الجمه دورية الحزائرية الديم غيراطية الشعبية وزارة الناع لمايم الجمه المعالمي المعالمين العالمي

NATIONAL HIGHER SCHOOL FOR HYDRAULICS

"The MujahidAbdellah ARBAOUI"

المدرسة الوطنية الغلبا للري
"المجاهد عبد هلل عرباوي"
+>□ المجاهد عبد الله عرباوي المجاهد عبد المجاهد عبد المحادد عبد المحاد عدد المعاد المحاد المحا

MEMOIRE DE FIN D'ETUDES

Pour l'obtention du diplôme d'Ingénieur d'Etat en Hydraulique

Option: ALIMENTATION EN EAU POTABLE

THEME:

Diagnostic et réhabilitation du système d'AEP de la commune de ZELFANA (W.GHARDAIA)

Présenté par :

MOULAY LAKHDAR NOUR EL HOUDA

Devant les membres du jury

Nom et Prénoms	Grade	Qualité
HACHMI Abdelkader	M.C.A	Président
HADJ SADOK Nabila	M.A.A	Examinateur
NACER Tarek	M.C.B	Examinateur
DARNOUNI Fouzia	M.A.A	Examinateur
KAHLERRAS Malika	M.C.B	Promotrice

Session Septembre 2024

Remerciements

Nous remercions Allah le Tout-Puissant de nous avoir donné le courage, la volonté et la patience nécessaires pour surmonter les difficultés et réaliser ce travail.

Je tiens à exprimer toute ma reconnaissance à ma directrice de mémoire, Madame KAHLERRAS Malika. Je la remercie de m'avoir encadré, orienté, aidé et conseillé.

J'adresse mes sincères remerciements à tous mes enseignants de l'ENSH, aux intervenants et à toutes les personnes qui, par leurs paroles, leurs écrits, leurs conseils et leurs critiques, ont guidé mes réflexions et ont accepté de me rencontrer et de répondre à mes questions durant mes recherches.

Je remercie le président et les membres du jury pour avoir honoré ma soutenance et pour avoir accepté d'examiner et d'évaluer notre travail.

Je remercie mes très chers parents et mon frère, qui ont toujours été là pour moi. Pour leurs encouragements.

Enfin, je remercie mes amis qui ont toujours été là pour moi. Leur soutien inconditionnel et leurs encouragements ont été d'une grande aide. Je présente mes remerciements, mon respect et ma gratitude.

Dédicaces

A l'occasion de cette journée mémorable qui clôture le cycle de mes études, je dédie mon travail :

A l'homme de ma vie, mon exemple éternel, mon soutien moral et source de joie et de bonheur, celui qui s'est toujours sacrifié pour me voir réussir; mon père.

A la lumière de mes jours, la source de mes efforts, la flamme de mon cœur, ma vie et Mon bonheur ; maman que j'adore.

A mes grand parents, avec toute ma reconnaissance pour votre aide, vos encouragements si précieux.

Je tiens à exprimer ma gratitude envers les personnes qui ont toujours été présentes pour moi, m'apportant leur aide et leurs encouragements tout au long de mon parcours académique. Mon frère youcef, Mes Oncles et Mes tantes Fatima et Zineb, Mes cousins, Yasmine, sohila, Manel, Rime et Abed nor et les enfantes

vous dédie ce travail de tout cœur.

de mon cousin Assia et Otman. Je

Mes chers amis, collègues d'études et compagnons fidèle **,ABIR et SARA** ,

Qui n'ont pas cessé deme conseiller, et soutenir tout au long de mes études. Que dieu les protège et leurs Offre la chance le bonheur.

A toute la famille **MOULAY LAKHDAR** et **OULED ALI**. Et bien sûr à Mon promoteur Madame KAHLERRAS Malika.

