 - 2008	0,00	1,12	3,11	0,83	0,41	0,12	1,49	1,05	0,19	0,02	0,00	0,00	8,33	6.25
2008 - 2009	0,00	0,06	0,89	1,33	1,99	0,35	0,22	0,67	0,11	0,00	0,00	0,00	5,62	4.22
Pourcentage (%)	0,06	1,84	10,2	25,2	24,4	12,5	12,03	8,61	6,53	0,51	0,00	0,00	101,8	
Apport moyen mensuel	0,00	0,09	0,51	1,26	1,22	0,62	0,60	0,43	0,33	0,03	0,00	0,00	5,09	
Apport moy mens transposé	0,002	0,07	0,38	0,93	0,90	0,46	0,445	0,32	0,24	0,02	0,00	0,00	3,766	
Pourcentage (%)	0,059	1,81	9,99	24,7	23,9	12,2	11,82	8,46	6,42	0,50	0,00	0,00	100.0	

Annexe II – 4

Fig.1 : Résultats de l'ajustement de la série des débits moyens mensuels transposés à la loi de *Pearson III*.
Annexe II – 5

				1ère consigne			2è	me consig	ne
mois	A80% (Mm ³)	U (Mm ³)	A80%-U (Mm ³)	Vrf (Mm ³)	Vri (Mm ³)	S (Mm ³)	Vrf (Mm ³)	Vri (Mm ³)	S (Mm ³)
					1.32			2.17	
Oct.	5.09	1.6	3.49				-2.17	1.32	3.49
Nov.	5.28	0.08	5.2	4.81			-3.43	1.32	4.75
Déc.	5.48	0.08	5.4	10.01			1.77		
Jan.	5.35	0.08	5.27	15.41			7.17		
Fév.	4.85	0.07	4.78	20.68			12.44		
Mars	5.12	1.6	3.52	25.46	22.67	2.79	17.22		
Avril	5.05	3.12	1.93	26.19	22.67	3.52	20.74		
mai	5.05	5.15	-0.1	24.6	22.67	1.93	22.67		
Juin	4.49	7.69	-3.2	22.57			22.57		
Juil.	4.58	11.75	-7.17	19.37			19.37		
Aout	4.6	12.76	-8.16	12.2			12.2		
Sept.	4.65	7.37	-2.72	4.04			4.04		
L	<u> </u>	<u> </u>	I	1.32			1.32		
				L		8.24			8.24

Tableau 01 Résultats de la régularisation saisonnière sans tenir compte des pertes par la méthode Bilan d'eau

				1ère consigne		2ème consigne		gne	
A80% (Mm ³)	U (Mm ³)	P (Mm ³)	A80%-(U+P) (Mm ³)	Vrf (Mm ³)	Vri (Mm ³)	S (Mm ³)	Vrf (Mm ³)	Vri (Mm ³)	S (Mm ³)
	()		()		1.32			3.28	
5.09	1.6	0.081	3.41				-3.28	1.32	4.60
5.28	0.08	0.146	5.05	4.73			0.13		
5.48	0.08	0.219	5.18	9.78			5.19		
5.35	0.08	0.298	4.97	14.96			10.37		
4.85	0.07	0.373	4.41	19.94			15.34		
5.12	1.6	0.418	3.10	24.34			19.75		
5.05	3.12	0.433	1.50	27.44	24.34	3.10	22.85		
5.05	5.15	0.452	-0.55	25.84	24.34	1.49	24.34		
4.49	7.69	0.456	-3.66	23.79			23.79		
4.58	11.75	0.419	-7.59	20.14			20.14		
4.6	12.76	0.260	-8.42	12.55			12.55		
4.65	7.37	0.088	-2.81	4.13			4.13		
		I		1.32			1.32		
				L	1	4.60		1	4.60
	X80% Mm³) 5.09 5.28 5.48 5.35 4.85 5.12 5.05 5.05 4.49 4.58 4.6 4.65	X80% U Mm³) (Mm³) 5.09 1.6 5.28 0.08 5.48 0.08 5.35 0.08 4.85 0.07 5.12 1.6 5.05 3.12 5.05 5.15 4.49 7.69 4.58 11.75 4.6 12.76 4.65 7.37	$\mathbf{X80\%}$ U (Mm ³)P (Mm ³) 5.09 1.6 0.081 5.28 0.08 0.146 5.28 0.08 0.219 5.35 0.08 0.298 4.85 0.07 0.373 5.12 1.6 0.418 5.05 3.12 0.433 5.05 5.15 0.452 4.49 7.69 0.456 4.58 11.75 0.419 4.6 12.76 0.260 4.65 7.37 0.088	X80% Mm³) U (Mm³) P (Mm³) A80%-(U+P) (Mm³) 5.09 1.6 0.081 3.41 5.28 0.08 0.146 5.05 5.48 0.08 0.219 5.18 5.35 0.08 0.298 4.97 4.85 0.07 0.373 4.41 5.12 1.6 0.418 3.10 5.05 3.12 0.433 1.50 5.05 5.15 0.452 -0.55 4.49 7.69 0.456 -3.66 4.58 11.75 0.419 -7.59 4.6 12.76 0.260 -8.42 4.65 7.37 0.088 -2.81	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

 Tableau 02 Résultats de la régularisation saisonnière avec pertes par la méthode Bilan d'eau.

