RÉPUBLIQUE ALGERIENNE DÉMOCRATIQUE ET POPULAIRE

MINISTERE DE L'ENSEIGNEMENT SUPÉRIEURE ET DE LA RECHERCHE SCIENTIFIQUE

ÉCOLE NATIONALE SUPERIEURE D'HYDRAULIQUE - ARBAOUI Adbelah -

DEPARTEMENT GENIE DE L'EAU

MEMOIRE DE FIN D'ETUDES

Pour l'obtention du diplôme d'Ingénieur d'Etat en Hydraulique

Option : Conception des Systèmes d'Assainissement

THEME:

ETUDE DU RESEAU D'ASSAINISSEMENT DE LAVILLE DE L'OUED FALLI (W. TIZI OUZOU)

Présenté par :

M^r: ABBOU Samir

DEVANT LES MEMBRES DU JURY

Nom et Prénom	Grade	Qualité
M ^{me} : B.TOUAIBIA	Professeur	Présidente
M ^{me} : F.AMMOUR	M A .A	Examinatrice
M ^r : A.BOUFEKANE	MA.A	Examinateur
M ^r : M.DJELLAB	м с.в	Examinateur
M ^r : A.AMMARI	M A.A	Examinateur
M ^{me} : H.ZENDAGUI	Ingénieur en chef	Promotrice

Septembre 2012

Je dédie ce modeste travail en signe de reconnaissances et de respect :

- A mes très chers parents pour tous leur sacrifices corp et âmes afin de m'offrir le repos et le bonheur; Pour l'éducation qu'ils m'ont inculquée, pour leur soutien moral et matériel dont j'ai bénéficié à chaque fois que j'en avait besoin, pour l'amour et la tendresse qu'ils m'ont réservé et la patience et le dévouement qu'ils m'ont insufflés. Très chers parents, je ne vous remercierai jamais assez pour vos actes.
- A ma très chère grand-mère qui prie toujours pour moi. Que Dieu lui donne une longue vie.
- **♥** A mes deux grands frères que je remercie beaucoup pour leur soutien.
- ♥ A ma grande sœur Ouiza à qui je souhaite beaucoup de réussite, sans oublier son mari Kada.
- ♥ A ma sœur Siham et mon frère Amine que je félicite pour leur réussite au BAC, je leur souhaite une bonne continuation dans leur parcours universitaire .
- ♥ *A ma petite sœur, je leur souhaite une bonne chance pour avoir sont BAC cette année* .
- **♥** A tous mes amis de OUACIF.
- 💙 A tous mes amis de l'ENSH sans exception.

En un mot, à toute ma famille, mes amis, et ceux qui ont contribué de prés ou de loin à ma formation.

Remerciements

Au terme de ce modeste travail, je tiens à remercier, tout d'abord le Dieu tout puissant de m'avoir donné la force et le courage pour mettre à terme ce travail. Je remercie également :

- Les premières personnes qui méritent le grand remerciement sont mes parents qui m'ont fourni pendant toute ma vie et durant mes études tout ce dont j'avais besoin. Je prie ALLAH de les protéger.
- ♣ A ma très chère promotrice madame **N.ZENDAGUI**, pour tout le temps qu'elle m'a consacré, tout l'intérêt qu'elle m'a accordé, pour tous les conseils qu'elle m'a donné, et les remarques qu'elle m'a faite. Elle était toujours présente, disponible et prête à m'aider. Les mots ne sont pas suffisants pour la remercier. **Merci infiniment.**
 - ♣ Mesdames et Monsieur les membres du jury qui ont bien accepté de juger mon travail, et qui ont pris le temps de rapporter ce mémoire.
- ♣ A tout le corps enseignant et le personnel de l'**ENSH** qui ont contribué de prés où de loin a ma formation
- ♣ A toute l'équipe de Centre d'études et de Réalisation en Urbanisme qui se trouve à Blida pour leur contribution

Je ne saurais oublier tous mes amis qui ont su m'encourager et me soutenir et à qui je dédie ce travail en témoignage de ma profonde affection.

Je remercie enfin tous ceux qui n'ont pas été cités dans ces quelques lignes et qui ont contribué de près ou de loin par leur aide au bon déroulement de ce travail إن الهدف الأساسي من هذه المذكرة هو دراسة شبكة التطهير لمدينة واد فالي بولاية تيزي وزو.

حيث تعرضنا إلى تقدير المياه المستعملة ومياه الأمطار، ثم حددنا مخطط وضع هذه الشبكة آخذين بعين الاعتبار كل المعطيات المتعلقة بالمنطقة (طبوغرافيا، مخطط عمران و مناخ...) وذلك بغية صرف المياه خارج المدينة في ظروف حسنة ووفقا للمقاييس المعمول بها.

RESUME

Donc l'objectif principal de notre mémoire est l'étude du réseau d'assainissement de la ville Oued falli dans la wilaya de Tizi Ouzou.

C'est dans ce sens que nous avons évalue différant débits usées et pluviaux et trace le réseau d'évacuation tout en prenant en considération les données de la ville (topographie, plan d'urbanisation, climat) et assurer une évacuation en dehors de la ville et leurs rejet.

Abstract

There fore the main objective of our dissertation is the study of waste water system of the city Oued Falli .

It is in this way that we have evaluation of different used water and store water discharges and drawn the drainage taking in to account data about the city (topography, plan of urbanization, climate) to ensure directing of water out of the city .

Table des Matiéres

Page	
Résumé	
Liste des tableaux	
Liste des figures	
Introduction Générale	1
I.1.Situation géographique	7
I.2.Situation géologique	
I.3 Situation topographique	
I.4 Situation hydrologique	
I.5.Situation climatique	
I.5.1.la pluviométrie	
I-5-2-La température	4
I-5-3-Le vent	5
I-5-4- Séismicité	5
I-6-Situation démographique	6
I-7-Situation hydraulique	7
I-7-1-Alimentation en eau potable	7
I.7.2. Le réseau d'assainissement de la zone d'étude	7
Conclusion	8
Chapitre II : Calcul de base	
Introduction	
II-1-Etudes hydrologique	
II-1-1- Choix de la période de retour	9
II-1-2-Analyse des données pluviométriques et le choix de la loi d'ajuste	ement 9
II-1-3-Choix de la loi d'ajustement	10
Remarque	10
II-1-4 Calcul des paramètres de la loi choisie et vérification de son adéquation	10
II-1-4-1-Ajustement de la série pluviométrique à la loi de GUMBEL	10

II-1-4 -2-Calcul de la valeur de l'intensité moyenne de précipitation	11
Conclusion	12
II-2- L'estimation les débits des eaux pluviales et usées	13
II-2-1-Différents Systèmes D'évacuation	13
II-2-2-Choix du système d'assainissement	14
Conclusion	14
II-2-3- Schéma du réseau	15
II-2-4-Choix du schéma du réseau	16
Remarque	16
II-2-5-Découpage de l'aire d'étude en sous bassins élémentaires	17
Remarque :	17
II-2-6- Evaluation du coefficient de ruissellement	17
Remarque :	19
II-2-7- calcul de la population de chaque sous bassin	20
Conclusion:	21
CHPITRE III : Evaluation des débits	
III-1-1-Introduction	22
III-1-2-Origine Et Nature Des Eaux Usées	22
III-1-3-Estimation des débits des eaux usées	22
Remarque	23
III-2-Evaluation Des Débits D'eaux Pluviales	25
III-2-1-Méthode rationnelle	25
III-2-2-Méthode superficielle (méthode de Caquot) :	26
III-2-3-Choix de la méthode	28
III-2-4-Calcul des débits pluviaux	28
Conclusion:	35
Chapitre IV : Calcul hydraulique du réseau d'assainissement	24
Introduction	
IV-2-Dimensionnement du réseau d'assainissement	
VI-2-1-Conditions d'écoulement et de dimensionnement	
VI-2-2-Mode de calcul	
IV-2-3- Principe de tracé des collecteurs :	
Remarque :	40

IV-3-Les Eléments Constitutifs Du Réseau	41
IV-4-Les ouvrages principaux	41
IV-4-1-Les conduites	41
IV-4-2-Choix du type de canalisation	42
IV-5-Caractéristique des conduites en PEHD ondule renforce	43
IV-6-Différentes actions supportées par la conduite	44
IV-7- Ouvrages annexes	45
IV-7-1-Ouvrages normaux	45
IV-7-1-1- Branchements	45
IV-7- 1-2-Ouvrages des surfaces	46
IV-7-1-3- Les ouvrages d'accès au réseau (les regards) :	47
IV-7-1-4-Espacement et emplacement des regards	47
IV-7-1-5-Différents types de regards	47
IV-7-1-6-Dimensionnement des regards de chute	48
IV-7-2- Ouvrages spéciaux	48
IV-7-2-1- Déversoirs d'orage	48
IV-7-2-2-Emplacement des déversoirs d'orage	48
IV-7-2-3-Types des déversoirs	49
Remarque	50
IV-7-2-4-Dimensionnement des déversoirs d'orage	51
IV-8- Conclusion	57
Chapitre V: Pose de canalisation Introduction	59
V-1- Travaux préparatoires	
V-1-1- Végétation	
V-1-2- Décapage terre végétale	
V-1-3-Implantation des regards et des axes des tranchées sur le terrain	
V-2 Exécution des Tranchées	
V-3-Techniques de pose	
V-3-1-Aménagement du lit de pose:	
V-3-2-Mise en place des conduites	
V-3-3-Assemblage des conduites	
V-3-4-Essais sur les joints et les canalisations	
V-3-5-La pose de la canalisation pour type ovoïde	63

	63
V-3-7-Exécution des regards	63
V-3-8-Les boites de branchement	64
V-3-9-Exécution des déversoirs d'orage	64
V -3-10-Remblaiement et compactage de la tranchée	64
V-3-11-essai hydraulique	65
V-3-12-les testes de fuite	66
V-4- Choix des engins	66
V-5-Devis quantitatif et estimatif	69
V-6-Détermination des différents volumes	69
Remarque	70
V-7-PLANIFICATION DES TRAVAUX	72
V-8- Conclusion :	74
Chapitre VI : Entretien et exploitation du réseaux	
Chapitre VI : Entretien et exploitation du réseaux Introduction	75
Introduction	75
Introduction	75
VI-1 - La connaissance du réseau	75 75 76
Introduction	75 75 76
Introduction	
Introduction VI-1 - La connaissance du réseau VI-2- La gestion du réseau d'assainissement VI-3- Exploitation des réseaux d'assainissement Remarque VI-4- Curage des réseaux d'assainissement	
Introduction VI-1 - La connaissance du réseau VI-2- La gestion du réseau d'assainissement VI-3- Exploitation des réseaux d'assainissement Remarque VI-4- Curage des réseaux d'assainissement VI-5-La ventilation des réseaux d'assainissement:	

Liste des tableaux

Tableau I-1: pluviométrie moyenne mensuelle et interannuelle (mm) pendant la période [19792010]	4
Tableau I-2 :Températures mensuelles moyennes, maximales et minimales durant la période [1990-2010]	5
Tableau I-3 : vitesse du vent mensuelle moyenne et maximale durant la période [1990-2010]. (ANRH)	5
Tableau I-1- Evaluation de la population	7
Tableau II-1-1:ajustement de la série a la loi da GUMBEL	11
Tableau II-1-2: Caractéristiques de l'échantillon	11
Tableau -1-3- :Intensité pour une période de retour de 10ans	11
Tableau II-2-1: Surface des sous bassins de la zone d'étude	17
Tableau II-2-2: Estimation du coefficient de ruissellement suivant la nature des surfaces :	18
Tableau II-2-3: Coefficient de ruissellement pour différentes densité de population :	18
Tableau II-2-4: Cœfficient de ruissellement en fonction des catégorie d'urbanisme:	19
Tableau II-2-5: détermination du coefficient de ruissellement de chaque sous bassins	19
Tableau II-2-6: Détermination du nombre d'habitants de chaque sous bassin	20
Tableau III-1: Evaluation des débits des eaux usées des équipements pour chaque sous bassin	24
Tableau III-2: Détermination des débits de pointe d'eaux usées	24
Tableau III-3 : Détermination des paramètres équivalents dans le cas de l'assemblage des	28
Tableau III-4:calcul du cœfficient d'allongement et de pentes moyennes	30
Tableau III-5: Calcul des débits pluviaux	36
TableauIII-6: Calcul du débit total pour chaque sous bassin Tableau V-1: Détermination du devis quantitatif et estimatif du projet	
Tableau V-2 · détermination des délais	72

Liste des figures

Figure I.1 plan de situation de la commune de Tizi-Ouzou	2
Figure I.2 : les zones de sismicité. Figure II1-1 :Ajustement à la droite de GUMBEL.	
Figure II2-2 : Schémat de réseau unitaire	14
Figure II2-3 : Schémat de réseau séparatif	14
Figure II2-4: Schéma perpendiculaire	15
Figure II2-5 : Schéma Oblique	15
Figure II2-6: Schéma latéral	15
Figure II2-7: Schéma par zone étagée.	16
Figure II2-8 :Schéma radial	16
Figure IV2 : Coupe type d'un tuyau ovoïde préfabriqué	42
Figure IV3 :les courbe d'abrasionde plusieurs tubes de matieres differentes suivant la procédure Darmastadt	44
FigureIV4 : Branchement de service. Modélisation en trois dimensions	46
Figure IV5: Déversoir d'orage à seuil latéral. Modélisation en 3D	50
Figure IV6 : Déversoir d'orage type frontal. Modélisation en 3D	50
Figure IV7 : Déversoir d'orage type Escalier. Modélisation en 3D.	51
Figure V1: Coupe transversale d'une tranchée avec la mise en place de la conduite Modélisation 3D	
Figure V2 : Soutènement en palplanche	61
Figure <i>V</i> 3 :Soutènement par blindage	61
Figure V4 : Mise en place des conduites	62
Figure V5: Le remblaiement a la moitie de la section du tube	65
Figure V6 :Le remblaiement au dessus de la mi-section du tube	65
Figure V7 :Les engins de décapage.	67
Figure V8 :Pelle équipée en rétro.	68
Figure V9 : Chargeur.	68
Figure V10 :compacteur à rouleau lisse	69
Figure V11: Réseau a nœud.	
Figure VI-1 : Taches Opérationnelles du réseau d'assainissement	76
Figure VI-2: Auscultation au moven de l'IVP.	77

Liste des planches

- Planche N°1: Levé topographique et le découpage des sous bassins de la ville Oued Falli
- Planche N°2 : L'étude du réseau d'Assainissement de la ville Oued Falli
- Planche N°3: Les ouvrages annexes.
- Planche N°4: Profils en long de l'intercepteur I1.
- Planche N°5: Profils en long de l'intercepteur I2.

Annexe II-1 : précipitations mensuelles et maximales journalières à la station Tizi ouzou

Annexe IV-1: Coefficient de Strickler (ks)

Annexe IV-2 : Les rapports $R_h,\,R_v,\,R_Q$.

Annexe IV-3: Calcul Hydraulique

Annexe IV-4 : Calcul Hydraulique de l'intercepteur

Introduction générale

Introduction générale

L'eau est une ressource vitale pour l'homme. Sa survie, sa santé, son alimentation et la qualité de son environnement en dépendent .Elle l'est également pour les activités agricoles, industrielles et touristiques. Cependant, elle subit de nombreuses dégradations causées précisément par le fonctionnement des sociétés humaines

Par ailleurs, l'assainissement des agglomérations a pour but d'assurer la collecte et le transit de la rétention de l'ensemble des eaux polluées, pluviales ou usées soient-elles. Cette technique procède également au traitement de ces eaux avant leur rejet dans le milieu naturel ; ceci, bien évidemment se fait par des modes compatibles qui prennent en considération les exigences de la santé publiques et de l'environnement.

En Algérie, dés que le problème de l'assainissement est posé dans les zones rurales (habitats très dispersé, douars très éloigné...)aussi bien dans le Nord qu'au Sud, Nous avons tendance à penser systématiquement à l'assainissement collectif. Mais les communes rurales sont très nombreuses, parmi celles qui sont dépourvues d'un réseau d'assainissement, car elles sont confrontées à diverses contraintes (tant économique que technique, milieu naturel...). Donc cette situation peut rester figée pendant de nombreuses années si l'on tient compte des problèmes causés par cette situation (sauvegarder la qualité du milieu naturel et celle de l'eau).

En effet, le développement rapide de la population en milieu urbain ainsi que l'évolution du mode de vie entraînent un accroissement considérable des structures urbaines impliquant des besoins en eau importants. Ces derniers, faut-il le souligner,se traduisent par un accroissement permanent du volume des rejets polluants.

C'est dans ce cadre que s'inscrit notre projet qui se base sur l'étude du réseau d'assainissement de la région Oued Falli de (wilaya de Tizi ouzou)

Afin de mieux aborder ce travail, nous avons proposé six (06) chapitres :

Nous présenterons en premier lieu les caractéristiques de notre agglomération, puis l'étude hydrologique qui nous permet d'estimer l'intensité moyenne de précipitation, et par la suite le dimensionnement du système d'évacuation proposé. Nous nous intéressons également aux éléments constitutifs du réseau de ce système ainsi que leur dimensionnement. pour la réalisation de projet.

CHAPITRE I:

PRESENTATION DE LA ZONE D'ETUDE

Introduction générale

Introduction

Avant tout projet d'assainissement, la description du site du point de vue géologique, hydrologique, démographique, climatique et hydraulique, elle permet de rassembler toutes les caractéristiques du bassin. Les données essentielles pour tout projet sont :

- les données naturelles du site ;
- les données relatives à l'agglomération ;
- les données relatives au développement futur de l'agglomération,
- les données propres à l'assainissement ;

I.1.Situation géographique

La zone d'**Oued Falli** est située à de 2km au SW du chef lieu de la commune de Tizi Ouzou, cette dernière constitue la zone d'extension ouest du périmètre urbain existant de Tizi Ouzou.

Elle est limitée:

- > au Nord par les localités Bordi Sebaou et Ifouzar.
- ➤ au Sud par les localités bou Hinoun et Tazazrait.
- à l'Est par la commune de Tamda
- ➤ a l'Ouest par la commune de Draa Ben kheda.

Figure I.1 plan de situation de la ville Oued Falli

I.2. Situation géologique

La structure de la zone d'étude n'est pas mise en évidence car, la prédominance d'une lithologie tendre marneuse avec l'inclinaison des pentes et les quantités abondantes des pluies ont donné naissance à des formes non structurales (absence d'affleurement dure) ; il s'agit de versants convexes réduits en lanières bombées vers le ciel. Pour les formes liées à l'action des eaux de ruissèlement, on dénote les ravins en V qui sont inscrits au dépend de la formation imperméable marneuse et argileuse.

On remarque aussi la présence des vallons en berceau de direction NW qui sont dus à la concentration des eaux de ruissellement.

Sur le plan lithologique ; la lithologie est une forme simplifiée de la géologie, elle donne une indication des roches de surface et sur la résistance des sols a l'érosion, Oued falli présente une multitude de faciès qui sont moyennement stable dans les zones de dépression en bordure des principaux Oueds (plaines et terrasses alluviales).

I.3 Situation topographique

La topographie générale se caractérise par les flancs de coteau de pente régulière élevée (moyenne de 25%). Le relief est presque tabulaire suivant la ligne de crêtes. La pente est très prononcée en ces lieux et elle dépasse parfois les 35%.

Cet ensemble structural est entre coupé de talwegs qui charrient les eaux pluviales et les matériaux de zones hautes vers l'oued.

L'analyse géomorphologique permet de faire le point sur la zone dans le domaine topographique, géologique et climatique, une enquête sur le terrain nous a permis de faire le constat sur les types de formes géomorphologique qui sont en rapport avec la géologie et la topographie également sur l'état actuel des versants et leurs comportements vis-à-vis des agents d'érosion hydrique.

Toutes ces caractéristiques géomorphologiques ; pentes, lithologie, rhéologie, perméabilité et dispositions des versants doivent être prises en considération dans tout projet.

I.4 Situation hydrologique

La région de Oued Falli fait partie du bassin versant de Oued Sebaou Sebt, limité par les cordonnés géographiques L.L (3.9410°, 36.5744°) et L.L (4.1728°, 36.8335°).

Ce sous bassin couvre une superficie de l'ordre de 301 Km² avec un périmètre de 94.8 Km, il est de forme allongée ce qui favorise la concentration des eaux ruisselées. Oued Sebou découpe le sous bassin versant en direction E-W sur une distance de 17 Km. L'aire d'alimentation de cette portion du tronçon de Oued Sebaou, lors de son passage en milieu du ce sous bassin versant, se subdivise en deux parties :

- Une partie septentrionale dont les affluents coulent du Nord vers le Sud.
- Une partie méridionale dont les affluents coulent du Sud vers le Nord.

Quant à la zone d'étude, elle est située à la partie méridionale du sous bassin versant, Elle est marquée sur sa marge Ouest, par le passage de l'Oued Falli relie au l'Oued Sébaou par l'Oued Sebt, d'où la nomination du sous bassin versant. Ce dernier prend son origine à hauteur de Taguemount Oukerrouch qui culmine à 726 m en changeant direction deux fois S-N puis SE-NW et recevant la majorité des affluents de la partie méridionale du sous bassin versant de Oued Sebt pour rejoindre par la suite Oued Sebaou du coté de Sidi Namane.

I.5. Situation climatique

Oued Falli se situe dans la zone du climat méditerranéen. Toutefois, en raison des massifs montagneux qui entourent la ville, ce climat est de type méditerranéen caractérisé par deux périodes ; L'une humide avec un hiver doux dont la moyenne des températures est de l'ordre de 12°C et l'humidité relative de 80%. L'autre est relativement sèche avec une moyenne des températures enregistrée au mois d'Août de l'ordre de 27°C et une humidité de 54%.

Oued Falli s'inscrit dans l'étage bioclimatique humide qui reçoit une hauteur d'eau atteignant 1000mm. Cette quantité abondante est justifiée par la présence d'une chaîne montagneuse de Djurdjura constituant une barrière qui freine les perturbations venant du N et du NW.

I.5.1.la pluviométrie

Les précipitations s'effectuent en grosses pluies peu nombreuses : entre 600 et 1000 mm peuvent tomber en quelques semaines sous forme de pluies de durées variant de quelques heures à quelque jour. Ces précipitations peuvent varier considérablement d'une année à l'autre.

La distribution mensuelle des pluies divise l'année deux périodes distinctes

- ✓ Une période sèche qui s'étale du mois de Juin au mois de septembre, période au cours de laquelle on enregistre environ 10% de la pluviométrie annuelle moyenne.
- ✓ Une période humide qui s'étend d'Octobre à Mai, période au cours de laquelle on enregistre près de 90% de la pluviométrie annuelle moyenne.

D'une manière générale, le territoire des zones de montagne du massif du Djurdjura bénéficie de précipitations appréciables (généralement supérieures à 700mm/an, et pouvant même dépasser sur les sommets plus élevés 1500mm) dont le volume augmente en rapport avec l'élévation de l'altitude.

Tableau I-1: pluviométrie moyenne mensuelle et interannuelle (mm) pendant la période [1979-2010]. (station de la commune de Tizi ouzou)

Mois	S	0	N	D	J	F	M	Α	M	J	J	Α	Année
P _{moy} (mm)	39	61.8	101.9	135	116.4	83.4	77.9	73.8	51	9.2	4	10.1	763.5

Source: ANRH de Tizi Ouzou.

I-5-2-La température

La température est un élément primordial dans les phénomènes d'évaporation et d'évapotranspiration, elle constitue un paramètre clé dans la définition du déficit d'écoulement et de l'état hydrique des sols.

D'une manière générale on distingue deux saisons :

- Une saison froide qui s étale de Novembre à Avril où les minima absolus peuvent descendre au dessous de 0 °c
- Une saison chaude qui s étale de Mai à Octobre où les maxima absolus peuvent dépasser 45°c.

Les données récupérées auprès des services météorologiques sont celle de la période allant de 1990-2010 sont représente dans le tableau **I-2**

Tableau I-2 : Températures mensuelles moyennes, maximales et minimales durant la période [1990-2010].

Mois	J	F	M	Α	M	J	J	Α	S	0	N	D	Année
Tmin c°	6,3	6,9	9	10, 6	14, 9	19, 4	22, 3	23,2	18, 9	16, 3	11, 2	7,8	13,9
Tmoy c°	10, 5	11, 3	14, 4	16, 2	20, 7	26	29, 3	29, 7	25	21, 4	15, 4	11, 7	19,3
Tmax c°	15,8	17, 5	21	22, 8	28	33, 8	37, 7	38	33, 4	28, 4	21, 2	16, 9	26,21

Source (O.N.M).

T mov: Moyenne mensuelle des températures.

T max: Moyenne mensuelle des températures maximales.

T min: Moyenne mensuelle des températures minimales.

I-5-3-Le vent

Le vent jouent un rôle important car il conditionne le choix de l'orientation géographique du site d'implantation.

Tableau I-3: vitesse du vent mensuelle moyenne et maximale durant la période [1990-2010].

Mois	J	F	М	Α	М	J	J	Α	S	0	N	D	Année
Vmoy													
(km/h)	5,04	5,04	6,12	6,84	7,56	9	8,28	7,56	6,48	5,4	5,4	5,76	6,48
Vmax													
(km/h)	82,08	78,84	79,56	84,6	73,08	73,08	76,68	85,68	79,2	76,68	84,96	85,32	85,68

Source: ANRH de Tizi Ouzou.

L'analyse de ce tableau nous montre que les vitesses moyennes du vent sont comprises entre 5.04km/h et 84.96km/h.

I-5-4- Séismicité

Si la Méditerranée apparait, aujourd'hui, comme l'une des zones de sismicité élevée, c'est autant du à l'existence des plissements Alpins qu'à celles d'effondrements particulièrement actifs de terrain.

D'après les manifestations sismiques ressenties et les publications du ministère des travaux publics, l'Atlas tellien constitue, en Algérie, l'un des éléments géologiques proches du plissement Alpin.

Dans ce cas, on peut dire que notre terrain est implanté dans l'une des régions où la sismicité est assez importante (zone 2), et cela d'après la carte du zonage sismique du territoire national (RPA99-Version 2003), Sur la carte suivante il est défini 4 zones sismiques classées comme suite :

1)- Zone 0 : sismicité négligeable ;

2)- Zone 1 : sismicité faible ;

3)- Zone 2 : sismicité moyenne ;

4)- Zone 3 : sismicité élevée ;

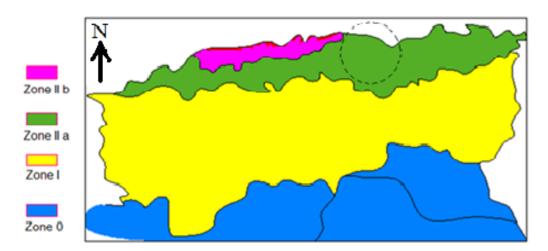


Figure I-2 : les zones de sismicité

Il est indispensable d'effectuer une étude démographique pour cerner l'évolution de l'agglomération en se basant sur les résultats des recensements officiels, des enquêtes réalisées in situ et des résultats et recommandations des études du plan directeur d'aménagements urbain.

L'étude de l'évolution de la population des agglomérations est basée sur les statistiques des recensements nationaux.

Le nombre d'habitants futur (long terme) dans une agglomération urbaine est déterminé par la formule suivante : $P=P_0 \ (1+t)^n$

Où:

- P: population future à l'horizon considéré (hab).
- P0 : Population à l'année de référence (notre ville :54505 ha).
- t: taux d'accroissement annuel de la population.

D'après les renseignements fournis par l'APC de Tizi Ouzou, le taux d'accroissement de la population est de 2,2 % en tenant compte :

- **❖** Mode de vie.
- ❖ L'éducation (planning familial).
- Développement socioculturel.
- Degré général de l'instruction
- n : nombre d'année séparant l'année de référence à l'horizon Considéré (30ans).

Le tableau suivant présente le nombre d'habitant pour les différents horizons :

Tableau II-1- Evaluation de la population.

Années	Evaluation de la population [Hab.]
2008	54505
2018	67756
2028	84227
2038	104704

I-7-Situation hydraulique

I-7-1-Alimentation en eau potable

La disponibilité de la ressource en eau non loin de la ville nouvelle de Tizi Ouzou est un atout important pour accompagner et concrétiser les différents projets de développement prévus dans cette zone.

Les deux principales ressources seront tirées à partir de la nappe alluviale de l'Oued Sebaou et du barrage de Taksebt.

La mobilisation de celle-ci sera assurée par l'intermédiaire des ouvrages suivants :

La batterie de forages au nombre de dix (10) implantés dans le champ captant de Bouaid, mobilisant un débit global journalier de 24 000 m3/j.

Les canalisations principales à projeter dans le cadre de ce schéma directeur sont les suivantes :

- Prise en charge du déplacement de la conduite de refoulement à partir des forages vers le réservoir existant R 5000 m3.
- Projection d'une conduite gravitaire à partir de la station de reprise R 2000 m3 vers la station de Thassadort.
- Projection d'une conduite d'adduction ou d'équilibre qui servira de connexion entre les deux réservoirs (renforcement en cas de rupture).

Nous considérons la dotation en AEP de la population de **180 l/hab/j**; norme recommandée par l'administration en zone urbaine du fait que Oued falli est un chef lieu de la wilaya.

I-7-2-Le réseau d'assainissement de la zone d'étude

Les principaux ouvrages d'assainissements existants dans la zone d'ètude sont les suivants :

La station d'épuration d'une capacité de 25 000 Eq/hab, située à la sortie Ouest de la ville de Tizi Ouzou, plus précisément à Boukhalfa.

L'ovoïde (1000 mm* 2400 mm) longeant la RN 12, prend en charge toutes les eaux pluviales et usées émanant du bassin versant Ouest de la ville vers la STEP de Boukhalfa.

L'ovoïde (1000 mm * 2400 mm) de Oued Falli, dont le prolongement est en voie d'achèvement, est conçu pour la prise en charge des eaux pluviales et usées du bassin versant de Oued Falli.

Le relief du terrain présente deux bassins versants distincts : l'un tend vers l'oued Sèbaou et l'autre vers l'oued Sebt. Ce dernier nécessitera la projection d'une autre station d'épuration d'une capacité de 50 000 Eq/hab .

Conclusion

Toutes les conditions nécessaires relatives au secteur de l'hydraulique (disponibilité de la ressource en eau, terrains d'assiette devant recevoir les ouvrages projetés, relief du terrain favorable pour assurer un écoulement des eaux en gravitaire, existence des ouvrages, etc.) sont réunies en vue de contribuer à la concrétisation et à la réussite de ce projet de Oued Falli

CHAPITRE II:

CALCUL DE BASE

Introduction

L'assainissement des agglomérations, au sens où l'entend la présente instruction a pour objet d'assurer l'évacuation de l'ensemble des eaux pluviales et usées ainsi que leur rejet dans les exutoires naturels sous des modes compatibles avec les exigences de la santé publique et de l'environnement.

Pour cela on doit faire deux calcul dans ce chapitre :

- D'abord l'études hydrologique est une partie très importante dans le calcul d'un réseau d'assainissement
- L'estimation les débits des eaux pluviales et usées afin d'assurer une meilleure collecte avec un bon rendement d'évacuation.

II-1-Etudes hydrologique

II-1-1- Choix de la période de retour

La période de retour de suffisance du réseau d'assainissement est le résultat d'un compromis entre coût de sa construction et de son entretien. Elle est généralement prise égal à 10 ans, cette période est prise comme base de calcul. [1]

II-2-Détermination de l'intensité moyenne de précipitation

L'analyse de cette intensité moyenne maximale est très importante dans le dimensionnement des réseaux d'égout.

Lors de l'étude d'une averse, il convient de déterminer les intensités moyennes maximales qui se définissent par le rapport de la hauteur d'eau tombée et la durée Δt . [2]

L'intensité moyenne se définit par rapport de la hauteur d'eau tombée pendant une durée

donnée soit :

$$Im = \frac{h}{t}$$
 (II-1)

Im: Intensité moyenne maximales en mm/h.

h: hauteur de pluie tombée pendant la durée t.

II-1-2-Analyse des données pluviométriques et le choix de la loi d'ajustement

-Analyse des données statistiques :

Pour l'étude des précipitations en assainissement on a besoin d'une série pluviométrique qui comporte les précipitations maximales journalières pour la période la plus longue possible.

Nous prenons comme base de calcul la série pluviométrique de la station pluviométrique de la commune Tizi ouzou dont le code : 021810, sur une période de fonctionnement de 1980 au 2010 qui a été fournie par l'A.N.R.H de BLIDA.

La serie pluviometrique est mentionnée dans *l'Annexe (II-1)*

$$\sum_{i=1}^{N=31} Xi = 2068,5mm \tag{II-2}$$

La moyenne des précipitations maximales journalières :

$$\overline{X} = \frac{\sum_{i=1}^{n} Xi}{n} = \frac{2068,5}{31} = 66,73mm$$
 (II-3)

N: le nombre d'années d'observations (n= 31 ans).

 \triangleright L'écart type « δ_x »;

Pour $n \ge 31$ ans on a:

$$\sigma_X = \sqrt{\frac{\sum_{i=1}^{31} (X_i - 66.73)^2}{31}} = 22.80 \text{mm}$$
 (II-4)

> Coefficient de variation :(« Cv ») :

$$C_V = \frac{\sigma}{\overline{X}} = \frac{22.80}{62.26} = 0{,}366$$
 (II-5)

L'exposant climatique :

Selon les études régionales de l'A.N.R.H on a b=0.34

II-1-3-Choix de la loi d'ajustement

Les lois d'ajustement sont nombreuses et ne peuvent être appliquées à un échantillon que si les conditions homogénéité - stationnarité sont réunies. Les deux lois les plus utilisées sont :

- Loi de GUMBEL
- loi de GALTON ou loi log normale.

Les critères de choix d'une loi sont liés à un ajustement graphique d'abord et ensuite à un test de dispersion. L'allure des points sur du papier à probabilité permet à prime abord d'accepter ou de rejeter la loi (Toute sinuosité, mauvaise courbure ou cassure de pente est considérée comme un mauvais ajustement).

Remarque

Pour le dimensionnement optimal de notre réseau, on va travailler avec la méthode de GALTON qui est plus adéquate pour l'ajustement de notre série pluviométrique

II-1-4 Calcul des paramètres de la loi choisie et vérification de son adéquation

II-4-1-Ajustement de la série pluviométrique à la loi de GALTON

Une variable aléatoire x a une distribution log normale lorsque $y = \ln x$ est normale. La loi

de Galton résulte de la loi normale mais rendue dissymétrique par un changement de variables.

Sa fonction de ré partition est donnée par : $F(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{u} e^{-\frac{1}{2}u^2} du$ (II-6)

F(x): Fréquence au non dépassement.

La variable réduite est de la forme :

$$u = \frac{X_i - \overline{X}}{\sigma_x}$$
 (II-7)

Et l'équation de la variable réduite présentée sous la forme $Logx + u\sigma_{Logx}$ est l'équation d'une droite sur papier gauss-logarithmique avec en abscisse l'échelle gaussienne et en ordonnée l'échelle logarithmique.

Le calcul est faire par logicielle **hyfran** en trouve les résultats suivent :

Tableau II-1-1: ajustement de la série a la loi da GALTON.

				Intervalle de confiance (95%)			
T	${f q}$	XT	Ecart-type				
100	0.99	138	17.7	103	172		
50	0.98	124	14.7	95.6	153		
20	0.95	107	11	85.5	128		
10	0.9	93.6	8.42	77.1	110		

Tableau II-1-2: Caractéristiques de l'échantillon

	Caractéristiques. de l'échantillon
Minimum	28.6
Maximum	129
Moyenne	62.3
Ecart-type	22.8
Médiane	60.3

II-1-4-2-Calcul de la valeur de l'intensité moyenne de précipitation

La formule de Montanari est utilisée pour donner l'intensité des pluies de courte durées dont l'expression est :

$$I_{t(15\,\text{min})}(p\%) = I_{24}(p\%)(\frac{t}{24})^b \tag{II-8}$$

Avec:

 I_t (15 mn) (p%): intensité maximale de pluie pour une averse de fréquence (p½) I_{24} (p%): intensité maximale de pluie pour une journée et de fréquence (p½).

T: durée d'une averse 15 min pour une période de retour 10 ans.

B: exposant climatique b = 0.34



Figure II-1-1 Ajustement à la droite de GALTON

C'est l'expression de Montanari qui nous donne l'intensité moyenne maximale en fonction de diverses durées « t » pour une période de retour décennale.

Tableau -1-3-: Intensité pour une période de retour de 10ans $\overline{\dot{t}}_t$, p

perioude de	5	10	20	50	100
retour					
Fréquence (%)	20	10	5	2	1
Pmaxj,p(%)(mm)	85	93.6	107	124	138
T(h)	I(mm/h)	I (mm/h)	I(mm/h)	I(mm/h)	I(mm/h)
0.25	69.17	79.37	82.63	91.63	101.98
0.5	40.59	44.69	51.09	59.21	65.89
1	26.23	28.88	33.01	38.26	42.58

Conclusion

L'étude hydrologique nous a permis de déterminer l'intensité moyenne maximale et cela d'après les résultats obtenus par l'ajustement de la série pluviométrique à la loi de Galton, on a :

 $i = 15 \min_{i=1}^{\infty} 15 \min_{i=1}^{\infty} 10\% = 79,37 mm / h$

D'où le débit spécifique est :
$$q = \frac{79,37(10000)}{3600} = 220,45l/s/ha$$
 (II-9)

II-2- L'estimation les débits des eaux pluviales et usées

II-2-1- Différents Systèmes D'évacuation

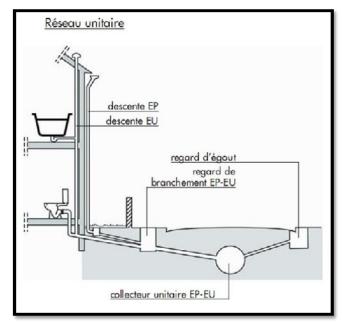
L'établissement du réseau d'une agglomération doit répondre à deux catégories de préoccupation, à savoir :

- Assurer une évacuation correcte des eaux pluviales de manière à empêcher la submersion des zones urbanisées et éviter toute stagnation après les averses.
 - Assurer l'évacuation des eaux usées ménagères, les eaux vannes, ainsi que les eaux résiduaires industrielles. Il est permis d'imaginer un ou plusieurs réseaux de canalisations où l'effluent s'écoule généralement gravitairement.

En general il y a trois systèmes d'évacuation susceptibles d'être mis en service qui sont :

- -Système unitaire
- -Système séparatif
- -Système pseudo séparatif

II-2-1-1 Système unitaire


Un collecteur assure le transport des eaux usées et des eaux pluviales. Ce système est intéressant économiquement puisqu'il n'y a qu'un seul réseau à construire et à gérer. Ce système est le plus ancien

Avec ce système, il est impératif de tenir compte d'éventuelles variations brutales de débits des eaux pluviales dans la conception et le dimensionnement des collecteurs et des ouvrages de traitement. Des déversoirs ou bassin d'orage sont ainsi repartis tout au long du réseau pour limiter les risques d'inondation. D'autre part les eaux en excèdent peuvent dérégler la bonne gestion de la station d'épuration et de fait minorer ses performances épuratoires. Les déversoirs d'orage permettent ainsi à la station d'épuration de ne pas recevoir un débit supérieur à sa capacité. *La figure II-2* démontre une représentation schématique d'un réseau unitaire.

II-2-1-2 Système séparatif

Ils sont constitués de deux réseaux, le premier collectant les eaux domestiques, le second les eaux pluviales. Les eaux pluviales vont en général vers le milieu naturel le plus souvent sans avoir subi de traitement. Des polluants, éventuellement présents dans cette eau, intègrent alors le milieu naturel dont elle est issue.

Les aménagements les plus récents consistent à stocker cette eau dans des bassins de retenue, l'eau étant filtrée en amont et débarrassée d'une partie de ses polluants. Le principal avantage des réseaux séparatif est l'absence de débordement d'eaux usées dans le milieu naturel lorsqu'il pleut, ainsi qu'une meilleure maîtrise du flux et de la concentration en pollution. D'autre part, avec ce type de réseau, il est plus aisé de dimensionner la capacité de la station d'épuration. La figure IV.2 démontre une représentation schématique d'un réseau séparatif

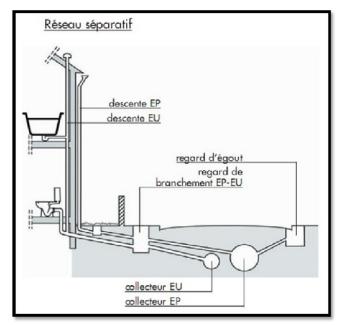


Figure II-2-2: schémat de réseau unitaire réseau séparatif.

Figure II-2-3: schémat de

II-2-1-3 Système pseudo séparatif

Le système pseudo séparatif est un système dans lequel on divise les apports d'eaux pluviales en deux parties :

- -L'une provenant uniquement des surfaces de voirie qui s'écoule par des ouvrages particuliers des services de la voirie municipale : caniveaux aqueducs, fossés avec évacuation directe dans la nature
- -L'autre provenant des toitures et cours intérieures qui sont raccordées au réseau d'assainissement à l'aide des mêmes branchements que ceux des eaux usées domestiques. On recoupe ainsi les évacuations des eaux d'un même immeuble [4]

II-2-2-Choix du système d'assainissement

Les paramètres prépondérants pour le choix du système d'assainissement sont :

- -Une étude technico-économique doit être établit avec la comparaison de plusieurs variantes du point de vue système (séparatif ; unitaire ; ou pseudo séparatif)
- -Il faut prendre en considération les conditions de rejet car la station d'épuration ou le milieu naturel influence beaucoup sur le choix.
 - S'il s'agit d'une extension du réseau, il faut tenir compte du système existant;
- La topographie du terrain par exemple, un système séparatif exige une forte pente pour le réseau pluvial et une faible pente pour le réseau domestique.
- Le nombre d'habitants joue un rôle primordial dans le choix car si on a une forte densité d'habitation il vaut mieux favoriser un système séparatif
 - L'encombrement du sous-sol.
- Une dilution exigée par la station d'épuration pour un certain débit demander donc il faut favoriser le système unitaire ou prévoir une connexion directe.

Conclusion

En tenant compte de l'aspect économique, la simplicité du système et des conditions locales, nous optons pour le réseau unitaire.

II-2-3- Schéma du réseau

Les réseaux d'assainissement fonctionnent essentiellement en écoulement gravitaire, ils sont donc fortement tributaires du relief si l'on ne veut pas aboutir à des tranchées trop profondes. En fonction du système d'assainissement et de la topographie, nous distinguons divers schémas :

II-2-3-1- Schéma perpendiculaire

L'écoulement se fait dans le cours d'eau. Ce type de schéma ne permet pas la concentration des eaux vers un point unique d'épuration et rend celle-ci difficile.

Il n'est guère utilisable que pour les réseaux d'eaux pluviales dans les systèmes séparatifs, avec un rejet dans un cours d'eau. Il permet par contre un tracé très économique, nécessitant pas de grosses sections. En fonction de la direction des collecteurs par rapport à celle du cours d'eau, on distingue le schéma perpendiculaire et étagé. [4]

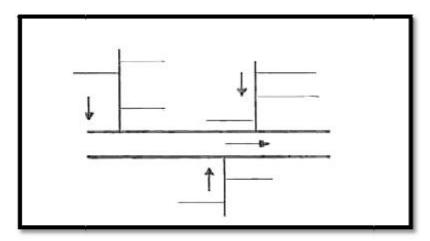
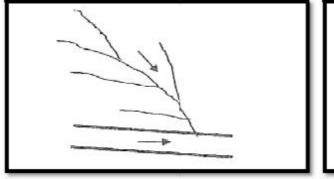



Figure II-2-4: Schéma perpendiculaire

II-2-3-2 Schéma par déplacement latéral

Dans le cas où une épuration est nécessaire, on a tout intérêt à transporter les eaux vers une station unique, ceci peut être obtenu soit par un tracé oblique, soit par un collecteur latéral. [4]

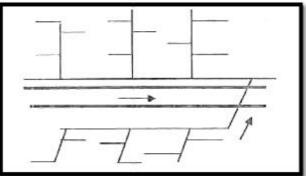


Figure II-2-6: Schéma latéral

II-2-3-3-Schéma du collecteur par zone étagé

C'est un réseau de collecteurs à déplacement latéral avec des collecteurs secondaires longitudinaux. Le réseau (2) est utilisé pour ne pas trop charger le réseau (1). [4]

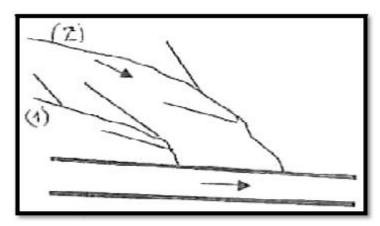


Figure II-2-7: Schéma par zone étagée

II-2-3-4-Schéma radial

Ce schéma est utilisé dans les terrains plats, pour collecter tous les effluents en un point par la suite un relevage. Il est nécessaire pour le transit vers le cours d'eau récepteur. [4]

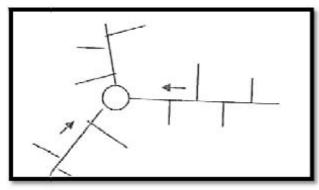


Figure II-2-8: schéma radial

II-2-4-Choix du schéma du réseau

Le schéma du réseau doit être choisi en tenant compte de plusieurs paramètres :

- > De la répartition des habitations à travers la zone urbaine.
- ➤ De l'emplacement de la station d'épuration si elle existe.
- > De la topographie du terrain.
- ➤ De l'endroit de l'exutoire.

Remarque

Tenant compte de la disposition des voiries et de la topographie de la region Oued falli on adopte le schéma de collecte par zones Latéral

II-2-5-Découpage de l'aire d'étude en sous bassins élémentaires

En général, le bassin versant est un secteur géographique qui est limité par les lignes de crête ou par les lignes de partage des eaux.

Toutes les eaux qui ruissellent en surface sont recueillies par une seule ligne d'écoulement. Donc le découpage du site en sous bassins élémentaires doit être fait selon :

- La nature des sols ;
- La densité des habitations :
- Les courbes de niveaux ;
- Les routes et voiries existantes ;
- Les pentes et les contre pentes.

Remarque:

Sur la base de la bonne connaissance de la zone d'étude le découpage ce fait suivant la nature du sol, la pente du terrain, de la surface drainée et des cités urbaines existantes. Le tableau suivant récapitule le découpage des sous bassin de la zone d'étude :

Tableau II-2-1: Surface des sous bassins de la zone d'étude.

Numéro du sous bassin	Surface (ha)
1	21,47
2	7,90
3	9,37
4	11,70
5	21,68
6	18,58
7	15,42
8	23,72
9	11,98
10	17,09
11	10,09
12	16,25
13	21,36

II-2-6- Evaluation du coefficient de ruissellement

Le coefficient de ruissellement est le rapport caractérisant le volume d'eau qui ruisselle de cette surface, au volume d'eau tombé sur cette surface.

La valeur du coefficient de ruissellement dépend de l'inclinaison, du genre et de la densité de la surface à drainer (terre limoneuse, avec ou sans végétation, sable, rocher...), l'humidité de l'aire, l'humidité de la surface, la durée de la pluie.

Le coefficient de ruissellement est estimé suivant trois cas :

II-2-6-1 Premier cas: (En fonction de la nature des surfaces à drainer)

Les valeurs du coefficient de ruissellement des ces surfaces sont estimées d'une façon approchée, vu l'hétérogénéité de la nature de ces surfaces (*tableau II-2*).

Tableau II-2-2: Estimation du coefficient de ruissellement suivant la nature des surfaces :

Nature de la surface	Valeurs du coefficient Cf
Toits en métal, tuile, ardoise	0,9
Chaussée avec peu de joints	0,85-0,9
Pavés en pierres naturelles, briques	0,75-0,85
Pavage en blocages	0,40-0,50
Surfaces goudronnées	0,25-0,60
Chemin en gravier	0,25-0,30
Gare, terrain de sport	0,10-0,30
Parcs, jardins, gazons	0,05-0,25
Forets	0,01-0,20

Source: R.BOURRIER « Les réseaux d'assainissement » [5]

II-2-6-2 -Deuxième cas : La densité de population.

La densité de population influe énormément sur le coefficient de ruissellement, étant donné que les surfaces habitables sont revêtues (toitures ou surfaces goudronnées).

Il a été constaté que plus la densité de population est importante plus le coefficient de ruissellement augmente. Pour ce cas, il est difficile d'estimer la valeur du coefficient de ruissellement, pour des sous bassins préurbains vu la densité de population très éparse et faible.

Tableau II-2-3: Coefficient de ruissellement pour différentes densité de population :

Densité de population par hectare	Coefficients de ruissellement
20	0,23
30-80	0,2-0,27
60-150	0,25-0,34
150-200	0,30-0,45
200-300	0,60-0,62
300-400	0,6-0,80
400-600	0,7-0,9

Source: R.BOURRIER « Les réseaux d'assainissement » [5]

Tableau II-2-4 : Cœfficient de ruissellement en fonction des catégorie d'urbanisme:

Zone d'urbanisme	Cr
Habitations très denses	0,9
Habitations denses	0,600,70
Habitations moins denses	0,400,50
Habitations quartiers résidentiels	0,200,30
Square, jardins, prairies	0,050, 20

Remarque:

En pratique, le découpage en aires élémentaires « Ai » d'une agglomération de superficie « A » montre que ces dernières présentent des natures du sol très hétérogènes au sein même d'un sous bassin, et qu'il est très difficile d'estimer leurs propres coefficients de ruissellement .

La détermination du coefficient de ruissellement pondéré « Crp » permet d'y remédier à cette difficulté. Néanmoins cette pondération a tendance à sous estimer ou surestimer le coefficient de ruissellement et par conséquent le débit.

$$Ct_{p} = \frac{\sum Cr_{i} A_{i}}{\sum A_{i}} = 0.61$$
 (II-1)

Avec:

Crp: coefficient du ruissellement pondéré total;

C ri : Coefficient de ruissellement de chaque sous bassin ;

Ai : Surface élémentaire de chaque sous bassin (ha) ;

At: Surface totale de la zone urbanisée (ha);

Tableau II-2-5-: détermination du coefficient de ruissellement de chaque sous bassins

N DE SB	C_{ri}	N DE SB	C_{ri}
1	0,58	8	0,58
2	0,53	9	0,70
3	0,62	10	0,63
4	0,49	11	0,71
5	0,59	12	0,65
6	0,51	13	0,68
7	0,67		

Remarque:

Pour notre projet, nous avons estimé le coefficient de ruissellement en fonction de la nature de densité de population

II-2-7- calcul de la population de chaque sous bassin

Après avoir estimé les coefficients de ruissellement de chaque sous bassin, nous déterminons le nombre d'habitants y correspondant. Pour cela il faut calculer la densité partielle et par la suite le nombre d'habitants.

On a la formule suivante :

$$Di = \frac{Cri.Pt}{Ctp.A}$$
 (II-2)

Avec:

Di : densité partielle pour chaque sous bassin (hab / ha)

Ctp: coefficient de ruissellement total pondéré

A: surface totale (ha) A=209,25ha.

Pt: nombre total d'habitants (hab) à l'horizon 2038 = 104704 hab.

Et nous avons:

$$Ctp = \frac{\sum (Ai.Cri)}{\sum (Ai)}$$
 (II-3)

Avec:

Ai: surface du sous bassin (ha)

Donc:
$$Ctp = \frac{126,36}{207,16} = 0,61$$
.

On procède par la suite au calcul du nombre d'habitants correspondant à chaque sous bassin par la relation (III-4) :

$$Pi = di. Ai$$
 (II-4)

Tableau II-2-6: Détermination du nombre d'habitants de chaque sous bassin

N DE SB	$A_i(ha)$	C_{ri}	$A_i^* C_{ri}$	$D_i(hab/ha)$	Nombre d'habitant
1	21,47	0,58	12,45	480,57	10318
2	7,9	0,53	4,19	439,14	3470
3	9,37	0,62	5,81	513,71	4813
4	11,7	0,48	5,62	397,71	4653
5	21,68	0,59	12,79	488,85	10598
6	18,58	0,51	9,48	422,57	7851
7	15,42	0,67	10,33	555,14	8560
8	23,72	0,58	13,76	480,57	11309
9	11,98	0,71	8,51	588,28	7048
10	17,01	0,63	10,72	522,00	8879
11	10,91	0,71	7,75	588,28	6418
12	16,25	0,65	10,56	538,57	8752
13	21,36	0,68	14,52	563,43	12035

Conclusion:

Pour notre agglomération on a fixé les choix suivants :

- > On fixe l'horizon de calcul a 2038, soit une population future de 104704 habitants.
- Le système d'assainissement adopté pour la zone urbaine est le système unitaire, muni d'une déviation des eaux pluviales venant de l'agglomération.
- Le schéma d'évacuation adopté est le schéma de collecte par zones latéral.
- Le découpage de la zone urbaine en sous bassin nous conduis à distinguer 13 sous bassins.

En fin de chapitre, on a déterminé l'intensité moyenne maximale ,les surfaces des sous bassins et leurs coefficients de ruissellent ainsi que le nombre d'habitants dans le but d'évaluer les débits de ces derniers qui est l'objectif du chapitre suivant.

CHAPITRE III:

EVALUATION DES DÉBITS

III-1-EVALUATION DES DEBITS D'EAUX USEES

Un réseau d'assainissement est conçu pour évacuer les eaux usées de différentes origines.

III-1-1-Introduction

L'évolution du mode de vie, des équipements sanitaires et l'augmentation des besoins en eau des lieux d'activités ont pour conséquence un accroissement des eaux usées et surtout une modification de la qualité des flux polluants rejetés. La variation en quantité des rejets dans le temps et dans l'espace est due au développement de la maison individuelle, de la résidence secondaire et estivale, auquel s'ajoute la multiplication des établissements commerciaux et industriels.

Le but principal de la conception d'un réseau assainissement est la collecte et l'évacuation hors limites de la ville des eaux usées .comme ces eaux ont une composition qui peut être source de maladie à transmission hydrique (fièvre typhoïde ; fièvre paratyphoïde, dysenterie ; diarrhées infectieuses), ce qui nous obligent à évacuer ces eaux le plus tôt possible et par le moyen le plus sur.

III-1-2-Origine Et Nature Des Eaux Usées

Les eaux usées rejetées sont d'origine domestique, industrielles ou de service public, ces eaux sont constituées de :

- > matières en suspension (decantable et non decantable)
- > matières colloïdales
- matières dissoutes

III-1-2-1- Les eaux usées d'origines domestiques

Elles sont constituées d'eaux ménagères et d'eaux des vannes, les eaux ménagères englobent les eaux des vaisselles, de lavage, de bain et de douche, les eaux de vannes englobent les urines et les matières fescales.

III-1-2-2- Les eaux usées industrielles

Ce sont celles qui proviennent de diverses usines de fabrications ou de transformations, ces eaux contiennent des substances chimiques, toxiques, elles doivent être traitées avant de les collecter dans le réseau d'assainissement.

III-1-2-3- Les eaux des services publiques

Les eaux de lavage des espaces publics sont recueillies par les ouvrages de collecte des eaux pluviales, sauf dans le cas d'un système unitaire, les autres besoins publics seront pris en compte avec les besoins domestiques.

Remarque

Dans le cas de notre mémoire, les rejets industriels sont inexistants.

III-1-3-Estimation des débits des eaux usées

L'évaluation de la quantité des eaux usées à évacuer quotidiennement s'effectuera à partir de la consommation d'eau par habitant.

L'évacuation quantitative des rejets est fonction du type de l'agglomération ainsi que le mode d'occupation du sol. Plus l'agglomération est urbanisée, plus la proportion d'eau rejetée est élevée.

II-5

III-1-3-1- Estimation Du Débits D'eaux Usées Domestique

La dotation d'eau potable prévue pour notre site est de 180 l/j/hab,et l'eau usée rejetée est de 80 % de la consommation totale.

III-1-3-2- Evaluation Du Débit Moyen Journalier

Il est calculé par la formule :

$$Q \text{ moy,} j = (Kr . D . N) / 86400$$
 (1/s)

Avec:

Q moy,j: débit moyen rejeté quotidiennement en (1/s)

Kr: coefficient de rejet pris égale à 80% de la quantité d'eau potable consommé

D: dotation journalière pris égale à 180 (l/j/hab)

N: nombre d'habitation (hab)

III-1-3-3- Evaluation Du Débit De Pointe :

Il est donné par la formule qui suit :

Q pte =
$$Kp$$
 . Qmoyj II-6

Avec:

Kp: coefficient de pointe

$$Kp = 1.5 + \frac{2.5}{\sqrt{Qmoy, j}}$$
 si Qmoy, $j \ge 2.8 1 / s$

$$Kp = 3$$
 si $Qmoy, j < 2.81/s$

Remarque

Pour notre étude le coefficient de pointe Kp est estimé à partir du débit moyen journalier

Les débits d'eaux usées des équipements et les débits d'eaux usées de pointe sont respectivement illustrés dans le *tableau N*• *III-1* et *le tableau N*• *III-2*

Tableau III-1: Evaluation des débits des eaux usées des équipements pour chaque sous bassin

N	Type	Unite	Nombre	Dotation	$Q_{moy}(l/s)$	Qequip usee	Q_{TOTAL}
de	d'equipement	de		l/j/unité		(l/s)	(l/s)
SB		mesure					
7	-Lycee internat	Elève	840	80	0,78	0,624	1,872
	-2 CEM	Elève	1680	60	1,56	1,248	
8	-Salle de Cenima	m²	4000	5	0,23	0,184	
	-Creche	Enfant	150	20	0,035	0,028	0,212
	Commonale						
9	-Bibliotethque	m²	3000	5	0,17	0,136	
	-Auberge de	Lit	50	80	0.046	0,037	
	jeunes						0,461
	-2Ecole Primaires	Elève	840	20	0,19	0,152	
	-CFPA	Elève	500	30	0,17	0,136	
10	-Marche De						
	Proximite						
	-2CEM	Elève	1680	60	1,56	1,248	1,40
	-2Ecole Primaires	Elève	840	20	0,19	0,152	
11	-Lycee internat	Elève	840	80	0,78	0,624	0,624
12	-Protection Civil	Agent	80	60	0,092	0,074	0,074
13	-Polyclinique	Lit	150	50	0,087	0,07	0,07

Source :les dotation sont par la D H W de Tizi ouzou

Tableau III -2: Détermination des débits de pointe d'eaux usées

N	A _i (ha)	Nombre	Qmoy usee	kp	Q _{pte usee}	Qequip usee	Qinfiltration	Q_{TOTAL}	Q_{TOTAL}
de SB		d'habitant	(l/s)		(l /s)	(l/s)	(l/s)	(l/s)	(m^3/s)
1	21,47	10318	17,2	2,1	36,16		3,2205	39,381	0,039
2	7,9	3469	5,78	2,54	14,69		1,185	15,875	0,016
3	9,37	4813	8,02	2,38	19,11		1,4055	20,516	0,021
4	11,7	4653	7,76	2,4	18,59		1,755	20,345	0,020
5	21,68	10598	17,66	2,09	37		3,252	40,252	0,040
6	18,58	7851	13,66	2,19	28,67		2,787	31,457	0,031
7	15,42	8560	14,27	2,16	30,84	1,87	2,313	35,023	0,035
8	23,72	11309	18,85	2,08	39,13	0,21	3,558	42,898	0,043
9	11,98	7048	11,75	2,23	26,19	0,46	1,797	28,447	0,028
10	17,01	8879	14,8	2,15	31,81	1,4	2,5515	35,762	0,036
11	10,91	6418	10,7	2,26	24,22	0,62	1,6365	26,477	0,026
12	16,25	8752	14,59	2,15	31,43	0,07	2,4375	33,938	0,034
13	21,36	12035	20,06	2,06	41,28	0,07	3,204	44,554	0,045

III-2-Evaluation Des Débits D'eaux Pluviales

Toute étude d'un réseau d'assainissement nécessite l'étape initiale et primordiale qui est la détermination des débits d'eaux pluviaux.