ملخص:

يتضمن تشخيص نظام مياه الشرب تحليلًا هيدروليكيا وفيزيائيًا للشبكة الحالية. ويتعلق عملنا بإصلاح شبكة إمدادات مياه الشرب في مدينة زلفانا بولاية غرداية. والهدف من ذلك هو تحديد أوجه القصور في نظام التوزيع وهياكل التخزين (الخزانات)، والتحقق من قدرة الشبكة القائمة على نقل التدفقات اللازمة بحلول عام 2054

ولا يلبي النظام الحالي الاحتياجات المستقبلية. تقدم در استنا توصيات لتحسين إمدادات مياه الشرب، بما في ذلك توقع أبراج مياه جديدة في المناطق التي لا تتوفر فيها، لتجنب الحقن المباشر في الشبكة وتلبية الاحتياجات المستقبلية من حيث التدفق والضغط. اقترحنا أيضًا موقع الملحقات وأجهزة القياس

لتلبية الاحتياجات، اقترحنا بناء أربعة أبراج مياه 1000 متر مكعب أخيرًا، قدمنا تقنيات مد الأنابيب وأعدنا تقديرًا للمشروع

الكلمات الرئيسية: التشخيص؛ إعادة التأهيل؛ فترة الذروة ؛ التجديد ؛ مركز مدينة زلفانا

Résumé:

Un diagnostic d'un réseau d'eau potable implique une analyse hydraulique et physique du réseau actuel. Notre travail concerne la réhabilitation du système d'alimentation en eau potable de la ville de Zelfana, dans la wilaya de Ghardaia. L'objectif est d'identifier les défaillances du système de distribution et des ouvrages de stockage (réservoirs), et de vérifier la capacité du réseau existant à véhiculer les débits nécessaires à l'horizon 2054. Le système actuel ne satisfait pas les besoins futurs. Notre étude propose des recommandations pour améliorer l'alimentation en eau potable, incluant la projection de nouveaux châteaux d'eau dans les zones dépourvues, afin d'éviter l'injection directe dans le réseau et de satisfaire les besoins futurs en termes de débit et de pression. Nous avons également proposé l'emplacement des accessoires et des appareils de mesure. Pour répondre aux besoins, nous avons suggéré la construction de quatre châteaux d'eau de 1000 m³. Enfin, nous avons présenté les techniques de pose de canalisations et réalisé un devis pour le projet.

Mots clé: Diagnostic; Réhabilitation; Période de pointe; Renouvellement; Centre-ville

Abstract:

A drinking water system diagnosis involves a hydraulic and physical analysis of the current network. Our work is related to the rehabilitation of the drinking water supply system in the city of Zelfana, in the wilaya of Ghardaia. The objective is to identify failures of the distribution system and storage structures (reservoirs), and to verify the capacity of the existing network to carry the necessary flows by 2054. The current system does not meet future needs. Our study provides recommendations for improving the drinking water supply, including the projection of new water towers in areas where they are not available, to avoid direct injection into the network and to meet future needs in terms of flow and pressure. We also suggested the location of accessories and measuring devices. To meet the needs, we suggested the construction of four 1000 m3 water towers. Finally, we presented the pipe laying techniques and prepared a project estimate.

Keywords: Diagnosis; Rehabilitation; Peak period; Renewal; Zelfana City Centre.

Table des matières

Chapitre I : Présentation de la zone d'étude

In	troduc	tion	1
I.1	Situ	ation géographique de la wilaya	1
I.2	Situ	ation de la ville	2
I.3	Hist	orique de la ville	3
I.4	Situ	ation topographique	3
I.5	Situ	ation Climatologique	4
	I.5.1	Climat	4
	I.5.2	Températures	4
	I.5.3	Pluviométrie	5
	I.5.4	Humidité relative de l'air	6
	I.5.5	Vitesse du vent	7
I.6	Situ	ation géologique	7
	I.6.1	Sol	8
I.7	Situ	ation Hydrologique	8
I.8	Situ	ation hydrogéologique	9
I.9	Cara	actéristiques des eaux thermales de zelfana	9
C	onclusi	on	10
		Chapitre II : Estimation des besoins en Eau potable	
In	troduc	tion	11
II.1	Evo	lution de la Population	11
II.2	Esti	mation des besoins en eau	12
	II.2.1	Consommation moyenne journalière	12
II.3	Etuc	le de la variation de débit	18
	II.3.1	Débit moyen journalier	18
	II.3.2	La consommation journalière maximale et minimale	19
II.4	Etuc	le les variations des débits horaires	20
	II.4.1	Débit moyen horaire	20
	II.4.2	Calculs les débits maximum et minimum horaires par des formules	20
	II.4.2	.1 Débits maximum horaire	20