Annexe II .6 : laminage

Temps (h)	Q (m3/s)	Q moy (m ³ /s)	Q moy- q (m ³ /s)	(Q _{moy} - q) Δt (Mm ³)	V+1/2.q.Δt (Mm ³)	q (m ³ /s)
0	0	12.015	12.02	0.011	0.000	0.00
0.25	24.03					
		60 115	50.07	0.054	0.011	0.14
		00.115	39.91	0.054	0.011	0.14
0.5	96.2					
		156.23	155.08	0.140	0.065	1.15
0.75	216.26					
0.75	210.20					
		300.365	294.68	1.061	0.204	5.68
1	384.47					
		302 235	311 /7	0.022	1 265	80.77
		392.235	511.47	0.022	1.205	00.77
1.02	400					
		335.115	252.30	0.227	1.288	82.81
1.27	270.23					
1.47	270,23					
		221.155	116.85	0.105	1.515	104.30
1.52	172.08					
		136.61	21.04	0.020	1.620	114 67
		130.01	21.74	0.020	1.020	114.07
1.77	101.14					
		77.07	-39.57	-0.036	1.640	116.64
2.02	53					
2.02						
		38.115	-74.97	-0.067	1.604	113.09
2.27	23.23					
		15 325	-91 11	-0.082	1 537	106 43
		10.040	-71,11	-0.002	1.557	100.45
2.52	7.42					
		4.285	-94.20	-0.085	1.455	98.48
2.77	1 15					
2.11	1.13					
		0.5765	-89.86	-0.081	1.370	90.43
3.02	0.003					
		0.0015	-82 03	-0.012	1 280	82.03
		0.0013	-02.73	-0.012	1.407	04.75
3.06	0					
L	1	1		l	1	I

		0	-81.84	-0.056	1.277	81.84
3.25	0	-				
		0	-76.77	-0.069	1.221	76.77
3.5	0	-				
		0	-70 64	-0.064	1 152	70.64
2.75	0		-70.04	-0.004	1,132	/0.04
3.75	U					
		0	-65.14	-0.059	1.088	65.14
4	0					
		0	-60.19	-0.217	1.030	60.19
5	0	-				
		0	-42.93	-0.309	0.813	42.93
7	0	-				
		0	-21.49	-0.155	0.504	21.49
9	0	-				
		0	-12 52	-0.000	0 3/0	12.52
			-12.52	-0.070	0.549	12.32
11	U					
		0	-8.05	-0.058	0.259	8.05
13	0					
		0	-5.55	-0.040	0.201	5.55
15	0	-				
		0	-4.02	-0.029	0.161	4.02
17	0	-				
		0	-3.03	-0.022	0.132	3.03
19	0	-				
		0	-2 35	-0.017	0 110	2.35
21	0		2.00	0.017	0.110	2.00
21	U		1.07	0.012	0.000	
		0	-1.87	-0.013	0.093	1.87
23	0					
		0	-1.52	-0.011	0.080	1.52
25	0					
		1			1	

		0	-1.25	-0.009	0.069	1.25
27	0					
		0	-1.04	-0.008	0.060	1.04
20	0					2001
29	U					
		0	-0.88	-0.006	0.053	0.88
31	0					
		0	-0.80	-0.006	0.046	0.80
33	0					
		0	0.72	0.005	0.040	0.72
		U U	-0.72	-0.003	0.040	0.72
35	0					
		0	-0.64	-0.005	0.035	0.64
37	0					
		0	-0.56	-0.004	0.031	0.56
39	0	-				
		0	0.48	0.003	0.027	0.49
		U	-0.48	-0.003	0.027	0.48
41	0					
		0	-0.40	-0.003	0.023	0.40
43	0					
		0	-0.32	-0.002	0.020	0.32
45	0					
		0	0.24	0.002	0.018	0.24
			-0.24	-0.002	0.018	0.24
47	0					
		0	-0.16	-0.001	0.016	0.16
49	0					
		0	-0.08	-0.001	0.015	0.08
51	0					
		0	0.00	0 000	0.00	0.00
			V•VV	0.000	0.00	0.00

Annexe (III. 1)

Tableau 01 Vitesses admissibles dans le canal d'approche en fonction de la nature du sol et de la hauteur H + P.