De ce fait, nous ne devons pas nous fier à des estimations aléatoires, mais bien au contraire nous devons mettre en évidence des valeurs approchées par le biais des méthodes appropriées, dont les plus utilisées sont :

- ➤ La méthode rationnelle
- ➤ La méthode superficielle

III-2-1-Méthode rationnelle

C'est une méthode qui consiste à estimer le débit à partir d'un découpage du bassin versant en secteurs limités par les lignes isochrones, cette méthode fut découverte en 1889, mais ce n'est qu'en 1906 qu'elle a été généralisé, elle est connue aussi par la méthode de LIOYD DAVIS*, c'est une méthode qui a fait et fait ses preuves surtout pour les bassins urbains a faible surface (≤10 ha).

Elle consiste à estimer les débits pluviaux suite à une averse d'intensité moyenne « i » supposée constante durant la chute de pluie sur des surfaces d'influence de superficie « A », caractérisée par un coefficient de ruissellement « Cr ». La méthode rationnelle s'exprime par la formule suivante :

$$Q = \alpha.Cr.i.A \quad (1/s) \tag{II-7}$$

Avec:

Q: débit d'eau de ruissellement (1 / s)

A : surface de l'aire d'influence (ha)

Cr : coefficient de ruissellement

i : intensité de précipitation (1 / s / ha)

 α : Coefficient correcteur de l'intensité tenant compte de la distribution de la pluie dans l'espace, dont sa détermination est en fonction de la forme du sous bassin.

III-2-1-1-Les hypothèses de la méthode rationnelle

Trois hypothèses fondent la formule rationnelle :

- ➤ L'intensité et le débit qui en résulte ont la même période de retour « T », ceci suppose donc que le coefficient de ruissellement « Cr » du bassin versant soit constant.
- ➤ Le débit de pointe Qp est observé à l'exutoire seulement si la durée de l'averse est supérieure au temps de concentration du bassin versant.
- Le débit de pointe est proportionnel à l'intensité moyenne maximum « i » sur une durée égale au temps de concentration du bassin versant. [6]

III-2-1-2-Critique de la méthode rationnelle :

Les critiques de la méthode rationnelle sont :

- La décomposition du bassin en aires élémentaires est approchée.
- Le coefficient de ruissellement est toujours constant sur tout le bassin et pendant toute la durée de l'averse.
- La méthode ne tient pas compte l'effet de stockage d'eau de ruissellement sur les sous

Page 26

bassins.

- Elle ne tient pas compte de distribution spatiale de la pluie (variation de l'intensité).
- L'estimation du temps de concentration est souvent laborieuse.

III-2-1-3-Validité de la méthode rationnelle

Cette méthode est utilisée pour des surfaces limitées (généralement inférieures à 10 ha) le résultat est encore plus fiable du fait de la bonne estimation du coefficient de ruissellement, ainsi elle est applicable pour des zones où le temps de concentration ne dépasse pas 30 minutes. Par contre, elle n'est pas susceptible d'être utilisée pour les zones étendues, car les calculs deviendraient fastidieux.

III-2-1-4-Temps de concentration :

C'est une caractéristique du bassin, définie comme étant le temps mis par la goutte de pluie tombée du point le plus éloigné de bassin, en durée d'écoulement pour arriver à l'exutoire

$$Tc = t_1 + t_2 + t_3$$
 (II.8)

Avec:

t₁: Temps mis par l'eau pour s'écouler dans les canalisations :

$$t_1 = \frac{L}{60.v} \tag{II-9}$$

 t_2 : Temps mis par l'eau pour atteindre le premier ouvrage d'engouffrement, ce temps varie entre 2 à 20 min.

t₃: Temps de ruissellement dans un bassin ne comportant pas de canalisation :

$$t_3 = \frac{L}{11\sqrt{I}} \tag{II-10}$$

III-2-2-Méthode superficielle (méthode de Caquot) :

La méthode de Caquot représente une évolution par rapport à la méthode rationnelle en évitant d'être limitée par l'estimation des temps de concentration d'une part et en prenant en compte les possibilités de stockage des eaux sur le bassin versant et dans les canalisations. Cette méthodes est basée sur un bilan de masse des eaux et a été développé dans les années40. La formule superficielle du débit de fréquence de dépassement « F » prend l'aspect

Suivant:

$$Q_{(f)} = K^{\frac{1}{\mu}} . I^{\frac{\nu}{\mu}} . Cr^{\frac{1}{\mu}} . A^{\frac{w}{\mu}}$$
(II-11)

Avec:

Q (**F**): est le débit de fréquence de dépassement F en (m3/s).

I : est la pente moyenne du bassin versant en (m/m).

C : est le coefficient de ruissellement. A : est la superficie de bassin en (ha).

 $K = \frac{(0.5)^{b(f)}.a(f)}{6.6}$

K: coefficient d'expression. 6.6 **U**: coefficient d'expression : 1 + 0,287. b (f).

V: coefficient d'expression : - 0,41. b (f).

ENSH2012

W: coefficient d'expression: 0.95 + (0.507. b (f)).

a(f) et b(f) sont des paramètres obtenus par la méthode des moindres carrés (l'hydrométrie):

$$I(t, f)=a(f) t b(f)$$

Où:

I (t, f): intensité de pluie de durée t et de fréquence f.

L : longueur des plus longs parcours hydraulique en (m).

A: surface du bassin considéré en (m²).

Après calcul, le débit Q (F) obtenu, est le débit d'orage brut, ce débit nécessite d'être corrigé, car il ne tient pas compte de la forme du bassin, qui peut être allongée ou ramassée et qui influe sur la valeur du débit final.

Il est donc nécessaire d'introduire des coefficients correcteurs qui font intervenir la surface du bassin ainsi que sa longueur hydraulique,

Soit le coefficient d'allongement : $M = \frac{L}{\sqrt{A}}$

Avec:

L: longueur du bassin versant en (m)

A : superficie en (ha)

$$\mathbf{m} = \left(\frac{\mathbf{M}}{2}\right)^{0.7*b(f)}$$

A la final nous obtenons un débit corrigé Q(A):

$$O(A) = O(F) \times m$$

III-2-2-1-Validité de la méthode superficielle

Cette méthode possède certaines limites d'utilisation ainsi :

- ➤ Une superficie totale < 200 ha.
- \triangleright La pente doit être comprise entre (0.2 < I < 5) %.
- \triangleright Le coefficient de ruissellement (0.2 < Cr < 1).
- ➤ Le coefficient d'allongement (0.8<M).

III-2-2-Assemblages des bassins versants en série ou en parallèle

L'application de la méthode de Caquot à un ensemble de bassins versants hétérogènes placés en série ou en parallèle est délicate. Il est en effet nécessaire de rechercher les caractéristiques du bassin versant équivalent, le tableau suivant fournie les règles d'assemblage à utiliser, sachant que dans certains cas des anomalies peuvent apparaître.

Tableau III-3: Détermination des paramètres équivalents dans le cas de l'assemblage des bassins versants en série ou en parallèle

Paramètres Equivalents	A_{eq}	C_{eq}	I_{eq}	M_{eq}
Bassins En série	$\sum_{i=1}^{N} Ai$	$\left[\frac{\displaystyle\sum_{i=1}^{N}C_{i}A_{i}}{\displaystyle\sum_{i=1}^{N}A_{i}}\right]$	$\left[\frac{\sum_{i=1}^{N} Li}{\sum_{i=1}^{N} (\frac{Li}{\sqrt{Ii}})}\right]^{2}$	$\left(rac{\displaystyle\sum_{i=1}^{N}Li}{\sqrt{\displaystyle\sum_{i=1}^{N}Ai}} ight)$
Bassins En parallèle	$\sum_{i=1}^{N} Ai$	$\left[egin{array}{c} \sum_{i=1}^N C_i A_i \ \sum_{i=1}^N A_i \end{array} ight]$	$\left[\frac{\sum_{i=1}^{N} IiQi}{\sum_{i=1}^{N} Qi}\right]^{2}$	$\left(\frac{L(Q_{pj_{MAX}})}{\sqrt{\sum_{i=1}^{N} A_{i}}}\right)$

III -2-3-Choix de la méthode

Toutefois selon les conditions aux limites de chacune de ces méthodes, nous choisissons la méthode superficielle pour l'évaluation des débits pluviaux, car elle est mieux adoptée aux critères de notre site d'étude.

III-3-4-Calcul des débits pluviaux

a) Calcul des coefficients a (f) et b (f).

L'intensité moyenne de pluie peut être représentée approximativement par la formule

$$i(t, f) = a(f)t^{b(f)}$$
 (II-12)

Alors que la formule de MONTANARI s'écrié comme suit :

$$i_{t(f)} = \frac{i_{24(f)}}{60} \cdot \left(\frac{t}{24.60}\right)^{b-1}$$
(II-13)

b: exposant climatique b=0.34

i : intensité de pluie.

Par analogie entre les deux formules on tire :

$$b(f) = b - 1 = 0.34 - 1 = -0.64$$

$$a(f) = \frac{p_{24(f)}}{24 \times 60} \left(\frac{1}{2460}\right)^{b-1}$$

P24 (f): pluie maximale journalière (P24 = 93,80 mm/j).

b: exposant climatique b=0,34

$$a(f) = \frac{93,80}{24.60} \left(\frac{1}{(24.60)}\right)^{-0.66} = 7,91$$

Donc:

$$a(f) = 7.91$$

$$b(f) = -0.66$$

b) Calcul des coefficients d'expressions

$$K = \frac{(0.5)^{b(f)}.a(f)}{6.6} = 1,89$$

$$v = -0.41b(f) = 0.264$$

$$u = 1 + 0.287b(f) = 0.81$$

$$w = 0.95 + 0.507b(f) = 0.62$$

Ce qui nous amène à avoir la formule de MONTANARI sous la forme :

$$Q(f) = K^{\frac{1}{u}} I^{\frac{v}{u}} . C_r^{\frac{1}{u}} . A^{\frac{w}{u}} = 2,19 . I^{0.326} . C_r^{1.23} . A^{0.76} m^3 / s$$
(II-14)

Le débit pluvial corrigé est égal :

$$Q(f)$$
 corrigé = $mQ(f)$ brute

Avec:

m : Coefficient d'influence donné par l'expression qui suit :

$$\mathbf{m} = \left(\frac{\mathbf{M}}{2}\right)^{0.7*b(f)} = \left(\frac{\mathbf{M}}{2}\right)^{-0.462}$$
 (II-15)

Remarque:

- Les résultats de calcul des pentes moyennes et des coefficients d'allongements sont reportés dans le *tableau N III- 4*
- Les résultats de calcul des débits pluviaux sont reportés dans le tableau N° V I-5
- les resultats de calcul des debits totaux sont reportes dans le tableau N° VI-6

Tableau N°III-4- : calcul du cœfficient d'allongement et de pentes moyennes

						GA. TO	NT ()	GA. I	• • • •		$rac{oldsymbol{L}_k}{\sqrt{oldsymbol{I}_k}}$	$\sum \frac{L_{\scriptscriptstyle K}}{\sqrt{I_{\scriptscriptstyle K}}}$	I _{moy}
N°	A		$\mathbf{L}_{\mathrm{par}}$	L _{totale}		Côtes T	N (m)	Cote de	projet (m)		$\sqrt{I_k}$	√ 1 K	(m/m)
S/B	(ha)	Tronçon	(m)	(m)	M	Amont	Aval	Amont	Aval	I_{rad} (m/m)			
		R745R746	30			143,81	142,85	142,31	141,345	0,032207	167,165		
		R746R744 R744R747	30 35			142,85 141,84	141,84 140,45	141,35 140,34	140,335 138,954	0,033667 0,039477	163,501 176,155		
		R747R748	36,8	1		140,45	138,16	138,95	136,664	0,062226	147,524		
		R748R749	35	1		138,16	136,94	136,66	135,443	0,034883	187,397		
		R749R750	40]		136,94	136,52	135,44	135,021	0,010553	389,388		
		R750R751	36			136,52	135,72	135,02	134,221	0,022228	241,465		
		R751R752	39	l		135,72	134,99	134,22	133,494	0,018621	285,804		
		R752R753 R753R757	35 35	ļ		134,99 134,68	134,68 134,48	133,49 133,18	133,182 132,979	0,008926 0,005806	370,465 459,346		
		R757R758	35,8	1		134,48	134,48	132,98	132,731	0,005800	439,540		
		R758R741	35	1		134,23	133,81	132,73	132,306	0,012146	317,583		
		R741R759	30	1		133,81	133,32	132,31	131,824	0,016087	236,531		
		R759R760	30]		133,32	130,29	131,82	128,79	0,101107	94,3477		
		R760R761	30			130,29	128,01	128,79	126,515	0,075847	108,931		
		R761R762	30			128,01	126,96	126,51	125,46	0,03517	159,969		
1	21,47	R762R763	30 30	1098	2,37	126,96	126,79	125,46	125,286	0,005807	393,693	9370,3	0,0137
	21,17	R763R764 R764R765	30	1070	2,37	126,79 126,46	126,46 126,19	125,29 124,96	124,959 124,695	0,010897	287,392 319,862	7370,3	0,0137
		R765R766	30	1		126,19	126,01	124,69	124,513	0,006057	385,482		
		R766R767	30	1		126,01	125,77	124,51	124,271	0,008057	334,229		
		R767R768	30	1		125,77	125,31	124,27	123,806	0,01553	240,733		
		R768R769	30]		125,31	123,01	123,81	121,51	0,07653	108,444		
		R769R770	30			123,01	122,03	121,51	120,526	0,032773	165,715		
		R770R771	30	ļ		122,03	121,74	120,53	120,237	0,009663	305,181		
		R771R772	30	ļ		121,74	120,67	120,24	119,173	0,035443	159,351		
		R772R773 R773R774	30 30	1		120,67 117,1	117,1 115,86	119,17 115,6	115,6 114,364	0,11912 0,041183	86,9218 147,829		
		R774R775	25,2	ł		115,86	113,80	114,36	112,502	0,073893	92,7042		
		R775R776	25	1		114	113,98	112,5	112,484	0,000712	936,915		
		R776R777	40	1		113,98	113,73	112,48	112,231	0,006325	502,956		
		R777R778	25			113,73	113,42	112,23	111,925	0,012268	225,711		
		R778R792	43,5			113,42	113,08	111,92	111,583	0,007862	490,592		
		R792RBR16	37			117,38	116,57	115,88	115,075	0,02183	250,425		
		14n15n 15n16n	46 52			126,58 126,04	126,04 125,4	125,08 124,54	124,541 123,903	0,011648	426,222 469,456		
		16n17n	48			125,4	124,76	123,9	123,265	0,012203	416,343		
		17n18n	49			124,76	124,15	123,26	122,651	0,012522	437,876		
		18n19	26			124,15	123,75	122,65	122,246	0,015604	208,141		
		19n20n	32			123,75	123,22	122,25	121,724	0,016284	250,764		
2		20n21n	34	483	1,72	123,22	122,51	121,72	121,009	0,021035	234,425		
		21n22n	40			122,51	121,53	121,01	120,029 119,269	0,024495	255,577 197,896	5053,2	0,0091
		22n23n 23n24n	31 28			121,53 120,77	120,77 120,56	120,03 119,27	119,269	0,024539	324,089		
		24n25n	30			120,77	119,6	119,06	118,096	0,03212	167,392		
		25n26n	33			119,6	119,58	118,1	118,078	0,000561	1393,75		
		26n27n	34			119,58	119,04	118,08	117,544	0,015709	271,273		
		1n-2n	36			133,98	133,45	132,48	131,95	0,014642	297,514		
		2n-3n	35			133,45	132,91	131,95	131,413	0,015334	282,642		
		3n4n	38	ł		132,91	132,43	131,41	130,926	0,012834	335,428		
		4n5n 5n6n	31 38	ł		132,43 131,96	131,96 131,45	130,93 130,46	130,455 129,945	0,015184 0,013418	251,577 328,045		
3		6n7n	49	1		131,45	130,97	129,95	129,47	0,009694	497,677		
3	9,37	7n8n	49	530		130,97	130,35	129,47	128,854	0,012571	437,023		
		8n9n	44			130,35	129,89	128,85	128,394	0,010461	430,188	4458,4	0,0141
		9n10n	41			129,89	129,09	128,39	127,588	0,019656	292,439		
		10n11n	39			129,09	128,55	127,59	127,051	0,013769	332,361		
		11n12n	42		١.	128,55	128,03	127,05	126,53	0,012398	377,207		
		12n13n	43		1,73	128,03	127,28	126,53	125,776	0,017533	324,748		
		13n14n	45			127,28	126,04	125,78	124,541	0,027456	271,58		

Suite Tableau N^{\bullet} III-4- :calcul du cœfficient d'allongement et de pentes moyennes

								Côte d	e projet		7		
						Côtes T	N (m)	(1	m)		$rac{L_k}{\sqrt{I_k}}$		
			_	_						_	$\sqrt{I_k}$	1	
G/P0		res.	L _{par}	L _{totale}						I_{rad}	-	$\sum \frac{L_K}{\sqrt{I}}$	I _{moy} (m/m)
S/B	A (ha)	Tronçon	(m)	(m)	M	Amont	Aval	Amont	Aval	(m/m)	210 2402	$\sqrt{I_K}$	1 _{moy} (111/111)
		R710R711	35			150,77	149,87	149,27	148,367	0,025694	218,3483		
		R711R712	30 30			149,87	148,31	148,37	146,812	0,051807	131,804		
		R712R713 R713R714	30			148,31 147,2	147,2 146,47	146,81 145,7	145,696 144,97	0,037197 0,024207	155,5497 192,8207		
		R714R715	24,5			146,47	144,43	143,7	142,928	0,024207	84,85941		
4		R715R716	24,3			144,43	138,76	142,93	137,262	0,083333	52,51406	2400,05	0,0306
-	11,7	R716R717	30	420	1,22	138,76	137,06	137,26	137,202	0,056893	125,7739	2400,03	0,0300
	11,,	R717R718	25	420	1,22	137,06	136,46	137,26	134,956	0,030893	161,4012		
		R718R719	25			136,46	132,16	134,96	130,656	0,023992	60,28316		
		R719R720	25			132,16	130,42	130,66	128,92	0,069424	94,8823		
		R720R721	25			130,42	130,06	128,92	128,557	0,003424	207,385		
		R721R722	30			130,06	129,05	128,56	127,55	0,03356	163,7609		
		R722R723	30			129,05	128,94	127,55	127,435	0,003837	484,3332		
		R723R724	30			128,94	127,16	127,44	125,664	0,05903	123,4767		
		R724R708	25			127,16	126,4	125,66	124,899	0,030624	142,8595		
		R793R794	30			162,52	161,17	161,02	159,669	0,045213	141,0873		
		R794R795	30			161,17	158,61	159,67	157,107	0,08539	102,6639		
		R795R796	30			158,61	156,19	157,11	154,688	0,08063	105,6508		
		R796R797	30			156,19	153,75	154,69	152,252	0,081197	105,2815		
		R797R798	30			153,75	151,57	152,25	150,067	0,072837	111,1594		
		R798R799	30			151,57	150,94	150,07	149,438	0,020973	207,1512		
		R799R800	30			150,94	150,73	149,44	149,231	0,006877	361,7698		
		R800R801	30			150,73	150,6	149,23	149,097	0,00449	447,7113		
		R801R802	30			150,6	150,44	149,1	148,945	0,00506	421,7412		
		R802R803	30			150,44	150,39	148,94	148,889	0,001873	693,1284		
		R803R804	30			150,39	150,01	148,89	148,507	0,01274	265,7887	7204.04	0.0127
5		R804R644	22	024	1.70	151,71	151,45	150,21	149,947	0,011809	202,4484	7384,04	0,0127
	21.68	R644R645	30	834	1,79	151,45	151,15	149,95	149,654	0,00977	303,5107		
	21.08	R645R647	30			151,15	150,97	149,65	149,471	0,006083	384,6365		
		R647R648	30			150,97	149,57	149,47	148,067	0,04679	138,6899		
		R648R649	30			149,57	149,24	148,07	147,739	0,010937	286,8658		
		R649R650	23,5			149,24	148,11	147,74	146,614	0,047906	107,3671		
		R650R651	30			148,11	148,07	146,61	146,572	0,00138	807,5729		
		R651R652	30			148,07	147,75	146,57	146,251	0,010693	290,1113		
		R652R655	23			147,75	147,68	146,25	146,179	0,003165	408,8143		
		R655R660	35			147,68	146,66	146,18	145,161	0,029066	205,2946		
		R660R661	35			146,66	145,41	145,16	143,914	0,035631	185,4178		
		R661R662	34			145,41	144,63	143,91	143,131	0,023035	224,0175		
		R662R663	30			144,63	143,55	143,13	142,052	0,03597	158,1798		
		R663R664	35			143,55	142,11	142,05	140,613	0,041103	172,6363		
		R664R665	30			142,11	140,8	140,61	139,3	0,043763	143,4056		
		R665R666	30			140,8	139,96	139,3	138,461	0,027993	179,3056		
		R666RBR11	26			139,96	139,61	138,46	138,106	0,013638	222,6336		

Suite Tableau $N^{\bullet}III$ -4- : calcul du cœfficient d'allongement et de pentes moyennes

N 10			_	_		Côtes	TN		e projet		$L_{ u}$	$\sum \frac{L_{\scriptscriptstyle K}}{\sqrt{I_{\scriptscriptstyle K}}}$	I_{moy}
N° S/B	A (ba)	Tronçon	L _{par}	L _{totale}	M	(m) Amont	Avol	(m)	Avol	I_{rad}	$rac{oldsymbol{L}_k}{\sqrt{oldsymbol{I}_k}}$	$\sqrt{I_K}$	(m/m)
S/B	(ha)	R555R556	(m)	(m)	IVI	164,74	Aval 163,5	Amont 163,24	Aval 162,005	(m/m) 0,041047	148,075		
	-	R556R557	30			163,5	162,63	162	161,133	0,029063	175,974	1	
	F	R557R558	30			162,63	162,51	161,13	161,007	0,0042	462,91	1	
	-	R558R559	30			162,51	162,46	161,01	160,956	0,001703	726,895		
	F	R559R560	30			162,46	161,7	160,96	160,2	0,02521	188,945	1	
_	-	R560R561	30			161,7	159,72	160,2	158,224	0,065837	116,92	1	
6		R561R562	30			159,72	159,08	158,22	157,58	0,021483	204,678		
		R562R563	30			159,08	159,05	157,58	157,553	0,000887	1007,49		
	18,58	R563R564	30	594	1,38	159,05	158,97	157,55	157,472	0,002723	574,872		
	-	R564R565	30			158,97	158,47	157,47	156,975	0,01656	233,126	5815,4	0,0104
	-	R565R566	30			158,47	157,95	156,97	156,448	0,017547	226,477		
	F	R566R567	30			158,24 157,95	157,95	156,74	156,448	0,009697	304,656	1	
	-	R567R568 R568R569	30			157,54	157,54 157,33	156,45 156,04	156,04 155,827	0,013607 0,00712	257,185 355,534	ł	
	-	R569R570	30			157,33	156,22	155,83	154,719	0,036907	156,16	1	
	F	R570R571	30			156,22	155,04	154,72	153,541	0,039273	151,381	1	
	-	R571R572	30			155,04	154,57	153,54	153,068	0,01576	238,97	1	
		R572R573	30			154,57	153,15	153,07	151,654	0,047143	138,169	1	
		R573R578	30			153,15	150,36	151,65	148,856	0,093277	98,2279		
		R578R584	24			150,36	144,54	148,86	143,036	0,242492	48,7375		
	Į.	R169R170	25			169,93	164,39	168,43	162,894	0,221428	53,128		
	-	R170R171	25			164,39	158,76	162,89	157,261	0,225304	52,6691		
	-	R171R172	25			158,76	154,02	157,26	152,515	0,189832	57,3793	ļ	
	-	R172R173	30			154,02	146,13	152,52	144,631	0,262817	58,5187		
	F	R173R174	30			146,13 143,94	143,94 142,86	144,63 142,44	142,443 141,359	0,072943 0,036113	111,078	1	
	-	R174R175 R175R176	30			143,94	142,80	141,36	139,912	0,036113	157,866 136,585		
	-	R176R177	30			141,41	138,45	139,91	136,945	0,09889	95,3993	1	
	15,42	R177R178	30	648	1,65	138,45	134,3	136,95	132,799	0,138193	80,7008	2655	0,0595
7	,	R178R184	23		-,	134,3	133,23	132,8	131,728	0,046578	106,57		,,,,,,,,,
'		R184R185	20			133,23	131,38	131,73	129,878	0,092515	65,7543	1	
		R185R198	32,8			131,38	127,94	129,88	126,444	0,104686	101,375]	
		R198R204	33,3			127,94	123,62	126,44	122,118	0,129907	92,3907		
	-	R204R205	35			123,62	115,58	122,12	114,081	0,229646	73,0363		
	-	R205R206	30			115,58	111,5	114,08	109,996	0,136153	81,3031	ļ	
	-	R206R207	20			111,5	106,4	110	104,898	0,254915	39,6125		
	-	R207R208 R208R209	25 30			106,4 103,44	103,44 103,05	104,9 101,94	101,939 101,549	0,118344 0,013007	72,672 263,05	1	
	-	R209R210	30			103,44	102,58	101,55	101,084	0,015493	241,018	1	
	F	R210R231	23,5			102,58	101,96	101,08	100,46	0,026553	144,215	1	
	F	R231R232	30			101,96	100,68	100,46	99,1819	0,042607	145,339	1	
		R232R233	30			100,68	100,22	99,182	98,7241	0,01526	242,853	1	
		R233R234	30			100,22	99,413	98,724	97,9129	0,02704	182,439		
		R238R239	20			115,36	108,6	113,86	107,096	0,338185	34,3916		
	-	R239R240	20			108,6	102,08	107,1	100,58	0,325805	35,039		
	-	R240R241	20			102,08	99,933	100,58	98,4325	0,10739	61,0307		
9	-	R241R242	20			99,933	99,565	98,433	98,0646	0,018395	147,462		
	-	R242R234	26,5			99,565	98,714	98,065	97,2136	0,032113	147,878	-	
	11,98	R234R243 R243R244	33			98,714 98,348	98,348 95,597	97,214 96,848	96,848 94,0965	0,011079 0,091717	313,522 99,0597		
	11,96	R244R245	30,5			95,597	92,428	94,097	90,9283	0,103875	94,6332	2252,7	0,0408
	-	R245R276	34,4	455	1,31	92,428	89,609	90,928	88,1091	0,081953	120,164	2232,7	0,0400
	<u> </u>	R276R277	35		-,01	89,609	88,806	88,109	87,3056	0,022957	230,999	1	
	ľ	R277R278	35,5			88,806	87,805	87,306	86,3048	0,028192	211,431	1	
	ľ	R278R279	30			87,805	87,017	86,305	85,5166	0,026273	185,082		
		R279R280	30			87,017	85,877	85,517	84,3771	0,037983	153,931		
		R280R281	30			85,877	84,969	84,377	83,4689	0,030273	172,421	l	
		R281R282	30			84,969	83,378	83,469	81,8783	0,05302	130,287	ļ	
		R282R283	30			83,378	81,349	81,878	79,8492	0,067637	115,353		

Suite Tableau N^{\bullet} III-4- calcul du cœfficient d'allongement et de pentes moyennes

											-	$\sum L_{\scriptscriptstyle K}$	I_{moy}
N°	A		L_{par}	L_{totale}		Côtes T	N (m)	Côte de	projet (m)		$rac{m{L}_k}{\sqrt{m{I}_k}}$	$\sum rac{L_{\scriptscriptstyle K}}{\sqrt{I_{\scriptscriptstyle K}}}$	(m/m)
S/B	(ha)	Tronçon	(m)	(m)	M	Amont	Aval	Amont	Aval	I_{rad} (m/m)	$\sqrt{I_k}$,
		R503R504	30			164,61	164,19	163,11	162,691	0,01382	255,1921		
		R504R505	30			164,19	163,66	162,69	162,158	0,017777	225,007		
		R505R506	22,5			163,66	163,29	162,16	161,789	0,016373	175,8385		
		R506R507	20			2E+06	162,99	2E+06	161,489	81636,5	0,069998		
		R507R508	30			162,99	162,33	161,49	160,834	0,021843	202,984		
		R508R509	30			162,33	159,79	160,83	158,291	0,084753	103,0488		
		R509R512	23,5			159,79	147,61	158,29	146,109	0,518387	32,63929		
		R512R513	25	ł		147,61	143,67	146,11	142,175	0,157368	63,02049		
		R513R514 R514R515	25 25			143,67 140,15	140,15 132,18	142,17 138,65	138,652 130,682	0,140924 0,318808	66,59591 44,27672		
		R515R516	25	1		132,18	127,24	130,68	125,744	0,197492	56,25553		
		R516R517	20			127,24	126,44	125,74	124,943	0,04006	99,92508		
	23,72	R517R518	20	746	1,5	126,44	123,82	124,94	122,321	0,13108	55,24103	3596,388	0,043
8		R518R519	20	1	-,-	123,82	119,59	122,32	118,088	0,21166	43,4721		3,3 .2
		R519R519a	16,2			119,59	116,32	118,09	114,817	0,201447	36,18308		
		R519aR520	16			116,32	112,98	114,82	111,475	0,20885	35,01086		
		R520R521	35			112,98	110,38	111,48	108,876	0,074254	128,4421		
		R521R541	25			110,38	108,03	108,88	106,535	0,093664	81,68713		
		R541R542	33,5			108,03	107,94	106,53	106,438	0,002896	622,5602		
		R542R543	35			107,94	106,82	106,44	105,321	0,031909	195,9361		
		R543R544	35			106,82	106,1	105,32	104,6	0,020586	243,9412		
		R544R550	50			106,1	104,65	104,6	103,147	0,029064	293,2867		
		R550R551	50	4		104,65	102,41	103,15	100,913	0,04469	236,5183		
		R551R552	30 32	-		102,41 98,912	98,912 92,968	100,91 97,412	97,4118	0,116693 0,18575	87,82097		
		R552R553 R553RBR9	42			92,968	89,031	91,468	91,4678 87,5312	0,18373	74,24814 137,1871		
		R612R613	30			133,83	131,85	132,33	130,351	0,0659	116,8664		
		R613R614	30			131,85	129,81	130,35	128,315	0,06787	115,1549		
		R614R615	30			129,81	127,48	128,31	125,982	0,07776	107,5829		
		R615R616	30			127,48	125,45	125,98	123,95	0,067733	115,271		
		R616R617	30			125,45	123,13	123,95	121,63	0,077333	107,8792		
		R617R618	30			123,13	121,04	121,63	119,541	0,069637	113,6848		
		R618R619	30			121,04	118,96	119,54	117,464	0,06923	114,0182		
		R619R620	30			118,96	116,87	117,46	115,369	0,069843	113,5164		
		R620R621	30			116,87	114,72	115,37	113,223	0,07151	112,1858		
		R621R622	30			114,72	112,57	113,22	111,066	0,071927	111,8604		
10	17,01	R622R623	30	660	1,6	112,57	109,92	111,07	108,417	0,0883	100,958	2945,765	0,0502
10		R623R624	30	1		109,92	107,1	108,42	105,599	0,093907	97,89782		
		R624R625 R625R626	30 30	-		107,1 105,98	105,98 103,54	105,6 104,48	104,478 102,039	0,037393	155,1401 105,2189		
		R626R627	30			103,54	103,34	102,04	99,9148	0,081293	112,7496		
		R627R628	30			101,41	99,497	99,915	97,9974	0,063913	118,6658		
		R628R629	30			99,497	98,142	97,997	96,6415	0,045197	141,1133		
		R629R630	30			98,142	96,043	96,642	94,5431	0,069947	113,4326		
		R630R631	30	1		96,043	95,622	94,543	94,1222	0,01403	253,2751		
		R631R632	30			95,622	92,804	94,122	91,3044	0,093927	97,8874		
		R632R633	30			92,804	92,197	91,304	90,6966	0,02026	210,7665		
		R633R634	30			92,197	91,917	90,697	90,4168	0,009327	310,6405		
		R4R5	35			112,22	109,81	110,72	108,307	0,068991	133,251		
		R5R3	35	1		109,81	105,43	108,31	103,933	0,124954	99,01306		
		R3R6	22			105,43	103,56	103,93	102,061	0,085095	75,41704		
		R6R7	21	1		103,56	100	102,06	98,4995	0,169595	50,99322	1611 670	0.0460
11	10.00	R7R10	35	240	1 1	100	99,137	98,5	97,6369	0,024646	222,9448	1611,678	0,0468
11	10,09	R10R11 R11R12	32,4 33,3	349	1,1	99,137 96,453	96,453 95,075	97,637 94,953	94,9533 93,5745	0,082827 0,041405	112,5793 163,6499		
		R11R12 R12R13	35	1		95,075	95,075	93,575	93,0549	0,041405	287,2549		
		R13R14	35	1		94,555	94,024	93,055	92,524	0,014840	284,1814		
		R14R34	25	1		94,024	89,661	92,524	88,1605	0,17454	59,84013		
		R34R34a	25	1		89,661	86,13	88,161	84,6295	0,14124	66,52137		
		R34aRBR1	15	1		86,13	85,055	84,63	83,5545	0,071667	56,03155		
		112111				,	,000	,00	,	.,	,		

Suite Tableau N^{\bullet} III-4- calcul du cœfficient d'allongement et de pentes moyennes

											$rac{m{L}_k}{\sqrt{m{I}_k}}$	$\sum \frac{L_{\scriptscriptstyle K}}{\sqrt{I_{\scriptscriptstyle K}}}$	I _{moy}
***			١.	_		Côtes T	N (m)	Côte de	projet (m)		$\sqrt{I_k}$	$\sqrt{I_K}$	(m/m)
N° S/B	A (ha)	Tronçon	L _{par} (m)	L _{totale} (m)	M	Amont	Aval	Amont	Aval	I _{rad} (m/m)			
5/15	A (IIa)	R101R102	25	(111)	171	132,47	127,28	130,97	125,777	0,207732	54,85147		
		R102R103	25			127,28	120,56	125,78	119,06	0,268692	48,22949	1	
		R103R104	25			120,56	11,138	119,06	9,6376	4,376892	11,9497	1	
		R104R100	25			111,14	104,54	109,64	103,039	0,263932	48,66245		
		R100R105	35			104,54	100,08	103,04	98,5845	0,12728	98,10428	1	
		R105R106	39,5			100,08	99,613	98,585	98,1134	0,011927	361,6922	1	
12	16,25	R106R115	25	426	1,06	99,613	90,119	98,113	88,6189	0,37978	40,5671	2577,528	0,0273
12		R115R116	25			90,119	90,063	88,619	88,5634	0,00222	530,5954	1	
		R116R117	23,8			90,063	89,125	88,563	87,6245	0,03945	119,8273	1	
		R117R121	35			89,125	87,307	87,625	85,8073	0,05192	153,6034		
		R121R122	35			87,307	86,953	85,807	85,4532	0,010117	347,9678		
		R122R123	33,3			86,953	86,623	85,453	85,1232	0,009925	333,7571		
		R123R158	20			86,623	86,029	85,123	84,5292	0,0297	116,0518		
		R158R159	20			86,029	85,394	84,529	83,8939	0,031765	112,2162		
		R159RBR3	34			85,394	84,406	83,894	82,9059	0,029059	199,4527		
		R467R466	35			106,22	100,24	104,72	98,7435	0,1708	84,68844		
		R466R468	30			100,24	98,283	98,744	96,7826	0,065363	117,3422		
		R468R469	30			98,283	95,077	96,783	93,5771	0,10685	91,77703		
		R469R470	30			95,077	93,539	93,577	92,0392	0,051263	132,5006		
		R470R471	30			93,539	90,683	92,039	89,1832	0,0952	97,23056		
		R471R472	32,6			90,683	87,382	89,183	85,8819	0,101261	102,4465		
		R472R481	15			87,382	84,853	85,882	83,3527	0,168613	36,52963		
		R481R482	15			84,853	82,608	83,353	81,1076	0,149673	38,77207		
		R482R639	16			82,909	82,018	81,409	80,5177	0,055712	67,78657		
		R639R640	26			82,562	82,393	81,062	80,893	0,006512	322,2045		
	21.25	R640R641	30	761	1,65	81,393	79,051	79,893	77,551	0,078067	107,3714	1005 501	0.0240
10	21,36	R641R642	30			79,051	77,784	77,551	76,2837	0,042243	145,9628	4835,624	0,0248
13		R642R643	30			77,784	76,567	76,284	75,067	0,040557	148,967	ŀ	
		R643R483	30			76,567	75,585	75,067	74,0852	0,032727	165,8328	ł	
		R483R484	30 30			75,585	74,646	74,085	73,1464	0,031293	169,5881		
		R484R485 R485R486	30			74,646	74,159	73,146	72,6593	0,016237	235,436	4	
			30			74,159	72,645	72,659	71,1448	0,050483	133,5203		
		R486R487	30			72,645 71,896	71,896	71,145 70,396	70,3959	0,024963	189,876	4	
		R487R488 R488R489	30			71,181	71,181 70,718	69,681	69,6814 69,218	0,023817 0,015447	194,3931 241,3814	•	
		R489R490	30			70,718	70,718	69,218	68,8492	0,013447	270,5742	•	
		R490R491	30	1		70,718	69,925	68,849	68,425	0,012293	252,288	ĺ	
		R491R499	24	1		69,925	69,711	68,425	68,211	0,008917	254,1616	1	
		R499R500	24,5	1		69,711	67,939	68,211	66,439	0,008917	91,09977	1	
		R500R501	33	1		67,939	67,756	66,439	66,2562	0,072327	443,3869	1	
		R501R502	34	1		67,756	67,524	66,256	66,0236	0,005339	411,0679	1	
		R502RBR8	26	1		67,524	67,314	66,024	65,8138	0,008069	289,4392		
<u> </u>		KJUZKBK8	∠0			07,324	07,314	00,024	03,6138	0,008009	209,4392	l	

Tableau Nº III-5-: Calcul des débits pluviaux

N SB	A (ha)	I	C	K ^{1.25}	I ^{0,326}	Cr ^{1.23}	$A^{0,76}$	$Q_{brute} \ (m^3/s)$	M	m	$\mathbf{Q}_{\text{corrige}}$ (m^3/s)	Q _{cumul} (m ³ /s)
1	21,47	0,0137	0,58	2,19	0,2469	0,5117	10,285	2,8459	2,37	0,89046	2,53396	2,53396
2	7,9	0,0091	0,53	2,19	0,2161	0,458	4,8106	1,0427	1,72	1,0722	1,11791	3,65187
3	9,37	0,0141	0,62	2,19	0,2493	0,5555	5,4767	1,6606	1,73	1,0693	1,77563	5,42751
4	11,7	0,0306	0,48	2,19	0,3209	0,4054	6,4837	1,8473	1,22	1,2565	2,32121	7,74872
5	21,49	0,0127	0,59	2,19	0,2409	0,5226	10,292	2,8375	1,79	1,0526	2,98668	10,7354
6	18,58	0,0104	0,51	2,19	0,2257	0,4368	9,2146	1,9897	1,38	1,187	2,36176	13,0972
7	15,42	0,0595	0,67	2,19	0,3986	0,611	7,9973	4,2653	1,65	1,0929	4,66177	17,7589
8	23,72	0,043	0,58	2,19	0,3585	0,5117	11,094	4,4572	1,53	1,1317	5,04437	22,8033
9	11,98	0,043	0,71	2,19	0,3585	0,6562	6,6013	3,4012	1,31	1,2159	4,13548	26,9388
10	17,01	0,0502	0,63	2,19	0,3771	0,5665	8,6166	4,0309	1,6	1,1086	4,46859	31,4074
11	10,09	0,0468	0,71	2,19	0,3686	0,6562	5,7937	3,0687	1,1	1,3181	4,04484	35,4522
12	16,25	0,0273	0,65	2,19	0,3092	0,5887	8,3224	3,3172	1,06	1,3409	4,44785	39,9
13	21,36	0,0248	0,68	2,19	0,2996	0,6223	10,245	4,1833	1,65	1,0929	4,57211	44,4722

Tableau-III-6-: Calcul du débit total pour chaque sous bassin

N du sous bassin	Ai (ha)	Q _{usé} (m³/s)	Q Pluvial (m³/s)	Q total (m³/s)
1	21,47	0,03938	2,53396	2,57334
2	7,9	0,01588	1,11791	1,13379
3	9,37	0,02052	1,77563	1,79615
4	11,7	0,02035	2,32121	2,34156
5	21,49	0,04025	2,98668	3,02693
6	18,58	0,03146	2,36176	2,39322
7	15,42	0,03502	4,66177	4,69679
8	23,72	0,0429	5,04437	5,08727
9	11,98	0,02845	4,13548	4,16393
10	17,01	0,03576	4,46859	4,50435
11	10,09	0,02648	4,04484	4,07132
12	16,25	0,03394	4,44785	4,48179
13	21,36	0,04455	4,57211	4,61666

Conclusion:

La présente phase (évaluation des débits) a eu pour résultat la quantification des débits à évacuer. Ces derniers comprennent les débits d'eaux usées et pluviales.

D'après les valeurs des débits obtenues, on constate que les débits des eaux usées ne représentent qu'une faible fraction des débits pluviaux. Aussi on signale que la region Oued falli ne comporte pas de unité industrielle.

CHAPITRE IV:

CALCUL HYDRAULIQUE

Introduction

Les ouvrages formant le système d'évacuation (collecteurs et ouvrages spéciaux), doivent respecter certaines normes d'écoulement. L'implantation en profondeur des collecteurs se fait d'une manière à satisfaire aux conditions de résistance mécanique due aux charges extérieures et avec un meilleur choix du tracé du schéma d'évacuation Un réseau d'assainissement convenablement dimensionné doit assurer :

- L'évacuation rapide des matières fécales hors de l'habitation ;
- L'évacuation des eaux pluviales sans débordement.
- Le transport des eaux usées dans les conditions d'hygiène satisfaisantes ;

Après la détermination des débits d'eaux usées et pluviales, le présent chapitre a pour objectif de dimensionnement et le calcul hydraulique du réseau et sa conception.

IV-1- Conception du réseau

La conception d'un réseau d'assainissement est la concrétisation de tous les éléments constituant les branchements du réseau sur un schéma global conçu en fonction de la structure de l'agglomération l'exutoire et l'emplacement de la station d'épuration si elle existe.

- ✓ Les collecteurs sont définis par leur :
 - Emplacement (en plan).
 - > Profondeur.
 - Diamètres (intérieur et extérieur).
 - Pente.
 - Les joints et leur confection.
- ✓ Les ouvrages spéciaux sont également définis par leur :
 - > Emplacement (en plan).
 - Profondeur.
 - ➤ Leurs rôles à jouer

IV-2-Dimensionnement du réseau d'assainissement

IL est existe trois mode de calcul sont :

IV-2-1-Conditions d'écoulement et de dimensionnement

Dans le cadre de l'assainissement, le dimensionnement du réseau d'assainissement du type unitaire doit dans la mesure du possible permettre l'entraînement des sables par les débits pluviaux pour empêcher leur décantation et éviter les dépôts sans provoquer l'érosion de la paroi de la conduite.

Lorsqu'il s'agit de réseau d'évacuation des eaux pluviales et des eaux usées dans une même conduite, les conditions d'auto curage doivent être satisfaites. Il faut assurer une vitesse minimale de 0.6 m/s pour le (1/10) du débit de pleine section, et une vitesse de 0.3 m/s pour le (1/100) de ce même débit avec un diamètre minimal de 300 mm./51

Si ces vitesses ne sont pas respectées, il faut prévoir des chasses automatiques ou des curages périodiques.

A l'opposé des considérations relatives à l'autocurage, le souci de prévenir la dégradation des joints sur les canalisations circulaires et leur revêtement intérieur, nous conduit à poser des limites supérieures aux pentes admissibles.

Donc, il est déconseillé de dépasser des vitesses de l'ordre de (4 à 5) m / s à pleine section.

Pour les ouvrages d'importance moyenne les sections les plus favorables sont :

- > De type circulaire;
- De type ovoïde ;

IV-2-2-Mode de calcul

Avant de procéder au calcul hydraulique du réseau d'assainissement en gravitaire, on considère l'hypothèse suivante :

- L'écoulement est uniforme à surface libre, le gradient hydraulique de perte de charge est égal à la pente du radier.
- La perte de charge engendrée est une énergie potentielle égale à la différence des côtes du plan d'eau en amont et en aval.

Les canalisations d'égouts dimensionnées pour un débit en pleine section Qps ne débitent en réalité et dans la plupart du temps que des quantités d'eaux plus faibles que celles pour lesquelles elles ont été calculées. [3]

L'écoulement dans les collecteurs est un écoulement à surface libre régi par la formule de la continuité :

$$\mathbf{Q} = \mathbf{V}.\mathbf{S} \tag{IV.1}$$

Avec:

Q : Débit (m3/s).

S: Section mouillée (m²).

V: Vitesse d'écoulement (m/s).

Cette vitesse se calcule par différentes expressions

La vitesse moyenne est déterminée par l'expression suivante (formule de Manning) :

$$V = K_s \cdot R^{\frac{2}{3}} \cdot \sqrt{I}_m \tag{VI.2}$$

Où:

Im (m/m): Pente motrice nécessaire à l'écoulement d'un débit Q donné.

R (m): Rayon hydraulique.

Ks: Coefficient de rugosité dépend de la nature des parois, les coefficients K sont présentés en *annexe (IV-1) [5]*.

A partir de l'équation (VI.1) et (VI.2) le diamètre est calculé comme suit :

$$D_{cal} = \left[\frac{3.2 * Q_t}{K_s * \sqrt{I}} \right]^{3/8}$$
 (VI.3)

$$O\dot{u}: Q_t=Q_{eu}+Q_{pl}$$

avec:

Q_{eu} (m3/s): Débit d'eau usée. **Q**_{pl} (m3/s): Débit d'eau pluviale.

Le débit en pleine section est donné donc par la relation :

$$\mathbf{Q_{ps}} = \mathbf{Vps} * \frac{\pi * (D_{nor})^2}{4}$$
 (VI.4)

 $D_{nor}\left(mm\right)$: Diamètre normalisé de la conduite.

 V_{ps} (m/s): Vitesse à pleine section.

La vitesse en pleine section est calculée à partir de la relation (VI.2), avec le rayon hydraulique.

$$R = \frac{D_{nor}}{4}$$

$$V_{PS} = K_{s} \cdot (D_{nor}/4)^{\frac{2}{3}} \cdot \sqrt{I}_{m}$$
(VI.5)

La vitesse moyenne et la hauteur de remplissage dans la conduite sont calculées à partir des relations suivantes :

$$ightharpoonup$$
 Rapport des débits $R_Q = \frac{Q_t}{Q_{PS}}$

$$ightharpoonup$$
 Rapport des vitesses $R_{V} = \frac{V}{V_{PS}}$

$$ightharpoonup$$
 Rapport des hauteurs $R_h = \frac{h}{D_{nor}}$

Avec:

V : Vitesse moyenne d'écoulement de l'eau (m/s).

Les valeurs de R_v et R_h sont données en fonction Rq (abaque sous forme de tableau) en annexe (IV-2).

Pour le calcul hydraulique, on a utilisé un programme de calcul sous Excel établit par Laib, T. 2010. Le programme de calcul est basé sur les relations précédentes.

Les résultats de calcul des dimensions du réseau et des paramètres hydrauliques (condition d'écoulement et la vitesse d'auto curage) sont reportés dans *l'Annexe (IV-3)*.

Les résultats de calcul des dimensions deux intercepteurs et des paramètres hydrauliques (condition d'écoulement et la vitesse d'auto curage) pour le type ovoïde sont reportés dans *l'Annexe (IV-4)*. Et à l'aide de l'abaque qui est dans *l'annexe (IV-4)*

IV-2-3- Principe de tracé des collecteurs :

Les collecteurs doivent être placés dans les rues prévues par le plan d'urbanisation ; les contre-inclinaisons sont à éviter dans la mesure du possible.

Les égouts collecteurs principaux et secondaires doivent être placés dans les grandes rues larges aussi rectilignes que possible ; les rues à circulation peu intense sont à préférer. Lors du choix de la profondeur à laquelle se fait la pose des canalisations d'eau usée ; on doit tenir compte :

- ➤ Des profondeurs des caves avoisinantes ; si les caves sont anormalement profondes, les maisons doivent être reliées à l'aide des pompes aux collecteurs.

 En général, les épaisseurs de terre au dessus des canalisations ne doivent pas dépasser 2 à 2.5m sauf cas particulier ;
- ➤ la résistance au gel des canalisations : L'épaisseur de terre nécessaire et minimale pour empêcher la congélation du contenu des canalisations dépend du climat local (1.2 à 1.6m). [4]

Pour le cas de notre agglomération ; il existe une seule variante pour tracer les collecteurs. Cette variante se compose de :

- des collecteurs principaux
- des collecteurs secondaires tracés suivant les pistes et les voix secondaires existantes
- deux intercepteurs recevant les collecteurs principaux et secondaires qui sont tracés suivant les voix principales. le premier ver la STEP Ouest et deuxième ver la STEP projeter

Remarque

L'agglomération Oued Falli est caractérisée par un terrain accidenté, où la pente dépasse parfois 10%; ce qui nous a ramené à dimensionner notre réseau suivant la pente du radier c'est à dire considérer la côte du projet (C.P) en réalisant des déblais.

Conclusion

Dans ce chapitre, nous avons abordé le coté hydraulique à savoir le dimensionnement du réseau d'évacuation d'eaux usées et pluviales, nous avons suivi une méthode de calcul déjà expliquée au préalable. Donc l'addition des débits d'eaux pluviales et usées dans une conduite ; ainsi la pente du tronçon qui nous a permis de procéder à un dimensionnement de tout le réseau après un calcul précis.

Nous remarquerons sans doute que notre dimensionnement a pris en considération :

- ➤ La vitesse d'auto curage.
- La distance entre la clé de la conduite et la côte du terrain naturel qui est supérieure à 0,8 m.
- La distance entre les regards est de 30 m.

IV-3-Les Eléments Constitutifs Du Réseau

Un système d'Assainissement a pour objet la collecte des eaux usées et pluviales, et pour objectif, la protection du milieu naturel. Il constitue un équipement public essentiel. Il doit être parfaitement étanche, même en cas de mouvement de terrain. Il assure l'écoulement rapide des eaux usées ou des eaux pluviales, et doit avoir un degré très élevé de durabilité. Les systèmes d'Assainissement comprennent des ouvrages principaux et des ouvrages annexes.

IV-4-Les ouvrages principaux

Les ouvrages principaux sont les ouvrages d'évacuation des effluents vers le point de rejet ou la station d'épuration ; ils comprennent les conduites et les joints.

IV-4-1- Les conduites

Il existe plusieurs types de conduites qui sont différents suivant leurs matériaux et leurs destinations.

IV4-1-1-Conduite en fonte

Ce type de conduite a été imposé à titre de sécurité pour la traversée d'un bassin hydrominéral par un collecteur d'eau usée. Les raffineries de pétrole utilisent couramment ce type de matériel pour évacuer les eaux usées industrielles. [5]

III-4-1-2-Conduites en béton armé

Les tuyaux en béton armé sont fabriqués mécaniquement par un procédé assurant une compacité élevée du béton (compression radiale, vibration, centrifugation).

Les tuyaux comportent deux séries d'armatures, la première est formée des barres droites appelées génératrices, la deuxième est formée des spires en hélice continues d'un pas régulier maximal de 1,5 m. La longueur utile ne doit pas être supérieure à 2m. [5]

IV-4-1-3-Conduites en amiante-ciment

Les tuyaux et pièces de raccord en amiante - ciment se composent d'un mélange de ciment Portland et d'amiante en fibre fait en présence d'eau.

Ce genre se fabrique en deux types selon le mode d'assemblage; à emboîtement ou sans emboîtement avec deux bouts lisses. Les diamètres varient de 60 à 500 mm pour des longueurs variant de 4 à 5 m Les joints sont exclusivement du type préformé. [5]

IV-4-1-4-Conduites en grés artificiels

Le grès servant à la fabrication des tuyaux est obtenu à parties égales d'argile et de sable argileux cuits entre 1200°C à 1300°C.

Le matériau obtenu est très imperméable. Il est inattaquable aux agents chimiques, sauf l'acide fluorhydrique.

L'utilisation de ce genre est recommandée dans les zones industrielles. La longueur minimale est de 1 m.[5]

IV-4-1-5-Conduites en PEHD

Le polyéthylène se divise en deux classes selon le procède de fabrication et les additifs utilisés : le PE haute densité (PFHD) et le PE basse densité (PEBD), plus souple et moins cher.

Les diamètres peuvent aller jusqu'à 1500 mm. Pour les petits diamètres, le PE peut s'enrouler en couronne sur des centaines de mètres ce qui permet de diminuer le nombre de raccords et donc le risque de fuites. Sa souplesse lui donne également une grande adaptabilité au sol et une grande résistance au choc mais peut en contrepartie entraîner des risques d'ovalisation pour les plus gros diamètres. Il est inerte chimiquement et donc ne se corrode pas.

IV-4-1-6-Conduites à section ovoïde

Ce sont des conduites de forme parabolique évasée ,forme de conduite a été fermes a leur partie superieure .cette forme de conduite a éte mise au point afin d'obtenir une vitesse d'ecoulement aussi constante que possible quelque soit le debit .il existe une quantité tres importante de formes ovoides

La forme générale de ces tuyaux est représentée dans la figure N°6-1 ; leurs dimensions principales a et b étant, respectivement, les suivantes (exprimées en centimètres) :

- \triangleright Type exceptionnellement visitables 100×62.5 et 130×80 ;
- \triangleright Type semi visitable 150×90;
- \triangleright Type visitables 180×108 et 200×120.

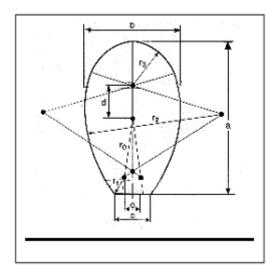


Figure N°IV-2-: Coupe type d'un tuyau ovoïde préfabriqué

IV-4-2-Choix du type de canalisation

Pour faire le choix des différents types de conduite on doit tenir compte de :

- > Des pentes du terrain ;
- Des diamètres utilisés :
- De la nature du sol traversé;
- De la nature chimique des eaux usées ;
- Des efforts extérieurs dus au remblai. [5]

Pour notre projet, les conduites utilisées seront en PEHD de profil circulaire et ovoïde.

- ✓ les avantages des types PEHD sont :
 - Etanchéité primordiale.
 - Résistance aux attaques chimiques.
 - Leur bonne stabilité dans les tranchées.
 - Pose et assemblage facile.
 - > Diminution du nombre de raccordement.
 - La disponibilité sur le marché national.
 - > Durée de vie supérieure à 50ans
- ✓ Pour le types ovoïde :
 - ➤ Generalement les conduites ovoïde remplacent le profil circulaire quand celui-ci Dépasse 600mm de diametre (probleme d'autocurage) .la longueur utile de ces tuyaux est minimum de 1m et peuvent etre présentes soit en beton armé ou en beton non arme
 - Les conduites a cunettes presentent un bon ecoulement notamment si les eaux sont chargees, pour eviter les depot
 - > Permettre un acces relativement facile au réseaux
 - ➤ Cette forme de conduite a été mise au point afin d'obtenir une vitesse d'ecoulement en fonction du remplissaage la moins vrialable possible

IV-5-Caractéristique des conduites en PEHD ondule

IV-5-1-Bonne résistance chimique

Pour les conduites enterrées ,la corrosion à l'acide sulfurique biogéne joue un role important dans la longévité du système La corrosion à l'acide sulfurique biogéne se manifeste au dessus de niveau de l'eau et donc elle apparait seulement dans les tubes à moitié remplis. [7]

IV-5-2-Resistance à l'impact

Un importante résistance à l'impact, meme à des températures très basses assure un tube robuste.

IV-5-3-Résistance aux micr-organismes, rongeurs et thermites

La surface lisse et ronde des tubes en plastique ne permet pas aux dents des rongeurs une prise suffisante pour causer un dommage. En outre ,meme dans les pays affectés par les thetmites aucune détérioration n'a été observée dans les conduites en PE .le polyéthyléne ne ce pas un milieu nutritif pour les bactéries champignons et spores et donc le matéraux est résistant à toutes formes d'attaque microbienne ainsi que l'acide sulfurique et le sulfate. [7]

IV-5-4-Bonne fluidité des tubes

La fluidité et le diametre interne du tube PE ondulé renforcé resteront constants sans prendre en considération l'épaisseur des parois ou des profilés, ceci est du à la surface interne lisse et anti-adhésive du tube. [7]

IV-5-5-Résistance aux UV

Les tubes ondulés en polyéthyléne noirs sont résistants à la corrosion atmospherique et aux radiations des UV par conséquent ils peuvent etre utilisés et stockés en plein air sans qu'ils ne soient endommagés. [7]

IV-5-6-Resistance à l'adrasion

Le polythylène sont les tubes les plus résistants à l'abrasion. Ceci a été teste par le procédé nommé :Darmstadt et les resultats sont montrés dans le diagramme ci-dessous, ces memes résultats confirment la qualité des tubes polyèthyléne. [7]

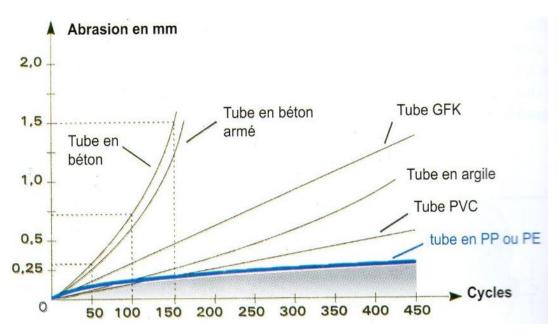


Figure IV3 : les courbe d'abrasionde plusieurs tubes de matieres differentes suivant la procédure Darmstadt

Source industriel tubex oran

IV-6-Différentes actions supportées par la conduite

Les canalisations sont exposées à des actions extérieures et intérieures. Pour cela, ces canalisations doivent être sélectionnées pour lutter contre ces actions qui sont :

- Les actions mécaniques ;
- > les actions statiques ;
- les actions chimiques ;

IV-6-1-Les actions mécaniques

Ce type d'action résulte de l'agressivité des particules de sable et de gravier qui forment le remblai et le radier des canalisations. Cette agressivité provoque la détérioration des parois intérieures par le phénomène d'érosion dû essentiellement à des grandes vitesses imposées généralement par le relief.

IV-6-2-Actions statiques

Les actions statiques sont dues aux surcharges fixes ou mobiles comme le remblai, au mouvement de l'eau dans les canalisations ainsi qu'aux charges dues au trafic routier.

IV-6-3-Les actions chimiques

Elles sont généralement à l'intérieur de la conduite. Une baisse de PH favorise le développement des bactéries acidophiles qui peuvent à leur tour favoriser la formation de l'acide sulfurique (H2S) corrosif et néfaste aux conduites. [5]

IV-6-4-Les joints des conduites PEHD

IV-6-2-1-Electro-fusion intégrée

La soudure des tubes et accessoires plastiques par Electro-fusion est devenue une chose courante dans le marché ces derniéres années.

Les raison de l'utilisation de cette technique de jonction sont très avantageuses, simples et solides.

Cette technique est possible meme pour les tubes à gros diamétres.

Des resistance sont intégrées dans les extrémités des tubes, qui une fois chauffées à l'aide d'un appareil de soudure, on obtient deux tubes solidement soudés. [7]

IV-6-2-2-Jonction par joint

Dans cette jonction,on utilise un joint spécifique,qui est installé dans l'extrémité femelle des tubes ou accessoires. Cette methode ne peut etre disjointe .

Les extremite du tube doivent avoir une rigidité minimale dans les emboitements conformément à la norme por EN 13476 ET doit résister au test pour EN 1277et EN 1053. [7] (80ran)

IV-7- Ouvrages annexes

Les ouvrages annexes ont une importance considérable dans l'exploitation rationnelle des réseaux d'égout. Ils sont nombreux et obéissent à une hiérarchie de fonction très diversifiée : fonction de recette des effluents, de fenêtres ouvertes sur le réseau pour en faciliter l'entretien, du système en raison de leur rôle économique en agissant sur les surdimensionnements et en permettant l'optimisation des coûts.

