REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE

MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE

ECOLE NATIONALE SUPERIEURE D'HYDRAULIQUE-ARBAOUI Abdellah-

DEPARTEMENT HYDRAULIQUE URBAINE

MEMOIRE DE FIN D'ETUDES

En vue de l'obtention du diplôme d'Ingénieur d'Etat en Hydraulique

OPTION: Conception des réseaux d'assainissement

THEME DU PROJET:

Etude de protection contre les inondations de l'Est de la ville de Bordj Bou Arreridj

PRESENTE PAR:

MEKHOUKH Hanane

Devant les membres du jury

Nom et Prénoms	Grade	Qualité
Mr. Y.DERNOUNI	M.A.A	Président
M ^{me} . M.KAHLERRAS	M.A.A	Examinatrice
M ^{me} .H.SAIDI	Ing/Doctorante	Examinatrice
M ^{me} .C.SALHI	M.A.B	Examinatrice
Mr. M.BOUKHELIFA	M.A.B	Promoteur

Septembre 2015

Remerciements

Je remercie mon Dieuqui m'a don 1
achever ce modeste travail.

Je t i e n s à r e m e r c i e r v i v e m e n t t soutien pour l'él a b o r a t i o n d e cs.e m ém o i Je tiens à exprimer mes plus vifs remerciements à mon promoteur M^r BOUKHLIFA Mustapha pour ses efforts et ses apports précieux afin de mener ce travail à terme.

Je remercie le président et les membres du jury qui me feront L'h o n de juger mon travail.

Je tiens à présenter pour l occasion tout mon respect à tous les enseignants qui ont contribué à ma formation.

Mes remerciements également à tout le personnel de l'ENSH.

Un remerciement particulier à Farhati Abdelmelek, Mechri Amel, Arezki Djamel, Bouta Said, Benzmem Nordine.

En f in, àtous ceux qui m'ont sout a

Hanane

Dédicace

Ama for midable mère qui m'a toujou en cour agéet qui n'a jamais cessé de croire en moi.

A mon très cher père qui a toujours su me donner les meilleurs conseils pour ma réussite.

A m e s s Færidæ Lsydia Wissem et sa belle-fille Asma, à qui je souhaite beaucoup de réussite.

A mes frères Radouane, Abdelhak, Sofiane et Samir à qui je souhaite beaucoup de réussite dans la vie.

A ma très chère grand-mère qui prie toujours pour moi. Que Dieu lui donne une longue vie.

A mes amies Zineb halfawi, Meriem ben, Meriem Boukam, Khouloud, Kenza, Assia, Houda, Bouchra sans oublier bien sur ma chère Naima.

A toute ma famille

 \mathcal{A} mapromotion de l'ENSH

Et à toutes les personnes Sapheum i m'ont Abdesslem et El Hachimi.

A ceux qui étaient toujours là pour moi.

A toutes ces personnes, je dédie ce modeste travail.

Hanane

الهدف الرئيسي لهذه الدراسة هو حماية شرق مدينة برج بوعريريج من خطر الفيضانات و لذلك تضمن عملنا هذا أربعة اجزاء أساسية أو لا التعريف بمنطقة الدراسة ثم القيام بدراسة هيدرولوجية مفصلة متبوعة بنمذجة الواد: في حالته الطبيعية و أخيرا و قبل القيام بتنظيم أعمال مشروعنا قمنا باختيار نظام الحماية من الفيضانات المناسب.

Résumé

L'objectif principal de cette étude consiste à protéger l'Est de la ville de Bordj Bou Arreridj contre les inondations.

Notre travail va porter essentiellement sur quartes parties. Il fallait commencer par une présentation de la zone d'étude qui sera suivie par une étude hydrologique détaillée. Puis, il est indispensable de présenter une modélisation du cours d'eau existant. Enfin et avant de procéder à l'organisation du chantier de notre projet, notre choix s'est porté sur le système de protection contre les inondations le plus adéquat.

Abstract

The main idea of this project is to protect the east side of Bordj Bou Arreridj city from floods. So our work have been divided into four essential parts firstly q presentation of the studied area then a detailed hydrological study after that we mouve to the modelisation of the existent river and Finally and before we proceed to construction site organization of our project, we chose the most adequate protection system from flood.

Sommaire

1 : Presentation de la zone d'etude

Introduction:	1
1.1. La situation géographique :	1
1.2. Situation climatique	4
1.3. Démographie	5
1.4. Caractéristiques du bassin versant :	5
1.5. Relief :	7
1.6. Réseau de l'écoulement:	10
1.7.Situation du réseau d'assainissement	13
Conclusion	14
2 : Etude des précipitations maximales journalieres	
2.1 Etude des précipitations	15
2.1.1. Hauteurs de pluies annuelles	15
2.1.2. Hauteurs de pluies mensuelles	15
2.1.3. Hauteurs des pluies extrêmes	17
2.2. Test d'homogénéisation	18
2.2.1. Définition	18
2.2.2. Test de Wilcoxon	18
2.3. Calcul des caractéristiques empiriques de la série pluviométrique	19
2.3.1.Les paramètres de position	19
2.3.2.Les paramètres de dispersion	19
2.4. Ajustement des pluies maximales journalières:	20
2.4.1. Loi log normale ou loi de Galton	20
2.4.2. Ajustement à la loi de Gumbel	22
2.5. Test d'adéquation	23
2.6. Pluies de courte durée	24
Conclusion	26
3 : Estimation des débits de crues des cours d'eau et du débit	
Introduction	27
3.1. Estimation du débit de crue du cours d'eau	27
3.2. Application sur le bassin versant	
3.3. Aperçus sur le HEC-HMS	29
3.4. Formule rationnelle:	33

Conclusion	34
4 : Etude des ecoulements dans le cours d'eau existant	
Introduction	35
4.1. Description du model HEC-RAS	35
4.2. Les données de départ	35
4.3. La simulation hydraulique	39
4.4. Les zones inondables.	41
Conclusion	43
5 :Etude des variontes d'amenagement pour la protection contre les i	inondations
Introduction	
5.1.Étude des variantes	43
5.2. Comparaison entre les types d'aménagement	43
5.4. Hydraulique à surface libre	45
5.5. Dimensionnements du canal trapézoïdal	46
5.3. Dimensionnement du réseau des eaux pluviales	52
Conclusion	59
6 : Estimation quantitative et financière du système de protection	
Introduction	60
6.1. Devis quantitatif et estimatif	62
6.2. Détermination des différents volumes	62
6.3. Planification	63
Conclusion	67

Liste des tableaux

Listes des tableaux

présentation de la zone d'étude

Tableau 1.1 : valeurs moyennes mensuelles de la pluviométrie de l'année 2014	4
Tableau1.2 : Répartition de la température pour l'année 2014	4
Tableau 1.3 : Les valeurs moyennes mensuelles de l'évaporation	4
Tableau 1.4 : Estimation de la population à l'horizon futur	5
Tableau 1.5 : les paramètres hydromorphométriques du bassin versant	6
Tableau 1.6 : Surfaces partielles du bassin versant par tranche d'altitude :	7
Tableau 1.7 : Surfaces partielles du bassin versant par tranche d'altitude	8
Tableau1.8 : Caractéristiques hydromorphométriques du bassin versant	12
Étude des précipitations maximales journalières	
Tableau 2.1 : les coordonnées de la station pluviométrique	14
Tableau 2. 2 : la série des pluies mensuelles et annuelles de la station de Bordj Ghdir	15
Tableau 2.3: les pluies maximales journalières	16
Tableau 2.4 : résultat du test d'homogénéisation	18
Tableau 2.5 : Caractéristique des pluies max journalières	19
2.6: résultat d'ajustement à la loi log-normale	20
Tableau 2.7: résultat d'ajustement à la Gumbel	21
Tableau 2.8 : Récapitulatif des pluies, intensités maximales de durée t (h) et de périod retour T	
Estimation des débits de crues des cours d'eau et du débit Pluvial	
Tableau 3.1 : Valeur de coefficient de ruissellement C	26
Tableau 3.2 : les valeurs du coefficient de ruissellement pour la crue probable	26
Tableau 3.3 : Le débit de crue de bassin versants par les différentes formules	27
Tableau 3.4 : caractéristiques des sous bassin	29
Tableau 3.5 : Le débit de crue de bassin versants par la methode de SCS CN	30
Tableau 3.6: estimation du coefficient de ruissellement	32
Tableau 3.7 : Calcul des débits pluviaux pour chaque aire élémentaire par la méthode rationnelle	32
Étude des écoulements dans le cours d'eau existant	
Tableau 4.1 : Les valeurs estimées pour les différents coefficients	35
Tableau 4.2 : les débits de projet	36

Étude des variantes d'aménagements pour la protection contre les inondations
Tableau 5.1 : les Avantages et inconvénients des types d'aménagement43
Tableau 5.2. Coefficient de rugosité ou de Strickler du lit
Tableau 5.3 : débit de dimensionnement
Tableau5.4 : la pente du terrain naturel de chaque tronçon
Tableau 5.6 : les paramètres géométriques d'un canal trapézoïdal
Tableau 5.7 : paramètres de départ
Tableau 5.8 : Récapitulation des profondeurs normale et critique du canal50
Tableau 5.2 : Le Coefficient de Manning-Strickler (ks) en fonction de la nature des parois :.51
Tableau 5.9 : les dimensions du collecteur principal du bassin 253
Tableau 5.10 : dimensions de l'intercepteur
Tableau 5.11 : les dimensions du collecteur principal du bassin 354
Tableau 5.12 : les dimensions du collecteur principal du bassin 454
Tableau 5.13 : les dimensions du collecteur principal du bassin 155
Tableau 5.14 : les dimensions du collecteur principal du POSR8 (bassin 5,6 et 7)56
Estimation quantitative et financière du système de protection contre les inondations
Tableau 6.1 : les volumes de travaux de terrassement60
Tableau 6.2 : Détermination du devis quantitatif et estimatif des collecteurs61
Tableau 6.3 : les durées partielles pour la réalisation du capal 66

Liste des figures

présentation de la zone d'étude

	Figure 1.1 : Situation géographique de la zone d'étude (Google Earth)	1
	Figure 1.2 : Carte géologique de Bordj Bou Arreridj	2
	Figure 1.3 : délimitation du Bassin Versant.	5
Fig	gure 1.4 : courbe hypsométrique	7
	Figure 1.5 : réseau hydrographique à l'échelle 1/25000	10
	Etude des précipitations maximales journalières	
	Figure 2. 1 : Ajustement à la loi de log-normale	20
	Fgure 2. 2 : Ajustement à la loi de log-normale	
	Figure 2.3 : Courbes intensité-durée-fréquence	
	Estimation des débits de crues des cours d'eau et du débit Pluvial	
	Figure 3.1 : Découpage du bassin versant en sous-bassins par MapInfo	29
	Figure 3.2 : Schéma du modèle de bassin par HEC-HMS	30
	Figure 3.3 : hydrogramme de crue de fréquence 1%	30
	Étude des écoulements dans le cours d'eau existant	
	Figure 4.1 : les sections en travers.	34
	Figure 4.2 : photo du cours d'eau non aménagé.	36
	Figure 4.3 : exemple d'un profil en travers.	37
	Figure 4.4 :profile de la hauteur d'eau au passage de la crue	38
-	Étude des variantes d'aménagements pour la protection contre les inondations	
	Figure 5.1: schéma d'un canal trapézoïdal	44
	Figure 5.2 : schéma représentatif de différentes classes d'écoulements	45
	Figure 5.3 : Graphique de la fonction $Es = f(h)$	49
]	Figure 5.4 : Courbe Hs =f(hc)	50
	Estimation quantitative et financière du système de protection contre les inondations	
	Figure 6.1 : Le réseau à nœud du réseau d'eau pluvial	65
	-	

Listes des planches

- 1. Plan de masse de la commune de Bordj Bou Arreridj EST;
- 2. Vue en plan des aménagements de protection contre les inondations
- 3. Plan des ouvrages hydrauliques annexes projetés ;
- 4. Profils en long des cours d'eau aménagés ;
- 5. Coupes types des cours d'eau aménagés;

Listes des annexes

Les profile en travers

Résultat de la simulation d'oued Akhrouf à son état naturel

Références bibliographiques

- B. TOUAIBIA .MANUEL PRATIQUE D'HYDROLOGIE.(Mars2004)
- B.SALAH. ASSAINISSEMENT DES AGGLOMERATIONS (1993)
- G.DEGOUTE .CHAPITRE 1 AIDE MEMOIRE D'HYDRAULIQUE A SURFACE LIBRE
- G.J. Arcement Jr. and V.R. Schneider Guide for Selecting Manning's Roughness Coefficients)

LENCASTRE .A .HYDRAULIQUE GENERALE .((2002)

Richard H. McCuen. HYDROLOGIC ANALUSIS AND DESIGN SECOND EDITION

Introduction générale

Introduction générale

L'algérie est l'un des pays confrontés aux phénomènes de crues et d'inondations qui se manifestent de façon dramatique constituant ainsi une contrainte majeure pour le développement économique et social, ces inondations sont les catastrophes naturelles les plus destructives et même les plus fréquentes et provoquent d'importants dégâts humains et matériels.

La réalité géoclimatique algérienne, celle-ci caractérisée par un climat semi-aride à aride, contribue à constituer un enjeu permanent auquel s'ajoute la vulnérabilité du milieu aussi bien physique qu'humaine ce qui renforce le danger et les risques multiples et complexes qu'ils soient sociaux, sanitaires, économiques ou environnementaux.

Plusieurs régions de notre pays sont régulièrement menacées par ces désastres dont les impacts sont souvent intensifiés par d'autres facteurs qui aggravent les effets de crues tels que : l'urbanisation anarchique par l'occupation des zones inondables et la défaillance des réseaux d'eaux pluviales.

Les inondations produites dans ces régions présentant un environnement topographique défavorable comme le cas de la ville de Bordj Bou Arreridj traversées par des Oueds. De par sa situation géographique, cette agglomération à forte concentration de population et sous l'effet d'une urbanisation pseudo-anarchique sur sa périphérie et non réglementée présente des grands risques, des pertes humaines et des destructions de constructions sont enregistrés à chaque inondation aussi légère qu'elle soit. L'examen des événements tragiques survenus dans cette zone, notamment celui du 1994 montre calairement la nécessité de se prémunir contre ce fléau naturel qui necessite de rebondir à chaque événement pluvieux exceptionnel.

Afin d'apporter rapidement des solutions aux problèmes qui se posent à court et moyen termes, et pour être capable d'assurer une gestion intégrée et durable de l'eau, la protection de ville de BBA et sa population s'avère une des priorités des pouvoirs publics et une étude devrait être lancée dans ce sens.

Notre travail s'inscrit dans une optique visant à entreprendre un projet d'étude qui permet de concevoir un système de protection de la ville du BBA. En effet, ce projet consiste en la réalisation d'un système de drainage des eaux pluviales provenant du bassin versant, qui débouche dans un exutoire à la périphérie de la ville de BBA (Côté Est) . Cette démarche, sans doute, requiert des outils de travail allant du recueil de données du site jusqu'à l'élaboration du schéma d'aménagement.

Le présent mémoire est scindé en six chapitres :

- Le premier est consacré à l'identification du bassin versant (ses principales caractéristiques: géographie, géologie, morphologie, pluviométrie, ainsi que son réseau hydrographique;
- Le deuxième chapitre décrit en détail l'étude hydrologique du bassin versant. Cette étude est d'un intérêt capital dans la détermination des pluies à courtes durées et leurs intensitées pour differentes période de retour

- Dans le troixième chapitre on détermine le débit des cours d'eaux et le débit d'eau pluvial
- Dans le quatrième chapitre on passe a la modélisation du cours à son état naturel et la détermination des zones inondables.
- le cinquieme chapitre traitera dans sa première partie le dimensionnement du réseau pluviale et les différentes puit le dimensionnement de la variante choisie pour la protection contre les inondations.
- Enfin une estimation quantitative et financière du système de protection contre les inondations.

Chapitre 1 : Présentation de la zone d'étude

1 - présentation de la zone d'étude

Introduction:

Ce chapitre consiste à présenter la zone d'étude (la situation géographique, la situation climatique) et à la détermination des caractéristiques du bassin versant (caractéristique de forme, relief et réseau d'écoulement)

1.1. La situation géographique :

La wilaya de Bordj Bou Arreridj occupe une place stratégique au sein de l'Est algérien. Elle se trouve à mi-parcours du trajet séparant Alger de Constantine.

Le Chef-lieu de la wilaya est située à 220 km à l'est de la capitale, Alger. La wilaya de Bordj Bou Arreridj s'étend sur une superficie de 3 921 km².

La ville de BBA est limitée administrativement comme suit :

Au Nord : Medjana, Hasnoaua ;

➤ Au Sud : El Hammadia ;

> Au l'Ouest :El Achir ;

➤ A l'Est : Sidi Embarek, El Anasser.

.

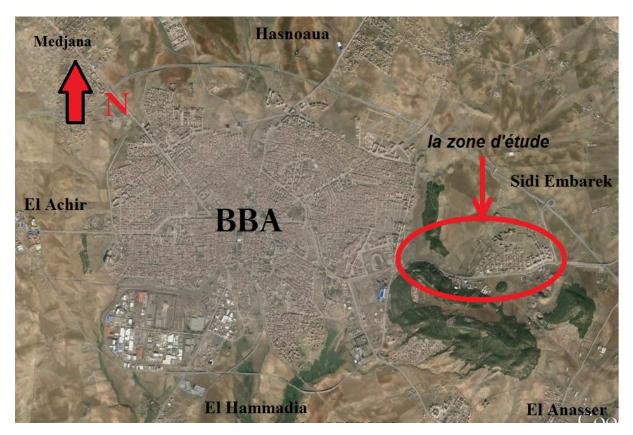


Figure 1.1 : Situation géographique de la zone d'étude (Google Earth).

1.1.1. Topographie du site

La zone d'étude se situe au centre des plaines de la Medjana, avec les montagnes de Mourissan au nord, les Maadhid au sud, les hauts plateaux à l'Est et les monts Tafartast et Djbel Mansoura à l'Ouest.

1.1.2. Géologie du site

La géologie du site est illustrée sur la carte géologique de Bordj Bou arréridj les explorations et tracés géologiques ont été effectués de 1903 à 1906 par M. J Savornin, préparateur de géologie et minéralogie à l'Ecole des sciences à ALGER à l'échelle 1/50000.

Source : service géologique de l'Algérie

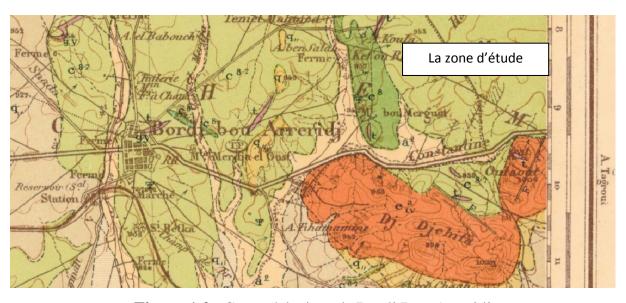


Figure 1.2 : Carte géologique de Bordj Bou Arreridj

1.1.2.1. Définition des roches qui se trouvent dans le site

On trouve six échantillons de roches qui existent dans le bassin versant de la zone d'étude.

a) Alluvions anciennes (niveaux élevés)

Témoins d'une première nappe caillouteuse, à éléments bien roulés, ordinairement cimentés en poudingue. Il n'en reste que d'étroits lambeaux au sommet de mamelons émergeant à la surface du plateau : Koudiat HOUCHIDA, K. LECHBOUR, K. TAGENNAGLIT, etc. Quelques fragments sont encore soudés aux reliefs entourant la MEDJANA, MORISSANE, DJEHIFA) et suspendus à d'assez fortes altitudes.

b) Alluvions récentes

Limons argileux : petites plaines marécageuses de quelques ruisseaux (autour de Bordj et de Blondel). Plaines d'inondations.

c) Calcaires marneux gris

A patine très blanche, ordinairement riches en empreintes superficielles d'Incérâmes quelquefois empreintes de ficoïde.

d) Sénonien

Marnes noires ordinairement schisteuses et calcaires marneux gris. Assise certainement très puissante, mais surtout fortement plissée. Nombreux gisements fossilifères, riches en individus sinon en espèces : Ostrea Santonensis, O. vesicularis, O. Villei. Etc. ; moules de bivalves et de gastropodes ; échinides un peu plus rares (localisés): Cyphosoma, Mansour vers le Bled OUM YAHIA. Les huitres, fort nombreuses, semblent indiquer l'Emschérien et l'Aturien, c'est-à-dire l'étage sénonien complet qu'il n'a pas été possible de subdiviser.

e) Calcaires à silex

Classiques en Algérie. Quelquefois calcaires marneux sans silex. Assise surtout intéressante par l'imprégnation de phosphate de chaux, ou même par la présence de bancs à nodules phosphatés (coprolithes).

f) Trias ophito-gypseux

Argiles bariolées, cargneules, brèches calcaires et dolomitiques, masses de gypse, d'ophites. Affleurements très nombreux, de tout ou partie de ces roches associées; aucun fossile. L'âge triasique de l'ensemble est suffisamment révélé par le groupement lithologique.

1.2. Situation climatique

Les conditions climatiques au niveau du bassin versant jouent un rôle capital dans le comportement hydrologique des cours d'eau. Les facteurs qui déterminent le climat sont :

Les précipitations avec sa distribution dans le temps et dans l'espace, l'évaporation, et la température.

Les données climatiques de la wilaya sont issues de la station du météo de Bordj Bou Arreridj de coordonnées 3604Nord 0440Est et 955 m d'altitude.

1.2.1. Pluviométrie

La pluviométrie annuelle est de 300 à 700 mm. Les valeurs moyennes mensuelles de la pluviométrie de l'année 2014 sont résumées dans le tableau 1.

Tableau 1.1: valeurs moyennes mensuelles (1963-2013)

mois	Sept	Oct	Nov	Déc	Jan	Ffév	Mars	Avr	Mai	Juin	Juill	Aou
pluies	30.33	31.84	36.00	44.43	38.29	29.9	34.24	42.0	34.64	17.12	5.89	8.92

1.2.2. Température

La température moyenne mensuelle maximale à lieu au mois Aout, elle est de l'ordre 28 °C et la température moyenne mensuelle minimale à lieu au mois décembre, elle est de l'ordre 4 °C.

Tableau1.2: Répartition mensuelle des températures (1922-1993).

mois	Sept	Oct	Nov	Déc	Jan	Fév	Mars	Avr	Mai	Juin	Juill	Août	Moy
T. (°C)	23°	16°	9.8°	6,5°	4°	6°	8°	12°	18°	22°	26°	28°	15°

1.2.3. Évaporation

On remarque que la valeur moyenne mensuelle maximale de l'évaporation est de 60 mm; tandis que la valeur moyenne mensuelle minimale de l'évaporation est de 12.4mm.

Tableau 1.3 : Les valeurs moyennes mensuelles de l'évaporation

mois	Sep	Oct	Nov	Déc	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Tot
Evap(mm)	36.6	28.4	22.5	12.4	12.5	14.0	22.3	30.5	40.7	49.3	60	51.3	380.3

1.3. Démographie

Pour l'estimation de la population à l'horizon futur nous utiliserons l'expression des intérêts composées :

$$P_n = Po(1+T)^n$$
....(1)

D'où:

P_n: Population future;

P_o: Population actuel pour l'année 2008;

T: Taux d'accroissement (1.3%);

N : Nombre d'années séparant l'année de futur et l'année de référence.

Tableau 1.4 : Estimation de la population à l'horizon futur

			NOMB	RE D'HABI	TANTS		
Localité	Horizon 2008	Horizon 2014	Horizon 2020	Horizon 2025	Horizon 2030	Horizon 2035	Horizon 2040
BBA Est	4350	4762	5079	5418	5780	6165	6576

1.4. Caractéristiques du bassin versant :

Les différents paramètres morphométriques sont calculés à partir de la carte topographique à l'échelle 1/2500, Ces paramètres sont résumés dans le Tableau 1.8

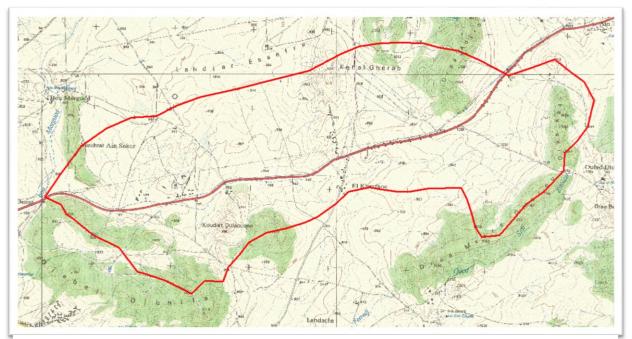


Figure 1.3 : délimitation du Bassin Versant.

1.4.1. Caractéristiques de forme

La forme du bassin versant influence fortement l'écoulement global et notamment le temps de repense du bassin versant.(Manuel Pratique d'Hydrologie B.TOUAIBIA)

Un bassin versant allongé ne réagira pas de la même manière qu'un bassin ramassé même s'ils sont placés dans les mêmes conditions météorologiques. Il existe différents indices

morphologiques permettant de caractériser le milieu, mais aussi de comparer les bassins versants entre eux. Citons :

1.4.1.1. L'indice de compacité de Gravelius « K_c » :

Défini comme le rapport du périmètre du bassin et le périmètre du cercle ayant la même surface.

$$K_{c} = \frac{P}{2\sqrt{\pi \cdot S}} \approx 0.28 \cdot \frac{P}{\sqrt{S}} \qquad (2)$$

Avec:

P: Périmètre du bassin versant.

S: Surface du bassin versant.

1.4.1.2. Coefficient d'allongement :

Défini comme étant le rapport entre le cheminement le plus long et la surface du bassin.

$$Ca = \frac{L^2}{S} = \frac{8.07^2}{12.05} = 5.4.$$
 (3)

1.4.1.3. Rectangle équivalent :

On suppose que l'écoulement sur un bassin versant donné est le même que sur un rectangle de même superficie. Ayant le même indice de Gravelius, La même répartition hypsométrique, La même distribution des sols et de la végétation et la même densité de drainage.

Le rectangle équivalent est caractérisé par la longueur « L » et la largeur « l » définit respectivement par :

$$L = \frac{Kc - \sqrt{S}}{1.128} \left(1 + \sqrt{1 - \left(\frac{1.128}{Kc}\right)^2} \right). \tag{4}$$

$$l = \frac{Kc - \sqrt{S}}{1.128} \left(1 - \sqrt{1 - \left(\frac{1.128}{Kc}\right)^2} \right)$$
 (5)

Ou : (L) représente la longueur du rectangle équivalent et (l) sa largeur.