Types de	Diamètre	V _{adm} (m/s) p	our différente	s hauteurs (m))		
sols	d50 (mm)	(H+P)=0.4	(H+P)=1.0	(H+P)=2.0	(H+P)=3.0	(H+P)>5.0	
Sable trés fin	0.05 ÷ 0.15	0.15 ÷ 0.20	0.20 ÷ 0.30	0.25 ÷ 0.40	0.40 ÷ 0.45	0.40 ÷ 0.55	
Sable fin	0.15 ÷ 025	0.20 ÷ 0.35	0.30 ÷ 0.45	0.40 ÷ 0.55	0.45 ÷ 0.60	0.55 ÷ 0.70	
Sable moyen	025 ÷ 1.0	0.35 ÷ 0.50	0.45 ÷ 0.60	0.55 ÷ 0.70	0.60 ÷ 0.75	0.70 ÷ 0.85	
Sable gros	1.0 ÷ 2.5	0.50 ÷ 0.75	0.60 ÷ 0.75	0.70 ÷ 0.80	0.75 ÷ 0.90	0.85 ÷ 1.00	
Gravier fin	2.5 ÷ 5.0	0.75 ÷ 0.85	0.75 ÷ 0.85	0.80 ÷ 1.00	0.90 ÷ 1.10	1.00 ÷ 1.20	
Gravier moyen	5.0 ÷ 10	0.85 ÷ 0.90	0.85 ÷ 1.05	1.00 ÷ 1.15	1.10 ÷ 1.30	1.20 ÷ 1.45	
Cailloux fin	10 ÷ 15	0.90 ÷ 1.10	1.05 ÷ 1.20	1.15 ÷ 1.35	1.30 ÷ 1.50	1.45 ÷ 1.65	
Cailloux moyen	15 ÷ 25	1.10 ÷ 1.25	1.20 ÷ 1.45	1.35 ÷ 1.65	1.50 ÷ 1.85	1.65 ÷ 2.00	
Cailloux gros	25 ÷ 40	1.25 ÷ 1.50	1.45 ÷ 1.85	1.65 ÷ 2.10	1.85 ÷ 2.30	2.00 ÷ 2.45	
Cailloux trés gros	40 ÷ 75	1.50 ÷ 2.00	1.85 ÷ 2.40	2.10 ÷ 2.75	2.30 ÷ 3.10	2.45 ÷ 3.30	
Petite pierre	75 ÷ 100	2.00 ÷ 2.45	2.40 ÷ 2.80	2.75 ÷ 3.20	3.10 ÷ 3.50	3.30 ÷ 3.80	
Pierre moyenne	100 ÷ 150	2.45 ÷ 3.00	2.80 ÷ 3.35	3.20 ÷ 3.75	3.50 ÷ 4.10	3.80 ÷ 4.40	
Grosse pierre	150 ÷ 200	3.00 ÷ 3.50	3.35 ÷ 3.80	3.75 ÷ 4.30	4.10 ÷ 4.65	4.40 ÷ 5.00	
Petite bloc	200 ÷ 300	3.50 ÷ 3.85	3.80 ÷ 4.35	4.30 ÷ 4.70	4.65 ÷ 4.90	5.00 ÷ 5.50	
Moyenne bloc	300 ÷ 400		4.35 ÷ 4.75	4.70 ÷ 4.95	4.90 ÷ 5.30	5.50 ÷ 5.60	
Grosse bloc	400 ÷ 500			4.95 ÷ 5.35	5.30 ÷ 5.50	5.60 ÷ 6.00	
Roches sedimentaires, conglomérants, marnes,		2.10	2.50	2.90	3.10		
Calcaire poreux et conglomérats compacts, grés calcifies, etc.		2.50	3.00	3.40	3.70		
Grés dolomitiques, calcaires compacts non stratifies, silices.		3.70	4.50	5.20	5.60		
Roches cristallines, marbres et granites.		16.0	20.0	23.0	25.0		
Diabases, basaltes et	quartzites.	21.0	25.0	25.0	25.0		

Tableau 02 Valeurs du coefficient de Manning en fonction des caractéristiques du canal.

N ₀	Caractéristiques du canal					
1	Sol, de section prismatique, petit rayon de courbure et peu de végétation.	0.025				
2	Sol, de section prismatique, rayon de courbure appréciable et peu de végétation.	0.030				
3	Roche, de section prismatique, petit rayon de courbure et peu de végétation.	0.030				
4	Roche, de section prismatique, rayon de courbure appréciable et peu de végétation	0.035				

Annexe III.2

Figure 01 Bassin de dissipation type III.

Annexe III.3 : Paramètre de coefficient de réduction de débit pour déversoir type bec de canard

Annexe V.1 Les engins à utiliser pour les travaux d'excavation, bétonnage, etc.

Bulldozer.

Centrale à béton.

La grue.

Camions pour le transport du déblai.

Pompe à béton (Girafe).