II.4	2.2 Déb	oits minimum horaire	21
II.5 E	tude de la v	rariation des débits horaires (la méthode graphique)	22
II.6 B	ilan de ress	ources en eau et les besoins pour l'horizon 2024 jusqu'à 2054	30
Conclus	ion		31
Introdu		apitre III : diagnostic du réseau d'AEP existant	32
		physique	
		des ressources en eau	
III.2.1	_	N°4 Centre-ville (<i>ANNEXE III</i> . <i>1</i>)	
III.2.2	_	au forage de hassi nor	
III.2.3		ge de Guifla (04) (ANNEXE III .2)	
III.3		des ouvrages de stockage	
III.3.1	_	u d'eau centre-ville N°4 de volume 750m ³	
III.4		débits de dimensionnement	
III.4.1		pointe (l'horizon 2024)	
111.111	III.4.1.1	Débit de point (route)	
	III.4.1.2	Débit spécifique	
	III.4.1.3	Débit en route de chaque tronçon	
	III.4.1.4	Détermination des Débits aux nœuds	
III.5		le la simulation hydraulique du réseau horizon actuel (2024)	
III.5.1		esses et pertes de charges	
III.5.2		arges et les pressions	
III.5.3		pointe + incendie (horizon 2024)	
III.5.4		pointe (l'horizon 2054)	
III.6		le la simulation hydraulique du réseau horizon 2054	
III.6.1		esses et pertes de charges	
III.6.2		arges et les pressions	
Conclus			
		Chapitre IV : Les réservoirs de stockage	
Introdu	ction		53
IV.1 Cla		des reservoirs	
IV.1.1		rvoirs rectangulaires ou carrés	
IV.1.2	Les rése	rvoirs circulaires	53

IV.2	Rôle	des réservoirs	54
]	IV.2.1	Fonctions techniques	54
]	IV.2.2	Fonctions économiques	54
]	IV.2.3	Emplacement des réservoirs	54
IV.3	Princ	cipe de fonctionnement	54
]	IV.3.1	Régulation du débit	54
]	IV.3.2	Régulation de la pression	55
]	IV.3.3	Sécurité	55
IV.4	Méth	nodes de calcul des capacités des réservoirs	55
]	IV.4.1	Le cas d'un réservoir tampon	55
]	IV.4.2	Le cas d'un réservoir d'alimentation	56
	IV.4.2	2.1 La méthode analytique	56
	IV.4.2	2.2 Méthode graphique	56
]	IV.4.3	Analyse de la capacité de stockage	57
]	IV.4.4	Principe de calcul	57
]	IV.4.5	Calcul du Débit d'apport (Qapp)	57
]	IV.4.6	les réservoirs existants	59
IV.5	Dime	ensionnement du réservoir	59
IV.6	Emp	lacement et altitude	60
IV.7	Dime	ensions du réservoir projeté	64
]	IV.7.1	Les dimensions générales d'un château d'eau	64
]	IV.7.2	La hauteur	64
]	IV.7.3	Le diamètre intérieur de la cuve	64
]	IV.7.4	L'épaisseur de la paroi	65
]	IV.7.5	Flèche de la coupole supérieure	65
]	IV.7.6	Flèche de la coupole inférieure	65
]	IV.7.7	L'épaisseur maximale de la paroi (la cuve) en haut	65
]	IV.7.8	L'épaisseur maximale de la paroi à la base	65
IV.8	Les e	équipements des réservoirs	65
]	IV.8.1	La conduite d'arrivée	65
]	IV.8.2	Conduite de départ ou de distribution	66
]	IV.8.3	Conduite de trop-plein	67
]	IV.8.4	La conduite de vidange	67
]	IV.8.5	Conduite By-pass	68