Tableau 1.5 : les paramètres hydromorphométriques du bassin versant:

Bassin	S (km ²) (surfaces)	P (km) (Périmètre)	K _c	L (Km)	l (Km)
BV	12.05	17.24	1.39	6.78	1.78

1.5. Relief:

Le relief a une influence sur la forme de l'hydrogramme de crue, une forte pente provoque un écoulement plus rapide, donc un temps de concentration plus court d'où une montée plus rapide de la crue. L'importance de son étude est caractérisé par la répartition altimétrique du terrain par une courbe appelée « courbe hypsométrique ».

1.5.1. Répartition et courbe hypsométrique :

La construction de cette courbe est indispensable dans une étude de relief d'un bassin versant. Cette courbe représente la répartition de la surface du bassin versant en fonction de son altitude, elle porte en ordonnée l'altitude et en abscisse la surface en (%).

Tableau 1.6: Surfaces partielles du bassin versant par tranche d'altitude :

Altitude	Surfaces	Surfaces	surfaces cumulées
M	Km ²	%	%
1075-1050	2.57	0.31	2.57
1050-1025	8.13	0.98	10.71
1025-1000	16.85	2.03	27.55
1000-975	18.09	2.18	45.64
975-950	24.15	2.91	69.79
950-925	23.82	2.87	93.61
925-900	6.39	0.77	100.00

La courbe hypsométrique caractéristique du bassin versant est donnée par la figure I.4.

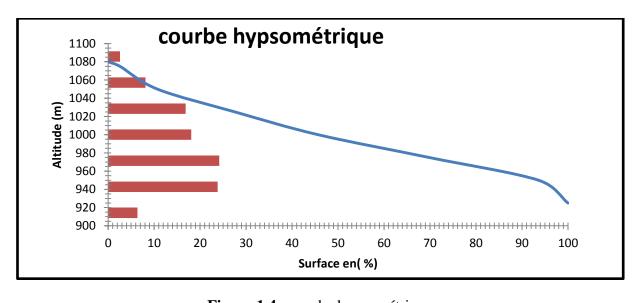


Figure 1.4 : courbe hypsométrique

1.5.2. Altitudes caractéristiques

Elles sont obtenues directement à partir de la carte topographique. L'altitude maximale représente le point le plus élevé du bassin tandis que l'altitude minimale considère le point le plus bas.

$$H_{\text{max}} = 1075 \text{ m NGA}$$
 $H_{\text{min}} = 925 \text{ m NGA}$

L'altitude médiane ou H₅₀% est déterminée sur la courbe hypsométrique.

H_{méd} =996m NGA

L'altitude moyenne H_{moy} est calculée par la formule suivante :

$$Hmoy = (\frac{\sum_{i=1}^{n} S_{i}.H_{i}}{S})$$
(6)

Avec:

$$Hi = (H_{i+1} + H_n)/2....$$
(7)

$$H_{\text{moy}} = \frac{11748.375}{12.05} = 974.97 \text{m}$$

Tableau 1.7: Surfaces partielles du bassin versant par tranche d'altitude :

H _i	surface	$S_{i}.H_{i}$
m	km2	Km ² .m
912.5	0.77	702.625
937.5	2.87	2690.625
962.5	2.91	2800.875
987.5	2.18	2152.75
1012.5	2.03	2055.375
1037.5	0.98	1016.75
1062.5	0.31	329.375

1.5.3. Indice de pente globale(I_g):

Il est définit comme étant le rapport entre l'altitude comprise entre 5% et 95% de la surface du bassin et la longueur du rectangle équivalant .on prend deux points S_1 , S_2 sur l'axe des abscisses tels que 90% de la surface du bassin versant soit comprise entre ces deux valeurs et que 5% de la surface totale du bassin versant soit inférieure à S_1 et 5% soit supérieure à S_2 . (Manuel Pratique d'Hydrologie B. TOUAIBIA).

Les altitudes correspondantes sont lues à partir de la courbe hypsométrique .Il et donné par :

$$Ig = \frac{D}{L} = \frac{H_{5\%} - H_{95\%}}{L}.$$
 (8)

 $H_{5\%}$ et $H_{95\%}$: sont respectivement Les altitudes correspondantes à $S_{5\%}$ et $S_{95\%}$

H5% = 1066m;

$$H95\% = 947m$$
.

$$Ig = \frac{1066 - 947}{6.78} = 17.55 m/km$$

1.5.4. Pente moyenne du bassin versant (I_m) :

La pente moyenne est une caractéristique importante qui renseigne sur la topographie du bassin. Elle donne une bonne indication sur le temps de parcours du ruissellement direct (donc sur le temps de concentration $T_{c)}$ et influence directement le débit de pointe lors d'une averse. Elle est donnée par :

$$I_{m} = \frac{\Delta H(0.5l_{1} + l_{2} + l_{3} + \dots + 0.5l_{n})}{S}$$
 (9)

$$I_{\rm m} = 13.85 \%$$

1.5.5. Pente moyenne du cours d'eau principale

La pente moyenne du cours d'eau détermine la vitesse avec laquelle l'eau se rend à l'exutoire du bassin donc le temps de concentration. Cette variable influe sur le débit maximal observé, Une pente abrupte favorise et accélère l'écoulement superficiel, tandis qu'une pente douce ou nulle donne à l'eau le temps de s'infiltrer entièrement ou en partie dans le sol.

Le calcul des pentes moyennes et partielles de cours d'eau s'effectue à partir du profil longitudinal du cours d'eau principal et de ses affluents. La méthode la plus fréquemment utilisée pour calculer la pente longitudinale du cours d'eau consiste à diviser la différence d'altitude entre les points extrêmes du profil par la longueur totale du cours d'eau.

$$I = \frac{\Delta H}{\Delta L}.$$
 (10)

Avec:

Imoy: pente moyenne du cours d'eau [m/km];

ΔH: dénivellation entre deux points suffisamment distante [m];

ΔL: longueur du cours d'eau principal [km].

1.6. Réseau de l'écoulement :

Le réseau hydrographique est l'ensemble des cours d'eau naturels ou artificiels, permanents ou temporaires, qui participent à l'écoulement (figure 4).

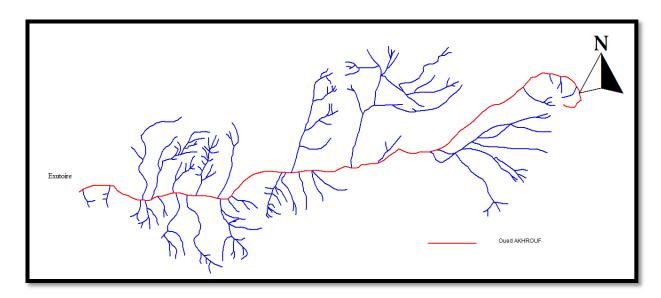


Figure 1.5: réseau hydrographique à l'échelle 1/25000.

1.6.1. Densité de drainage

La densité de drainage est définie comme étant le rapport entre la longueur totale de tous les talwegs L_I du bassin versant à la surface totale S. Elle reflète la dynamique du bassin la stabilité du chevelu hydrographique et le type de ruissellement de surface .Elle est exprimée en Km/Km^2 . (Manuel Pratique d(Hydrologie B.TOUAIBIA).

$$\mathbf{D_d} = \frac{\sum L_i}{S} \tag{11}$$

$$D_d = \frac{56.699}{12.05} = 4.71 \text{km/km}^2$$

1.6.2. Le temps de concentration :

Le temps de concentration T_C des eaux sur un bassin versant se définit comme le maximum de durée nécessaire à une goutte d'eau pour parcourir le chemin hydrologique entre le point le plus éloigné du bassin et l'exutoire de ce dernier. Il est composé de trois termes différents :

 $\underline{\text{Temps d'humectation } T_h: \text{ c'est le temps nécessaire à l'imbibition du sol par l'eau qui tombe avant qu'elle ne ruisselle.}$

Temps de ruissellement ou d'écoulement T_r : c'est le temps qui correspond à la durée d'écoulement de l'eau à la surface ou dans les premiers horizons de sol jusqu'à un système de collecte (cours d'eau naturel. collecteur).

<u>Temps d'acheminement T_a :</u> c'est le temps mis par l'eau pour se déplacer dans le système de collecte jusqu'à l'exutoire.

Le temps de concentration T_C est donc égal au maximum de la somme de ces trois termes.

Chapitre 1-présentation de la zone d'étude

$$T_C = \max \left[\sum \left(T_h + T_r + T_a \right) \right]_{\dots} \tag{12}$$

Théoriquement on estime le temps de concentration (T_c) comme la durée comprise entre la fin de la pluie nette et la fin du ruissellement. Pratiquement le temps de concentration peut être déduit de mesures sur le terrain ou s'estimer à l'aide des formules le plus souvent empiriques.

Dans notre cas on applique la formule de KIRPICH qui est applicable pour les petits bassins versant relativement allongée.

Formule de KIRPICH:

$$T_{c} = 0,6615 \cdot L_{p}^{0,77} \cdot I^{-0,385}$$
 (13)

A.N:

$$T_c = 0.6615 \cdot 8.47^{0.77} \cdot 0.1948^{-0.385} = 6.43$$
heure

1.6.3. Vitesse moyenne de ruissellement :

Cette vitesse est donnée par la formule :

$$\mathbf{V_R} = \frac{\mathbf{L}}{\mathbf{T_c}}$$
Avec:

Avec:

L : longueur du cours d'eau principal en (Km).

Tc: temps de concentration en (h).

<u>A.N:</u>

$$Vr = \frac{8.47}{6.43} = 1.32 \text{Km/h}$$

Tableau1.8 : Caractéristiques hydromorphométriques du bassin versant

caractéristique	Unités	Valeur	
surface	Km2	12.05	
Périmètre	Km	17.24	
Coefficient de Gravelius	/	1.39	
longueur	Km	6.78	
largeur	Km	1.78	
coefficient d'allongement	/	5.4	
Altitude maximale	m	1075	
altitude minimale	m	925	
Altitude moyenne	m	974.97	
altitude médiane	m	996	
Altitude 5%	m	1066	
Altitude 95%	m	947	
indice de pente globale	m/Km	17.55	
pente moyenne du bassin versant	%	13.85	
La pente du cours d'eau	%	19.48	
longueur du cours d'eau principal	Km	8.47	
Ordre du cours d'eau principal	/	4	
densité de drainage	Km/Km2	4.71	
temps de concentration	h	6.43	

1.7. Situation du réseau d'assainissement

L'agglomération de la ville de Bordj Bou Arreridj Est dispose d'un enceins réseau d'assainissement ce qui fait la non disponibilité des données de ce réseau.

Conclusion

Après avoir identifié la zone d'étude, nous concluons que le bassin versant a une forme allongée avec une densité de drainage de 4.71 Km/Km² et une longueur du cours d'eau principal de 8.47 Km et un temps de concentration de 6.43 heure.

Chapitre 2 : Étude des précipitations maximales journalières

2-Etude des précipitations maximales journalières

2.1. Étude des précipitations

Pour l'étude de précipitations on a besoin d'une série comportant les précipitations maximales journalières pour une période la plus longue possible.

Comme base de données pluviométriques on se refaire aux informations recueillies par la station pluviométrique de Bordj Ghdir, Dont les coordonnées sont résumé dans le tableau suivant:

Tableau 2.1 : les coordonnées de la station pluviométrique.

1 usicuu 201 vies coordonnees de la saaron pravionnearique.					
	Altitude : Z (m)	1054			
	Abscisse : X (Km)	698.4			
Support pluviométrique	Ordonné: Y (Km)	292.2			
	Code de la station	05 09 04			
	Nom de la station	Bordj Ghdir			
Nom et numéro du grand bassin versant	El Hodna -05-				
Taille de l'échantillon : N	50				
P moy max journalière (mm)	32.672				

2.1.1. Hauteurs de pluies annuelles

Cette variable est la somme de 365 hauteurs journalières qui peuvent être considérées comme des variables aléatoires indépendantes. On se trouve donc dans les conditions d'application du théorème central limite (en fait il vaudrait mieux dire que la pluie annuelle est la somme d'une cinquantaine d'épisode pluvieux).

En effet, on constate bien, sous nos climats, que les hauteurs de pluies annuelles s'ajustent à des lois de Gauss.

L'ajustement est d'autant meilleur que la hauteur est plus grande et les jours de pluies plus nombreux dans l'année. Sous des climats plus secs, les pluies annuelles sont distribuées selon des lois à dissymétrie positive.

2.1.2. Hauteurs de pluies mensuelles

Les hauteurs de pluies mensuelles se distribuent généralement selon des lois à dissymétrie positive. Si parfois les distributions sont à peu près gaussiennes. Le tableau 2.2 donne les pluies mensuelles et annuelles.

.

Tableau 2. 2 : la série des pluies mensuelles et annuelles de la station de Bordj Ghdir

1 ableau 2	• 4 • 1a	i serie u	ies piu	ies iliei	isuene	s et an	Huene	s ue la	Statio	II de L	oraj O	IIUII	
Année	Sep	Oct	Nov	Dec	Jan	Fév	Mars	Avril	Mai	Juin	Juillet	Aout	annuel
1963/1964	18.8	7.3	6.5	140.6	49.6	26.6	25.8	0.0	20.9	37.8	5.3	0.0	339.2
1964/1965	0.0	16.9	14.9	52.8	64.8	31.9	18.0	20.7	7.8	0.0	0.0	8.1	235.9
1965/1966	0.0	35.0	7.8	23.5	8.4	3.0	36.5	2.9	0.0	2.6	0.0	0.0	119.7
1966/1967	0.0	28.7	8.3	8.4	2.6	45.7	4.3	44.1	8.5	0.0	2.9	31.9	185.4
1967/1968	56.9	14.4	30.5	58.9	11.0	59.8	11.2	25.0	4.0	0.0	2.6	18.2	292.5
1968/1969	0.0	0.0	18.0	17.4	30.7	16.6	36.5	47.6	0.0	3.1	0.0	0.0	169.9
1969/1970	56.5	67.6	36.6	30.5	50.7	4.7	67.8	90.9	41.5	2.8	14.9	5.8	470.3
1970/1971	2.0	48.5	3.0	38.2	51.4	4.3	33.3	59.3	42.2	11.0	12.1	0.0	305.3
1971/1972	13.5	38.5	70.0	56.8	83.4	34.0	39.8	51.4	49.4	45.5	2.5	1.2	486.0
1972/1973	31.7	44.6	27.9	47.7	19.8	29.5	54.5	34.3	1.3	68.0	0.0	2.8	362.1
1973/1974	44.3	0.0	13.9	47.9	1.8	43.5	90.1	60.9	15.6	30.7	3.5	0.3	352.5
1974/1975	29.1	52.0	17.9	4.9	9.6	51.9	21.1	11.4	46.4	3.8	19.4	2.4	269.9
1975/1976	37.0	13.2	49.0	41.3	4.3	76.4	39.7	100.0	97.8	50.9	27.2	34.1	570.9
1976/1977	26.0	31.8	49.2	32.8	185.3	1.7	3.1	31.8	36.7	16.1	0.0	9.4	423.9
1977/1978	3.3	20.5	63.7	3.5	14.5	13.9	12.8	82.6	27.2	4.5	0.0	10.1	256.6
1978/1979	2.6	52.9	9.1	11.3	67.7	27.4	42.3	85.3	18.6	57.3	1.6	2.0	378.1
1979/1980	51.3	38.8	16.9	5.4	18.9	16.7	54.7	50.6	47.9	6.4	1.0	0.0	308.6
1980/1981	24.7	3.0	74.3	85.9	3.9	66.8	33.8	32.2	25.5	12.4	2.0	11.3	375.8
1981/1982	22.3	35.6	1.5	33.5	43.4	38.5	63.4	74.1	88.4	15.0	1.4	1.5	418.6
1982/1983	78.8	49.2	93.4	29.7	0.0	64.6	17.6	51.4	19.7	10.7	1.6	37.8	454.5
1983/1984	0.0	12.2	16.1	9.0	54.3	58.1	24.6	35.9	26.8	6.5	5.5	8.6	257.6
1984/1985	1.5	31.8	36.0	44.4	56.5	21.9	77.9	29.6	68.5	3.3	0.0	0.0	371.4
1985/1986	88.2	57.6	56.5	70.4	35.2	27.7	109.9	11.7	23.5	31.1	6.0	2.2	520.0
1986/1987	22.1	42.3	50.1	59.3	64.0	63.6	5.4	28.2	42.8	6.3	22.4	4.5	411.0
1987/1988	10.1	35.1	75.0	109.5	21.2	19.2	27.1	40.4	46.0	29.5	0.0	0.0	413.1
1988/1989	13.0	9.8	36.2	69.7	8.2	31.7	20.2	110.2	4.5	55.2	9.2	20.3	388.2
1989/1990	33.2	16.3	26.1	35.6	71.3	0.0	29.1	66.1	99.6	4.6	7.6	7.0	396.5
1990/1991	12.5	8.0	65.8	91.5	6.6	45.7	93.9	28.3	21.9	7.2	0.6	8.9	390.9
1991/1992	29.7	134.3	19.7	19.3	47.3	33.1	35.7	37.7	72.6	22.0	45.0	0.3	496.7
1992/1993	46.9	11.4	49.4	51.0	9.3	29.1	27.3	12.9	35.2	10.4	3.6	1.0	287.5
1993/1994	29.3	7.9	61.6	49.6	27.5	40.0	20.3	9.0	0.0	0.0	0.0	7.0	252.2
1994/1995	96.2	82.7	7.8	15.1	21.4	17.7	51.9	21.2	4.6	19.0	0.0	2.4	340.0
1995/1996	86.3	14.9	13.4	48.0	90.8	48.0	37.7	50.5	93.1	15.3	16.7	18.6	533.3
1996/1997	11.6	5.0	26.6	38.1	53.4	6.0	5.2	38.9	19.1	27.0	6.1	10.0	247.0
1997/1998	60.2	41.7	66.0	24.7	18.6	24.2	11.3	40.6	50.0	5.5	0.0	6.8	349.6
1998/1999	34.6	9.2	17.2	16.0	63.8	10.9	26.2	10.9	6.2	6.0	0.0	7.4	208.4
1999/2000	48.9	33.5	50.7	76.1	1.5	0.6	20.2	15.4	95.2	1.2	1.0	10.9	355.2
2000/2001	21.9	23.1	13.0	47.2	53.9	13.2	5.3	15.4	6.3	1.1	6.4	6.4	213.2
2001/2002	64.4	13.5	31.6	13.3	9.1	13.5	28.3	13.8	3.8	9.9	9.6	11.2	222.0
2002/2003	25.3	19.2	108.4	34.4	126.7	29.5	14.3	72.3	41.7	32.8	2.4	18.8	525.8
2003/2004	14.1	92.3	19.7	84.1	22.1	31.5	42.7	86.5	92.9	28.5	0.0	40.8	555.2
2004/2005	25.1	37.1	52.8	88.8	23.9	34.9	17.3	32.0	1.1	17.7	7.4	4.7	342.8
2005/2006	47.7	43.5	104.8	30.2	80.4	53.2	14.0	67.7	95.6	11.6	30.1	9.6	588.4
2006/2007	49	6.1	22.6	35.5	18.7	39.9	95.9	90.9	46.6	6	0.0	1.8	413
2007/2008	134.2	34.1	19.1	7.8	8.4	15.2	33.9	11.1	70.7	6	25.3	52.7	418.5
2008/2009	62.1	61.3	17.9	63.9	85.1	46.6	71.3	75.7	8.0	2.0	11.8	17.2	522.9
2009/2010	47.9	30.90	23.4	26	29.30	78.00	41.8	55.00	75.4	59.60	0.00	3.00	470.3
2010/2011	4.6	44.5	35.2	26.9	16.7	76.9	48.9	78.8	47.4	18.0	0.0	13.2	411.2
2011/2012	16	32.5	26.4	21.1	8.7	36.7	39.6	100.9	5.2	4.2	0.0	9.3	300.6
2012/2013	13.7	35.4	62	11.5	37.9	32.7	36.4	45.8	27.1	0.0	3.2	15.4	321.1

Source : ANRH de Bordj Bou Arréridj

2.1.3. Hauteurs des pluies extrêmes

La protection contre les dégâts des eaux nécessite de s'intéresser aux pluies extrêmes. Ce peut être les pluies journalières maximales annuelles, les pluies en une heure maximales mensuelles ou décadaires, *etc*.

Tableau 2.3: les pluies maximales journalières

Année	Pjmax(mm)	Année	Pjmax(mm)
1963/1964	12.6	1988/1989	52
1964/1965	11.5	1989/1990	27.4
1965/1966	12	1990/1991	31.9
1966/1967	11.2	1991/1992	43
1967/1968	19.9	1992/1993	30
1968/1969	20	1993/1994	24
1969/1970	29	1994/1995	42
1970/1971	34.5	1995/1996	55
1971/1972	33.6	1996/1997	16.4
1972/1973	49.2	1997/1998	25.1
1973/1974	46	1998/1999	18.4
1974/1975	18.9	1999/2000	58.6
1975/1976	48.7	2000/2001	12
1976/1977	36.9	2001/2002	14
1977/1978	25.7	2002/2003	44.7
1978/1979	37.3	2003/2004	46.9
1979/1980	26.9	2004/2005	33.5
1980/1981	23.2	2005/2006	51.5
1981/1982	47.2	2006/2007	36
1982/1983	48	2007/2008	54
1983/1984	30.6	2008/2009	40
1984/1985	32.7	2009/2010	43
1985/1986	47.4	2010/2011	31.4
1986/1987	24.9	2011/2012	29.6
1987/1988	46.5	20012/2013	23.4

Source : ANRH de Bordj Bou Arréridj

2.2. Test d'homogénéisation

2.2.1. Définition

Pour bien saisir le besoin réel d'avoir accès à des séries climatiques homogènes, il faut comprendre la définition de l'homogénéité. Une série climatique est homogène par rapport à une série voisine lorsque le ratio ou la différence entre les deux séries est distribué aléatoirement autour d'une ligne horizontale sans sauts ni tendances. Dans le cas contraire, la série comprend une ou plusieurs inhomogénéités. Le terme 'inhomogénéités' définit les variations non naturelles qui sont causées par des modifications dans les réseaux d'observations. La plupart des enregistrements climatiques contiennent différents types d'inhomogénéités.

2.2.2. Test de Wilcoxon

C'est le test le plus puissant des tests non paramétriques. (Manuel Pratique d'Hydrologie B.TOUAIBIA).

✓ Les étapes de ce test :

Soient deux variables aléatoires Y et X, représentant respectivement 2 séries de précipitations annuelles de taille N_1 et N_2 .

Y étant la série à étudier et X étant la série de base avec $N_2 > N_1$.

Nous avons classé les éléments de ce nouvel échantillon Y unions X par ordre décroissant et nous avons associé à chacune des valeurs le rang qu'elle occupe dans cette nouvelle série.

Nous avons calculé les quantités W_y et W_x:

W_v: Représente la somme des rangs de Y et c'est celle qui nous intéresse et est égale à :

Avec:

$$Wy = \sum_{i=1}^{n} rangy...(1)$$

$$Wx = \sum_{i=1}^{n-1} rangx. \tag{2}$$

Wmin =
$$\frac{(N1+N2+1)N1-1}{2} - U_{1-\alpha/2} \frac{(N1*N2)(N1+N2+1)}{12}$$
...(4)

L'hypothèse d'homogénéité est rejetée si l'une des deux inégalités suivantes n'est pas vérifiée :

$$W_{min} < W_y < W_{max}$$
 (5)

Les résultats de calcul sont résumés dans le tableau suivant :

Tableau 2.4 : résultat du test d'homogénéisation.

N1	23		
N2	27		
Wy	631		
Wx	644		
Wmin 460.31			
Wmax	661.69		
Wmin <wy<wmax< td=""></wy<wmax<>			

Donc on peut dire que la série est homogène.

2.3. Calcul des caractéristiques empiriques de la série pluviométrique

2.3.1.Les paramètres de position

➤ La moyenne arithmétique

C'est la somme des valeurs observées divisée par le nombre d'observation

$$\bar{X} = \frac{\sum_{i=1}^{i=n} X_i}{n}.$$
(6)

La médiane

La médiane est un paramètre de position tel que la moitié des observations lui sont inférieures ou égales et la moitie supérieures ou égales dans une série ordonnée. Lorsque n est impair, la médiane est l'observation de rang :

$$\tilde{X} = X_{\left(\frac{n+1}{2}\right)}...(7)$$

Et lorsque n est pair la médiane est :

$$\tilde{X} = \frac{X_{(\frac{n}{2})} + X_{(\frac{n}{2}+1)}}{2}.$$
(8)

2.3.2.Les paramètres de dispersion

Ces paramètres permettent de chiffrer la variabilité des valeurs observées autour d'un paramètre de position.

$$\succ \text{La variance}$$

$$\sigma^2 = \frac{1}{n-1} \sum_{i=1}^n (Xi - \overline{X})^2$$
(9)

➤ L'écart type

C'est la racine carré de la variance :

$$\sigma = \sqrt{\sigma^2}....(10)$$

Le coefficient de variation ou coefficient de variabilité

C'est le rapport entre l'écart type et la moyenne arithmétique :

$$Cv = \frac{\sigma}{\bar{v}}....(11)$$

➤ Le coefficient d'asymétrie

Est donnée par la formule suivante :

$$Cs = \frac{\sum_{n=1}^{n} (Xi - \overline{X})^{3}}{(n-1)\sigma^{3}}.$$
(12)

> Le coefficient d'aplatissement

Est donnée par la formule suivante

$$\frac{Ck = \frac{\sum_{1}^{n}(Xi - \overline{X})^{4}}{(n-1)\sigma^{4}}.$$
(13)

Les résultats de calcul des paramètres empiriques de la série sont récapitulés dans le tableau 5

Tableau 2.5 : Caractéristique des pluies max journalières.

Nombre d'observations	50
Minimum	11.2
Maximum	58.6
Moyenne	33.2
Ecart-type	13.3
Médiane	32.3
Coefficient de variation (Cv)	0.401
Coefficient d'asymétrie (Cs)	0.0137
Coefficient d'aplatissement (Ck)	1.85

2.4. Ajustement des pluies maximales journalières:

2.4.1. Loi log normale ou loi de Galton

La loi log normale résulte de la loi normale sa fonction de répartition est donnée par la formule suivante :

$$F(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{u} e^{-\frac{1}{2}u^2} . \tag{14}$$

La variable réduite de la loi log normale

$$U = \frac{\ln x - \overline{\ln x}}{\sigma_{\ln x}}.$$
(15)

L'équation de la variable réduite présentée sous la forme $\ln x = \overline{\ln x} + u\sigma_{\ln x}$ est l'équation d'une droite sur papier gausso-logarithmique avec en abscisse l'échelle gaussienne et en ordonnée l'échelle logarithmique.