Les ouvrages annexes sont classes en deux groupes :

- Ouvrages normaux;
- Ouvrages spéciaux ;

IV-7-1-Ouvrages normaux

Les ouvrages normaux sont les ouvrages courants indispensables en amont ou sur le cours des réseaux. Ils assurent généralement la fonction de recette des effluents ou d'accès au réseau.

IV-7-1-1- Branchements

Leur rôle est de collecter les eaux usées et les eaux pluviales d'immeubles. Un branchement comprend trois parties essentielles :

- Un regard de façade qui doit être disposé en bordure de la voie publique et au plus prés de la façade de la propriété raccordée pour permettre un accès facile aux personnels chargés de l'exploitation et du contrôle du bon fonctionnement.
- Des canalisations de branchement qui sont de préférence raccordées suivant une oblique inclinée à 45° ou. 60° par rapport à l'axe général du réseau public.
- Les dispositifs de raccordement de la canalisation de branchement sont liés à la nature et aux dimensions du réseau public.

Figure IV4: Branchement de service. Modélisation en trois dimensions.

IV-7- 1-2-Ouvrages des surfaces

Ce type d'ouvrages est destiné au recueil des eaux pluviales. On distingue deux catégories :

A-Les ouvrages de surface et de transport :

A-1-Les caniveaux:

Ce sont des ouvrages annexes de voirie destinés à la collecte des eaux pluviales provenant de la chaussée et éventuellement du trottoir s'il y en a un jusqu'aux bouches d'égout.

A-2 -Les bouches d'égout :

Ce sont des ouvrages destinés à collecter en surface les eaux de ruissellement. Ils permettent par l'intermédiaire d'une canalisation d'acheminer ces eaux jusqu'à l'égout. Elles peuvent être classées d'après deux critères principaux :

- a) La façon dont on recueille les eaux
- ✓ bouches à accès latéral aménagées au bord des trottoirs;
- ✓ bouches à accès par le dessus situées sous les promenades, parcs de stationnement ou sous caniveaux dans le cas de trottoirs étroits ou particulièrement encombrés de câbles et de canalisations diverses ou en bordure des voies à forte pente.
- b) La façon dont les déchets sont retenus :
 - ✓ avec décantation;
 - ✓ sans décantation (dans ce cas les bouches doivent être sélectives, c'est-à-dire comporter un panier amovible permettant d'arrêter les déchets). [6]

A-2 -1-Bouches d'égout à accès latéral:

Ce sont des ouvrages à ouverture latérale largement dimensionnée. Ils sont préférables aux grilles de caniveaux assez fragiles, souvent glissantes, que l'apport des feuilles et déchets divers risque d'obstruer au début du ruissellement et de les rendre par suite inefficaces. Les bouches seront toujours du type à décantation afin d'éviter l'intrusion des sables dans le réseau. [6]

A-2 -2-Bouches d'égout à accès sur le dessus (bouches à grilles) :

Ces ouvrages collectent les eaux de ruissellement au niveau du sol, en général en dehors de celles rassemblées dans les caniveaux de trottoirs. Elles pourront dans les mêmes conditions que les bouches à avaloir être munies de puisards de décantation. Ceux-ci sont d'autant plus indispensables que le sol environnant est recouvert de sable ou de gravillons. [6]

Remarque:

Pour notre projet, on opte pour des caniveaux le long des routes du Centre Ville et des bouches d'égout à accès latéral.

IV-7-1-3- Les ouvrages d'accès au réseau (les regards) :

Les regards sont en fait des fenêtres par les quelles le personnel d'entretien pénètre pour assurer le service et la surveillance du réseau, l'aération des ouvrages et le raccordement des conduites. Ce type de regard varie en fonction de l'encombrement et de la pente du terrain ainsi que du système d'évacuation et on distingue :

IV-7-1-4-Espacement et emplacement des regards

L'emplacement et la distance entre deux regards est en fonction de la topographie du site et la nature des ouvrages. L'installation des regards sur la canalisation est obligatoire dans les cas suivants

- > Point de jonction.
- > Changement de direction.
- > Changement de pente.
- > Aux points de chute.

La distance entre deux regards est variable :

- > 35 à 50m en terrain accidenté.
- > 50 à 80m en terrain plat.

IV-7-1-5-Différents types de regards

On peut citer:

a) Regards de visite

Ce sont des regards installés tous les 30 à 50m le long du collecteur. Leurs dimensions sont en fonction du diamètre à utiliser. Ils servent d'accès à l'intérieur du collecteur en cas d'entretient et de réparation.

b) Regards de jonction

Ce sont des regards placés à cheval sur les collecteurs, ils servent pour le raccordement des collecteurs de même diamètre ou de diamètre différents.Ils sont construits de telle manière à avoir :

- ➤ Une bonne aération des collecteurs en jonction (regard).
- Les dénivelées entre les radiers des collecteurs.
- > Une absence de reflux d'eau par temps sec.
- Les niveaux d'eau des conduites doivent être à la même hauteur.

c) Regards latéraux

Ils sont placés latéralement par rapport à l'axe du collecteur, lorsque le diamètre est important.

d) Les regards doubles

Ils sont utilisés dans le cas d'un système séparatif, recevant la conduite d'eau pluvial et la conduite d'eau usées.

e) Les regards de chute

Ces regards sont utilisés en cas de forte pente et sont très utilisés pour la gestion du réseau mesure (volumétrique).

f) Regards de ventilation

Ces dispositifs sont destinés à assurer en toute circonstance une aération suffisante de l'égout afin d'éviter le développement des fermentations anaérobies nauséabondes pouvant conduire à des dégagements de méthane dans les ouvrages et à assurer la sécurité du personnel. A cet égard, ils doivent donc être généralisés sur les réseaux.

Avec:

IV-7-1-5-Dimensionnement des regards de chute

Le flux d'eau sortant d'un collecteur prend la forme d'un projectile, donc régie par les deux lois suivantes :

$$x = Vt$$

$$y = \frac{1}{2}gt^{2}$$

$$t = \frac{x}{V}$$
(IV.1).
(IV.2).

Ou:

x : Longueur du regard (m).

y : La différence de niveau entre les deux collecteurs (m) à partir de la cote du radier.

V: Vitesse d'écoulement dans la conduite. (m/s).

Des trois équations on aura :
$$x = \sqrt{\frac{2y}{g}} V$$
 (m). (IV.4).

Pour des raisons économiques nous avons opté pour des longueurs standards des regards, en ajoutant des déflecteurs dans le cas des regards de chute.

IV-7-2-Ouvrages spéciaux

IV-7-2-1-Déversoirs d'orage

En hydraulique urbaine, un déversoir est un dispositif dont la fonction réelle est d'évacuer par les voies les plus directes, les pointes exceptionnelles des débits d'orage vers le milieu récepteur. Par conséquent, un déversoir est un ouvrage destiné à décharger le réseau d'une certaine quantité d'eaux pluviales de manière à réagir sur l'économie d'un projet en réduction du réseau aval.

Les déversoirs sont appelés à jouer un rôle essentiel notamment dans la conception des réseaux en système unitaire.

IV-7-2-2-Emplacement des déversoirs d'orage

Avant l'emplacement des déversoirs d'orage il faut voir :

- ➤ Le milieu récepteur et son équilibre après le rejet des effluents dont il faut établir un degré de dilution en fonction du pouvoir auto épurateur du milieu récepteur.
- ➤ Les valeurs du débit compatibles avec la valeur de dilution et avec l'économie générale du projet, c'est à dire rechercher le facteur de probabilité de déversement de façon à limiter la fréquence des lâcheurs d'effluents dans le milieu récepteur.
- ➤ La capacité et les surfaces des ouvrages de la station d'épuration pour éviter les surcharges et le mauvais fonctionnement.
 - Le régime d'écoulement de niveau d'eau dans la canalisation amont et aval
 - > Topographie du site et variations des pentes.

IV-7-2-3-Types des déversoirs

On distingue plusieurs types de déversoir.

A)-1 Déversoir à seuil latéral et conduite aval étranglée

Pour le calcul de cet ouvrage il faut que l'écoulement en amont soit fluvial. La présence d'un seuil élevé (marge de sécurité) conduit à la formation d'un ressaut dans la conduite d'amenée. Les vannes utilisées sur les conduites de décharges peuvent être manipulées en fonction du débit transité par le déversoir.

Figure IV5: Déversoir d'orage à seuil latéral. Modélisation en 3D

A)-2 Déversoir a seuil latéral et conduite aval libre

Ce type de déversoir diffère du précédant essentiellement par le fait que la conduite aval a un écoulement libre, si pour le débit max. d'orage la charge sur la crête aval est nulle. Ce type de déversoir assurera un débit aval constant quel que soit le débit déversé.

B)- Déversoir d'orage à ouverture du fond

Dans ce type d'ouvrage: le débit d'eau usée transite à travers une ouverture pratiquée dans le radier de la canalisation. On a d'autres types de déversoirs comme :

- Les déversoirs à seuil frontal

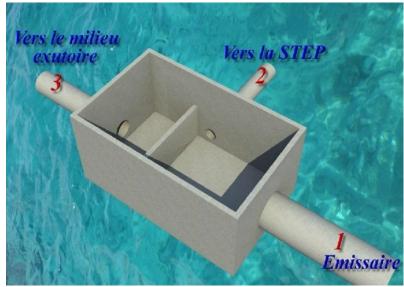


Figure IV6: Déversoir d'orage type frontal. Modélisation en 3D

- Déversoirs type Escalier

Ce dernier a pour rôle les fonctions suivantes :

Alléger la surcharge dans la partie basse de l'agglomération.

Il est utilisé en cas de décharge de collecteur de part et d'autre, il est placé dans des endroits ou il n'y a pas de charriage.

Si le terrain est à forte pente, il est utilisé pour éviter la surcharge.

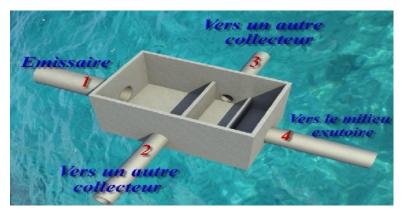


Figure IV7: Déversoir d'orage type Escalier. Modélisation en 3D

-Déversoir By-pass

C'est un déversoir qui a pour rôle de partager le débit en deux directions et l'amélioration des propriétés hydrauliques dans les collecteurs aval.

Remarque

Dans notre étude nous avons prévu 06 déversoirs d'orage en série du type latéral et tout en long de l'intercepteur pour décharger le réseau à l'aval et éviter la surcharge de la station d'épuration projetée. Le débit qui se déverse en période d'averse par le déversoir d'orage est véhiculé vers Oued Sebt à l'aide d'un émissaire.

IV-7-2-4-Dimensionnement des déversoirs d'orage

Pour notre cas nous optons pour la triple dilution, c'est à dire, le débit qui se dirige vers la station d'épuration par l'intermédiaire du déversoir d'orage est égal à trois fois le débit de temps sec. Le débit restant sera rejeté vers l'Oued par l'intermédiaire d'un émissaire.

IV-7-2-4-1-Dimensionnement du DO1

Les données de base :

Débit de temps sec : Qts=0,096104 m3/s.

Débit total: QT =9,857 m3/s.

On suppose une dilution de 3 pour la Station d'épuration c'est à dire 2 m³ d'eau pluviale et 1m³ d'eau usée.

Un coefficient de débit m qui est en fonction de la forme de la crête et la hauteur déversée. la valeur maximale de m est de 0.45 et la valeur minimale est de 0.27.

Pour notre projet on suppose un m = 0.37.

a)Détermination du débit de la STEP Ouest

On a le Q_{use} du tronçon RN36-DO1 est de $0,096104m^3$ /s avec une dilution de 3 donc le débit qui sera dirigé vers la station d'épuration est :

Ostep= 3. Qusé =
$$3*0,096104=0,2883$$
m³/s

b) Détermination du débit déversé

$$QT = 9.857 \text{ m} 3 / \text{s} \rightarrow Qc = QT * Z$$

Avec
$$Z = 1 - \frac{T_c}{100}$$

Tc = 35min.

Donc
$$Z = 1 - \frac{35}{100} = 0,65 \rightarrow Q_{cr} = 9,857 * 0,65 = 6,41 \text{ m}^3/\text{s}.$$

$$Q_{d\acute{e}v} = Q_{cr}$$
 - Qstep= 6,41- 0,2883=6,12 m³/s.

 $Q_{d\acute{e}v} = 6.12 \text{ m}3/\text{s}.$

c) Détermination de la hauteur amont

D'après le tronçon RN36-DO1, le $Q_{ps} = 11,05 \text{ m}3/\text{s}$

Donc d'après l'abaque le $R_q = Q_{cr} / Q_{ps} = 0,5538$ et $R_{hcr} = R_{htcr} / D = 0,529$ Donc : $H_{amont} = 0.847$ m

d) Détermination de la hauteur du seuil

On a
$$r_Q = Qstep / Qps = 0.2883 / 11,05 = 0.026 \rightarrow R_H = 0.039$$

Donc
$$H_{\text{seuil}} = 0.039 * 1600 = 62.4 \text{mm}$$
 $H_{\text{seuil}} = 0.0624 \text{m}$

e) Détermination de Hdév

C'est la lame d'eau qui passe au-dessus du seuil du déversoir.

$$H_{d\acute{e}v} = H_{amont} - H_{seuil} = 0.847 - 0.0624 = 0.785 \text{ m}$$

f) Détermination de la longueur du déversoir :

$$Q_{d\acute{e}v} = m. L. H_d \sqrt{2gH_d}$$

m: Coefficient du débit.

L : largeur du déversoir exprimée en (m).

Hdév: Hauteur d'eau en (m) au-dessus du seuil du déversoir.

$$L = \frac{3}{2} \frac{6,12}{0,37.(0,785)^{3/2} \sqrt{2.9,81}} = 8,055m$$

On prend la langueur du déversoir de 8m.

IV-7-2-4-2-Dimensionnement du DO2 ver la STEP projetée

Les données de base :

Débit de temps sec : Q_{ts} =0,2343 m^3 /s. Débit total : Q_T =10,051 m^3 /s.

a)Détermination du débit de la STEP Projetée :

On a le Q_{usé} du tronçon **RS86-DO2** est de 0,234 m³/s avec une dilution de 3 donc le débit qui sera dirigé vers la station d'épuration est :

Ostep= 3. Qusé =
$$0.7029 \text{ m}^3/\text{s}$$

b) Détermination du débit déversé :

$$Q_T = 10,051 \text{ m}^3/\text{s.} \rightarrow Q_c = Q_T * Z$$

Avec
$$Z = 1 - \frac{T_c}{100}$$
.

$$Tc = 35 \text{ min.}$$

Donc
$$Z=1-\frac{35}{100}=0.65 \rightarrow Q_c=10.051*0.65=6.53 \text{ m}^3/\text{s}.$$

$$Q_{d\acute{e}v} = Q_{c}$$
- Q_{step} = 6,53- 0,7029 =5,83 m³/s.

$$Q_{d\acute{e}v} = 5.83 \text{ m}^3/\text{s}.$$

c) Détermination de la hauteur amont

D'après le tronçon **RS86-DO2**, le $Q_{ps} = 12$, 22 m³/s

Donc d'après l'abaque le $r_0 = 0.823$ et $r_H = 0.75$ Donc : $\mathbf{H}_{amont} = 1.8$ m

d) Détermination de la hauteur du seuil

Page 53 **ENSH2012**

On a
$$r_Q = Qstep / Qps = 0.0575 \rightarrow R_H = 0.10714$$

Donc
$$H_{\text{seuil}} = 0.10714 * 2400 = 257.142 \text{ mm}$$

 $H_{\text{seuil}} = 0.257 \text{m}$

e) Détermination de H_{dév}:

C'est la lame d'eau qui passe au-dessus du seuil du déversoir.

$$H_{dév} = Hamont - H seuil = 1,543 m$$

f) Détermination de la longueur du déversoir :

$$Q_{d\acute{e}v} = m. L. H_d \sqrt{2gH_d}$$

m : Coefficient du débit.

L: Largeur du déversoir exprimée en (m).

H_{dév}: Hauteur d » eau en (m) au-dessus du seuil du déversoir.

$$L = 2.79 m$$

On prend la langueur du déversoir de 2,80 m

IV-7-2-4-3-Dimensionnement du DO3

Les données de base :

Débit total : $Q_T = 5.9218 \text{ m}^3/\text{s}$.

a)Détermination du débit de la STEP :

On a le $Q_{us\acute{e}}$ du tronçon RS42-DO3 est de 0,324 m³/s avec une dilution de 3 donc le débit qui sera dirigé vers la station d'épuration

b) Détermination du débit déversé :

$$Q_T = 5.9218 \text{ m}^3/\text{s.} \rightarrow Q_c = Q_T * Z$$

Avec
$$Z = 1 - \frac{T_c}{100}$$
.

Tc = 35 min.

Donc
$$Z=1-\frac{30}{100}=0.65 \rightarrow Q_c=5,9218*0,65=3,849 \text{ m}^3/\text{s}.$$

$$Q_{d\acute{e}v} = Q_{c}$$
- Q_{step} = 3.849- 2,9218=0,927 m³/s.
 $Q_{d\acute{e}v}$ = 0,927 m³/s.

c) Détermination de la hauteur amont

D'après le tronçon RS42-DO3, le
$$Q_{ps} = 4,60 \text{ m}^3/\text{s}$$

Donc d'après l'abaque le $r_Q = 0.84$ et $r_H = 0.761$ Donc : $H_{amont} = 1.37$ m

d) Détermination de la hauteur du seuil

On a
$$r_Q = Qstep / Qps = 0.635 \rightarrow R_H = 0.613$$

Donc
$$H_{seuil} = 0.613*1.8=1.10m$$

$$H_{\text{seuil}} = 1,10 \text{ m}$$

e) Détermination de H_{dév}:

C'est la lame d'eau qui passe au-dessus du seuil du déversoir.

$$H_{d\acute{e}v} = Hamont - H seuil = 0,27 m$$

f) Détermination de la longueur du déversoir :

$$Q_{d\acute{e}v} = m. L. H_d \sqrt{2gH_d}$$

m : Coefficient du débit.

L: Largeur du déversoir exprimée en (m).

H_{dév}: Hauteur d » eau en (m) au-dessus du seuil du déversoir.

$$L = 6.15 m$$

On prend la langueur du déversoir de 6,20m.

e)Dimensionnent de la conduite transitant le débit vers Oued Sebt (Emissaire N°01)

La pente moyenne lmoy = 0.011

 $Q_d = 0.927 \text{ m}3/\text{s}$

D'après le programme de calcul : D=700 mm

IV-7-2-4-4-Dimensionnement du DO4

Les données de base :

Débit de temps sec : Q_{ts} =0,0745 m³/s. Débit total : Q_T =5,078 m³/s.

a)Détermination du débit de la STEP :

On a le $Q_{us\acute{e}}$ du tronçon RS42-DO3 est de $0{,}324~\text{m}^3/\text{s}$ avec une dilution de 3 donc le débit qui sera dirigé vers la station d'épuration est :

b) Détermination du débit déversé :

$$Q_T = 5,078 \text{ m}^3/\text{s.} \rightarrow Q_c = Q_T * Z$$

Avec
$$Z = 1 - \frac{T_c}{100}$$
.

Tc = 35 min.

Donc
$$Z=1-\frac{30}{100}=0.65 \rightarrow Q_c=5,078 * 0.65 = 3.30 \text{m}^3/\text{s}.$$

$$\begin{aligned} Q_{\text{d\'ev}} &= Q_{\text{c}}\text{-} \ Q_{\text{step}} \text{= 3,30- 3,078=0,222} \text{m}^{3}/\text{s.} \\ Q_{\text{d\'ev}} &= 0,222 \ \text{m}^{3}/\text{s.} \end{aligned}$$

c) Détermination de la hauteur amont

D'après le tronçon RS42-DO3, le
$$Q_{ps} = 3,40 \text{ m}^3/\text{s}$$

Donc d'après l'abaque le $r_Q = 0.97$ et $r_H = 0.966$ Donc : $\mathbf{H}_{amont} = \mathbf{1.449}$ m

d) Détermination de la hauteur du seuil

On a
$$r_0 = Qstep / Qps = 0.00053 \rightarrow R_H = 0.811$$

$$H_{\text{seuil}} = 1,22 \text{m}$$

e) Détermination de H_{dév}:

C'est la lame d'eau qui passe au-dessus du seuil du déversoir.

Page 55 **ENSH2012**

$$H_{dév} = Hamont - H seuil = 0,23m$$

f) Détermination de la longueur du déversoir :

$$Q_{d\acute{e}v} = m. L. H_d \sqrt{2gH_d}$$

m: Coefficient du débit.

L: Largeur du déversoir exprimée en (m).

H_{dév}: Hauteur d » eau en (m) au-dessus du seuil du déversoir.

$$L = 1.85 m$$

On prend la langueur du déversoir de 1,85m.

e) Dimensionnent de la conduite transitant le débit vers Oued sebt (Emissaire N°02)

La pente moyenne $l_{moy} = 0.017$

 $Q_{dev} = 0.222 \text{m} 3/\text{s}$

D'après le programme de calcul : D =400mm

IV-7-2-4-5-Dimensionnement du DO5

Les données de base :

Débit de temps sec : $Q_{ts}=0,13062 \text{m}^3/\text{s}$.

Débit total : $Q_T = 6,59047 \text{ m}^3/\text{s}$.

a)Détermination du débit de la STEP

On a le Q_{use} du tronçon RS63-DO3 est de $0,324~m^3/s$ avec une dilution de 3 donc le débit qui sera dirigé vers la station d'épuration est :

b) Détermination du débit déversé

$$Q_T = 6,59047 \text{ m}^3/\text{s.} \rightarrow Q_c = Q_T * Z$$

Avec
$$Z = 1 - \frac{T_c}{100}$$
.

Tc = 35 min.

Donc
$$Z=1-\frac{35}{100}=0.65 \rightarrow Q_c=6,59047*0,65=4,28 \text{m}^3/\text{s}.$$

$$Q_{\text{d\'ev}} = Q_{\text{c}} - Q_{\text{step}} = 4,28 - 2,59 = 1,69 \text{m}^3/\text{s}.$$

$$Q_{dév} = 1,69 \text{ m}^3/\text{s}.$$

c) Détermination de la hauteur amont

D'après le tronçon RS63-DO3, le Q_{ps} =5,95 m³/s

Donc d'après l'abaque le $r_Q = 0.72$ et $r_H = 0.68$ Donc : $\mathbf{H_{amont}} = \mathbf{1.02}$ m

d) Détermination de la hauteur du seuil

On a
$$r_0 = Qstep / Qps = 0.435 \rightarrow R_H = 0.497$$

$$H_{seuil} = 0,745m$$

e) Détermination de H_{dév}:

C'est la lame d'eau qui passe au-dessus du seuil du déversoir.

$$H_{d\acute{e}v} = Hamont - H seuil = 0,274m$$

f) Détermination de la longueur du déversoir :

$$Q_{d\acute{e}v} = m. L. H_d \sqrt{2gH_d}$$

m : Coefficient du débit.

L : Largeur du déversoir exprimée en (m).

H_{dév}: Hauteur d » eau en (m) au-dessus du seuil du déversoir.

$$L = 10,77m$$

On prend la langueur du déversoir de 10,80m.

e)Dimensionnent de la conduite transitant le débit vers Oued sebt (Emissaire N°03)

La pente moyenne $l_{moy} = 0.017$

 $Q_{dev} = 1,69 \text{ m} 3/\text{s}$

D'après le programme de calcul : D =900mm

IV-7-2-4-6-Dimensionnement du DO6

Les données de base :

Débit de temps sec : $Q_{ts}=0,161 \text{m}^3/\text{s}$.

Débit total : $Q_T = 10,41 \text{ m}^3/\text{s}$.

a)Détermination du débit de la STEP :

On a le $Q_{us\acute{e}}$ du tronçon RS63-DO3 est de 0,324 m³/s avec une dilution de 3 donc le débit qui sera dirigé vers la station d'épuration est :

b) Détermination du débit déversé :

$$Q_T = 10,41 \text{ m}^3/\text{s.} \rightarrow Q_c = Q_T * Z$$

Avec
$$Z = 1 - \frac{T_c}{100}$$
.

Tc = 35 min.

Donc
$$Z=1-\frac{30}{100}=0.65 \rightarrow Q_c=10,41*0,65=6,77 \text{m}^3/\text{s}.$$

$$Q_{d\acute{e}v} = Q_{c}$$
- Q_{step} = 6,77- 5,45=1,32 m^3/s .
 $Q_{d\acute{e}v}$ = 1,32 m^3/s .

c) Détermination de la hauteur amont

D'après le tronçon RS63-DO3, le
$$Q_{ps} = 12,22 \text{ m}^3/\text{s}$$

Donc d'après l'abaque le $r_Q = 0.55$ et $r_H = 0.56$ Donc : $\mathbf{H}_{amont} = \mathbf{1.008}$ m

d) Détermination de la hauteur du seuil

On a
$$r_0 = Qstep / Qps = 0,446 \rightarrow R_H = 0,478$$

Donc Hseuil =
$$0.428*1.8 = 0.770 \text{ m}$$

$$H_{\text{seuil}} = 0,770 \text{m}$$

e) Détermination de H_{dév}:

C'est la lame d'eau qui passe au-dessus du seuil du déversoir.

$$H_{dév} = Hamont - H seuil = 0,147m$$

f) Détermination de la longueur du déversoir :

$$Q_{d\acute{e}v} = m. L. H_d \sqrt{2gH_d}$$

m : Coefficient du débit.

L : Largeur du déversoir exprimée en (m).

H_{dév}: Hauteur d » eau en (m) au-dessus du seuil du déversoir.

$$L = 10,41 m$$

On prend la langueur du déversoir de 10,40m.

e)Dimensionnent de la conduite transitant le débit vers Oued sebt (Emissaire N°04)

La pente moyenne $l_{moy} = 0.022$

 $Q_{dev} = 1.32 \text{ m} 3/\text{s}$

D'après le programme de calcul : D = 700mm

IV-8- Conclusion

Dans ce chapitre, nous avons abordé le coté hydraulique à savoir le dimensionnement du réseau d'évacuation d'eaux usées et pluviales dans l'hypothèse d'un système unitaire.

Nous avons utilisé une méthode de calcul répondant ainsi aux hypothèses considérées dans les écoulements en assainissement.

La méthode de calcul adoptée montre que les diamètres des collecteurs obtenus assurent l'autocurage d'une part et le débit maximum d'autre part avec des vitesses vérifiant la fourchette recommandée par les normes d'assainissement.

D'autre part pour faciliter les opérations de curage et assurer une meilleure sécurité à notre réseau, on a procédé à l'implantation et au dimensionnement des divers éléments constitutifs du réseau d'égouts à savoir :

- > 06 déversoirs d'orage de type latéral.
- > 04 émissaires.

Ce chapitre qui représente la phase primordiale de notre travail nous servira de base pour le dimensionnement de tout ouvrage spécial qui contribue au bon fonctionnement de notre système d'évacuation projeté.

CHAPITRE V:

LA POSE DE LA CANALISATION

Introduction

Apres avoir dimensionné le réseau d'évacuation des eaux usées et pluviales, on passe à une étape très importante qui est la pose de canalisation. A cet effet il faut mettre toutes les dispositions utiles pour qu'aucun problème ne se pose lors de la pose de la canalisation. Les réseaux d'évacuation des eaux usées sont constitués des conduites soumises à de nombreuses contraintes dont on cite :

- ➤ Le poids propre du remblai.
- Le poids de liquide contenu, les charges abrasives transportées.
- Les charges fixes et mobiles sur le remblai
- > Les tassements différentiels du terrain
- L'action des racines des arbres
- Les variations du niveau de la nappe phréatique
- Les chocs lors de la mise en oeuvre
- Les tassements et vibrations dus au trafic routier

V-1- Travaux préparatoires

V-1-1- Végétation

Les travaux préparatoires comprennent l'abattage, la coupe et l'enlèvement tous les arbres, arbustes et autres végétations, ainsi souches, broussailles et ordures se trouvant dans l'emprise des ouvrages.

Ces travaux devront être conduits de façon à prévenir tout dommage aux arbres qui ne doivent pas être abattus, aux ouvrages et installations existants ou en construction, et de façon à assurer la sécurité des personnes.

V-1-2- Décapage terre végétale

La terre végétale sera soigneusement mise en dépôt sur des aires en vue de leur remise en place en partie supérieure des futurs remblais.

V-1-3-Implantation des regards et des axes des tranchées sur le terrain

On matérialise l'axe des tranchées sur le terrain par des jalons ou des piquets suivant les tracés du plan de masse, les jalons doivent être placées aussi dans chaque point d'emplacement d'un regard, c'est-à-dire à chaque changement de direction ou pente, et à chaque branchement ou jonction de canalisation, pour cela on a besoin des instruments suivants : les jalons, les niveaux, les théodolites, les mire et piquets.

V-2 Exécution des Tranchées

V-2-1 -Excavation des tranchées et de fouilles pour les regards

Dans les travaux d'exécution, on doit suivre la pente d'après le profil en long et poser les conduites à un niveau inférieur au réseau d'AEP. Les travaux d'exécution des tranchées se font mécaniquement de l'aval vers l'amont.

Pour ces travaux certains paramètres sont nécessaires tels que :

- Profondeur des regards.
- Profondeur des tranchées.
- Largeur des tranchées.

V-2-2- Profil type des tranchées

Compte tenu des conditions locales, nature des sols, profondeur des collecteurs, présence de la nappe phréatique, il est proposé de retenir une tranchée type à parois verticales, blindée et étayée conformément à la réglementation (dès que leur profondeur dépasse 1,30 mètre).

a) Profondeur de la tranchée

Il faut avoir une profondeur de telle manière à éviter toute intercommunication avec les autres conduites, la profondeur est donnée par :

$$\mathbf{H} = \mathbf{e} + \mathbf{D} + \mathbf{h} \quad (\mathbf{m}) \tag{IV-1}$$

Avec:

H: Profondeur de la tranchée. (m)
e: Epaisseur du lit de sable. (m)
D: Diamètre de la conduite. (m)
h: Hauteur du remblai (m)

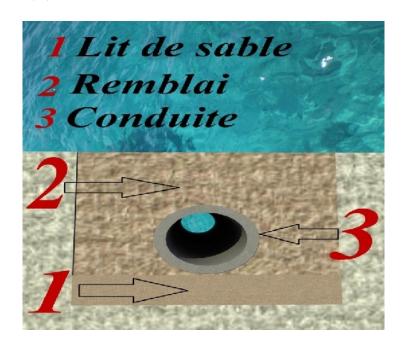


Figure V-1-Coupe transversale d'une tranchée avec la mise en place de la conduite Modélisation en 3

b) Largeur de la tranchée

La tranchée doit être en tout point suffisante pour qu'il soit facile d'y placer les tuyaux et les raccords, d'y effectuer convenablement les remblais autour des canalisations e d'y exécuter la pose des éléments et leurs assemblages .La largeur minimale de la tranchée en fond d'excavation, ou le cas échéant entre blindages, sera au minimum égale au diamètre extérieur de la conduite plus 30 cm de part et d'autre pour les diamètres nominaux inférieurs ou égaux à 600 mm, ou plus 40 cm pour des diamètres supérieurs.

$$B = D + 2c (IV-2)$$

Avec: **B**: Largeur de la fouille au fond.(m)

D : Diamètre de la conduite.(mm)

C : Espacement entre les parois de la tranchée et la conduite(m)

V-2-3- Soutènement des fouilles

Généralement, le mode d'excavation et de soutènement, fouille talutée ou blindée, est choisi en fonction :

- De la nature et de la tenue des sols.
- > De la profondeur de la fouille.
- De la présence et du niveau de la nappe et de l'importance des venues d'eau.
- Des contraintes spatiales (proximité des bâtiments et des infrastructures).

Les fouilles talutées sont simples à réaliser et d'un coût moindre si la profondeur est peu importante. Cependant, en présence d'eau leur stabilité est compromise.

Le blindage, tout en assurant la stabilité des fouilles, permet de restreindre l'emprise des travaux, les volumes d'excavations et les volumes de remblais de substitution dans les zones où les matériaux d'excavation ne peuvent être réutilisés.

Dans la zone d'étude, la qualité des sols rencontrés, la présence de la nappe et les profondeurs généralement élevées des conduites, laisse prévoir un linéaire important de blindage.

Pour des profondeurs supérieures à 3 mètres mais aussi en cas de venue d'eau très importante ne permettant plus l'assèchement des fouilles avec un blindage traditionnel, la mise en place de palplanches au préalable de la réalisation des excavations sera nécessaire.

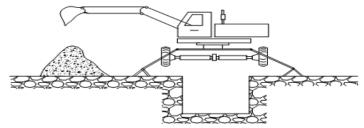
Figure V-2- Soutènement en palplanche

Figure V-3-Soutènement par blindage

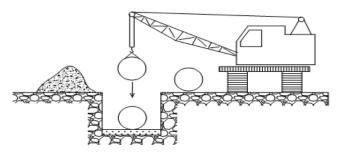
V-3-Techniques de pose

V-3-1-Aménagement du lit de pose:

Les conduites seront posées sur un lit de pose de sable d'épaisseur égale au moins à 10cm. Ce dernier sera bien nivelé suivant les côtes du profil en long.


De plus, des règles de bonne pratique sont à respecter ; ainsi, il est conseillé :

- ➤ d'éviter de poser les tuyaux sur des tasseaux qui concentrent les efforts d'écrasement et les font travailler en flexion longitudinale,
- > de réaliser un fond de fouille bien rectiligne pour que les tuyaux y reposent sur toute leur longueur,
- ➤ de creuser le fond de fouille, lorsque les tuyaux sont à emboîtement par collet extérieur sur tout leur pour tour, de façon à éviter que les collets ne portent sur le sol,
- > de placer toujours les tuyaux sur des fouilles sèches,
- ➤ d'éliminer du fond des fouilles tous les points durs (grosses pierres, crêtes rocheuses, vieilles maçonneries,...) qui constituent des tasseaux naturels,
- > en sols mouvants, marécageux ou organique de prévoir un appui en béton éventuellement sur pieux ou de procéder au remplacement du sol insuffisamment portant,
- > en terrains ou l'eau peut ruisseler ou s'accumuler de confectionner un appui en matériaux pulvérulents capable d'assurer un bon drainage,
- ➤ de réaliser, si possible dans tous les cas, un appui de manière à ce que le tuyau repose sur un arc au moins égal au quart de sa circonférence extérieure ; plus le diamètre est grand, plus la surface d'appui doit être soignée.


Pour l'agglomération Oued Falli caractérisée par un sol rocheux, il faut approfondir la fouille de 15 à 20cm et de confectionner un lit de pose bien damé avec des matériaux pulvérulents ou de procéder à une pose sur un bain fluant de mortier,

V-3-2-Mise en place des conduites

La mise en place des conduites se fait par des engins appropriés « pipelayers».

Pelle rétro (excavation de la tranchée)

Pipelayer (pose de la canalisation)

Figure V-4- Mise en place des conduites

V-3-3-Assemblage des conduites

Les joints des conduites circulaires à emboîtement sont effectués à l'aide d'une bague renforcée d'une armature et coulée sur place.

V-3-4-Essais sur les joints et les canalisations

C'est une épreuve d'étanchéité au quelle sont soumises les conduites déjà placées au fond de la tranchée. L'essai est réalisé avec de l'eau, de l'air, de la fumée ou un mélange d'eau et d'air.

V-3-4-1-Le test à la Fumée

L'essai à la fumée est souvent abandonné parce qu'il est contesté par le maitre de l'œuvre .une cartouche fumigène sert à détecter les fuites éventuelles de fumée ,Ce test peut être rendu plus efficace par insufflation d'air à l'aide d'un compresseur .Il est bien adapté pour rendre compte de la conformité des branchements en système séparatif

V-3-4-2-Le test sous pression d'eau

Il consiste à mettre une branche de réseau sous pression d'eau ,à 0.4bar minimum , c'est-à-dire que l'eau est introduire dans un réservoir dont le niveau est à 4 m au —dessus de la canalisation testée ,et les délais d'imprégnation préalable aux essais sont de 27 heures pour le béton et 1 heures pour les autres matériaux .la durée du test est de 30 minutes et le volume d'eau d'appoint maximum que l'on doit ajouter durant ce temps d'épreuve est le suivant :

Regard de visite 0.5L/m² de paroi

PEHD $0.04L/m^2$ de paroi

V-3-4-3-Le test sous pression d'air

Il consiste à vérifier l'étanchéité d'un tronçon de canalisations ou d'un joint pour les sections importantes en le soumettant à une pression d'air de 0,5 bar et à mesurer à l'aide d'un manomètre l'éventuelle baisse de pression durant le temps T de l'épreuve

V-3-5-La pose de la canalisation pour type ovoïde

La pose en technique traditionnelle en tunnel s'effectue à l'avancement de pieux de coffrage enfoncés, cercles de l'extraction des terres au fur et à mesure et du calage de l'élément ovoïde

En réalité, l'ovoïde se trouve plus couramment en réseaux existant et on le préconise toujours dans les situations de contraintes .certains collecteurs sont constitues :

De section spéciales en éléments préfabriqués ou coules sur place le plus souvent surbaissées .Les éléments en plaques métalliques généralement utilises pour réaliser les passages hydraulique

V-3-6-Essais d'étanchéité sur la canalisation ovoïde

L'essai d'étanchéité est effectue sous une pression de 0,5 bar maintenue pendant 1 h sur deux ovoïde assembles.

V-3-7-Exécution des regards

Les regards sont généralement de forme carrée dont les dimensions varient en fonction des collecteurs. La profondeur et l'épaisseur varient d'un regard à un autre.

Les différentes opérations pour l'exécution d'un regard sont les suivantes :

- Réglage du fond du regard
- Exécution de la couche du béton de propreté
- > Ferraillage du radier de regard
- ➤ Bétonnage du radier
- > Ferraillage des parois
- > Coffrage des parois
- Bétonnage des parois
- Décoffrage des parois
- > Ferraillage de la dalle
- ➤ Coffrage de la dalle ;
- Bétonnage de la dalle ;
- Décoffrage de la dalle ;

V-3-8-Les boites de branchement

Les boites de branchement seront dressées avec grille. Les branchements particuliers doivent être connectés avec le réseau à travers des boites de branchement. Ils seront exécutés en tronçon aussi rectiligne que possible, de pente égale au minimum à 3%. Le diamètre de la canalisation doit être inférieur à celui de la canalisation publique.

Les canalisations de branchement seront de préférence raccordées suivant une oblique inclinée à 45° ou 60° par rapport à l'axe général du réseau public.

V-3-9-Exécution des déversoirs d'orage

Apres avoir décapé la couche végétale, une opération de piquetage est indispensable avant de commencer les travaux.

Il est nécessaire que les coffrages aient une raideur suffisante pour résister à la pression du béton, surtout au cours de la vibration. Le démontage des coffrages doit se faire sans destruction du béton.

V -3-10-Remblaiement et compactage de la tranchée

L'objectif de compactage est défini au CCTP référence à la norme NF P 98-3315(tranchées, ouvertures, remblayage, réfection).

Apres l'assise des tuyaux .on effectue le remblaiement de la tranchée est la partie la plus délicate de l'installation, le remblaiement non adapté manuel peut avoir une influence négative sur le corps dû tuyau.

Indépendamment du type de tuyau installé, le remblaiement doit se faire au moyen d'un compactage manuel ou mécanique jusqu'à la moitié de la section du tube.

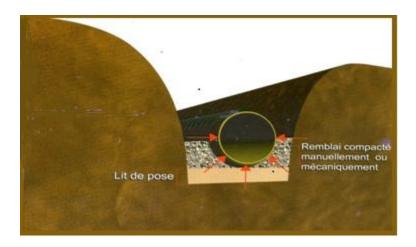


Figure V-5-Le remblaiement a la moitie de la section du tube

Le remblaiement au dessus de la mi-section du tube doit se faire par couches successives, compacté de 30cm, car un compactage mal effectué, peut générer par la suite, un affaissement, voir un écrasement de la conduite une valeur acceptable de compactage est de l'ordre de 90à95 %de l'indice Proctor.

Le compactage doit en outre être effectué avec des matériaux adaptés, surtout dans la zone de recouvrement du tuyau, en utilisant particulièrement des matériaux à granulométrie fine, en évitant l'argile, jusqu'à une hauteur dépassent les 30cm du corps du tuyau. [7]

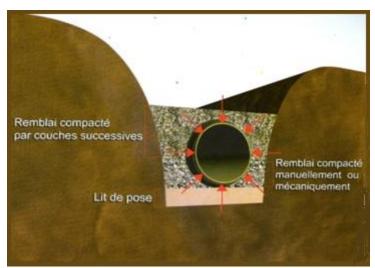


Figure V-6-: Le remblaiement au dessus de la mi-section du tube

Apres cette opération, on peut utiliser un bon matériau comme le tout venant sur 70 à80 cm au dessus du remblai compacté par couches successive.

Au dessus de 1m de recouvrement, ou pourra utiliser comme remblais, le terre de fouille à proximité des terres agricoles sur un axe routier dont le trafic est intense, il est indispensable de remblayer complètement en tout venant d'oued ou en tuf remblai, le terre de fouille à proximité des terres [7]

V-3-11-essai hydraulique

Pour la bonne fin des opérations de pose, il convient d'effectuer un essai hydraulique de la conduite, en isolant le réseau avec des bouchons mobiles, et en mettant une légère pression dans la conduite ainsi isolée (0.5bar)

lors de la réalisation de l'épreuve, il faut tenir compte du fait que la conduite est élastique et de ce fait, il faudra ajouter de l'eau dans la conduite, afin de garantir la pression demandée, sinon on observera une baisse de pression d'essai, qui est due à la dilatation de la conduite sous pression et non a des pertes sur les raccordements. [7]

V-3-12-les tests de fuite

Les canalisations doivent être testées contre la fuite suivant les besoins. Il existe différentes procédures de tests :

- ✓ La première alternative est appelée le test de section, ou la canalisation entre deux regards est entièrement testée .A l'aide d'un compresseur, on introduit l'air dans le tube et on bloque les deux extrémités .On pompe l'eau à une certaine pression nominale dans la partie serrés .Cette surpression est testée après une certaine période de temps, pour donner des informations sur la fuite de la section
- ✓ L'autre alternative est le test sur les jonctions (il n'est possible que sur les diamètres supérieurs au diamètre 600mm), ou les parties jointes sont testées. Un outil de test de fuite est utilisé le principe est le même, la seule différence est que la partie testée est la jonction. [7]

V-4- Choix des engins

Le choix des engins est très important dans la réalisation des travaux, chaque opération à un engin qu'il lui convient.

V-4-1- Pour le décapage de la couche de la terre végétale

On utilise le bulldozer ou le terrain est très difficile, mais le meilleur engin adopter à ce type de travaux c'est bien la niveleuse. (Figure V-7)

On distingue la niveleuse automotrice appelée moteur grader et la niveleuse tractée appelée grader

Utilisation des niveleuses

La niveleuse en plus de son travail de terrassement et de finition ses emplois sont multiples :

- ➤ Débroussaillage en terrain léger ne comportant pas des gros arbustes ou de grosses pierres ;
 - Décapage des terrains végétaux sur une faible épaisseur ;
 - Creusement ou Curage des fossés en inclinant la lame sur le coté, les terres extraites par la lame remontent le long de celle-ci et viennent se déposer en cavalier sur le bord du fossé.

Bulldozer

Niveleuse automotrice
Figure V-7-Les engins de décapage

V-4-2-Pour l'excavation des tranchées

On utilise une pelle équipée en rétro Les pelles sont des engins de terrassement qui conviennent à tous les types de terrains. Ce sont des engins dont le rôle est l'exécution des déblais et leur chargement. Ils sont de type à fonctionnement discontinu, c'est à dire que le cycle de travail comprend les temps suivants :

- > 1- Temps de fouille ;
- > 2- Temps de transport ;
- > 3- Temps de déchargement ;
- ➤ 4- Temps de remise en position de déblais.

Ce sont des engins très répondus et utilisés à grande échelle grâce à leur bon rendement et à la qualité du travail qu'ils peuvent fournir. (Figure V-8)

Figure V-8- Pelle équipée en rétro

V-4-3-Pour le remblaiement des tranchées

Pour les grands travaux de ce type l'engin qui convient c'est le chargeur.

Les chargeurs : ce sont des tracteurs composes à l'avant de deux bras articulés, actionnées par des vérins portant un godet. (*Figure V-9*)
Si les travaux ne sont pas très importants, nous utilisons le rétro chargeur.

Figure V-9-Chargeur

V-4-4- Pour le compactage

L'engin qui convient à cette opération c'est le compacteur à rouleau lisse. (Figure V-8) Il comprend :

- Un châssis
- Des roues larges (cylindres) avec une couche d'usure d'acier au manganèse
- Les organes de manœuvre

Figure V-10- compacteur à rouleau lisse

V-5-Devis quantitatif et estimatif

Le calcul du devis quantitatif et estimatif permet d'effectuer une estimation du coût de notre projet, il est utile également dans le cas de choix entre deux ou plusieurs variantes c'est à-dire faire une étude technico-économique.

Ce calcul consiste alors, à déterminer les quantités de toutes les opérations à effectuer sur terrain pour la réalisation du projet, ensuite les multiplier par le prix unitaire correspondant. Les différentes opérations effectuées sont :

- Travaux de décapage de la terre végétale ;
- L'exécution des tranchées ;
- Fourniture et pose de lit de sable ;
- Fourniture et pose des buses en béton ou en béton arme ;
- Construction des regards et des déversoirs d'orage ;

V-6-Détermination des différents volumes

V-6-1-Volume de la couche végétale:

$$Vcv = Hv. L. B$$
 (V1)

- Vcv : Volume de la couche végétale en (m3).
- \triangleright Hv : Profondeur de la couche végétale (on prend Hv = 0,1 m).

L : Longueur totale de la tranchée en (m).

B: Largeur de la couche végétale en (m).

V-6-2- Volume des déblais des tranchées

$$Vd = B. L.H (V-2)$$

Vd: Volume des déblais des tranchées en (m3).

B : Largeur de la couche du tronçon en (m).

H: Profondeur de la tranchée en (m).

IV-6-3-Volume occupé par le lit du sable

$$Vls = e. L. B (V-3)$$

Vls: Volume du lit du sable en (m3).

e: Epaisseur de la couche de sable en (m).

B : Largeur de la couche du tronçon en (m).

V-6-4-Volume occupé par les conduites

$$Vcdt = L. \pi.D2/4 \tag{V-4}$$

Vcdt: Volume occupé par les conduites en (m3).

D : Diamètre de la conduite en (m).

V-5-5-Volume du remblai

$$Vr = Vd - [Vcdt + Vcv + Vls]$$
 (V-5)

Vr : Volume du remblai en (m3).

V-6-6- Volume excédentaire

$$Vexc = Vf - Vr (V-6)$$

Vexc: Volume du sol excédentaire en (m3).

Vf: Volume du sol foisonné en (m3).

Tel que:

$$Vf = Vd. Kf$$
 (V-7)

Kf: Coefficient de foisonnement dépend de la nature de sol pour notre cas on a :

$$Kf = 1,24.$$

Remarque

Les volumes de différentes opérations sont représentes dans le tableau du devis quantitatif et estimatif. (*V-1*)

Tableau V-1: Détermination du devis quantitatif et estimatif du projet.

N°	Désignation des travaux	Unité	Quantité	Prix unitaire (DA)	Montant (DA)						
A	Travaux de terrassement										
1	Décapage de la tranchée	M3	2718,12	150	407718						
2	Déblai	M3	56192,87	300	16857861						
3	Pose du lit de sable	M3	2718,12	1000	2718120						
4	Remblai de la tranchée	M3	42818,11	350	14986338,5						
5	Evacuation des déblaies excédentaire	M3	26861,05	160	4297768,0						
В											
1	Fourniture, trai										
	Canalisation en PEHD ondulée										
	300	Ml	376	3500	1316000						
	400	Ml	623	4500	2803500						
	500	Ml	652	5900	3846800						
	600	Ml	523	8500	4445500						
	700	Ml	852	9500	8094000						
	800	Ml	756	12500	9450000						
	900	Ml	120	15000	1800000						
	1000	Ml	1441	18000	25938000						
	1100	Ml	1200	21000	25200000						
	1200	Ml	985	23500	23147500						
	1400	Ml	865	24500	21192500						
	1600	Ml	352	25500	8976000						
2	Canalisati	on en bé	ton armé (ove	oïde)							
	1000	Ml	609,8	2800	1707440						
2	1300	Ml	152,91	3100	474021						
	1500	Ml	680	40000	27200000						
	1800	Ml	695	52000	36140000						
	2000	Ml	456	60000	27360000						
	2400	Ml	552	80000	44160000						
C	Construction										
1	Construction des regards en béton armé	U	821	16000	2256000						
2	Exécution des déversoirs d'orage	U	6	16000	96000						
	ТН	325751067									
	TVA	55377681,3									
	TT	381128748									

Remarque: Les prix unitaires sont donnés par la D H W deTizi ouzou

V-7-PLANIFICATION DES TRAVAUX

Les principales opérations à exécuter sont :

- A. Piquetage.
- **B.** Décapage de la couche de goudron (si elle existe) ou celle de la végétation.
- C. Exécution des tranchées et des fouilles pour les regards.
- **D.** Aménagement du lit de pose.
- **E.** Construction des regards.
- F. La mise en place des canalisations en tranchée.
- **G.** constructions des ouvrages annexes (D O.)
- **H.** Assemblage des tuyaux.
- I. Faire les essais d'étanchéité pour les conduites et les joints.
- J. Remblai des tranchées.
- **K.** Travaux de finition.

Tableau V-2: détermination des délais.

OPERATION	TR	D	Р	DF	MT	
		CCP	CCP DFP DCPP		DFPP	
A	25	0	25	0	25	0
В	30	25	55	25	55	0
С	85	55	140	85	140	0
D	30	140	170	200	230	60
Е	90	140	230	140	230	0
F	30	140	170	200	230	60
G	40	140	180	190	230	50
Н	30	230	260	230	260	0
I	20	260	280	260	280	0
J	40	280	320	280	320	0
K	30	320	350	320	350	0

Avec : TR: temps de réalisation.

DCP : date de commencement au plus tôt.

DFP: date de finissement au plus tôt.

DCPP: date de commencement au plus tard.

DFPP: date de finissement au plus tard

MT: marge totale.

Le chemin critique A-B-C-E-H-I-J-K

 $\sum TR = 350$ jours

V-7- Conclusion:

Nous avons exposé les différentes façons de pose selon les cas ainsi que les conditions à respecter.

Pour assurer le bon fonctionnement de notre réseau, la pose de canalisation doit être d'une manière correcte.

Pour que les conduites résistent aux forces dues au charges fixes où mobiles ainsi qu'au remblai

CHAPITRE VI:

ENTRETIEN ET EXPLOITATION DU RÉSEAU

Introduction

Les interventions d'exploitation, de maintenance et d'entretien des ouvrages d'assainissement sont une réalité quotidienne, qui nécessite des dispositions et des moyens appropriés.

Les contrôles, le curage des réseaux, l'extraction des boues, l'élimination des déchets, la révision des différentes installations sont autant d'opérations indispensables à un fonctionnement normal du système d'assainissement.

VI-1 - La connaissance du réseau

La première condition pour une exploitation rationnelle du système d'assainissement est de connaître :

- Le tracé exact de celui ci.
- > Toutes ces caractéristiques hydrauliques (débit, vitesse...etc.).
- > Toutes ces caractéristiques topographiques. (Pente, côte...etc.).

VI-2- La gestion du réseau d'assainissement

Le diagnostic global d'un réseau d'assainissement est le résultat de trois types d'investigations :

- ➤ Le diagnostic géométrique ;
- > Le diagnostic géophysique ;
- > Le diagnostic physico-chimique;

VI-2-1-Le diagnostic géométrique :

Il s'agit de diagnostiquer les dégradations affectant la géométrie de la conduite suite au comportement mécanique du sol environnant. Pour cela, il est nécessaire de faire appel à des auscultations géométriques qui permettent de comparer la mesure de la géométrie de la canalisation à une référence, afin d'identifier les déformations éventuelles.

VI-2-2 -Le diagnostic géophysique

Parmi les causes de la dégradation du réseau, on trouve divers mouvements du sol entourant la canalisation :

- Un lit de pose mal compacté ;
- L'influence des charges roulantes en surface ;
- Les phénomènes de renard...

Afin d'anticiper les dysfonctionnements du réseau, il est nécessaire d'obtenir une connaissance la plus précise et la plus détaillée possible de la géologie du sol alentour.

Les paramètres géophysiques à renseigner sont notamment :

- La présence d'une cavité de densité différente (poche d'air ou d'eau);
- La nature géologique du sol voisin (argile, sable, grès);
- La pression exercée par le sol sur la canalisation (charge roulante) :

VI-2-3-Diagnostic physico-chimique

Il s'agit d'évaluer les dégradations intrinsèques des canalisations. Les paramètres physicochimiques des canalisations dont on doit suivre l'évolution dans le temps sont les suivants :

- > mesure du pH au niveau de la surface interne ;
- > mesure de la résistance mécanique ;
- > pénétrabilité du matériau (effritement);
- étanchéité et perméabilité ;

VI-3-Exploitation des réseaux d'assainissement

L'objectif de l'exploitation du réseau d'assainissement est la collecte correcte et le transport des eaux usées à la station d'épuration ainsi que l'évacuation la moins nuisible possible des eaux pluviales.

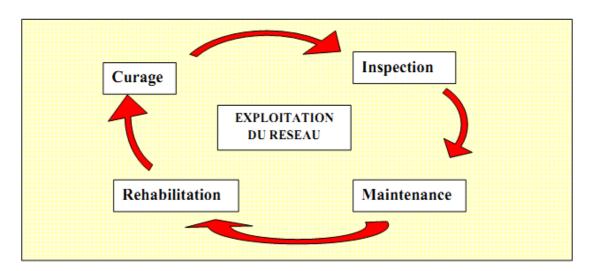


Figure VI-1: Taches Opérationnelles du réseau d'assainissement

Curage : maintien de la section d'écoulement.

Inspection: évaluer l'état de fonctionnement et de l'ouvrage.

Maintenance : le maintien du bon état de fonctionnement et diminution de l'usure.

Réhabilitation : Rétablissement d'un bon état de fonctionnement.

VI-3-1-Auscultation au moyen d'une Inspection Visuelle Périscope (IVP) des réseaux non visitables

Vu le réseau d'assainissement de la zone d'étude de faible diamètre, son contrôle peut se faire au moyen d'un matériel spécifique. La méthodologie est un diagnostic rapide des collecteurs non visitables.

Cette méthode est simple et efficace et permet une auscultation rapide depuis le regard de visite au moyen d'une caméra.

- ➤ Des visites sur terrain au moyen d'un matériel spécifique, nous permettent de vérifier et d'obtenir les renseignements indispensables. L'IVP nous fournit rapidement une vision globale sur l'état du réseau.
- Etablissement pour chaque tronçon à une fiche de renseignements.

- Permet de cibler les interventions ITV approfondies à réaliser afin de programmer si c'est nécessaire les travaux de renouvellement prioritaires ou de réhabilitation.
- Elaboration de carte à risque des collecteurs endommagés.

Les inspections visuelles sont effectuées dans le respect des règles de sécurité, elles ne sont pas réalisées par temps de pluie en raison des risques de mise en charge des collecteurs.

VI-3-1-1-L'efficacité de l'inspection télévisée (IVP)

Le recensement des anomalies lors de l'inspection IVP après visite du terrain, va permettre de vérifier les renseignements précédemment obtenus.

- Avec leurs repérages, leurs natures et leurs degrés de gravité (intervention immédiate ou non).
- ➤ Un recueil photographique des anomalies les plus marquantes.
- Afin d'établir un programme d'intervention (réhabilitation curage), les inspections ont pour but de limiter les zones géographiques présentant un degré d'anomalie.

VI-3-1-2-Les avantages de la méthode IVP

La méthode de l'inspection télévisé qui est rapide et adaptée aux contraintes du terrain permet de:

- Connaitre et maitriser le fonctionnement du réseau d'assainissement.
- Supprimer les situations à risque.
- Allonger la durée de vie du patrimoine réseau assainissement pérennisant l'existant
- Exploitation et maintenance des réseaux d'assainissement.
- réduire les risques de pollution et d'inondation par l'évolution de la gestion en temps réel

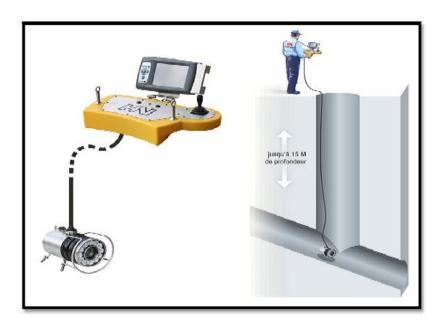


Figure VI-2: Auscultation au moyen de l'IVP

VI-3-2-Inspection Télévisée (ITV) des Réseaux Non visitables

Le système se compose d'une caméra électronique étanche et d'une source lumineuse.

Les déplacements commandés par un technicien depuis la surface sont rendus possible par un chariot autonome. L'image est retransmise à une régie de contrôle par l'intermédiaire d'un câble de liaison.

VI-3-2-1-Le principe de l'Inspection Télévisée (ITV)

L'inspection télévisée (ITV) est utilisée pour le diagnostic des réseaux d'assainissement, le contrôle de l'état des canalisations, raccordements, pentes, branchements pénétrants et boites de branchements.

Le système se compose d'une caméra électronique étanche et d'une source lumineuse. Cette caméra est descendue grâce à un câble jusqu'au niveau du collecteur où la prise de vue est effectuée. Les déplacements commandés par un technicien depuis la surface a l'aide d'un chariot autonome ou tracté. Les images sont visionnées en directe sur l'écran vidéo, et sont enregistrées sur un support numérique.

Remarque

Les réseaux neufs ou anciens, branchements ou collecteurs compris doivent obligatoirement être nettoyés et débarrassés des dépôts ou d'autres objets s'y trouvant avant toute inspection télévisée.

VI-4-Curage des réseaux d'assainissement

L'encrassement et l'ensablement des réseaux d'assainissement, ou d'eau pluvial provoquent une réduction de la capacité des ouvrages pouvant être non négligeable et une entrave aux conditions normales d'écoulement.

Le curage préventif peut se programmer, selon le type de réseau ou d'ouvrage et le contexte, à l'échelle annuelle et bisannuelle, voire plus souvent, par exemple sur :

- Les secteurs critiques, où les avaloirs et réseaux nécessitent à l'entrée ou à la sortie de l'hiver des interventions.
- les réseaux et ouvrages de dessablement, où l'on a périodiquement un ensablement attendu, qui entraîne une périodicité obligatoire d'intervention.

Dans tous les cas, il s'établit une relation de cause à effet entre le degré d'ensablement et la zone drainée, l'insuffisance hydraulique, le seuil jugé non tolérable, etc. visites préalables d'inspection permettent d'examiner et de définir l'occurrence de l'encrassement. L'analyse et la comparaison d'une telle exploitation restituent des coûts liés aux caractères systématiques, à l'efficacité fonctionnelle des ouvrages, avec un souci de rendre plus efficace les interventions et l'approche d'un curage optimisé.

Il apparaît qu'un mode de curage performant doit intervenir sur :

- l'apparition du dépôt, avant qu'il n'ait le temps de trop durcir par une sédimentation prolongée et de créer des problèmes de corrosion par fermentation anaérobie;
- ➤ la section critique, au moment limite, avant que cela n'entraîne des désordres sur le fonctionnement et n'ait des implications sur la qualité des déversements dans le milieu naturel (débourrage par temps de pluie).

- Les causes de l'ensablement dans des conditions particulières localisées par des singularités : changement de section, zone d'eaux mortes, pente faible, surélévation du plan d'eau à l'aval, mise en charge, etc
- La quantification des dépôts peut s'appréhender à la suite d'observations faites sur des sites témoins.