IV.8.0	Matérialisation de la réserve d'incendie	68
Conclu	sion	70
	Chapitre V : Réhabilitation du réseau D'AEP à l'horizon 2054	
Introdu	iction	71
V.1 D	escription des travaux	71
V.1.1	Le système d'AEP	71
V.1.2	Le système d'AEP	72
V.2 C	hoix du type de réseau de distribution	72
V.2.1	Réseau ramifié	72
V.2.2	Réseau maillé	73
V.2.3	Réseau combiné ou mixte	73
V.3 C	onception du réseau de distribution	74
V.4 C	hoix du type de matériaux	74
V.5 C	hoix du système de distribution	74
V.6 Pr	rincipe de tracé du réseau	75
V,7. C	alcul hydraulique du réseau de distribution	75
V.7.1	Hypothèses de calculs	75
V,8 I	Le calcul du réseau de distribution se fera pour les deux cas	76
V.8.1	Calcul des débits de dimensionnement	76
V.	8.1.1 Cas de pointe	76
V.9 D	étermination des paramètres hydrauliques du réseau	79
V.9.1	Cas de pointe	79
V.9.2	Cas de pointe +incendie	83
Conclu	sion	88
	Chapitre VI : Adduction et pompage	
Introdi	iction	89
	énéralité sur l'adduction	
VI.1.		
VI.1.2	2 Type de l'adduction	89
VI.1.	3 Les critères de choix du tracé	89
VI.1.4	4 Choix des matériaux de canalisation	90
VI.1.	5 Les Conditions limites de la vitesse	90

VI.2 Etude d'adduction	91
VI.2.1 Étude technico-économique [2]	91
VI.2.2 Dimensionnement de l'adduction	91
VI.2.2.1 Méthode de calcul	91
VI.2.3 Prix des conduites	94
VI.2.4 Calcul des diamètres économiques pour les différents tronçons	95
VI.2.4.1 Adduction par refoulement	95
Conclusion	104
Chapitre VII : Protection contre le coup de bélie	
Introduction	
VII.1 Vue d'ensemble sur le phénomène	
VII.2 Analyse physique du phénomène [2]	
VII.2.1 Première phase	
VII.2.2 Deuxième phase	
VII.2.3 Troisième phase	
VII.2.4 Quatrième phase	
VII.3 Etude des valeurs du coup de bélier	
VII.4 Dispositifs de protection	
VII.4.1 Volant d'inertie	
VII.4.2 Chambre ou cheminée d'équilibre	
VII.4.3 Soupapes de décharge [2]	109
VII.4.4 Réservoir d'air	110
VII.5 Calcul des réservoirs d'air [3]	111
VII.5.1 Dimensionnement des réservoirs d'air	111
VII.5.2 Calcul de la célérité d'onde C	113
VII.5.3 Calcul des capacités des différents réservoirs d'air	114
Conclusion	115
Chapitre VIII : Pose de conduite	
Introduction	116
VIII.1 Pose de canalisation	
VIII.1.1 Principe de pose des canalisations : [5]	116
VIII.2 Critères de choix des canalisations	117

VIII.2.1	Choix des canalisations en fonction du liquide transporté	118
VIII.2.2	Choix des canalisations en fonction du type de sol	118
VIII.3 Ty	pe de canalisation	118
VIII.3.1	Spécifications	118
VIII.3.2	Marquage des tubes	119
VIII.4 Pos	se des conduites	120
VIII.4.1	Pose des canalisations en tranchée ouverte	120
VIII.4.2	Pose de canalisation dans un terrain ordinaire	120
VIII.4.3	Cas particulier de pose en terre	121
VIII.4.4	Pose des canalisations en élévation	121
VIII.4.5	Pose de canalisation dans un mauvais terrain	122
VIII.4.6	Pose de canalisation en galerie (Traversée d'une route)	122
VIII.4.7	Cas de Butées d'un coude	123
VIII.5 Ess	sais de mise en service des canalisations	123
VIII.6 Mi	se en Œuvre	123
VIII.6.1	Excavation des tranchées	123
VIII.6.2	Lit de sable	124
VIII.6.3	L'enrobage	124
VIII.6.4	Le remblayage supérieur	125
VIII.7 Les	s accessoires et pièces spéciales en AEP	125
VIII.7.1	Les accessoires du réseau.	125
VIII.7.2	Organes de mesure	128
VIII.7.	.2.1 Mesure de la pression	128
VIII.7	.2.2 Mesure de débit	129
VIII.7	.2.3 Joints de raccordements	130
VIII.7.	.2.4 By-pass	131
Conclusion	a	131
Conclusion	Chapitre IX : Organisation de chantier	131
Introducti	on	132
IX.1 Défin	ition de l'organisation de chantier	132
IX.2 Réali	sation du réseau d'AEP	132
IX.3 Impla	antation des tracés des tranchées sur le terrain	133
IX.4 Exca	vation des tranchées	133