✓ Procédé d'ajustement

*Détermination de la valeur extrême soit graphiquement soit analytiquement par :

$$X_{p\%} = e^{\ln x_{p\%}} = e^{\overline{\ln x} + u\sigma_{\ln x}}.$$
(16)

^{*}Classement des valeurs par ordre décroissant (fréquence au non dépassement)

^{*}Calcul de la fréquence expérimentale.

^{*}Calcule des caractéristiques empirique σ et \bar{X} .

^{*}Calcul des caractéristiques de la série transformée en logarithme $\overline{\ln x}$ et $\sigma_{\ln x}$.

^{*}Report les valeurs sur papier gausso-logarithmique.

^{*}Détermination de la droite de Galton $\ln x = \overline{\ln x} + u\sigma_{\ln x}$.

Т	q	XT	Ecart-type Intervalle de confiance (95%)		
100	0.99	80.9	6.87	67.4	94.4
50	0.98	72.6	5.98	60.9	84.3
20	0.95	61.5	4.8	52.1	70.9
10	0.9	52.9	3.91	45.3	60.6
5	0.8	44	3.04	38.1	50

❖ L'ajustement par le logiciel Hyfran

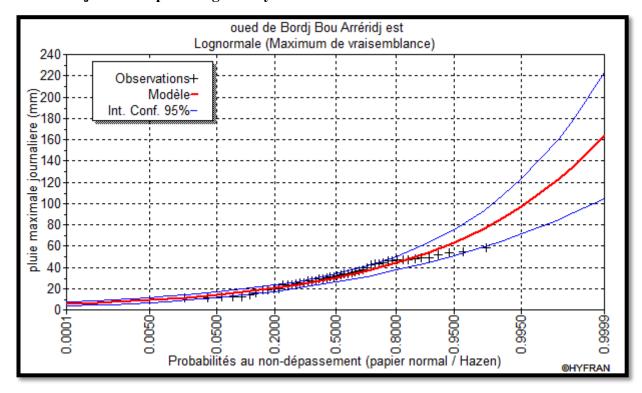


Figure 2. 1 : Ajustement à la loi de log-normale

2.4.2. Ajustement à la loi de Gumbel

La fonction de répartition de la loi de Gumbel est donnée par la formule suivante :

$$F(x) = e^{-e^{-y}}....(17)$$

Avec:

$$y = \alpha(x - x_0)....(18)$$

D'ou

y : variable réduite de Gumbel.

x : Précipitation maximale journalière (y).

 α : paramètre d'ajustement (gradex).

x₀ : Paramètre de position.

➤ Méthode de maximum de vraisemblance

On abouti au système résolutif suivant :

$$\bar{\mathbf{x}} = \alpha + \frac{\sum_{i=1}^{n} \mathbf{x}^{e^{-\frac{\mathbf{x}}{\alpha}}}}{\sum_{i=1}^{n} e^{-\frac{\mathbf{x}}{\alpha}}} \tag{19}$$

$$x_0 = \alpha \ln\left[\frac{\sum_{i=1}^n e^{-\frac{x}{\alpha}}}{n}\right]. \tag{20}$$

L'équation (1) ne peut être se résoudre que par itération. Ayant déterminé α , l'équation (2)permet la détermination de x_0 .

❖ L'ajustement par le logiciel Hyfran

Tableau 2.6 : résultat d'ajustement à la loi log-normale.

Т	q	XT	Ecart-type	Intervalle de confiance (95%)			
100	0.99	86.5	10.9	65.2	108		
50	0.98	76.4	8.79	59.1	93.6		
20	0.95	63.3	6.33	50.9	75.7		
10	0.9	53.6	4.71	44.4	62.8		
5	0.8	43.8	3.31	37.3	50.3		

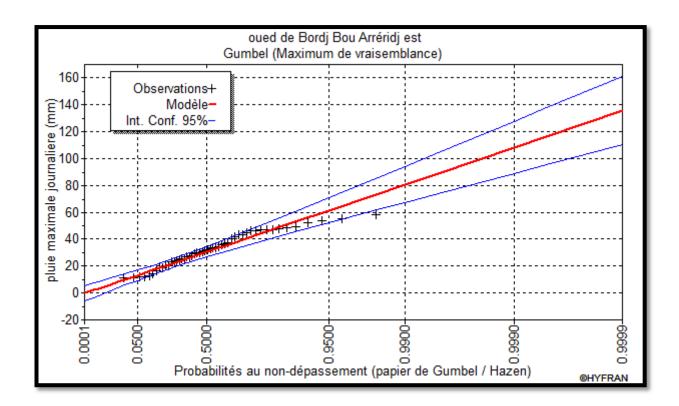


Figure 2. 2 : Ajustement à la loi de log-normale

• Choix de la loi d'ajustement

La loi log-normale est la loi la plus ajusté

2.5. Test d'adéquation

> Statistique de Khi²

Comme critère de comparaison χ^2 est utilisée pour un risque $\alpha=5\%$ et un nombre de degré de liberté $\gamma=K-1-m$

Avec : K représente le nombre de classe

m représente le nombre de paramètre de la loi.

$$\chi^2 = \sum_{i=1}^k \frac{(ni - \mu i)^2}{\mu i}.$$
 (21)

Ou : ni : Nombre d'observations contenues dans la classes i

 μi : Nombre d'observations théoriques calculés dans la classe i, ce nombre doit étre supérieur ou égal à 5.

 χ^2 : Variable aléatoire variant de 0 à ∞ .

> Hypothèses

H0: L'échantillon provient d'une loi Log normale

H1: L'échantillon ne provient pas d'une loi Log normale

Pour que H0 soit vérifier, il faut que :

$$\chi^2$$
 calculé $< \chi^2$ théorique

❖ Test d'adéquation par logiciel Hyfran

Degrés de liberté : 6

Nombre de classes: 9

$$\chi^2 calcul\acute{e} = 11.2$$
 et $\chi^2 th\acute{e}orique = 12.59$

$$\chi^2$$
 calculé $< \chi^2$ théorique Est vérifié

Conclusion

Nous pouvons accepter H0 au niveau de signification de 5 %.

2.6. Pluies de courte durée

Le calcul des pluies de courtes durées pour différentes fréquences a été effectué à l'aide de la relation de Montanari exprimée par:

$$P_{tc} = P_{jmax}(\frac{t}{2^4})^b ... (23)$$

Avec: b: exposant climatique b=0.31

t : temps en heure.

 P_{maxj} : pluies maximales fréquentielles.

Les intensités maximales de période t (h) et période de retour donnée sont calculées par la relation :

$$\mathbf{I} = \frac{Pct}{t}...(24)$$

I : l'intensité maximale de période t (h).

Les précipitations et les intensités maximales pour différentes durées sont représentées au tableau suivant :

Tableau 2.8 : Récapitulatif des pluies, intensités maximales de durée t (h) et de période de retour T

ICtoul I										
В	0.31									
Quantiles	86	.50	76.40		63.30		53.60		43.80	
T(années)		00	5	50	2	20	1	.0		5
Durée(h)	Pct(mm)	It(mm/h)								
0.25	21.01	84.06	18.56	74.24	15.38	61.51	13.02	52.09	10.64	42.56
1	32.30	32.30	28.53	28.53	23.63	23.63	20.05	20.05	16.35	16.35
2	40.04	20.02	35.36	17.68	29.30	14.65	24.86	12.43	20.27	10.14
3	45.40	15.13	40.10	13.37	33.22	11.07	28.18	9.39	22.99	7.66
4	49.64	12.41	43.84	10.96	36.32	9.08	30.81	7.70	25.13	6.28
5	53.19	10.64	46.98	9.40	38.92	7.78	33.02	6.60	26.93	5.39
6	56.28	9.38	49.71	8.29	41.19	6.86	34.94	5.82	28.50	4.75
7	59.04	8.43	52.14	7.45	43.20	6.17	36.65	5.24	29.89	4.27
8	61.53	7.69	54.35	6.79	45.03	5.63	38.20	4.78	31.16	3.89
9	63.82	7.09	56.37	6.26	46.70	5.19	39.62	4.40	32.32	3.59
10	65.94	6.59	58.24	5.82	48.25	4.83	40.94	4.09	33.39	3.34
11	67.92	6.17	59.99	5.45	49.70	4.52	42.16	3.83	34.39	3.13
12	69.77	5.81	61.63	5.14	51.06	4.26	43.32	3.61	35.33	2.94
13	71.53	5.50	63.18	4.86	52.34	4.03	44.40	3.42	36.22	2.79
14	73.19	5.23	64.64	4.62	53.56	3.83	45.44	3.25	37.06	2.65
15	74.77	4.98	66.04	4.40	54.72	3.65	46.42	3.09	37.86	2.52
16	76.28	4.77	67.38	4.21	55.82	3.49	47.36	2.96	38.63	2.41
17	77.73	4.57	68.65	4.04	56.88	3.35	48.26	2.84	39.36	2.32
18	79.12	4.40	69.88	3.88	57.90	3.22	49.12	2.73	40.06	2.23
19	80.46	4.23	71.06	3.74	58.88	3.10	49.95	2.63	40.74	2.14
20	81.75	4.09	72.20	3.61	59.82	2.99	50.75	2.54	41.39	2.07
21	82.99	3.95	73.30	3.49	60.73	2.89	51.52	2.45	42.02	2.00
22	84.20	3.83	74.37	3.38	61.62	2.80	52.27	2.38	42.63	1.94
23	85.37	3.71	75.40	3.28	62.47	2.72	53.00	2.30	43.23	1.88
24	86.50	3.60	76.40	3.18	63.30	2.64	53.70	2.24	43.80	1.83

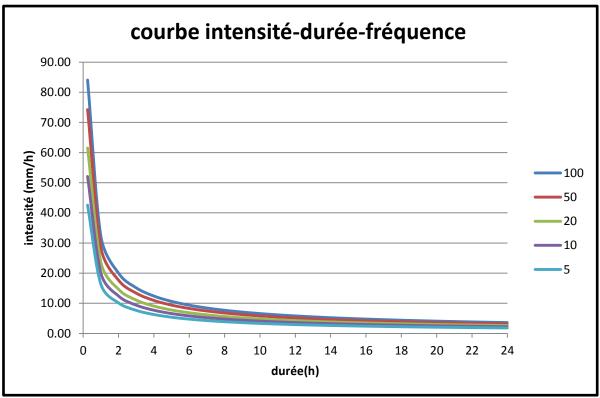


Figure 2.3 : Courbes intensité-durée-fréquence

Conclusion

Ce présent chapitre comporte l'analyse des principaux paramètres hydrologiques intervenant d'une manière implicite dans la mise en évidence des aménagements proposés pour la protection de la zone est de la ville Bordj Bou Arreridj contre les crues.

La série des précipitations maximales journalières a été ajustée à différentes lois de probabilité, la loi de log-normale s'est révélé la plus adéquate.

Les pluies de courtes durées sont calculées par la formule de Montanari pour des durées t(h) et période de retour T.

Chapitre 3:

Estimation des débits de crues des cours d4eau et du débit pluvial

3 : Estimation des débits de crues des cours d'eau et du débit Pluvial

Introduction

La détermination des débits de crue et pluvial est une phase indispensable dans un projet de protection contre les inondations, dans ce chapitre on va estimer le débit de crue en utilisant les formules empirique et une méthode déterministe (la méthode des SCS CN) et le débit pluvial par la méthode rationnelle.

3.1. Estimation du débit de crue du cours d'eau

Nous rappelons ci-dessous les différentes méthodes de calcul des crues.

3.1. 1. Méthodes empiriques

Relations établies entre le débit et la surface du bassin versant la pluie et la période de retour comme les formules de Greager. Fuller. Snyder. Possenti , Mallet Gauthier, Turraza et Sokolovsky.

3.1.2. Courbes enveloppes

Les pointes de crues maximales observées dans une région de caractéristiques hydrologiques homogènes sont reportées en fonctions de la surface du bassin versant permettant de tracer une courbe enveloppée (Francu-Rodier. Chaumont).

3.1.3. Méthodes probabilistes

Analyse des débits afin de déterminer la loi de probabilité à laquelle ils répondent (Gumbel. Galton. Pearson III. Log Pearson III).

La Méthode du Gradex basée sur l'hypothèse que durant des pluies fortes. Alors que le sol du bassin approche de la saturation chaque augmentation de la pluie tend à produire une augmentation du débit. En conséquence sur un graphique de Gumbel les droites de répartitions des fréquences des pluies et des débits sont parallèles.

3.1.4. Méthodes déterministes

Modélisent fondamentalement le processus pluie - écoulement du bassin et elles ont pour objectif de déterminer non seulement le débit de pointe mais également l'hydrogramme correspondant à la crue que celui aussi permet d'estimer le volume de cette crue.

3.1.5. Méthode de l'hydrogramme unitaire

Basée sur un travail de dépouillement averses - crues (version de Sherman).

3.2. Application sur le bassin versant

Partant des données morphologiques et pluviométriques existants une évaluation des débits de pointes des crues sera faite à partir de formules empiriques : Mallet - Gauthier, Turazza et Sokolovsky. Ces relations sont celles qui traitent au mieux les petits bassins.

3.2.1. Formule de Mallet – Gauthier

Dans leur étude sur les problèmes de l'eau en Algérie, ils ont établi une formule exprimant le débit maximum en crue en fonction des précipitations, de la surface du bassin versant et d'un coefficient K caractéristiques géographique et climatique du bassin versant.

$$Qmaxp\% = 2K \log(1 + 20H) * \frac{S}{\sqrt{L}} \sqrt{1 + 4 \log T - \log S}$$
...(1)

K: constante comprise entre 1-3 on prend: K=1.5

H: Précipitation moyenne interannuelle en m, H = 0,326 m

SBV: Surface du bassin en Km²

L : Longueur du talweg principal en Km

T : Période de retour.

3.2.2. Formule de Turazza

Cette formule utilise l'intensité moyenne maximale de précipitations déterminées sur un intervalle de référence égal au temps de concentration du bassin versant.

$$Qmaxp\% = \frac{Ci_{tc}Sbv}{3.6}.$$
 (2)

Sby: Surface du bassin versant

itc : Intensité moyenne maximale des précipitations pendant une durée égale au temps de concentration en mm/h.

C : coefficient de ruissellement de la crue considérée pour une probabilité P%

Tableau 3.1 : Valeur de coefficient de ruissellement C

Fréquence%	0.1	1	2	5	10	20
Période de retour	1000	100	50	20	10	5
С	0.8	0.75	0.70	0.65	0.60	0.5

3.2.3. Formule de Sokolovsky

Le débit maximum probable est donné par la formule suivante :

$$Qmaxp\% = \frac{0.28Xp\%tc*ap\%*Sbv*f}{tc}.$$
(3)

Sby: Surface du bassin versant en Km²

f : Coefficient de forme de la crue

Tc: Temps de concentration du bassin versant en h

Xp%. tc : précipitation en mm de probabilité p% correspondant à un temps tc.

 α p% : coefficient de ruissellement pour la crue probable.

Tableau 3.2 : les valeurs du coefficient de ruissellement pour la crue probable

fréquence	1	2	5	10	20
α	0.44	0.4	0.37	0.34	0.3

Le coefficient de forme de la crue peut être calculé par la formule :

$$f = \frac{12}{4+3\gamma} \tag{4}$$

Pour S < 50km^2 BV on a $\gamma = 2$

- Pour des petits bassins non boisé. Sol peu perméable. On a $\gamma=2\div 2.5$
- Pour bassin boisé. sol perméable on a $\gamma = 3 \div 4$

Puisque les bassins versant boisé on prend $\gamma=3$ alors :

$$f = \frac{12}{4+3*3} = 0.92. (5)$$

Le débit de crue de bassin versants par les différentes formules dans le tableau suivant :

Tableau 3.3 : Le débit de crue de bassin versants par les différentes formules

periode de retour	periode de retour Mallet Gauthier		Sokolovsky
100	30.63	144.35	12.21
50	28.20	119.24	9.83
20	24.63	91.73	7.53

3.3. Apercus sur le HEC-HMS

Le HEC-HMS est un logiciel très flexible employé pour modeler le processus pluiedébit dans un bassin versant ou un ensemble de bassin versant (rural ou urbain).

3.3.1. Procéder de la simulation

La simulation passe par la modélisation d'un certains nombres de phénomènes naturels, mais aussi par la modélisation de l'entité physique où se produisent ces phénomènes.

3.3.2. Préparation des entrées du modèle HEC-HMS

La modélisation de la réponse d'un bassin versant soumis à un phénomène pluvieux sous le logiciel HEC-HMS est découpée en deux parties :

- ✓ La modélisation du bassin versant
- ✓ La modélisation des précipitations

a) Modélisation du bassin versant

La modélisation d'un bassin versant consiste, en premier lieu, en un découpage de celui-ci en plusieurs sous-bassins versants élémentaires, ensuite, spécifier les méthodes utilisées pour le calcul des pertes (fonction de production) et de ruissellement (fonction de transfert).

b) Modélisation des précipitations

Représente le passage de pluie brute vers pluie nette, ce passage se fait par plusieurs méthodes tel que Déficit constant. Exponentiel (Empirique), Green Ampt. Gridded deficit constant. Gridded SCS. Gridded SMA, Initial constant, SCS curve number, Smith Parlange, (Approximation de l'équation de Richard), Soil moisture accounting (pour des modélisations tenant compte de l'interception et stockage de surface).

Dans notre cas on utilise la méthode SCS Curve Numbre.

3.3.3. SCS-CN: Soil Conservation Service

Le modèle SCS-CN a été proposé aux États-Unis en 1954 par le Soil Conservation Service (SCS), c'est l'aboutissement de plus de 20années d'études théoriques et expérimentales.

Le concept essentiel du modèle est de résumer les propriétés hydrodynamiques de la couverture du sol à l'aide de courbes auxquelles sont attribués des numéros selon le sol. Ces courbes sont dites courbes numérotées (CN) (*Curve Number*).

Le CN est aussi décrit comme étant un coefficient d'aptitude au ruissellement. Le paramètre CN est directement déterminé à partir d'un tableau triple entrée : le groupe hydrologique (A, B, C, D) du sol (par ordre de diminution de perméabilité) ; les modes d'occupation du sol et les conditions d'humidité antécédente du sol.

Chapitre – 3 : Estimation des débits de crues des cours d'eau et du débit pluvial

Sol de type A : infiltration élevée, sols profonds composés de sables ou de graviers ;

Sol de type B : infiltration moyenne, sols moins profonds moyennement chargés en loess et argiles ;

Sol de type C : infiltration faible, sols peu profonds moyennement argileux ;

Sol de type D : infiltration très faible, sol argileux ou très argileux.(Hydrologic Analysis and Design)

L'équation principale du modèle SCS pour estimer le ruissellement est donnée par :

$$Q = \frac{(P - Ia)^2}{(P - I) - S}.$$
(6)

Avec:

Q : Écoulement cumulé ou pluie nette (en millimètres).

P : Précipitation cumulée ou pluie brute (en millimètres).

Ia : Perte initiale (en millimètres).

S : Perte maximale potentielle (en millimètres).

$$Ia = 0.2 S \tag{6}$$

$$S = \frac{25400}{S + 254}.$$
 (7)

Aussi, les CN prennent leurs valeurs en fonction des conditions d'humidité antécédente du sol, l'équation principale du SCS-CN est donnée pour CNII (condition d'humidité antécédente moyenne). CN II est relié à CN I (condition d'humidité antécédente sol sec) et CN III (condition d'humidité antécédente sol saturé) par :

$$CNI = \frac{CNII}{2.334 - 0.0134CNII} \tag{8}$$

$$CNIII = \frac{CNII}{0.4036 + 0.005964CNII}.$$
(9)

Cette méthode permet dans un premier temps d'estimer l'écoulement global du bassin versant (Q) et ensuite le débit de pointe Qpt :

$$Qpt = \frac{2V}{TB}. (10)$$

- TB: temps de base, TB = Tm + Td,
- Tm : temps de monté, Tm = Tr/2 + 0.6Tc,
- Td: temps de décrue, Td= 1.67 Tm,
- Tr : durée de l'averse, pris égal au temps de concentration ;
- Tc: temps de concentration.
- Lag time, Tl = 0.6 Tc.

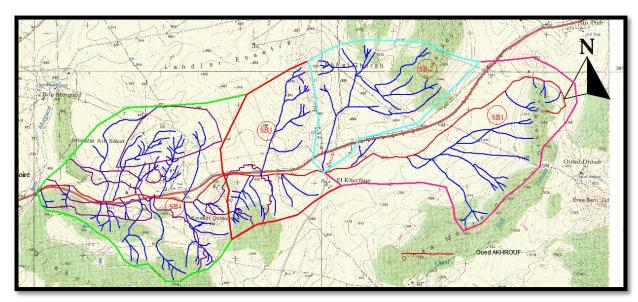


Figure 3.1 : Découpage du bassin versant en sous-bassins par MapInfo

> Caractéristiques des sous bassin

Après le découpage du bassin on a déterminé les caractéristiques des sous bassin (surface, pente, pourcentage des surface imperméable (impervious) et le temps de repense (lag time)) les résultats sont résumés dans le tableau 3.4.

Tableau 3.4 : caractéristiques des sous bassin

N° de SBV	surface(k m²)	CN	Hmax(m)	Hmin(m)	Lp (km)	Impervio us%	ΔΗ	Tc(min)	Lag time
1	3.6	56.35	1065	953	4.123	0.004	112	47.496	28.498
2	2.19	52.81	1025	953	2.82	0.084	72	36.308	21.785
3	2.16	59.87	953	930	1.32	0.003	23	23.44	14.066
4	4.1	52.21	930	900	2.698	0.199	30	48.327	28.997

> Le schéma du modèle de bassin:

Le schéma du modèle de bassin est la représentation du modèle hydrologique du bassin et de ses éléments (biefs, jonctions, sous bassins....) et leurs connectivités (Fig.3.2).

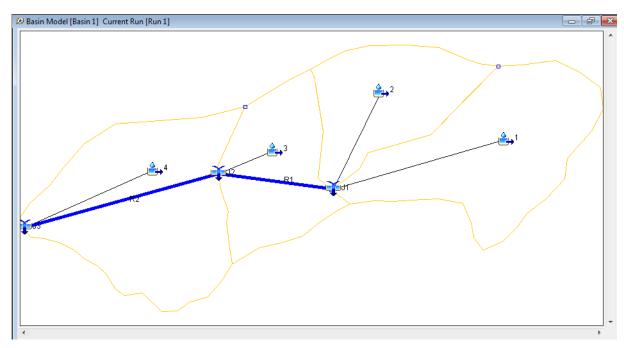


Figure3.2 : Schéma du modèle de bassin par HEC-HMS

3.3.4. Les Résultats de la simulation

Tableau 3.5 : Le débit de crue de bassin versants par la methode de SCS CN

Période de retour	Débit de crue m ³ /s			
100	36.3			
50	30.1			

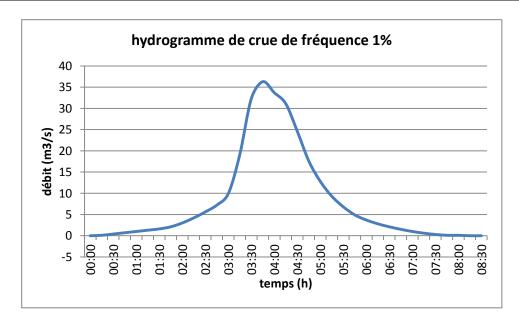


Figure 3.3 : hydrogramme de crue de fréquence 1%

3.4. Formule rationnelle:

Cette méthode est utilisée pour des surfaces limitées (généralement inférieures à 10 ha). Le résultat est meilleur pour des aires encore plus faibles, du fait de la bonne estimation de ruissellement.

Le débit déterminé st proportionnel à l'intensité moyenne, au coefficient de ruissellement et à la à l'aire balayée.

$$Q = \alpha * Cr * A * I. \tag{11}$$

Avec:

Q- débit à évacuer (l/s)

I-intensité moyenne de précipitation (l/s/ha)

A-surface d'apport (ha).

 α -coefficient réducteur de l'intensité.

Cr-coefficient de ruissellement.

3.4.1. Coefficient de ruissellement

C'est le rapport caractérisant le volume d'eau qui ruisselle de cette surface au volume d'eau tombée sur cette surface. D'une manière générale, ce coefficient est le taux d'imperméabilité du bassin. Il dépend de la nature du sol, de l'inclinaison du terrain (la pente), de la densité des pluies et de la densité de la population. Dans le cas où la surface du sous bassin considéré est formée de plusieurs aires élémentaires, caractérisée chacune par un coefficient de ruissellement Cri, La détermination du coefficient de ruissellement pondéré est donnée par la relation suivante: (Assainissement de aglomérations BOUALEM SALAH).

$$Crp = \frac{\sum Cri*Ai}{\sum Ai}.$$
 (12)

On

Ai : La surface de l'aire partielle d'ordre i.

Cri: Coefficient de ruissellement d'ordre i.

Crp: Coefficient de ruissellement pondéré.

Les valeurs du coefficient de ruissellement sont dans le tableau 3.6.

3.4.2. Intensité de pluie

L'intensité est le rapport de la hauteur de pluie mesurée pendant une durée donnée à la durée de l'événement pluvieux. Plus la durée est longue plus l'intensité moyenne sur cette durée est faible

$$I = \frac{h}{t}.$$
(13)

I : intensité moyenne sur la durée

t [mm/h]t : durée de la précipitation [h]

h : hauteur de la pluie [mm]

L'intensité de pluie de durée de 15 min et de période de retour de 10 ans est de

52.09mm/h=144.69l/s/ha.

3.4.3. Coefficient réducteur d'intensité

Pour tenir compte de la distribution de la pluie dans l'espace, il y a lieu d'appliquer un coefficient minorateur α déterminé d'après une loi de répartition de pluie.

Nous supposons que la répartition de la pluie dans chaque bassin est régulière et constante durant la chute de pluie. Vu que la surface de l'agglomération est faible, les valeurs du coefficient réducteur α s'approchent de l'unité, par conséquent sera pris égal à 1.