VI-4-1-Curage des réseaux non visitables

Il existe plusieurs méthodes pour le curage de ce type de réseaux d'assainissement :

VI-4-1-1- Méthodes traditionnelles de curages

Un réseau, même parfaitement construit, doit périodiquement être curé pour supprimer les obstructions et maintenir constant l'écoulement des effluents des eaux usées et des eaux pluviales. En dehors de circonstances particulières, un réseau doit être entièrement curé et nettoyé a priori tous les deux ans ; cela ne comprend pas, bien entendu, les interventions sur les points singuliers et les décanteurs après les orages.

Sur le plan de l'entretien systématique adopté dans un certain nombre de villes importantes, les équipes de nettoyage n'interviennent que lorsque la hauteur de matières dans les conduites de 400 mm, par exemple, atteint 10 cm sur le diamètre vertical.

On peut se trouver très souvent en présence d'une obstruction ponctuelle ou générale de la canalisation; c'est pourquoi les travaux d'entretien des réseaux d'assainissement doivent être régulièrement programmés. [8]

VI-4-1-2-Le tringlage manuel ou mécanique

Le plus simple consiste à déplacer entre deux regards un appareil (curette, boule de curage, vrille ou hérisson) tiré ou poussé par des cannes ou des câbles mécaniques. Ces appareils sont manoeuvrés à la main, au moyen d'une manivelle ou de treuils à main.

Le travail est pénible et le rendement faible pour le débouchage des canalisations non visitables, on peut être amené à utiliser des appareils plus puissants, Seweroder ou Powwer Drive, qui sont des brosses flexibles manoeuvrées à l'aide de câbles et de treuils électriques.

VI-4-1-3-Le curage par boule

A)-La boule flottante

Ce procédé est utilisé pour le curage du siphon ou de grands émissaires non visitables, car il est constamment en charge, une boule en bois dur, d'un diamètre légèrement inférieur au diamètre de la canalisation à curer est introduite par un ouvrage spécial. Cette boule suit la génératrice supérieure du tuyau et se met en rotation du fait de la poussée amont et de la pression de l'eau sous la boule. Le courant d'eau, ainsi crée entraîne les dépôts gênants l'avancement de la boule jusqu'à l'ouvrage de sortie qui permettra de la récupérer et d'éliminer les matières entraînées.

B) -La boule roulante

Elle active l'auto curage du collecteur. La boule a un diamètre de l'ordre de 50 cm et comporte des bourrelets en forme de (S). Le lâchage quotidien d'une boule dans les collecteurs entraînée par le courant remet en suspension et entraîne les dépôts. [8]

VI-4-1-4-Les cureuses hydrodynamiques

Les méthodes d'entretien mécanisé ont été élaborées depuis plusieurs décennies en vue :

- D'améliorer considérablement l'efficacité de l'entretien et le rendement en mécanisant les travaux,
- ➤ D'éviter que le personnel descende dans les regards et soit en contact avec les boues à extraire,
- D'éviter que les matières extraites ne souillent les chaussées et propagent des nuisances.
- Les appareils de curage hydrodynamique fonctionnent suivants les principes décrits ci-après :
- ✓ un tuyau en caoutchouc armé de nylon peut débiter 1,5 à 6 l/s d'eau propre, à une pression comprise entre 40 et 150 bars ;
- ✓ Par une buse spéciale, un jet central dirigé vers l'avant désagrège les boues et les matières ; des jeux latéraux dirigés vers l'arrière assurent l'évacuation de celles-ci et l'avancement de l'appareil ;
- ✓ La portée d'auto progression varie avec le diamètre du collecteur et son engorgement ; elle atteint 80 à 100 m. La réserve d'eau est contenue dans une cuve de 4 à 10 m3.

L'ensemble, avec compresseur et moteur, est monté sur un châssis traditionnel de camion.Le travail de curage s'effectue de l'aval vers l'amont. L'entraînement des boues se fait jusqu'au regard aval et, après son obturation, on aspire les boues à l'aide d'une aspiratrice.

L'efficacité du jet est inversement proportionnelle au diamètre du collecteur et on peut nettoyer des canalisations jusqu'à 0,80 m de diamètre. Par jour, une équipe peut curer parfaitement plusieurs centaines de mètres (500 m environ) sous réserve que les réseaux soient périodiquement entretenus. En réseau séparatif (eaux usées), la vitesse de travail est particulièrement élevée du fait du faible diamètre des canalisations et de la nature des dépôts. [8]

VI-4-1-5-Les aspiratrices

Les aspiratrices de boues sont des véhicules spéciaux complémentaires des cureuses hydrodynamiques. Elles sont équipées d'une cuve à boues à 15 m³. Cette cuve est mise en dépression par pompes à air aspirant 200 à 500 m3/h sous pression de 0,7 bar.

Les boues sont aspirées par un tuyau suspendu à potence articulée et le travail peut s'exécuter malgré le stationnement des véhicules, quand il n'y pas de solidification excessive des boues.

Est intéressant de signaler qu'un entretien curatif d'un réseau en état nécessite en moyenne pour assurer l'écoulement normal des eaux, un curage – rinçage une fois par an et qu'un entretien préventif demande simplement un curage – rinçage tous les 2 ou trois ans. [8]

VI-4-1-5-1-Combinés cureuses- aspiratrices

Sont des matériels de curage qui regroupent sur véhicule unique la cureuse hydrodynamique aspiratrice. Ces équipements sont efficaces pour nettoyage des collecteurs de petites agglomérations, car ils aspirent les matières entraînées par hydro curage au fur et à mesure de l'avancement des boues, cela évite la formation de nouveaux bouchons à l'aval, ce qui représente un meilleur travail et un gain de temps. [8]

VI-4-2-Curage des collecteurs visitables

Dans le domaine du curage mécanique des égouts visitables, nous envisagerons successivement les moyens mécaniques avec :

- les ouvrages en eau (ouvrages eaux usées en séparatif ou en unitaire)
- les ouvrages à sec (ouvrage d'eaux pluviales).

VI-4-2-1-Curage mécanique en présence d'eau

A)-Périodicité des travaux de curage

La périodicité du curage est fonction :

- Du site où se trouve la bouche d'égout (marchés,...);
- > De l'état de la voirie, trottoirs en gravier ou pas ;
- Du type de voie, avec caniveaux ou sans, bordée ou non d'arbres;
- ➤ De la nature des transports de produits pouvant se répandre sur la chaussée (sables, graviers...);

B)-Principe de curage :

Le curage s'effectue à l'aide d'une vanne mobile susceptible de se déplacer longitudinalement dans l'égout à nettoyer.

La vanne a une forme semblable à la coupe transversale de l'égout (partie inférieure limitée par une horizontale située environ au niveau de la naissance de la voûte).

Cette vanne comporte à sa partie inférieure, au niveau du radier de l'égout, une lumière obturée par une vanne secondaire. On ouvre alors la lumière qui constitue un ajutage de section réglable par lequel s'échappe un jet d'eau tangent au radier de l'égout, la vitesse de l'eau étant proportionnelle à la racine carrée de la dénivelée entre les plans d'eau amont et aval.

Les sédiments sont déplacés vers l'aval à une distance variant de quelques centimètres à quelques dizaines de mètres en fonction de la vitesse de l'eau d'une part, de la granulométrie et de la densité des sédiments d'autre part.

VI-4-2-2-Curage mécanique sans présence d'eau

Le curage ne peut être exécuté en utilisant l'énergie de l'eau puisque le débit de temps sec est très insuffisant. Donc on doit extraire cette matière accumulée dans l'égout au moyen des techniques rustiques basées sur les bras, la pelle et la pioche.

VI-5-La ventilation des réseaux d'assainissement :

La présence de l'air dans les réseaux et ouvrages est la meilleure garantie contre la fermentation putride des matières dont les eaux sont chargées. Par une inspection régulière, chaque trimestre, il faut veiller à ce que :

- les tampons de regards soient munis d'orifices non obstrués ;
- > les bouches sous chaussées soient nettoyées ;
- les tuyaux de chute et de descente des immeubles aient une ventilation primaire à l'air libre. [8]

VI-5-1-Organisation de l'entretien du réseau

En assainissement, l'entretien est une nécessité quotidienne de bon fonctionnement. Le curage du réseau, l'extraction des boues, l'évacuation des déchets, la révision des organes mécaniques des matériels et des installations, est autant d'opérations indispensables au fonctionnement normal.

L'organisation de l'entretien des réseaux doit être fondée sur une parfaite connaissance du réseau dans tous ses éléments constitutifs et dans son fonctionnement.

Un programme de visite s'avère indispensable afin de mener dans de bonnes conditions des opérations d'entretien, de curage et de contrôle des réseaux.

VI-5-2-Détection des fuites

Les principales causes des fuites et qui doivent être évitées, lors de la mise en place du réseau sont les suivantes :

- Caractéristiques de la conduite non adaptées à la pression.
- ➤ Action des surcharges roulantes.
- > Terrain agressif ou instable.
- ➤ La recherche des fuites s'effectue avec:
- Des appareils mécaniques.
- ➤ Des appareils électroniques comportant un capteur, un amplificateur réglable ou parfois un dispositif de contrôle visuel.

VI-5 -3-Entretien des joints

Les ouvrages (canalisation) peuvent présenter des défauts d'étanchéité et même des ruptures dues aux mouvements du sol, vibration dues à la circulation lourde et dues aux agressions chimiques.

Les défauts généralement se manifestent au niveau des joints. L'entretien consiste à réparer les joints en mauvais état, supprimer les intrusions des racines, réparer les sections corrodées par des déversements chimiques, procéder à l'étanchement des conduites, tant pour les eaux provenant de l'extérieur que de l'intérieur des égouts.

VI-5-3-L'entretien des bouches d'engouffrements

L'entretien des bouches sélectives est à assurer par des aspirateurs à boues. Elles sont aspirées et rassemblées dans une cuve.

Le curage des bouches d'engouffrement doit avoir un caractère systématique et préventif.

Les périodiques d'intervention sont fonction des conditions locales. Un aspirateur à boue et son équipe permettent la vidange de 60 à 100 bouches par jour. [8]

VI-5-4-Travaux spécifiques

1-Désodorisation

Le réseau d'égouts est un milieu favorable à la formation de bactéries qui dégagent des mauvaises odeurs, pour y remédier il faut bien aérer le réseau ou injecter de l'oxygène liquide

2-Lutte contre la corrosion de l'H2S

Comme les conduites de notre réseau sont en PEHD qu'est un matériau plus sensible à l'attaque de l'acide sulfurique, il faut empêcher la formation de ce dernier par des moyens hydrauliques ou chimiques qu'on a cité précédemment.

VI-6- Réhabilitation du réseau :

Un réseau d'assainissement est considéré comme inexploitable lorsque les préjudices qu'il cause au milieu naturel ou aux citadins ne sont plus tolérables, dans un tel cas on a deux choix : soit le réparer ou le changer. Le remplacement d'un réseau d'assainissement s'avère très coûteux et les travaux de réalisation causent beaucoup plus de désagrément que lors de la réparation. Les travaux de réhabilitation qu'entreprend le gestionnaire sont :

- > Le fraisage des obstacles intérieurs.
- L'injection de produits colmatant.

- Le tubage intérieur.
- > Le gainage intérieur
- > Le chemisage extérieur

VI-6-1-Le fraisage des obstacles

C'est une opération destinée à l'élimination des racines d'arbres qui s'introduisent par les joints, l'opération est effectué par une brosse circulaire dure qu'est actionnée par un mouvement de rotation autour d'un axe horizontal. Le mouvement de rotation est assuré par un moteur électrique.

VI-6-2 -L'injection des produits comatants

Cette technique est utilisée pour les conduites de gros diamètres, elle consiste à projeter par centrifugation une couche de mortier de ciment où résine hypoxydique qui se stabilise à l'état de gel ce qui permet d'obturer tout trous ou fissure.

VI-6-3-le tubage intérieur

On adopte cette technique pour les conduites ayant un diamètre de 1000mm ou plus, son principe consiste à placer des tuyaux à l'intérieur de la canalisation.

L'assemblage se fait par collage, par emboîtement, par joint caoutchouc ou par thermo soudage.

VI-6-4-Le gainage intérieur

Ce procédé est utilisé pour les conduites de diamètre allant de 200mm à 1000mm, avant la mise en place de la gaine on procède à une inspection de la canalisation par une caméra TV. On place à l'intérieur de la conduite une gaine qu'on gonfle avec de l'air sous pression (de 0,1 à 0,5 bar).

VI-6-5-Le chemisage extérieur

L'opération est appliquée pour les canalisations traversant des terrains marécageux, ou des soles agressifs. Elle consiste à enrober la canalisation d'une gaine étanche et qui résiste aux attaques chimiques, la gaine est en suite entourée par une couche de sable pour faciliter le drainage des eaux qui se stagnent autour de la conduite.

Conclusion

Planifier des taches multiples dans le but d'améliorer l'exploitation et la maintenance des équipements et des installations des systemes d'assainissement .Il faut reduire les fuites d'eau dans les reseaux, tout en prolongeant la durée de la vie des équipements, tel est l'objectif des gestionnaires des réseaux.

La premiére disposition est bien entendu apprendre au moment de la conception et l'adaptation des équipement nécessaires .

Par ailleur, la remise en état et la maintenance des installations de protection sont indispensables pour réduire l'éffet de corrosion et la dégradation de l'état de canalisation et des ouvrages .

La mise en ouvre d'une organisation d'éxploitation et le maintenance efficace tout en assurant l'amélioration du niveau de formation et de compétence du personnel est conseillée pour toutes les structure de gestion

Conclusion générale

Conclusion générale

L'objectif de notre étude déjà signalé est de projeter un réseau d'assainissement pour la ville Oued falli pour évacuer tous les débits des eaux usées et des eaux pluviales dans des conditions favorables, afin d'éviter les problèmes qui menacent la santé publique et le milieu naturel.

La reconnaissance du site d'après les plans d'occupation du sol (plans d'aménagement), à long terme de notre agglomération et une étude hydrologique profonde, nous ont permis de déterminer les débits d'eaux usées et pluviales par la méthode superficielle (dite de CAQOUT) pour une période de retour de dix ans.

Dans notre étude on a projeté un réseau d'évacuation d'eaux usées et pluviales. Notre choix s'est penché sur un système unitaire avec un schéma par déplacement latéral.

La topographie constitue une contrainte très importante d'où l'étude a permis de dégager le tracé d'une seule variante. Cette dernière comporte des collecteurs principaux, deux intercepteurs dont le première est de type ovoïde qui traverse la ville de l'Est vers la station d'épuration cote Ouest de capacité 25000 eq/h, et le second est de type ovoïde qui est projeté qui véhiculera toutes les eaux (pluviales et usées) provenant du site, toutes ces eaux seront orientées vers la station d'épuration projetée 50000 eq/h cote Sud. Sans oublier des collecteurs secondaires pour assurer le branchement de tous les immeubles au réseau public.

Pour les éléments du réseau d'égout, on a projeté des déversoirs d'orage, des regards de jonction et des regards de chute, car la pente est importante.

L'impact de notre projet est de sauvegarder l'environnement et la santé publique sans oublier une gestion rationnelle et un entretien permanent de l'ensemble du réseau.

Enfin, nous espérons que cette étude pourra faire l'objet d'un avant projet détaillé pour l'élaboration d'un réseau d'assainissement de cette ville dans les meilleurs conditions.

REFERENCES BIBLIOGRAPHIQUES

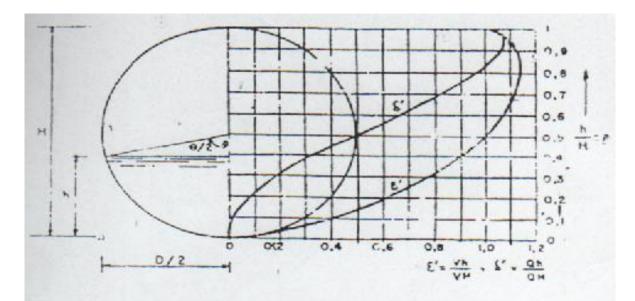
- [1] Musy A, Higy C, «Hydrologie, une science de la nature », 2004, Edition PPUR, Genèvre
- [2] TOUAIBIA B, 2004, Manuel Pratique d'hydrologie, Presse Madani Frères. Blida, Algérie,166p.
- [3] LAIB T, 2010, Diagnostic et réhabilitation du réseau d'assainissement de la commune de Ras El Oued BBA, Mémoire de fin d'étude ENSH Blida.
- [4] SATIN M, SELMI B,1998, Guide technique de l'assainissement, 3éme Edition. 685p, Paris [5] REGIS, B,1984, Les réseaux d'assainissement, calculs application et perspective, Paris.
- [6] GOMELLA C,GUERRE H, 1986, Guide d'assainissement dans les agglomérations urbaines et rurale, tome 1, Edition Eyrolles, 620p,Paris.
- [7] Catalogue technique de l'industrie de SARL,2007, Le tube PEHD en assainissement,Oran
- [8] SATIN M, SELMI B, 1998, Guide technique de l'assainissement, 3 éme Edition, 685 p, Paris
- [9] GOMELLA C, GUERREE H, 1986, Guide d'assainissement dans les agglomérations urbaines et rurales ,(tome 1), Eyrolles,620p, Paris.

Annexes

AnnexeII1

Annexe II-1: précipitations mensuelles et maximales journalières à la station tizi ouzou

	Précipitations (mm)													
jour	sept	oct	nov	dec	janv	fev	mars	avril	mai	juin	juil	aout	max	total
1980	0,90	19,10	23,80	49,50	11,80	11,50	22,00	20,60	36,00	1,20	0	20,90	49,50	217,30
1981	6,50	29,70	18,50	32,80	30,30	30,20	7,80	6,30	24,70	6,20	0	0,20	32,80	193,20
1982	98,20	20,40	60,60	40,00	2,00	26,00	26,70	9,80	11,90	0	2,30	8,90	98,20	306,80
1983	4,20	24,50	20,00	21,70	47,20	33,60	15,90	12,80	28,00	13,40	0	0	47,20	221,30
1984	12,20	46,30	15,50	34,40	31,00	18,70	53,70	5,00	35,30	0	0	0	53,70	252,10
1985	13,00	26,20	30,80	18,90	16,80	47,70	101,90	11,90	4,30	14,00	6,80	5,70	101,90	298,00
1986	7,20	11,50	23,40	60,70	44,00	44,00	24,70	3,60	7,00	9,60	0,70	2,50	60,70	238,90
1987	13,30	23,10	25,40	22,10	24,20	17,60	28,00	35,50	11,50	16,60	6,90	0	35,50	224,20
1988	32,50	3,40	31,30	45,90	16,10	8,90	18,90	28,40	3,40	6,20	3,60	38,10	45,90	236,70
1989	14,60	21,40	22,10	22,70	16,50	0,10	10,40	33,40	23,70	10,10	13,50	0	33,40	188,50
1990	6,60	29,00	15,60	57,30	33,80	27,50	19,00	12,30	17,80	1,40	0,40	2,80	57,30	223,50
1991	3,50	58,00	12,10	6,60	49,30	25,00	18,00	60,30	36,60	22,60	6,10	0,20	60,30	298,30
1992	4,30	41,80	37,10	67,60	17,00	25,60	8,70	27,40	27,10	0,20	0	6,40	67,60	263,20
1993	24,00	17,80	28,30	26,50	46,50	38,00	5,00	16,10	1,20	0,30	0	9,50	46,50	213,20
1994	60,80	18,30	9,20	45,60	72,70	18,10	31,90	19,30	1,00	6,40	0,30	10,80	72,70	294,40
1995	3,00	7,50	10,10	24,20	40,40	46,60	17,30	73,10	16,80	7,40	5,10	3,00	73,10	254,50
1996	26,20	46,00	17,90	22,30	12,70	14,40	8,30	23,00	8,70	4,10	0,30	4,40	46,00	188,30
1997	24,80	34,20	59,50	40,80	27,90	79,20	26,70	40,00	62,40	0,60	0	1,80	79,20	397,90
1998	11,50	27,00	21,50	26,40	28,80	28,20	19,00	6,20	20,50	0,20	0	2,10	28,80	191,40
1999	10,80	6,00	41,70	80,10	5,70	3,70	3,50	12,00	29,10	2,40	0	0,30	80,10	195,30
2000	5,90	9,40	27,80	30,80	58,00	11,90	2,30	20,40	16,50	0	0	0,70	58,00	183,70
2001	22,10	4,00	20,10	23,00	28,60	18,50	25,40	12,80	19,30	1,10	1,00	12,00	28,60	187,90
2002	16,30	22,10	66,90	92,30	47,70	18,70	24,40	49,50	17,30	2,50	3,00	0,90	92,30	361,60
2003	12,10	14,90	35,60	25,70	34,10	19,30	17,80	27,00	65,60	1,00	2,20	10,10	65,60	265,40
2004	5,40	20,40	52,60	48,60	32,80	33,50	5,30	6,20	1,50	0	1,40	0,50	52,60	208,20
2005	10,60	17,80	15,70	30,40	19,80	53,90	18,30	6,20	61,70	2,30	1,00	6,10	61,70	243,80
2006	16,00	6,20	4,50	38,60	3,90	21,00	77,10	68,50	6,10	7,50	9,40	1,40	77,10	260,20
2007	36,50	88,60	129,00	27,00	3,00	4,20	32,20	21,20	25,10	9,80	7,10	0	129,00	383,70
2008	15,00	33,60	63,30	30,60	50,60	10,20	22,30	31,20	34,10	0	2,50	6,90	63,30	300,30
2009	39,50	20,90	31,80	37,70	28,20	10,20	63,50	76,20	30,00	14,10	0,60	11,30	76,20	352,70
2010	15,10	35,60	42,50	43,00	27,30	31,50	37,10	44,40	55,30	23,30	3,00	0,40	55,30	358,50


AnnexeIV1

Annexe IV : Coefficient de Strickler (ks)

Fossé à parois en herbe	30
Fossé à parois en terre	40
Canal en maçonnerie	60
Conduite en béton	75
Conduite en fibre ciment	80
Conduite en fonte ou en grés	90
Conduite en PVC	100

AnnexeIV2

Annexe VI 2: Les rapports R_h , R_v , R_Q «[9] ».

Section circulaire, vitasse t' et débit 6' pour différences profondeurs d'eau

Vi et Qu - Vitesse meyenne et débit peur une profondeur d'aeu A.

Vi et Qu - Vitesse meyenne et débit cerrespondant é le section pictue

$\rho = \frac{k}{H}$	$\beta = \frac{S}{D^2}$	$\gamma = \frac{R}{D}$	$\epsilon = \frac{R^{\tau/3}}{D^{\tau/3}}$	$\delta = \frac{SR^{1/3}}{D^{1/3}}$	1, = N	8'- QH	6.
0.015	,0,0052	0,016	0,003	0,0003	0,159	0,001-7	36° 21'
250	1 5118	033	102	0015	257	0045	22. 11.
075	0268	048	131	0035	333	0112	63* 35
100	6469	061	1 150	0005	401	0208	73* 45
. 125	0567	079	184	0104	464	0334	52. 49
0,150	0,0739	0,003	0,205	0,0153		and the second of the second	10001 (0.00)
175	0025	Tos	225	9208	0,516	0,0487	91 9
200	1118	191	244	0973	567	0067	98' 5"
225	1353	134	203	0347	660	0876	106* 35
250	1555	147	378	C430	700	1366	113, 16,
D,300	0,1983	0,171	0,308	0,0611			
350	2450	194	334	0819	0.776	0,1956	135, 2,
100	7933	215	358	1049	842	2023	145 5
450	3428	234	379	1301	003	3364	156 50
500	3928	250	397	1358	959	4169	168, 33,
0,550	0.4498	0,265			1,000	4997	180"
600	1923	278	0.412	0,1525	1,038	0,5853	19t* 24'
640	5405	268	125	2093	071	6713	303. 4,
700	5873	297	436	2354	099	7550	314, 22,
750	6330	302	445	9613	121	8380	227. 0.
100000		242 (1920)	449	2837	131	9099	240"
0.775	0,6533	a'301	0.452	0,2950	1,130	0,9461	246" 44"
800	6735	304	452	3041	139	9753	953° 9'
875	6933	324	452	3131	139	1,0049	261. 5
850	7135	304	453	3213	139	0305	368° 51'
873	7388	301	449	3271	131	0491	277° 11'
0.900	0.7445	0,299	0,446	0,3323	1,124	1,0654	386° 16
975	7588	294	441	3345	- GII	0728	300, 14
950	7708	287	434	3347	093		
975	7803	277	424	3307	800	0734	
1.000	7855	250	397	3118	000	0000	373* 37

AnnexeIV3

RS84-RS85 144,5 142,6 142,6 142,6 30 0,002 2,446 818 804 439 2,283 0,008 1,084 0,003 0,251 0,073 0,046 4,58 1,102 779 37 V	coll	Tron	Cam	Cav	Cam	Cr,av	Dist	1	Qt	Dcal	Dnor	Vps	Qps	Qeu	Rq	Rq	Rv	Rv	Rh	Rh	V	Vmin	Н	Hmin	Auto
R58-R586 140,6 140,5 140,5 139,5 30 0,031 2.446 824 800 4.50 2.263 0.008 1.094 0.003 1.089 0.250 0.948 0.046 8.86 1.127 758 36 V			(m)	(m)	(m)	(m)	(m)	(m/m)		(mm)	(mm)		(m3/s)	(m3/s)		min		min		min	(m/s)	(m/s)	(mm)	(mm)	curage
R586-R587 140,5 338,9 338,8 337,9 30 0,030 2,446 830 800 4,11 2,156 0,008 1,107 0,004 1,049 0,251 0,970 0,046 4,62 1,106 776 37 V		R584R585	144,5	142,6	142,4	141,6	30	0,029	2,446	831	800	4,39	2,208	0,008	1,111	0,004	1,042	0,251	0,973	0,046	4,58	1,102	779	37	V
## R83-R888 138,9 136,8 136,4 135,8 30 0,023 2,446 872 900 4,18 2,660 0,008 0,932 0,003 1,118 0,247 0,749 0,044 4,67 1,032 0,92 00 V ## R59-R590 134,7 133,2 133 132,2 35 0,025 2,446 863 900 4,31 2,739 0,008 0,888 0,003 1,113 0,246 0,744 0,044 4,84 1,069 663 39 V ## R59-R591 134,7 133,2 123,3 128,6 33 0,020 2,446 863 900 4,31 2,739 0,008 0,888 0,003 1,113 0,248 0,484 0,044 4,84 1,069 670 40 V ## R59-R591 127,8 127,8 127,8 127,6 128,6 30 0,005 2,446 863 900 4,31 2,739 0,008 0,888 0,003 1,113 0,248 0,744 0,073 750 40 V ## R59-R593 127,8 125,6 122,9 122,8 122,9 0,005 2,446 883 800 3,19 2,503 0,008 0,003 1,113 0,448 0,746 0,734 0,44 4,85 1,071 662 39 V ## R59-R593 127,8 122,9 122,8 122,9 0,009 2,446 882 800 4,88 2,001 0,008 1,115 0,004 0,379 0,251 0,976 0,044 4,85 1,071 662 39 V ## R59-R595 122,3 122,3 122,7 121,1 30 0,052 2,446 876 800	Ī	R585R586	142,6	140,5	140,5	139,5	30	0,031	2,446	824	800	4,50	2,263	0,008	1,084	0,003	1,080	0,250	0,948	0,046	4,86	1,127	758	36	V
R588-R589 136,R 134,Z 132,G 35 0,025 2,446 860 900 4,34 2,773 0,008 0,885 0,003 1,114 0,246 0,737 0,044 4,80 1,069 663 39 V	Ī	R586R587	140,5	138,9	138,8	137,9	30	0,030	2,446	830	800	4,41	2,216	0,008	1,107	0,004	1,049	0,251	0,970	0,046	4,62	1,106	776	37	V
R59-R590 134,7 133,2 133 132,2 35 0,024 2,446 863 900 4,31 2,739 0,008 0,986 0,003 1,114 0,246 0,744 0,044 4,90 1,060 670 40 V R591-R592 129,6 127,8 127,6 126,8 30 0,025 2,446 893 900 4,35 2,769 0,008 0,886 0,003 1,113 0,246 0,736 0,044 4,85 1,071 662 39 V R592-R593 127,8 125,6 124,9 124,6 30 0,011 2,446 891 1000 3,19 2,503 0,008 0,886 0,003 1,113 0,246 0,736 0,044 4,85 1,071 662 39 V R593-R593 125,6 123,9 123,8 122,9 30 0,029 2,446 812 800 4,38 2,011 0,008 1,115 0,004 1,037 0,245 0,046 4,548 1,099 781 37 V R593-R595 122,3 122,7 121,1 10,00 0,023 2,446 871 800 4,38 2,011 0,008 0,115 0,004 0,079 0,253 1,005 0,044 4,98 1,099 781 37 V R593-R599 122,3 122,7 121,1 120,5 10,00 0,023 2,446 871 800 4,20 2,071 0,008 0,919 0,003 1,117 0,247 0,765 0,044 4,99 1,036 689 40 V R593-R599 121,3 120,5 119,4 119,5 119,9 30 0,018 2,446 814 1000 3,96 3,110 0,008 0,789 0,003 1,102 0,244 0,664 0,043 4,36 0,966 664 43 V R593-R599 121,5 119,4 118,9 118,2 11 0,025 2,446 857 800 4,05 2,034 0,008 1,239 0,000 0,233 0,004 0,471 0,476 0,47	Ī	R587R588	138,9	136,8	136,4	135,8	30	0,023	2,446	872	900	4,18	2,660	0,008	0,922	0,003	1,118	0,247	0,769	0,044	4,67	1,032	692	40	V
R590-R591 133,2 129,6 127,8 126,8 35 0,020 2,446 859 900 4,35 2,769 0,008 0,986 0,003 1,113 0,246 0,736 0,044 4,85 1,071 662 39 V R591-R592 129,6 127,6 124,9 124,6 30 0,011 2,446 991 1000 3,19 2,303 0,008 0,980 0,003 1,113 0,246 0,736 0,044 4,85 1,071 662 39 V R593-R594 125,6 123,9 123,8 122,9 30 0,025 2,446 832 800 4,38 2,201 0,008 0,980 0,003 1,123 0,246 0,380 0,045 3,58 0,791 830 45 V R593-R596 123,9 122,3 122,7 121,1 120,5 0,052 2,446 874 700 5,36 2,062 0,008 1,115 0,004 0,79 2,51 0,076 0,046 4,54 1,099 781 37 V R594-R596 122,3 122,7 121,1 120,5 30 0,023 2,446 914 1000 3,96 3,104 0,008 0,789 0,003 1,117 0,247 0,765 0,446 0,43 4,69 1,036 689 40 V R594-R599 121,1 120,5 119,9 30 0,018 2,446 914 1000 3,96 3,104 0,008 0,789 0,003 1,107 0,244 0,464 0,44 4,65 0,466 4,48 V R598-R599 121,1 120,5 119,9 119,3 25 0,024 2,446 866 800 3,94 1,980 0,008 1,239 0,004 0,471 0,244 0,464 0,44 0,46 0,45 0,46	Ī	R588R589	136,8	134,7	134,6	133,7	35	0,025	2,446	860	900	4,34	2,763	0,008	0,888	0,003	1,113	0,246	0,737	0,044	4,84	1,069	663	39	V
R991-R992 129,6 127,8 127,6 126,8 30 0,025 2,446 895 900 4,35 2,769 0,008 0,886 0,003 1,113 0,246 0,736 0,044 4,85 1,071 662 39 V	Ī	R589R590	134,7	133,2	133	132,2	35	0,024	2,446	863	900	4,31	2,739	0,008	0,896	0,003	1,114	0,246	0,744	0,044	4,80	1,060	670	40	V
R991-R992 129,6 127,8 127,6 126,8 30 0,025 2,446 895 900 4,35 2,769 0,008 0,886 0,003 1,113 0,246 0,736 0,044 4,85 1,071 662 39 V		R590R591	133,2	129,6	129,3	128,6	35	0,020	2,446	893	900	3,92	2,494	0,008	0,984	0,003	1,123	0,248	0,834	0,045	4,40	0,973	750	40	V
R593-R594 125,6 123,9 122,3 122,7 121,1 30 0,029 2,446 832 800 4,38 2,201 0,008 1,115 0,004 1,037 0,251 0,976 0,046 4,54 1,099 81 37 V R594-R595 122,3 121,7 121,1 120,5 30 0,023 2,446 871 900 4,20 2,671 0,008 0,919 0,003 1,117 0,247 0,765 0,044 4,69 1,036 689 40 V R595-R598 121,7 121,1 120,5 119,9 30 0,023 2,446 871 900 4,20 2,671 0,008 0,919 0,003 1,102 0,244 0,664 0,043 4,36 0,966 664 43 V R595-R598 121,7 121,1 120,5 119,9 30 0,028 2,446 861 800 3,94 1,980 0,008 1,390 0,004 0,471 0,247 0,486 0,966 0,48 4,59 1,036 689 40 V R595-R598 121,7 120,5 119,9 119,3 25 0,024 2,446 866 800 3,94 1,980 0,008 1,239 0,004 0,471 0,249 0,664 0,043 4,36 0,966 664 43 V R595-R598 120,5 119,4 118,9 118,2 31 0,025 2,446 867 800 4,05 2,034 0,008 1,206 0,004 0,471 0,249 0,663 0,404 3,86 0,999 770 38 V R595-R598 120,5 119,4 118,9 118,2 31 0,025 2,446 867 1000 3,82 3,001 0,008 0,879 0,003 1,105 0,246 0,664 0,043 4,22 0,999 770 38 V R595-R598 120,5 119,4 116,3 115,9 115,3 35 0,016 2,446 966 1000 3,82 3,001 0,008 0,879 0,003 1,105 0,246 0,683 0,043 4,22 0,994 683 43 V R595-R598 120,5 119,4 116,3 115,9 115,3 35 0,016 2,446 966 1000 3,82 3,001 0,008 0,817 0,003 1,105 0,246 0,683 0,043 4,22 0,994 683 43 V R595-R598 120,5 119,4 114,5 141,8 143,8 25 0,018 0,053 118 300 1,78 0,126 8E-04 0,431 0,006 0,951 0,269 0,458 0,633 1,69 0,479 137 16 V R743-R744 144,8 143,8 146,5 140,6 25 0,126 0,053 151 200 3,61 0,113 8E-04 0,478 0,007 0,984 0,274 0,489 0,055 3,55 0,987 16 V R745-R744 142,8 141,8 141,6 140,6 30 0,032 0,134 275 300 2,39 0,169 0,002 0,801 0,012 1,103 0,304 0,672 0,676 2,64 0,772 0,272 0,2 V R748-R749 138,2 136,9 137 135,7 35 0,035 0,041 136 0,004 0,005 0,006 0,006 0,006 0,006 0,006 0,007 0,008 0,007 0,007 3,60 0,007 3,60 0,007 3,007		R591R592	129,6	127,8		126,8	30	0,025	2,446	859	900	4,35	2,769	0,008	0,886	0,003	1,113	0,246	0,736	0,044	4,85	1,071	662	39	V
R594-R595 123,9 123,3 122,7 121,1 30 0.052 2.446 746 740 7	İ	R592R593	127,8	125,6	124,9	124,6	30	0,011	2,446	991	1000	3,19	2,503	0,008	0,980	0,003	1,123	0,248	0,830	0,045	3,58	0,791	830	45	V
R595-R596 122,3 12,7 12,1,1 120,5 119,9 30 0.023 2,446 871 990 4.20 2,671 0.008 0,789 0,003 1,117 0,247 0,765 0,044 4,69 1,036 689 40 V R596-R597 121,7 121,1 120,5 119,9 119,3 25 0,024 2,446 866 80 3,94 1,980 0,008 1,239 0,004 0,471 0,254 0,963 0,047 1,86 0,999 770 38 V R598-R599 120,5 119,4 118,9 118,2 31 0,025 2,446 857 800 4,05 2,034 0,008 1,239 0,004 0,471 0,254 0,963 0,047 1,86 0,999 770 38 V R598-R599 120,5 119,4 118,9 115,3 315 0,016 2,446 857 800 4,05 2,034 0,008 1,20 0,008 1,20 0,004 0,471 0,254 0,963 0,047 1,86 0,999 770 38 V R598-R599 120,5 119,4 118,9 115,3 315 0,016 2,446 96 1000 3,86 3,001 0,008 0,817 0,003 1,105 0,245 0,683 0,043 4,22 0,934 683 43 V R543-R743 145,4 145,5 145,3 140,6 25 0,126 0,053 128 300 1,78 0,126 8E-04 0,431 0,006 0,951 0,259 0,458 0,053 1,69 0,479 137 16 V R743-R744 145 141,8 143,8 140,6 25 0,126 0,053 151 200 3,61 0,113 8E-04 0,478 0,007 0,984 0,274 0,489 0,055 3,55 0,987 98 11 V R745-R744 142,8 143,8 144,6 140,6 130 0,034 0,134 272 300 2,45 0,103 0,002 0,801 0,012 1,103 0,304 0,672 0,667 2,664 0,727 202 20 V R747-R748 140,5 140,6 139,3 35 0,039 0,041 399 400 3,21 0,403 0,006 0,008 0,108 0,101 1,101 0,302 0,661 0,067 2,69 0,739 198 20 V R747-R748 140,5 140,6 139,3 35 0,039 0,041 399 400 3,21 0,403 0,006 0,591 0,009 1,015 0,224 0,593 0,055 3,55 0,987 98 11 V R74F-R748 140,5 140,6 139,3 35 0,039 0,041 399 400 3,21 0,403 0,006 0,008 0,015 1,121 0,303 0,007 0,006 0,008 0,008 0,004 0,008 0,007 0,006 0,008 0,001 1,101 0,002 0,006 0,008 0,005 0,005 1,008 0,005 0,005 0,006 0,008 0,005 0,005 0,006 0,008 0,005 0,005 0,006 0,008 0,005 0,006 0,008 0,005 0,009 0,006 0,009 0,001 1,008 0,005 0,008 0,0	İ	R593R594	125,6	123,9	123,8	122,9	30	0,029	2,446	832	800	4,38	2,201	0,008	1,115	0,004	1,037	0,251	0,976	0,046	4,54	1,099	781	37	V
R596-R597 121,7 121,1 120,5 119,9 30 0,018 2,446 914 1000 3,96 3,110 0,008 0,789 0,003 1,102 0,244 0,664 0,043 4,36 0,966 664 43 V R597-R598 121,1 120,5 119,9 119,3 25 0,024 2,446 865 800 3,94 1,980 0,008 1,206 0,004 0,071 0,263 0,998 0,047 1,86 0,999 770 38 V R599-R859 120,5 119,4 116,3 115,9 115,3 35 0,016 2,446 926 1000 3,82 3,001 0,008 0,008 1,206 0,004 0,008 0,253 0,998 0,047 2,87 1,024 799 37 V R599-RN35 119,4 116,3 115,9 115,3 35 0,016 2,446 926 1000 3,82 3,001 0,008 0,015 0,004 0,008 0,015 0,004 0,008 0,015 0,004 0,008 0,015 0,004 0,008 0,004 0,008 0,004 0,008 0,004 0,008 0,004 0,008 0,004 0,008 0,004 0,008 0,004 0,008 0,004 0,008 0,009 0,004 0,008 0,009 0	İ	R594R595	123,9	122,3	122,7	121,1	30	0,052	2,446	746	700	5,36	2,062	0,008	1,190	0,004	0,797	0,253	1,005	0,047	4,27	1,354	704	33	٧
R597-R598 121,1 120,5 119,9 119,3 25 0,024 2,446 866 800 3,94 1,980 0,008 1,239 0,004 0,471 0,254 0,963 0,047 1,86 0,999 770 38 V R598-R599 120,5 119,4 116,3 115,9 115,3 35 0,016 2,446 826 1000 3,82 3,001 0,008 0,817 0,003 1,105 0,245 0,683 0,043 4,22 0,934 683 433 V R742-R743 145,4 141,5 141,8 143,8 25 0,118 0,053 218 300 1,78 0,126 8.04 0,431 0,006 0,951 0,269 0,458 0,053 1,69 0,479 137 16 V R743-R744 145 141,8 141,6 141,6 30 0,032 0,134 275 300 2,39 0,169 0,002 0,801 0,012 1,103 0,304 0,672 0,667 2,64 0,727 202 20 V R743-R744 142,8 141,8 141,6 140,6 30 0,032 0,134 275 300 2,45 0,133 0,101 0,008 0,015 1,121 0,322 0,661 0,067 2,64 0,727 202 20 V R743-R747 141,8 140,5 138,2 139,3 35 0,039 0,401 366 400 4,03 0,507 0,066 0,033 0,012 1,103 0,304 0,672 0,667 0,667 0,667 0,469 0,739 198 20 V R743-R749 140,5 138,2 139,3 137 36,8 0,662 0,401 366 400 4,03 0,507 0,066 0,591 0,009 0,015 0,249 0,648 0,557 0,059 3,68 0,995 278 30 V R745-R750 136,5 135,7 135,3 134,5 36 0,022 0,401 444 500 2,88 0,549 0,066 0,591 0,009 0,015 0,284 0,557 0,059 3,68 0,995 278 30 V R753-R757 134,7 134,5 133,8 133, 35 0,006 0,588 660 700 1,79 0,688 0,009 0,015 1,103 0,304 0,677 0,068 2,84 0,575 0,059 3,68 0,995 278 30 V R753-R757 134,7 134,5 133,8 133, 35,8 0,001 0,588 660 700 1,79 0,068 0,009 0,015 0,009 0,015 0,009 0,015 0,009 0,015 0,009 0,015 0,009 0,015 0,009 0,015 0,009 0,015 0,009 0,015 0,009 0,015 0,009 0,015 0,009 0,015 0,009 0,015 0,009 0,015 0,009 0,015 0,009 0,015 0,009 0,015 0,009 0,015 0,009 0,015	ļ	R595R596	122,3	121,7	121,1	120,5	30	0,023	2,446	871	900	4,20	2,671	0,008	0,919	0,003	1,117	0,247	0,765	0,044	4,69	1,036	689	40	V
R597-R598 121,1 120,5 119,9 119,3 25 0,024 2,446 866 800 3,94 1,980 0,008 1,239 0,004 0,471 0,254 0,963 0,047 1,86 0,999 770 38 V R598-R599 120,5 119,4 116,3 115,9 115,3 35 0,016 2,446 826 1000 3,82 3,001 0,008 0,817 0,003 1,105 0,245 0,683 0,043 4,22 0,934 683 433 V R742-R743 145,4 141,5 141,8 143,8 25 0,118 0,053 218 300 1,78 0,126 8.04 0,431 0,006 0,951 0,269 0,458 0,053 1,69 0,479 137 16 V R743-R744 145 141,8 141,6 141,6 30 0,032 0,134 275 300 2,39 0,169 0,002 0,801 0,012 1,103 0,304 0,672 0,667 2,64 0,727 202 20 V R743-R744 142,8 141,8 141,6 140,6 30 0,032 0,134 275 300 2,45 0,133 0,101 0,008 0,015 1,121 0,322 0,661 0,067 2,64 0,727 202 20 V R743-R747 141,8 140,5 138,2 139,3 35 0,039 0,401 366 400 4,03 0,507 0,066 0,033 0,012 1,103 0,304 0,672 0,667 0,667 0,667 0,469 0,739 198 20 V R743-R749 140,5 138,2 139,3 137 36,8 0,662 0,401 366 400 4,03 0,507 0,066 0,591 0,009 0,015 0,249 0,648 0,557 0,059 3,68 0,995 278 30 V R745-R750 136,5 135,7 135,3 134,5 36 0,022 0,401 444 500 2,88 0,549 0,066 0,591 0,009 0,015 0,284 0,557 0,059 3,68 0,995 278 30 V R753-R757 134,7 134,5 133,8 133, 35 0,006 0,588 660 700 1,79 0,688 0,009 0,015 1,103 0,304 0,677 0,068 2,84 0,575 0,059 3,68 0,995 278 30 V R753-R757 134,7 134,5 133,8 133, 35,8 0,001 0,588 660 700 1,79 0,068 0,009 0,015 0,009 0,015 0,009 0,015 0,009 0,015 0,009 0,015 0,009 0,015 0,009 0,015 0,009 0,015 0,009 0,015 0,009 0,015 0,009 0,015 0,009 0,015 0,009 0,015 0,009 0,015 0,009 0,015 0,009 0,015 0,009 0,015 0,009 0,015 0,009 0,015	ļ	R596R597	121,7	121,1	120,5	119,9	30	0,018	2,446	914	1000	3,96	3,110	0,008	0,789	0,003	1,102	0,244	0,664	0,043	4,36	0,966	664	43	V
R599-RN35 119,4 116,3 115,9 115,3 35 0,016 2,446 926 1000 3,82 3,001 0,008 0,817 0,003 1,105 0,245 0,683 0,043 4,22 0,934 683 43 V R742-R743 145,	ļ	R597R598	121,1	120,5	119,9		25	0,024	2,446	866	800	3,94	1,980	0,008	1,239	0,004	0,471	0,254	0,963	0,047		0,999	770	38	V
R742-R743 145,4 145 144,2 143,8 25 0,018 0,053 218 300 1,78 0,126 8E-04 0,431 0,006 0,951 0,269 0,488 0,053 1,69 0,479 137 16 V R743-R744 145 141,8 143,8 140,6 25 0,126 0,053 151 200 3,61 0,113 8E-04 0,478 0,007 0,984 0,274 0,489 0,055 3,55 0,987 98 11 V R745-R746 143,8 142,8 142,6 141,6 30 0,032 0,134 275 300 2,39 0,169 0,002 0,801 0,012 1,103 0,304 0,672 0,067 2,64 0,727 202 20 V R746-R744 142,8 141,8 141,6 140,6 30 0,034 0,134 275 300 2,39 0,169 0,002 0,801 0,012 1,103 0,304 0,672 0,067 2,64 0,727 202 20 V R746-R744 142,8 141,8 140,5 140,6 139,3 35 0,039 0,401 399 400 3,21 0,403 0,006 1,008 0,015 1,121 0,302 0,661 0,067 2,69 0,739 198 20 V R748-R748 140,5 140,6 139,3 35 0,039 0,401 399 400 3,21 0,403 0,006 1,008 0,015 1,121 0,322 0,861 0,075 3,60 1,034 344 30 V R748-R748 140,5 140,6 139,3 35 0,039 0,401 408 500 3,50 0,688 0,006 0,591 0,009 1,051 0,284 0,557 0,059 3,68 0,995 278 30 V R748-R749 138,2 136,9 137 135,7 35 0,035 0,401 408 500 3,50 0,688 0,006 0,591 0,009 1,051 0,284 0,557 0,059 3,68 0,995 278 30 V R749-R750 136,5 135,7 135,3 40 0,011 0,401 511 600 2,18 0,615 0,006 0,661 0,010 1,078 0,291 0,594 0,062 2,34 0,632 356 37 V R751-R752 135,7 135,3 134,5 133,8 39 0,019 0,401 459 500 2,56 0,502 0,006 0,661 0,010 1,078 0,291 0,594 0,062 2,34 0,632 356 37 V R751-R752 135,7 135,3 134,5 133,8 39 0,019 0,401 459 500 2,56 0,502 0,006 0,719 0,010 1,092 0,296 0,624 0,064 2,18 0,642 375 39 V R751-R752 135,7 134,5 133,8 133,5 134,5 133,8 39 0,019 0,401 459 500 2,56 0,502 0,006 0,719 0,010 1,092 0,296 0,624 0,064 2,18 0,642 375 39 V R751-R752 135,7 134,5 134,5 133,8 39 0,019 0,401 459 500 2,56 0,502 0,006 0,009 0,012 1,104 0,304 0,677 0,068 2,82 0,779 339 34 V R751-R752 135,7 134,5 134,5 133,5 133,5 130,006 0,588 660 700 1,79 0,688 0,009 0,012 1,104 0,304 0,677 0,068 2,82 0,779 339 34 V R753-R758 134,5 134,5 134,5 133,8 39 0,019 0,040 1,527 600 2,30 0,666 0,006 0,009 0,004 0,013 1,115 0,313 0,751 0,071 2,60 0,730 451 43 V R753-R758 134,5 134,5 134,5 134,5 134,5 134,5 134,5 134,5 134,5 134,5 134,5 134,5 134,5 134,5 13	ļ	R598R599	120,5	119,4	118,9	118,2	31	0,025	2,446	857	800	4,05	2,034	0,008	1,206	0,004	0,708	0,253	0,998	0,047	2,87	1,024	799	37	V
R742-R743 145,4 145 144,2 143,8 25 0,018 0,053 218 300 1,78 0,126 8E-04 0,431 0,006 0,951 0,269 0,458 0,053 1,69 0,479 137 16 V R743-R744 145 141,8 143,8 140,6 25 0,126 0,053 151 200 3,61 0,113 8E-04 0,478 0,007 0,984 0,274 0,489 0,055 3,55 0,987 98 11 V R745-R746 143,8 142,8 141,8 141,6 30 0,032 0,134 275 300 2,39 0,169 0,002 0,801 0,012 1,103 0,304 0,672 0,067 2,64 0,727 202 20 V R746-R744 142,8 141,8 141,6 140,6 30 0,034 0,134 272 300 2,45 0,173 0,002 0,783 0,011 1,101 0,302 0,661 0,067 2,69 0,739 198 20 V R746-R747 141,8 140,5 140,6 139,3 35 0,039 0,401 399 400 3,21 0,403 0,006 1,008 0,015 1,121 0,322 0,861 0,075 3,60 1,034 344 30 V R748-R748 140,5 138,2 139,3 137 36,8 0,062 0,401 366 400 4,03 0,507 0,006 0,803 0,012 1,103 0,304 0,673 0,067 4,45 1,224 269 27 V R748-R749 138,2 136,9 137 135,7 35 0,035 0,401 408 500 3,50 0,688 0,006 0,591 0,009 1,051 0,284 0,557 0,059 3,68 0,995 278 30 V R749-R750 136,5 135,7 135,3 40 0,011 0,401 511 600 2,18 0,615 0,006 0,661 0,010 1,078 0,291 0,594 0,062 2,34 0,632 356 37 V R750-R751 136,5 135,7 135,3 134,5 36 0,022 0,401 444 500 2,80 0,549 0,006 0,006 0,001 1,008 0,005 0,006 0,005 0,006 0,005 0,006 0,005 0,006 0,005 0,006 0,005 0,006 0,005 0,006 0,005 0,006 0,005 0,006 0,005 0,006 0,005 0,006 0,005 0,006 0,005 0,006 0,006 0,005 0,006 0,006 0,005 0,006 0,006 0,005 0,006 0,006 0,005 0,006 0,006 0,006 0,005 0,006 0,0	ļ	R599-RN35	1		115,9			1	•		1000		3,001	0,008	-	1 -	-	0,245		0,043		0,934	683	43	V
R745-R746	ļ	R742R743	145,4	145	144,2	143,8	25	0,018	0,053	218	300		0,126	8E-04	0,431	0,006	0,951	0,269	0,458	0,053	1,69	0,479	137	16	V
R745-R746	ļ	R743R744	145	141,8	143,8	140,6	25	0,126	0,053	151	200	3,61	0,113	8E-04	0,478	0,007	0,984	0,274	0,489	0,055	3,55	0,987	98	11	V
R744-R747 141,8 140,5 140,6 139,3 35 0,039 0,401 399 400 3,21 0,403 0,006 1,008 0,015 1,121 0,322 0,861 0,075 3,60 1,034 344 30 V R747-R748 140,5 138,2 139,3 137 36,8 0,062 0,401 400 4,03 0,507 0,006 0,803 0,012 1,103 0,304 0,673 0,067 4,45 1,224 269 27 V R748-R749 138,2 136,9 137 135,7 35 0,001 440 500 2,50 0,688 0,006 0,591 0,009 0,057 0,059 3,68 0,995 278 30 V R750-R751 136,5 135,7 135,3 134,5 36 0,022 0,401 444 500 2,80 0,549 0,006 0,741 0,011 1,095 0,298 0,636 0,065 3,66	ļ	R745R746	143,8	142,8	142,6	141,6	30	0,032	0,134	275	300	2,39	0,169	0,002	0,801	0,012	1,103	0,304	0,672	0,067	-	0,727	202	20	V
R744-R747 141,8 140,5 140,6 139,3 35 0,039 0,401 399 400 3,21 0,403 0,006 1,008 0,015 1,121 0,322 0,861 0,075 3,60 1,034 344 30 V R747-R748 140,5 138,2 139,3 137 36,8 0,062 0,401 400 4,03 0,507 0,006 0,803 0,012 1,103 0,304 0,673 0,067 4,45 1,224 269 27 V R748-R749 138,2 136,9 137 135,7 35 0,001 440 500 2,50 0,688 0,006 0,591 0,009 0,057 0,059 3,68 0,995 278 30 V R750-R751 136,5 135,7 135,3 134,5 36 0,022 0,401 444 500 2,80 0,549 0,006 0,741 0,011 1,095 0,298 0,636 0,065 3,66	_	R746R744	142,8	141,8	141,6	140,6	30	0,034	0,134	272	300	2,45	0,173	0,002	0,783	0,011	1,101	0,302	0,661	0,067	2,69	0,739	198	20	V
R748-R749 138,2 136,9 137 135,7 35 0,035 0,401 408 500 3,50 0,688 0,006 0,591 0,009 1,051 0,284 0,557 0,059 3,68 0,995 278 30 V R749-R750 136,9 136,5 135,7 135,3 40 0,011 0,401 511 600 2,18 0,615 0,006 0,661 0,010 1,078 0,291 0,594 0,062 2,34 0,632 356 37 V R750-R751 136,5 135,7 135,3 134,5 36 0,022 0,401 444 500 2,56 0,502 0,006 0,741 0,011 1,095 0,298 0,636 0,065 3,06 0,833 318 32 V R751-R752 135,7 135,3 133,8 133,9 0,019 0,401 527 600 2,00 0,566 0,006 0,719 0,011 0,004 2,18	1	R744R747	141,8	140,5	140,6	139,3	35		0,401	399	400		0,403	0,006	1,008	0,015	1,121	•	0,861	0,075		1,034	344	30	V
R749R750 136,9 136,5 135,7 135,3 40 0,011 0,401 511 600 2,18 0,615 0,006 0,661 0,010 1,078 0,291 0,594 0,062 2,34 0,632 356 37 V R750R751 136,5 135,7 135,3 134,5 36 0,022 0,401 444 500 2,80 0,549 0,006 0,741 0,011 1,095 0,298 0,636 0,065 3,06 0,833 318 32 V R751R752 135,7 135 134,5 133,8 39 0,019 0,401 459 500 2,56 0,502 0,006 0,809 0,012 1,104 0,304 0,677 0,068 2,82 0,779 339 34 V R752R753 135 134,7 133,8 133,5 35 0,009 0,401 527 600 2,00 0,566 0,006 0,719 0,010 1,092 0,296 0,624 0,064 2,18 0,642 375 39 V R753R757 134,7 134,5 133,5 133,3 35 0,006 0,588 660 700 1,79 0,688 0,009 0,866 0,013 1,111 0,310 0,719 0,070 1,99 0,613 504 49 V R758R741 134,2 133,8 133 132,6 35 0,012 0,588 574 600 2,33 0,660 0,009 0,904 0,013 1,115 0,313 0,751 0,071 2,60 0,730 451 43 V R731R732 145,4 145 144,2 143,8 35 0,011 0,04 215 300 1,38 0,097 6E-04 0,417 0,006 0,942 0,268 0,449 0,053 1,30 0,369 135 16 V R732R733 145 143,8 142,8 143,8 142,6 35 0,035 0,04 173 300 2,48 0,075 0,495 0,495 0,209 0,003 0,897 0,209 0,003 0,807 0,247 0,315 0,004 2,25 0,619 99 14 V R731R734 143,8 142,3 142,6 141,1 139,3 36 0,049 0,04 166 300 2,76 0,195 6E-04 0,209 0,003 0,794 0,012 0,004 2,36 0,249 0,042 2,36 0,728 92 13 V R731R738 150,1 143 148,9 141,8 36 0,148 0,04 124 300 5,94 0,420 6E-04 0,097 0,001 0,654 0,236 0,219 0,040 3,88 1,402 666 12 V	_	R747R748	140,5	138,2	139,3	137	36,8	0,062	0,401	366	400	4,03	0,507	0,006	0,803	0,012	1,103	0,304	0,673	0,067	4,45	1,224	269	27	V
R750-R751 136,5 135,7 135,3 134,5 36 0,022 0,401 444 500 2,80 0,549 0,006 0,741 0,011 1,095 0,298 0,636 0,065 3,06 0,833 318 32 V R751-R752 135,7 135 134,5 133,8 39 0,019 0,401 459 500 2,56 0,502 0,006 0,809 0,012 1,104 0,304 0,677 0,068 2,82 0,779 339 34 V R752-R753 135 134,7 133,8 133,5 35 0,009 0,401 527 600 2,00 0,566 0,006 0,719 0,010 1,092 0,296 0,624 0,064 2,18 0,642 375 39 V R753-R757 134,7 134,5 133,5 133,3 35 0,006 0,588 660 700 1,79 0,688 0,009 0,866 0,013 1,111 0,310 0,719 0,070 1,99 0,613 504 49 V R755-R758 134,5 134,2 133,3 133 35,8 0,007 0,588 638 700 1,95 0,751 0,009 0,794 0,012 1,102 0,303 0,668 0,067 2,15 0,621 467 47 V R758-R741 134,2 133,8 133 132,6 35 0,012 0,588 574 600 2,33 0,660 0,009 0,904 0,013 1,115 0,313 0,751 0,071 2,60 0,730 451 43 V R731-R732 145,4 145 144,2 143,8 35 0,011 0,04 215 300 1,38 0,097 6E-04 0,417 0,006 0,942 0,268 0,449 0,053 1,30 0,369 135 16 V R732-R733 145 143,8 142,6 35 0,035 0,044 166 300 2,76 0,195 6E-04 0,209 0,003 0,810 0,245 0,305 0,044 2,23 0,682 95 13 V R734-R735 142,3 140,5 141,1 139,3 36 0,049 0,04 161 300 2,96 0,209 6E-04 0,112 0,002 0,689 0,238 0,237 0,040 3,53 1,217 71 12 V R737-R738 150,1 143 148,9 141,8 36 0,198 0,04 124 300 5,94 0,420 6E-04 0,097 0,001 0,654 0,236 0,219 0,040 3,88 1,402 66 12 V	ļ	R748R749	138,2	136,9	137	135,7	35	0,035	0,401	408	500	3,50	0,688	0,006	0,591	0,009	1,051	0,284	0,557	0,059	3,68	0,995	278	30	V
R751R752 135,7 135 134,5 133,8 39 0,019 0,401 459 500 2,56 0,502 0,006 0,809 0,012 1,104 0,304 0,677 0,068 2,82 0,779 339 34 V R752R753 135 134,7 133,8 133,5 35 0,009 0,401 527 600 2,00 0,566 0,006 0,719 0,010 1,092 0,296 0,624 0,064 2,18 0,642 375 39 V R753R757 134,7 134,5 133,5 133,3 35 0,006 0,588 660 700 1,79 0,688 0,009 0,866 0,013 1,111 0,310 0,719 0,070 1,99 0,613 504 49 V R757R758 134,5 134,2 133,8 133 132,6 35 0,012 0,588 638 700 1,95 0,751 0,009 0,794 0,012 1,102 0,303 0,668 0,067 2,15 0,621 467 47 V R758R741 134,2 133,8 133 132,6 35 0,012 0,588 574 600 2,33 0,660 0,009 0,904 0,013 1,115 0,313 0,751 0,071 2,60 0,730 451 43 V R731R732 145,4 145,4 145,4 144,2 143,8 35 0,011 0,04 215 300 1,38 0,097 6E-04 0,417 0,006 0,942 0,268 0,449 0,053 1,30 0,369 135 16 V R732R733 145 143,8 142,6 35 0,035 0,044 173 300 2,48 0,175 6E-04 0,232 0,003 0,827 0,250 0,330 0,045 2,05 0,619 99 14 V R734R735 142,3 140,5 141,1 139,3 36 0,049 0,04 161 300 2,96 0,209 6E-04 0,194 0,003 0,799 0,246 0,366 0,044 2,36 0,728 92 13 V R737R738 150,1 143 148,9 141,8 36 0,198 0,04 124 300 5,94 0,420 6E-04 0,097 0,001 0,654 0,236 0,219 0,040 3,88 1,402 66 12 V	ļ	R749R750	136,9	136,5	135,7	135,3	40	0,011	0,401	511	600	2,18	0,615	0,006	0,661	0,010	1,078	0,291	0,594	0,062	2,34	0,632	356	37	V
R752-R753 135 134,7 133,8 133,5 35 0,009 0,401 527 600 2,00 0,566 0,006 0,719 0,010 1,092 0,296 0,624 0,064 2,18 0,642 375 39 V R753-R757 134,7 134,5 133,3 133,3 35 0,006 0,588 660 700 1,79 0,688 0,009 0,866 0,013 1,111 0,310 0,719 0,071 1,99 0,613 504 49 V R757-R758 134,5 134,2 133,3 133 35,8 0,007 0,588 638 700 1,95 0,751 0,009 0,794 0,012 1,102 0,303 0,668 0,067 2,15 0,621 467 47 V R758-R758 134,5 134,8 133,3 133,6 35 0,012 0,588 574 600 2,33 0,660 0,009 0,904 0,013 1,115	ļ	R750R751	136,5	135,7	135,3	134,5	36	0,022	0,401	444	500	2,80	0,549	0,006	0,741	0,011	1,095	0,298	0,636	0,065	3,06	0,833	318	32	V
R752-R753 135 134,7 133,8 133,5 35 0,009 0,401 527 600 2,00 0,566 0,006 0,719 0,010 1,092 0,296 0,624 0,064 2,18 0,642 375 39 V R753-R757 134,7 134,5 133,3 133,3 35 0,006 0,588 660 700 1,79 0,688 0,009 0,866 0,013 1,111 0,310 0,719 0,071 1,99 0,613 504 49 V R757-R758 134,5 134,2 133,3 133 35,8 0,007 0,588 638 700 1,95 0,751 0,009 0,794 0,012 1,102 0,303 0,668 0,067 2,15 0,621 467 47 V R758-R758 134,5 134,8 133,3 133,6 35 0,012 0,588 574 600 2,33 0,660 0,009 0,904 0,013 1,115	ļ	R751R752	135,7	135	134,5	133,8	39	0,019	0,401	459	500	2,56	0,502	0,006	0,809	0,012	1,104	0,304	0,677	0,068	2,82	0,779	339	34	V
R753R757 134,7 134,5 133,5 133,3 35 0,006 0,588 660 700 1,79 0,688 0,009 0,866 0,013 1,111 0,310 0,719 0,070 1,99 0,613 504 49 V R757R758 134,5 134,2 133,3 133 35,8 0,007 0,588 638 700 1,95 0,751 0,009 0,794 0,012 1,102 0,303 0,668 0,067 2,15 0,621 467 47 V R758R741 134,2 133,8 133 132,6 35 0,012 0,588 574 600 2,33 0,660 0,009 0,904 0,013 1,115 0,313 0,751 0,071 2,60 0,730 451 43 V R731R732 145,4 145 144,2 143,8 35 0,011 0,04 215 300 1,38 0,097 6E-04 0,417 0,068 0,449	ļ	R752R753	135	134,7	133,8		35	0,009	0,401	527	600	2,00	0,566	0,006	0,719	0,010	1,092	0,296	0,624	0,064	2,18	0,642	375	39	V
R757R758 134,5 134,2 133,3 133 35,8 0,007 0,588 638 700 1,95 0,751 0,009 0,794 0,012 1,102 0,303 0,668 0,067 2,15 0,621 467 47 V R758R741 134,2 133,8 133 132,6 35 0,012 0,588 574 600 2,33 0,660 0,009 0,904 0,013 1,115 0,313 0,751 0,071 2,60 0,730 451 43 V R731R732 145,4 145 144,2 143,8 35 0,011 0,04 215 300 1,38 0,097 6E-04 0,417 0,006 0,942 0,268 0,449 0,053 1,30 0,369 135 16 V R732R733 145 143,8 142,6 35 0,035 0,04 173 300 2,48 0,175 6E-04 0,232 0,003 0,827 0,250	ļ	R753R757	134,7	134,5	133,5	133,3	35	0,006	0,588	660	700	1,79	0,688	0,009	0,866	0,013	1,111	0,310	0,719	0,070	1,99	0,613	504	49	V
R731R732 145,4 145 144,2 143,8 35 0,011 0,04 215 300 1,38 0,097 6E-04 0,417 0,006 0,942 0,268 0,449 0,053 1,30 0,369 135 16 V R732R733 145 143,8 142,3 142,6 141,1 35 0,043 0,04 166 300 2,76 0,195 6E-04 0,232 0,003 0,827 0,250 0,330 0,045 2,05 0,619 99 14 V R734R735 142,3 140,5 141,1 139,3 36 0,049 0,04 161 300 2,96 0,209 6E-04 0,194 0,003 0,799 0,246 0,306 0,044 2,36 0,728 92 13 V R735R736 140,5 135,2 139,3 134 36 0,147 0,04 131 300 5,12 0,362 6E-04 0,112 0,002 0,689 0,238 0,237 0,040 3,53 1,217 71 12 V R737R738 150,1 143 148,9 141,8 36 0,198 0,04 124 300 5,94 0,420 6E-04 0,097 0,001 0,654 0,236 0,219 0,040 3,88 1,402 66 12 V	ļ	R757R758	134,5	134,2	•			1	•	638	700		0,751	0,009	-	1 -	1,102	0,303		0,067			467	47	V
R732R733 145 143,8 143,8 142,6 35 0,035 0,04 173 300 2,48 0,175 6E-04 0,232 0,003 0,827 0,250 0,330 0,045 2,05 0,619 99 14 V R733R734 143,8 142,3 142,6 141,1 35 0,043 0,04 166 300 2,76 0,195 6E-04 0,209 0,003 0,810 0,247 0,315 0,044 2,23 0,682 95 13 V R734R735 142,3 140,5 141,1 139,3 36 0,049 0,04 161 300 2,96 0,209 6E-04 0,194 0,003 0,799 0,246 0,306 0,044 2,36 0,728 92 13 V R735R736 140,5 135,2 139,3 134 36 0,147 0,04 131 300 5,12 0,362 6E-04 0,112 0,002 0,689 0,238 0,237 0,040 3,53 1,217 71 12 V <t< td=""><th>ļ</th><td>R758R741</td><td>134,2</td><td>133,8</td><td>133</td><td>132,6</td><td>35</td><td>0,012</td><td>0,588</td><td>574</td><td>600</td><td>2,33</td><td>0,660</td><td>0,009</td><td>0,904</td><td>0,013</td><td>1,115</td><td>0,313</td><td>0,751</td><td>0,071</td><td>2,60</td><td>0,730</td><td>451</td><td>43</td><td>V</td></t<>	ļ	R758R741	134,2	133,8	133	132,6	35	0,012	0,588	574	600	2,33	0,660	0,009	0,904	0,013	1,115	0,313	0,751	0,071	2,60	0,730	451	43	V
R733R734 143,8 142,3 142,6 141,1 35 0,043 0,04 166 300 2,76 0,195 6E-04 0,209 0,003 0,810 0,247 0,315 0,044 2,23 0,682 95 13 V R734R735 142,3 140,5 141,1 139,3 36 0,049 0,04 161 300 2,96 0,209 6E-04 0,194 0,003 0,799 0,246 0,306 0,044 2,36 0,728 92 13 V R735R736 140,5 135,2 139,3 134 36 0,147 0,04 131 300 5,12 0,362 6E-04 0,112 0,002 0,689 0,238 0,237 0,040 3,53 1,217 71 12 V R737R738 150,1 143 148,9 141,8 36 0,198 0,04 124 300 5,94 0,420 6E-04 0,097 0,001 0,654 0,236 0,219 0,040 3,88 1,402 66 12 V	ļ	R731R732	145,4	145	144,2	143,8	35	0,011	0,04	215	300	1,38	0,097	6E-04	0,417	0,006	0,942	0,268	0,449	0,053	1,30	0,369	135	16	V
R733R734 143,8 142,3 142,6 141,1 35 0,043 0,04 166 300 2,76 0,195 6E-04 0,209 0,003 0,810 0,247 0,315 0,044 2,23 0,682 95 13 V R734R735 142,3 140,5 141,1 139,3 36 0,049 0,04 161 300 2,96 0,209 6E-04 0,194 0,003 0,799 0,246 0,306 0,044 2,36 0,728 92 13 V R735R736 140,5 135,2 139,3 134 36 0,147 0,04 131 300 5,12 0,362 6E-04 0,112 0,002 0,689 0,238 0,237 0,040 3,53 1,217 71 12 V R737R738 150,1 143 148,9 141,8 36 0,198 0,04 124 300 5,94 0,420 6E-04 0,097 0,001 0,654 0,236 0,219 0,040 3,88 1,402 66 12 V	ļ		-																		,		99		V
R734R735 142,3 140,5 141,1 139,3 36 0,049 0,04 161 300 2,96 0,209 6E-04 0,194 0,003 0,799 0,246 0,306 0,044 2,36 0,728 92 13 V R735R736 140,5 135,2 139,3 134 36 0,147 0,04 131 300 5,12 0,362 6E-04 0,112 0,002 0,689 0,238 0,237 0,040 3,53 1,217 71 12 V R737R738 150,1 143 148,9 141,8 36 0,198 0,04 124 300 5,94 0,420 6E-04 0,097 0,001 0,654 0,236 0,219 0,040 3,88 1,402 66 12 V	ļ	R733R734	143,8	142,3	142,6	141,1	35		0,04	166	300		0,195	6E-04	0,209	0,003		0,247		0,044		0,682	95	13	V
R735R736 140,5 135,2 139,3 134 36 0,147 0,04 131 300 5,12 0,362 6E-04 0,112 0,002 0,689 0,238 0,237 0,040 3,53 1,217 71 12 V R737R738 150,1 143 148,9 141,8 36 0,198 0,04 124 300 5,94 0,420 6E-04 0,097 0,001 0,654 0,236 0,219 0,040 3,88 1,402 66 12 V	ļ	R734R735	142,3	140,5	141,1	139,3	36		0,04	161	300		0,209	6E-04	-	0,003	-	0,246		0,044	-	0,728	92	13	V
	ļ	R735R736	140,5	135,2	139,3	134	36	0,147	0,04	131	300		0,362	6E-04	0,112	0,002	0,689	0,238	0,237	0,040		1,217	71	12	V
	ļ	R737R738	150,1	143	148,9	141,8	36	0,198	0,04	124	300	5,94	0,420	6E-04	0,097	0,001	0,654	0,236	0,219	0,040	3,88	1,402	66	12	V
141,0 1,01 1,01 1,02 1,04 1,05 1,04 1,05 1,07	ļ	R738R739	143	139,3	141,8	138,1	36	0,101	0,04	141	300	4,24	0,299	6E-04	0,136	0,002	0,731	0,240	0,260	0,041	3,10	1,017	78	12	V
R739R740 139,3 137,9 138,1 136,7 36 0,041 0,04 167 300 2,69 0,190 6E-04 0,213 0,003 0,814 0,248 0,318 0,045 2,19 0,668 96 13 V	ļ	R739R740	139,3	137,9	138,1					167	300		0,190									0,668	96	13	V
R740R736 137,9 135,2 136,7 134 36 0,073 0,04 150 300 3,61 0,255 6E-04 0,159 0,002 0,763 0,242 0,280 0,042 2,76 0,876 84 13 V	ļ		/-	- /-		/										-				-,		-,			V
R736R741 135,2 133,8 134 132,6 36 0,039 0,08 218 300 2,65 0,187 0,001 0,434 0,006 0,954 0,269 0,460 0,053 2,53 0,713 138 16 V	ļ	R736R741	135,2		134	132,6				218	300		0,187	0,001	•			0,269	•		•	0,713	138	16	V
R741R759 133,8 133,3 132,6 132,1 30 0,016 1,602 794 800 3,25 1,635 0,024 0,994 0,014 1,122 0,321 0,846 0,074 3,65 1,044 677 59 V	ļ	R741R759	133,8		132,6					794	800												677		v
R759R760 133,3 130,3 130,4 129,3 35 0,032 1,602 696 700 4,22 1,625 0,024 1,001 0,015 1,122 0,322 0,853 0,075 4,74 1,358 597 52 V	ļ		-					1	•						-	1 -	-	•							V
R760R761 130,3 128 128,2 127 35 0,034 1,602 692 700 4,30 1,655 0,024 0,983 0,014 1,123 0,320 0,832 0,074 4,83 1,376 583 52 V	ļ									692	700												583		V
R761R762 128 127 126,8 125,8 30 0,035 1,602 686 700 4,40 1,694 0,024 0,960 0,014 1,122 0,318 0,808 0,073 4,94 1,399 565 51 V	ļ		,											•							,				V
R762R763 127 126,8 125,8 125,6 30 0,006 1,602 961 1000 2,27 1,781 0,024 0,913 0,013 1,117 0,314 0,760 0,071 2,53 0,712 760 71 V	ļ		127	126,8							1000						-				,				V
R763R764 126,8 126,5 125,6 125,3 30 0,011 1,602 854 900 2,90 1,842 0,024 0,883 0,013 1,113 0,311 0,733 0,070 3,22 0,901 659 63 V	ļ	R763R764	126,8	126,5	125,6	125,3	30	0,011	1,602	854	900		1,842	0,024	0,883	0,013	1,113	0,311	0,733	0,070		0,901	659	63	V