IX.5	Amé	nagement du lit de pose des conduites	134
IX.6	Pose	des conduites	134
IX.7	Les	opérations pour la réalisation du réseau	135
Ε	X.7.1	Calcul de la profondeur de la tranchée Htr	135
Ε	X.7.2	Calcul de la Largeur de la tranchée	135
Ε	X.7.3	Calcul du volume de déblai	136
Ε	X.7.4	Calcul du volume de sable pour le lit de pose	136
Ε	X.7.5	Calcul du volume de TVC	137
Ε	X.7.6	Calcul du remblaiement des tranchées	138
IX.8	Calc	ul de foisonnement initial et final	139
IX.9	Calc	ule de réservoir	140
Ε	X.9.1	Le diamètre extérieur	140
Ε	X.9.2	Le volume de décapage	140
Ε	X.9.3	Le volume de déblai	140
Ε	X.9.4	Le volume de béton de propreté (sous radier)	141
Ε	X.9.5	Le volume de béton armé (radier)	141
Ε	X.9.6	Le volume de béton armé de coupole	141
IX.10) Le	s engins utilisés	142
IX.11	Pr	otection et sécurité de travail	143
Ε	X.11.1	Origines des incidents professionnels sur un chantier hydraulique	143
	IX.11	.1.1 Facteurs humains	143
	IX.11	.1.2 Facteurs matériels	143
	IX.11	.1.3 Liste des conditions dangereuses	143
	IX.11	.1.4 Liste des actions dangereuses	144
Ε	X.11.2	Mesures préventives pour éviter les causes des accidents	144
	IX.11	.2.1 Protection individuelle	144
	IX.11	.2.2 Protection collective	145
IX.1	2 R	Réorganisation de la Planification des Travaux du Réseau de Distribution	146
Ε	X.12.1	Principe de la méthode PERT	146
	IX.12	.1.1 Construction du réseau	147
	IX.12	.1.2 Définitions des tâches et leurs durées	147
Ε	X.12.2	Planification par la méthode du réseau (la méthode CPM)	148
IX.1	.3 E	Devis estimatif d'établissement du projet	150

Conclusion	1 5	-,	`
Conciusion	IJ),	_

Listes de figures

Chapitre I : Présentation de la zone d'étude
Figure I. 1 : Situation géographique de la wilaya de Ghardaïa
Figure I. 2 : Situation administrative de la ville de ZELRFANA (source DRE)2
Figure I. 3 : Photo satellite de la ville de Zelfana « GOOGLE EARTH »3
Figure I. 4 : Variations moyennes maximales et minimales de températures de l'air (C) station
de Ghardaïa (1999-2019)5
Figure I. 5 : Réparation saisonnière des pluies moyennes annuelles
Figure I. 6 : Répartition saisonnière d'Humidité moyennes annuelles
Figure I. 7 : Photo satellite de OuedM'zab « GOOGLE EARTH »
Chapitre II : Estimation des besoins en Eau potable
Figure II. 1 : Evaluation De La Population de Centre-ville (Zone d'étude)
Figure II. 2 : Diagramme la consommation de Center-Ville de zelfana (2024)25
Figure II. 3 : Courbe cumulée de la consommation de Centre-Ville zelfana25
Figure II. 4 : Diagramme la consommation de Center-Ville de zelfana (2032)27
Figure II. 5 : Courbe cumulée de la consommation de Centre-Ville zelfana27
Figure II. 6 : Diagramme la consommation de Center-Ville de zelfana (2054)29
Figure II. 7 : Courbe cumulée de la consommation de Center-Ville
Chapitre III : diagnostic du réseau d'AEP existant
Figure III. 1 : Distribution des vitesses dans le réseau existant (cas de point l'horizone 2024)
42
Figure III. 2 : Distribution des pressions dans le réseau existant (cas de point l'horizone 2024)
Figure III. 3 : courbe de pression 2024 (cas de pointe)
Figure III. 4 : Etat des pressions et vitesses au niveau du réseau existant Cas de pointe
1'horizon 2024
Figure III. 5 : Distribution des pressions dans le réseau existant (cas de point l'horizon 2054)
Figure III. 6 : Distribution des vitesses dans le réseau existant (cas de pointe l'horizon 2054)
49
Figure III. 7 : Etat des pressions et vitesses au niveau du réseau existant (Cas de pointe
1'horizon 2054)
Chapitre IV : Les réservoirs de stockage
Figure IV. 1 : la hauteur du château d'eau par apport bâtiment
Figure IV. 2 : Les dimensions générales d'un château d'eau
Figure IV. 3 : Arrivée par surverse (Chute libre)
Figure IV. 4 : Arrivée par surverse (Noyée)
Figure IV. 5 : Arrivée par dessous (Par le bas)