Tableau 1.6: estimation du coefficient de ruissellement

NB	SURFACE	OCCUP SOL	S élémentaire	%	Cr	Crp
		école primaire	0.36235	3.37	0.9	
		école F base 5	0.64685	6.02	0.9	
		logts	1.32585	12.34	0.9	
1	10.74	espace vert	0.56255	5.24	0.5	0.82
		menuiserie	1.47	13.69	0.9	
		construction	4.28	39.85	0.9	
		rue	2.0924	19.48	0.6	
		écolé	0.48	4.20	0.9	
2	11.42	construction	8.77	76.80	0.9	0.84
		rue	2.17	19.00	0.6	
		construction	6.81	79.37	0.9	
3	8.58	moque	0.43	5.01	0.9	0.85
		rue	1.34	15.62	0.6	
4	7.99	construction	6.75	84.48	0.9	0.85
4	7.99	rue	1.24	15.52	0.6	0.85
5	6.8	logts	5.67	83.38	0.9	0.85
5	0.8	rue	1.13	16.62	0.6	0.85
		construction	4.16302	57.82	0.9	
6	7.2	esp vert	1.2122	16.84	0.5	0.824
		rue	1.82478	25.34	0.6	
		construction	1.956	39.04	0.9	
7	5.01	esp vert	1.006	20.08	0.5	0.697
		rue	2.048	40.88	0.6	

Tableau 3.7 : Calcul des débits pluviaux pour chaque aire élémentaire par la méthode rationnelle

bassin	A(ha)	Crp	I(l/s/ha)	α	Qp(l/s)	q(m3/s)
1	8.56	0.81	144.69	1	999.02	1.00
2	10.74	0.82	144.69	1	1275.19	1.28
3	11.42	0.84	144.69	1	1392.93	1.39
4	8.58	0.85	144.69	1	1059.13	1.06
5	7.99	0.85	144.69	1	986.64	0.99
6	6.8	0.85	144.69	1	836.45	0.84
7	11.42	0.77	144.69	1	1278.41	1.28

Conclusion

Ce chapitre nous a permis de calculer le débit maximum de la crue pour une période de retour de 100 ans ainsi que le débit pluvial pour une période de 10 ans qui sont utile dans le dimensionnement de système d'évacuation.

Le débit choisi pour le dimensionnement est de 36.3 m3/s c'est le débit obtenu par la méthode SCS-CN.

Chapitre 4 : Étude des écoulements dans le cours d4eau existant

Chapitre – 4 : Étude des écoulements dans le cours d'eau existant

4 : Étude des écoulements dans le cours d'eau existant

Introduction

Dans une étude de protection contre les inondations, avant de procéder au dimensionnement de l'ouvrage de protection il faut étudier le comportement du cours d'eau lors des crues et déterminer les zones inondables.

Dans ce présent chapitre on va faire une modélisation du cours d'eau non aménagé avec le logiciel HEC-RAS et aussi la détermination des zones inondables.

4.1. Description du model HEC-RAS

Le système de modélisation HEC-RAS (*Hydrologic Engineering Center's* River Analysis System) est un logiciel d'hydraulique fluviale intégrant une panoplie de technique de calcul hydraulique en régime fluviale et torrentiel. Il a été développé en tant que partie intégrante d'un ensemble de logiciels dédiés aux études hydrologiques et hydraulique permettant de simuler les écoulements à surface libre. Il a été conçu par l'engineering hydrologique des USA dans le cadre du projet NextGen. Ce projet englobe plusieurs aspects hydrologiques et hydrauliques : simulation pluie-débit, hydraulique fluviale, simulation des systèmes des réservoirs, analyse des dommages d'inondations, ...etc.

Les calculs de lignes d'eau d'écoulements graduellement variés sont basés sur l'équation de Bernoulli. Les pertes de charge sont évaluées par l'équation de Manning-Strickler pour le terme de frottement et par des coefficients de contraction-expansion. Les calculs de lignes d'eau permettant l'analyse de la capacité de cours d'eaux (risques de débordement, inondations) que l'étude de l'impact de modifications des conditions de bords (ponts, endiguements).

La résolution de ces ensembles d'équations nécessite, comme données d'entrée, la géométrie du cours d'eau, ses caractéristiques de rugosité et le débit d'écoulement.

4.2. Les données de départ

L'application du modèle HEC-RAS nécessite une banque de données bien fournie concernant les tronçons d'oued considérées :

Les données géométriques :

- Les profils en travers.
- Les coefficients de rugosité du lit mineur et majeur.

Les données de l'écoulement :

• débit de projet.

4.2.1. Les données géométriques

Pour avoir une meilleure précision dans la conception des profils en travers et les exporter vers HEC-RAS, on a fait appel au logiciel AutoCAD Civil 3D. Cette procédure nécessite d'avoir un levé topographique du cours d'eau doté du modèle numérique de terrain (MNT). En déterminant l'axe du cours d'eau, on trace les sections en travers pour chaque intervalle de distance et on crée un fichier d'extension (.geo) qui sera exporté vers HEC-RAS. Dans notre cas la distance entre les profiles en travers elle est de 30 m, la figure ci-dessous représente le cours d'eau à son état naturel et les profiles en travers.

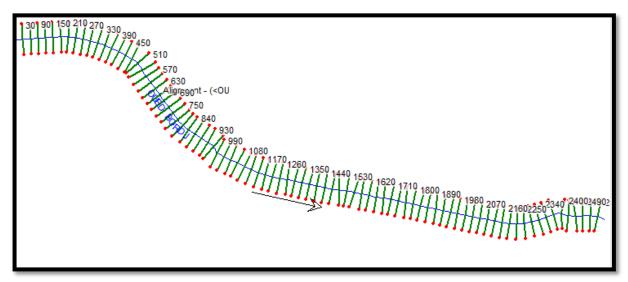


Figure 1 : les sections en travers

4.2.2. Estimation du coefficient de rugosité

Il y a plusieurs facteurs qui affectent la rugosité des lits d'oued permet ces facteur en citant :

- Matériaux du lit;
- > Forme des lits;
- > Tendance à la formation des méandres ;
- > Obstacles à l'écoulement :
- > Changement dans la géométrie entre les sections ;
- État de la végétation ;

L'une des méthodes les plus utilisées pour l'estimation de n est celle de Cowan, ce dernier a établi une formule qui prend l'influence de plusieurs paramètres séparément. (G.J. Arcement Jr. and V.R. Schneider Guide for Selecting Manning's Roughness Coefficients)

$$n = (n_0 + n_1 + n_2 + n_3 + n_3 + n_4) \times m \tag{1}$$

Avec

- n_0 : Coefficient valable pour un cours d'eau rectiligne ou les parois et le fond sont homogènes;
- n₁: Traduit l'influence des irrégularités de surface du fond et des parois.
- n_2 : Traduit l'influence des variations de la forme et des dimensions de la section mouillée;
- n₃: Traduit l'influence des obstructions de la section mouillée par des dépôts d'ordures, racines apparentes, souches d'arbres, blocs de pierre,...;

Chapitre – 4 : Étude des écoulements dans le cours d'eau existant

n₄ : Traduit l'influence de la végétation ;

m : Ce facteur correctif traduit l'importance des méandres qui peut être estimé par le coefficient de sinuosité.

Les valeurs estimées pour chaque coefficient sont résumées dans le tableau suivant :

Tableau 4.1 : Les valeurs estimées pour les différents coefficients

Facteur	Caractéristique	Valeur		
	Terre	0.02		
	Roche	0.025		
n_0	Gravier	0.024		
	Gravier grosse	0.028		
n_0 n_1 n_2 n_3	Parois lisses	0.001		
	Parois présentant une légère irrégularité	0.005		
111	Parois présentant une irrégularité modérée	0.01		
	Parois présentant une irrégularité importante	0.02		
n_2	Variations progressives du profil en travers	0.00		
	Variations altérées du profil en travers	0.005		
	Variations altérées fréquentes du profil en travers	0.001 à 0.0015		
	Obstruction négligeable	0.00		
n ₂	Obstruction faible	0.01 à 0.015		
113	Obstruction appréciable	0.03 à 0.04		
	Obstruction importante	0.06		
n ₄	Végétation faible	0.005 à 0.01		
	Végétation modérée	0.01 à 0.025		
	Végétation importante	0.025 à 0.05		
	Végétation très importante	0.05 à 0.10		
	Influence des méandres modérée	1.00		
m	Influence des méandres appréciable	1.25		
	Influence des méandres importante	1.3		

Il est très difficile de tenir compte de tous ces paramètres dans une seule et unique valeur de coefficient de rugosité, pour cela l'ingénieur hydraulicien se base généralement sur les valeurs relatives à la végétation, l'occupation du sol ou les deux ensemble pour estimer la valeur de $\bf n$. Dans notre cas on a basé sur des photos du cours d'eau (image 3) et on a estimé $\bf n$ =0.03 pour le lit d'oued et 0.4 pour les berges.

Figure 4.2 : photo du cours d'eau non aménagé

4.2.3. Débits de projet

Dans notre étude on a deux débits, le premier débit de projet est celle obtenue dans le chapitre précédant par la méthode SCS-CN à l'aide du logiciel HEC-HMS on lui ajoutant le débit d'oued Boumerged qui est une données issue de la direction des ressources en eau de la willaya de Bordj Bou Arreridj.

Tableau 4.2 : les débits de projet

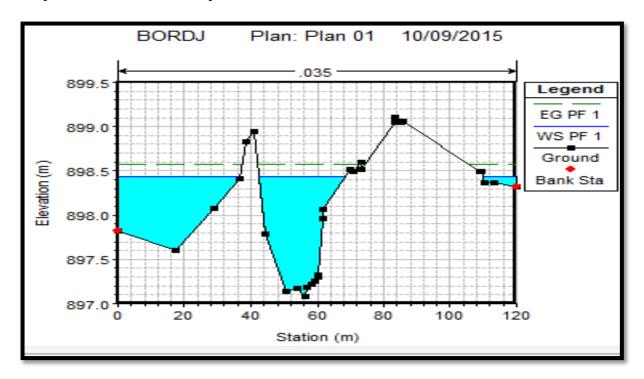
Oued	Débit (m ³ /s)
Oued Akhrouf	36.3
Oued Boumerged	35

4.3. La simulation hydraulique

La simulation hydraulique du cours d'eau à son état naturel permet de déterminer les points de débordement dans le cas des crues fréquentielles afin d'envisager des solutions adéquat pour la lutte contre les inondations la figure ci-dessous représente le profil du cours d'eau lors du passage d'une crue de période de retour de 100 ans.

4.3.1. Les résultats de la simulation

> Les vitesses d'écoulement


Les vitesses d'écoulement sont de l'ordre de 0.45 à 4.61 m/s et le régime d'écoulement est torrentielle dans la plupart des sections le, les vitesses les hauteur critique et les hauteurs d'eau dans chaque section sont résumé dans le tableau 5.3 en annexe 2

Les sections

Voici un exemple d'un profile en travers d'une zone inondé.

Remarque

Les profiles en travers de chaque section de calcule sont en annexe2.

Figure 4.3: exemple d'un profil en travers

➤ Ligne d'eau

La figure suivante présente la ligne d'eau, on remarque que la ligne d'eau ce n'est pas une ligne continue ce qui explique la création d'un ressaut hydraulique.

Chapitre – 4 : Étude des écoulements dans le cours d'eau existant

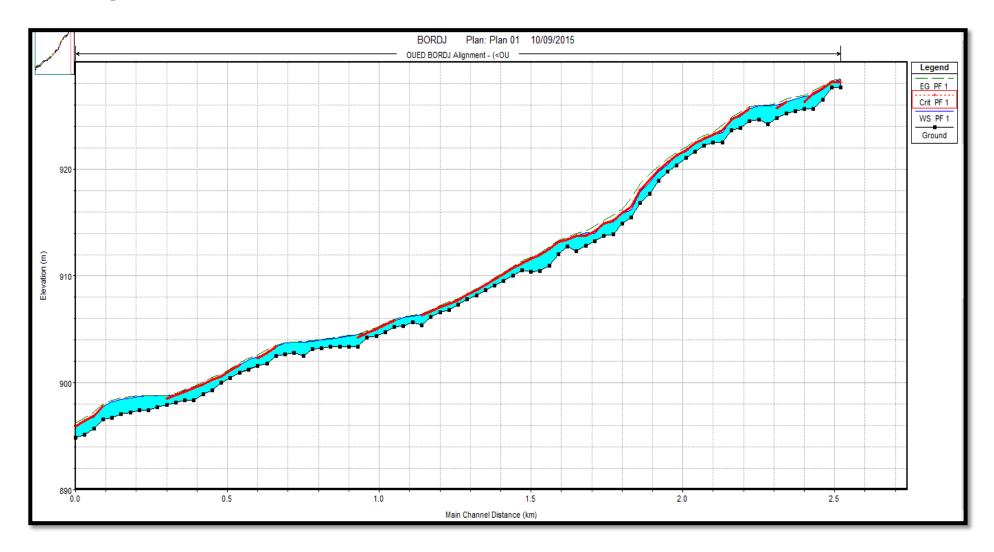
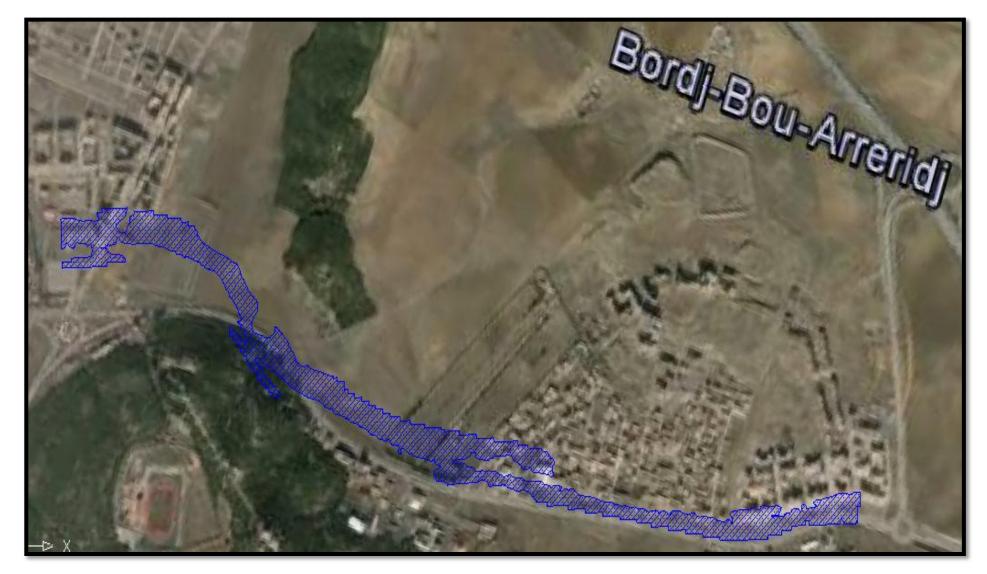


Figure 4.4 :profile de la hauteur d'eau au passage de la crue

Chapitre – 4 : Étude des écoulements dans le cours d'eau existant


4.4. Les zones inondables.

Une zone inondable est constituée par l'ensemble des terrains susceptibles d'être recouverts par la crue d'un cours d'eau dans la manifestation extrême du phénomène. Elle comprend donc aussi bien des terrains régulièrement inondés à chaque crue que ceux qui peuvent l'être exceptionnellement (une fois au moins tous les cent ans).

Sur la base des résultats de la simulation précédente, une délimitation des zones susceptibles d'être inondées a été faite en utilisant l'application RAS-Mapper intégré dans HEC-RAS version 4.1.0.

La figure ci-dessous montre que le POS10, POSR8 ainsi que l'entrée de la ville de Bordj Bou Arreridj sont soumis au risques d'inondations ce qui nécessite la mise en place d'un système de protection contre les inondations.

Chapitre – 4 : Étude des écoulements dans le cours d'eau existant

Figure 4.5 : les zones inondables

Chapitre – 4 : Étude des écoulements dans le cours d'eau existant

Conclusion

La modélisation du cours d'eau naturel nous a donné une idée sur le comportement du cours d'eau lors d'une crue centennale, tel que une crue centennale va engendrée des débordements qui est apte à faite des dégâts le long du cours d'eau, donc le dimensionnement d'un ouvrage de protection est nécessaire

Chapitre 5:

Étude des variantes d4amenagement pour la protection contre les inondations

Introduction

Dans ce chapitre on va faire l'étude des variantes pour la protection contre les inondations, Cette protection consiste à sélectionner les meilleures solutions d'aménagements compte tenus des conditions naturelles mais aussi il faut que les solutions, soient réalisables du point de vue technique et économique.

Ce chapitre condense en quelques pages les notions de l'hydraulique à surface libre (les paramètres hydrauliques et les régimes d'écoulements).

Le dimensionnement de la variante choisie tient compte le débit d'eau des cours d'eaux en lui ajoutant le débit d'eau pluvial.

5.1.Étude des variantes

Le but de cette étude, est de bien protéger le côté Est de Bordj Bou Arreridj contre les crues. Pour cette étude, nous proposons trois variantes pour la protection contre les inondations :

- > Première variante: Protection avec un canal trapézoïdale (a ciel ouvert) en béton
- > Deuxième variante : Protection avec un canal en gabion.
- > Troisième variante: Protection avec une galerie rectangulaire ou trapézoïdale.

5.2. Comparaison entre les types d'aménagement

Le tableau (5.1) résume les avantages et les inconvénients de trois variantes

Tableau 5.1: les Avantages et inconvénients des types d'aménagement

Type d'aménagement	Avantages	Inconvénients
	-le rendement hydraulique est efficace.	- le coût de génie civil est peu élevé.
Canal de forme	- les résultats de calcul sont réalistes.	- rugosité faible.
trapézoïdal	- la durée de la vie est importante.	
	- les matériaux de constructions sont disponibles.	
	- entretient très facile.	
	- la forme étroite est adaptée à la ville.	
	- faible variation de vitesse d'écoulement	- longueur importante de la tranchée.
Galerie	malgré que la variation de niveau d'eau est importante (auto curage satisfais).	- la mise en place sur un lit de l'oued est très coûteuse.
	satistais).	- la mise en œuvre et l'entretient sont difficiles.
Gabionnage	- utilisation de la matière locale (coût faible).	- faible stabilité
Gautonnage	- la mise en œuvre est facile.	surtout aux périodes des crues.
	- bonne protection contre l'érosion.	

On écarte purement la deuxième et la troisième variante malgré les avantages qu'elles représentent, et on garde la première variante qui présente beaucoup plus d'avantages lié surtout à la facilité de réalisation, ainsi qu'elle est économique, facilité de nettoyage et de rinçage.

5.4. Hydraulique à surface libre Généralités

5.4.1. Les paramètres géométriques

Les paramètres géométriques sont relatifs à une section du chenal dans un plan perpendiculaire à son axe, dont la position est définie par une abscisse (x).

Les paramètres essentiels sont le tirant d'eau (y), la section mouillée (S), la largeur au miroir (L=T) ou largeur de section mouillée et le périmètre mouillée (P).(G.DEGOUTE. chapitre 1 : aide-mémoire d'hydraulique a surface libre).

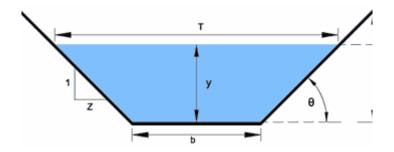


Figure 5.1: schéma d'un canal trapézoïdal

Par définition, le rayon hydraulique est le rapport entre section mouillée et périmètre mouillée R=S/P.si le chenal est rectangulaire, alors R=L*y/(L+2y). si le chenal est infiniment large alors R=y.

La pente du chenal, notée i est la pente du tronçon du cours d'eau.

Tous les paramètres L, y, P, S, et R dépendent du débit et ne sont pas des constantes géométriques.

Le débit Q est le volume d'eau qui traverse une section perpendiculaire à l'axe du chenal par unité de temps.

5.4.2. Régimes d'écoulements

> Régime permanent

En régime permanent, le chenal véhicule un débit Q constant dans le temps. Le tirant d'eau Y en un point donné est donc aussi constant.

Le régime permanent peut être uniforme ou varié selon la géométrie du chenal.

Écoulement permanent uniforme

Les caractéristiques géométriques du chenal sont constantes tout au long du tronçon considéré : section mouillée S, pente i ainsi que la rugosité

des parois. Le tirant d'eau est constant tout au long du tronçon (appelé tirant d'eau normal).

Écoulement permanent varié

L'écoulement est varié lorsque la géométrie ou la rugosité ne sont pas constantes. Mais il l'est aussi dans un tronçon dont la géométrie et la rugosité sont constantes si le tirant d'eau n'est pas constant, on distingue les écoulements graduellement ou rapidement variés.

> Régime transitoire

En régime transitoire, le débit varie en fonction du temps.

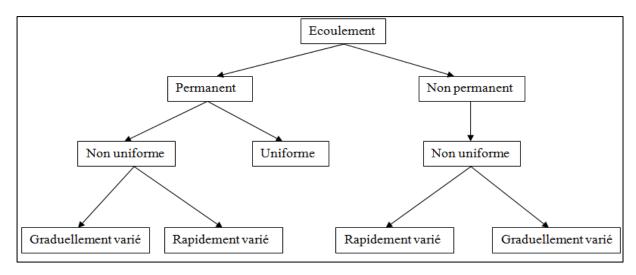


Figure 5.2 : schéma représentatif de différentes classes d'écoulements.

5.5. Dimensionnements du canal trapézoïdal

5.5.1. Formule de dimensionnement

Dans le calcul des canalisations on utilise les différentes formules d'écoulements, parmi ces formules on a : (Graf et Altinakar, 2000)

• Formule de Chézy

La formule de Chézy est de la forme :

$$V = C \times \sqrt{R \times i}$$
 (1)

Avec:

- V : vitesse moyenne de l'écoulement.
- R : rayon hydraulique (R=S/P, P est le périmètre mouillé);
- i : pente du radier.
- C : coefficient de Chézy dépend de la nature de parois et du rayon hydraulique ; pour l'estimer il existe plusieurs formules, on note celle de BAZIN (1864):

$$C = \frac{87 \times \sqrt{R}}{\gamma + \sqrt{R}}...(2)$$

 γ : Coefficient de BAZIN qui varie suivant les matériaux employés et la nature des eaux transportées.

• Formule de Manning-Strickler (1899-1911)

L'expression du coefficient de Chézy dans cette formule est :

$$C = \frac{1}{N} \times R^{\frac{1}{6}} \tag{3}$$

N : coefficient de Manning qui caractérise la nature du canal.

$$V = \frac{1}{N} \times R^{\frac{2}{3}} \times i^{\frac{1}{2}} \tag{4}$$

Pour Strickler K=1/N qui est fonction de la rugosité des parois du chenal, mais contrairement au coefficient de Chézy il dépend très peu du tirant d'eau.

En partant de la formule de Chézy et de la valeur de coefficient C donnée ci-dessus, nous obtenons la formule de Manning-Strickler :

$$V = K_s \times R^{\frac{2}{3}} \times i^{\frac{1}{2}} \tag{5}$$

On a aussi:

$$Q = S \times V....(6)$$

$$Q = S \times K_s \times R^{\frac{2}{3}} \times i^{\frac{1}{2}}$$
 (7)

- V : vitesse moyenne.
- K_s: coefficient de rugosité ou de Strickler du lit.
- S : section mouillée.
- R : rayon hydraulique.
- P : périmètre mouillé.
- i : pente (constant par hypothèse) du tronçon du cours d'eau (pente du fond) les valeurs de la pente de chaque tronçon sont résumé dans le tableau 5.4.

Tableau 5.2. Coefficient de rugosité ou de Strickler du lit.

Nature des parois	Valeurs de Ks en m ^{1/3} /s		
Béton lisse	75-90		
Canal et terre, non enherbé	60		
Canal et terre, enherbé	50		
Rivière de plaine sans végétation arbustive	35-40		
Rivière de plaine large, végétation peu dense	30		
Rivière à berges étroites très végétalisées	10-15		
Lit majeur en prairie	20-30		
Lit majeur en vigne ou taillis	10-15		
Lit majeur urbanisé	10-15		

Source : Chapitre 1 : Aide-mémoire d'hydraulique à surface libre G.DÉGOUTTE

• Pour notre cas on va utiliser la formule de Manning-Strickler pour la détermination du coefficient Chézy donc Ks=75m^{1/3}/s.

Tableau 5.3 : débit de dimensionnement

Débit	Valeur (m ³ /s)		
Débits des cours d'eau	36.3		
Débits d'eau pluviale	6.76		

Tableau5.4 : la pente du terrain naturel de chaque tronçon

tronçon	longueur (m)	pente
1	121.36	0.0028
2	66.5	0.0045
3	236.29	0.0149
4	925.85	0.0185
5	96.97	0.009
6	146.53	0.007
7	32.03	0.0028
8	468.98	0.0081
9	283.2	0.0089

5.5.2. Le choix de la section de meilleure conductivité

Le profil de meilleure conductivité est le profil qui véhicule le débit maximum avec une section minimale dans notre cas (canal trapézoïdale) on prend un fruit de talus **m=0.57**. Le tableau 5.6 récapitule les paramètres géométriques d'un canal trapézoïdal.

Chapitre – 5 : Étude des variantes d'aménagements pour la protection contre les inondations

Tableau 5.6 : les paramètres géométriques d'un canal trapézoïdal.

Désignation	expression	définition			
b	$2h\left(\sqrt{1+m^2}\right)-m)$	La largeur au fond du canal			
В	b + 2mh	La largeur au miroir			
P	$b + 2h\sqrt{(1+m^2)}$	Le périmètre mouillé			
S	h(b+mh)	La surface mouillée			
Rh	$h(b+mh)/(b+2h\sqrt{(1+m^2)})$	Rayon hydraulique			
m	$\cot \varphi = 0.57$	Fruit de talus			

5.5.3. Calcul de la profondeur normale hn

Pour un débit donnée et une pente fixée, l'écoulement s'effectue avec une certaine hauteur d'eau, appelée hauteur normale h_n . Pour la détermination de cette hauteur on utilise la méthode itérative :

L'équation générale de l'écoulement uniforme :

$$Q = S \times C \times R^{\frac{1}{2}} \times i^{\frac{1}{2}}$$
 (8)

On note : $K = \frac{Q}{\sqrt{I}}$

Les formules de Chézy, Manning-Strickler peuvent s'écrire :

$$K = \frac{Q}{\sqrt{I}} = C. S. \sqrt{R} = S.K_s. R^{2/3} = f(h).$$
 (9)

5.5.3. Nombre de Froude

$$F_{r} = \frac{V}{\sqrt{g h}}.$$
 (10)

C'est le rapport entre les forces de gravité et celles d'inertie

Le rôle du nombre de Froude est de permettre le classement des écoulements comme suit

Écoulement fluvial Fr < 1 \Rightarrow h c r < h n

Écoulement torrentiel Fr > 1 => h c r > h n

Écoulement critique $Fr = F c r = 1 \implies h c r = h n$

5.5.4. Calcul de la profondeur critique hc

La profondeur critique (h_c) est une profondeur qui correspond à une charge spécifique minimale(H_s).

• La méthode graphique

La méthode graphique est basée sur le graphe de l'énergie spécifique en fonction de la hauteur h d'où on tire la valeur de hc qui correspond à l'énergie spécifique minimale.