Suite de Tableau IV-1

coll	Tron	Cam	Cav	Cam	Cr,av	Dist	1		Dcal	Dnor		Qps	Qeu		Rq		Rv		Rh	V	Vmin	Н	Hmin	Auto
		(m)	(m)	(m)	(m)	(m)	(m/m)	Qt	(mm)	(mm)	Vps	(m3/s)	(m3/s)	Rq	min	Rv	min	Rh	min	(m/s)	(m/s)	(mm)	(mm)	curage
	R764R765	126,5	126,2	125,3	125	30	0,009	1,602	889	900	2,6	1,655	0,024	0,982	0,014	1,123	0,32	0,832	0,074	2 ,92	0,832	749	66	V
	R765R766	126,2	126	125	124,8	30	0,006	1,602	954	1000	2,32	1,819	0,024	0,894	0,013	1,114	0,312	0,742	0,071	2,58	0,723	742	71	V
	R766R767	126	125,8	124,8	124,6	30	0,008	1,602	904	1000	2,67	2,098	0,024	0,775	0,011	1,1	0,301	0,656	0,066	2,94	0,805	656	66	V
	R767R768	125,8	125,3	124,6	124,1	30	0,016	1,602	799	800	3,2	1,607	0,024	1,012	0,015	1,12	0,323	0,866	0,075	3,58	1,031	693	60	V
	R768R769	125,3	123	124,1	121,8	30	0,077	1,602	593	600	5,86	1,656	0,024	0,982	0,014	1,123	0,32	0,832	0,074	6,58	1,873	499	44	V
	R769R770	123	122	121,8	120,8	30	0,033	1,602	695	700	4,25	1,635	0,024	0,995	0,014	1,122	0,321	0,846	0,074	4,77	1,364	592	52	V
	R770R771	122	121,7	120,8	120,5	30	0,01	1,602	874	900	2,73	1,735	0,024	0,937	0,014	1,12	0,316	0,784	0,072	3,05	0,862	705	65	V
	R771R772	121,7	120,7	120,5	119,5	30	0,035	1,602	685	700	4,42	1,7	0,024	0,956	0,014	1,121	0,318	0,804	0,073	4,95	1,403	563	51	V
	R772R773	120,7	117,1	117,1	116,1	35	0,028	1,602	716	700	3,91	1,506	0,024	1,08	0,016	1,085	0,328	0,943	0,077	4,25	1,285	660	54	V
	R773R774	117,1	115,9	115,9	114,9	30	0,035	1,602	688	700	4,36	1,678	0,024	0,969	0,014	1,122	0,319	0,818	0,073	4,89	1,389	572	51	V
	R774R775	115,9	114	114,7	112,8	25,2	0,074	1,602	597	600	5,76	1,627	0,024	0,999	0,015	1,122	0,321	0,851	0,074	6,46	1,85	511	45	V
	R775R776	114	113,9	112,8	112,7	25	0,005	1,602	999	1000	2,04	1,605	0,024	1,013	0,015	1,12	0,323	0,868	0,075	2,29	0,659	868	75	V
	R776R777	113,9	113,7	112,7	112,5	40	0,004	1,602	1039	1100	1,96	1,864	0,024	0,872	0,013	1,111	0,31	0,724	0,07	2,18	0,608	796	77	V
	R777R778	113,7	113,6	112,5	112,4	25	0,004	1,602	1018	1100	2,07	1,969	0,024	0,826	0,012	1,106	0,306	0,689	0,068	2,29	0,634	757	75	V
	R779R780	127,7	126,1	126,5	124,9	30	0,051	0,534	423	500	4,25	0,834	0,008	0,65	0,009	1,074	0,29	0,588	0,062	4,56	1,23	294	31	V
	R780R781	126,1	124,2	123,6	123	30	0,022	0,534	494	500	2,8	0,55	0,008	0,985	0,014	1,123	0,32	0,835	0,074	3,15	0,897	418	37	V
*	R781R782	124,2	121,7	122,7	120,5	30	0,071	0,534	398	400	4,31	0,542	0,008	1	0,015	1,122	0,321	0,852	0,075	4,84	1,387	341	30	V
	R782R783	121,7	120,6	120,5	119,4	30	0,038	0,534	448	500	3,65	0,717	0,008	0,756	0,011	1,097	0,3	0,645	0,066	4,01	1,093	322	33	V
	R783R784	120,6	118,3	119,4	117,1	30	0,075	0,534	394	400	4,44	0,558	0,008	0,972	0,014	1,122	0,319	0,821	0,074	4,98	1,415	328	29	V
	R784R785	118,3	117,5	117,1	116,3	30	0,026	0,534	479	500	3,05	0,599	0,008	0,905	0,013	1,116	0,313	0,753	0,071	3,4	0,955	376	36	V
	R785R786	117,5	116,2	116,3	115	30	0,044	0,534	435	500	3,94	0,773	0,008	0,701	0,01	1,088	0,294	0,615	0,064	4,28	1,16	307	32	V
	R786R787	116,2	115	115	113,8	30	0,041	0,534	441	500	3,81	0,748	0,008	0,725	0,011	1,093	0,297	0,628	0,064	4,16	1,13	314	32	V
	R787R788	115	114,5	113,8	113,3	30	0,015	0,534	534	600	2,58	0,73	0,008	0,743	0,011	1,096	0,298	0,637	0,065	2,83	0,77	382	39	V
	R788R789	114,5	114,3	113,3	113,1	30	0,008	0,534	603	700	2,07	0,795	0,008	0,682	0,01	1,083	0,293	0,605	0,063	2,24	0,605	423	44	V
	R789R790	114,3	113,9	113,1	112,7	30	0,013	0,534	550	600	2,39	0,675	0,008	0,803	0,012	1,103	0,304	0,673	0,067	2,63	0,725	404	40	V
	R790R791	113,9	113,6	112,7	112,4	30	0,01	0,534	575	600	2,12	0,599	0,008	0,905	0,013	1,116	0,313	0,753	0,071	2,36	0,663	452	43	V
	R791R778	113,6	113,4	112,4	112,2	41,5	0,005	0,534	658	700	1,63	0,629	0,032	0,9	0,05	1,115	0,502	0,748	0,15	1,82	0,82	523	105	V
	R778R792	113,4	113,1	112,2	111,9	43,5	0,008	2,137	1011	1100	2,81	2,673	0,032	0,811	0,012	1,104	0,305	0,679	0,068	3,1	0,856	747	74	V
	R792R793	117,4	117,2	116,2	116	20	0,008	2,137	1005	1100	2,86	2,72	0,032	0,797	0,012	1,102	0,303	0,669	0,067	3,16	0,868	736	74	V
	R793R794	117,2	116,9	116	115,7	23	0,013	2,137	921	900	3,16	2,009	0,032	1,079	0,016	1,085	0,328	0,942	0,077	3,43	1,037	848	70	V
	R793RN32	116,3	116,1	115,1	114,9	38	0,006	2,137	1053	1100	2,53	2,402	0,032	0,902	0,013	1,115	0,313	0,75	0,071	2,82	0,791	825	78	V

Tableau IV2 :Calcul Hydraulique pour le SB 2

coll	Tron	Cam	Cav	Cam	Cr,av	Dis	I	Qt	Dcal	Dnor	Vps	Qps	Qeu	Rq	Rq	Rv	Rv	Rh	Rh	V	Vmin	Н	Hmin	Auto
		(m)	(m)	(m)	(m)	(m)	(m/m)		(mm)	(mm)		(m3/s)	(m3/s)		min		min		min	(m/s)	(m/s)	(mm)	(mm)	curage
	R708R725	126,4	126	125,2	124,8	38	0,01	3,459	1158	1200	3,37	3,806	0,036	0,919	0,01	1,117	0,29	0,765	0,062	3,76	0,977	918	74	V
	R725R726	126,1	125,9	124,9	124,7	30	0,009	3,459	1188	1200	3,14	3,555	0,036	0,983	0,01	1,123	0,294	0,833	0,064	3,53	0,926	1000	76	V
2	R726-RS18	125,9	125,6	124,7	124,4	25,7	0,008	3,459	1197	1200	3,08	3,483	0,036	1,004	0,01	1,121	0,296	0,856	0,064	3,45	0,911	1028	77	V
	R728R729	125,7	125,5	124,5	124,3	30	0,01	3,459	1168	1200	3,29	3,719	0,036	0,94	0,01	1,12	0,292	0,787	0,062	3,68	0,959	944	75	V
	R729R730	125,4	125,2	124,2	124	30	0,009	3,459	1188	1200	3,14	3,552	0,036	0,984	0,01	1,123	0,295	0,834	0,064	3,53	0,925	1001	76	V
	R730n18	125,2	124,7	123,8	123,5	24,3	0,013	3,459	1106	1200	3,8	4,298	0,036	0,813	0,008	1,104	0,283	0,68	0,059	4,2	1,076	816	71	V

Tableau IV-3 :Calcul Hydraulique pour le SB 3

coll	Tron	Cam	Cav	Cam	Cr,av	Dist	I		Dcal	Dnor		Qps	Qeu		Rq		Rv		Rh	V	Vmin	Н	Hmin	Auto
		(m)	(m)	(m)	(m)	(m)	(m/m)	Qt	(mm)	(mm)	Vps	(m3/s)	(m3/s)	Rq	min	Rv	min	Rh	min	(m/s)	(m/s)	(mm)	(mm)	curage
	R677R678	148,58	148,29	147,38	147,09	30	0,01	0,44895	541	600	2,09	0,59	0,0051	0,768	0,009	1,09	0,28	0,652	0,06	2,3	0,60	391	36	V
	R678R679	148,29	148,08	147,09	146,88	30	0,007	0,44895	574	600	1,79	0,51	0,0051	0,897	0,01	1,11	0,29	0,745	0,063	2	0,62	447	38	V
	R679R680	148,08	147,55	146,88	146,35	30	0,017	0,44895	485	500	2,48	0,49	0,0051	0,934	0,011	1,11	0,29	0,781	0,064	2,77	0,74	390	32	V
	R680R681	147,55	146,22	146,35	145,02	30	0,045	0,44895	407	500	3,96	0,78	0,0051	0,585	0,007	1,04	0,27	0,553	0,054	4,14	1,07	276	27	V
	R681R682	146,22	145,54	144,72	144,34	30	0,013	0,44895	516	500	2,1	0,41	0,0051	1,1	0,012	1,06	0,3	0,963	0,069	2,23	0,65	482	35	V
	R682R683	145,54	141,33	142,54	140,13	40	0,06	0,44895	385	400	3,96	0,50	0,0051	0,911	0,01	1,11	0,29	0,758	0,064	4,43	1,17	303	26	V
13	R683R684	141,33	135,24	139,53	134,04	35	0,157	0,44895	321	300	5,28	0,37	0,0051	1,216	0,014	0,64	0,31	0,991	0,073	3,41	1,67	297	22	V
	R684R685	135,24	132,82	133,14	131,62	30	0,051	0,44895	397	400	3,64	0,46	0,0051	0,993	0,011	1,12	0,3	0,844	0,066	4,08	1,10	338	26	V
	R685R686	132,82	131,39	131,62	130,19	30	0,048	0,44895	402	500	4,09	0,80	0,0051	0,565	0,006	1,03	0,27	0,542	0,054	4,25	1,10	271	27	V
	R686R687	131,39	130,82	130,19	129,62	23,5	0,024	0,44895	456	500	2,93	0,58	0,0051	0,79	0,009	1,1	0,28	0,665	0,06	3,23	0,84	332	30	V
	R687R688	130,82	128,73	129,32	127,53	25	0,072	0,44895	372	400	4,33	0,54	0,0051	0,835	0,009	1,1	0,29	0,695	0,062	4,79	1,25	278	25	V
	R688R691	128,73	127,60	127,53	126,40	35	0,032	0,44895	432	500	3,37	0,66	0,0051	0,687	0,008	1,08	0,27	0,607	0,057	3,65	0,94	304	29	V
	R691R692	127,70	126,98	126,50	125,78	33,5	0,022	0,44895	467	500	2,75	0,54	0,0051	0,841	0,009	1,1	0,29	0,699	0,062	3,05	0,80	350	31	V
	R692RN14	126,98	126,08	125,78	124,88	40	0,022	0,44895	463	500	2,81	0,55	0,0051	0,823	0,009	1,1	0,28	0,687	0,061	3,11	0,81	343	31	V
	R672R673	137,83	133,81	134,83	132,61	30	0,074	0,35916	340	400	4,39	0,55	0,004	0,658	0,007	1,07	0,27	0,592	0,056	4,73	1,22	237	23	V
	R673R674	133,81	129,98	130,81	128,78	30	0,068	0,35916	346	400	4,21	0,53	0,004	0,687	0,008	1,08	0,27	0,608	0,057	4,56	1,17	243	23	V
	R674R675	129,98	129,51	128,78	128,31	30	0,016	0,35916	455	500	2,35	0,46	0,004	0,788	0,009	1,1	0,28	0,664	0,06	2,59	0,67	332	30	V
	R675R675a	129,51	129,27	128,31	128,07	15	0,016	0,35916	454	500	2,37	0,47	0,004	0,78	0,009	1,1	0,28	0,659	0,06	2,61	0,68	329	30	V
	R675a-RN13	129,27	128,03	128,07	126,83	15	0,082	0,35916	334	400	4,64	0,58	0,004	0,623	0,007	1,06	0,27	0,574	0,055	4,94	1,27	230	22	V
	R668R669	131,91	131,82	130,71	130,62	20	0,005	0,26937	513	600	1,45	0,41	0,0031	0,666	0,008	1,07	0,27	0,597	0,057	1,56	0,40	358	34	V
	R669R670	131,82	131,58	130,62	130,38	20	0,012	0,26937	430	500	2,06	0,40	0,0031	0,675	0,008	1,08	0,27	0,601	0,057	2,22	0,57	301	28	V
	R670R671	131,58	130,83	130,38	129,63	32,2	0,023	0,26937	379	400	2,47	0,31	0,0031	0,879	0,01	1,11	0,29	0,729	0,063	2,74	0,72	292	25	V
	R671RN12	130,83	130,36	129,63	129,16	47,08	0,01	0,26937	445	700	2,34	0,90	0,0031	0,303	0,003	0,86	0,25	0,375	0,045	2,03	0,59	262	32	V

Tableau IV-4 :Calcul Hydraulique pour SB4

coll	Tron	Cam	Cav	Cam	Cr,av	Dist	I		Dcal	Dnor		Qps	Qeu		Rq		Rv		Rh	V	Vmin	Н	Hmin	Auto
		(m)	(m)	(m)	(m)	(m)	(m/m)	Qt	(mm)	(mm)	Vps	(m3/s)	(m3/s)	Rq	min	Rv	min	Rh	min	(m/s)	(m/s)	(mm)	(mm)	curage
	R693R694	143,86	143,19	142,659	141,988	30	0,022	0,3518	423	500	2,80	0,551	0,00305	0,644	0,006	1,072	0,264	0,585	0,051	3,01	0,741	293	26	V
	R694R695	143,19	142,85	141,988	141,649	30	0,011	0,3518	480	500	1,99	0,391	0,00305	0,907	0,008	1,116	0,279	0,754	0,057	2,22	0,556	377	29	V
	R695R696	142,85	142,75	141,649	141,249	30	0,013	0,3518	466	500	2,17	0,426	0,00305	0,834	0,007	1,107	0,275	0,694	0,056	2,40	0,596	347	28	V
	R697R698	151,22	150,73	150,022	149,535	30	0,016	0,3518	449	500	2,39	0,469	0,00305	0,757	0,007	1,098	0,271	0,645	0,054	2,62	0,646	323	27	V
	R698R700	150,73	149,16	149,535	147,962	30	0,052	0,3518	360	400	3,70	0,465	0,00305	0,763	0,007	1,098	0,271	0,649	0,054	4,06	1,003	260	22	V
	R700R701	149,16	147,18	147,962	145,983	30	0,066	0,3518	345	400	4,15	0,522	0,00305	0,680	0,006	1,083	0,266	0,604	0,052	4,50	1,105	242	21	V
	R701R702	147,18	144,78	145,983	143,578	30	0,080	0,3518	333	400	4,58	0,575	0,00305	0,617	0,005	1,062	0,263	0,571	0,051	4,86	1,202	228	20	V
1	R702R696	144,78	142,75	143,578	141,549	30	0,068	0,3518	343	400	4,20	0,528	0,00305	0,672	0,006	1,081	0,266	0,600	0,052	4,54	1,117	240	21	V
4	R696R703	142,75	140,18	140,449	139,176	35	0,036	1,0553	583	600	4,04	1,141	0,00916	0,933	0,008	1,119	0,281	0,779	0,058	4,52	1,133	467	35	V
	R703R704	140,18	137,39	137,176	136,386	36	0,022	1,0553	640	700	3,48	1,338	0,00916	0,795	0,007	1,102	0,273	0,668	0,055	3,83	0,949	468	38	V
	R704R705	137,39	134,03	134,386	133,027	35	0,039	1,0553	575	600	4,17	1,180	0,00916	0,902	0,008	1,115	0,279	0,750	0,057	4,65	1,164	450	34	V
	R705R706	134,03	131,12	131,027	130,116	35	0,026	1,0553	620	700	3,78	1,456	0,00916	0,731	0,006	1,094	0,269	0,631	0,053	4,14	1,019	442	37	V
	R706R707	131,12	128,97	129,116	127,966	35	0,033	1,0553	594	600	3,84	1,085	0,00916	0,981	0,008	1,123	0,283	0,831	0,059	4,31	1,087	498	35	V
	R707R708	128,97	126,4	126,666	125,399	35	0,036	1,0553	583	600	4,03	1,139	0,00916	0,934	0,008	1,119	0,281	0,781	0,058	4,51	1,131	468	35	V
	R690R709	128,8	127,54	127,603	126,34	30	0,042	0,1173	249	400	3,32	0,417	0,00102	0,284	0,002	0,858	0,243	0,363	0,043	2,85	0,807	145	17	V
	R709R708	127,54	126,4	126,34	125,199	30	0,038	0,1173	253	400	3,15	0,396	0,00102	0,299	0,003	0,867	0,244	0,372	0,043	2,73	0,769	149	17	V
	R710R711	150,77	149,47	149,566	148,267	35	0,037	1,1725	604	600	4,08	1,153	0,01017	1,025	0,009	1,117	0,286	0,882	0,060	4,56	1,166	529	36	V
	R711R712	149,47	148,31	148,267	147,112	30	0,038	1,1725	600	600	4,15	1,174	0,01017	1,007	0,009	1,121	0,285	0,860	0,060	4,66	1,182	516	36	V
	R712R713	148,31	147,2	147,112	145,996	30	0,037	1,1725	603	600	4,08	1,155	0,01017	1,024	0,009	1,118	0,286	0,880	0,060	4,56	1,167	528	36	V
	R713R714	147,2	145,57	145,196	144,37	30	0,028	1,1725	638	700	3,89	1,499	0,01017	0,789	0,007	1,102	0,273	0,664	0,055	4,29	1,061	465	38	V
	R714R715	145,57	144,43	144,37	143,228	35	0,033	1,1725	618	700	4,24	1,631	0,01017	0,725	0,006	1,093	0,269	0,628	0,053	4,63	1,140	439	37	V
	R715R716	144,43	140,76	141,328	139,762	38	0,041	1,1725	592	600	4,30	1,215	0,01017	0,973	0,008	1,122	0,283	0,822	0,059	4,82	1,216	493	35	V
	R716R717	140,76	138,06	137,762	137,055	35	0,020	1,1725	677	700	3,33	1,283	0,01017	0,922	0,008	1,118	0,280	0,768	0,058	3,73	0,934	538	40	V
	R717R718	138,06	135,06	135,055	133,856	35	0,034	1,1725	613	700	4,34	1,672	0,01017	0,707	0,006	1,089	0,268	0,618	0,053	4,73	1,164	433	37	\mathbf{V}
	R718R719	135,06	132,16	132,056	130,956	35	0,031	1,1725	623	700	4,16	1,601	0,01017	0,739	0,006	1,095	0,270	0,635	0,053	4,55	1,122	445	37	\mathbf{V}
	R719R720	132,16	130,42	130,156	129,22	35	0,027	1,1725	642	700	3,84	1,476	0,01017	0,801	0,007	1,103	0,273	0,672	0,055	4,23	1,048	470	38	\mathbf{V}
	R720R721	130,42	129,81	129,22	128,606	35	0,018	1,1725	695	700	3,11	1,197	0,01017	0,988	0,009	1,122	0,284	0,839	0,059	3,49	0,882	587	41	V
	R721R722	129,81	129,05	128,606	127,85	30	0,025	1,1725	649	700	3,72	1,433	0,01017	0,825	0,007	1,106	0,275	0,688	0,055	4,12	1,022	482	39	V
	R722R723	129,05	128,44	127,85	127,235	30	0,021	1,1725	675	700	3,36	1,293	0,01017	0,915	0,008	1,117	0,280	0,762	0,057	3,75	0,939	533	40	V
	R723R724	128,44	127,46	127,235	126,264	30	0,032	1,1725	619	600	3,81	1,077	0,01017	1,098	0,009	1,063	0,290	0,961	0,062	4,05	1,104	577	37	V
	R724R708	127,46	126,4	126,264	125,199	25	0,043	1,1725	588	600	4,37	1,236	0,01017	0,957	0,008	1,121	0,282	0,804	0,058	4,90	1,232	483	35	V

Tableau IV-6 :Calcul Hydraulique pour SB6

coll	Tron		Cav		Cr,av	Dist	I		Dca	Dnor		Ops	Oeu		Rq		Rv		Rh	V	Vmin	H	Hmin	Auto
		Cam (m)	(m)	Cam (m)	(m)	(m)	(m/m)	Ot	l(mm)	(mm)	Vps	(m3/s)	(m3/s)	Rq	min	Rv	min	Rh	min	(m/s)	(m/s)	(mm)	(mm)	curage
	R555R556	164,736	163,505	163,536	162,305	30	0,041	1,1966	597	600	4,29	1,213	0,01573	1,000	0,013	1,122	0,312	0,852	0,071	4,81	1,338	511	42	V
	R556R557	163,505	162,633	162,305	161,433	30	0,029	1,1966	637	600	3,61	1,021	0.01573	1,188	0.015	0,806	0,327	1,006	0,077	2,91	1,180	603	46	V
	R557R558	162,633	162,507	161,609	161,307	35	0,009	1,1966	799	800	2,38	1,199	0.01573	1,011	0,013	1,120	0,313	0,865	0,071	2,67	0,746	692	57	V
	R558R559	162,507	162,456	161,507	161,056	30	0,015	1,1966	721	800	3,15	1,581	0,01573	0,767	0,010	1,099	0,293	0,651	0,063	3,46	0,921	521	50	V
	R559R560	162,456	161,7	161,256	160,5	30	0,025	1,1966	654	700	3,73	1,434	0,01573	0,846	0,011	1,108	0,299	0,703	0,066	4,13	1,116	492	46	V
	R560R561	161,7	159,724	159,2	158,524	30	0,023	1,1966	668	700	3,52	1,355	0,01573	0,895	0,012	1,114	0,303	0,743	0,067	3,92	1,068	520	47	V
	R561R562	159,724	159,08	158,524	157,88	30	0,021	1,1966	674	700	3,44	1,324	0,01573	0,916	0,012	1,117	0,305	0,763	0,068	3,84	1,050	534	48	V
	R562R563	159,08	159,053	158,08	157,853	30	0,008	1,1966	820	900	2,41	1,534	0,01573	0,790	0,010	1,102	0,295	0,665	0,064	2,66	0,711	599	57	V
	R563R564	159,053	158,972	157,953	157,772	30	0,006	1,1966	855	900	2,16	1,374	0,01573	0,883	0,011	1,113	0,302	0,733	0,067	2,40	0,653	659	60	V
	R564R565	158,972	158,475	157,772	157,275	30	0,017	1,1966	708	800	3,30	1,659	0,01573	0,731	0,009	1,094	0,290	0,631	0,062	3,61	0,957	505	49	V
	R565R566	158,475	157,948	157,275	156,748	30	0,018	1,1966	700	700	3,11	1,196	0,01573	1,013	0,013	1,120	0,313	0,868	0,071	3,48	0,973	607	50	V
	R566R567	158,239	157,948	157,039	156,748	30	0,010	1,1966	782	800	2,53	1,270	0,01573	0,955	0,012	1,121	0,308	0,802	0,069	2,83	0,779	642	55	V
	R567R568	157,948	157,54	156,748	156,34	30	0,014	1,1966	734	800	2,99	1,504	0,01573	0,806	0,010	1,104	0,296	0,675	0,064	3,30	0,886	540	51	V
	R568R569	157,54	157,327	156,34	156,127	30	0,007	1,1966	829	900	2,34	1,489	0,01573	0,814	0,011	1,104	0,297	0,681	0,064	2,59	0,695	612	58	V
	R569R570	157,327	156,219	156,127	155,019	30	0,037	1,1966	609	700	4,51	1,735	0,01573	0,699	0,009	1,088	0,287	0,614	0,061	4,90	1,295	430	42	V
	R570R571	156,219	155,041	154,619	153,841	30	0,026	1,1966	651	700	3,78	1,454	0,01573	0,834	0,011	1,107	0,298	0,694	0,065	4,18	1,128	486	46	V
	R571R572	155,041	154,568	153,841	153,368	30	0,016	1,1966	714	800	3,22	1,619	0,01573	0,749	0,010	1,096	0,291	0,641	0,062	3,53	0,939	513	50	V
	R572R573	154,568	153,154	152,568	151,954	30	0,020	1,1966	680	700	3,36	1,292	0,01573	0,938	0,012	1,120	0,307	0,785	0,069	3,76	1,031	549	48	V
	R574R575	163,178	162,31	161,978	161,11	30	0,029	0,23932	349	400	2,75	0,345	0,00315	0,702	0,009	1,088	0,288	0,615	0,061	2,99	0,790	246	24	V
	R575R576	162,31	160,573	161,11	159,373	30	0,058	0,23932	306	400	3,89	0,489	0,00315	0,496	0,006	0,996	0,270	0,500	0,054	3,87	1,051	200	21	V
	R576R577	160,573	158,619	159,373	157,419	30	0,065	0,23932	299	300	3,40	0,241	0,00315	1,008	0,013	1,121	0,313	0,861	0,071	3,82	1,064	258	21	V
	R577R573	158,619	153,154	155,119	152,154	30	0,099	0,23932	277	300	4,19	0,296	0,00315	0,818	0,011	1,105	0,297	0,683	0,065	4,63	1,246	205	19	V
	R573R578	153,154	150,356	150,654	149,556	35	0,031	1,55558	693	700	4,16	1,600	0,02045	0,985	0,013	1,123	0,311	0,835	0,070	4,67	1,292	585	49	V
	R578R584	150,356	147,254	147,656	146,454	35	0,034	1,55558	681	700	4,35	1,674	0,02045	0,942	0,012	1,120	0,307	0,788	0,069	4,87	1,336	552	48	V
_	R579R580	152,943	150,814	151,743	149,614	30	0,071	0,35898	343	400	4,30	0,541	0,00472	0,673	0,009	1,081	0,285	0,600	0,060	4,65	1,227	240	24	V
6	R580R581	150,814	149,452	149,614	148,252	30	0,045	0,35898	373	400	3,44	0,433	0,00472	0,840	0,011	1,107	0,299	0,699	0,065	3,81	1,030	280	26	V
•	R581R582	149,452	148,281	148,252	147,081	30	0,039	0,35898	384	400	3,19	0,401	0,00472	0,907	0,012	1,116	0,304	0,754	0,068	3,56	0,972	302	27	V
	R582R583	148,281	146,564	147,081	145,364	30	0,057	0,35898	357	400	3,87	0,486	0,00472	0,749	0,010	1,096	0,291	0,641	0,062	4,24	1,127	256	25	V
	R583R584	146,564	144,537	145,364	143,337	30	0,068	0,35898	346	400	4,20	0,528	0,00472	0,689	0,009	1,085	0,286	0,609	0,060	4,56	1,203	243	24	V
	R600a-R601a	161,933	159,676	160,733	158,676	30	0,069	0,47864	385	400	4,23	0,532	0,00629	0,912	0,012	1,116	0,305	0,759	0,068	4,72	1,290	304	27	V
	R601a-R602a	159,676	155,629	156,676	154,629	32	0,064	0,47864	390	400	4,09	0,514	0,00629	0,944	0,012	1,120	0,307	0,791	0,069	4,58	1,256	316	28	V
	R602a-R603A	155,629	152,371	153,129	151,271	32	0,058	0,47864	397	400	3,89	0,489	0,00629	0,991	0,013	1,122	0,311	0,842	0,070	4,37	1,212	337	28	V
	R603a-R604a	152,371	148,087	149,371	147,087	32	0,071	0,47864	382	400	4,32	0,542	0,00629	0,894	0,012	1,114	0,303	0,743	0,067	4,81	1,310	297	27	V
	R604a-R605a	148,087	143,531	145,087	142,531	35	0,073	0,47864	380	400	4,37	0,549	0,00629	0,884	0,011	1,113	0,303	0,734	0,067	4,86	1,321	293	27	V
	R605a-R606a	143,531	139,334	140,531	138,334	32	0,069	0,47864	384	400	4,23	0,532	0,00629	0,911	0,012	1,116	0,305	0,759	0,068	4,73	1,290	303	27	V
	R606a-R607a	139,334	137,374	138,134	136,174	32	0,061	0,47864	393	400	4,00	0,503	0,00629	0,965	0,013	1,122	0,309	0,813	0,069	4,49	1,236	325	28	V
	R607a-R608a	137,374	136,71	136,174	135,51	30	0,022	0,47864	475	500	2,79	0,548	0,00629	0,886	0,011	1,113	0,303	0,735	0,067	3,10	0,844	368	33	V
	R608a-R609a	136,71	136,562	135,71	135,362	25	0,014	0,47864	518	600	2,50	0,707	0,00629	0,686	0,009	1,085	0,286	0,607	0,060	2,71	0,716	364	36	V
	R609a-R610a	136,562	136,026	135,562	134,826	28	0,026	0,47864	460	500	3,04	0,597	0,00629	0,812	0,011	1,104	0,297	0,680	0,064	3,36	0,902	340	32	V
	R610a-R191	136,026	135,742	135,026	134,542	32	0,015	0,47864	511	600	2,60	0,736	0,00629	0,659	0,009	1,077	0,284	0,593	0,059	2,80	0,739	356	36	V

Tableau IV-5 :Calcul Hydraulique pour SB5

coll	Tron	Cam	Cav	Cam	Cr,av	Dist			Dcal	Dnor		Qps	Qeu		Rq		Rv		Rh	V	Vmin	Н	Hmin	Auto
		(m)	(m)	(m)	(m)	(m)	I(m/m)	Qt	(mm)	(mm)	Vps	(m3/s)	(m3/s)	Rq	min	Rv	min	Rh	min	(m/s)	(m/s)	(mm)	(mm)	curage
	R805R806	161	159,1	159,8	157,9	30	0,064	0,242	302	400	4,08	0,51	0,003	0,48	0,01	0,98	0,27	0,49	0,05	4,02	1,10	196	21	V
	R806R807	159,1	157,1	157,9	155,9	30	0,064	0,242	301	400	4,10	0,52	0,003	0,48	0,01	0,98	0,27	0,49	0,05	4,03	1,10	195	21	V
	R807R808	157,1	156,8	155,9	155,6	25	0,015	0,242	395	400	2,00	0,25	0,003	0,98	0,01	1,12	0,31	0,83	0,07	2,24	0,62	331	28	V
	R809R810	163,4	159,6	162,2	158,4	30	0,124	0,151	223	300	4,70	0,33	0,002	0,46	0,01	0,97	0,27	0,48	0,05	4,57	1,26	143	16	V
_	R810R811	159,6	157,3	158,4	156,1	30	0,079	0,151	243	300	3,75	0,27	0,002	0,58	0,01	1,04	0,28	0,55	0,06	3,92	1,04	165	17	V
	R811R808	157,3	154,8	156,1	153,6	30	0,084	0,151	240	400	4,68	0,59	0,002	0,26	0,00	0,84	0,25	0,35	0,05	3,95	1,17	139	18	V
	R808R812	154,8	151,3	152,3	150,3	40	0,050	0,817	499	500	4,19	0,82	0,011	1,01	0,01	1,12	0,31	0,86	0,07	4,70	1,31	430	36	V
	R812R813	151,3	148,3	149	147,3	34	0,049	0,817	500	500	4,16	0,82	0,011	1,01	0,01	1,12	0,31	0,87	0,07	4,66	1,31	434	36	V
	R813R814	148,3	145,3	145,8	144,3	30	0,051	0,817	497	500	4,22	0,83	0,011	1,00	0,01	1,12	0,31	0,85	0,07	4,74	1,32	425	35	V
-	R814R815	145,3	142,9	143,3	141,9	30	0,046	0,817	506	500	4,04	0,79	0,011	1,04	0,01	1,11	0,32	0,90	0,07	4,49	1,28	451	36	V
	R815R816 R816R817	142,9 139,4	139,4 136,7	139,9 137,4	138,4	30	0,050	0,817 0,817	499 489	500	4,19 4,41	0,82 0,87	0,011	1,01 0,96	0,01	1,12	0,31	0,86	0,07	4,70 4,95	1,31 1,36	430	36 35	V
· •	R817R818	136,7	133,6	134,2	132,6	32	0.051	0,817	496	500	4,41	0,87	0.011	0,96	0.01	1,12	0,31	0,84	0,07	4,93	1,33	402	35	V
-	R818R819	133,6	131.1	131,6	130,1	30	0.049	0,817	500	500	4,16	0.82	0.011	1.01	0.01	1,12	0,31	0,87	0.07	4,65	1,33	435	36	V
	R819R820	131.1	128.8	129.1	127,8	25	0.050	0,817	498	500	4,21	0,83	0.011	1.00	0.01	1.12	0,31	0.86	0.07	4,72	1,32	428	36	V
	R820R821	128.8	127.6	127,6	126.4	30	0.040	0,817	520	600	4,23	1,19	0.011	0.69	0.01	1.09	0.29	0.61	0.06	4,59	1.21	366	36	V
i	R821R517	127,6	126,4	126,4	125,2	30	0,040	0,817	520	600	4,23	1,20	0,011	0,69	0,01	1,09	0,29	0,61	0,06	4,59	1,22	366	36	V
· •	R793R794	162,5	161,2	161,3	160	32	0,042	1,211	596	600	4,36	1,23	0,016	1,00	0,01	1,12	0,31	0,85	0,07	4,89	1,36	508	43	V
	R794R795	161,2	158,6	158,9	157,4	36	0,041	1,211	601	600	4,27	1,21	0,016	1,02	0,01	1,12	0,31	0,87	0,07	4,78	1,34	523	43	V
•	R795R796	158,6	156,2	156,4	155	36	0,039	1,211	604	600	4,20	1,19	0,016	1,03	0,01	1,12	0,32	0,89	0,07	4,69	1,33	534	43	V
5	R796R797	156,2	153,8	154,1	152,6	36	0,043	1,211	595	600	4,37	1,24	0,016	0,99	0,01	1,12	0,31	0,84	0,07	4,91	1,37	506	42	V
	R797R798	153,8	151,6	151,9	150,4	36	0,041	1,211	599	600	4,30	1,22	0,016	1,01	0,01	1,12	0,31	0,86	0,07	4,82	1,35	518	43	V
	R798R799	151,6	150,9	150,4	149,7	30	0,021	1,211	680	700	3,40	1,31	0,016	0,94	0,01	1,12	0,31	0,78	0,07	3,80	1,05	549	48	V
	R799R800	150,9	150,7	149,7	149,5	30	0,007	1,211	838	900	2,30	1,46	0,016	0,84	0,01	1,11	0,30	0,70	0,07	2,55	0,69	628	59	V
	R800R801	150,7	150,6	149,5	149,4	30	0,004	1,211	908	1000	1,99	1,57	0,016	0,78	0,01	1,10	0,30	0,66	0,06	2,20	0,59	661	64	V
	R801R802	150,6	150,4	149,4	149,2	30	0,005	1,211	888	9000	9,16	582,77	0,016	0,00	0,00	0,24	0,23	0,04	0,04	2,21	2,07	376	324	V
	R802R803	150,4	150,4	149,2	149,2	30	0,002	1,211	1070	1100	1,37	1,30	0,016	0,94	0,01	1,12	0,31	0,79	0,07	1,54	0,42	866	76	V
	R803R804	150,4	150	149,2	148,8	30	0,013	1,211	747	800	2,90	1,46	0,016	0,84	0,01	1,11	0,30	0,70	0,07	3,21	0,87	561	53	V
	R804R644	151,7	151,4	150,5	150,2	22	0,012	1,211	757	800	2,79	1,40	0,016	0,88	0,01	1,11	0,30	0,73	0,07	3,10	0,84	581	53	V
-	R644R645	151,4	151,2	150,2	150	30	0,010	1,211	785	800	2,54	1,27	0,016	0,96	0,01	1,12	0,31	0,81	0,07	2,84	0,79	648	56	V
	R645R647 R647R648	151,2 151	151 149,6	150 149,7	149,8 148,4	30	0,006	1,211 1,211	858 597	900 600	2,16 4,34	1,38 1,23	0,016	0,89 1,00	0,01	1,11	0,30	0,74	0,07	2,41 4,87	0,66 1,36	666 511	61 43	V
	R648R649	149.6	149,0	149,7	148	30	0.011	1,211	768	800	2.68	1,35	0.016	0,91	0.01	1.12	0,31	0,83	0.07	2.99	0.82	606	54	V
-	R649R650	149,0	149,2	147,9	146,9	25	0,011	1,211	600	600	4,29	1,33	0,016	1,01	0,01	1,12	0,31	0,70	0,07	4,81	1,35	519	43	V
· •	R650R651	148,1	148,1	146,9	146,9	30	0,001	1,211	1133	1200	1,25	1,41	0,016	0,87	0,01	1,11	0,30	0,72	0,07	1,39	0,38	865	80	V
•	R651R652	148.1	147,8	146,9	146,6	30	0.011	1,211	772	800	2.65	1,33	0.016	0.92	0.01	1,12	0,31	0,77	0.07	2,96	0,81	614	55	V
i	R652R655	147,8	147,7	146.6	146,5	23	0.003	1,211	969	1000	1,67	1,32	0.016	0,93	0.01	1,12	0,31	0,78	0,07	1,87	0,51	779	69	V
ľ	R655R660	147,7	146,7	146,5	145,5	35	0,029	1,211	640	700	4,00	1,54	0,016	0,80	0,01	1,10	0,30	0,67	0,06	4,41	1,18	469	45	V
i	R660R661	146,7	145,4	145,5	144,2	35	0,036	1,211	616	700	4,43	1,70	0,016	0,72	0,01	1,09	0,29	0,62	0,06	4,84	1,28	437	43	V
i [R661R662	145,4	144,6	144,2	143,4	34	0,023	1,211	668	700	3,56	1,37	0,016	0,90	0,01	1,11	0,30	0,74	0,07	3,97	1,08	521	47	V
	R662R663	144,6	143,6	143,4	142,4	30	0,036	1,211	615	700	4,45	1,71	0,016	0,72	0,01	1,09	0,29	0,62	0,06	4,86	1,29	436	43	V
	R663R664	143,6	142,1	142,4	140,9	35	0,041	1,211	599	600	4,29	1,21	0,016	1,01	0,01	1,12	0,31	0,86	0,07	4,81	1,35	519	43	V
	R664R665	142,1	140,8	140,9	139,6	30	0,044	1,211	592	600	4,43	1,25	0,016	0,98	0,01	1,12	0,31	0,83	0,07	4,97	1,38	497	42	V
[R665R666	140,8	140	139,6	138,8	30	0,028	1,211	644	700	3,93	1,51	0,016	0,81	0,01	1,10	0,30	0,68	0,06	4,34	1,17	475	45	V
	R666-RS11	140	139,6	138,8	138,4	26	0,014	1,211	737	800	3,00	1,51	0,016	0,81	0,01	1,10	0,30	0,68	0,06	3,31	0,89	545	52	V

Tableaux IV-7 : Calcul Hydraulique de SB 7

coll	Tron	Cam	Cav	Cam	Cr,av	Dist	1	Qt	Dcal	Dnor	Vps	Qps	Qeu	Rq	Rg	Rv	Rv	Rh	Rh	V	Vmin	Н	Hmin	Auto
com	11011	(m)	(m)	(m)	(m)	(m)	(m/m)	Q.	(mm)	(mm)	· ps	(m3/s)	(m3/s)	7.9	min	7.0	min	747	min	(m/s)	(m/s)	(mm)	(mm)	curage
	R599R600	154,3	152,3	152,5	151,1	30	0,050	0,704	472	500	4,18	0,820	0,005	0,87	0,006	1,11	0,27	0,72	0,05	4,64	1,127	359	27	V
	R600R601	152.3	151.7	151.1	150.5	30	0.019	0,704	567	600	2,90	0,821	0,005	0,86	0,006	1.11	0,27	0,72	0.05	3,22	0,784	431	32	٧
	R601R602	151.7	151.1	150.5	149.9	30	0.020	0.704	558	600	3,02	0,854	0.005	0.83	0,006	1.11	0,27	0.69	0.05	3,34	0.811	415	32	٧
	R602R603	151,1	150,1	149,9	148,9	30	0,033	0,704	509	600	3,87	1,094	0,005	0,65	0,005	1,07	0,26	0,59	0,05	4,16	1,003	352	30	٧
	R603R604	150,1	148,9	148,9	147,7	30	0,041	0,704	490	500	3,78	0,742	0,005	0,96	0,007	1,12	0,27	0,80	0,06	4,24	1,037	402	28	٧
	R604R605	148,9	147,3	147,7	146,1	30	0,051	0,704	470	500	4,24	0,833	0,005	0,85	0,006	1,11	0,27	0,71	0,05	4,70	1,142	354	27	٧
	R605R606	147,3	144,6	145	143,4	30	0,054	0,704	465	500	4,36	0,855	0,005	0,83	0,006	1,11	0,27	0,69	0,05	4,82	1,168	346	26	٧
	R606R607	144,6	143,6	143,4	142,4	30	0,034	0,704	508	600	3,89	1,100	0,005	0,65	0,005	1,07	0,26	0,59	0,05	4,17	1,008	351	29	٧
	R607R608	143,6	141,7	142,1	140,5	30	0,052	0,704	469	500	4,26	0,837	0,005	0,85	0,006	1,11	0,27	0,70	0,05	4,72	1,147	352	27	٧
	R608R609	141,7	139,9	140	138,7	30	0,046	0,704	479	500	4,02	0,790	0,005	0,90	0,007	1,11	0,27	0,75	0,05	4,48	1,092	373	27	٧
	R609R610	139,9	138	138,4	136,8	30	0,051	0,704	471	500	4,22	0,828	0,005	0,86	0,006	1,11	0,27	0,71	0,05	4,68	1,136	356	27	٧
	R610R611	138	136,8	136,6	135,6	30	0,034	0,704	507	500	3,45	0,677	0,005	1,05	0,008	1,11	0,28	0,91	0,06	3,82	0,962	454	29	٧
	R611R612	138,6	136,8	137,2	135,6	30	0,052	0,704	468	500	4,29	0,842	0,005	0,84	0,006	1,11	0,27	0,70	0,05	4,75	1,153	350	27	٧
_	R179R180	142,5	141,7	141,3	140,5	35	0,022	0,564	505	600	3,15	0,892	0,004	0,64	0,005	1,07	0,26	0,58	0,05	3,37	0,816	349	29	٧
7	R180R181	141,7	138,7	139,2	137,7	35	0,043	0,564	447	500	3,87	0,759	0,004	0,75	0,006	1,10	0,26	0,64	0,05	4,24	1,022	320	26	٧
•	R181R182	138,7	134,2	134,7	133,2	35	0,044	0,564	445	500	3,93	0,771	0,004	0,74	0,005	1,09	0,26	0,63	0,05	4,30	1,035	317	25	٧
	R182R183	134,2	133,9	133	132,7	30	0,011	0,564	573	600	2,25	0,637	0,004	0,89	0,007	1,11	0,27	0,74	0,05	2,51	0,611	444	32	٧
	R183R178	133,9	133,6	132,7	132,4	30	0,008	0,564	605	700	2,16	0,833	0,004	0,68	0,005	1,08	0,26	0,60	0,05	2,34	0,565	423	35	٧
	R169R170	169,9	164,4	164,9	163,4	30	0,051	0,376	371	400	3,66	0,459	0,003	0,82	0,006	1,11	0,27	0,69	0,05	4,04	0,980	275	21	٧
	R170R171	164,4	158,8	159,4	157,8	30	0,054	0,376	367	400	3,77	0,474	0,003	0,80	0,006	1,10	0,27	0,67	0,05	4,16	1,005	268	21	v
	R171R172	158,8	154	155,3	153	30	0,075	0,376	345	400	4,42	0,556	0,003	0,68	0,005	1,08	0,26	0,60	0,05	4,79	1,154	242	20	٧
	R172R173	154	146,1	147	145,1	30	0,063	0,376	357	400	4,05	0,509	0,003	0,74	0,006	1,10	0,26	0,64	0,05	4,44	1,069	255	20	٧
	R173R174	146,1	143,9	144,9	142,7	30	0,073	0,376	347	400	4,36	0,548	0,003	0,69	0,005	1,09	0,26	0,61	0,05	4,74	1,141	244	20	٧
	R174R175	143,9	142,9	142,7	141,7	30	0,036	0,376	396	400	3,07	0,386	0,003	0,98	0,007	1,12	0,28	0,83	0,06	3,45	0,846	332	22	V
	R175R176	142,9	141,4	141,7	140,2	30	0,048	0,376	375	400	3,55	0,446	0,003	0,85	0,006	1,11	0,27	0,71	0,05	3,93	0,955	282	21	٧
	R176R177	141,4	138,4	138,9	137,2	30	0,056	0,376	365	400	3,81	0,479	0,003	0,79	0,006	1,10	0,27	0,67	0,05	4,20	1,014	266	21	V
	R177R178	138,4	134,3	135,4	133,1	30	0,078	0,376	343	400	4,52	0,568	0,003	0,67	0,005	1,08	0,26	0,60	0,05	4,88	1,176	239	20	V
	R178R184	134,3	133,2	132,7	132	30	0,022	1,127	654	700	3,51	1,351	0,008	0,84	0,006	1,11	0,27	0,70	0,05	3,89	0,943	489	37	V
	R184R185	133,2	131,4	131,3	130,2	32	0,036	1,127	598	600	4,01	1,135	0,008	1,00	0,007	1,12	0,28	0,85	0,06	4,50	1,110	512	34	V
	R191R192	135,7	135,4	134,5	134,2	35	0,009	0,573	600	600	2,02	0,572	0,007	1,01	0,012	1,12	0,31	0,87	0,07	2,26	0,621	521	41	V
	R192R193	135,4	134,7	134,2	133,5	23	0,031	0,573	477	500	3,30	0,648	0,007	0,89	0,011	1,11	0,30	0,74	0,07	3,68	0,985	371	33	٧
	R193R194	134,7	133,2	133,5	132	25	0,062	0,573	420	500	4,65	0,914	0,007	0,63	0,008	1,07	0,28	0,58	0,06	4,97	1,294	290	28	٧
	R194R185	133,2	131,2	130,8	130	30	0,027	0,573	491	500	3,06	0,601	0,007	0,96	0,012	1,12	0,30	0,81	0,07	3,44	0,929	406	34	V
	R185R198	131,2	127,9	127,7	126,9	35	0,021	2,404	881	900	4,00	2,542	0,021	0,95	0,008	1,12	0,28	0,80	0,06	4,48	1,124	721	52	V
	R198R204	127,9	125,6	125,2	124,6	35	0,018	2,404	889	900	3,71	2,360	0,021	1,03	0,009	1,12	0,29	0,88	0,06	4,14	1,058	795	54	V
	R204R205	123,6	118,6	118,5	117,6	40	0,023	2,404	861	900	4,25	2,702	0,021	0,90	0,008	1,11	0,28	0,75	0,06	4,73	1,181	671	51	V
	R205R206	115,6	112,5	112,3	111,5	40	0,020	2,404	891	900	3,89	2,472	0,021	0,98	0,008	1,12	0,28	0,83	0,06	4,36	1,099	747	53	V
	R206R207	111,5	106,4	106,2	105,4	40	0,020	2,404	888	900	3,92	2,494	0,021	0,97	0,008	1,12	0,28	0,82	0,06	4,40	1,106	739	53	V
	R207R208	106,4	104,8	104,6	103,8	34	0,022	2,404	869	900	4,14	2,636	0,021	0,92	0,008	1,12	0,28	0,77	0,06	4,63	1,158	690	52	V
	R208R209	104,8	103,7	103,5	102,7	32	0,025	2,404	853	900	4,36	2,774	0,021	0,87	0,007	1,11	0,28	0,73	0,06	4,85	1,207	653	51	V
	R209R210	103,7	103,6	102,6	102,4	35	0,008	2,404	1065	1100	2,76	2,622	0,021	0,92	0,008	1,12	0,28	0,77	0,06	3,08	0,771	849	63	V
	R216R217	135,9	133,6	133,4	132,4	30	0,032	1,089	600	600	3,80	1,073	0,011	1,03	0,010	1,12	0,29	0,88	0,06	4,24	1,116	529	38	V
	R217R218	133,6	130,9	131,1	129,9	35	0,035	1,089	595	600	3,94	1,114	0,011	0,99	0,010	1,12	0,29	0,84	0,06	4,42	1,149	503	37	٧