Figure IV. 6 : Arrivée par- dessous (Par le fond)	66
Figure IV. 7 : conduite de distribution	67
Figure IV. 8 : conduite de vidange et de trop-plein	67
Figure IV. 9 : Conduit by-pass	68
Figure IV. 10 : système d'incendie a deux prise	69
Figure IV. 11 : Équipements des réservoirs	69
Chapitre V : Réhabilitation du réseau D'AEP à l'horizon 2054	
Figure V. 1 : Schéma synoptique d'alimentation en eau potable	
Figure V. 2 : Schéma synoptique d'alimentation en eau potable	72
Figure V. 3 : schéma d'un réseau ramifié	73
Figure V. 4 : schéma d'un réseau maillé	
Figure V. 5 : schéma d'un réseau mixte	73
Figure V. 6: tronçon à distribution mixte	
Figure V. 7 : Distribution des pressions dans le réseau projeter (cas de point)	
Figure V. 8 : Distribution des vitesses dans le réseau projeter (cas de point)	
Figure V. 9 : Courbe de distribution de pression avant et après la construction des c	
d'eaux (case de pointe)	
Figure V. 10: Résultats de simulation de Vitesses et pressions pour le cas de Pointe	
Figure V. 11: Distribution des vitesses dans le réseau projeter (cas de pointe+incene	
Figure V. 12 : Distribution des pressions dans le réseau projeté (cas de pointe+ ince	
Figure V. 13: Résultats de simulation de Vitesses et pressions pour le cas de Pointe	
	87
Chapitre VII : Protection contre le coup de bélier	
-	106
Figure VII. 1 : Contraction de la conduite (phase 1 du phénomène)	
Figure VII. 2 : Ecoulement en sens inverse (phase 2 du phénomène)	
Figure VII. 4 : Retour aux conditions initiales, (phase 4 du phénomène)	
Figure VII. 5 : Volant d'inertie	
Figure VII. 6 : Cheminé d'équilibre	
Figure VII. 7 : Soupape de décharge	
Figure VII. 8 : Réservoir d'air	
Tiguic VII. 6 . Reservoir d'air	110
Chapitre VIII: Pose de conduite	
Figure VIII. 1 : marquage du tube en PEHD	119
Figure VIII. 2 : pose de canalisation dans un terrain ordinaire	
Figure VIII. 3 : Pose des canalisations en élévation	
Figure VIII. 4 : Pose de canalisation en galerie	
Figure VIII. 5 : Schéma des butées	
_	123
rigure viii. o : Le poteau d incendie	
Figure VIII. 6 : Le poteau d'incendie	126

Figure VIII. 8 : Cône à bride	127
Figure VIII. 9 : Tés à 3 Brides	127
Figure VIII. 10: manchons pour tube PEHD	127
Figure VIII. 11: Manomètre à souffle	128
Figure VIII. 12: Manomètre a membrane	128
Figure VIII. 13: Manomètre à capsule	128
Figure VIII. 14 : Diaphragm	129
Figure VIII. 15 : Tube de Venturi	130
Figure VIII. 16: Tuyère	130
Chapitre IX : Organisation de chantier	
Figure IX. 1 : Schéma d'une tranchée avec une conduite circulaire	134
Figure IX. 2 : Exemples de moyens de protection	145
Figure IX. 3: Réseaux à nœuds et calcul du temps de réalisation des trois réservoirs surélevents de la contraction des trois réservoirs surélevents de la contraction de la co	vés.
	149
Figure IX. 4 : Réseaux à nœuds et calcul du temps de réalisation du réseau d'adduction et	
distributiondistribution	150