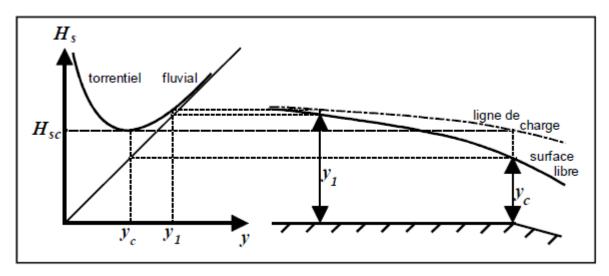
L'énergie spécifique est exprimée par la formule suivante :

$$H_s = h + \frac{V^2}{2g}$$
 (11)

Sachant que:

$$Hs = Ep + Ec$$
....(12)

Avec:


 \triangleright Ep : Energie potentiel Ep = h

 \triangleright Ec : energie cinétique $Ec = V^2/2g!$.

Elle est aussi exprimée comme suit :

$$H_{s} = \frac{Q^{2}}{S^{2}2a} + h \tag{13}$$

D'où, on tire un graphique d'équation : H_s=f (h)

Figure 5.3 : Graphique de la fonction Es = f(h)

5.5.5. Calcul de la pente critique

La pente critique correspond à la profondeur critique, elle est donnée par la formule suivante :

$$Ic = \frac{Q^2}{C^2S^{2Rh}}$$
....(14)

Les résultats de calcul de la profondeur critique et le pente critique de chaque tronçon ainsi que les graphes de Es = f(h) sont en annexe 3

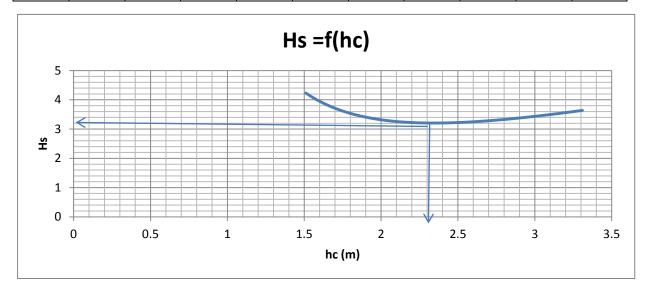

Chapitre – **5 :** Étude des variantes d'aménagements pour la protection contre les inondations

Tableau 5.7 : paramètres de départ

tronçon	longueur (m)	pente	m	Q
1	121.36	0.0028	0.57	36.3
2	66.5	0.0045	0.57	36.3
3	236.29	0.0149	0.57	36.3
4	925.85	0.0185	0.57	37.58
5	96.97	0.009	0.57	38.75
6	146.53	0.007	0.57	40.79
7	32.03	0.0028	0.57	40.79
8	468.98	0.0081	0.57	40.79
9	283.2	0.0089	0.57	40.79
10	201.29	0.0017	0.57	75.79

Tableau 5.8 : Récapitulation des profondeurs normale et critique du canal

hn	b	S	р	R	С	V	Fr	hc	hs	ic
2.9	3.37	14.57	10.05	1.45	79.79	4.30	0.81	2.21	2.85	0.0017
2.68	3.11	12.44	9.28	1.34	78.75	6.12	1.19	2.11	2.92	0.0024
2.09	2.43	7.57	7.24	1.05	75.55	9.43	2.08	2.36	3.21	0.0025
2.02	2.35	7.07	7.00	1.01	75.12	10.27	2.31	2.36	3.24	0.0029
2.35	2.73	9.57	8.14	1.18	77.04	7.92	1.65	2.21	3.073	0.003
2.55	2.96	11.26	8.83	1.28	78.10	7.38	1.48	2.16	2.98	0.003
3	3.49	15.59	10.39	1.50	80.24	5.20	0.96	2.01	2.78	0.0028
1.64	1.91	4.66	5.68	0.82	72.56	5.91	1.47	2.56	3.47	0.0045
2.25	2.92	10.16	8.39	1.21	77.43	8.04	1.65	2.21	3.039	0.0031
2.74	3.18	13.00	9.49	1.37	79.04	12.06	2.33	2.06	2.897	0.011

Figure 5.4 : Courbe Hs =f(hc)

Chapitre – 4 : Évaluation du fonctionnement du système d'assainissement pluvial existant

5.3. Dimensionnement du réseau des eaux pluviales

Le dimensionnement du réseau d'assainissement en gravitaire considère l'hypothèse suivante :

- L'écoulement est permanent uniforme à surface libre. La pente de la ligne d'énergie est assimilée à celle du radier du collecteur.
- Le diamètre doit être supérieur à 300 mm dans un réseau d'eau pluvial.
- La vitesse maximale acceptée est de 4 à5 m/s en pleine section.

5.3.1 Calcul hydraulique

On définit les paramètres suivants :

- Périmètre mouillé (P) : c'est la longueur du périmètre de la conduite qui est en contact avec l'eau (m).
- Section mouillée (S) : c'est la section transversale de la conduite occupée par l'eau (m²).
- Rayon hydraulique (Rh) : c'est le rapport entre la section mouillée et le périmètre mouillé. (m).
- Vitesse moyenne (v) : c'est le rapport entre le débit volumique et la section mouillée. L'écoulement dans les collecteurs est un écoulement à surface libre régi par la formule de la Continuité :

Où

I(m/m): Pente motrice nécessaire à l'écoulement d'un débit Q donné (I>0.25%).

Rh (m): Rayon hydraulique.

Ks: Coefficient de Strickler dépend de la nature des parois

Tableau 5.2 : Le Coefficient de Manning-Strickler (ks) en fonction de la nature des parois :

The second of th	trienter (ns) en ronetron de la nature des parois.
Nature des parois	Ks
Fossé à parois en herbe	30
Fossé à parois en terre	40
Canal en maçonnerie	60
Conduite en béton	75
Conduite en fibre ciment	80
Conduite en fonte ou en grés	90
Conduite en PVC	100

D'après l'équation de Manning Strickler on a l'expression de débit

$$Q = K_s S R^{\frac{2}{3}} \sqrt{I} \qquad (17)$$

D'où le diamètre est calculé par la formule :

$$Dcal = \left(\frac{3.2036Q}{K_S\sqrt{l}}\right)^{\frac{3}{8}}.$$
(18)

Le débit en plein section est donné donc par la relation :

$$Qps = Vps \frac{\pi Dnor^2}{4}.$$
(19)

Chapitre – 4: Évaluation du fonctionnement du système d'assainissement pluvial existant

Dnor : Diamètre normalisé de la conduite en [mm].

La vitesse en pleine section (Vps) est calculée à partir de la relation suivante :

$$Vps = K_S \left(\frac{Dnor}{4}\right)^{2/3} \sqrt{I}$$
 (20)

Avec R le rayon hydraulique pris:

$$R = \frac{D_{\text{nor}}}{4}....$$
Rapport des hauteurs :

$$Rh = -11,423 Rq6 + 40.641 Rq5 - 55.497 Rq4 + 37.115 Rq3 - 12.857 Rq2 + 2,8373 Rq + 0,0359.$$
 (22)

Rapport des vitesses :

$$Rv = -25,63 Rq6 + 93,647 Rq5 - 134,25 Rq4 + 95,24 Rq3 - 35,151 Rq2 + 7,0395 Rq + 0,2263...$$
 (23)

Par la suite on calcule les vitesses et les hauteurs :

$$Rv = \frac{V}{Vps}$$
 \rightarrow V=VpsRv
 $Rh = \frac{H}{Dnor}$ \rightarrow H=RhDnor

 $\label{lem:chapitre-4:} \textbf{ \'E} valuation du fonctionnement du système d'assainissement pluvial existant$

Tableau 5.9 : les dimensions du collecteur principal du bassin 2

troncon	amont	Aval	radier amont	radier aval	longueur	pente	$Q(m^3/s)$	Dcal	Dnor	Vps	Qps	Rq	Rv	Rh	V(m/s)	Н
1_2	938.43	936.51	937.23	935.31	44.09	0.034	1.39	654	800	4.73	2.38	0.58	1.05	0.55	4.96	442.39
2_3	936.51	935.79	935.31	934.59	21.25	0.034	1.39	654	800	4.73	2.38	0.58	1.05	0.55	4.96	442.39
3_4	935.79	934.14	934.59	932.94	34.1	0.034	1.39	654	800	4.73	2.38	0.58	1.05	0.55	4.96	442.39
4_5	934.14	933.42	932.94	932.22	25.86	0.034	1.39	654	800	4.73	2.38	0.58	1.05	0.55	4.96	442.39
5_6	933.42	931.8	932.22	930.6	36.25	0.034	1.39	654	800	4.73	2.38	0.58	1.05	0.55	4.96	442.39
6_7	931.8	931.01	930.6	929.81	24.15	0.034	1.39	654	800	4.73	2.38	0.58	1.05	0.55	4.96	442.39
7_8	931.01	930.07	929.81	928.87	19.96	0.034	1.39	654	800	4.73	2.38	0.58	1.05	0.55	4.96	442.39
8_9	930.07	929.41	928.87	928.21	18.99	0.034	1.39	654	800	4.73	2.38	0.58	1.05	0.55	4.96	442.39
9_10	929.41	927.99	928.21	926.79	40.64	0.034	1.39	654	800	4.73	2.38	0.58	1.05	0.55	4.96	442.39
10_11	927.99	927.2	926.79	926	20.61	0.034	1.39	654	800	4.73	2.38	0.58	1.05	0.55	4.96	442.39
9_10	927.2	926.41	926	925.21	22.58	0.034	1.39	654	800	4.73	2.38	0.58	1.05	0.55	4.96	442.39

Tableau 5.10 : dimensions de l'intercepteur

troncon	amont	Aval	radier amont	radier aval	longueur	pente	Q(m3/s)	Dcal	Dnor	Vps	Qps	Rq	Rv	Rh	V(m/s)	Н
11_12	925.14	924.65	923.94	923.45	40	0.023	1.39	704	800	3.89	1.96	0.71	1.09	0.62	4.24	496.05
12_13	924.65	922.93	923.45	921.73	40	0.023	1.39	704	800	3.88	1.95	0.71	1.09	0.62	4.24	496.05
13_14	922.93	921.03	921.73	919.83	40	0.023	1.39	704	800	3.88	1.97	0.71	1.09	0.62	4.24	496.05
14_15	921.03	919.24	919.83	918.04	40	0.023	1.39	704	800	3.88	1.97	0.71	1.09	0.62	4.24	496.05
15_16	919.24	919.08	918.04	917.88	40	0.023	1.39	704	800	3.88	1.97	0.71	1.09	0.62	4.24	496.05
16_17	919.08	917.07	917.88	915.87	40	0.023	1.39	704	800	3.88	1.97	0.71	1.09	0.62	4.24	496.05
17_18	917.07	916.44	915.87	915.24	40	0.023	1.39	704	800	3.88	1.97	0.71	1.09	0.62	4.24	496.05
18_19	916.44	915.85	915.24	914.65	40	0.023	2.45	870	1000	4.57	3.12	0.69	1.09	0.61	4.90	609.65
19_20	915.85	913.85	914.65	912.65	50	0.023	2.45	870	1000	4.517	3.12	0.69	1.09	0.61	4.90	609.65
20_21	913.85	912.92	912.65	911.72	40	0.023	2.45	870	1000	4.57	3.12	0.69	1.09	0.61	4.90	609.65
21_22	912.92	912.09	911.72	910.89	40	0.023	2.45	870	1000	4.57	3.12	0.69	1.09	0.61	4.90	609.65
22_23	912.09	911.51	910.89	910.31	40	0.023	2.45	870	1000	4.57	3.12	0.69	1.09	0.61	4.90	609.65

 $\label{lem:chapitre-4:} \textbf{Evaluation du fonctionnement du système d'assainissement pluvial existant}$

23_24	911.51	911.04	910.31	909.84	40	0.023	2.45	870	1000	4.517	3.12	0.69	1.09	0.61	4.90	609.65
24_25	911.04	910.11	909.84	908.91	40	0.023	2.45	870	1000	4.57	3.12	0.69	1.09	0.61	4.90	609.65
26_27	910.11	909.38	908.91	908.18	40	0.023	2.45	870	1000	4.57	3.12	0.69	1.09	0.61	4.90	609.65
27_28	909.38	908.36	908.18	907.16	60.17	0.023	2.45	870	1000	4.57	3.12	0.69	1.09	0.61	4.90	609.65
28_29	908.36	907.47	907.16	906.27	59.83	0.023	3.44	988	1000	4.57	3.12	0.97	1.12	0.82	5.07	818.82
29_30	907.47	907.08	906.27	905.88	40	0.023	3.44	988	1000	4.57	3.12	0.97	1.12	0.82	5.07	818.82
30_31	907.08	906.78	905.88	905.58	27.93	0.023	3.44	988	1000	4.57	3.12	0.97	1.12	0.82	5.07	818.82

Tableau 5.11 : les dimensions du collecteur principal du bassin 3

troncon	amont	Aval	radier amont	radier aval	longueur	pente	Q(m3/s)	Dcal	Dnor	Vps	Qps	Rq	Rv	Rh	V(m/s)	Н
31_32	932.84	930.21	931.64	929.01	40	0.01	1.39	822	1000	2.98	2.34	0.59	1.05	0.56	3.13	558.51
32_33	930.21	929.15	929.01	927.95	40	0.01	1.39	822	1000	2.98	2.34	0.59	1.05	0.56	3.13	558.51
33_34	929.15	928.74	927.95	927.54	25.26	0.01	1.39	822	1000	2.98	2.34	0.59	1.05	0.56	3.13	558.51
34_35	928.74	928.09	927.54	926.89	40	0.01	1.39	822	1000	2.98	2.34	0.59	1.05	0.56	3.13	558.51
35_36	928.09	927.34	926.89	926.14	32.75	0.01	1.39	822	1000	2.98	2.34	0.59	1.05	0.56	3.13	558.51
36_37	927.34	926.7	926.14	925.5	47.26	0.01	1.39	822	1000	2.98	2.34	0.59	1.05	0.56	3.13	558.51
37_38	926.7	923.77	925.5	922.57	40	0.01	1.39	822	1000	2.98	2.34	0.59	1.05	0.56	3.13	558.51
38_39	923.77	920.77	922.57	919.57	40	0.01	1.39	822	1000	2.98	2.34	0.59	1.05	0.56	3.13	558.51
39_20	920.77	916.77	919.57	915.57	52.42	0.01	1.39	822	1000	2.98	2.34	0.59	1.05	0.56	3.13	558.51

Tableau 5.12 : les dimensions du collecteur principal du bassin 4

troncon	amont	Aval	radier amont	radier aval	longueur	pente	Q(m3/s)	Dcal	Dnor	Vps	Qps	Rq	Rv	Rh	V(m/s)	Н
40_41	927.75	926.53	926.55	925.33	32.37	0.042	1.06	568	600	4.34	1.23	0.86	1.11	0.72	4.82	430.36
41_42	926.53	925.16	925.33	923.96	30.87	0.042	1.06	568	600	4.34	1.23	0.86	1.11	0.72	4.82	430.36
42_43	925.16	923.16	923.96	921.96	56.76	0.042	1.06	568	600	4.34	1.23	0.86	1.11	0.72	4.82	430.36
43_44	923.16	920.49	921.96	919.29	53.18	0.042	1.06	568	600	4.34	1.23	0.86	1.11	0.72	4.82	430.36

Chapitre – 4 : Évaluation du fonctionnement du système d'assainissement pluvial existant

44_45	920.49	917.58	919.29	916.38	28.12	0.042	1.06	568	600	4.34	1.23	0.86	1.11	0.72	4.82	430.36
45_46	917.58	916.84	916.38	915.64	17.12	0.042	1.06	568	600	4.34	1.23	0.86	1.11	0.72	4.82	430.36
46_47	916.84	914.9	915.64	913.7	40	0.042	1.06	568	600	4.34	1.23	0.86	1.11	0.72	4.82	430.36
47_48	914.9	912.96	913.7	911.76	40	0.042	1.06	568	600	4.34	1.23	0.86	1.11	0.72	4.82	430.36
48_49	912.96	911.01	911.76	909.81	40	0.042	1.06	568	600	4.34	1.23	0.86	1.11	0.72	4.82	430.36
49_29	911.01	908.36	909.81	907.16	61.88	0.042	1.06	568	600	4.34	1.23	0.86	1.11	0.72	4.82	430.36

Tableau 5.13 : les dimensions du collecteur principal du bassin 1

troncon	amont	Aval	radier amont	radier aval	longueur	pente	Q(m3/s)	Dcal	Dnor	Vps	Qps	Rq	Rv	Rh	V(m/s)	Н
50_51	938.6	937.69	937.4	936.49	40	0.035	1.28	630	800	4.80	2.41	0.53	1.02	0.52	4.88	417.23
51_52	937.69	935.87	936.49	934.67	40	0.035	1.28	630	800	4.80	2.41	0.53	1.02	0.52	4.88	417.23
52_53	935.87	933.17	934.67	931.97	40	0.035	1.28	630	800	4.80	2.41	0.53	1.02	0.52	4.88	417.23
53_54	933.17	932.1	931.97	930.9	40	0.035	1.28	630	800	4.80	2.41	0.53	1.02	0.52	4.88	417.23
54_55	932.1	929.58	930.9	928.38	40	0.035	1.28	630	800	4.80	2.41	0.53	1.02	0.52	4.88	417.23
55_56	929.58	928.26	928.38	927.06	42.15	0.035	1.28	630	800	4.80	2.41	0.53	1.02	0.52	4.88	417.23
56_57	928.26	925.61	927.06	924.41	37.85	0.035	1.28	630	800	4.80	2.41	0.53	1.02	0.52	4.88	417.23
57_58	925.61	924.8	924.41	923.6	45	0.035	1.28	630	800	4.80	2.41	0.53	1.02	0.52	4.88	417.23
58_oued	924.8	924.64	923.6	923.44	30.99	0.035	1.28	630	800	4.80	2.41	0.53	1.02	0.52	4.88	417.23

Chapitre – 4 : Évaluation du fonctionnement du système d'assainissement pluvial existant

Tableau 5.14 : les dimensions du collecteur principal du POSR8 (bassin 5,6 et 7)