Suite De Tableau IV-7

coll	Tron	Cam (m)	Cav	Cam	Cr,av	Dist	I (m/m)	Ot	Dcal (mm)	Dnor (mm)	Vnc	Qps (m3/s)	Qeu (m3/s)	Rg	Rq min	Rv	Rv min	Rh	Rh min	(m/c)	Vmin (m/s)	H (mm)	Hmin (mm)	Auto
	D210 D220	/	(m)	(m)	(m)	(m)	, ,	2	. ,	, ,	Vps	`	. ,							(m/s)		(mm)	. /	curage
	R218R220	130,9	126,4	126,9	125,4	35	0,043	1,089	571	600	4,4	1,243	0,011	0,88		1,11		0,73	0,06	4,89	1,253	441	36	V
	R220R221	126,4	120,9	121,4	119,9	40	0,038	1,089	586	600	4,1	1,16	0,011	0,95	0,009	1,12	0,29	0,8	0,06	4,6	1,186	477	37	V
	R221R222	120,9	119	119,4	118	40	0,037	1,089	589	600	4,05	1,145	0,011	0,96	0,009	1,12	0,29	0,81	0,06	4,54	1,174	485	37	V
	R223R224	128	123,7	124,1	122,7	40	0,035	1,089	595	600	3,93	1,112	0,011	0,99	0,01	1,12	0,29	0,84	0,06	4,42	1,147	504	37	V
	R224R225	123,7	119,7	120	118,7	35	0,036	1,089	589	600	4,04	1,142	0,011	0,96	0,009	1,12	0,29	0,81	0,06	4,53	1,171	487	37	V
	R225R226	119,7	115,4	115,7	114,4	40	0,034	1,089	599	600	3,88	1,096	0,011	1	0,01	1,12	0,29	0,86	0,06	4,35	1,135	514	38	V
	R226R227	115,4	111,6	111,8	110,6	35	0,035	1,089	595	600	3,94	1,113	0,011	0,99	0,01	1,12	0,29	0,84	0,06	4,42	1,148	503	37	V
7	R227R222	111,6	110,1	110,2	109,1	30	0,034	1,089	596	600	3,93	1,11	0,011	0,99	0,01	1,12	0,29	0,84	0,06	4,41	1,146	505	37	V
'	R222R228	110,1	109,4	108,9	108,2	35	0,021	1,981	818	900	4,02	2,56	0,017	0,78	0,007	1,1	0,27	0,66	0,05	4,43	1,098	593	49	V
	R228R229	109,4	107,7	107,3	106,5	30	0,026	1,981	785	800	4,15	2,086	0,017	0,96	0,008	1,12	0,28	0,81	0,06	4,65	1,174	645	47	V
	R229R230	107,7	104,7	104,4	103,7	30	0,025	1,981	793	800	4,04	2,031	0,017	0,98	0,009	1,12	0,28	0,83	0,06	4,54	1,149	667	48	V
	R230R210	104,7	103,6	102,9	102,4	21,5	0,023	1,981	805	800	3,87	1,947	0,017	1,03	0,009	1,12	0,29	0,88	0,06	4,33	1,111	707	48	V
	R210R231	103,6	102	101,8	100,8	23,5	0,044	4,47	968	900	5,79	3,684	0,012	1,22	0,003	0,64	0,25	0,99	0,04	3,73	1,436	892	40	V
	R231R232	102	100,7	100,2	99,68	30	0,016	4,47	1168	1200	4,24	4,799	0,012	0,93	0,002	1,12	0,24	0,78	0,04	4,75	1,031	936	51	V
	R232R233	100,7	100	99,38	99,02	30	0,012	4,47	1234	1300	3,87	5,137	0,012	0,87	0,002	1,11	0,24	0,72	0,04	4,3	0,936	941	55	V
	R233R234	100	99,41	98,72	98,41	30	0,01	4,47	1266	1300	3,61	4,795	0,012	0,93	0,002	1,12	0,24	0,78	0,04	4,04	0,878	1016	55	V
				*	ĺ		*					•		,		·	,		,	-	•			

Tableau IV8 : Calcul Hydraulique de SB 8

coll	Tron	Cam	Cav	Cam	Cr,av	Dist	1	Qt	Dcal	Dnor	Vps	Qps	Qeu	Rq	Rq	Rv	Rv	Rh	Rh	V	Vmin	Н	Hmin	Auto
		(m)	(m)	(m)	(m)	(m)	(m/m)	٠,	(mm)	(mm)	1	(m3/s)	(m3/s)	1.9	min		min		min	(m/s)	(m/s)	(mm)	(mm)	curage
	R503R504	165,6	164,2	164,4	163	30	0,047	0,101	231	300	2,90	0,205	9E-04	0,500	0,004	0,998	0,255	0,502	0,048	2,89	0,739	151	14	V
. +	R504R505	164.2	163.7	163	162.5	30	0.018	0.101	277	300	1,78	0.126	9E-04	0,814	0,007	1.104	0,273	0,680	0,055	1,96	0.485	204	16	V
. –	R505R506	163,7	163,3	162,5	162,1	22,5	0,016	0,304	424	500	2,40	0,471	0,003	0,652	0,005	1,075	0,264	0,589	0,051	2,58	0,633	295	26	V
. –	R506R507	163,3	163	162,1	161,8	20	0,015	0,304	431	500	2,30	0,451	0,003	0,680	0,006	1,083	0,265	0,604	0,052	2,49	0,610	302	26	V
. –	R507R508	163	162,3	161,8	161,1	30	0,022	0,304	402	500	2,77	0,544	0,003	0,564	0,005	1,037	0,259	0,541	0,049	2,87	0,717	271	25	V
. –	R508R509	162,3	159,8	161,1	158,6	30	0,085	0,304	312	400	4,70	0,591	0,003	0,519	0,004	1,011	0,256	0,515	0,048	4,76	1,206	206	19	V
. –	R509R512	159,8	147,6	158,3	146,4	36	0,330	0,659	323	300	7,66	0,542	0,006	1,228	0,010	0,563	0,295	0,979	0,064	4,32	2,262	294	19	٧
. –	R512R513	147,6	143,7	144,6	142,7	35	0,055	0,659	452	500	4,41	0,865	0,006	0,768	0,006	1,099	0,270	0,652	0,054	4,84	1,191	326	27	٧
	R513R514	143,7	140,2	140,7	139,2	35	0,044	0,659	472	500	3,91	0,768	0,006	0,866	0,007	1,110	0,276	0,719	0,056	4,34	1,078	359	28	V
	R514R515	140,2	132,2	133,2	131,2	45	0,044	0,659	472	500	3,92	0,770	0,006	0,863	0,007	1,110	0,275	0,717	0,056	4,36	1,081	358	28	V
	R515R516	132,2	127,2	127,2	126,2	35	0,027	0,659	517	500	3,07	0,602	0,006	1,104	0,009	1,055	0,289	0,967	0,061	3,24	0,885	483	31	V
	R516R517	127,2	126,4	126	125,2	30	0,027	0,659	518	600	3,46	0,978	0,006	0,680	0,006	1,083	0,265	0,604	0,052	3,75	0,918	362	31	V
	R517R518	126,4	123,8	123,4	122,8	35	0,018	2,035	852	900	3,70	2,352	0,021	0,874	0,009	1,111	0,287	0,725	0,060	4,11	1,061	653	54	V
	R518R519	123,8	119,6	119,5	118,6	36	0,026	2,035	794	800	4,13	2,076	0,021	0,990	0,010	1,122	0,295	0,841	0,064	4,64	1,216	673	51	V
	R519R519a	119,6	116,7	116,6	115,7	35	0,025	2,035	800	800	4,05	2,034	0,021	1,011	0,010	1,121	0,296	0,864	0,064	4,54	1,197	691	51	V
	R519aR520	116,7	114	113,7	113	36	0,021	2,035	829	800	3,68	1,850	0,021	1,111	0,011	1,043	0,302	0,973	0,067	3,84	1,113	778	53	V
	R520R521	114	111,4	111	110,4	35	0,017	2,035	858	900	3,63	2,309	0,021	0,890	0,009	1,114	0,288	0,739	0,061	4,04	1,045	666	55	V
. [R521R541	111,4	109,8	109,4	108,8	34	0,016	2,035	870	900	3,50	2,228	0,021	0,923	0,010	1,118	0,290	0,770	0,062	3,91	1,016	693	56	V
. [R541R542	108,8	107,9	107,6	106,9	36	0,019	2,035	839	900	3,86	2,456	0,021	0,837	0,009	1,107	0,284	0,697	0,059	4,27	1,098	627	53	V
. L	R542R543	107,9	106,8	106,4	105,6	35	0,023	2,035	810	900	4,24	2,696	0,021	0,762	0,008	1,098	0,279	0,648	0,057	4,66	1,184	584	52	V
0	R543R544	106,8	106,1	105,6	104,9	35	0,021	2,035	829	900	3,98	2,532	0,021	0,812	0,008	1,104	0,283	0,679	0,059	4,40	1,125	611	53	V
δί	R1R2	115	113,6	113,8	112,4	30	0,046	0,304	349	400	3,48	0,437	0,003	0,702	0,006	1,088	0,267	0,615	0,052	3,79	0,928	246	21	V
. L	R2R548	113,6	110,2	111,6	109,2	30	0,081	0,304	315	400	4,60	0,578	0,003	0,531	0,004	1,018	0,257	0,522	0,048	4,68	1,181	209	19	V
. L	R548R549	110,2	107,3	109	106,3	30	0,089	0,304	309	400	4,81	0,605	0,003	0,508	0,004	1,004	0,256	0,507	0,048	4,83	1,230	203	19	V
. L	R549R544	107,3	105,1	106,1	103,9	30	0,073	0,304	321	400	4,37	0,549	0,003	0,559	0,005	1,034	0,259	0,538	0,049	4,52	1,130	215	20	V
. L	R544R550	105,1	102,6	102,6	101,6	50	0,019	2,796	948	1000	4,11	3,228	0,028	0,875	0,009	1,112	0,284	0,726	0,059	4,57	1,167	726	59	V
. L	R550R551	102,6	100,4	100,4	99,21	50	0,025	2,796	900	900	4,36	2,773	0,028	1,018	0,010	1,119	0,293	0,873	0,063	4,88	1,277	786	57	V
. L	R551R552	100,4	97,91	97,91	96,91	40	0,025	2,796	900	900	4,39	2,792	0,028	1,011	0,010	1,120	0,293	0,865	0,063	4,92	1,284	779	56	V
. L	R552R553	97,91	92,97	92,91	91,97	45	0,021	2,796	931	1000	4,31	3,386	0,028	0,834	0,008	1,107	0,281	0,694	0,058	4,77	1,213	694	58	V
. L	R553RS32	92,97	89,03	88,97	88,03	45	0,021	2,796	932	1000	4,29	3,372	0,028	0,837	0,008	1,107	0,282	0,697	0,058	4,75	1,209	697	58	V
. L	R129R130	148,2	147,9	147	146,7	30	0,013	0,457	520	600	2,37	0,670	0,004	0,687	0,006	1,085	0,266	0,608	0,052	2,57	0,629	365	31	V
. L	R130R131	147,9	147	146,3	145,8	30	0,014	0,457	509	600	2,51	0,709	0,004	0,650	0,005	1,074	0,264	0,588	0,051	2,69	0,661	353	31	V
.	R131R132	147	146,8	145,8	145,6	35	0,008	0,457	563	600	1,91	0,541	0,004	0,851	0,007	1,109	0,275	0,707	0,056	2,12	0,526	424	33	V
.	R132R133	146,8	146,6	145,6	144,6	35	0,028	0,457	448	500	3,11	0,611	0,004	0,753	0,006	1,097	0,269	0,643	0,053	3,42	0,839	322	27	V
.	R134R133	146,6	140,8	145,4	139,6	35	0,165	0,051	141	300	5,42	0,383	4E-04	0,133	0,001	0,727	0,234	0,258	0,039	3,94	1,269	77	12	V
.	R133R135	140,8	137,6	137,8	136,4	33	0,043	0,71	486	500	3,90	0,766	0,006	0,935	0,008	1,119	0,279	0,781	0,057	4,37	1,090	391	29	V
.	R135R136	137,6	134,9	135,6	133,7	35	0,055	0,71	465	500	4,38	0,860	0,006	0,833	0,007	1,107	0,274	0,694	0,055	4,85	1,199	347	28	V
	R136R137	134,9	130,3	130,9	129,3	35	0,044	0,71	485	500	3,93	0,772	0,006	0,928	0,008	1,118	0,279	0,775	0,057	4,40	1,096	387	29	V
	R137R138	130,3	129	129,1	127,7	35	0,040	0,71	494	500	3,73	0,732	0,006	0,978	0,008	1,123	0,282	0,828	0,058	4,18	1,050	414	29	V
	R138R139	129	123,4	125,2	122,4	35	0,082	0,71	431	400	4,63	0,582	0,006	1,231	0,010	0,538	0,295	0,975	0,064	2,49	1,367	390	26	V

	coll	Tron	Cam	Cav	Cam	Cr,av	Dist	I		Dcal	Dnor		Qps	Qeu		Rq		Rv		Rh	٧	Vmin	Н	Hmin	Auto
R145-R145 1185-0 11490 11500 13390 35 0033 0913 586 600 5.85 1097 1006 0.94 0.95 0.94 0.95 0								(m/m)	Qt	(mm)		Vps			Rq		Rv		Rh		(m/s)	(m/s)	(mm)	(mm)	curage
R16-R-146 114-90 111-04 011-04 011-04 015 027 0913 085 060 3.46 0.977 0.008 0.04 0.008 1.12 0.38 0.79 0.06 3.87 0.97 473 35 V. R16-R-148 005.05 008.80 008.30 0.07.00 0.5 0.002 0.013 0.016 0.004 0.008 0.004 0.008 0.007 0.006 0.005 0.006 0.007 0.006 0.005 0.006 0.007 0.006 0.005 0.006 0.007 0.006 0.005 0.006 0.007 0.006 0.005 0.006 0.007 0.006 0.005 0.006 0.007 0.006 0.005 0.006 0.007 0.006 0.005 0.006 0.005 0.006 0.005 0.006 0.005 0.00		R139R144	123,40	118,50	119,40	117,70	38	0,044	0,913	533	600	4,42	1,25	0,008	0,74	0,006	1,10	0,27	0,63	0,05	4,84	1,19	380	32	V
R14-R147 11,40 109.50 109.00 109.00 35 0.006 0.913 616 0.000 0.913 617 0.000 0.000 0.913 616 0.000 0.913 616 0.000 0.913 617 0.000 0.000 0.913 617 0.000 0.913 617 0.000 0.000 0.913 617 0.000 0.913 617 0.000 0.913 617 0.000 0.913 0		R144R145	118,50	114,90	115,00	113,90	35	0,033	0,913	563	600	3,83	1,082	0,008	0,85	0,007	1,11	0,28	0,71	0,06	4,24	1,05	424	33	V
R32-R39 158,00 108,00 108,00 107,00 35 0.02 0.913 616 700 3.33 1.282 0.008 0.72 0.006 1.09 0.27 0.02 0.05 5,64 0.89 437 37 V R79-R89 158,00 157,00 157,00 152,00 25 0.081 0.152 22 300 3.83 0.22 2.011 0.001 0.05 0.05 0.05 0.05 0.05 5,98 0.99 1.03 158 158 158,00 157,00 157,00 158		R145R146	114,90	111,40	111,40	110,40	35	0,027	0,913	585	600	3,46	0,977	0,008	0,94	0,008	1,12	0,28	0,79	0,06	3,87	0,97	473	35	V
R78-R79 161_20 158_40 157_20 25_20 0.058 0.152 26_2 300 3.88 0.271 0.001 0.57 0.005 1.04 0.26 0.54 0.05 3.98 0.09 163 15 V		R146R147	111,40	109,50	109,40	108,50	35	0,026	0,913	586	600	3,44	0,972	0,008	0,95	0,008	1,12	0,28	0,79	0,06	3,85	0,96	477	35	V
R83-R80 158,00 157,00		R147R148	109,50	108,80	108,30	107,60	35	0,02	0,913	616	700	3,33	1,282	0,008	0,72	0,006	1,09	0,27	0,62	0,05	3,64	0,89	437	37	V
Name		R78R79	161,20	158,40	159,20	157,20	25	0,083	0,152	242	300	3,83	0,271	0,001	0,57	0,005	1,04	0,26	0,54	0,05	3,98	0,99	163	15	•
R83-R83 185,00 157,00																_			_	_					
National Process 185-88 187-00 185-70 185-80 22 20 20 20 20 20 20			,		, -			.,	-, -				-, -	- ,		-,	1,11		.,	.,					
R81-R84 15.070 15.130 15.270 15.030 33 0.072 0.457 374 400 4.34 0.345 0.004 0.047 0.071 0.071 0.071 0.070 0.066 4.81 1.19 281 22 V R85-R85 15.130 14.540 146.30 14.40 33 0.077 0.457 374 400 4.34 0.345 0.004 0.95 0.008 1.12 0.28 0.00 0.060 4.33 1.08 318 22 V R85-R86 145.40 137.20 139.40 136.20 40 0.081 0.457 366 400 4.60 0.578 0.004 0.90 0.008 1.12 0.28 0.75 0.06 4.33 1.08 318 22 V R85-R88 13.09 12.81 12.90 12.500 30 0.066 0.457 383 400 4.07 0.512 0.004 0.90 0.008 1.12 0.28 0.75 0.06 4.54 1.13 2.99 2.3 V R85-R88 13.09 12.81 12.90 12.500 30 0.066 0.457 383 400 4.67 0.523 0.004 0.90 0.008 1.12 0.28 0.75 0.06 4.54 1.13 2.99 2.3 V R85-R89 15.500 15.500 15.000 10.900 10.48 0.052 0.004 0.004 0.007 0.005 1.10 0.027 0.006 0.064 3.11 5.292 2.2 V R85-R89 15.500 15.500 15.000 10.900 2.00 1.04 0.018 0.007 0.005 0.004 0.008 0.007 0.005 0.006 0.006 0.008 0.007 0.005 0.006 0.008 0.007 0.005 0.006 0.006 0.008 0.007 0.005 0.006 0.006 0.008 0.007 0.005 0.006 0.008 0.007 0.005 0.006 0.006 0.008 0.007 0.005 0.006 0.008 0.006 0.008 0.006 0.008 0.006 0.008 0.006 0.008 0.006 0.008 0.006 0.008 0.006 0.008 0.006 0.008 0.006 0.008 0.006 0.008 0.006 0.008 0.006 0.008 0.006 0.008 0.008 0.008 0.006 0.008 0					,	,		.,	- ,				.,	.,		-,	, -	-, -	- , -	- ,					·
R83R85								- ,	- ,				- ,			-,				- ,					•
R85-R86 145.40 137.20 139.04 136.20 40 0.081 0.457 366 400 4.67 0.512 0.004 0.80 0.007 1.10 0.27 0.67 0.05 5.07 1.25 268 22 V R87-R88 139.90 128.10 128.90 128.90 128.90 128.90 0.659 0.065 0.457 383 400 4.07 0.512 0.004 0.90 0.008 1.10 0.27 0.06 0.05 0.06 4.63 1.15 292 22 V R87-R88 139.90 128.10 126.00 126.90 124.80 30 0.073 0.457 373 400 4.16 0.523 0.004 88 0.007 1.11 0.28 0.73 0.06 4.63 1.15 292 22 V R87-R85 155.80 155.80 155.80 155.90 150.00 10.90 0.08 0.073 0.457 373 400 4.36 0.131 0.011 0.001			,		- ,	/		.,	-,			,-	- ,	- ,	- , -	-,	,	-, -	- ,	- ,		, -			
R86-R87 137.20 130.90 132.20 129.90 35 0.063 0.457 383 400 4.07 0.512 0.004 0.90 0.008 1.12 0.28 0.75 0.06 4.54 1.13 2.99 2.3 V			- ,	- , -	- /	, .		0,00.	-,			- ,	-,	- ,	- ,	0,000	,	-, -	- ,	0,00	,	,		_	•
R87-R88 128.00 128.10 128.90 126.90 30 0.066 0.457 380 400 4.16 0.523 0.004 0.88 0.007 1.11 0.22 0.73 0.06 4.63 1.15 292 22 V R83-R89 128.10 126.00 126.90 124.80 30 0.073 0.457 373 400 4.36 0.548 0.004 0.84 0.007 1.11 0.27 0.70 0.06 4.83 1.20 279 22 V R83-R86 155.80 152.10 154.00 150.00 20 0.184 0.152 208 200 4.36 0.137 0.001 1.12 0.009 1.03 0.29 0.08 0.06 4.83 1.20 279 22 V R83-R87 152.10 151.80 151.00 150.50 30 0.018 0.152 274 300 0.216 0.271 0.001 0.57 0.005 1.04 0.26 0.54 0.05 2.24 0.56 2.17 2.0 V R83-R89 151.80 150.50 150.00 149.30 30 0.018 0.152 274 300 2.74 4.001 0.01 0.79 0.007 1.11 0.27 0.76 0.05 0.24 0.56 2.17 2.0 V R93-R93 148.50 147.70 147.30 35 0.018 0.152 225 300 4.66 0.33 0.001 0.57 0.005 1.04 0.26 0.54 0.05 2.23 0.56 218 2.0 V R93-R94 142.70 137.30 133.00 134.80 32 0.114 0.152 228 300 4.56 0.33 0.001 0.47 0.004 0.98 0.25 0.48 0.05 4.55 1.18 144 14 V R93-R95 137.30 133.00 134.80 31.100 32 0.118 0.152 226 300 4.56 0.33 0.001 0.47 0.004 0.98 0.25 0.48 0.05 4.55 1.18 144 14 V R93-R95 137.30 133.00 134.80 31.100 32 0.118 0.152 226 300 4.56 0.33 0.001 0.48 0.004 0.98 0.25 0.49 0.05 4.45 1.18 144 14 V R93-R96 137.30 133.00 134.80 31.100 32 0.118 0.152 226 300 4.57 0.318 0.001 0.48 0.004 0.98 0.25 0.49 0.05 4.44 1.14 147 14 V R93-R96 135.00 136.00 136.00 136.00 136.00 136.00 0.98 0.25 0.49 0.05 4.57 1.18 1.14 14 V R93-R96 135.00 136.00 136.00 136.00 136.00 136.00 0.98 0.25 0.49 0.05 4.57 1.18 1.14 14 V R93-R99 135.00 136.00 136.00 136.00 136.00 136.00 0.00																									,
R88-R89 128.10 126.00 126.90 124.80 30 0.073 0.457 373 400 4.36 0.548 0.004 0.84 0.007 1.11 0.27 0.70 0.06 4.83 1.20 279 22 V R35-R851 152.10 154.60 150.90 20 0.184 0.152 208 200 4.36 0.137 0.001 1.12 0.009 1.03 0.29 0.98 0.06 4.48 1.26 196 12 V R35-R851 152.10 151.80 151.00 150.50 30 0.018 0.152 322 400 2.16 0.271 0.001 0.57 0.005 1.04 0.26 0.54 0.055 2.24 0.56 217 20 V R35-R851 152.10 151.80 150.50 150.60 149.30 30 0.018 0.152 322 400 2.16 0.271 0.001 0.57 0.005 1.04 0.26 0.54 0.055 2.24 0.56 217 20 V R35-R851 152.00 150.60 149.30 30 0.018 0.152 322 400 2.16 0.271 0.001 0.57 0.005 1.04 0.26 0.54 0.055 2.24 0.56 217 20 V R35-R851 152.00 140.00						- /			-,						- ,	-,		-, -	_	_				_	
R35-R36 155,80 152,10 154,60 150,90 20 0,184 0,152 208 200 4,36 0,137 0,001 1,12 0,009 1,03 0,29 0,98 0,06 4,48 1,26 196 12 V R37-R90 151,80 150,50 150,00 193,00 30 0,042 0,152 232 400 2,16 0,271 0,001 0,57 0,005 1,04 0,26 0,54 0,05 2,24 0,56 217 20 V R97-R90 151,80 150,50 150,50 149,10 148,80 147,90 25 0,038 0,152 238 300 2,6 0,184 0,001 0,47 0,007 1,10 0,27 0,70 0,06 2,24 0,56 217 20 V R97-R93 148,50 149,10 148,80 147,90 25 0,038 0,152 280 300 2,6 0,184 0,001 0,84 0,007 1,11 0,27 0,70 0,06 2,88 0,71 209 17 V R97-R93 148,50 142,70 146,00 141,70 35 0,112 0,152 232 300 4,66 0,33 0,010 0,47 0,004 0,98 0,25 0,48 0,05 4,55 1,18 144 14 V R97-R95 137,30 133,00 134,60 131,00 32 0,118 0,152 228 300 4,5 0,318 0,010 0,48 0,004 0,99 0,25 0,49 0,05 4,44 1,14 147 14 V R89-R95 137,30 132,00 134,60 131,00 32 0,118 0,152 228 300 4,5 0,318 0,010 0,48 0,004 0,98 0,25 0,48 0,05 4,55 1,18 144 14 V R89-R95 137,30 133,00 134,60 131,00 32 0,118 0,152 228 300 4,5 0,318 0,010 0,48 0,004 0,98 0,25 0,48 0,05 4,44 1,14 147 14 V R89-R95 137,30 132,00 134,60 131,00 32 0,118 0,152 226 300 4,57 0,323 0,001 0,48 0,004 0,98 0,25 0,49 0,05 4,44 1,14 147 14 V R89-R96 126,00 129,00 129,00 124,00 32 0,118 0,152 238 300 4,55 0,338 0,001 0,48 0,004 0,98 0,25 0,49 0,05 4,44 1,14 147 14 V R89-R97 121,00 18,60 118,40 117,60 30 0,026 0,913 547 6,000 3,48 0,004 0,004 0,004 0,004 0,005 0,46 0,05 3,47 0,04 0,004 0,004 0,004 0,004 0,004 0,004 0,004 0,004 0,004 0,004 0,004 0,004 0,004 0,004 0,004 0,004 0,004 0,0						,										-,			_	- ,					
R36-R37 I52,10 I51,80 I51,00 I50,50 30 0.018 0.152 322 400 2.16 0.271 0.001 0.57 0.005 1.04 0.26 0.54 0.05 2.24 0.56 2.17 20 V				.,		,		.,	-,				- /	.,	- , -	0,00.	,	-, -	- ,	-,	,				•
R37-R90 151,80 150,50 150,60 149,30 30 0,042 0,152 274 300 2,74 0,194 0,001 0,79 0,007 1,10 0,27 0,67 0,05 3,02 0,74 200 16 V			,		- ,			- , -	-, -					- ,		-,	,	-, -	- ,	- ,					·
R90-R91 150,50 149,10 148,80 147,90 25 0,038 0,152 280 300 2,6 0,184 0,001 0,84 0,007 1,11 0,27 0,70 0,06 2,88 0,71 209 17 V R91-R92 149,10 148,50 147,90 147,30 35 0,018 0,152 323 400 2,15 0,27 0,001 0,57 0,005 1,04 0,26 0,54 0,05 2,23 0,56 218 20 V R92-R93 148,50 147,70 40,60 141,70 35 0,122 0,152 225 300 4,66 0,33 0,001 0,47 0,004 0,98 0,25 0,48 0,05 4,55 1,18 144 14 V R93-R94 142,70 137,30 132,00 134,80 131,00 32 0,114 0,152 228 300 4,5 0,318 0,001 0,48 0,004 0,99 0,25 0,49 0,05 4,44 1,14 147 14 V R93-R95 132,00 126,00 129,00 124,80 32 0,152 213 0,152 221 300 4,57 0,323 0,001 0,48 0,004 0,98 0,25 0,49 0,05 4,44 1,14 147 14 V R93-R95 126,00 121,90 122,20 123,00 32 0,138 0,152 226 300 4,57 0,323 0,001 0,48 0,004 0,98 0,25 0,49 0,05 4,44 1,14 147 14 V R93-R95 126,00 121,90 122,20 123,00 32 0,158 213 0,152 221 300 4,57 0,333 0,001 0,48 0,004 0,98 0,25 0,49 0,05 4,44 1,14 147 14 V R93-R95 126,00 126,00 129,00 124,80 32 0,152 0,152 21 300 4,57 0,333 0,001 0,48 0,004 0,98 0,25 0,49 0,05 4,44 1,14 147 14 V R93-R95 126,00 126,00 129,00 124,80 32 0,152 0,152 21 300 4,57 0,333 0,001 0,48 0,004 0,98 0,25 0,49 0,05 4,44 1,14 147 14 V R93-R95 126,00 126,00 129,00 124,80 0,153 124,00 0,004 0,98 0,05 0,05 0,05 0,05 0,05 0,06 0			- , -	- ,	- ,	/		.,	-, -							-,	, -	-, -	- ,-	- ,					•
R91-R92			- ,	,	/	- /		.,.	- , -			, ,	- , .	- ,	. ,	-,	, ,	-, -	- ,	- ,	- ,-	- , .			•
R92-R93 148,50 142,70 146,00 141,70 35 0,122 0,152 225 300 4,66 0,33 0,00 0,47 0,004 0,98 0,25 0,48 0,05 4,55 1,18 144 14 V R93-R94 142,70 137,30 139,70 136,10 32 0,114 0,152 228 300 4,5 0,318 0,001 0,48 0,004 0,99 0,25 0,49 0,05 4,44 1,14 147 14 V R94-R95 137,30 132,00 134,80 131,00 32 0,118 0,152 226 300 4,57 0,323 0,001 0,48 0,004 0,99 0,25 0,49 0,05 4,49 1,16 146 14 V R95-R89 132,00 126,00 129,00 124,80 32 0,132 0,152 221 300 4,85 0,343 0,001 0,45 0,004 0,99 0,25 0,49 0,05 4,49 1,16 146 14 V R89-R96 126,00 121,00 122,20 120,90 32 0,038 0,913 546 600 4,15 1,174 0,008 0,78 0,007 1,10 0,27 0,66 0,05 4,57 1,13 397 32 V R97-R98 118,60 115,50 115,30 145,00 30 0,028 0,913 579 600 3,56 1,006 0,008 0,99 0,008 1,12 0,28 0,80 0,06 3,83 0,96 480 35 V R98-R99 115,50 113,60 113,30 112,60 30 0,028 0,913 579 600 3,56 1,006 0,008 0,99 0,008 1,12 0,28 0,80 0,06 3,7 0,93 502 35 V R99-R100 113,60 110,70 110,60 109,70 35 0,024 0,913 598 600 3,26 0,923 0,008 1,10 0,008 1,12 0,28 0,84 0,06 3,7 0,93 502 35 V R522-R523 155,80 151,30 154,60 150,10 35 0,128 0,101 191 200 30 3,44 110 0,009 0,00 0,008 1,12 0,28 0,84 0,06 3,7 0,93 502 35 V R523-R528 150,30 146,40 147,50 145,00 35 0,068 0,101 215 300 3,48 0,244 0,009 0,00 0,44 0,004 0,96 0,25 0,47 0,05 3,15 0,83 139 14 V R523-R528 150,30 146,40 147,50 145,20 35 0,068 0,101 215 300 3,48 0,147 0,524 0,009 0,008 1,12 0,28 0,85 0,06 3,66 0,92 510 35 V R523-R528 150,30 146,40 147,50 145,20 35 0,067 0,507 395 400 4,47 0,524 0,004 0,98 0,008 1,12 0,28 0,85 0,06 3,66 0,92 510 35 V R523-R533 140,00 139,00 141,00 138,40 35 0,005 0,507 395 400 4,46 0,561 0,004 0,99 0,008 1,12 0,28 0,85 0,06 4,68 1,18 330 23 V R523-R533 140,00 139,00 130,00 138,00 30 0,015 0,152 303 400 2,53 0,318 0,001 0,48 0,004 0,99 0,25 0,49 0,05 2,5 0,64 197 19 V R533-R534 139,00 138,00 137,40 136,80 136,30 30 0,015 0,152 303 400 2,29 0,45 0,001 0,48 0,004 0,99 0,25 0,49 0,05 2,5 0,64 197 19 V R533-R535 137,00 136,60 135,80 135,40 30 0,013 0,913 673 700 2,64 1,015 0,008 0,91 0,008 1,12 0,28 0,76 0,06 2,94 0,73 528 40 V																-,			_	- ,					·
R93R94 142,70 137,30 132,00 136,60 32 0,114 0,152 228 300 4,5 0,318 0,001 0,48 0,004 0,99 0,25 0,49 0,05 4,44 1,14 147 14 V R94R95 137,30 132,00 134,80 131,00 32 0,118 0,152 226 300 4,57 0,323 0,001 0,48 0,004 0,98 0,25 0,49 0,05 4,49 1,16 146 14 V R89R89 132,00 126,00 129,00 124,80 32 0,132 0,152 221 300 4,85 0,343 0,001 0,45 0,004 0,96 0,25 0,47 0,05 4,67 1,22 141 14 V R89R96 126,00 121,90 122,20 120,90 32 0,038 0,913 546 600 4,15 1,174 0,008 0,78 0,007 1,10 0,27 0,66 0,05 4,57 1,13 397 32 V R96R97 121,90 118,60 118,40 117,60 30 0,026 0,913 587 600 3,42 0,96 0,008 0,95 0,008 1,12 0,28 0,80 0,06 3,83 0,96 480 35 V R97R98 118,60 115,50 115,30 114,50 30 0,026 0,913 587 600 3,26 0,93 0,908 0,99 0,008 1,12 0,28 0,80 0,06 3,97 0,99 457 34 V R98R99 115,50 113,60 110,70 110,60 109,70 35 0,024 0,913 598 600 3,26 0,923 0,008 1,00 0,008 1,12 0,28 0,86 0,06 3,7 0,93 502 35 V R522R523 155,80 151,30 154,60 150,10 35 0,128 0,101 191 200 3,64 0,14 0,009 0,90 0,008 1,12 0,28 0,85 0,06 4,06 1,01 149 11 V R523R528 150,30 146,40 147,50 151,20 30 0,068 0,101 220 300 3,28 0,232 0,009 0,008 0,11 0,008 0,11 0,28 0,45 0,05 3,28 0,87 134 14 V R523R528 150,30 146,40 147,50 145,20 35 0,076 0,507 395 400 4,16 0,521 0,004 0,98 0,008 1,12 0,28 0,80 0,06 4,86 1,18 330 2,3 V R523R528 150,30 146,40 147,50 145,20 35 0,076 0,507 395 400 4,16 0,521 0,004 0,98 0,008 1,12 0,28 0,80 0,06 4,88 1,18 330 2,3 V R523R528 150,30 146,40 147,50 145,20 35 0,076 0,507 395 400 4,16 0,521 0,004 0,98 0,008 1,12 0,28 0,76 0,06 4,98 1,24 304 23 V R533R538 140,00 139,00 137,40 138,20 135,40 30 0,015 0,152 333 500 2,29 0,45 0,001 0,48 0,001 0,99 0,25 0,49 0,05 2,5 0,64 197 19 V R533R531 139,00 137,40 138,20 135,40 30 0,015 0,152 333 500 2,29 0,45 0,001 0,48 0,001 0,99 0,25 0,49 0,05 2,5 0,64 197 19 V R533R531 139,00 136,60 135,80 135,40 30 0,013 0,913 673 700 2,64 1,015 0,008 0,91 0,008 1,12 0,28 0,76 0,06 2,94 0,73 528 40 V						,										_			_	_					
R94-R95 137.30 132.00 134.80 131.00 32 0,118 0,152 226 300 4,57 0,323 0,001 0,48 0,004 0,98 0,25 0,49 0,05 4,67 1,16 146 14 V R95-R89 132.00 126.00 129.00 124.80 32 0,132 0,152 221 300 4,85 0,343 0,001 0,45 0,004 0,96 0,25 0,47 0,05 4,67 1,22 141 14 V R95-R89 126.00 121.90 122.20 120.90 32 0,038 0,913 546 600 4,15 1,174 0,008 0,78 0,007 1,10 0,27 0,66 0,05 4,67 1,22 141 14 V R96-R97 121.90 118.60 118.40 117.60 30 0,026 0,913 587 600 3,42 0,966 0,008 0,95 0,008 1,12 0,28 0,80 0,06 3,83 0,96 480 35 V R97-R98 118.60 115.50 115.30 114.50 30 0,024 0,913 595 600 3,56 1,006 0,008 0,99 0,008 1,12 0,28 0,76 0,06 3,97 0,99 457 34 V R98-R99 115.50 113.60 113.30 112.60 30 0,024 0,913 595 600 3,26 0,923 0,008 0,99 0,008 1,12 0,28 0,84 0,06 3,77 0,93 502 35 V R522-R523 155.80 151.30 154.60 150,10 35 0,128 0,101 191 200 3,64 0,114 0,0009 0,09 0,008 1,11 0,28 0,74 0,06 0,06 0,02 510 35 V R523-R523 152.40 150.30 151.20 149.10 30 0,068 0,101 220 300 3,28 0,232 0,0009 0,44 0,004 0,96 0,25 0,47 0,05 3,15 0,83 139 14 V R528-R529 146.40 142.20 143.90 141.20 40 0,066 0,507 395 400 4,16 0,523 0,004 0,98 0,008 1,12 0,28 0,85 0,06 4,68 1,18 330 23 V R529-R533 149.90 139.60 131.80 137.00 32 0,025 0,152 303 3400 2,45 0,004 0,98 0,008 1,12 0,28 0,80 0,06 4,68 1,18 330 23 V R533-R531 139.40 147.50 145.20 35 0,055 0,507 385 400 4,16 0,523 0,004 0,98 0,008 1,12 0,28 0,80 0,06 4,68 1,18 330 23 V R533-R531 139.60 138.00 137.40 138.40 35 0,055 0,507 385 400 4,16 0,523 0,004 0,98 0,008 1,12 0,28 0,6					- ,	, , ,		- ,	- , -						-, -	-,	- ,	-, -	.,.	.,					
R95-R89 132.00 126.00 129.00 124.80 32 0.132 0.152 221 300 4.85 0.343 0.001 0.45 0.004 0.96 0.25 0.47 0.05 4.67 1.22 141 14 V R89-R96 126.00 121.90 122.20 120.90 32 0.038 0.913 546 600 4.15 1.174 0.008 0.78 0.007 1.10 0.27 0.66 0.05 4.57 1.13 397 32 V R96-R97 121.90 118.60 118.40 117.60 30 0.026 0.913 587 600 3.42 0.966 0.008 0.95 0.008 1.12 0.28 0.80 0.06 3.83 0.96 480 35 V R97-R98 118.60 115.50 113.50 114.50 30 0.028 0.913 579 600 3.56 1.006 0.008 0.92 0.008 1.12 0.28 0.80 0.06 3.70 0.99 457 34 V R98-R99 115.50 113.60 110.70 110.60 109.70 35 0.024 0.913 595 600 3.3 0.933 0.008 0.99 0.008 1.12 0.28 0.84 0.06 3.7 0.99 457 34 V R852-R523 155.80 151.30 154.60 150.10 35 0.128 0.101 191 200 3.64 0.114 0.0009 0.90 0.008 1.12 0.28 0.85 0.06 3.66 0.92 510 35 V R52-R523 152.40 150.30 151.20 30 0.061 0.101 220 300 3.28 0.230 3.28 0.232 0.0009 0.44 0.004 0.96 0.25 0.47 0.05 3.15 0.83 139 14 V R523-R528 150.30 146.40 147.50 145.20 35 0.067 0.507 395 400 4.17 0.524 0.004 0.98 0.008 1.12 0.28 0.82 0.06 4.68 1.18 330 23 V R528-R529 146.40 142.20 143.90 141.20 40 0.066 0.507 395 400 4.17 0.524 0.004 0.98 0.008 1.12 0.28 0.80 0.06 4.68 1.18 330 23 V R528-R529 146.40 142.20 143.90 141.20 40 0.066 0.507 395 400 4.17 0.524 0.004 0.98 0.008 1.12 0.28 0.82 0.06 4.68 1.18 330 23 V R538-R529 146.40 142.20 143.90 141.20 40 0.066 0.507 385 400 4.16 0.523 0.004 0.98 0.008 1.12 0.28 0.80 0.80 4.67 1.17 331 23 V R538-R531 139.40 137.00 138.40 35 0.055 0.507 410 400 3.78 0.476 0.004 0.91 0.008 1.12 0.28 0.80 0.80 4.67 1.17 331 23 V R533-R531 139.40 137.40 138.20 136.20 35 0.055 0.507 440 400 2.45 0.308 0.001 0.50 0.004 1.00 0.26 0.50 0.05 2.45 0.63 200 19 V R533-R531 139.00 139.00 138.00 137.80 137.00 32 0.025 0.152 303 400 2.53 0.318 0.001 0.48 0.004 0.99 0.25 0.49 0.05 2.45 0.63 200 19 V R533-R533 139.00 136.60 135.80 137.00 30 0.013 0.913 663 700 2.45 0.308 0.001 0.34 0.003 0.91 0.008 0.91 0.008 0.91 0.008 0.91 0.008 0.91 0.008 0.91 0.006 0.94 0.94 0.95 0.95 0.94 0.95 0.95 0.94 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95	Q			,	,	, -		- 7	- , -					- ,		-,	- /	-,-	-, -	- ,	,				•
R89-R96 126,00 121,90 122,20 120,90 32 0,038 0,913 546 600 4,15 1,174 0,008 0,78 0,007 1,10 0,27 0,66 0,05 4,57 1,13 397 32 V R96-R97 121,90 118,60 118,40 117,60 30 0,026 0,913 587 600 3,42 0,966 0,008 0,95 0,008 1,12 0,28 0,80 0,06 3,83 0,96 480 35 V R97-R98 118,60 115,50 115,50 115,30 114,50 30 0,028 0,913 579 600 3,56 1,006 0,008 0,95 0,008 1,12 0,28 0,80 0,06 3,97 0,99 457 34 V R98-R99 115,50 113,60 110,70 110,60 109,70 35 0,024 0,913 598 600 3,26 0,923 0,008 1,00 0,008 1,12 0,28 0,84 0,06 3,7 0,93 502 35 V R99-R100 113,60 110,70 110,60 109,70 35 0,024 0,913 598 600 3,26 0,923 0,008 1,00 0,008 1,12 0,28 0,85 0,06 3,66 0,92 510 35 V R522-R523 155,80 151,30 154,60 150,10 35 0,128 0,101 191 200 3,64 0,114 0,000 0,008 1,12 0,28 0,85 0,06 3,66 0,92 510 35 V R526-R527 154,20 152,40 153,30 151,20 149,10 30 0,068 0,101 215 300 3,48 0,246 0,000 0,44 0,004 0,96 0,25 0,47 0,05 3,15 0,83 139 14 V R523-R523 155,80 151,30 146,40 147,50 145,20 35 0,067 0,507 395 400 4,17 0,524 0,004 0,98 0,008 1,12 0,28 0,82 0,06 4,68 1,18 330 23 V R528-R529 146,40 142,20 143,90 141,20 40 0,066 0,507 396 400 4,16 0,523 0,004 0,98 0,008 1,12 0,28 0,83 0,06 4,67 1,17 331 23 V R536-R531 139,40 139,60 139,60 139,10 138,40 35 0,076 0,507 385 400 4,46 0,561 0,004 0,98 0,008 1,12 0,28 0,83 0,06 4,67 1,17 331 23 V R533-R531 139,40 139,60 139,60 139,10 138,40 30 0,023 0,152 307 400 2,45 0,308 0,001 0,50 0,004 1,00 0,26 0,50 0,05 2,45 0,63 200 19 V R534-R531 138,00 137,40 138,20 135,80 30 0,014 0,913 5656 700 2,82 1,086 0,008 0,91 0,008 1,12 0,28 0,76 0,06 2,94 0,73 528 400 V R536-R535 137,00 136,60 135,80 135,40 30 0,013 0,913 673 700 2,64 1,015 0,008 0,91 0,008 1,12 0,28 0,76 0,06 2,94 0,73 528 400 V	O				- ,											-,			-, -	- ,					•
R96-R97 121,90 118,60 118,40 117,60 30 0,026 0,913 587 600 3,42 0,966 0,008 0,95 0,008 1,12 0,28 0,80 0,06 3,83 0,96 480 35 V			- ,	.,	- ,	, , , ,		.,.	-, -			,	- ,	.,	-, -	- ,	- /	-, -	-, -	- ,	,				
R97R98 118,60 115,50 115,30 114,50 30 0,028 0,913 579 600 3,56 1,006 0,008 0,92 0,008 1,12 0,28 0,76 0,06 3,97 0,99 457 34 V R98R99 115,50 113,60 113,30 112,60 30 0,024 0,913 595 600 3,3 0,933 0,008 0,99 0,008 1,12 0,28 0,84 0,06 3,7 0,93 502 35 V R99R100 113,60 110,70 110,60 109,70 35 0,024 0,913 598 600 3,26 0,923 0,008 1,00 0,008 1,12 0,28 0,85 0,06 3,66 0,92 510 35 V R522R523 155,80 151,30 154,60 150,10 35 0,128 0,101 191 200 3,64 0,114 0,0009 0,90 0,008 1,11 0,28 0,74 0,06 4,06 1,01 149 11 V R526R527 154,20 152,40 153,00 151,20 30 0,061 0,101 220 300 3,28 0,232 0,0009 0,44 0,004 0,96 0,25 0,47 0,05 3,15 0,83 139 14 V R527R523 152,40 150,30 151,20 149,10 30 0,068 0,101 215 300 3,48 0,246 0,0009 0,42 0,003 0,94 0,25 0,45 0,05 3,28 0,06 3,68 1,18 330 23 V R528R529 146,40 142,20 143,90 141,20 40 0,066 0,507 395 400 4,17 0,524 0,004 0,98 0,008 1,12 0,28 0,83 0,06 4,67 1,17 331 23 V R529R530 142,20 139,60 141,00 138,40 35 0,076 0,507 385 400 4,46 0,561 0,004 0,91 0,008 1,12 0,28 0,83 0,06 4,67 1,17 331 23 V R530R531 139,40 137,40 138,20 136,20 35 0,055 0,507 410 400 3,78 0,476 0,004 0,99 0,008 1,12 0,28 0,80 0,06 4,67 1,17 331 23 V R533R534 139,60 139,10 137,40 138,20 136,20 35 0,055 0,507 410 400 3,78 0,476 0,004 0,99 0,008 1,12 0,28 0,76 0,06 4,98 1,24 304 23 V R533R534 139,60 139,00 137,40 138,20 136,20 35 0,055 0,507 410 400 3,78 0,476 0,004 1,08 0,009 1,09 0,29 0,94 0,06 4,12 1,09 375 244 V R533R534 139,60 139,00 137,40 136,80 135,30 30 0,015 0,152 307 400 2,45 0,308 0,001 0,48 0,004 0,99 0,25 0,49 0,05 2,5 0,66 197 19 V R534R531 139,00 137,40 136,80 136,30 30 0,015 0,152 303 400 2,53 0,318 0,001 0,48 0,004 0,99 0,25 0,49 0,05 2,5 0,66 197 19 V R534R535 137,00 136,60 135,80 30 0,014 0,913 656 700 2,82 1,086 0,008 0,91 0,008 0,91 0,008 1,12 0,28 0,76 0,06 2,94 0,73 528 40 V R536R535 137,00 136,60 135,80 30 0,014 0,913 656 700 2,82 1,086 0,008 0,91 0,008 0,91 0,008 1,12 0,28 0,76 0,06 2,94 0,73 528 40 V																_			_	_		_			•
R98R99 115,50 113,60 113,30 112,60 30 0,024 0,913 595 600 3,3 0,933 0,008 0,99 0,008 1,12 0,28 0,84 0,06 3,7 0,93 502 35 V R99R100 113,60 110,70 110,60 109,70 35 0,024 0,913 598 600 3,26 0,923 0,008 1,00 0,008 1,12 0,28 0,85 0,06 3,66 0,92 510 35 V R522R523 155,80 151,30 154,60 150,10 35 0,128 0,101 191 200 3,64 0,114 0,0009 0,008 1,11 0,28 0,85 0,06 4,06 1,01 149 11 V R522R523 155,80 151,30 154,60 153,00 151,20 30 0,061 0,101 220 300 3,28 0,232 0,0009 0,44 0,004 0,96			,, ,		-, -												,								
R99R100 113,60 110,70 110,60 109,70 35 0,024 0,913 598 600 3,26 0,923 0,008 1,00 0,008 1,12 0,28 0,85 0,06 3,66 0,92 510 35 V R522R523 155,80 151,30 154,60 150,10 35 0,128 0,101 191 200 3,64 0,114 0,0009 0,90 0,008 1,11 0,28 0,74 0,06 4,06 1,01 149 11 V R525R527 154,20 152,40 153,00 151,20 30 0,061 0,101 220 300 3,28 0,232 0,0009 0,44 0,004 0,96 0,25 0,47 0,05 3,15 0,83 139 14 V R523-R528 150,30 146,40 147,50 145,20 35 0,067 0,507 395 400 4,17 0,524 0,004 0,98 0,008 1,12																_			_	- ,					
R522R523 155,80 151,30 154,60 150,10 35 0,128 0,101 191 200 3,64 0,114 0,009 0,008 1,11 0,28 0,74 0,06 4,06 1,01 149 11 V R526-R527 154,20 152,40 153,00 151,20 30 0,061 0,101 220 300 3,28 0,232 0,0009 0,44 0,004 0,96 0,25 0,47 0,05 3,15 0,83 139 14 V R527-R523 152,40 150,30 151,20 149,10 30 0,068 0,101 215 300 3,48 0,246 0,0009 0,42 0,003 0,94 0,25 0,45 0,05 3,28 0,87 134 14 V R528-R529 146,40 142,20 143,90 141,20 40 0,066 0,507 396 400 4,16 0,523 0,004 0,98 0,008 1,12 0,28			- ,	- ,	- ,	, , , ,		.,.	- ,			,	- ,	.,		-,	,	-, -	- , -	- ,		- /			
R526R527 154_20 152,40 153,00 151,20 30 0,061 0,101 220 300 3,28 0,232 0,0009 0,44 0,004 0,96 0,25 0,47 0,05 3,15 0,83 139 14 V R527R523 152,40 150,30 151,20 149,10 30 0,068 0,101 215 300 3,48 0,246 0,0009 0,42 0,003 0,94 0,25 0,45 0,05 3,28 0,87 134 14 V R523R528 150,30 146,40 147,50 145,20 35 0,067 0,507 395 400 4,17 0,524 0,004 0,98 0,008 1,12 0,28 0,82 0,06 4,68 1,18 330 23 V R528R529 146,40 142,20 143,90 141,20 40 0,66 0,507 385 400 4,46 0,561 0,004 0,91 0,008 1,12			- ,	- ,	- ,			- , -	- /				- /	- ,	,	-,	,	-, -	-,	- ,					•
R527R523 152,40 150,30 151,20 149,10 30 0,068 0,101 215 300 3,48 0,246 0,0009 0,42 0,003 0,94 0,25 0,45 0,05 3,28 0,87 134 14 V R523R528 150,30 146,40 147,50 145,20 35 0,067 0,507 395 400 4,17 0,524 0,004 0,98 0,008 1,12 0,28 0,82 0,06 4,68 1,18 330 23 V R528R529 146,40 142,20 143,90 141,20 40 0,066 0,507 396 400 4,16 0,523 0,004 0,98 0,008 1,12 0,28 0,83 0,06 4,67 1,17 331 23 V R529R530 142,20 139,60 141,00 138,40 35 0,076 0,507 385 400 4,46 0,561 0,004 0,91 0,008 1,12			,	- ,	- ,	, -		-, -	-, -			- , -	- 7	.,	- ,	-,	,	-, -	.,.	- ,	,	, , ,	,		V
R523R528 150,30 146,40 147,50 145,20 35 0,067 0,507 395 400 4,17 0,524 0,004 0,98 0,008 1,12 0,28 0,82 0,06 4,68 1,18 330 23 V R528R529 146,40 142,20 143,90 141,20 40 0,066 0,507 396 400 4,16 0,523 0,004 0,98 0,008 1,12 0,28 0,83 0,06 4,67 1,17 331 23 V R529R530 142,20 139,60 141,00 138,40 35 0,076 0,507 385 400 4,46 0,561 0,004 0,91 0,008 1,12 0,28 0,76 0,06 4,98 1,24 304 23 V R530R531 139,40 137,40 138,20 35 0,055 0,507 410 400 3,78 0,476 0,004 1,08 0,009 1,09 0,29			- , -	- , .	,	- / -		.,	-, -				-, -	. ,	- 7	- ,	- ,	-, -	-, -	- ,	- , -	- ,			V
R528-R529 146,40 142,20 143,90 141,20 40 0,066 0,507 396 400 4,16 0,523 0,004 0,98 0,008 1,12 0,28 0,83 0,06 4,67 1,17 331 23 V R529-R530 142,20 139,60 141,00 138,40 35 0,076 0,507 385 400 4,46 0,561 0,004 0,91 0,008 1,12 0,28 0,76 0,06 4,98 1,24 304 23 V R530R531 139,40 137,40 138,20 136,20 35 0,055 0,507 410 400 3,78 0,476 0,004 1,08 0,009 1,09 0,29 0,94 0,06 4,12 1,09 375 24 V R532R533 140,90 139,60 139,10 138,40 30 0,023 0,152 307 400 2,45 0,308 0,001 0,50 0,004 1,00			- , -			- , -		- ,	- / -							-,		-,-		- ,					
R529R530 142,20 139,60 141,00 138,40 35 0,076 0,507 385 400 4,46 0,561 0,004 0,91 0,008 1,12 0,28 0,76 0,06 4,98 1,24 304 23 V R530R531 139,40 137,40 138,20 136,20 35 0,055 0,507 410 400 3,78 0,476 0,004 1,08 0,009 1,09 0,29 0,94 0,06 4,12 1,09 375 24 V R532R533 140,90 139,60 139,10 138,40 30 0,023 0,152 307 400 2,45 0,308 0,001 0,50 0,004 1,00 0,26 0,50 0,05 2,45 0,63 200 19 V R532R533 140,90 139,60 138,00 137,80 137,00 32 0,025 0,152 303 400 2,53 0,318 0,001 0,48 0,004 <td></td> <td></td> <td></td> <td></td> <td></td> <td>,</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td>_</td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td>V</td>						,										_			_	_					V
R530-R531 139,40 137,40 138,20 136,20 35 0,055 0,507 410 400 3,78 0,476 0,004 1,08 0,009 1,09 0,29 0,94 0,06 4,12 1,09 375 24 V R532R533 140,90 139,60 139,10 138,40 30 0,023 0,152 307 400 2,45 0,308 0,001 0,50 0,004 1,00 0,26 0,50 0,05 2,45 0,63 200 19 V R533R534 139,60 138,00 137,80 137,00 32 0,025 0,152 303 400 2,53 0,318 0,001 0,48 0,004 0,99 0,25 0,49 0,05 2,5 0,64 197 19 V R534R531 138,00 137,40 136,80 136,30 30 0,015 0,152 333 500 2,29 0,45 0,001 0,34 0,003 0,89			-, -		- ,	, ,	35	.,					- /	.,	- ,	-,	,	-, -	- ,	- ,	,	, .			V
R532-R533 140,90 139,60 139,10 138,40 30 0,023 0,152 307 400 2,45 0,308 0,001 0,50 0,004 1,00 0,26 0,50 0,05 2,45 0,63 200 19 V R533R534 139,60 138,00 137,80 137,00 32 0,025 0,152 303 400 2,53 0,318 0,001 0,48 0,004 0,99 0,25 0,49 0,05 2,5 0,64 197 19 V R534R531 138,00 137,40 136,80 136,30 30 0,015 0,152 333 500 2,29 0,45 0,001 0,34 0,003 0,89 0,25 0,49 0,05 2,5 0,64 197 19 V R531R536 137,40 137,00 136,20 135,80 30 0,014 0,913 656 700 2,82 1,086 0,008 0,85 0,007 1,11 0,28 0,71 0,06 3,13 0,78 493 39 V <t< td=""><td></td><td></td><td>, .</td><td></td><td>,</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-,</td><td></td><td></td><td></td><td>- ,</td><td></td><td></td><td></td><td></td><td>V</td></t<>			, .		,											-,				- ,					V
R533R534 139,60 138,00 137,80 137,00 32 0,025 0,152 303 400 2,53 0,318 0,001 0,48 0,004 0,99 0,25 0,49 0,05 2,5 0,64 197 19 V R534R531 138,00 137,40 136,80 136,30 30 0,015 0,152 333 500 2,29 0,45 0,001 0,34 0,003 0,89 0,25 0,40 0,04 2,05 0,57 199 22 v R531R536 137,40 137,00 136,20 135,80 30 0,014 0,913 656 700 2,82 1,086 0,008 0,85 0,007 1,11 0,28 0,71 0,06 3,13 0,78 493 39 V R536R535 137,00 136,60 135,80 30 0,013 0,913 673 700 2,64 1,015 0,008 0,91 0,008 1,12 0,28 0,76 0,06 2,94 0,73 528 40 V			, -	, -				- ,	- ,				-,	- ,		-,	,		- ,-	- ,					V
R534R531 138,00 137,40 136,80 136,80 30 0,015 0,152 333 500 2,29 0,45 0,001 0,34 0,003 0,89 0,25 0,40 0,04 2,05 0,57 199 22 v R531R536 137,40 137,00 136,20 135,80 30 0,014 0,913 656 700 2,82 1,086 0,008 0,85 0,007 1,11 0,28 0,71 0,06 3,13 0,78 493 39 V R536R535 137,00 136,60 135,80 135,40 30 0,013 0,913 673 700 2,64 1,015 0,008 0,91 0,008 1,12 0,28 0,76 0,06 2,94 0,73 528 40 V			- ,	,	, -			.,	-, -			, -	- /	- ,	- ,	-,	,	-, -	- ,	- ,	, -	- ,		19	V
R531R536 137,40 137,00 136,20 135,80 30 0,014 0,913 656 700 2,82 1,086 0,008 0,85 0,007 1,11 0,28 0,71 0,06 3,13 0,78 493 39 V R536R535 137,00 136,60 135,80 135,40 30 0,013 0,913 673 700 2,64 1,015 0,008 0,91 0,008 1,12 0,28 0,76 0,06 2,94 0,73 528 40 V		R534R531	138,00				30			333	500					0,003				0,04			199	22	v
															,										V
		R536R535	137,00	136,60	135,80		30	0,013	0,913	673	700	2,64	1,015	0,008	0,91	0,008		0,28		0,06			528	40	V
		R535R15	136,60		,	,	25	0,013	0,913	666	700	2,71		0,008		0,007	1,11	0,28		0,06				39	V