The color of the	Tubicut		Co dillio	isions au conc				.55111 2,0	<i>cc , ,</i>								
2_3 927.14 926.91 925.94 925.71 19.75 0.015 0.68 583 600 2.59 0.73 0.93 1.12 0.77 2.90 464 3_4 926.91 925.69 925.71 924.49 45.19 0.015 0.68 583 600 2.59 0.73 0.93 1.12 0.77 2.90 464 4_5 925.69 924.41 923.21 54.64 0.015 0.68 583 600 2.59 0.73 0.93 1.12 0.77 2.90 464 5_6 924.41 923.78 923.21 922.58 56.01 0.015 0.68 583 600 2.59 0.73 0.93 1.12 0.77 2.90 464 6_7 923.78 923.49 922.29 922.09 953.8 0.015 0.68 583 600 2.59 0.73 0.93 1.12 0.77 2.90 464 8_9 923.29 922.49 92	traocon	amont	Aval	radier amont	radier aval	longueur	pente	Qcal	dcal	Dnor	Vps	Qps	Rq	Rv	Rh	V	Н
3_4 926.91 925.69 925.71 924.49 45.19 0.015 0.68 583 600 2.59 0.73 0.93 1.12 0.77 2.90 464 4.5 925.69 924.41 924.49 923.21 54.64 0.015 0.68 583 600 2.59 0.73 0.93 1.12 0.77 2.90 464 5.6 924.41 923.78 923.21 922.58 56.01 0.015 0.68 583 600 2.59 0.73 0.93 1.12 0.77 2.90 464 0.67 923.78 923.78 923.49 922.58 922.29 62.59 0.015 0.68 583 600 2.59 0.73 0.93 1.12 0.77 2.90 464 0.78 923.49 923.29 922.29 922.09 923.80 0.015 0.68 583 600 2.59 0.73 0.93 1.12 0.77 2.90 464 0.016	1_2	927.95	927.14	926.75	925.94	33.94	0.015	0.68	583	600	2.59	0.73	0.93	1.12	0.77	2.90	464.40
4_5 925.69 924.41 924.49 923.21 54.64 0.015 0.68 583 600 2.59 0.73 0.93 1.12 0.77 2.90 464 5_6 924.41 923.78 923.21 922.58 56.01 0.015 0.68 595 600 2.59 0.73 0.93 1.12 0.77 2.90 464 6_7 923.78 923.29 922.29 62.59 0.015 0.68 583 600 2.59 0.73 0.93 1.12 0.77 2.90 464 7_8 923.49 923.29 922.29 922.09 59.38 0.015 0.68 583 600 2.59 0.73 0.93 1.12 0.77 2.90 464 8_9 923.29 922.42 922.09 921.22 51.01 0.015 0.68 583 600 2.59 0.73 0.93 1.12 0.77 2.90 464 9_10 922.42 921.42	2_3	927.14	926.91	925.94	925.71	19.75	0.015	0.68	583	600	2.59	0.73	0.93	1.12	0.77	2.90	464.40
5_6 924.41 923.78 923.21 922.58 56.01 0.015 0.68 595 600 2.59 0.73 0.93 1.12 0.77 2.90 464. 6_7 923.78 923.49 922.58 922.29 62.59 0.015 0.68 583 600 2.59 0.73 0.93 1.12 0.77 2.90 464. 7_8 923.49 923.29 922.29 922.09 59.38 0.015 0.68 583 600 2.59 0.73 0.93 1.12 0.77 2.90 464. 8_9 923.29 922.42 922.09 921.22 51.01 0.015 0.68 583 600 2.59 0.73 0.93 1.12 0.77 2.90 464. 9_10 922.42 921.4 921.02 57.11 0.015 1.54 792 800 3.14 1.58 0.98 1.12 0.82 3.53 659 11_12 92.62 91	3_4	926.91	925.69	925.71	924.49	45.19	0.015	0.68	583	600	2.59	0.73	0.93	1.12	0.77	2.90	464.40
6_7 923.78 923.49 922.58 922.29 62.59 0.015 0.68 583 600 2.59 0.73 0.93 1.12 0.77 2.90 464 7_8 923.29 922.29 922.09 59.38 0.015 0.68 583 600 2.59 0.73 0.93 1.12 0.77 2.90 464 8_9 923.29 922.42 922.09 921.22 51.01 0.015 0.68 583 600 2.59 0.73 0.93 1.12 0.77 2.90 464 9_10 922.42 921.4 921.22 920.2 919.42 57.11 0.015 1.54 792 800 3.14 1.58 0.98 1.12 0.82 3.53 659 10_11 921.4 920.62 919.42 918.69 918.69 55.64 0.015 1.54 792 800 3.14 1.58 0.98 1.12 0.82 3.53 659 12_1	4_5	925.69	924.41	924.49	923.21	54.64	0.015	0.68	583	600	2.59	0.73	0.93	1.12	0.77	2.90	464.40
7_8 923.49 923.29 922.29 922.09 59.38 0.015 0.68 583 600 2.59 0.73 0.93 1.12 0.77 2.90 464 8_9 923.29 922.42 922.09 921.22 51.01 0.015 0.68 583 600 2.59 0.73 0.93 1.12 0.77 2.90 464 9_10 922.42 921.44 921.22 920.2 57.11 0.015 1.54 792 800 3.14 1.58 0.98 1.12 0.82 3.53 659 10_11 921.4 920.62 920.2 919.42 918.69 55.64 0.015 1.54 792 800 3.14 1.58 0.98 1.12 0.82 3.53 659 12_13 919.89 919.28 918.69 918.08 55.61 0.015 1.54 792 800 3.14 1.58 0.98 1.12 0.82 3.53 659 12	5_6	924.41	923.78	923.21	922.58	56.01	0.015	0.68	595	600	2.59	0.73	0.93	1.12	0.77	2.90	464.40
8_9 923.29 922.42 922.09 921.22 51.01 0.015 0.68 583 600 2.59 0.73 0.93 1.12 0.77 2.90 464. 9_10 922.42 921.4 921.22 920.2 57.11 0.015 1.54 792 800 3.14 1.58 0.98 1.12 0.82 3.53 659. 10_11 921.4 920.62 920.2 919.42 57.21 0.015 1.54 792 800 3.14 1.58 0.98 1.12 0.82 3.53 659. 11_12 920.62 919.89 919.42 918.69 55.64 0.015 1.54 792 800 3.14 1.58 0.98 1.12 0.82 3.53 659. 12_13 919.89 919.28 918.08 916.53 55.79 0.015 1.54 792 800 3.14 1.58 0.98 1.12 0.82 3.53 659. 13_14 <	6_7	923.78	923.49	922.58	922.29	62.59	0.015	0.68	583	600	2.59	0.73	0.93	1.12	0.77	2.90	464.40
9_10 922.42 921.4 921.22 920.2 57.11 0.015 1.54 792 800 3.14 1.58 0.98 1.12 0.82 3.53 659. 10_11 921.4 920.62 920.2 919.42 57.21 0.015 1.54 792 800 3.14 1.58 0.98 1.12 0.82 3.53 659. 11_12 920.62 919.89 919.42 918.69 55.64 0.015 1.54 792 800 3.14 1.58 0.98 1.12 0.82 3.53 659. 12_13 919.89 919.28 918.69 918.08 55.61 0.015 1.54 792 800 3.14 1.58 0.98 1.12 0.82 3.53 659. 13_14 919.89 919.28 915.78 918.08 916.53 55.79 0.015 1.54 792 800 3.14 1.58 0.98 1.12 0.82 3.53 659.	7_8	923.49	923.29	922.29	922.09	59.38	0.015	0.68	583	600	2.59	0.73	0.93	1.12	0.77	2.90	464.40
10_11 921.4 920.62 920.2 919.42 57.21 0.015 1.54 792 800 3.14 1.58 0.98 1.12 0.82 3.53 659. 11_12 920.62 919.89 919.42 918.69 55.64 0.015 1.54 792 800 3.14 1.58 0.98 1.12 0.82 3.53 659. 12_13 919.89 919.28 918.69 918.08 55.61 0.015 1.54 792 800 3.14 1.58 0.98 1.12 0.82 3.53 659. 13_14 919.28 917.73 918.08 916.53 55.79 0.015 1.54 792 800 3.14 1.58 0.98 1.12 0.82 3.53 659. 14_15 917.73 916.9 916.53 915.7 52.95 0.015 1.54 792 800 3.14 1.58 0.98 1.12 0.82 3.53 659. 15_16	8_9	923.29	922.42	922.09	921.22	51.01	0.015	0.68	583	600	2.59	0.73	0.93	1.12	0.77	2.90	464.40
11_12 920.62 919.89 919.42 918.69 55.64 0.015 1.54 792 800 3.14 1.58 0.98 1.12 0.82 3.53 659. 12_13 919.89 919.28 918.69 918.08 55.61 0.015 1.54 792 800 3.14 1.58 0.98 1.12 0.82 3.53 659. 13_14 919.28 917.73 918.08 916.53 55.79 0.015 1.54 792 800 3.14 1.58 0.98 1.12 0.82 3.53 659. 14_15 917.73 916.9 916.53 915.7 52.95 0.015 1.54 792 800 3.14 1.58 0.98 1.12 0.82 3.53 659. 15_16 916.9 914.36 915.7 913.16 48.39 0.015 1.54 792 800 3.14 1.58 0.98 1.12 0.82 3.53 659. 16_17	9_10	922.42	921.4	921.22	920.2	57.11	0.015	1.54	792	800	3.14	1.58	0.98	1.12	0.82	3.53	659.42
12_13 919.89 919.28 918.69 918.08 55.61 0.015 1.54 792 800 3.14 1.58 0.98 1.12 0.82 3.53 659 13_14 919.28 917.73 918.08 916.53 55.79 0.015 1.54 792 800 3.14 1.58 0.98 1.12 0.82 3.53 659 14_15 917.73 916.9 916.53 915.7 52.95 0.015 1.54 792 800 3.14 1.58 0.98 1.12 0.82 3.53 659 15_16 916.9 914.36 915.7 913.16 48.39 0.015 1.54 792 800 3.14 1.58 0.98 1.12 0.82 3.53 659 16_17 914.36 913.45 913.16 912.25 48.43 0.015 1.54 792 800 3.14 1.58 0.98 1.12 0.82 3.53 659 18_19 <td< td=""><td>10_11</td><td>921.4</td><td>920.62</td><td>920.2</td><td>919.42</td><td>57.21</td><td>0.015</td><td>1.54</td><td>792</td><td>800</td><td>3.14</td><td>1.58</td><td>0.98</td><td>1.12</td><td>0.82</td><td>3.53</td><td>659.42</td></td<>	10_11	921.4	920.62	920.2	919.42	57.21	0.015	1.54	792	800	3.14	1.58	0.98	1.12	0.82	3.53	659.42
13_14 919.28 917.73 918.08 916.53 55.79 0.015 1.54 792 800 3.14 1.58 0.98 1.12 0.82 3.53 659. 14_15 917.73 916.9 916.53 915.7 52.95 0.015 1.54 792 800 3.14 1.58 0.98 1.12 0.82 3.53 659. 15_16 916.9 914.36 915.7 913.16 48.39 0.015 1.54 792 800 3.14 1.58 0.98 1.12 0.82 3.53 659. 16_17 914.36 913.45 913.16 912.25 48.43 0.015 1.54 792 800 3.14 1.58 0.98 1.12 0.82 3.53 659. 17_18 913.45 913.01 912.25 911.81 47.87 0.015 1.54 792 800 3.14 1.58 0.98 1.12 0.82 3.53 659. 18_19	11_12	920.62	919.89	919.42	918.69	55.64	0.015	1.54	792	800	3.14	1.58	0.98	1.12	0.82	3.53	659.42
14_15 917.73 916.9 916.53 915.7 52.95 0.015 1.54 792 800 3.14 1.58 0.98 1.12 0.82 3.53 659. 15_16 916.9 914.36 915.7 913.16 48.39 0.015 1.54 792 800 3.14 1.58 0.98 1.12 0.82 3.53 659. 16_17 914.36 913.45 913.16 912.25 48.43 0.015 1.54 792 800 3.14 1.58 0.98 1.12 0.82 3.53 659. 17_18 913.45 913.01 912.25 911.81 47.87 0.015 1.54 792 800 3.14 1.58 0.98 1.12 0.82 3.53 659. 18_19 913.01 912.95 911.81 911.75 55.86 0.015 1.54 792 800 3.14 1.58 0.98 1.12 0.82 3.53 659. 19_20	12_13	919.89	919.28	918.69	918.08	55.61	0.015	1.54	792	800	3.14	1.58	0.98	1.12	0.82	3.53	659.42
15_16 916.9 914.36 915.7 913.16 48.39 0.015 1.54 792 800 3.14 1.58 0.98 1.12 0.82 3.53 659. 16_17 914.36 913.45 913.16 912.25 48.43 0.015 1.54 792 800 3.14 1.58 0.98 1.12 0.82 3.53 659. 17_18 913.45 913.01 912.25 911.81 47.87 0.015 1.54 792 800 3.14 1.58 0.98 1.12 0.82 3.53 659. 18_19 913.01 912.95 911.81 911.75 55.86 0.015 1.54 792 800 3.14 1.58 0.98 1.12 0.82 3.53 659. 18_19 913.01 912.95 911.81 911.75 55.86 0.015 1.54 792 800 3.14 1.58 0.98 1.12 0.82 3.53 659. 19_20	13_14	919.28	917.73	918.08	916.53	55.79	0.015	1.54	792	800	3.14	1.58	0.98	1.12	0.82	3.53	659.42
16_17 914.36 913.45 913.16 912.25 48.43 0.015 1.54 792 800 3.14 1.58 0.98 1.12 0.82 3.53 659 17_18 913.45 913.01 912.25 911.81 47.87 0.015 1.54 792 800 3.14 1.58 0.98 1.12 0.82 3.53 659 18_19 913.01 912.95 911.81 911.75 55.86 0.015 1.54 792 800 3.14 1.58 0.98 1.12 0.82 3.53 659 19_20 912.95 912.83 911.75 911.63 37.03 0.015 2.05 882 1000 3.65 2.86 0.72 1.09 0.62 3.98 622 20_21 912.83 912.04 911.63 910.84 44.99 0.015 2.05 882 1000 3.65 2.86 0.72 1.09 0.62 3.98 622 22_23	14_15	917.73	916.9	916.53	915.7	52.95	0.015	1.54	792	800	3.14	1.58	0.98	1.12	0.82	3.53	659.42
17_18 913.45 913.01 912.25 911.81 47.87 0.015 1.54 792 800 3.14 1.58 0.98 1.12 0.82 3.53 659 18_19 913.01 912.95 911.81 911.75 55.86 0.015 1.54 792 800 3.14 1.58 0.98 1.12 0.82 3.53 659 19_20 912.95 912.83 911.75 911.63 37.03 0.015 2.05 882 1000 3.65 2.86 0.72 1.09 0.62 3.98 622 20_21 912.83 912.04 911.63 910.84 44.99 0.015 2.05 882 1000 3.65 2.86 0.72 1.09 0.62 3.98 622 21_22 912.04 910.95 910.84 909.75 45.31 0.015 2.05 882 1000 3.65 2.86 0.72 1.09 0.62 3.98 622 22_23	15_16	916.9	914.36	915.7	913.16	48.39	0.015	1.54	792	800	3.14	1.58	0.98	1.12	0.82	3.53	659.42
18_19 913.01 912.95 911.81 911.75 55.86 0.015 1.54 792 800 3.14 1.58 0.98 1.12 0.82 3.53 659.00 19_20 912.95 912.83 911.75 911.63 37.03 0.015 2.05 882 1000 3.65 2.86 0.72 1.09 0.62 3.98 622.0 20_21 912.83 912.04 911.63 910.84 44.99 0.015 2.05 882 1000 3.65 2.86 0.72 1.09 0.62 3.98 622.0 21_22 912.04 910.95 910.84 909.75 45.31 0.015 2.05 882 1000 3.65 2.86 0.72 1.09 0.62 3.98 622.0 22_23 910.95 910.89 909.75 909.69 59.88 0.015 2.05 882 1000 3.65 2.86 0.72 1.09 0.62 3.98 622.0 23_24 910.89 909.31 909.69 908.11 63.68 0.015 2.05	16_17	914.36	913.45	913.16	912.25	48.43	0.015	1.54	792	800	3.14	1.58	0.98	1.12	0.82	3.53	659.42
19_20 912.95 912.83 911.75 911.63 37.03 0.015 2.05 882 1000 3.65 2.86 0.72 1.09 0.62 3.98 622 20_21 912.83 912.04 911.63 910.84 44.99 0.015 2.05 882 1000 3.65 2.86 0.72 1.09 0.62 3.98 622 21_22 912.04 910.95 910.84 909.75 45.31 0.015 2.05 882 1000 3.65 2.86 0.72 1.09 0.62 3.98 622 22_23 910.95 910.89 909.75 909.69 59.88 0.015 2.05 882 1000 3.65 2.86 0.72 1.09 0.62 3.98 622 23_24 910.89 909.31 909.69 908.11 63.68 0.015 2.05 882 1000 3.65 2.86 0.72 1.09 0.62 3.98 622 24_25 909.31 908.94 908.11 907.74 43.84 0.015 2.05 882 1000 3.65 2.86 0.72 1.09 0.62 3.98 622 25_26 908.94 908.29 <td>17_18</td> <td>913.45</td> <td>913.01</td> <td>912.25</td> <td>911.81</td> <td>47.87</td> <td>0.015</td> <td>1.54</td> <td>792</td> <td>800</td> <td>3.14</td> <td>1.58</td> <td>0.98</td> <td>1.12</td> <td>0.82</td> <td>3.53</td> <td>659.42</td>	17_18	913.45	913.01	912.25	911.81	47.87	0.015	1.54	792	800	3.14	1.58	0.98	1.12	0.82	3.53	659.42
20_21 912.83 912.04 911.63 910.84 44.99 0.015 2.05 882 1000 3.65 2.86 0.72 1.09 0.62 3.98 622 21_22 912.04 910.95 910.84 909.75 45.31 0.015 2.05 882 1000 3.65 2.86 0.72 1.09 0.62 3.98 622 22_23 910.95 910.89 909.75 909.69 59.88 0.015 2.05 882 1000 3.65 2.86 0.72 1.09 0.62 3.98 622 23_24 910.89 909.31 909.69 908.11 63.68 0.015 2.05 882 1000 3.65 2.86 0.72 1.09 0.62 3.98 622 24_25 909.31 908.94 908.11 907.74 43.84 0.015 2.05 882 1000 3.65 2.86 0.72 1.09 0.62 3.98 622 25_26	18_19	913.01	912.95	911.81	911.75	55.86	0.015	1.54	792	800	3.14	1.58	0.98	1.12	0.82	3.53	659.42
21_22 912.04 910.95 910.84 909.75 45.31 0.015 2.05 882 1000 3.65 2.86 0.72 1.09 0.62 3.98 622 22_23 910.95 910.89 909.75 909.69 59.88 0.015 2.05 882 1000 3.65 2.86 0.72 1.09 0.62 3.98 622 23_24 910.89 909.31 909.69 908.11 63.68 0.015 2.05 882 1000 3.65 2.86 0.72 1.09 0.62 3.98 622 24_25 909.31 908.94 908.11 907.74 43.84 0.015 2.05 882 1000 3.65 2.86 0.72 1.09 0.62 3.98 622 25_26 908.94 908.29 907.74 907.09 43.61 0.015 2.05 882 1000 3.65 2.86 0.72 1.09 0.62 3.98 622 26_27 908.29 907.88 907.09 906.68 44.1 0.015 2.05 882 </td <td>19_20</td> <td>912.95</td> <td>912.83</td> <td>911.75</td> <td>911.63</td> <td>37.03</td> <td>0.015</td> <td>2.05</td> <td>882</td> <td>1000</td> <td>3.65</td> <td>2.86</td> <td>0.72</td> <td>1.09</td> <td>0.62</td> <td>3.98</td> <td>622.80</td>	19_20	912.95	912.83	911.75	911.63	37.03	0.015	2.05	882	1000	3.65	2.86	0.72	1.09	0.62	3.98	622.80
22_23 910.95 910.89 909.75 909.69 59.88 0.015 2.05 882 1000 3.65 2.86 0.72 1.09 0.62 3.98 622 23_24 910.89 909.31 909.69 908.11 63.68 0.015 2.05 882 1000 3.65 2.86 0.72 1.09 0.62 3.98 622 24_25 909.31 908.94 908.11 907.74 43.84 0.015 2.05 882 1000 3.65 2.86 0.72 1.09 0.62 3.98 622 25_26 908.94 908.29 907.74 907.09 43.61 0.015 2.05 882 1000 3.65 2.86 0.72 1.09 0.62 3.98 622 26_27 908.29 907.88 907.09 906.68 44.1 0.015 2.05 882 1000 3.65 2.86 0.72 1.09 0.62 3.98 622 26_27 908.29 907.88 907.09 906.68 44.1 0.015 2.05 882 <td>20_21</td> <td>912.83</td> <td>912.04</td> <td>911.63</td> <td>910.84</td> <td>44.99</td> <td>0.015</td> <td>2.05</td> <td>882</td> <td>1000</td> <td>3.65</td> <td>2.86</td> <td>0.72</td> <td>1.09</td> <td>0.62</td> <td>3.98</td> <td>622.80</td>	20_21	912.83	912.04	911.63	910.84	44.99	0.015	2.05	882	1000	3.65	2.86	0.72	1.09	0.62	3.98	622.80
23_24 910.89 909.31 909.69 908.11 63.68 0.015 2.05 882 1000 3.65 2.86 0.72 1.09 0.62 3.98 622 24_25 909.31 908.94 908.11 907.74 43.84 0.015 2.05 882 1000 3.65 2.86 0.72 1.09 0.62 3.98 622 25_26 908.94 908.29 907.74 907.09 43.61 0.015 2.05 882 1000 3.65 2.86 0.72 1.09 0.62 3.98 622 26_27 908.29 907.88 907.09 906.68 44.1 0.015 2.05 882 1000 3.65 2.86 0.72 1.09 0.62 3.98 622 26_27 908.29 907.88 907.09 906.68 44.1 0.015 2.05 882 1000 3.65 2.86 0.72 1.09 0.62 3.98 622	21_22	912.04	910.95	910.84	909.75	45.31	0.015	2.05	882	1000	3.65	2.86	0.72	1.09	0.62	3.98	622.80
24_25 909.31 908.94 908.11 907.74 43.84 0.015 2.05 882 1000 3.65 2.86 0.72 1.09 0.62 3.98 622 25_26 908.94 908.29 907.74 907.09 43.61 0.015 2.05 882 1000 3.65 2.86 0.72 1.09 0.62 3.98 622 26_27 908.29 907.88 907.09 906.68 44.1 0.015 2.05 882 1000 3.65 2.86 0.72 1.09 0.62 3.98 622	22_23	910.95	910.89	909.75	909.69	59.88	0.015	2.05	882	1000	3.65	2.86	0.72	1.09	0.62	3.98	622.80
25_26 908.94 908.29 907.74 907.09 43.61 0.015 2.05 882 1000 3.65 2.86 0.72 1.09 0.62 3.98 622 26_27 908.29 907.88 907.09 906.68 44.1 0.015 2.05 882 1000 3.65 2.86 0.72 1.09 0.62 3.98 622	23_24	910.89	909.31	909.69	908.11	63.68	0.015	2.05	882	1000	3.65	2.86	0.72	1.09	0.62	3.98	622.80
<u>26_27 908.29 907.88 907.09 906.68 44.1 0.015 2.05 882 1000 3.65 2.86 0.72 1.09 0.62 3.98 622.</u>	24_25	909.31	908.94	908.11	907.74	43.84	0.015	2.05	882	1000	3.65	2.86	0.72	1.09	0.62	3.98	622.80
	25_26	908.94	908.29	907.74	907.09	43.61	0.015	2.05	882	1000	3.65	2.86	0.72	1.09	0.62	3.98	622.80
27_28 907.88 907.49 906.68 906.29 39.88 0.015 2.05 882 1000 3.65 2.86 0.72 1.09 0.62 3.98 622	26_27	908.29	907.88	907.09	906.68	44.1	0.015	2.05	882	1000	3.65	2.86	0.72	1.09	0.62	3.98	622.80
	27_28	907.88	907.49	906.68	906.29	39.88	0.015	2.05	882	1000	3.65	2.86	0.72	1.09	0.62	3.98	622.80

Chapitre – 4 : Évaluation du fonctionnement du système d'assainissement pluvial existant

	29	907.49	907.16	906.29	905.96	39.42	0.015	2.05	882	1000	3.65	2.86	0.72	1.09	0.62	3.98	622.80
29_	_30	907.16	906.97	905.96	905.77	37.99	0.015	2.05	882	1000	3.65	2.86	0.72	1.09	0.62	3.98	622.80
30_	31	906.97	905.66	905.77	904.46	39.2	0.015	2.05	882	1000	3.65	2.86	0.72	1.09	0.62	3.98	622.80

Chapitre – 5 : Étude des variantes d'aménagements pour la protection contre les inondations

Conclusion

Dans ce chapitre on a fait un aménagement mixte pour protège notre ville contre les eaux de ruissellement et abordé le côté hydraulique à savoir le dimensionnement du réseau d'évacuation d'eaux pluviales (canal trapézoïdal et réseau des eaux pluviale), nous avons suivi une méthode de calcul déjà expliquée au préalable.

On remarque que les diamètres des tronçons sont compris entre 600 et 1000 mm et on a choisi des collecteurs en béton.

Le dimensionnent de canal trapézoïdal se fait manuellement par la méthode itérative qui base sur la fixation du débit et la variation de la profondeur normale jusqu'à une valeur précise, ainsi on a déterminé le régime d'écoulement et la profondeur critique pour tous les tronçons.

Chapitre 6:

Estimation quantitative et financière du système de protection contre les inondations

Introduction

La réalisation d'un système de protection contre les inondations est régie par les lois Auxquelles sont soumis tous chantiers se trouvant dans la nature, en milieu urbain soient ils ou en milieu rural. Pour une réalisation optimale il faut suivre les règles de l'organisation du chantier en général. La méthode la plus utilisée est la méthode CPM « critical path méthode », c'est une méthode qui consiste à réduire les temps de réalisation, les coûts, et augmenter le rendement du travail. Elle se base sur l'établissement d'un réseau qui traduit la succession des opérations constituant le projet en question. A la fin on obtient ce qu'on appelle le chemin critique.

6.1. Installations du chantier

6.2.1. Devis quantitatif et estimatif

Afin d'avoir une idée sur le coût de réalisation de notre projet, il faut passer par le calcul du devis quantitatif et estimatif. Ce calcul consiste à déterminer les quantités de toutes les opérations effectuées sur le terrain pour la réalisation du projet, ensuite les multiplier par le prix unitaire correspondant.

Les différentes tâches effectuées par ordre chronologique sont :

- Les travaux de décapage de la couche de terre végétale.
- L'exécution des tranchées.
- La fourniture et la pose du lit de sable.
- La fourniture et la pose des buses en béton ou en béton armé.
- La construction des regards en béton armé.
- Les Tavaux de remblaiement de la tranchée.
- > Le transport des sols excédentaires.

6.2.2. Détermination des différents volumes

> Volume de la couche de terre végétale

V cv = H L B v

- ➤ Vcv : Volume de la couche de terre végétale en (m3).
- \triangleright Hv : Profondeur la couche de terre végétale (on prend Hv = 0,1 m).
- L: Longueur totale de la tranchée en (m).
- B: Largeur de la couche de terre végétale en (m).
- Volume des déblais des tranchées

Vd = BLH

- Vd : Volume des déblais des tranchées en (m³).
- B : Largeur de la couche du tronçon en (m).
- L : Longueur totale de la tranchée en (m).
- H: Profondeur de la tranchée en (m).
- ➤ Volume du lit du sable

V ls = e L B.....(1)

Vls: Volume du lit du sable en (m3).

- e : Epaisseur de la couche de sable en (m).
- B: Largeur de la couche du tronçon en (m).
- L : Longueur totale de la tranchée en (m).

> Volume occupé par les conduites

 $Vcondt = L.\pi.D2/4.$ (2)

Vcdt : Volume occupé par les conduites en (m3).

L : Longueur totale de la tranchée en (m).

D : Diamètre de la conduite en (m).

> Volume du remblai

Vr = Vdeb - [Vcondt + Vcv + Vls]. (3)

Vr : Volume du remblai en (m3).

> Volume excédentaire

Vexcé = Vf - Vremb....(4)

Vexc : Volume du sol excédentaire en (m3).

Vf : Volume du sol foisonné en (m3).

Tel que Vf = Vdeb. Kf

Kf: Coefficient de foisonnement dépend de la nature de sol pour notre cas on a :

Kf = 1.24.

Les différents volumes sont représentés dans le tableau suivant :

Tableau 6.1 : les volumes de travaux de terrassement

D(mm)	L (m)	l(m)	h(m)	Vd(m3)	Vls(m3)	Vc(m3)	vr(m3)	Vf (m3)	Vex (m3)
600	782.81	1.2	0.85	798.4662	93.9372	221.222106	925.751106	990.098088	191.631888
800	1479.3	1.4	1.05	2174.65	207.12	743.22	2710.72	2696.52	521.91
1000	1414.6	1.8	1.25	3182.74	254.62	1110.42	4038.54	3946.59	763.86

Chapitre – 6 : Estimation quantitative et financière du système de protection contre les inondations

Tableau 6.2 : Détermination du devis quantitatif et estimatif des collecteurs

désignation des travaux	•	unité	quantité	prix unitaire	montant
Déblaie		m3	6155.82	400	2462328
pose du lit de sable		m3	555.7182	1000	5557118.2
remblai de la tranchée		m3	7675.014	250	1918753.5
évacuation des déblaies excéd	lentaires	m3	1477.39	160	236383.44
	600	ml	782.81	2300	1800463
pose de canalisation	800	ml	1479.33	2500	3698325
	1000	ml	1414.55	2700	3819285
construction des regards		U	88	16000	1408000
montant totale		DA			21100656.1
	devis de la ca	nalisation			
dési	gnation des travaux	unité	quantité	prix unitaire	montant DA
	Déblai	m3	42092.46	400	16836985
	remblai	m3	2358.9916	250	589747.9
béton armé dosé	à 350 kg/m3 de ciment CPA425	m3	5813.2154	40000	232528617
Béton de propreté d	osé à 150 kg/m³ de ciment CPA425	m3	5813.2154	5000	29066077
	Gravie	m3	2906.6077	5500	15986342
	totale		•		295007769
	Montant total du proje	t			3146108425
	TVA 17%				53738432.2
	TTC				3199846857

6.3. Planification

6.31. Définition

C'est une méthode dont dispose le cadre pour rendre son travail efficace, elle consiste à :

- L'installation des postes de travail.
- L'observation instantanée.
- L'analyse des tâches.
- La définition des objectifs et des attributions.
- La simplification des méthodes.
- ➤ La stabilisation des postes de travail.

6.3.2. Techniques de la planification

Il existe deux principales méthodes de planification à savoir :

- Méthodes basées sur le réseau ;
- Méthodes basées sur le graphique.

6.3.3Méthodes basées sur le réseau

6.3.3.1. Définition du réseau

Le réseau est une représentation graphique d'un projet qui permet d'indiquer la relation entre les différentes opérations qui peuvent être successives, simultanées, convergentes et la durée de réalisation. On distingue deux types de réseaux :

- 1. Réseau à flèches : L'opération est représentée par une flèche et la succession des opérations par des nœuds. L'opération **A** précède l'opération **B**
- 2. Réseau à nœuds : L'opération est représentée par un nœud et la succession des opérations par des flèches. L'opération (B) ne peut commencer que si l'opération (A) est complètement achevée

6.3.3.2. Construction du réseau

Pour construire un réseau, il convient d'effectuer les six (6) opérations suivantes :

- 1. Établissement d'une liste des tâches : Il s'agit dans cette première phase de procéder à un inventaire très précis et détaillé de toutes les opérations indispensables à la réalisation d'un projet
- 2. détermination des tâches antérieures : Après avoir dressé la liste des tâches à effectuer, il n'est pas toujours facile de construire un réseau car il n'est pas aisé de dire si les tâches antérieures doivent être successives ou convergentes.
- 3. Construction des graphes partiels
- 4. Regroupement des graphes partiels
- 5. Détermination des tâches de début de l'ouvrage et de fin de l'ouvrage
- 6. Construction du réseau.

6.3.4. Différentes méthodes basées sur le réseau

6.3.4.1. Méthode C.P.M (méthode du chemin critique) : L'objectif de cette méthode est de réduire les temps de réalisation d'un ouvrage en tenant compte de trois phases :

1ère phase : l'effectif nécessaire pour effectuer le travail considéré.

2ème phase : analyser systématiquement le réseau, heure par heure, jour par jour, selon l'unité de temps retenue.

3ème phase : adapter le réseau aux conditions ou contraintes fixées par l'entreprise.

6.3.4.2. Méthode P.E.R.T (**Program Evaluation and Review Technical**) : C'est-à-dire technique d'ordonnancement des tâches et contrôle des programmes, c'est une méthode consistant à mettre en ordre sous forme de réseau plusieurs tâches qui grâce à leur chronologie et leur dépendance concourent toutes à l'obtention d'un produit fini.

.

6.3.5. Les étapes de la planification

La planification est le processus de la ligne de conduite des travaux à réaliser, elle comprend des étapes suivantes :

- Collection des informations: L'établissement d'une synthèse d'analyse des informations acquises par des études comparatives permet l'usage correct du plan de réalisation de notre projet.
- ➤ **Décomposition du projet :** C'est une partie importante car chaque projet peut être analysé de diverses manières ; nous attribuons à chaque tâche un responsable et ses besoins en matériels.
- ➤ **Relations entre les tâches :** Il existe deux relations essentielles entre les tâches lors de la réalisation ; l'une porte sur un enchaînement logique et l'autre sur un enchaînement préférentiel.

6.3.6. Choix de la méthode de calcul

Le choix de la méthode de calcul repose essentiellement sur le type d'ouvrage construire. Il est préférable dans le cas où les opérations se suivent comme dans notre cas d'opter pour la méthode ${\bf C.P.M}$

Les paramètres de la méthode C.P.M

Les paramètres indispensables dans l'exécution de cette méthode sont les suivants :

DCP	TR
DFP	DCPP
DFPP	MT

- **TR** : temps de réalisation.
- **DCP** : date de commencement au plus tôt.
- **DCPP**: date de commencement au plus tard.
- **DFP**: date de finition au plus tôt.
- **DFPP**: date de finition au plus tard.
- **MT** : marge totale.

Δ	VAC	٠
$\overline{}$	VLL	_

 $DFP = DCP + TR \qquad (5)$ $DCPP = DFPP - TR \qquad (6)$

▶ Le chemin critique (C.C)

C'est le chemin qui donne la durée totale du projet (DTR) reliant les opérations possédant la marge totale nulle (0).