Tableaux IV-9 : Calcul Hydraulique de SB 9

coll	Tron	Cam	Cav	Cam	Cr,av	Dis	1		Dcal	Dnor		Qps	Qeu		Rq		Rv		Rh	V	Vmin	Н	Hmin	Auto
		(m)	(m)	(m)	(m)	t(m)	(m/m)	Qt	(mm)	(mm)	Vps	(m3/s)	(m3/s)	Rq	min	Rv	min	Rh	min	(m/s)	(m/s)	(mm)	(mm)	curage
	R235R236	108,1	105,1	106,9	103,9	35	0,083	0,167	249	300	3,85	0,272	0,001	0,616	0,004	1,06	0,26	0,57	0,05	4,09	0,98	171	14	V
	R236R237	105,1	103,9	103,9	102,7	30	0,04	0,167	286	300	2,67	0,189	0,001	0,889	0,006	1,11	0,27	0,74	0,05	2,97	0,71	222	16	V
	R237R234	103,9	98,71	100,4	97,71	30	0,091	0,167	246	300	4,02	0,284	0,001	0,59	0,004	1,05	0,25	0,56	0,05	4,22	1,02	167	14	V
	R238R239	115,4	108,6	111,9	107,6	33	0,129	0,167	230	300	4,79	0,339	0,001	0,495	0,003	1	0,25	0,5	0,05	4,77	1,2	150	14	V
	R239R240	108,6	102,1	105,1	101,1	33	0,122	0,167	232	300	4,65	0,329	0,001	0,51	0,003	1 00	0,25	0,51	0,05	4,68	1,16	153	14	V
	R240R241	102,1	99,93	100,9	98,73	33	0,065	0,167	261	300	3,4	0,241	0,001	0,697	0,005	1,09	0,26	0,61	0,05	3,7	0,88	184	15	V
	R241R242	99,93	99,56	98,73	98,06	32	0,021	0,167	323	400	2,33	0,293	0,001	0,572	0,004	1,04	0,25	0,55	0,05	2,43	0,59	218	19	V
	R242R234	99,56	98,71	98,36	97,51	30	0,028	0,167	305	300	2,25	0,159	0,001	1,056	0,007	1,1	0,27	0,92	0,06	2,48	0,62	275	17	V
	R234R243	98,71	96,03	95,49	95,03	40	0,011	5,011	1297	1300	3,8	5,04	0,013	0,997	0,003	1,12	0,24	0,85	0,04	4,26	0,93	1103	56	V
	R243R244	96,03	93,6	93,05	92,6	40	0,011	5,011	1298	1300	3,79	5,037	0,013	0,997	0,003	1,12	0,24	0,85	0,04	4,26	0,93	1104	56	V
	R244R245	93,6	92,43	91,7	91,23	40	0,012	5,011	1292	1300	3,84	5,091	0,013	0,987	0,003	1,12	0,24	0,84	0,04	4,31	0,94	1088	56	V
	R264R271	107,3	104,2	105,3	103,2	30	0,069	0,208	281	300	3,5	0,247	0,001	0,847	0,006	1,11	0,27	0,7	0,05	3,88	0,93	211	16	V
	R271R272	104,2	97,32	100,2	96,52	35	0,106	0,208	260	300	4,33	0,306	0,001	0,684	0,005	1,08	0,26	0,61	0,05	4,7	1,12	182	15	V
	R272R273	97,32	94,94	95,32	93,74	20	0,079	0,208	274	300	3,75	0,265	0,001	0,791	0,005	1,1	0,26	0,67	0,05	4,13	0,99	200	15	V
Λ	R273R274	94,94	93,6	93,74	92,4	30	0,045	0,208	305	300	2,82	0,199	0,001	1,051	0,007	1,11	0,27	0,91	0,06	3,12	0,78	273	17	V
9	R274R275	93,6	93,08	92,4	91,88	30	0,017	0,208	365	400	2,12	0,266	0,001	0,788	0,005	1,1	0,26	0,66	0,05	2,33	0,56	265	20	V
	R275R245	93,08	92,43	91,88	91,23	30	0,022	0,208	349	400	2,39	0,3	0,001	0,698	0,005	1,09	0,26	0,61	0,05	2,6	0,62	245	20	V
	R292R293	104,5	103,5	103,3	102,3	30	0,033	0,208	323	300	2,42	0,171	0,001	1,228	0,008	0,56	0,28	0,98	0,06	1,36	0,68	294	18	V
	R293R294	103,5	96,58	99,48	95,58	35	0,111	0,208	257	300	4,45	0,315	0,001	0,666	0,005	1,08	0,26	0,6	0,05	4,81	1,15	179	15	V
	R294R245	96,58	92,86	93,58	91,86	35	0,049	0,208	300	300	2,96	0,209	0,001	1,002	0,007	1,12	0,27	0,85	0,05	3,32	0,81	256	16	V
	R245R276	92,59	91,24	90,59	90,24	35	0,01	6,677	1483	1500	3,89	6,879	0,027	0,974	0,004	1,12	0,25	0,82	0,05	4,37	0,98	1235	70	V
	R276R277	91,24	90,24	89,59	89,24	35	0,01	6,677	1483	1500	3,9	6,886	0,027	0,973	0,004	1,12	0,25	0,82	0,05	4,37	0,99	1233	70	V
	R277R278	90,24	89,52	88,69	88,32	36	0,01	6,677	1481	1500	3,91	6,913	0,027	0,97	0,004	1,12	0,25	0,82	0,05	4,39	0,99	1227	70	V
	R278R279	89,52	88,56	87,72	87,36	35	0,01	6,677	1473	1500	3,96	7,004	0,027	0,957	0,004	1,12	0,25	0,8	0,05	4,45	1	1207	70	V
	R279R280	88,57	87,56	86,92	86,56	35	0,01	6,677	1481	1500	3,91	6,913	0,027	0,97	0,004	1,12	0,25	0,82	0,05	4,39	0,99	1227	70	V
	R280R281	87,56	86,99	86,06	85,69	35	0,011	6,677	1463	1500	4,04	7,142	0,027	0,939	0,004	1,12	0,25	0,79	0,05	4,52	1,02	1178	69	V
	R281R282	86,99	85,27	84,69	84,27	35	0,012	6,677	1432	1500	4,27	7,551	0,027	0,888	0,004	1,11	0,25	0,74	0,05	4,76	1,07	1106	69	V
	R282R283	85,27	83,54	82,87	82,54	35	0,009	6,677	1499	1500	3,78	6,686	0,002	0,999	0	1,12	0,23	0,85	0,04	4,24	0,87	1276	55	V
	R284R285	142,8	140,6	141,6	139,4	35	0,062	0,333	342	400	4,03	0,506	0,002	0,663	0,004	1,08	0,26	0,6	0,05	4,34	1,04	238	19	V
	R285R286	140,6	136,3	137,4	135,3	35	0,059	0,333	345	400	3,93	0,494	0,002	0,679	0,005	1,08	0,26	0,6	0,05	4,26	1,01	241	19	V
	R286R287	136,3	130,4	132,3	129,4	40	0,074	0,333	331	400	4,39	0,551	0,002	0,609	0,004	1,06	0,25	0,57	0,05	4,64	1,12	226	19	V
	R287R288	130,4	126,5	126,9	125,5	40	0,034	1,624	695	700	4,31	1,657	0,011	0,987	0,007	1,12	0,27	0,84	0,05	4,83	1,17	586	38	V
	R288R289	126,5	125,4	124,9	124,4	30	0,018	1,624	783	800	3,42	1,719	0,011	0,951	0,006	1,12	0,27	0,8	0,05	3,83	0,92	639	43	V
	R289R290	125,4	122,5	122,4	121,5	40	0,024	1,624	743	800	3,94	1,978	0,011	0,826	0,006	1,11	0,26	0,69	0,05	4,35	1,04	551	41	V
	R290R291	122,5	117,4	117,2	116,4	40	0,02	1,624	768	800	3,61	1,813	0,011	0,902	0,006	1,12	0,27	0,75	0,05	4,02	0,97	600	42	V
	R291R295	117,4	110,7	111,4	109,7	40	0,041	1,624	668	800	5,21	2,621	0,011	0,624	0,004	1,06	0,26	0,57	0,05	5,55	1,33	459	38	V
	R295R296	110,7	106,8	106,3	105,8	30	0,018	1,624	780	800	3,46	1,737	0,011	0,941	0,006	1,12	0,27	0,79	0,05	3,87	0,93	630	43	V
	R296R297	106,8	102,7	102,3	101,7	35	0,016	1,624	794	800	3,29	1,655	0,011	0,988	0,007	1,12	0,27	0,84	0,05	3,7	0,9	670	43	V
	R297R298	102,7	99,74	99,3	98,74	30	0,019	1,624	777	800	3,49	1,754	0,011	0,932	0,006	1,12	0,27	0,78	0,05	3,9	0,94	623	43	V
	R298R299	99,74	99,03	98,54	97,83	30	0,024	1,624	742	800	3,95	1,988	0,011	0,822	0,006	1,11	0,26	0,69	0,05	4,37	1,05	549	41	V
	R299R300	99,03	98,57	97,83	97,37	30	0,015	1,624	805	900	3,44	2,189	0,011	0,747	0,005	1,1	0,26	0,64	0,05	3,77	0,9	576	45	V
	R300R301	98,57	97,3	96,67	96,1	37,5	0,015	1,624	808	900	3,4	2,165	0,011	0,755	0,005	1,1	0,26	0,64	0,05	3,73	0,89	580	45	V

Tableaux IV-10: Calcul Hydraulique de SB 10

coll	Tron	Cam	Cav	Cam	Cr,av	Dist	I	Qt	Dcal	Dnor	Vps	Qps	Qeu	Rq	Rq	Rv	Rv	Rh	Rh	V	Vmin	H	Hmin	Auto
		(m)	(m)	(m)	(m)	(m)	(m/m)		(mm)	(mm)	_	(m3/s)	(m3/s)	_	min		min		min	(m/s)	(m/s)	(mm)	(mm)	curage
	R612R613	133,8	131,9	131,6	130,7	31	0,032	1,605	700	700	4,17	1,603	0,012	1,009	0,008	1,121	0,279	0,863	0,057	4,67	1,161	604	40	V
	R613R614	131,9	129,8	129,7	128,6	32	0,032	1,605	697	700	4,22	1,625	0,012	0,996	0,008	1,122	0,278	0,847	0,057	4,74	1,174	593	40	V
	R614R615	129,8	128,2	128	127	30	0,033	1,605	696	700	4,24	1,631	0,012	0,992	0,008	1,122	0,278	0,843	0,057	4,76	1,178	590	40	V
	R615R616	128,2	126,9	126,6	125,7	30	0,031	1,605	701	700	4,15	1,598	0,012	1,012	0,008	1,12	0,279	0,867	0,057	4,65	1,158	607	40	V
	R616R617	126,9	125,3	125,1	124,1	30	0,032	1,605	697	700	4,22	1,624	0,012	0,996	0,008	1,122	0,278	0,848	0,057	4,73	1,173	594	40	V
	R617R618	125,3	123,2	123	122	30	0,033	1,605	694	700	4,26	1,641	0,012	0,986	0,008	1,123	0,278	0,836	0,057	4,79	1,183	585	40	V
	R618R619	123,2	121,3	121,2	120,2	31	0,033	1,605	696	700	4,23	1,63	0,012	0,993	0,008	1,122	0,278	0,844	0,057	4,75	1,177	591	40	V
	R619R620	121,3	119,2	119	118,2	30	0,026	1,605	724	700	3,81	1,465	0,012	1,104	0,008	1,054	0,283	0,967	0,059	4,01	1,079	677	41	V
	R620R621	119,2	118,3	118	117,1	30	0,032	1,605	697	700	4,22	1,625	0,012	0,996	0,008	1,122	0,278	0,847	0,057	4,74	1,174	593	40	V
	R621R622	118,3	116	115,8	114,8	30	0,033	1,605	696	700	4,24	1,63	0,012	0,992	0,008	1,122	0,278	0,843	0,057	4,75	1,177	590	40	V
	R622R623	116	113,7	113,5	112,5	30	0,034	1,605	689	700	4,34	1,672	0,012	0,967	0,007	1,122	0,277	0,816	0,056	4,88	1,202	571	39	V
	R623R624	113,7	110,9	110,9	109,9	30	0,032	1,605	698	700	4,21	1,618	0,012	1	0,008	1,122	0,278	0,852	0,057	4,72	1,17	596	40	V
	R624R625	110,9	107	107	106	30	0,034	1,605	691	700	4,32	1,664	0,012	0,972	0,007	1,122	0,277	0,821	0,056	4,85	1,197	574	39	V
	R625R626	107	103,5	103,5	102,4	30	0,035	1,605	688	700	4,37	1,68	0,012	0,963	0,007	1,122	0,276	0,81	0,056	4,9	1,207	567	39	V
	R626R627	103,5	101,4	100,7	100,2	30	0,017	1,605	782	800	3,39	1,704	0,012	0,949	0,007	1,121	0,276	0,796	0,056	3,8	0,935	637	45	V
	R627R628	101,4	99,5	98,83	98,3	30	0,018	1,605	779	800	3,43	1,726	0,012	0,937	0,007	1,12	0,275	0,784	0,056	3,84	0,944	627	45	V
	R628R629	99,5	98,14	97,5	96,94	30	0,019	1,605	774	800	3,49	1,755	0,012	0,922	0,007	1,118	0,274	0,768	0,055	3,9	0,958	615	44	V
	R629R630	98,14	96,04	95,44	94,94	30	0,017	1,605	790	800	3,31	1,662	0,012	0,973	0,007	1,122	0,277	0,822	0,056	3,71	0,916	658	45	V
	R630R631	96,04	95,62	94,84	94,42	30	0,014	1,605	815	900	3,29	2,091	0,012	0,774	0,006	1,1	0,267	0,655	0,052	3,61	0,877	590	47	V
	R631R632	95,62	93,8	93,12	92,6	30	0,017	1,605	784	800	3,37	1,694	0,012	0,955	0,007	1,121	0,276	0,802	0,056	3,78	0,93	642	45	V
	R632R633	93,8	92,2	91,5	91	30	0,017	1,605	787	800	3,34	1,677	0,012	0,964	0,007	1,122	0,276	0,812	0,056	3,74	0,923	650	45	V
	R633R634	92,2	91,92	91	90,72	30	0,009	1,605	880	900	2,68	1,705	0,012	0,949	0,007	1,121	0,276	0,796	0,056	3	0,739	716	50	V
	R441R442	134,3	134	133,1	132,8	25	0,012	0,09	285	300	1,46	0,103	7E-04	0,879	0,007	1,112	0,273	0,73	0,055	1,62	0,399	219	16	V
	R442R443	134	132,6	132,8	131,4	30	0,047	0,09	221	300	2,88	0,203	7E-04	0,446	0,004	0,962	0,251	0,468	0,046	2,77	0,721	140	14	V
	R443R444	132,6	130,9	131,4	129,7	30	0,057	0,09	213	300	3,19	0,225	7E-04	0,403	0,003	0,932	0,248	0,44	0,045	2,97	0,792	132	13	V
	R445R446	134,2	129,5	131,2	128,3	35	0,083	0,09	198	300	3,84	0,272	7E-04	0,334	0,003	0,888	0,245	0,395	0,043	3,41	0,94	118	13	V
	R446R444	129,7	127,6	128,5	126,4	30	0,07	0,36	344	400	4,27	0,537	0,003	0,676	0,005	1,082	0,263	0,602	0,051	4,62	1,123	241	20	V
	R444R447	127,6	125,5	126,4	124,3	35	0,059	0,36	355	400	3,93	0,494	0,003	0,735	0,006	1,094	0,266	0,633	0,052	4,3	1,045	253	21	V
	R447R448	125,5	123,7	124,3	122,5	35	0,051	0,36	365	400	3,66	0,459	0,003	0,791	0,006	1,102	0,269	0,665	0,053	4,03	0,983	266	21	V
	R448R449	123,7	122,1	122,5	120,9	30	0,054	0,36	362	400	3,75	0,471	0,003	0,771	0,006	1,099	0,268	0,653	0,053	4,12	1,004	261	21	V
	R449R450	122,1	121,1	120,9	119,9	30	0,032	0,36	400	400	2,87	0,361	0,003	1,007	0,008	1,121	0,28	0,86	0,058	3,22	0,804	344	23	V
	R450R451	121,1	120,1	119,9	118,9	25	0,043	0,36	377	400	3,36	0,423	0,003	0,859	0,007	1,11	0,272	0,714	0,055	3,73	0,916	285	22	V
	R451R452	120,1	119,1	118,9	117,9	25	0,04	0,36	382	400	3,23	0,406	0,003	0,894	0,007	1,114	0,274	0,743	0,055	3,6	0,886	297	22	V
	R453R454	129,9	126,3	128,7	125,1	33	0,111	0,135	219	300	4,44	0,314	0,001	0,434	0,003	0,954	0,25	0,46	0,045	4,23	1,109	138	14	V
	R454R455	126,3	123,2	125,1	122	32	0,097	0,135	224	300	4,15	0,293	0,001	0,464	0,004	0,975	0,252	0,48	0,046	4,04	1,044	144	14	V
	R455R452	123,2	119,1	122	117,9	32	0,129	0,135	212	300	4,8	0,339	0,001	0,402	0,003	0,932	0,248	0,439	0,045	4,47	1,191	132	13	V
	R452R456	119,1	113,2	115,1	112,2	35	0,08	0,676	425	400	4,58	0,575	0,005	1,184	0,009	0,825	0,289	1,006	0,061	3,78	1,323	402	25	V
	R456R457	113,2	109,9	110,2	108,9	32	0,042	0,676	480	500	3,84	0,755	0,005	0,903	0,007	1,115	0,275	0,75	0,055	4,29	1,055	375	28	V
	R457R458	109,9	108,6	108,7	107,4	33,25	0,038	0,676	488	500	3,67	0,721	0,005	0,945	0,007	1,12	0,277	0,792	0,056	4,11	1,016	396	28	V
	R458R459	108,6	107,6	107,4	106,4	35	0,028	0,676	517	600	3,55	1,004	0,005	0,679	0,005	1,083	0,263	0,603	0,051	3,84	0,933	362	30	V
	R460R461	116,5	115,4	115,3	114,2	28	0,04	0,36	382	400	3,24	0,408	0,003	0,891	0,007	1,114	0,274	0,74	0,055	3,61	0,889	296	22	V
	R461R462	115,4	111,1	112,1	110,1	30	0,064	0,36	350	400	4,08	0,513	0,003	0,709	0,006	1,09	0,265	0,619	0,051	4,44	1,079	248	21	V
	R462R459	111,1	107,6	108,1	106,6	30	0,05	0,36	367	400	3,61	0,454	0,003	0,8	0,006	1,103	0,269	0,671	0,053	3,98	0,973	269	21	V
	R459R463	107,6	104,9	105	103,9	35	0,032	1,605	698	700	4,21	1,62	0,012	0,998	0,008	1,122	0,278	0,85	0,057	4,72	1,171	595	40	v
	R463R464	104,9	102,6	102,7	101,6	35	0,032	1,605	699	700	4,18	1,609	0,012	1,005	0,008	1,121	0,279	0,858	0,057	4,69	1,165	601	40	V
	R464R465	102,6	101,5	101,4	100,3	33	0,032	1,605	697	700	4,22	1,626	0,012	0,995	0,008	1,122	0,278	0,846	0,057	4,74	1,174	593	40	V

Suite de tableau IV-10

coll	Tron	Cam	Cav	Cam	Cr,av	Dist			Dcal	Dnor		Qps	Qeu		Rq		Rv		Rh	V	Vmin	Н	Hmin	Auto
		(m)	(m)	(m)	(m)	(m)	(m/m)	Qt	(mm)	(mm)	Vps	(m3/s)	(m3/s)	Rq	min	Rv	min	Rh	min	(m/s)	(m/s)	(mm)	(mm)	curage
	R389R390	139,2	138,9	138	137,7	33	0,011	0,18	377	400	1,68	0,211	0,001	0,859	0,007	1,11	0,272	0,714	0,055	1,87	0,458	285	22	V
	R390R391	138,8	137,8	137,6	136,6	35	0,028	0,18	316	400	2,69	0,338	0,001	0,537	0,004	1,022	0,255	0,525	0,048	2,75	0,688	210	19	V
	R391R392	137,8	137,4	136,6	136,2	35	0,012	0,18	371	400	1,75	0,22	0,001	0,824	0,006	1,106	0,271	0,687	0,054	1,94	0,475	275	22	V
	R393R394	139,6	138,4	138,4	137,2	25	0,048	0,045	169	300	2,92	0,207	4E-04	0,22	0,002	0,819	0,238	0,323	0,041	2,39	0,697	97	12	V
	R394R392	138,4	137,4	137,2	136,2	25	0,04	0,045	175	300	2,67	0,189	4E-04	0,241	0,002	0,832	0,24	0,336	0,041	2,22	0,639	101	12	V
	R392R395	137,4	133,8	134,7	132,8	35	0,054	0,45	393	400	3,76	0,473	0,004	0,961	0,008	1,122	0,278	0,808	0,057	4,22	1,044	323	23	V
	R395R396	133,8	131,2	131,5	130	30	0,051	0,45	398	400	3,63	0,456	0,004	0,995	0,008	1,122	0,279	0,846	0,057	4,08	1,015	339	23	V
	R396R397	131,2	129,6	130	128,4	30	0,054	0,45	393	400	3,76	0,473	0,004	0,96	0,008	1,122	0,278	0,808	0,057	4,22	1,044	323	23	V
	R397R398	125,6	122,4	122,9	121,4	28	0,053	0,45	394	400	3,74	0,469	0,004	0,967	0,008	1,122	0,278	0,815	0,057	4,19	1,038	326	23	V
	R398R399	122,4	118,7	119,2	117,7	27	0,055	0,45	392	400	3,79	0,476	0,004	0,953	0,008	1,121	0,277	0,801	0,056	4,25	1,051	320	23	V
	R400R401	120,7	119,3	119,5	118,1	30	0,047	0,045	170	300	2,9	0,205	0,004	0,221	0,002	0,819	0,238	0,323	0,041	2,38	0,692	97	12	V
	R401R399	120	118,7	118,8	117,5	30	0,043	0,045	173	300	2,76	0,195	0,004	0,233	0,002	0,827	0,239	0,331	0,041	2,28	0,659	99	12	V
	R399R402	118,7	117,6	117,5	116,4	25	0,042	0,811	513	600	4,36	1,233	0,006	0,663	0,005	1,078	0,262	0,595	0,05	4,7	1,143	357	30	V
	R402R403	117,6	116,6	116,4	115,4	25	0,042	0,811	513	600	4,35	1,23	0,006	0,664	0,005	1,079	0,262	0,596	0,05	4,69	1,141	357	30	V
	R403R404	116,6	114,2	115,4	113	30	0,078	0,811	458	500	5,23	1,027	0,006	0,796	0,006	1,102	0,269	0,669	0,053	5,76	1,407	334	27	V
10	R404R405	114,2	113,2	113	112	30	0,033	0,811	536	600	3,87	1,093	0,006	0,748	0,006	1,096	0,267	0,64	0,052	4,24	1,03	384	31	V
10	R405R406	113,2	111,9	112	110,7	27,5	0,05	0,811	497	500	4,19	0,822	0,006	0,994	0,008	1,122	0,279	0,846	0,057	4,7	1,169	423	29	V
ļ	R341R342	122,7	119,9	121,5	118,7	30	0,094	0,225	273	300	4,09	0,289	0,002	0,785	0,006	1,101	0,269	0,662	0,053	4,5	1,098	199	16	V
ļ	R342R343	119,9	119	118,7	117,8	30	0,031	0,225	337	400	2,83	0,356	0,002	0,638	0,005	1,07	0,261	0,582	0,05	3,03	0,738	233	20	V
ŀ	R343R344	119	117,7	117,8	116,5	30	0,043	0,225	316	400	3,37	0,423	0,002	0,536	0,004	1,021	0,255	0,525	0,048	3,44	0,86	210	19	V
	R344R345	117,7	115,5	116,5	114,3	30	0,072	0,225	287	300	3,58	0,253	0,002	0,898	0,007	1,115	0,274	0,746	0,055	3,99	0,982	224	17	V
	R345R346	115,5	114,1	114,3	112,9	30	0,047	0,225	312	400	3,49	0,439	0,002	0,518	0,004	1,01	0,254	0,514	0,047	3,52	0,888	205	19	V
ŀ	R253R254	147,1	144,6	145,9	143,4	35	0,073	0,135	237	300	3,59	0,254	0,001	0,536	0,004	1,021 0,994	0,255	0,525	0,048	3,67	0,918	157	14	V
ŀ	R254R255	144,6	142,4	143,4	141,2	25	0,086	0,135	230	300	3,9	0,276	0,001	0,493	0,004	- ,	0,253	0,499	0,047	3,88	0,988	150	14	V
ŀ	R256R257 R257R258	144,4 143,9	143,3 143	143,2 142,7	142,1 141.8	35 35	0,033	0,135	275 291	300 300	2,41	0,171 0,146	0,001	0,798	0,006	1,103	0,269	0,67 0,779	0,053	2,66	0,65	201	16 17	V
ŀ	R258R259	143,9	142,8	142,7	141,6	35	0.007	0,135	363	400	1,39	0,146	0.001	0,932	0.006	1,119	0,276	0,779	0.053	1,53	0,371	263	21	V
ŀ	R259R255	142.8	142,8	141,6	141.1	45.5	0.01	0,135	344	400	1,61	0,173	0.001	0,778	0.005	1.081	0,263	0,038	0.051	1,74	0,374	240	20	V
ŀ	R255R260	134,5	133,2	133,3	132	35	0,035	0,133	425	500	3,53	0,693	0,001	0,655	0,005	1,076	0,262	0,591	0,051	3,8	0,423	295	25	V
ŀ	R260R261	133,2	131,3	132	130,1	35	0.054	0.45	393	400	3,76	0,473	0.004	0,033	0.008	1,122	0,202	0,807	0,057	4,22	1.045	323	23	V
ŀ	R261R252	131.3	129.6	130,1	128,4	25	0.069	0,45	376	400	4,24	0,533	0.004	0.852	0.007	1,109	0,273	0,708	0.054	4,7	1.153	283	22	V
ŀ	R248R249	134.6	133,7	133.4	132,5	36,5	0.025	0,135	288	300	2,12	0,333	0.001	0,907	0.007	1,116		0,754	0.056	2,37	0,584	226	17	V
ŀ	R249R250	133.7	131.9	132.5	130.7	35	0.052	0.135	253	300	3.03	0.214	0.001	0.637	0.005	1.07	0.261	0.581	0.05	3,24	0.789	174	15	V
ŀ	R250R251	131,9	131,1	130,7	129,9	35	0,023	0,135	294	300	2,02	0,142	0,001	0,956	0,008	1,121	0,277	0,803	0,057	2,26	0,559	241	17	V
ŀ	R251R252	131,1	129,6	129,9	128,4	35	0,041	0,135	263	300	2,71	0,192	0,001	0,711	0,006	1,09	0,265	0,62	0,051	2,95	0,717	186	15	V
ţ	R252R262	129,6	127,3	127,3	126,1	30	0,04	0,721	496	500	3,75	0,736	0,006	0,987	0,008	1,122	0,279	0,838	0,057	4,21	1,045	419	29	V
ţ	R262R263	123,2	120,7	120,7	119,5	30	0,043	0,721	490	500	3,87	0,76	0,006	0,955	0,008	1,121	0,277	0,803	0,057	4,34	1,074	401	28	V
ļ	R263R264	120,7	118,7	119	117,7	30	0,043	0,721	488	500	3,91	0,767	0,006	0,947	0,007	1,121	0,277	0,794	0,056	4,38	1,081	397	28	V
ľ	R265R266	132,1	131,7	130,9	130,4	25	0,018	0,18	343	400	2,16	0,271	0,001	0,67	0,005	1,08	0,263	0,599	0,051	2,33	0,566	240	20	V
ľ	R266R267	131,7	125,2	127,7	124,2	31	0,114	0,18	242	300	4,51	0,319	0,001	0,57	0,004	1,04	0,257	0,545	0,048	4,69	1,159	163	15	V
ļ	R267R268	125,2	124,5	124	123,3	25	0,028	0,18	315	300	2,23	0,158	0,001	1,151	0,009	0,95	0,287	1	0,061	2,12	0,641	300	18	V
ļ	R268R269	124,5	122,5	123,3	121,3	25	0,08	0,18	259	300	3,77	0,266	0,001	0,682	0,005	1,083	0,263	0,605	0,051	4,08	0,992	181	15	V
ļ	R269R270	122,5	120,6	121,3	119,4	30	0,063	0,18	271	300	3,34	0,236	0,001	0,77	0,006	1,099	0,268	0,653	0,053	3,67	0,893	196	16	V
j	R270R264	120,6	118,7	119,4	117,5	30	0,065	0,18	269	300	3,4	0,24	0,001	0,757	0,006	1,098	0,267	0,645	0,052	3,73	0,907	194	16	V
ľ	R362R363	121,7	120,7	120,5	119,5	25	0,04	0,27	343	400	3,23	0,406	0,002	0,671	0,005	1,081	0,263	0,599	0,051	3,49	0,848	240	20	V

Suite de tableau IV-10

coll	Tron	Cam	Cav	Cam	Cr,av	Dist	1	Qt	Dcal	Dnor	Vps	Qps	Qeu	Rq	Rq	Rv	Rv	Rh	Rh	V	Vmin	Н	Hmin	Auto
		(m)	(m)	(m)	(m)	(m)	(m/m)		(mm)	(mm)	-	(m3/s)	(m3/s)	-	min		min		min	(m/s)	(m/s)	(mm)	(mm)	curage
	R363R364	120,7	119,6	119,5	118,4	25	0,044	0,27	338	400	3,38	0,424	0,002	0,642	0,005	1,072	0,261	0,584	0,05	3,62	0,881	234	20	V
	R364R365	119,6	118	118,4	116,8	25	0,062	0,27	317	400	4,01	0,504	0,002	0,541	0,004	1,024	0,256	0,528	0,048	4,1	1,025	211	19	V
10	R365R366	118	116,8	116,8	115,6	25	0,049	0,27	330	400	3,58	0,45	0,002	0,605	0,005	1,057	0,259	0,564	0,049	3,79	0,929	226	20	V
10	R366R367	116,1	115,1	114,9	113,9	25	0,04	0,27	344	400	3,22	0,405	0,002	0,673	0,005	1,081	0,263	0,6	0,051	3,48	0,846	240	20	V
	R367R368	115,1	113,9	113,9	112,7	35	0,035	0,27	353	400	3,01	0,378	0,002	0,721	0,006	1,092	0,265	0,625	0,052	3,28	0,798	250	21	V

Tableaux IV-11 : Calcul Hydraulique de SB 11

coll	Tron	Cam	Cav	Cam	Cr,av	Dist	1	Qt	Dcal	Dnor	Vps	Qps	Qeu	Rq	Rq	Rv	Rv	Rh	Rh	V	Vmin	H ()	Hmin	Auto
		(m)	(m)	(m)	(m)	(m)	(m/m)		(mm)	(mm)		(m3/s)	(m3/s)		min		min		min	(m/s)	(m/s)	(mm)	(mm)	curage
	R3R6	105,43	103,56	104,23	102,36	22	0,085	0,081	190	200	2,97	0,09	0,0013	0,89	0,01	1,11	0,32	0,74	0,07	3,31	0,95	147	15	V
	R6R7	103,56	100	102,36	98,8	21	0,17	0,081	167	200	4,19	0,13	0,0013	0,63	0,01	1,07	0,29	0,58	0,06	4,47	1,23	115	13	V
	R8R9	100	99,14	98,8	97,94	35	0,025	0,122	279	300	2,09	0,15	0,002	0,84	0,01	1,11	0,31	0,7	0,07	2,32	0,66	209	21	V
	R9R7	99,14	96,45	97,94	95,25	30	0,089	0,122	219	300	3,99	0,28	0,002	0,44	0,01	0,96	0,27	0,46	0,06	3,82	1,09	139	17	V
	R7R10	96,45	95,07	95,25	93,87	35	0,039	0,529	443	500	3,72	0,73	0,0085	0,74	0,01	1,09	0,3	0,63	0,07	4,07	1,13	317	34	V
	R10R11	95,07	94,55	93,87	93,35	32,4	0,016	0,529	524	600	2,68	0,76	0,0085	0,71	0,01	1,09	0,3	0,62	0,07	2,92	0,81	372	40	V
	R11R12	94,55	94,02	93,35	92,82	33,3	0,016	0,814	617	700	2,96	1,14	0,0131	0,73	0,01	1,09	0,3	0,63	0,07	3,24	0,9	440	47	V
	R12R13	95,75	94,22	94,55	93,02	35	0,043	0,814	511	600	4,41	1,25	0,0131	0,66	0,01	1,08	0,3	0,6	0,06	4,76	1,31	357	39	V
	R13R14	94,22	94,02	93,02	92,82	35	0,006	0,814	747	800	1,94	0,98	0,0131	0,85	0,01	1,11	0,31	0,7	0,07	2,15	0,61	563	57	V
	R26R27	123,63	118,31	119,13	117,31	30	0,06	0,326	341	400	3,97	0,5	0,0053	0,66	0,01	1,08	0,3	0,6	0,06	4,28	1,18	238	26	V
	R27R28	118,31	111,73	112,81	110,73	30	0,07	0,326	332	400	4,26	0,54	0,0053	0,62	0,01	1,06	0,29	0,57	0,06	4,53	1,24	228	25	V
	R28R29	111,73	107,61	107,23	106,61	30	0,021	0,326	417	400	2,31	0,29	0,0053	1,14	0,02	0,99	0,34	0,99	0,08	2,28	0,79	397	33	V
	R30R31	110,81	110,18	109,61	108,98	30	0,021	0,122	288	300	1,92	0,14	0,002	0,91	0,01	1,12	0,32	0,76	0,07	2,15	0,62	228	22	V
	R31R29	110,18	107,61	108,98	106,41	30	0,086	0,122	221	300	3,91	0,28	0,002	0,45	0,01	0,96	0,27	0,47	0,06	3,77	1,07	141	17	V
	R29R32	107,61	102,48	103,41	101,48	30	0,064	0,448	380	400	4,1	0,51	0,0072	0,88	0,01	1,11	0,32	0,73	0,07	4,56	1,3	294	29	V
	R32R33	102,48	98,46	98,98	97,46	30	0,051	0,448	397	400	3,64	0,46	0,0072	0,99	0,02	1,12	0,33	0,84	0,08	4,09	1,2	338	31	V
	R33R14	98,46	94,02	94,46	93,02	30	0,048	0,448	401	400	3,53	0,44	0,0072	1,03	0,02	1,12	0,33	0,88	0,08	3,95	1,17	353	32	V
	R14R34	94,02	89,66	89,32	88,66	30	0,022	1,914	799	800	3,81	1,92	0,0308	1,01	0,02	1,12	0,33	0,87	0,08	4,27	1,26	695	63	V
	R34R34a	89,66	86,13	85,76	85,13	30	0,021	1,914	796	800	3,72	1,87	0,0308	1,04	0,02	1,11	0,33	0,9	0,08	4,14	1,24	719	63	V
	R34aRS46	86,13	85,05	84,73	84,05	30	0,022	1,914	797	800	3,85	1,93	0,0308	1,01	0,02	1,12	0,33	0,86	0,08	4,31	1,27	687	62	V
	R44R45	133,27	128,88	131,27	127,88	35	0,097	0,204	261	300	4,15	0,29	0,0033	0,7	0,01	1,09	0,3	0,62	0,07	4,52	1,25	185	20	V
	R45R46	128,88	124,08	125,88	123,08	30	0,093	0,204	263	300	4,07	0,29	0,0033	0,72	0,01	1,09	0,3	0,62	0,07	4,45	1,23	187	20	V
	R46R47	124,08	118,08	121,08	117,08	30	0,133	0,204	246	300	4,87	0,34	0,0033	0,6	0,01	1,06	0,29	0,56	0,06	5,14	1,41	169	19	V
	R47R48	118,08	114,26	115,08	113,26	30	0,061	0,204	285	300	3,29	0,23	0,0033	0,89	0,01	1,11	0,32	0,74	0,07	3,66	1,05	222	22	V
	R48R43	114,26	110,81	111,26	109,81	30	0,048	0,204	298	300	2,93	0,21	0,0033	1	0,02	1,12	0,33	0,85	0,08	3,29	0,97	255	23	V
	R49R50	133,46	127,66	129,66	126,66	30	0,1	0,204	260	300	4,22	0,3	0,0033	0,69	0,01	1,09	0,3	0,61	0,07	4,59	1,26	183	20	V
	R50R51	127,66	122,04	123,86	121,04	30	0,094	0,204	263	300	4,09	0,29	0,0033	0,72	0,01	1,09	0,3	0,62	0,07	4,46	1,23	187	20	V
	R51R52	122,04	117,97	119,04	116,97	30	0,069	0,204	279	300	3,5	0,25	0,0033	0,84	0,01	1,11	0,31	0,7	0,07	3,87	1,1	209	21	V
	R52R53	117,97	113,42	114,97	112,42	30	0,085	0,204	268	300	3,89	0,27	0,0033	0,75	0,01	1,1	0,31	0,64	0,07	4,27	1,19	193	20	V
	R53R43	113,42	110,81	111,42	109,81	30	0,054	0,204	292	300	3,09	0,22	0,0033	0,95	0,02	1,12	0,32	0,79	0,08	3,47	1	238	23	V
	R43R54	110,81	107,45	107,71	106,45	30	0,042	0,733	495	500	3,84	0,75	0,0118	0,99	0,02	1,12	0,33	0,84	0,08	4,31	1,26	419	39	V
	R54R55	107,45	103,43	103,65	102,43	30	0,041	0,733	497	500	3,78	0,74	0,0118	1	0,02	1,12	0,33	0,85	0,08	4,24	1,25	427	39	V

SUITE DE Tableaux IV-11

coll	Tron	Cam (m)	Cav (m)	Cam (m)	Cr,av (m)	Dist (m)	l (m/m)	Qt	Dcal (mm)	Dnor (mm)	Vps	Qps (m3/s)	Qeu (m3/s)	Rq	Rq min	Rv	Rv min	Rh	Rh min	V (m/s)	Vmin (m/s)	H (mm)	Hmin (mm)	Auto curage
	R55R56	103,43	99,38	99,71	98,38	32	0,041	0,733	496	500	3,81	0,75	0,0118	0,99	0,02	1,12	0,33	0,85	0,08	4,28	1,25	423	39	V
	R59R60	125,27	123,74	124,07	122,54	30	0,051	0,204	295	300	3,01	0,21	0,0033	0,97	0,02	1,12	0,33	0,82	0,08	3,38	0,98	247	23	V
	R60R61	123,74	119,81	120,24	118,81	28	0,051	0,204	295	300	3,02	0,21	0,0033	0,97	0,02	1,12	0,33	0,82	0,08	3,39	0,99	245	23	V
	R61R62	119,81	113,74	116,31	112,74	32	0,111	0,204	255	300	4,45	0,31	0,0033	0,66	0,01	1,08	0,3	0,59	0,06	4,79	1,32	178	19	V
	R62R63	113,74	106,94	109,24	105,94	34	0,097	0,204	261	300	4,16	0,29	0,0033	0,7	0,01	1,09	0,3	0,62	0,07	4,53	1,25	185	20	V
	R63R64	106,94	101,03	103,44	100,03	32	0,106	0,204	257	300	4,35	0,31	0,0033	0,67	0,01	1,08	0,3	0,6	0,06	4,7	1,29	180	19	V
	R64R56	101,03	99,38	99,73	98,38	28	0,048	0,204	298	300	2,93	0,21	0,0033	1	0,02	1,12	0,33	0,85	0,08	3,28	0,96	256	23	V
	R56R65	99,38	96,44	96,18	95,44	26	0,029	1,344	667	700	3,97	1,53	0,0217	0,89	0,01	1,11	0,32	0,74	0,07	4,43	1,27	519	52	V
	R65R66	96,44	92,4	92,14	91,4	29	0,026	1,344	681	700	3,75	1,44	0,0217	0,95	0,01	1,12	0,32	0,79	0,08	4,2	1,22	554	53	V
11	R66R67	92,4	89,15	88,8	88,15	28	0,023	1,344	695	700	3,55	1,37	0,0217	1	0,02	1,12	0,33	0,85	0,08	3,99	1,17	595	54	V
	R68R69	95,4	93,87	94,2	92,67	30	0,051	0,244	316	400	3,65	0,46	0,0039	0,54	0,01	1,02	0,28	0,53	0,06	3,74	1,04	211	24	V
	R69R70	93,87	92,42	92,67	91,22	30	0,048	0,244	319	400	3,56	0,45	0,0039	0,56	0,01	1,03	0,29	0,54	0,06	3,67	1,02	215	24	V
	R70R67 R71R72	92,42 96,96	89,15 96,06	90,22 95,76	88,15 94,86	28 30	0,074	0,244	295 349	300 400	3,62	0,26 0,35	0,0039	0,97 0,7	0,02	1,12 1,09	0,33	0,82	0,08	4,06 3,05	1,18 0.84	246 247	23 26	V
	R72R73	96.06	95,65	94,86	94,45	30	0,03	0,244	404	500	2,81 2,19	0,33	0.0039	0,7	0,01	1,09	0,3	0,62	0,07	2,29	0,63	274	30	V
	R73R74	95,65	93,62	94,86	92,42	30	0,014	0,244	299	300	3,47	0,43	0,0039	1,01	0,01	1,12	0,29	0,33	0,08	3,89	1,15	260	23	V
	R74R75	93,62	88,43	90,12	87,43	28	0,096	0,244	281	300	4,13	0,29	0,0039	0,85	0,02	1,11	0,33	0,71	0,03	4,58	1,13	212	22	V
	R75R67	88.43	87,15	87,23	85,95	20	0,064	0,244	303	400	4,08	0,51	0,0039	0,48	0,01	0,99	0,28	0,49	0,06	4,03	1,14	197	23	V
	R67R75	87.15	86,22	85,95	85,02	19	0,049	0,244	318	400	3,59	0,45	0,0039	0,55	0,01	1,03	0,29	0,53	0,06	3,69	1,02	213	24	V
	R76R77	86,22	83,96	83,72	82,96	27	0.028	2,158	800	800	4,3	2,16	0,0348	1,02	0.02	1,12	0,33	0,87	0,08	4,81	1,42	696	63	V
	R77RBR2	83,96	83,28	82,76	82,08	28	0,024	2,158	822	900	4,32	2,75	0,0348	0,8	0,01	1,1	0,31	0,67	0,07	4,76	1,34	603	63	V

Tableaux N12 : Calcul Hydraulique de SB 12

coll	Tron	Carr	Com	Carr	Cr,av	Dist	7		Deal	Duan		Oma	Oan		D a		D.,		DL.	V	Vania	77	77	Auto
con	17011	Cam (m)	Cav (m)	Cam (m)	(m)	(m)	(m/m)	Ot	Dcal (mm)	Dnor (mm)	Vps	Qps $(m3/s)$	Qeu (m3/s)	Rq	Rq min	Rv	Rv min	Rh	Rh min	(m/s)	Vmin (m/s)	H (mm)	Hmn (mm)	curage
	R101R102	110.7	109.3	109,5	108,1	25	0.053	0,09	215	300	3,07	0,217	7E-04	0,416	0,003	0,941	0,248	0,448	0,045	2,89	0.762	134	13	V
	R102R103	109.3	109,3	109,3	107.1	25	0.042	0.09	224	300	2,75	0,194	7E-04 7E-04	0,410	0.003	0,941	0,248	0,480	0,045	2.68	0,702	144	14	V
	R103R104	106,6	104.1	105,4	107,1	25	0.097	0.09	192	300	4,15	0,194	7E-04	0,308	0.002	0,872	0,230	0,378	0,040	3,62	1.006	113	13	V
	R104R100	100,0	102.5	102.9	101,3	25	0,064	0,09	208	300	3,37	0,238	7E-04	0,308	0,002	0,872	0,242	0,378	0,042	3,09	0,830	127	13	V
	R100R105	104,1	102,3	102,9	98,88	35	0,033	1,227	628	700	4,26	1,640	0.01	0,379	0,003	1,097	0,240	0,424	0,053	4,68	1,144	451	37	V
	R105R106	102,3	99,61	98,88	98,41	39,5	0,033	1,227	760	800	2,80	1,408	0,01	0,734	0,007	1,112	0,208	0,729	0,056	3,12	0.770	583	44	V
	R107R108	105,1	104,9	104,7	103,7	30,3	0,012	0,045	180	300	2,47	0.175	3E-04	0,878	0,007	0,843	0,240	0,729	0,030	2,08	0,770	104	12	V
	R108R109	103,9	104,9	104,7	103,7	30	0,054	0,045	165	300	3,11	0,220	3E-04	0,239	0,002	0,808	0,240	0,347	0,041	2,51	0,738	94	12	V
	R109R110	103,2	101.2	103,7	100	20	0,100	0,045	147	300	4,22	0,220	3E-04	0,203	0,002	0,754	0,234	0,313	0,039	3,18	0,738	82	12	V
	R110R106	103,2	98,62	102	97,42	20	0,131	0,045	140	300	4,83	0,298	3E-04	0,131	0,001	0,734	0,234	0,274	0,039	3,50	1,126	77	12	V
	R106R115	98,61	94,82	94,61	93,82	37	0,021	1,451	725	800	3,75	1,885	0,012	0,132	0,001	1,100	0,269	0,656	0,053	4,13	1,009	525	43	V
	R115R116	94,82	91,06	91,02	90,06	37	0,021	1,451	699	700	3,78	1,454	0,012	1,006	0,008	1,121	0,281	0,859	0,058	4,13	1,062	601	41	V
	R116R117	91,06	88,12	88,06	86,92	37	0,026	1,451	677	700	4,12	1,434	0,012	0,923	0,008	1,121	0,281	0,839	0,056	4,60	1,140	539	39	V
	R118R117	93.57	91.24	92.37	90.04	30	0.078	0.134	233	300	3,72	0.263	0.001	0,923	0.004	1.009	0,277	0,770	0.047	3,75	0.941	154	14	V
	R119R120	91,24	90.27	90.04	89.07	30	0.032	0.134	275	300	2,40	0,203	0.001	0,313	0.006	1.103	0,233	0.671	0.052	2,65	0,941	201	16	V
	R120R117	90.27	88.12	89.07	86.92	30	0.071	0,134	237	300	3,56	0,170	0.001	0,799	0.004	1.022	0,267	0.526	0.047	3,64	0,041	158	14	V
	R117R121	88,12	85,31	85,12	84,11	35	0,029	1,809	744	800	4,37	2.198	0,001	0,830	0,004	1,106	0,234	0,520	0,047	4,84	1.186	553	43	V
	R121R121	85.31	84.05	83.31	82.85	35	0.013	1,809	865	800	2.92	1.469	0.015	1.242	0.010	0,448	0.293	0.959	0.063	1.31	0.855	767	50	V
		,-	- ,		- ,		.,	,		900	<i>y-</i>	,	- ,	,	0.007		.,	0,939	.,	,	0,855		49	V
	R122R123	84,05	83,56	82,85 107.6	82,36		0,015	1,809	844	300	3,37	2,145	0,015	0,850	- ,	1,109	0,272	- ,	0,055	3,74	. ,	636 184	15	V
	R148R149	108,8	105,9 104	,-	104,7	38,2	- ,	0,179	262		3,66	0,258	0,001	0,699	0,005	1,088	-, -	0,614	0,050	3,98	0,959			V
12	R149R150	,-		104,7	102,8		0,049	0,179	283	300	2,96	0,210	0,001	0,862	0,006	1,110	0,270	0,716	0,054	3,29	0,802	215	16	V
14	R151R152 R152R153	119,3 118.7	118,7 115.9	118,1 116.9	117,5	25 30	0,025	0,179	322 264	400 300	2,55 3,57	0,320	0,001	0,564	0,004	1,037	0,256	0,541	0,048	2,64 3.90	0,651	216 187	19 15	V
	R153R154	- , .	110,9	- 7-	109	32	0,072	-		300		0,233	0.001	- ,	0.003	1,026	0,263	0,622	0.047	- ,	1.196		14	V
	R153R154 R154R150	115,9		112,9				0,179	238		4,70	0,332	-,	0,544	- ,	-	-		- ,	4,82	,	159		V
		110	104,6	107	103,4	30	0,121	0,179		300	4,64	- ,	0,001	0,551	0,004	1,030	0,255	0,534	0,047	4,77	1,181	160	14	V
	R150R155	104,6	101,3	102,1	100,1	33	0,060	0,583	424	500	4,61	0,904	0,004	0,649	0,005	1,074	0,260	0,588	0,049	4,95	1,197	294	25	•
	R155R156	101,3	97,15	98,26	96,15	35	0,060	0,583	424	500	4,60	0,904	0,004	0,650	0,005	1,074	0,260	0,588	0,049	4,94	1,196	294	25	V
	R156R123	97,15	94,25	94,15	93,25	33	0,027	0,583	492	500	3,09	0,608	0,004	0,966	0,007	1,122	0,276	0,814	0,056	3,47	0,853	407	28	V
	R157R123	94,23	91,25	93,03	90,05	30	0,099	0,045	148	300	4,20	0,297	3E-04	0,152	0,001	0,754	0,234	0,274	0,039	3,17	0,984	82	12	V V
	R123R158	91,25	87,53	87,25	86,33	38	0,024	2,706	894	900	4,33	2,753	0,021	0,991	0,008	1,122	0,279	0,841	0,057	4,86	1,206	757	51	V
	R158R159	87,53	85,4	85,13	84,2	38	0,024	2,706	893	900	4,34	2,759	0,021	0,988	0,008	1,122	0,279	0,839	0,057	4,87	1,208	755	51	V
	R159-RBR3	79,4	78,64	78,2	77,44	-	.,.	2,706	909	1000	4,44	3,488	0,021	0,782	0,006	1,101	0,268	0,660	0,053	4,89	1,190	660	53	V
	R302R303	115,4	113,3	114,2	112,1	25	0,084	0,224	279	300	3,86	0,273	0,002	0,828	0,006	1,106	0,269	0,690	0,053	4,27	1,037	207	16	V
	R303R304	113,3	111,6	112,1	110,4	20	0,084	0,224	278	300	3,88	0,274	0,002	0,824	0,006	1,106	0,269	0,688	0,053	4,28	1,041	206	16	V
	R304R305	111,6	108,2	109,1	107,2	30	0,063	0,224	294	300	3,35	0,237	0,002	0,952	0,007	1,121	0,275	0,800	0,056	3,76	0,922	240	17	V
	R305R306	108,2	101,8	104	100,8	30	0,106	0,224	267	300	4,35	0,307	0,002	0,735	0,006	1,094	0,264	0,633	0,051	4,76	1,148	190	15	•
	R306R301	101,8	97,3	99,32	96,3	30	0,101	0,224	269	300	4,23	0,299	0,002	0,755	0,006	1,097	0,265	0,644	0,052	4,64	1,122	193	15	V
	R307R308	99,33	98,01	98,13	96,81	30	0,044	0,045	172	300	2,80	0,198	3E-04	0,229	0,002	0,824	0,238	0,328	0,041	2,30	0,666	98	12	V
	R308R301	98,01	96,3	96,81	95,1	30	0,057	0,045	164	300	3,18	0,225	3E-04	0,201	0,002	0,804	0,237	0,310	0,040	2,56	0,753	93	12	V
	R301R309	96,3	93,23	93,2	92,23	35	0,028	2,162	802	800	4,28	2,149	0,015	1,013	0,007	1,120	0,274	0,867	0,055	4,79	1,173	694	44	V
	R309R310	93,23	89,02	89,03	88,02	35	0,029	2,162	796	800	4,35	2,188	0,015	0,995	0,007	1,122	0,273	0,846	0,055	4,88	1,190	677	44	V
	R310R311	89,02	86,02	86,02	85,02	35	0,029	2,162	798	800	4,34	2,179	0,015	0,999	0,007	1,122	0,274	0,851	0,055	4,86	1,186	681	44	V
	R311R312	86,02	83,47	83,42	82,47	35	0,027	2,162	806	800	4,22	2,122	0,015	1,026	0,007	1,117	0,275	0,882	0,056	4,72	1,160	705	44	V
	R312R283	83,47	81,35	81,07	80,35	35	0,021	2,162	847	900	3,99	2,538	0,015	0,858	0,006	1,109	0,267	0,712	0,052	4,43	1,066	641	47	V
	R313R314	106,9	104,5	105,7	103,3	26	0,095	0,224	272	300	4,11	0,291	0,002	0,776	0,006	1,100	0,266	0,657	0,052	4,53	1,095	197	16	V

Suite De Tableau N12

coll	Tron	Cam	Cav	Cam	Cr,av	Dit	I		Dcal	Dnor		Ops	Qeu		Rq		Rv		Rh	V	Vmin	Н	Hmin	Auto
		(m)	(m)	(m)	(m)	(m)	(m/m)	Qt	(mm)	(mm)	Vps	(m3/s)	(m3/s)	Rq	min	Rv	min	Rh	min	(m/s)	(m/s)	(mm)	(mm)	curage
	R314R315	104,5	98,01	99,97	97,01	32	0,093	0,224	273	300	4,06	0,287	0,002	0,787	0,006	1,101	0,267	0,663	0,052	4,47	1,083	199	16	V
	R315R316	98,01	91,57	93,51	90,57	32	0,092	0,224	274	300	4,04	0,286	0,002	0,79	0,006	1,102	0,267	0,665	0,052	4,45	1,079	200	16	V
	R316R317	91,57	86,9	88,07	85,9	32	0,068	0,224	290	300	3,48	0,246	0,002	0,919	0,007	1,117	0,273	0,765	0,055	3,88	0,95	230	16	V
	R317R318	86,9	84,24	85,2	83,24	30	0,065	0,224	292	300	3,41	0,241	0,002	0,937	0,007	1,12	0,274	0,784	0,055	3,82	0,935	235	17	V
	R318R283	84,24	83,22	83,04	82,02	31	0,033	0,224	332	400	2,93	0,368	0,002	0,613	0,005	1,061	0,258	0,569	0,049	3,11	0,756	227	19	V
	R283R319	83,22	82,31	82,02	81,11	35,5	0,025	2,655	880	900	4,43	2,816	0,019	0,949	0,007	1,121	0,272	0,796	0,054	4,96	1,204	717	49	V
	R319R320	82,31	81,57	81,11	80,37	30	0,025	2,655	885	900	4,37	2,777	0,019	0,963	0,007	1,122	0,273	0,81	0,055	4,9	1,19	729	49	V
	R320R321	81,57	80,75	80,37	79,65	30	0,024	2,655	890	900	4,3	2,733	0,019	0,978	0,007	1,123	0,273	0,828	0,055	4,82	1,174	745	49	V
	R322R323	89,06	88,72	87,86	87,72	20	0,007	0,09	312	300	1,14	0,081	0,0007	1,116	0,008	1,034	0,283	0,977	0,059	1,18	0,324	293	18	V
	R323R324	88,72	85,45	86,22	84,45	20	0,089	0,09	196	300	3,97	0,28	0,0007	0,322	0,002	0,88	0,243	0,387	0,043	3,49	0,965	116	13	V
	R324R321	85,45	80,75	82,65	79,75	25	0,116	0,09	186	300	4,54	0,321	0,0007	0,281	0,002	0,857	0,241	0,361	0,042	3,89	1,094	108	13	V
	R325R326	97,56	95,44	95,76	94,24	25	0,061	0,224	296	300	3,29	0,233	0,002	0,97	0,007	1,122	0,276	0,818	0,056	3,7	0,908	246	17	V
	R326R327	95,44	91,19	91,94	90,19	25	0,07	0,224	288	300	3,53	0,249	0,002	0,906	0,007	1,116	0,273	0,753	0,055	3,93	0,961	226	16	V
	R327R328	91,19	86,32	87,19	85,32	25	0,075	0,224	285	300	3,65	0,258	0,002	0,875	0,007	1,112	0,271	0,726	0,054	4,06	0,99	218	16	V
	R328R329	86,32	82,32	82,82	81,32	25	0,06	0,224	297	300	3,27	0,231	0,002	0,978	0,007	1,122	0,276	0,827	0,056	3,67	0,902	248	17	V
	R329R321	82,27	80,75	81,07	79,55	25	0,061	0,224	296	300	3,28	0,232	0,002	0,973	0,007	1,122	0,276	0,822	0,056	3,69	0,906	246	17	V
	R321R330	80,75	78,63	78,25	77,63	30	0,021	3,192	982	1000	4,27	3,354	0,023	0,959	0,007	1,122	0,273	0,806	0,055	4,79	1,166	806	55	V
	R330R331	78,63	77,44	77,03	76,44	30	0,02	3,192	991	1000	4,17	3,273	0,023	0,982	0,007	1,123	0,274	0,832	0,055	4,68	1,142	832	55	V
	R331R332	77,44	75,59	75,15	74,59	30	0,019	3,192	998	1000	4,09	3,211	0,023	1,001	0,007	1,122	0,275	0,854	0,056	4,59	1,124	854	56	V
	R333R334	82,4	78,3	81,2	77,1	25	0,164	0,09	174	300	5,4	0,382	0,0007	0,237	0,002	0,83	0,239	0,333	0,041	4,48	1,289	100	12	V
	R334R332	78,3	75,59	77,1	74,39	25	0,108	0,09	188	300	4,39	0,31	0,0007	0,291	0,002	0,862	0,242	0,367	0,042	3,79	1,061	110	13	V
	R335R336	79,33	78,54	78,13	77,34	30	0,026	3,506	972	1000	4,81	3,778	0,025	0,935	0,007	1,119	0,272	0,781	0,054	5,38	1,308	781	54	V
	R336R337	78,54	77,95	77,34	76,75	30	0,02	3,506	1024	1100	4,47	4,243	0,025	0,832	0,006	1,106	0,267	0,693	0,052	4,94	1,193	763	58	V
17	R337R338	77,95	77,61	76,75	76,41	30	0,011	3,506	1140	1200	3,56	4,023	0,025	0,878	0,006	1,112	.,	0,729	0,053	3,96	0,958	874	64	V
	R338R339	77,61	77,27	76,41	76,07	30	0,011	3,506	1135	1200	3,6	4,068	0,025	0,868	0,006	,	0,269	0,721	0,053	3,99	0,967	865	64	V
	R339R332	77,27	76,99	76,07	75,79	30	0,009	3,506	1179	1200	-,-	3,672	0,025	0,962	0,007	,	0,273	0,809	0,055	3,64	- ,	971	66	V
	R332R340	76,99	76,53	75,79	75,33	35	0,013	3,506	1107	1200	3,85	4,351	0,025	0,812	0,006	1,104	-,	0,679	0,052	4,25	, -	815	62	V
	R340RS63	76,5	75,89	75,3	74,69	46	0,013	3,506	1103	1200	3,88	4,387	0,025	0,805	0,006	1,103	0,266	0,675	0,052	4,28	1,031	810	62	V
	R160R161	105,7	99,07	104,5	97,87	30	0,22	0,045	127	300	6,26	0,442	0,0003	0,102	0,001	0,666	0,232	0,225	0,038	4,17	1,45	68	11	V
	R161R162	99,07	98,48	97,87	97,28	30	0,02	0,403	457	500	2,62	0,514	0,003	0,79	0,006	1,102	0,267	0,665	0,052	2,88	0,699	333	26	V
	R162R163	98,48	96,69	97,28	95,49	30	0,06	0,403	370	400		0,497	0,003	0,818	0,006	1,105	0,268	0,683	0,053	4,37	1,06	273	21	V
I	R163R164	96,69	94,65	95,49	93,45	30	0,068	0,403	361	400	4,2	0,528	0,003	0,769	0,006	1,099	0,266	0,652	0,052	4,62	1,118	261	21	V
	R165R166	94,65	91,86	92,65	90,86	35	0,051	0,807	494	500	4,25	0,834	0,006	0,974	0,007	1,122	0,276	0,823	0,056	4,77	1,173	411	28	V
	R166R164	91,86	87,03	87,76	86,03	35	0,049	0,807	497	500	4,17	0,818	0,006	0,993	0,007	1,122	0,277	0,845	0,056	4,68	1,154	422	28	V
	R164R167	87,03	83,12	83,73	82,12	35	0,046	0,807	504	500	4,02	0,789	0,006	1,03	0,008	1,116	0,279	0,887	0,057	4,49	1,121	443	29	V
I	R167R168	83,12	79,1	79,82	78,1	35	0,049	0,807	498	500	4,16	0,816	0,006	0,996	0,007	1,122	0,277	0,848	0,056	4,66	1,151	424	28	V
	R168RS62	79,1	76,5	77,6	75,5	40,7	0,052	0,807	493	500	4,26	0,836	0,006	0,973	0,007	1,122	0,276	0,821	0,056	4,78	1,174	411	28	V