6.3.7. Élaboration du réseau selon la méthode CPM

La méthode du **CPM** est une méthode de planification, elle a pour objectif de réduire le temps et le coût de réalisation de projet et augmenter le rendement du travail. Pour la construction du réseau il faut d'abord établir les différentes tâches des travaux. Ces derniers sont les suivantes :

- A. Décapage de la couche de goudron (si elle existe) ou celle de la végétation 10 jours.
- B. Exécution des tranchées et des fouilles pour les regards 60 jours.
- C. Aménagement du lit de pose 20jours.
- **D** Construction des regards 35 jours.
- E. La mise en place des canalisations en tranchée 30 jours.
- **F.**Assemblage des tuyaux 40jours.
- G. Faire les essais d'étanchéité pour les conduites et les joints 10 jours.
- H.Remblai des tranchées 30 jours.
- **I.**Travaux de finition 10 jours

Chapitre – 6 : Estimation quantitative et financière du système de protection contre les inondations

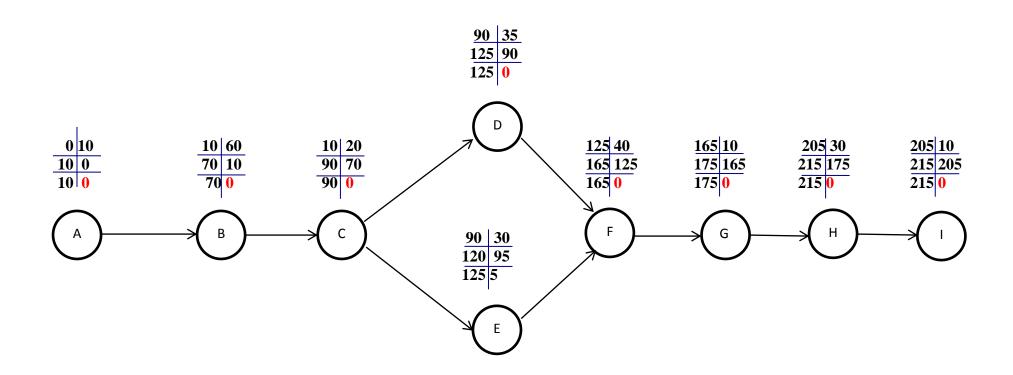


Figure 6.1 : Le réseau à nœud du réseau d'eau pluvial

Chapitre – 6 : Estimation quantitative et financière du système de protection contre les inondations

6.3.8. Les engins utilisés

Dans notre étude on va utiliser les engins suivants :

➤ Une pelles de capacité 400 m³/j

➤ Une dozers de capacité 600 m³/j

➤ Un chargeur pneumatique de capacité 400 m³/j

Camion de capacité 512m³/j

A : représente les travaux de terrassement. B : représenté la mise en place du gravier.

C : représente la mise en place du béton de proprette.

D : : représente la mise en place du béton armé.

Tableau 6.4 : les durées partielles pour la réalisation du canal

tr	L	durée terrassement	Durée BP	durée BA	Durée lit de gravier
1	121.36	10	15	15	10
2	66.5	8	8	8	7
3	236.29	18	26	26	18
4	925.85	53	103	103	50
5	96.97	9	11	11	9
6	146.53	16	17	17	14
7	32.03	2	4	4	2
8	468.98	1	50	50	38
9	283.2	5	33	33	29
10	201.29	2	24	24	22

Conclusion

D'après ce chapitre on peut conclure que l'organisation de chantier est nécessaire avant le Commencement des travaux, car elle nous permet de définir tous les volumes des travaux nécessaires pour l'élaboration du chantier. D'autre part on peut avoir une information sur le coût total du projet ainsi que le temps de réalisation. L'organisation de chantier définie aussi tous les engins que l'on peut utiliser dans un chantier et le choix final des engins seront basés sur une étude économique.

hapitre – 6 : Estimation quantity on the les inondations		

Conclusion générale

Conclusion générale

La protection des sites urbains contre les crues et les inondations est considérée comme étant une nécessité indispensable afin de réduire les dégâts humains, matériels et économiques.

L'aménagement de la zone sensée subir le risque des inondations repose sur plusieurs critères, dépendant de la topographie du terrain, la surface de bassin versant, la quantité de l'eau à évacuer et l'occupation de sol.

Afin de mener à bien cette tâche, nous avons dressé un plan d'étude dont les phases sont décrites à travers les six chapitres précédent, à savoir :

Une description plus ou moins détaillée du site, puis, une étude hydrologique qui, de par son importance, nous a permis de déterminer la pluie de projet et son débit correspondant. Ensuite, un choix devrait être porté sur le type de variante utilisée dans la conception du canal drainant les eaux pluviales du bassin versant étudié.

Dans notre étude, nous nous sommes intéressés à l'évacuation des eaux pluviales provenant du bassin versant situé au côté Est de la ville de BBA. Le dimensionnement du canal sensé acheminer conjointement, les apports liquides et solides s'est fait à partir d'une analyse hydrologique d'une série chronologique de données pluviométriques. Des courbes IDF ont été établies pour la détermination de l'intensité maximale pour une durée de précipitations (temps de concentration du bassin versant) et une période de retour bien définie.

Le canal en question, devra collecter les eaux pluviales issues du notre bassin jusqu'à son exutoire, puis, il continue à s'alimenter par les eaux pluviales provenant du cours d'eau du bassin de Boumerged pour se déverser dans un exutoire situé juste à l'entrée de la ville de BBA, et comme notre bassin d'étude est urbanisé on a projeté un réseau d'eau pluvial qui va joindre le canal dimensionner.

Enfin, cette étude comme nous l'espérons, va contribuer à mettre fin au risque encouru par la ville de BBA ou d'au moins, amortir l'ampleur des dégâts occasionnés à chaque événement pluvieux.

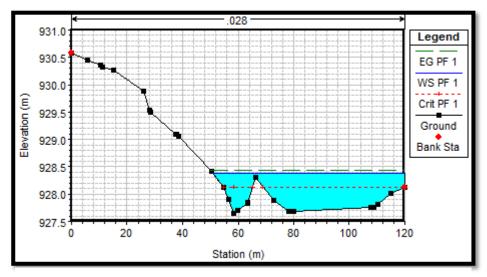
2014/2015 Page 74

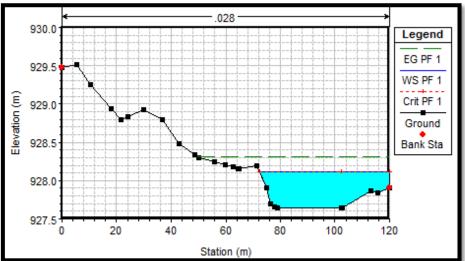
Référence bibliographique

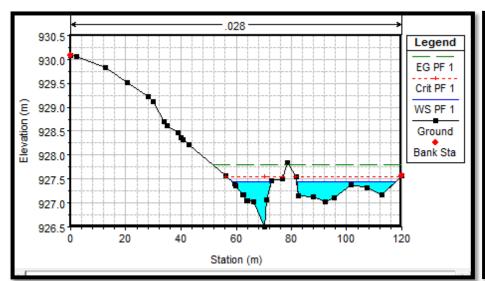
Références bibliographiques

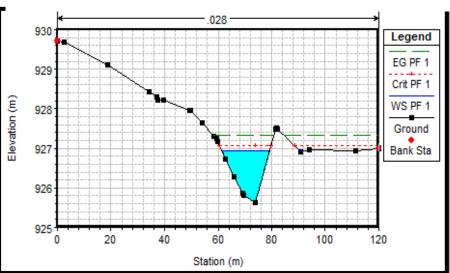
B.TOUAIBIA.MANUEL PRATIQUE D'HYDROLOGIE.(Mars2004)

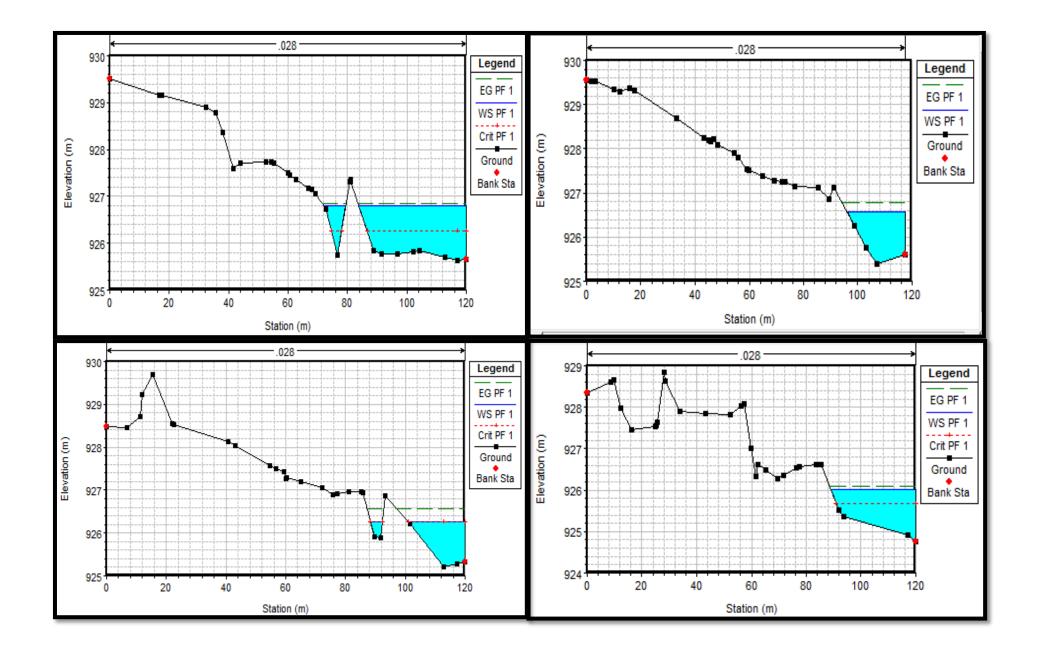
B.SALAH.ASSAINISSEMENT DES AGGLOMERARION(1993)

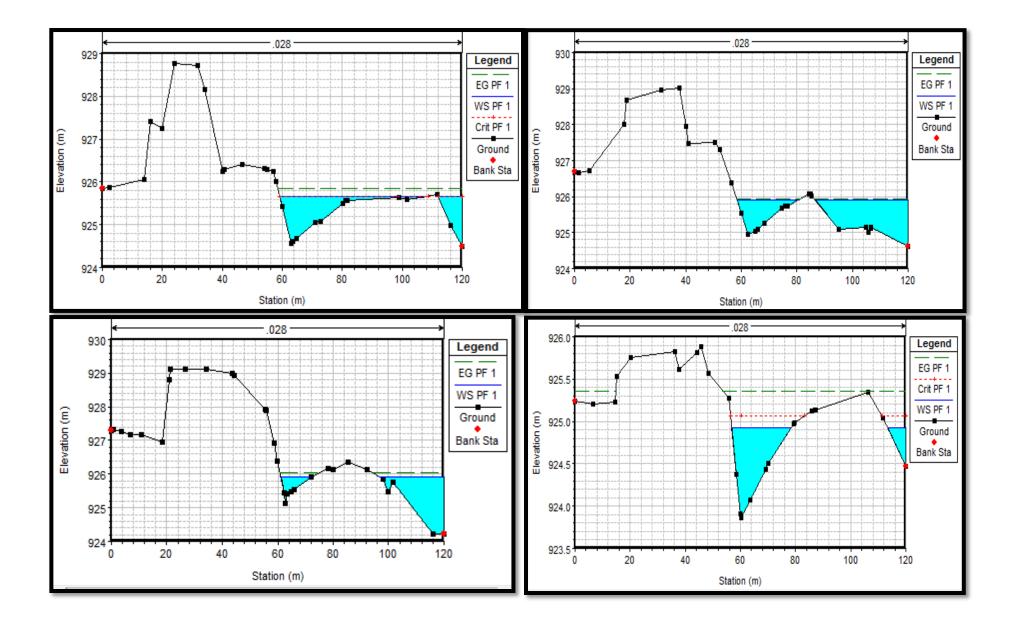

G.DEGOUTE . CHAPITRE 1 AIDE MÉMOIRE D'HYDRAULIQUE A SURFACE LIBRE

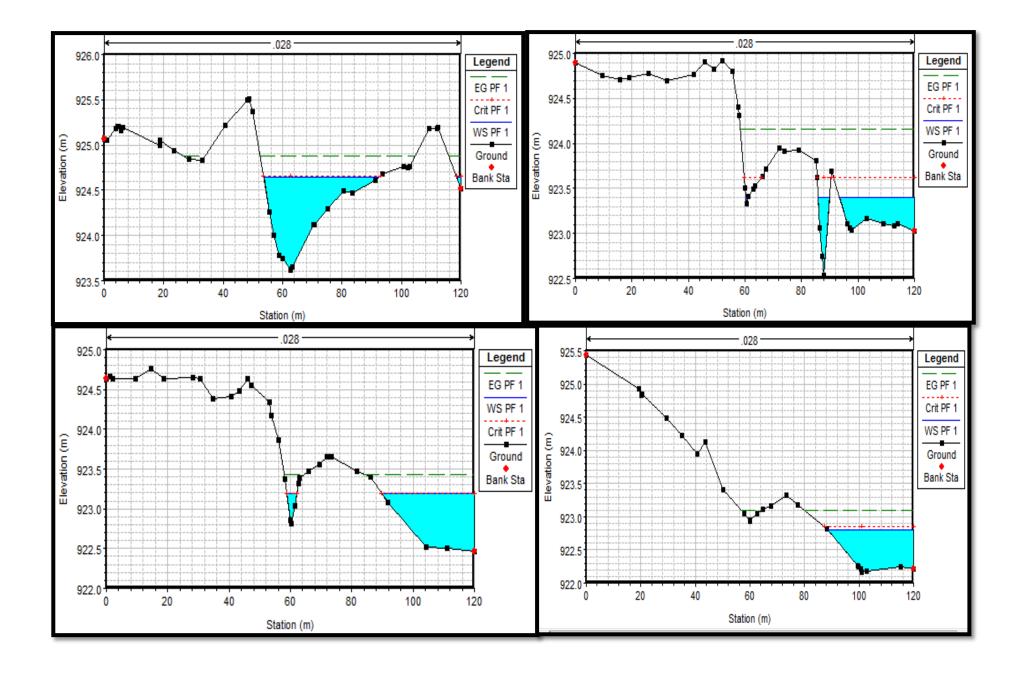

G.J.ARCEMENT JR. AND V.R.SCHNEIDER GUIDE FOR SELECTING MANNING'S ROUTING COEFFICIENTS

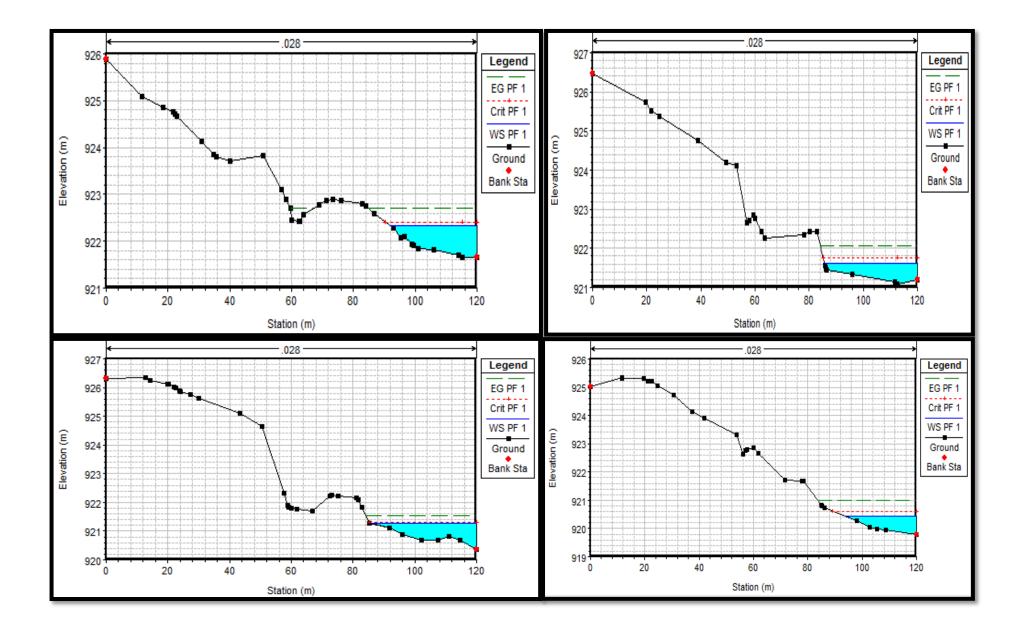

LENCASTRE .A.HYDAULIQUE GENERALE (2002)

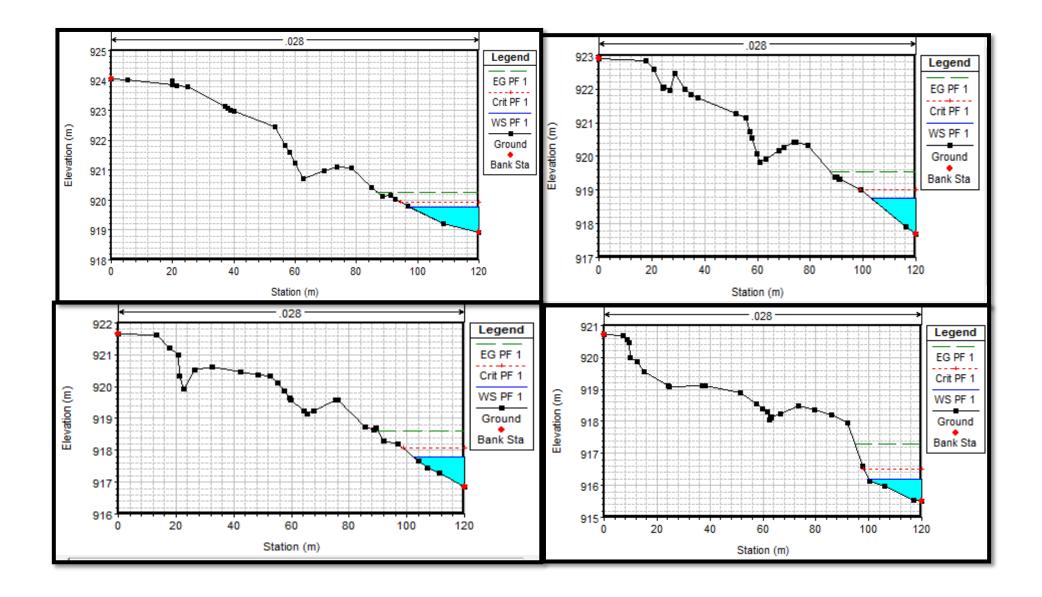

RICHARD H.McCuen.HYDROLOGIC ANALYSIS AND DESIGN SECOND EDITION.

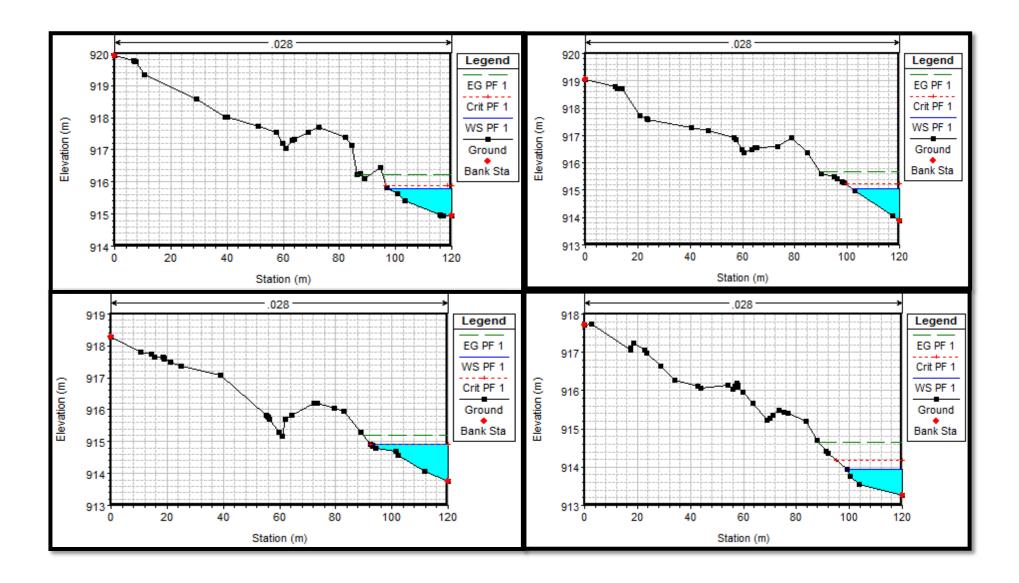

Annexe 1 : Les profils en travers

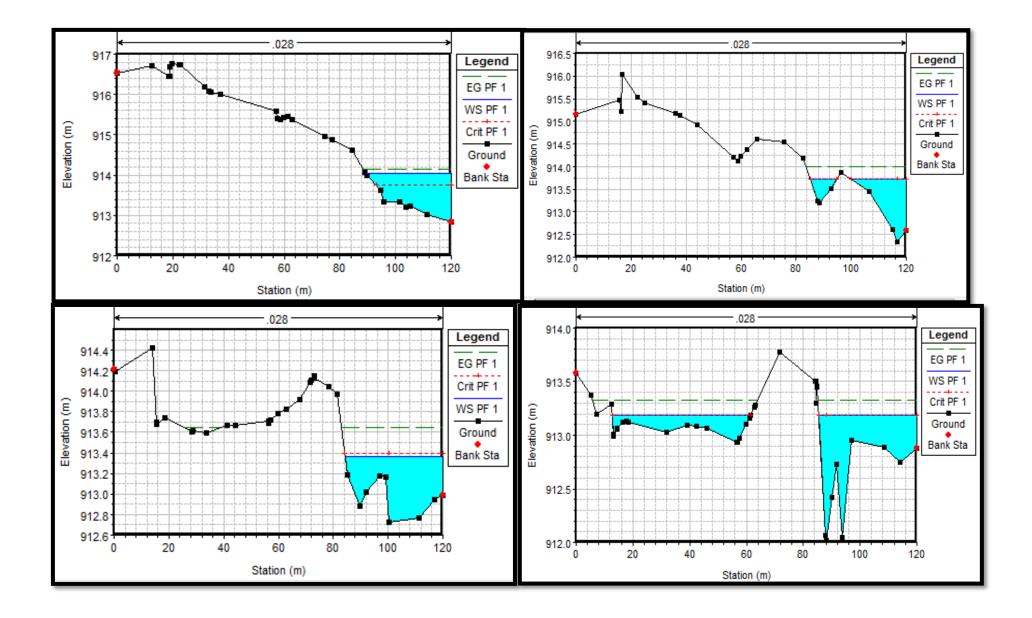


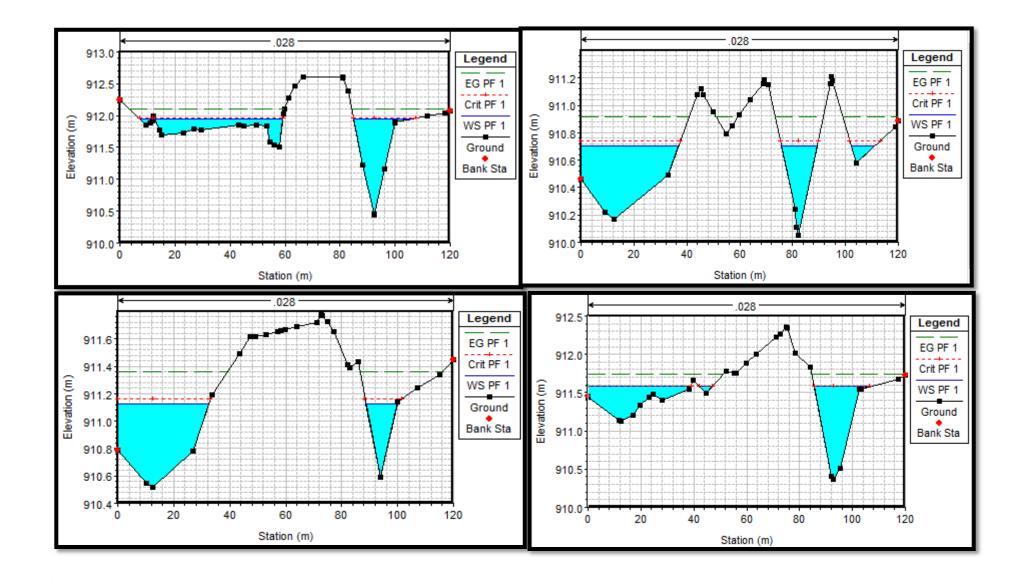


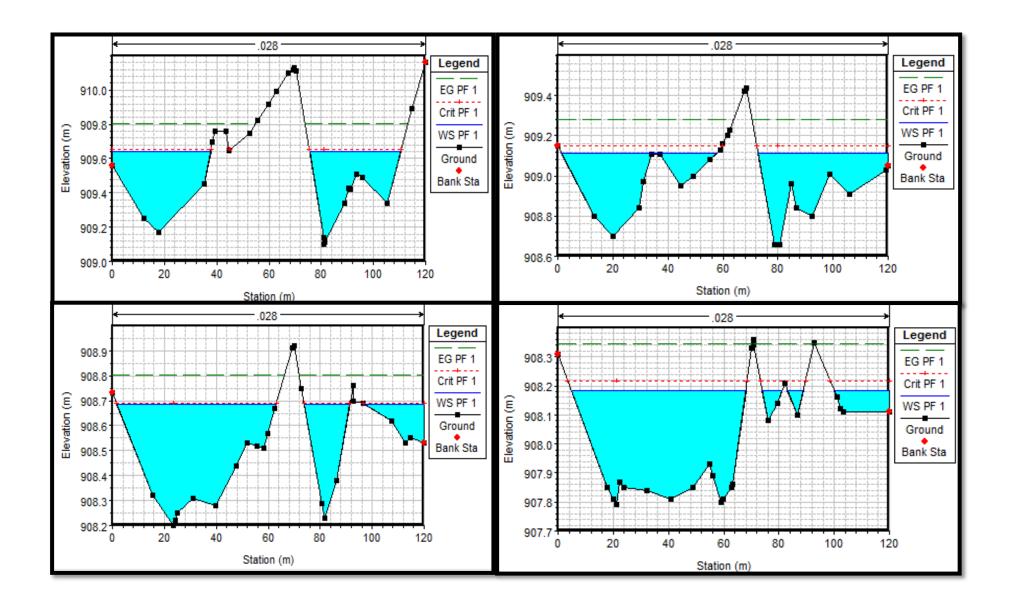


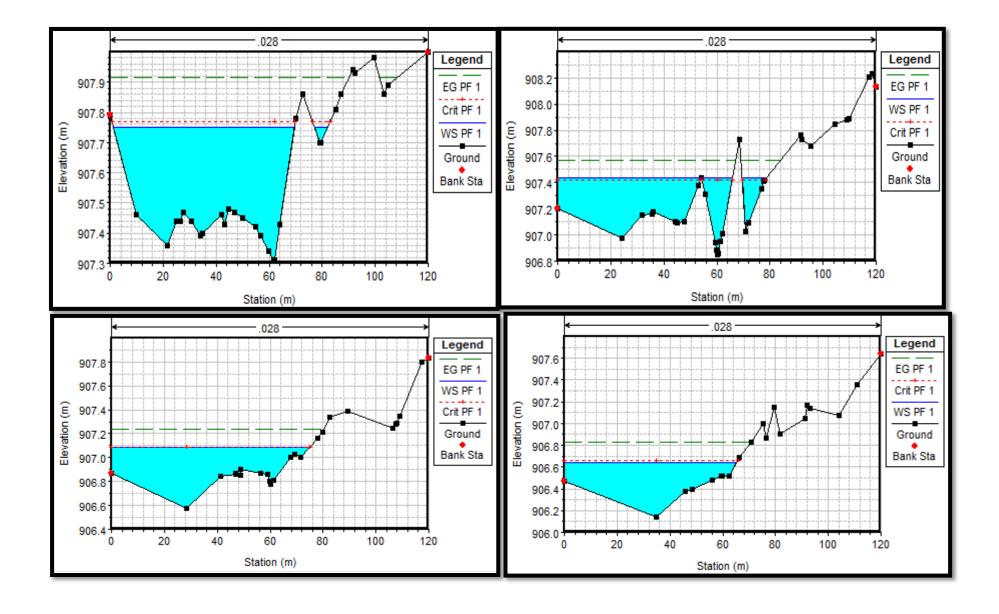


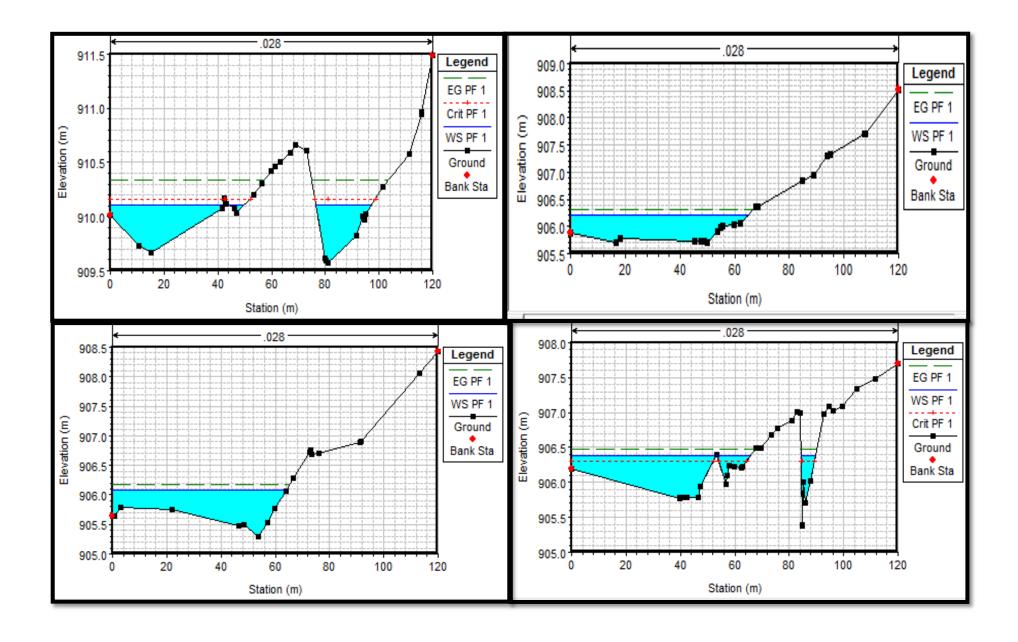


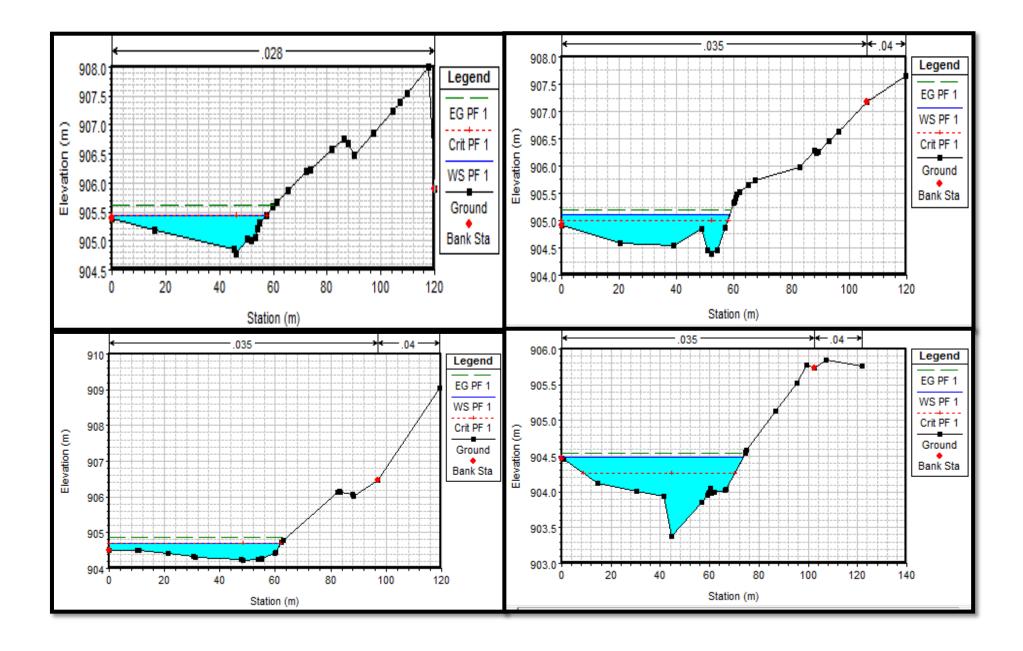


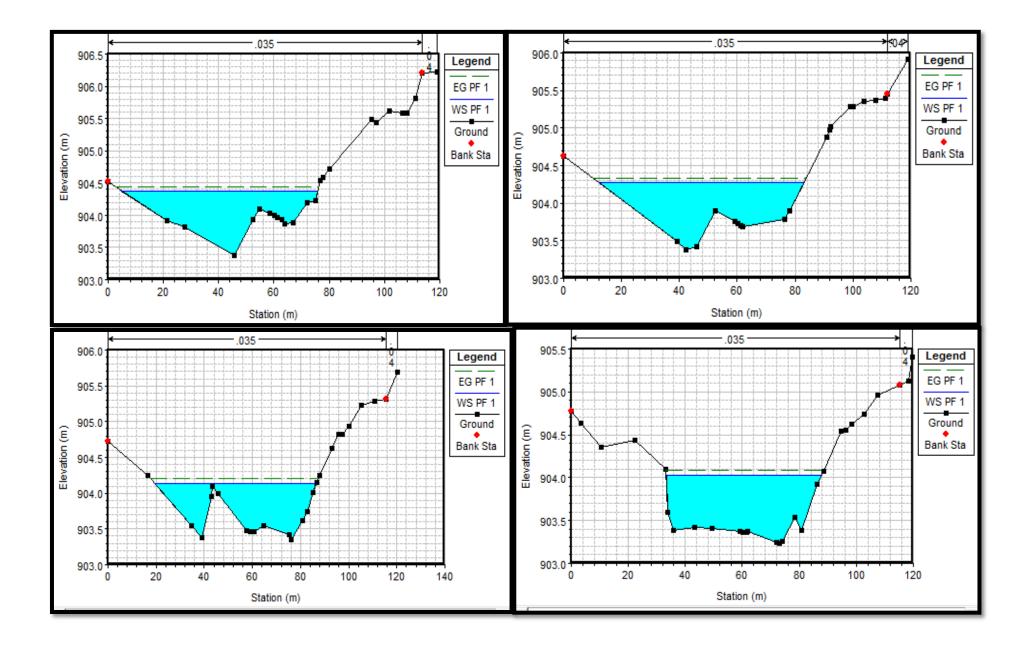


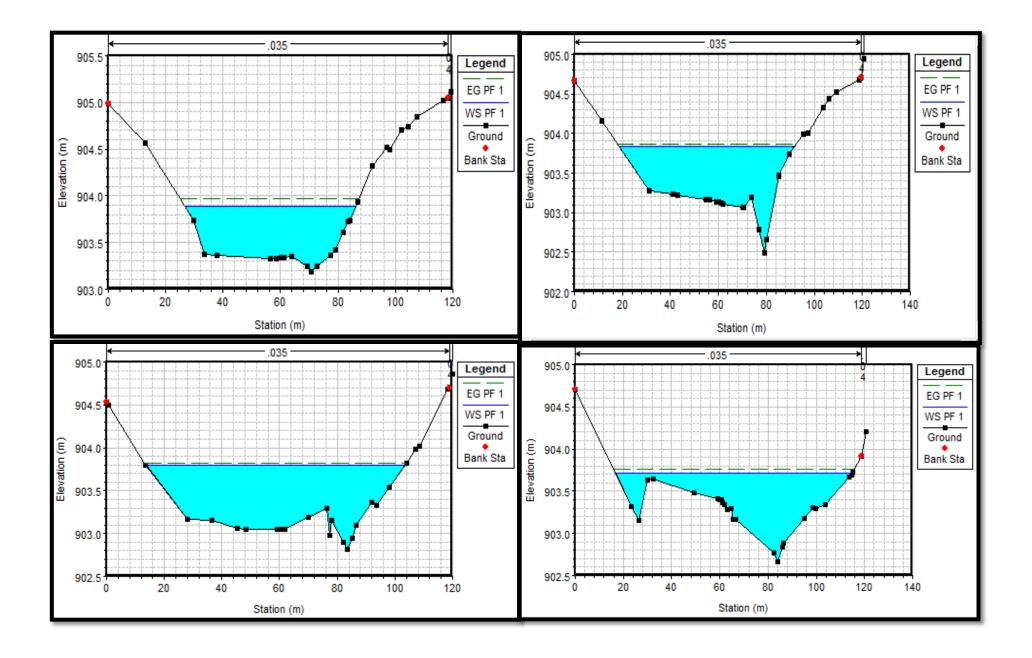


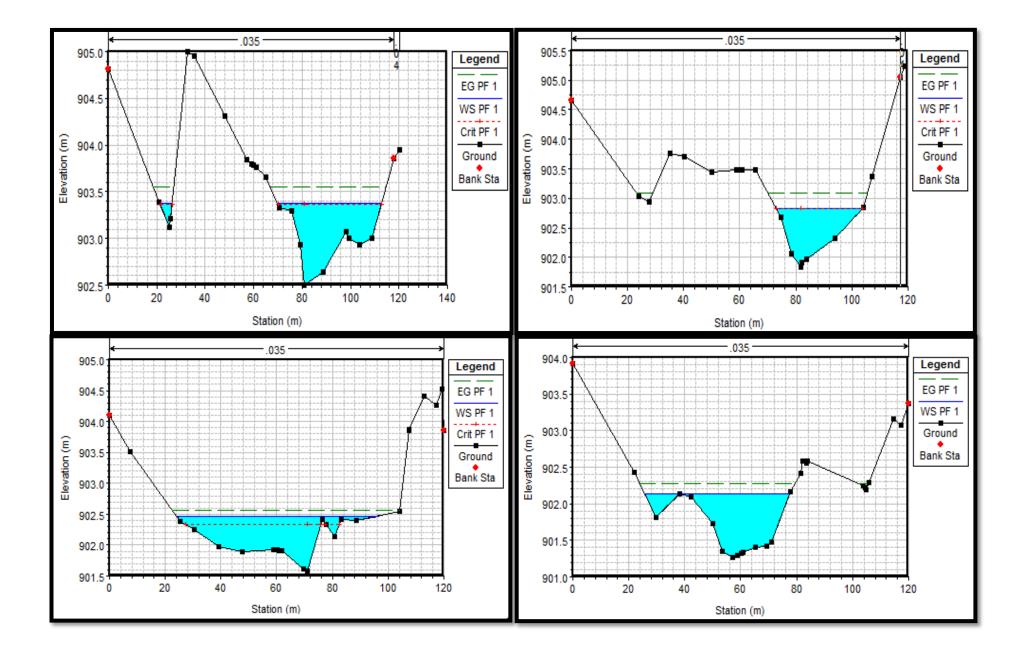


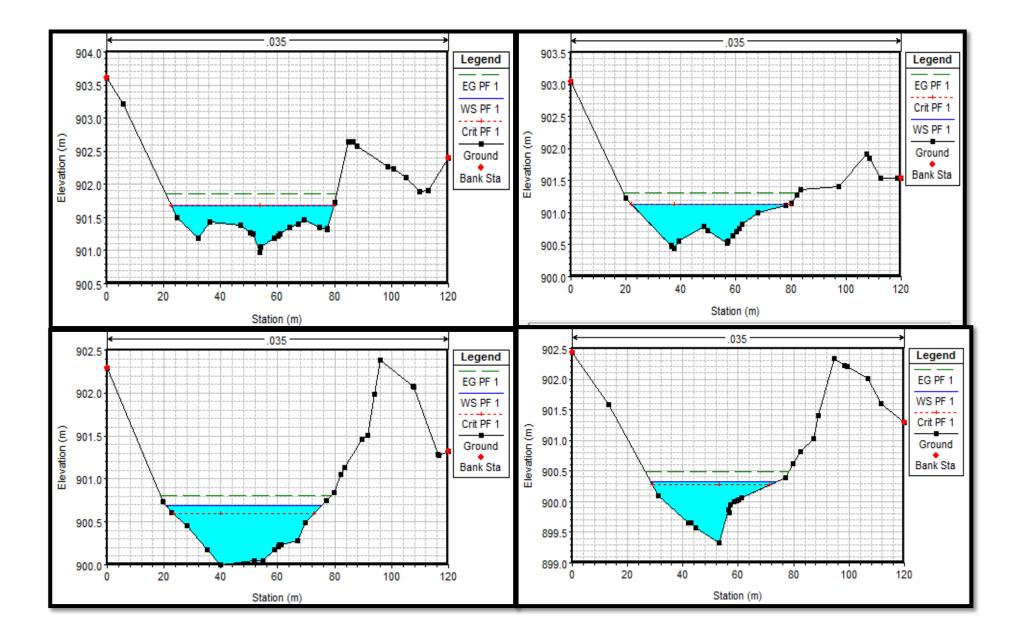


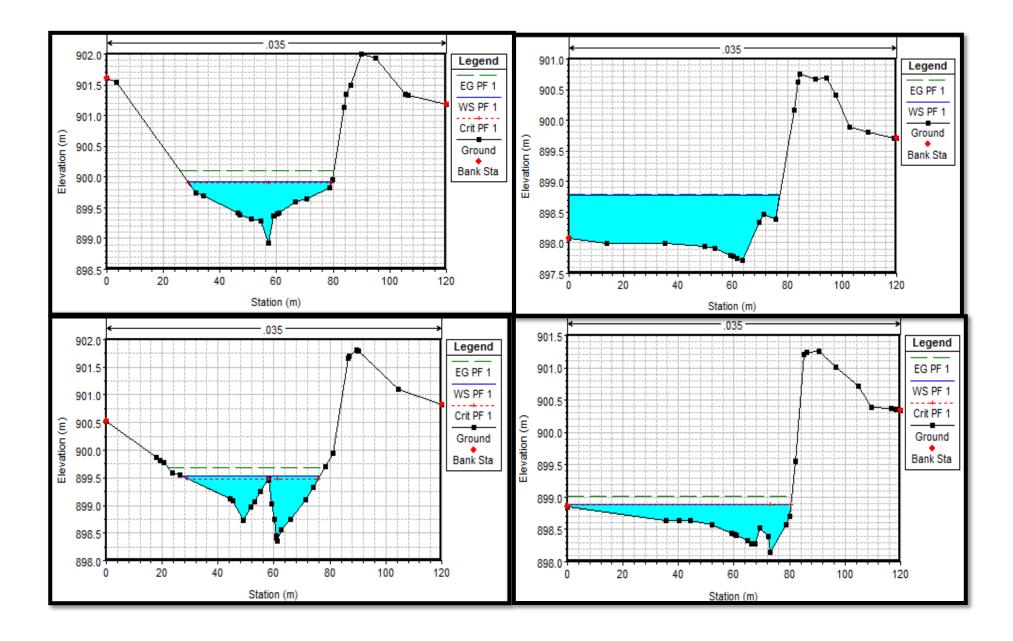


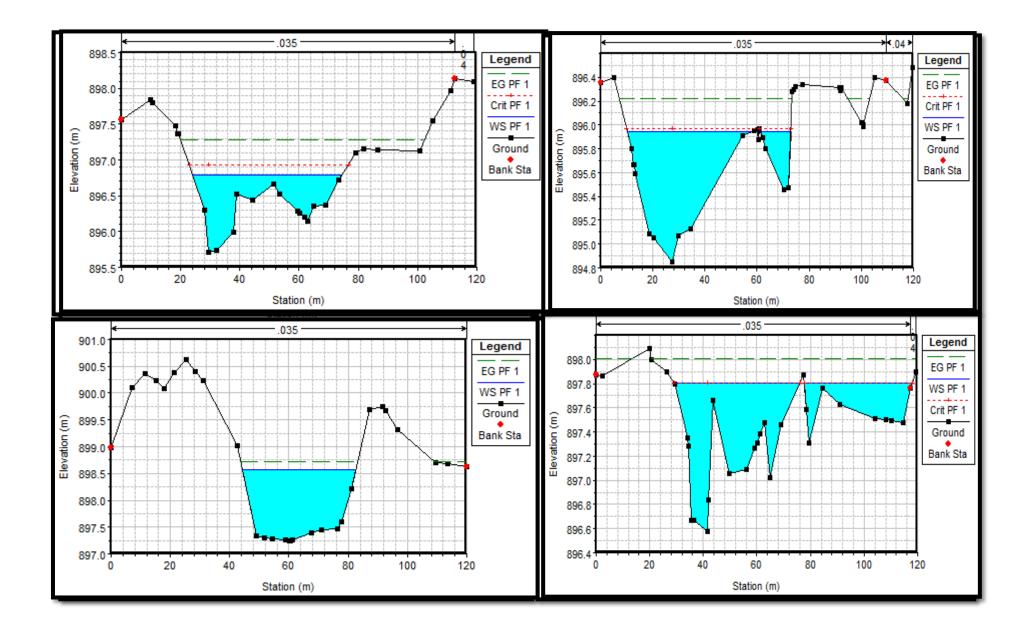












Annexe 2:

Résultat de la simulation d4oued Akhrouf à son état naturel

Tableau 5.3 : résultat de la simulation d'oued Akhrouf à son état naturel

Q	min ch el(m)	W.S.Elec(m)	crit w.s(m)	E.G.elev(m)	E.G.slope(m/m)	vel.slope(m/s)	flow area m2	top width (m).troude	froude
36.3	927.64	928.38	928.13	928.43	0.001792	0.99	36.72	69.08	0.43
36.3	927.64	928.11	928.11	928.31	0.010795	1.97	18.46	47.6	1.01
36.3	926.51	927.45	927.56	927.79	0.02954	2.6	13.97	50.41	1.58
36.3	925.64	926.94	927.06	927.32	0.009757	2.73	13.32	19.37	1.05
36.3	925.63	926.8	926.26	926.85	0.000852	0.94	38.63	43.57	0.32
36.3	925.4	926.56		926.78	0.004572	2.07	17.55	21.11	0.72
36.3	925.2	926.26	926.26	926.58	0.009719	2.5	14.52	23.11	1.01
36.3	924.75	926	925.67	926.11	0.002167	1.42	25.57	31.11	0.5
36.3	924.22	925.91		926.03	0.003053	1.5	24.14	34.18	0.57
36.3	924.63	925.9		925.95	0.001457	1.01	36.05	55.31	0.4
36.3	924.5	925.67	925.67	925.84	0.011528	1.84	19.69	57.63	1.01
36.3	923.86	924.92	925.06	925.36	0.020636	2.93	12.39	28.06	1.41
36.3	923.62	924.65	924.66	924.88	0.011372	2.14	17	40.26	1.05
36.3	922.52	923.39	923.62	924.16	0.061212	3.88	9.36	31.44	2.27
36.3	922.46	923.19	923.19	923.44	0.010275	2.21	16.42	33.59	1.01
36.3	922.17	922.81	922.84	923.1	0.012252	2.39	15.17	31.62	1.1
36.3	921.65	922.34	922.41	922.69	0.014443	2.63	13.82	28.16	1.2
36.3	921.09	921.61	921.74	922.08	0.030026	3.04	11.95	34.3	1.64
36.3	920.37	921.28	921.3	921.55	0.01199	2.29	15.82	34.28	1.08
36.3	919.77	920.44	920.61	920.99	0.028116	3.29	11.03	26.42	1.62
36.3	918.91	919.77	919.92	920.27	0.019914	3.12	11.63	22.96	1.4
36.3	917.68	918.76	919.01	919.53	0.029013	3.88	9.35	17.22	1.68
36.3	916.86	917.8	918.06	918.61	0.032384	3.97	9.14	17.82	1.77
36.3	915.49	916.2	916.5	917.28	0.060743	4.61	7.87	20.01	2.35
36.3	914.93	915.8	915.89	916.24	0.016213	2.95	12.3	22.63	1.28
36.3	913.89	915.04	915.22	915.66	0.021862	3.51	10.33	17.84	1.47

Suite du tableau 5.3 : résultat de la simulation d'oued Akhrouf à son état naturel									
Q	min ch el(m)	W.S.Elec(m)	crit w.s(m)	E.G.elev(m)	E.G.slope(m/m)	vel.slope(m/s)	flow area m2	top width (m).troude	froude
36.3	913.75	914.91	914.91	915.2	0.01023	2.38	15.28	27.47	1.02
36.3	913.26	913.94	914.17	914.65	0.031969	3.73	9.73	21.07	1.75
36.3	912.85	914.03	913.74	914.15	0.002826	1.54	23.51	30.82	0.56
36.3	912.33	913.72	913.72	913.99	0.010065	2.29	15.84	29.68	1
36.3	912.73	913.36	913.4	913.64	0.013443	2.35	15.47	35.76	1.14
36.3	912.02	913.18	913.18	913.32	0.013118	1.66	21.82	83.25	1.04
36.3	910.96	912.47	912.54	912.73	0.031604	2.25	16.16	76.3	1.56
36.3	910.44	911.95	911.96	912.11	0.013522	1.78	20.44	72.64	1.07
36.3	910.37	911.58	911.58	911.74	0.011453	1.77	20.46	64.39	1
36.3	910.52	911.13	911.16	911.36	0.013087	2.15	16.89	43.84	1.11
36.3	910.05	910.7	910.74	910.92	0.016697	2.06	17.63	58.87	1.2
36.3	909.57	910.11	910.16	910.34	0.022541	2.13	17.07	68.2	1.36
36.3	909.1	909.64	909.65	909.8	0.013486	1.78	20.42	72.6	1.07
36.3	908.66	909.12	909.15	909.28	0.023101	1.81	20.04	103.84	1.32
36.3	908.2	908.69	908.69	908.81	0.012698	1.52	23.85	102.38	1.01
36.3	907.79	908.19	908.22	908.34	0.019018	1.76	20.61	96.29	1.22
36.3	907.31	907.75	907.77	907.91	0.014035	1.79	20.23	73.21	1.09
36.3	906.85	907.44	907.42	907.57	0.01029	1.61	22.5	75.29	0.94
36.3	906.58	907.09	907.09	907.24	0.011999	1.69	21.44	75.08	1.01
36.3	906.14	906.64	906.66	906.83	0.015207	1.92	18.86	65.11	1.14
36.3	905.37	906.38	906.31	906.48	0.006011	1.4	25.91	70.65	0.74
36.3	905.7	906.22		906.32	0.005186	1.39	26.05	64.97	0.7
36.3	905.29	906.09		906.17	0.004078	1.3	27.87	64.07	0.63
36.3	905.24	905.8	905.8	905.97	0.011535	1.83	19.89	60.5	1.02
36.3	904.77	905.43	905.44	905.62	0.012223	1.9	19.14	57.42	1.05
36.3	904.4	905.1	905	905.2	0.007492	1.42	25.54	58.36	0.69
36.3	904.23	904.7	904.7	904.86	0.017911	1.8	20.14	61.98	1.01

Suite du tableau 5.3 : résultat de la simulation d'oued Akhrouf à son état naturel									
36.3	903.38	904.49	904.27	904.55	0.003511	1.03	35.15	73.66	0.48
36.3	903.38	904.38		904.44	0.003649	1.06	34.23	71.01	0.49
36.3	903.38	904.27		904.33	0.003693	1.07	34.07	70.83	0.49
36.3	903.35	904.13		904.2	0.00472	1.17	30.98	67.03	0.55
36.3	903.23	904.02		904.09	0.003045	1.12	32.54	54.47	0.46
36.3	903.19	903.88		903.97	0.005368	1.28	28.37	59.33	0.59
36.3	902.49	903.83		903.87	0.00176	0.84	43.1	73	0.35
36.3	902.81	903.79		903.82	0.00129	0.71	51.35	89.7	0.3
36.3	902.66	903.72		903.76	0.003406	0.91	39.79	98.26	0.46
36.3	902.5	903.37	903.36	903.56	0.015198	1.9	19.08	47.95	0.96
36.3	901.83	902.83	902.83	903.09	0.01531	2.28	15.95	30.77	1.01
36.3	901.58	902.47	902.34	902.56	0.007708	1.32	27.59	72.51	0.68
36.3	901.27	902.13		902.28	0.011121	1.69	21.51	51.26	0.83
36.3	900.97	901.68	901.68	901.86	0.017989	1.87	19.42	56.9	1.02
36.3	900.44	901.13	901.14	901.31	0.018686	1.9	19.16	56.64	1.04
36.3	900	900.68	900.6	900.81	0.009169	1.56	23.33	54.34	0.76
36.3	899.33	900.32	900.27	900.49	0.011996	1.81	20.05	45.46	0.87
36.3	898.92	899.92	899.91	900.09	0.014598	1.83	19.82	51.17	0.94
36.3	898.36	899.53	899.48	899.69	0.012468	1.77	20.47	49.09	0.88
36.3	898.34	899.29	899.18	899.37	0.007777	1.27	28.6	79.9	0.68
36.3	898.14	898.88	898.88	899.02	0.018964	1.65	21.97	80.57	1.01
36.3	897.92	898.8	898.5	898.83	0.001696	0.81	44.98	78.73	0.34
36.3	897.71	898.78		898.8	0.000666	0.61	59.17	77.14	0.22
36.3	897.47	898.78		898.79	0.000243	0.45	80.66	78.26	0.14
71.3	897.42	898.75		898.77	0.000517	0.72	98.73	82.84	0.21
71.3	897.25	898.56		898.73	0.003696	1.78	39.96	38.1	0.56
71.3	897.1	898.43		898.57	0.006902	1.66	43.03	72.67	0.69
71.3	896.73	898.23		898.35	0.007665	1.52	46.86	97.86	0.7

Suite du tableau 5.3 : résultat de la simulation d'oued Akhrouf à son état naturel										
71.3 896.58 897.8 897.8 898.01 0.016685 2.02 35.27 86.94								1.01		
71.3	895.71	896.79	896.93	897.28	0.033885	3.1	22.97	50.35	1.47	
71.3	895.14	896.41	896.41	896.7	0.014673	2.38	29.97	51.57	1	
71.3	894.85	895.94	895.97	896.22	0.016824	2.35	30.31	59.65	1.05	