Tableau IV 13 :Calcul Hydraulique pour SB13

coll	Tron	Cam	Cav	Cam	Cr,av	Dist	1	Qt	Dcal	Dnor	Vps	Qps	Qeu	Rq	Rq	Rv	Rv	Rh	Rh	V	Vmin	Н	Hmin	Auto
		(m)	(m)	(m)	(m)	(m)	(m/m)		(mm)	(mm)		(m3/s)	(m3/s)		min		min		min	(m/s)	(m/s)	(mm)	(mm)	curage
	R346R347	114,5	111,4	113,3	110,2	30	0,1	0,14	224	300	4,27	0,302	0,0013	0,46	0,00	0,97	0,26	0,48	0,05	4,16	1,1	144	14	V
	R347R348	111,4	108,5	110,2	107,3	30	0,1	0,14	226	300	4,18	0,296	0,0013	0,47	0,00	0,98	0,26	0,49	0,05	4,1	1,08	146	15	V
	R348R349	108,5	105,6	107,3	104,4	30	0,09	0,14	228	300	4,1	0,29	0,0013	0,48	0,00	0,99	0,26	0,49	0,05	4,04	1,06	148	15	V
	R349R350	105,6	101,1	104,4	99,86	30	0,15	0,14	208	300	5,21	0,368	0,0013	0,38	0,00	0,92	0,25	0,42	0,05	4,78	1,31	127	14	V
	R351R352	101,1		99,86	95,93	30	0,13	0,05	142	200	3,69	0,116	0,0004	0,4	0,00	0,93	0,25	0,44	0,05	3,44	0,93	88	9	V
	R352R353	97,13	96,78	95,93	95,58	32	0,01	0,05	226	300	1,39	0,098	0,0004	0,48	0,00	0,98	0,26	0,49	0,05	1,36	0,36	146	15	V
	R353R350	96,78	95,87	95,58	94,67	31	0,03	0,05	187	200	1,75	0,055	0,0004	0,85	0,01	1,11	0,28	0,7	0,06	1,94	0,49	141	12	V
	R350R354	95,87	94,34	94,67	93,14	35	0,04	0,32	361	400	3,38	0,424	0,0031	0,77	0,01	1,1	0,28	0,65	0,06	3,71	0,93	261	22	V
	R354R355	94,34	91,22	93,14	90,02	35	0,09	0,32	316	300	3,98	0,281	0,0031	1,16	0,01	0,92	0,3	1	0,07	3,67	1,19	301	20	V
	R355R356	91,22	88,75	90,02	87,55	35	0,07	0,32	330	400	4,29	0,54	0,0031	0,6	0,01	1,06	0,27	0,56	0,05	4,54	1,14	226	21	V
	R356R357	88,75	85,44	87,55	84,24	30	0,11	0,32	303	300	4,43	0,313	0,0031	1,04	0,01	1,11	0,29	0,9	0,06	4,93	1,3	270	19	V
	R358R359	85,44	82,51	84,24	81,31	30	0,1	0,05	150	200	3,18	0,1	0,0004	0,47	0,00	0,98	0,26	0,48	0,05	3,1	0,82	96	10	V
	R359R357	82,51	80,93	81,31	79,73	30	0,05	0,05	168	200	2,34	0,073	0,0004	0,63	0,01	1,07	0,27	0,58	0,05	2,5	0,63	116	11	V
	R357R360	80,93	75,44	76,93	74,24	37	0,07	0,51	389	400	4,36	0,548	0,0049	0,94	0,01	1,12	0,29	0,78	0,06	4,88	1,25	313	24	V
	R360R361	75,44	72,88	73,64	71,68	30	0,07	0,51	397	400	4,12	0,518	0,0049	0,99	0,01	1,12	0,29	0,84	0,06	4,63	1,2	336	25	V
10	R361RS71	72,88	72,81	71,68	71,61	37	0	0,51	766	800	1,14	0,571	0,0049	0,9	0,01	1,11	0,28	0,75	0,06	1,27	0,32	597	47	V
11.5	R370R371	123,5	122,1	122,3	120,9	30	0,05	0,41	387	400	3,55	0,446	0,0035	0,92	0,01	1,12	0,28	0,77	0,06	3,97	0,99	308	23	V
	R371R372	122,1	118,4	119,6	117,4	32	0,07	0,41	363	400	4,21	0,529	0,0035	0,78	0,01	1,1	0,27	0,66	0,05	4,63	1,14	263	22	V
	R372R369	118,4	112,7	115,9	111,7	32	0,13	0,41	321	300	4,81	0,34	0,0035	1,21	0,01	0,67	0,29	0,99	0,06	3,21	1,42	298	19	V
	R369R373	112,7	109,8	110,7	108,6	36	0,06	0,41	374	400	3,9	0,49	0,0035	0,84	0,01	1,11	0,27	0,7	0,06	4,32	1,07	280	22	V
	R373R374	109,8	107,9	108,6	106,7	35	0,06	0,41	378	400	3,79	0,476	0,0035	0,87	0,01	1,11	0,28	0,72	0,06	4,2	1,04	288	22	V
	R374R375	107,9	107	106,7	105,8	35	0,03	0,41	438	500	2,96	0,581	0,0035	0,71	0,01	1,09	0,27	0,62	0,05	3,22	0,79	310	26	V
	R375R376	107	103,7	105	102,5	35	0,07	0,41	359	400	4,35	0,547	0,0035	0,75	0,01	1,1	0,27	0,64	0,05	4,77	1,17	257	21	V
	R377R376	104,8	103,7	103,8	102,5	30	0,04	0,05	176	200	2,08	0,065	0,0004	0,71	0,01	1,09	0,27	0,62	0,05	2,27	0,57	124	11	V
	R376R378	103,7	98,28	98,7	97,28	40	0,04	0,87	544	600	4	1,13	0,0079	0,78	0,01	1,1	0,27	0,66	0,06	4,4	1,1	394	33	V
	R378R379	98,28	94,14	94,98	93,14	40	0,05	0,87	519	600	4,54	1,282	0,0079	0,68	0,01	1,08	0,27	0,61	0,05	4,92	1,22	364	32	V
	R379R380	94,14	88,16	89,14	87,16	45	0,04	0,87	523	600	4,45	1,257	0,0079	0,7	0,01	1,09	0,27	0,61	0,05	4,83	1,2	368	32	V
	R380R381	88,16	85,03	85,16	84,03	40	0,03	0,87	568	600	3,55	1,005	0,0079	0,87	0,01	1,11	0,28	0,73	0,06	3,95	0,99	435	35	,
	R382R383	83,16	82,45	81,96	81,25	25	0,03	0,09	245	300	2,24	0,159	0,0009	0,59	0,01	1,05	0,26	0,55	0,05	2,35	0,59	166	15	V
	R383R381	82,45	,	81,25	77,83	30	0,11	0,09	189	300	4,51	0,319	0,0009	0,29	0,00	0,86	0,25	0,37	0,04	3,89	1,11	111	13	V
	R381R384	79,03	78,63	77,83	77,43	30	0,01	1,29	760	800	2,94	1,476	0,0119	0,88	0,01	1,11	0,28	0,73	0,06	3,27	0,83	584	46	V
	R384R385	78,63	77,86	77,43	76,66	30	0,03	1,29	669	700	3,77	1,45	0,0119	0,89	0,01	1,11	0,28	0,74	0,06	4,2	1,06	520	41	V
	R385R386	77,86	77,09	76,66	75,89	30	0,03	1,29	669	700	3,77	1,451	0,0119	0,89	0,01	1,11	0,28	0,74	0,06	4,2	1,06	520	41	V
	R386R387	77,09	76,27	75,89	75,07	25	0,03	1,29	640	700	4,25	1,636	0,0119	0,79	0,01	1,1	0,28	0,67	0,06	4,68	1,17	467	39	V

Suite de Tableau IV-13

coll	Tron	Cam	Cav	Cam	Cr,av	Dist	I	Qt	Dcal	Dnor	Vps	Qps	Qeu	Rq	Rq	Rv	Rv	Rh	Rh	V	Vmin	Н	Hmin	Auto
		(m)	(m)	(m)	(m)	(m)	(m/m)	•	(mm)	(mm)	-	(m3/s)	(m3/s)	_	min		min		min	(m/s)	(m/s)	(mm)	(mm)	curage
	R387R388	76,27	75,57	75,07	74,37	30	0,02	1,29	682	700	3,59	1,381	0,012	0,94	0,01	1,12	0,28	0,79	0,06	4,02	1,02	551	42	V
	R411R406	102,2	96,21	99,73	95,21	36	0,13	0,18	240	300	4,73	0,334	0,002	0,56	0,01	1,03	0,26	0,54	0,05	4,89	1,24	161	15	V
	R412R413	110,8	107	109,6	105,8	30	0,13	0,18	240	300	4,72	0,334	0,002	0,56	0,01	1,03	0,26	0,54	0,05	4,88	1,24	161	15	V
	R413R414	107	100,7	104	99,47	37	0,12	0,18	241	300	4,68	0,331	0,002	0,56	0,01	1,04	0,26	0,54	0,05	4,85	1,23	162	15	V
	R414R415	100,7	97,58	99,47	96,38	35	0,09	0,18	257	300	3,96	0,28	0,002	0,67	0,01	1,08	0,27	0,6	0,05	4,28	1,07	179	16	V
	R415R406	97,58	96,21	96,38	95,01	35	0,04	0,18	299	300	2,64	0,186	0,002	1	0,01	1,12	., .	,	0,06	2,96	0,77	256	19	V
	R406R416	108,4	91,4	95,01	90,2	30	0,16	1	432	400	6,47	0,813	0,008	1,23	0,01	0,51	0,29	. ,	0,06	3,29	1,9	388	25	V
	R416R417	91,4	87,08	88,4	86,08	40	0,06	1	522	500	4,51	0,886	0,008	1,13	0,01	1	0,29	0,99	0,06	4,51	1,3	495	31	V
12	R417R418	87,08	85,12	85,28	83,92	35	0,04	1	563	600	4,17	1,18	0,008	0,85	0,01	1,11	0,27	0,71	0,06	4,63	1,14	424	33	V
13	R418R419	85,12	83,72	83,92	82,52	35	0,04	1	559	600	4,24	1,2	0,008	0,84	0,01	1,11	0,27	0,7	0,05	4,7	1,16	418	33	V
	R419R420	83,72	81,51	81,72	80,31	35	0,04	1	559	600	4,25	1,202	0,008	0,84	0,01	1,11	0,27	0,7	0,05	4,71	1,16	417	33	V
	R421R422	85,52	82,99	84,32	81,79	30	0,09	0,09	199	300	3,88	0,274	9E-04	0,34	0	0,89	0,25	0,4	0,04	3,46	0,96	120	13	V
	R422R420	82,99	81,51	81,79	80,31	30	0,05	0,09	221	300	2,96	0,209	9E-04	0,45	0	0,96	0,26	0,47	0,05	2,85	0,76	140	14	V
	R420R423	81,51	78,75	78,51	77,55	35	0,03	1,87	762	800	4,24	2,132	0,017	0,89	0,01	1,11	0,28	0,74	0,06	4,72	1,18	589	46	V
	R423R424	78,75	77,94	77,55	76,74	35	0,02	1,87	786	800	3,91	1,965	0,017	0,96	0,01	1,12	0,28	0,81	0,06	4,39	1,11	647	47	V
	R424R388	77,94	75,57	75,14	74,37	32	0,02	1,87	780	800	3,98	2,003	0,017	0,94	0,01	1,12	0,28	0,79	0,06	4,46	1,13	632	47	V
	R425R426	109,1	107,1	107,9	105,9	30	0,065	0,369	352	500	4,79	0,941	0,004	0,396	0,004	0,93	0,25	0,44	0,05	4,45	1,21	218	23	V
	R426R427	107,1	105,2	105,9	104	30	0,063	0,369	355	500	4,69	0,921	0,004	0,405	0,004	0,93	0,25	0,44	0,05	4,38	1,19	220	23	V
	R427R428	105,2	103,3	104	102,1	30	0,063	0,369	354	500	4,72	0,926	0,004	0,403	0,004	0,93	0,25	0,44	0,05	4,4	1,19	220	23	V
	R428R429	103,3	101,8	102,1	100,6	30	0,052	0,369	368	400	3,68	0,463	0,004	0,806	0,008	1,1	0,28	0,68	0,06	4,06	1,03	270	23	V
	R429R430	101,8	97,9	99,77	97,1	40	0,067	0,369	351	400	4,17	0,524	0,004	0,711	0,007	1,09	0,27	0,62	0,05	4,55	1,14	248	22	V
	R430R431	97,9	92,28	93,9	91,28	35	0,075	0,369	343	400	4,42	0,556	0,004	0,671	0,006	1,08	0,27	0,6	0,05	4,78	1,19	240	21	V
	R431R432	92,28	88,22	89,28	87,02	35	0,065	0,369	353	400	4,11	0,516	0,004	0,722	0,007	1,09	0,27	0,63	0,05	4,49	1,12	250	22	V
	R432R433	88,22	86,44	87,02	85,24	32	0,055	0,369	363	400	3,8	0,478	0,004	0,78	0,008	1,1	0,28	0,66	0,06	4,19	1,05	264	23	V
	R434R435	86,44	82,9	84,64	81,7	30	0,098	0,277	293	300	4,17	0,295	0,003	0,948	0,009	1,12	0,29	0,79	0,06	4,68	1,2	238	18	V
	R435R436	82,9	82,4	81,7	81,2	30	0,017	0,277	408	500	2,42	0,475	0,003	0,589	0,006	1,05	0,26	0,56	0,05	2,54	0,64	278	26	V
	R436R437	82,5	82,05	81,3	80,85	30	0,015	0,277	416	500	2,31	0,453	0,003	0,617	0,006	1,06	0,27	0,57	0,05	2,45	0,62	285	26	V
	R437R433	82,05	81,03	80,85	79,83	30	0,034	0,277	357	400	2,97	0,374	0,003	0,748	0,007	1,1	0,27	0,64	0,06	3,26	0,82	256	22	V
	R433R438	81,03	79,32	79,83	78,12	36,6	0,047	0,693	474	500	4,06	0,797	0,007	0,877	0,008	1,11	0,28	0,73	0,06	4,51	1,15	364	29	V
	R438R439	80,67	79,32	78,77	78,12	37	0,018	3,851	1084	1100	4,22	4,006	0,035	0,97	0,009	1,12	0,29	0,82	0,06	4,73	1,2	900	66	V
	R439R388	79,32	75,57	75,32	74,57	38	0,02	3,851	1061	1100	4,46	4,241	0,035	0,916	0,008	1,12	0,28		0,06	4,98	1,26	840	65	V
	R388R440	75,57	72,97	72,57	71,97	35	0,017	3,851	1090	1100	4,15	3,943	0,035	0,986	0,009	1,12	0,29	0,84	0,06	4,66	1,19	919	66	V
	R440RS81	72,97	70,75	70,47	69,55	50	0,018	3,851	1076	1100	4,3	4,085	0,035	0,951	0,009	1,12	0,28	0,8	0,06	4,82	1,22	878	65	V
	R467R466	98,22	97,57	97,02	96,37	35	0,019	1,744	797	800	3,5	1,761	0,014	0,998	0,008	1,12	0,28	0,85	0,06	3,93	0,98	680	46	V
	R466R468	97,57	96,88	96,37	95,78	30	0,02	1,744	789	800	3,6	1,807	0,014	0,973	0,008	1,12	0,28	0,82	0,06	4,04	1	657	45	V
	R468R469	96,88	95,47	95,18	94,47	35	0,02	1,744	784	800	3,66	1,841	0,014	0,955	0,008	1,12	0,28	0,8	0,06	4,11	1,01	642	45	V

Suite de Tableau IV-13

coll	Tron	Cam (m)	Cav (m)	Cam (m)	Cr,av (m)	Dist (m)	I (m/m)	Qt	Dcal (mm)	Dnor (mm)	Vps	<i>Qps</i> (<i>m3/s</i>)	Qeu (m3/s)	Rq	Rq min	Rv	Rv min	Rh	Rh min	V (m/s)	Vmin (m/s)	H (mm)	Hmin (mm)	Auto curage
	R469R470	95,47	93,56	93,47	92,56	40	0,023	1,744	769	800	3,85	1,935	0,014	0,908	0,007	1,12	0,27	0,76	0,06	4,3	1,06	604	44	V
	R470R471	93,56	90,68	90,76	89,68	40	0,027	1,744	743	800	4,22	2,12	0,014	0,829	0,007	1,11	0,27	0,69	0,05	4,67	1,14	553	43	V
	R471R472	90,68	87,38	88,68	86,18	40	0,063	1,744	635	600	5,29	1,497	0,014	1,174	0,009	0,87	0,29	1,01	0,06	4,59	1,52	604	37	V
	R473R474	96,79	90,48	94,29	89,48	35	0,138	0,046	140	300	4,95	0,35	4,00E-04	0,133	0,001	0,73	0,24	0,26	0,04	3,6	1,16	77	12	V
	R474R472	90,48	86,38	87,98	85,18	30	0,093	0,046	151	300	4,07	0,288	4,00E-04	0,162	0,002	0,77	0,24	0,28	0,04	3,12	0,97	85	12	V
	R472R481	86,38	84,85	84,38	83,65	30	0,024	1,836	773	800	4	2,01	0,015	0,921	0,007	1,12	0,28	0,77	0,06	4,47	1,1	614	45	V
	R481R482	84,85	83,71	83,35	82,51	30	0,028	1,836	752	800	4,31	2,164	0,015	0,855	0,007	1,11	0,27	0,71	0,05	4,77	1,17	568	44	V
	R482R639	83,71	82,02	81,91	81,02	30	0,03	1,836	745	800	4,42	2,222	0,015	0,833	0,007	1,11	0,27	0,69	0,05	4,89	1,2	555	43	V
	R633R634	92,2	90,22	89,8	89,12	30	0,023	1,836	784	800	3,86	1,941	0,015	0,954	0,008	1,12	0,28	0,8	0,06	4,33	1,07	641	45	V
	R634R635	90,22	88,12	87,82	87,12	30	0,023	1,836	780	800	3,91	1,964	0,015	0,942	0,007	1,12	0,28	0,79	0,06	4,38	1,08	631	45	V
12	R635R636	88,12	86,48	86,12	85,28	35	0,024	1,836	774	800	3,98	2,002	0,015	0,924	0,007	1,12	0,28	0,77	0,06	4,45	1,1	617	45	V
LJ	R636R637	86,48	85,62	85,28	84,42	30	0,028	1,836	751	800	4,33	2,174	0,015	0,851	0,007	1,11	0,27	0,71	0,05	4,8	1,18	566	44	V
	R637R638	85,62	83,3	83,12	82,3	35	0,024	1,836	778	800	3,94	1,981	0,015	0,934	0,007	1,12	0,28	0,78	0,06	4,41	1,09	625	45	V
	R638R639	83,3	82,56	81,8	81,36	34	0,013	1,836	872	900	3,14	1,996	0,015	0,927	0,007	1,12	0,28	0,77	0,06	3,51	0,87	696	50	V
	R639R640	82,56	81,39	80,96	80,39	35	0,016	4,596	1176	1200	4,29	4,848	0,038	0,956	0,008	1,12	0,28	0,8	0,06	4,81	1,2	964	69	V
	R640R641	81,39	79,05	78,69	78,05	37	0,017	4,596	1162	1200	4,43	5,007	0,038	0,925	0,008	1,12	0,28	0,77	0,06	4,95	1,23	926	68	V
	R641R642	79,05	77,78	77,05	76,58	30	0,016	4,596	1186	1200	4,19	4,744	0,038	0,977	0,008	1,12	0,28	0,83	0,06	4,71	1,18	991	69	V
	R642R643	77,78	76,57	75,88	75,37	30	0,017	4,596	1164	1200	4,41	4,989	0,038	0,929	0,008	1,12	0,28	0,78	0,06	4,93	1,23	930	68	V
	R643R483	76,57	75,59	74,87	74,39	32	0,015	4,596	1193	1200	4,12	4,664	0,038	0,993	0,008	1,12	0,28	0,84	0,06	4,63	1,16	1014	70	V
	R483R484	75,59	74,65	73,99	73,45	35	0,015	4,596	1188	1200	4,17	4,716	0,038	0,983	0,008	1,12	0,28	0,83	0,06	4,68	1,17	999	70	V
	R484R485	74,65	74,16	73,45	72,96	30	0,016	4,596	1177	1200	4,28	4,844	0,038	0,957	0,008	1,12	0,28	0,8	0,06	4,8	1,2	965	69	V
	R485R486	74,16	72,64	72,16	71,64	30	0,017	4,596	1165	1200	4,4	4,978	0,038	0,931	0,008	1,12	0,28	0,78	0,06	4,92	1,22	933	68	V
	R486R487	72,64	71,9	71,14	70,9	30	0,008	4,596	1334	1300	3,23	4,286	0,038	1,081	0,009	1,08	0,29	0,94	0,06	3,5	0,92	1227	78	V
	R487R488	71,9	71,18	70,5	69,98	30	0,017	4,596	1165	1200	4,4	4,978	0,038	0,931	0,008	1,12	0,28	0,78	0,06	4,92	1,22	933	68	V
	R488R489	71,18	70,72	69,98	69,52	30	0,015	4,596	1188	1200	4,18	4,724	0,038	0,981	0,008	1,12	0,28	0,83	0,06	4,69	1,17	997	70	V
	R489R490	70,72	70,35	69,52	69,15	30	0,012	4,596	1240	1300	3,93	5,217	0,038	0,888	0,007	1,11	0,28	0,74	0,06	4,38	1,08	959	73	V
	R490R491	70,35	69,53	68,85	68,33	32	0,016	4,596	1175	1200	4,3	4,865	0,038	0,952	0,008	1,12	0,28	0,8	0,06	4,82	1,2	959	69	V
	R491R499	69,53	68,51	67,73	67,31	30	0,014	4,596	1213	1300	4,16	5,528	0,038	0,838	0,007	1,11	0,27	0,7	0,05	4,61	1,14	907	71	V
	R499R500	68,51	67,94	67,11	66,74	30	0,012	4,596	1237	1300	3,95	5,241	0,038	0,884	0,007	1,11	0,28	0,73	0,06	4,39	1,09	954	73	V
	R500R501	67,94	67,56	66,74	66,36	33	0,012	4,596	1253	1300	3,82	5,068	0,038	0,914	0,008	1,12	0,28	0,76	0,06	4,26	1,06	990	74	V
	R501RS85	67,56	67,31	66,36	66,11	26	0,009	4,596	1306	1400	3,6	5,536	0,038	0,837	0,007	1,11	0,27	0,7	0,05	3,98	0,98	975	77	V

AnnexeIV4

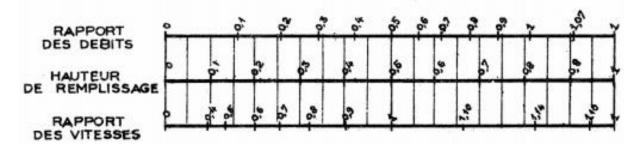
Tableau IV14 :Calcul Hydraulique de l' intercepteur N1(ovoïde)

		Cam	Cav	Cam	Cr,av	Dist	I	Q	D	Vp	Qps	H	H_{nr}				H	V	Q_{eu}	Rq	Rv	Rh	Vmin	Hmin	Qps/100-	aut
coll	coll	(m)	(m)	(m)	(m)	(m)	(m/m)	(m3/s)	(mm)	(m/s)	(m3/s)	(m)	(m)	Rq	R_V	Rh	(m)	(m/s)	(m3/s)	min	min	min	(m/s)	(m)	Qeu	curage
	RN1RN2	133,98	133,45	132,777	132,25	36	0,015	0,718	0,6	2,885	1,1	0,9	1	0,65	1,02	0,63	0,63	2,95	0,0082	0,007	0,079	0,013	0,228	0,013	0,0028	v
	RN2RN3	133,45	132,913	132,25	131,71	35	0,015	0,718	0,6	2,885	1,1	0,9	1	0,65	1,02	0,63	0,63	2,95	0,0082	0,007	0,079	0,013	0,228	0,013	0,0028	v
	RN3RN4	132,91	132,426	131,713	131,23	38	0,013	0,718	0,6	2,73	1,28	0,9	1	0,56	1,00	0,56	0,56	2,74	0,0082	0,006	0,079	0,013	0,216	0,013	0,0046	v
	RN4RN5	132,43	131,955	131,226	130,76	31	0,015	0,718	0,6	2,885	1,1	0,9	1	0,65	1,02	0,63	0,63	2,95	0,0082	0,007	0,079	0,013	0,228	0,013	0,0028	v
	RN5RN6	131,96	131,445	130,755	130,25	38	0,013	0,718	0,6	2,73	1,28	0,9	1	0,56	1,00	0,56	0,56	2,74	0,0082	0,006	0,068	0,011	0,186	0,011	0,0046	v
	RN6RN7	131,45	130,97	130,245	129,77	49	0,010	0,718	0,6	2,357	0,9	0,9	1	0,80	1,05	0,73	0,73	2,48	0,0082	0,009	0,102	0,016	0,241	0,016	0,0008	v
	RN7RN8	130,97	130,354	129,77	129,15	49	0,013	0,718	0,6	2,73	1,28	0,9	1	0,56	1,00	0,56	0,56	2,74	0,0082	0,006	0,068	0,011	0,186	0,011	0,0046	v
	RN8RN9	130,35	129,894	129,154	128,69	44	0,010	0,718	0,6	2,357	0,9	0,9	1	0,80	1,05	0,73	0,73	2,48	0,0082	0,009	0,102	0,016	0,241	0,016	0,0008	v
	RN9RN10	129,89	129,088	128,694	127,89	41	0,020	0,988	0,6	3,4	1,35	0,9	1	0,73	1,04	0,68	0,68	3,53	0,0113	0,008	0,091	0,014	0,309	0,014	0,0022	v
	RN10RN11	129,09	128,551	127,888	127,35	39	0,014	0,988	0,6	2,808	1,24	0,9	1	0,80	1,05	0,72	0,72	2,94	0,0113	0,009	0,102	0,016	0,287	0,016	0,0011	V
	RN11RN12	128,55	128,03	127,351	126,83	42	0,012	0,988	0,6	2,615	1,048	0,9	1	0,94	1,06	0,84	0,84	2,78	0,0113	0,011	0,125	0,02	0,327	0,020	-8E-04	v
	RN12RN13	128,03	127,276	126,83	126,08	43	0,018	1,347	0,7	3,55	1,9	1,05	1,1	0,71	1,04	0,66	0,60	3,67	0,0154	0,008	0,091	0,014	0,323	0,013	0,0036	V
	RN13RN14	127,28	126,577	126,076	125,38	45	0,016	1,347	0,7	3,4	1,8	1,05	1,1	0,75	1,04	0,70	0,64	3,55	0,0154	0,009	0,102	0,016	0,347	0,015	0,0026	v
	RN14RN15	126,58	126,041	125,377	124,84	47	0,011	1,796	0,8	3,075	2,15	1,2	1,2	0,84	1,06	0,75	0,63	3,26	0,0205	0,010	0,114	0,017	0,349	0,014	0,001	v
	RN15RN16	126,04	125,403	124,841	124,2	52	0,012	1,796	0,8	3,2	2,23	1,2	1,2	0,81	1,05	0,74	0,61	3,37	0,0205	0,009	0,102	0,016	0,327	0,013	0,0018	v
	RN16RN17	125,4	124,765	124,203	123,56	48	0,013	1,796	0,8	3,25	2,35	1,2	1,2	0,76	1,05	0,71	0,59	3,40	0,0205	0,009	0,102	0,016	0,332	0,013	0,003	v
	RN17RN18	124,76	124,151	123,565	122,95	49	0,013	1,796	0,8	3,25	2,35	1,2	1,2	0,76	1,05	0,71	0,59	3,40	0,0205	0,009	0,102	0,016	0,332	0,013	0,003	v
	RN18RN19	124,15	123,746	122,951	122,55	26	0,016	5,275	1,1	4,5	6,12	1,65	1,8	0,86	1,06	0,77	0,43	4,75	0,0567	0,009	0,102	0,016	0,46	0,009	0,0045	v
	RN19RN20	123,75	123,224	122,546	122,02	33	0,016	5,275	1,1	4,5	6,12	1,65	1,8	0,86	1,06	0,77	0,43	4,75	0,0567	0,009	0,102	0,016	0,46	0,009	0,0045	v
	RN20RN21	123,22	122,509	121,824	121,31	35	0,015	5,275	1,1	4,36	5,95	1,65	1,8	0,89	1,06	0,80	0,44	4,61	0,0567	0,010	0,114	0,017	0,495	0,010	0,0028	v
	RN21RN22	122,51	121,529	121,109	120,53	41	0,014	5,275	1,1	4,22	5,7	1,65	1,8	0,93	1,06	0,83	0,46	4,48	0,0567	0,010	0,114	0,017	0,479	0,010	0,0003	v
	RN22RN23	121,53	120,769	120,029	119,57	35	0,013	5,275	1,1	4,083	5,6	1,65	1,8	0,94	1,06	0,84	0,47	4,34	0,0567	0,010	0,114	0,017	0,464	0,010	-7E-04	v
	RN23RN24	120,77	120,559	119,569	119,36	34	0,006	5,275	1,3	3,175	5,9	1,95	2	0,89	1,06	0,80	0,40	3,36	0,0567	0,010	0,114	0,017	0,361	0,009	0,0023	v
	RN24RN25	120,56	119,596	119,159	118,4	35	0,022	5,275	1	4,833	5,3	1,5	1,5	1,00	1,07	0,88	0,59	5,17	0,0567	0,011	0,125	0,02	0,604	0,013	-0,004	V
	RN25RN26	119,6	119,277	118,396	118,08	34	0,009	5,275	1,2	3,675	5,8	1,8	1,8	0,91	1,06	0,81	0,45	3,90	0,0567	0,010	0,114	0,017	0,417	0,010	0,0013	v
	RN26RN27	119,28	119,044	118,078	117,84	35	0,007	5,275	1,3	3,425	6,4	1,95	2	0,82	1,05	0,75	0,38	3,61	0,0567	0,009	0,102	0,016	0,35	0,008	0,0073	V
	RN27RN28	119,04	118,612	117,844	117,41	35	0,012	5,275	1,2	3,925	6,6	1,8	1,8	0,80	1,05	0,73	0,41	4,13	0,0567	0,009	0,102	0,016	0,401	0,009	0,0093	v
	RN28RN29	118,61	118,299	117,412	117,1	30	0,010	5,275	1,2	3,85	6,15	1,8	1,8	0,86	1,06	0,76	0,42	4,06	0,0567	0,009	0,102	0,016	0,393	0,009	0,0048	V
	RN29RN30	118,3	117,465	116,499	116,26	34	0,007	5,275	1,3	3,425	6,4	1,95	2	0,82	1,05	0,75	0,38	3,61	0,0567	0,009	0,102	0,016	0,35	0,008	0,0073	V
	RN30RN31	117,46	117,028	116,265	115,83	36	0,012	5,275	1,2	4,15	6,6	1,8	1,8	0,80	1,05	0,73	0,41	4,37	0,0567	0,009	0,102	0,016	0,424	0,009	0,0093	V
	RN31RN32	117,03	116,082	115,428	114,88	38	0,014	5,275	1,1	4,22	5,7	1,65	1,8	0,93	1,06	0,83	0,46	4,48	0,0567	0,010	0,114	0,017	0,479	0,010	0,0003	V
	RN32RN33	116,08	115,313	114,582	114,11	47	0,010	7,412	1,3	4,055	7,6	1,95	2	0,98	1,07	0,87	0,43	4,32	0,0882	0,012	0,136	0,021	0,553	0,011	-0,012	V
	RN33RN34	115,31	114,798	113,913	113,6	37	0,009	7,412	1,4	4,028	8,75	2,1	2,2	0,85	1,06	0,76	0,35	4,25	0,0882	0,010	0,114	0,017	0,458	0,008	-7E-04	v
	RN34RN35	114,8	114,24	113,398	113,04	41	0,009	7,412	1,4	4,028	8,75	2,1	2,2	0,85	1,06	0,76	0,35	4,25	0,0882	0,010	0,114	0,017	0,458	0,008	-7E-04	V
	RN35RN36	114,24	113,652	113,04	112,55	46	0,011	9,857	1,4	4,389	11,15	2,1	2,2	0,88	1,06	0,80	0,36	4,64	0,0961	0,009	0,102	0,016	0,449	0,007	0,0154	v

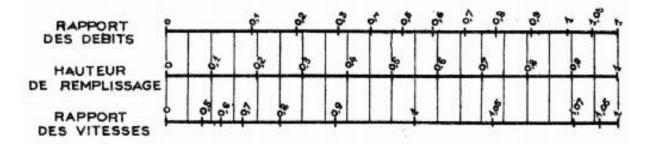
Tableau IV 15 : Calcul Hydraulique pour l'intercepteur 2 (ovoïde)

COLL	TRON	Cam (m)	Cav (m)	Cam (m)	Cr,av	Dist (m)	<i>I</i> (m/m)	$Q \over (m3/s)$	D (mm)	V_{ps} (m/s)	Q_{ps} $(m3/s)$	H (m)	H_{nr} (m)	R_q	R_V	Rh	H(m)	V (m/s)	Q_{eu} $(m3/s)$	Rq	Rv	Rh	V_{min} (m/s)	H_{min} (m)	Qps/100- Oeu	aut curage
	RS1RS2	138	137,8	136.8	136.6	43	0.006	1,211	0.8	2,25	1,6	1,2	1,3	0,757	1,044	0,71	0,546	2,35	0.016	0,01	min 0,144	0,017	0,323	0,013	-1.00E-04	v
	RS2RS3	137,8	137.4	136.6	136,4	31	0.005	1,211	0.8	2	1,4	1,2	1,3	0.865	1,058	0,773	0,595	2,12	0,016	0,012		0,021	0,313	0,016	-0.002	v
-	RS3RS4	137,4	135,1	134,6	134,1	32	0,016	1,211	0,6	3	1,21	0,9	1	1,001	1,069	0,889	0,889	3,21	0,016	0,013	0,148	0,023	0,443	0,023	-0,004	v
	RS4RS5	135,1	133,4	133,3	132,4	30	0,031	1,211	0,6	4,19	1,72	0,9	1	0,704	1,033	0,66	0,66	4,33	0,016	0,009	0,102	0,016	0,428	0,016	0,0011	v
	RS5RS6	133,4	132	131,4	131	30	0,012	1,211	0,7	2,88	1,55	1,05	1	0.781	1,047	0,744	0,744	3,01	0,016	0,01	0,144	0,017	0,414	0,017	-6,00E-04	v
	RS6RS7	132	130,1	130	129,1	36	0,026	1,211	0,6	3,86	1,57	0,9	1	0,771	1,045	0,732	0,732	4,03	0,016	0,01	0,144	0,017	0,554	0,017	-4,00E-04	v
	RS7RS8	130,1	128,6	128,1	127,6	36	0,014	1,211	0,7	3,14	1,75	1,05	1,3	0,692	1,026	0,652	0,502	3,22	0,016	0,009	0,102	0,016	0,321	0,012	0,0014	v
	RS8RS9	128,6	126,7	126,6	125,7	30	0,029	1,211	0,6	4	1,63	0,9	1	0,743	1,039	0,682	0,682	4,16	0,016	0,01	0,144	0,017	0,574	0,017	0,0002	v
-	RS9RS10	126,7	125,2	124,7	124,2	30	0,017	1,211	0,6	3,15	1,26	0,9	1	0,961	1,065	0,857	0,857	3,36	0,016	0,013	0,148	0,023	0,465	0,023	-0,004	v
	RS10RS11	125,2	124,6	123,7	123,6	35	0,004	1,211	0,8	2,3	1,25	1,2	1,3	0,969	1,066	0,864	0,665	2,45	0,016	0,013	0,148	0,023	0,34	0,018	-0,004	v
	RS11RS12	124,6	123,4	122,6	122,4	27	0,008	1,211	0,7	2,35	1,24	1,05	1,3	0,976	1,067	0,821	0,632	2,51	0,016	0,013	0,148	0,023	0,347	0,018	-0,004	v
	RS12RS13	123,4	120,4	120,4	119,4	30	0,031	1,211	0,6	4,19	1,72	0,9	1	0,704	1,033	0,667	0,667	4,33	0,016	0,009	0,102	0,016	0,428	0,016	0,0011	v
	RS13RS14	120,4	119,1	118,4	118,1	30	0,011	1,211	0,7	2,88	1,5	1,05	1,3	0,807	1,053	0,743	0,571	3,03	0,016	0,011	0,145	0,02	0,418	0,015	-0,001	v
	RS14RS15	119,1	117,6	117,1	116,6	31	0,016	1,211	0,6	3	1,21	0,9	1	1,001	1,069	0,889	0,889	3,21	0,016	0,013	0,148	0,023	0,443	0,023	-0,004	v
	RS15RS16	117,6	116,4	115,4	115,4	28	0,001	1,211	1,1	2,32	1,52	1,65	1,8	0,797	1,508	0,729	0,405	3,5	0,016	0,011	0,133	0,02	0,308	0,011	-9,00E-04	v
	RS16SR17	116,4	115,7	114,8	114,7	30	0,002	1,211	1	2,34	1,21	1,5	1,5	1,001	1,069	0,889	0,593	2,5	0,016	0,013	0,148	0,023	0,346	0,015	-0,004	v
	RS17RS18	115,7	114,9	114	113,9	25	0,005	1,211	0,8	2	1,4	1,2	1,3	0,865	1,058	0,777	0,598	2,12	0,016	0,012	0,156	0,021	0,313	0,016	-0,002	v
	RS18RS19	114,9	111,9	111,9	110,9	35	0,029	1,211	0,6	4	1,63	0,9	1	0,743	1,039	0,682	0,682	4,16	0,016	0,01	0,144	0,017	0,574	0,017	0,0002	v
	RS19RS20	111,9	111,3	110,7	110,3	35	0,011	1,211	0,7	2,88	1,5	1,05	1,3	0,807	1,053	0,743	0,571	3,03	0,016	0,011	0,145	0,02	0,418	0,015	-0,001	v
	RS20RS21	111,3	109,3	108,8	108,3	35	0,014	1,211	0,7	2,45	1,75	1,05	1,3	0,692	1,026	0,652	0,502	2,51	0,016	0,009	0,123	0,016	0,302	0,012	0,0014	v
	RS21RS22	109,3	107,8	106,8	106,8	29	0,001	1,211	1,1	2,32	1,52	1,65	1,8	0,797	1,508	0,729	0,405	3,5	0,016	0,011	0,145	0,02	0,336	0,011	-9,00E-04	v
	RS22RS23	107,8	105,9	105,8	104,9	41	0,021	1,211	0,6	3,48	1,4	0,9	1	0,865	1,058	0,77	0,77	3,68	0,016	0,012	0,156	0,021	0,544	0,021	-0,002	v
	RS23RS24	105,9	104,4	103,9	103,4	26	0,018	1,211	0,6	3,21	1,3	0,9	1	0,931	1,062	0,836	0,836	3,41	0,016	0,012	0,136	0,021	0,438	0,021	-0,003	v
	RS24RS25	104,4	103,1	102,4	102,1	24	0,012	1,211	0,7	3,22	1,55	1,05	1,3	0,781	1,047	0,744	0,573	3,37	0,016	0,01	0,114	0,017	0,366	0,013	-6,00E-04	v
	RS25RS26	103,1	101,6	101,1	100,6	35	0,015	1,211	0,7	3,22	1,8	1,05	1,3	0,673	1,026	0,636	0,489	3,3	0,016	0,009	0,102	0,016	0,329	0,012	0,0019	v
	RS26RS27	101,6	100	99,61	99,04	33	0,017	1,211	0,6	3,15	1,26	0,9	1	0,961	1,065	0,857	0,857	3,36	0,016	0,013	0,148	0,023	0,465	0,023	-0,004	v
	RS27RS28	100	98,49	98,04	97,49	33	0,017	1,211	0,6	3,15	1,26	0,9	1	0,961	1,065	0,857	0,857	3,36	0,016	0,013	0,148	0,023	0,465	0,023	-0,004	v
	RS28RS29	98,49	96,8	96,49	95,8	35	0,02	1,211	0,6	3,36	1,35	0,9	1	0,897	1,06	0,807	0,807	3,56	0,016	0,012	0,136	0,021	0,458	0,021	-0,003	v
	RS29RS30	96,8	95,21	94,8	94,21	25	0,023	1,211	0,6	3,64	1,47	0,9	1	0,824	1,056	0,736	0,736	3,84	0,016	0,011	0,125	0,02	0,455	0,02	-0,001	v
	RS30RS31	95,21	93,87	93,21	92,87	24	0,014	1,211	0,7	3,14	1,75	1,05	1,3	0,692	1,026	0,652	0,502	3,22	0,016	0,009	0,102	0,016	0,321	0,012	0,0014	v
	RS31RS32	93,87	92,97	92,27	91,97	23	0,013	1,211	0,7	3	1,6	1,05	1,3	0,757	1,044	0,71	0,546	3,13	0,016	0,01	0,114	0,017	0,341	0,013	-1,00E-04	v
	RS32RS33	92,97	91,75	91,37	90,75	34	0,018	4,007	1	4,25	5	1,5	1,5	0,801	1,051	0,729	0,486	4,47	0,044	0,009	0,102	0,016	0,434	0,011	0,0063	v
	RS33RS34	91,75	90,67	90,15	89,67	32	0,015	4,007	1	3,92	4,6	1,5	1,5	0,871	1,055	0,771	0,514	4,14	0,044	0,01	0,114	0,017	0,445	0,012	0,0023	v
	RS34RS35	90,67	90,1	89,47	89,1	35	0,011	4,007	1,1	3,71	5,1	1,65	1,8	0,786	1,05	0,721	0,401	3,9	0,044	0,009	0,102	0,016	0,379	0,009	0,0073	v
	RS35RS36	90,1	89,8	88,9	88,6	33	0,009	4,007	1,1	3,49	4,7	1,65	1,8	0,852	1,053	0,769	0,427	3,68	0,044	0,009	0,102	0,016	0,357	0,009	0,0033	v
	RS36RS37	89,8	89,55	88,6	88,35	35	0,007	4,007	1,2	3,01	5	1,8	1,8	0,801	1,058	0,729	0,405	3,19	0,044	0,009	0,102	0,016	0,308	0,009	0,0063	v
	RS37RS38	89,55	89,05	88,35	87,85	33	0,015	4,007	1	4,1	4,6	1,5	1,5	0,871	1,057	0,782	0,521	4,33	0,044	0,01	0,114	0,017	0,466	0,012	0,0023	v
	RS38RS39	89,05	87,56	87,15	86,56	35	0,014	4,007	1	3,86	4,45	1,5	1,5	0,9	1,06	0,807	0,538	4,09	0,044	0,01	0,114	0,017	0,438	0,012	0,0008	v
	RS39RS40	87,56	87,15	86,16	85,95	25	0,009	4,007	1,1	3,71	4,7	1,65	1,8	0,852	1,053	0,769	0,427	3,91	0,044	0,009	0,102	0,016	0,379	0,009	0,0033	v
	RS40RS41	87,15	86,71	85,75	85,51	27	0,009	4,007	1,1	3,71	4,7	1,65	1,8	0,852	1,053	0,769	0,427	3,91	0,044	0,009	0,102	0,016	0,379	0,009	0,0033	v
	RS41RS42	86,71	86,28	85,31	85,08	16	0,015	4,007	1	3,92	4,6	1,5	1,5	0,871	1,057	0,782	0,521	4,14	0,044	0,01	0,114	0,017	0,445	0,012	0,0023	v
	RS42RS43	86,28	85,68	84,68	84,48	30	0,006	2,92	1,1	2,77	3,8	1,65	1,8	0,768	1,056	0,736	0,409	2,93	0,075	0,02	0,227	0,036	0,63	0,02	-0,037	v

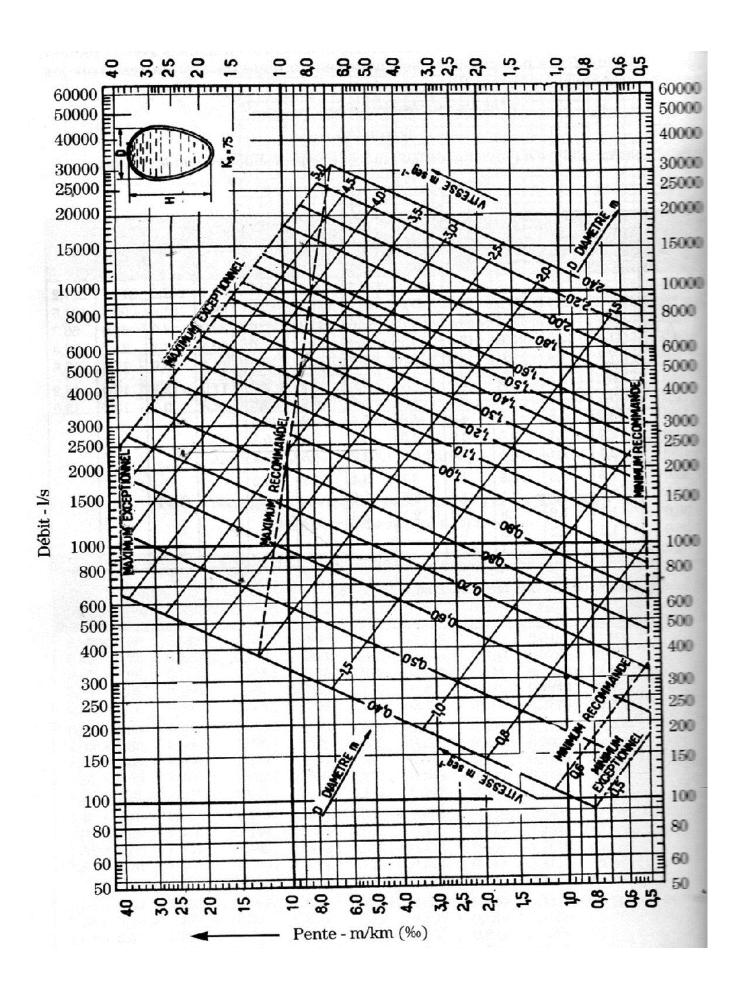
Suite de tableau N 15


COLL		Cam	Cav	Cam	Cr,av	Dist	I	Q	D	V_{ps}	Q_{ps}	H	H_{nr}				Н	V	Q_{eu}	Rq	Rv	Rh	V_{min}	H_{min}	<i>Qps/100-</i>	aut
	TRON	(m)	(m)	(m)	(m)	(m)	(m/m)	(m3/s)	(mm)	(m/s)	(m3/s)	(m)	(m)	R_a	R_V	Rh	(m)	(m/s)	(m3/s)	min	min	min	(m/s)	(m)	Qeu	curage
	RS43RS44	85,68	84,68	84,08	83,48	32	0,019	2,92	0,9	4,33	3,7	1,35	1,5	0,789	1,05	0,721	0,481	4,55	0,075	0,02	0,227	0,036	0,984	0,024	-0,04	v
	RS44RS45	84,68	83,93	83,08	82,73	34	0,01	2,92	1	3,39	3,85	1,5	1,5	0,758	1,044	0,71	0,473	3,54	0,075	0,019	0,216	0,034	0,732	0,023	-0,04	v
	RS45RS46	83,93	83,28	82,33	82,08	32	0,008	2,92	1	3,1	3,4	1,5	1,5	0,859	1,058	0,773	0,515	3,28	0,075	0,022	0,25	0,929	0,775	0,619	-0,04	v
	RS46RS47	83,28	82,61	81,68	81,41	36	0,007	3,078	1	2,78	3,15	1,5	1,5	0,977	1,067	0,821	0,548	2,97	0,109	0,035	0,398	0,625	1,106	0,417	-0,08	v
	RS47RS48	82,61	82,12	81,21	80,92	36	0,008	3,078	1	3,1	3,4	1,5	1,5	0,905	1,061	0,818	0,545	3,29	0,109	0,032	0,364	0,571	1,127	0,381	-0,08	v
	RS48RS49	82,12	81,69	80,72	80,49	35	0,006	3,078	1,1	2,77	3,88	1,65	1,8	0,793	1,05	0,721	0,401	2,91	0,109	0,028	0,318	0,05	0,881	0,028	-0,07	v
	RS49RS50	81,69	81,26	80,29	80,06	35	0,007	3,078	1	2,78	3,15	1,5	1,5	0,977	1,066	0,821	0,548	2,96	0,109	0,035	0,398	0,625	1,106	0,417	-0,08	v
	RS50-RS51	81,26	80,76	79,86	79,56	35	0,009	3,078	1	3,21	3,51	1,5	1,5	0,877	1,058	0,793	0,529	3,39	0,109	0,031	0,352	0,055	1,131	0,037	-0,07	v
	RS51RS52	80,76	80,31	79,36	79,11	35	0,007	3,078	1	2,78	3,15	1,5	1,5	0,977	1,067	0,821	0,548	2,97	0,109	0,035	0,398	0,625	1,106	0,417	-0,08	v
	RS52RS53	80,31	79,85	78,91	78,65	35	0,007	3,078	1	2,78	3,15	1,5	1,5	0,977	1,067	0,821	0,548	2,97	0,109	0,035	0,398	0,625	1,106	0,417	-0,08	v
	RS53RS54	79,85	79,36	78,45	78,16	37	0,008	3,078	1	3,1	3,4	1,5	1,5	0,905	1,06	0,807	0,538	3,28	0,109	0,032	0,364	0,571	1,127	0,381	-0,08	V
	RS54RS55	79,36	78,88	77,96	77,68	36	0,008	3,078	1	3,1	3,4	1,5	1,5	0,905	1,06	0,807	0,538	3,28	0,109	0,032	0,364	0,571	1,127	0,381	-0,08	V
	RS55RS56	78,88	78,64	77,68	77,44	40	0,006	3,078	1,1	2,77	3,4	1,65	1,8	0,905	1,06	0,807	0,448	2,94	0,109	0,032	0,364	0,571	1,007	0,317	-0,08	V
	RS56RS57	78,64	78,12	77,14	76,92	30	0,008	5,784	1,3	3,64	6,92	1,95	2	0,836	1,054	0,754	0,377	3,84	0,131	0,019	0,216	0,034	0,786	0,017	-0,06	V
	RS57RS58	78,12	77,79	76,92	76,59	30	0,011	5,784	1,2	3,96	6,25	1,8	1,8	0,925	1,063	0,835	0,464	4,21	0,131	0,021	0,239	0,038	0,945	0,021	-0,07	v
	RS58RS59	77,79	77,33	76,59	76,13	30	0,015	5,784	1,1	3,87	5,95	1,65	1,8	0,972	1,066	0,864	0,48	4,12	0,131	0,022	0,25	0,929	0,968	0,516	-0,07	V
	RS59RS60	77,33	77,08	76,13	75,88	30	0,008	5,784	1,3	3,64	6,92	1,95	2	0,836	1,06	0,807	0,404	3,86	0,131	0,019	0,216	0,034	0,786	0,017	-0,06	V
	RS60RS61	77,08	76,73	75,58	75,53	30	0,008	5,784	1,3	3.64	6.92	1.95	2	0,836	1,06	0,807	0,404	3,86	0,131	0,019	0,216	0,034	0,786	0,017	-0,06	V
	RS61RS62	76,73	76,5	75,53	75,3	23	0,01	5,784	1,2	4,37	6,08	1,8	1,8	0,951	1,064	0,857	0,476	4,65	0,131	0,021	0,239	0,038	1,043	0,021	-0,07	V
	RS62RS63	76,5	75,83	74,9	74,63	42	0.007	2,59	1	2,83	3,12	1,5	1,5	0,83	1,054	0,754	0,502	2,98	0,131	0,042	0,494	0,075	1,398	0,05	-0,1	V
	RS63RS64	75,83	75,37	74,23	74,17	30	0,002	5,097	1,6	2,07	5,95	2,4	2,4	0,857	1,058	0,773	0,322	2,19	0,156	0,026	0,295	0,046	0,612	0.019	-0,1	v
	RS64RS65	75,37	74,73	73,77	73,53	30	0,008	5,097	1,2	3,48	5,81	1,8	1,8	0,877	1,058	0,793	0,44	3,68	0,156	0,027	0,307	0,048	1,068	0.027	-0,1	v
	RS65RS66	74,73	74,1	73,13	72,9	30	0,008	5,097	1,2	3,48	5,81	1,8	1,8	0,877	1,058	0,793	0,44	3,68	0,156	0,027	0,307	0,048	1,068	0.027	-0,1	v
	RS66RS67	74,1	73,86	72,9	72,66	30	0,008	5,097	1,2	3,48	5,81	1,8	1,8	0,877	1,058	0,793	0,44	3,68	0,156	0,027	0,307	0,048	1,068	0.027	-0,1	v
	RS67RS68	73,86	73,44	72,66	72,24	30	0,014	5,097	1,1	4,25	5,88	1,65	1,8	0.867	1,057	0,782	0,435	4,49	0,156	0,027	0,307	0,048	1,304	0.027	-0,1	v
	RS68RS69	73,44	73,07	72,24	71,87	30	0,013	5,097	1,1	4,2	5,72	1,65	1,8	0,891	1,058	0,8	0,444	4,44	0,156	0,027	0,307	0,048	1,289	0.027	-0,1	v
	RS69-RS70	73,07	72,65	71,87	71,45	30	0,014	5,097	1,1	4,25	5,88	1,65	1,8	0,867	1,057	0,782	0,435	4,49	0,156	0,027	0,307	0,048	1,304	0.027	-0,1	v
	RS70RS71	72,65	72,37	71,45	71,17	30	0,009	5,097	1,2	3,68	5,92	1,8	1,8	0,861	1,058	0,773	0,429	3,89	0,156	0,026	0,295	0,046	1,087	0.026	-0,1	v
	RS71RS72	72,37	71,99	71,17	70,79	30	0,013	5,097	1,1	4,2	5,72	1,65	1,8	0,891	1,058	0,8	0,444	4,44	0,161	0,028	0,318	0,05	1,336	0,028	-0,1	V
	RS72RS3	71,99	71,14	70,49	70,14	30	0,012	5,097	1,1	3.98	5,41	1,65	1,8	0,942	1.063	0,842	0,468	4,23	0,161	0.03	0,282	0,043	1,122	0.024	-0,11	v
	RS73RS74	71,14	70,96	69,94	69,76	30	0,006	5,097	1,3	3,78	6	1,95	2	0,849	1,053	0,769	0,385	3,98	0,161	0,027	0,307	0,048	1,16	0,024	-0,1	v
	RS74RS75	70,96	70,79	69,76	69,59	30	0,006	5,097	1,3	3,18	6	1,95	2	0,849	1,053	0,769	0,385	3,35	0,161	0,027	0,307	0,048	0,976	0,024	-0,1	v
	RS75RS76	70,79	70,39	69,59	69,19	30	0,013	5,097	1,1	4,2	5,72		1,8	0,891	1,058	0,8	0,444	4,44	0,161	0,028	0,318	0,05	1,336	0,028	-0,1	v
	RS76RS77	70,39	70,03	69,19	68,83	30	0,012	5,097	1,1	3,98	5,41		1,8	0,942	1,063	0,842	0,468	4,23	0,161	0,03	0,282	0,043	1,122	0,024	-0,11	v
	RS77RS78	70,03	69,63	68,83	68,43	30	0,013	5,097	1,1	4,2	5,72	1,65	1,8	0,891	1,058	0,8	0,444	4,44	0,161	0,028	0,318	0,05	1,336	0,028	-0,1	v
	RS78RS79	69,63	69,21	68,43	68,01	30	0,014	5,097	1,1	4,25	5,88	1,65	1,8	0,867	1,057	0,782	0,435	4,49	0,161	0,027	0,307	0,048	1,304	0,027	-0,1	v
	RS79RS80	69,21	68,99	68,01	67,79	30	0,008	5,097	1,2	3,48	5,81	1,8	1,8	0,877	1,058	0,793	0,44	3,68	0,161	0,028	0,318	0,05	1,107	0,028	-0,1	v
	RS80RS81	68,99	68,65	67,79	67,45	32	0,011	5,097	1,1	3,78	5,1	1,65	1,8	0,999	1,069	0,889	0,494	4,04	0,161	0,032	0,364	0,571	1,374	0,317	-0,11	v
	RS81RS82	68,65	68,56	67,45	67,36	23	0,004	5,455	1,4	2,72	5,85	2,1	2,1	0,933	1,063	0,836	0,398	2,89	0,196	0,034	0,386	0,061	1,051	0.029	-0,14	v
	RS82RS83	68,56	68,38	67,36	67,18	30	0,006	5,455	1,3	3,18	6	1,95	2	0,909	1,061	0,818	0,409	3,37	0,196	0,033	0,375	0,059	1,193	0,029	-0,14	v
	RS83RS84	68,38	68,22	67,18	67,02	36	0,005	5,455	1,4	3,08	6,6	2,1	2,1	0,827	1,056	0,736	0,35	3,25	0,196	0,03	0,282	0,043	0,869	0,02	-0,13	v
	RS84RS85	68,22	67,96	67,02	66,76	30	0,009	5,455	1,2	3,68	5,93	1,8	1,8	0,92	1,062	0,829	0,46	3,91	0,196	0,033	0,375	0,059	1,38	0.033	-0,14	v
	RS85RS86	67,96	67,74	66,76	66,54	30	0,007	10,05	1,6	3,89	12,22	2,4	2,4	0,822	1,062	0,829	0,345	4,13	0,234	0,019	0,216	0,034	0,84	0,014	-0,11	v
L	1.500 1.500	0.,,,	5,,,,	50,75	00,01		3,007	10,00	1,0	2,07	12,22	- , ·	_,.	2,022	1,002	3,027	5,0.0	.,	0,201	5,017	3,210	0,001	0,07	3,011	0,11	<u> </u>

ANNEXE X


VARIATIONS DES DÉBITS ET DES VITESSES EN FONCTION DE LA HAUTEUR DE REMPLISSAGE

(d'après la formule de Bazin)


a) Ouvrages circulaires

b) Ouvrages ovoïdes normalisés

Exemple - Pour un ouvrage circulaire rempli aux 3/10, le débit est les 2/10 du débit à pleine section et la vitesse de l'eau est les 78/100 de la vitesse correspondant au débit à pleine section