Listes des tableaux

Chapitre I : Présentation de la zone d'étude

Tableau I. 1 : tableau de coordonnées	3
Tableau I. 2 : Valeurs moyennes maximales et minimales de températures de l'air	4
Tableau I. 3 Répartition saisonnière des pluies moyennes annuelles	6
Tableau I. 4 : Répartition saisonnière de Humidite moyennes annuelles en (%)	6
Tableau I. 5 : présente les valeurs moyennes mensuelles de la vitesse du vent (m/s)	7
Tableau I. 6 : Inventaire des infrastructures hydrogéologiques	9
Tableau I. 7 : Composition minerale des eaux thermales de zelfana	10
Chapitre II: Estimation des besoins en Eau potable	
Tableau II. 1 : Evaluation de la population à différents horizons	
Tableau II. 2 : calcul des besoins domestique pour différents horizons	13
Tableau II. 3: Les besoins d'équipement scolaire (Source DRE Zelfana 2024)	13
Tableau II. 4 : Les besoin d'équipement sanitaire (Source DRE Zelfana 2024)	14
Tableau II. 5 : Les besoin d'équipement sportifs (Source DRE Zelfana 2024)	14
Tableau II. 6 : Les besoin d'équipement socioculturels (Source DRE Zelfana 2024)	14
Tableau II. 7: Les besoin d'équipement administratifs (Source DRE Zelfana 2024)	14
Tableau II. 8 : Les besoin d'équipement Commerciaux (Source DRE Zelfana 2024)	15
Tableau II. 9: Les besoin d'équipement Divers (Source DRE Zelfana 2024)	16
Tableau II. 10: Les besoin d'équipement Touristique	16
Tableau II. 11: Les besoin d'équipement projeté	16
Tableau II. 12 : Besoins globaux de l'agglomération	17
Tableau II. 13 : la consommation moyenne journalière totale de l'agglomération	18
Tableau II. 14 : la consommation moyenne journalière totale de l'agglomération avec fuites	·-
19	1
Tableau II. 15 : Récapitulatif des débits journaliers Qmoyj, Qmaxj, Qminj	20
Tableau II. 16: β min en fonction du nombre d'habitants	21
Tableau II. 17 : Débits (max) horaires pour chaque horizon	21
Tableau II. 18: β min en fonction du nombre d'habitants	22
Tableau II. 19 : Débits (min) horaires pour chaque horizon	22
Tableau II. 20 : Variation des débits horaires de la commune de Centre de ville ZELEFANA	4
(2024)	1
Tableau II. 21 : Variation des débits horaires de la commune de Center de ville ZELEFAN.	A
(2032)	26
Tableau II. 22: Variation des débits horaires de la commune de Center de ville ZELEFANA	4
	i
Tableau II. 23 : Production de la ressource « center-ville zelfana »	
Tableau II. 24 : Bilan de ressources en eau et les besoins	30

Chapitre III : diagnostic du réseau d'AEP existant
Tableau III. 1 : La longueur du réseau primaire et secondaire
Tableau III. 2 : Les Coordonnées des deux forages
Tableau III. 3 : les caractéristiques des forages de centre-ville N°4 et hassi nor35
Tableau III. 4 : Chateaux d'eau de center-ville zelefana de 750m336
Tableau III. 5:Calcul des débits nodaux du réseau l'horizon 2024. (voir l'annexe 3)38
Tableau III. 6 : Résultat des différents tronçons (Vitesses et pertes de charges dans le réseau
existant en cas de pointe) l'horizon 2024 (voir l'annexe 4)
Tableau III. 7 : charges et pressions dans le réseau existant en cas de pointe (Voir l'annexe 5)41
Tableau III. 8 : Calcul des débits nodaux (réseaux actuel l'horizon 2054). (Voir l'annexe 6) 46
Tableau III. 9 : Vitesses et pertes de charges dans le réseau existant en cas de pointe)
1'horizon 2054 (Voir 1'annexe 7)
Tableau III. 10 : charges et pressions dans le réseau existant en cas de pointe l'horizon 2054.
(Voir l'annexe 8)
Chapitre IV : Les réservoirs de stockage
Tableau IV. 1 : Détermination de la capacité du stockage nécessaire au long terme (2054)58
Tableau IV. 2 : Bilan de capacité de stockage
Tableau IV. 3 : le chemin le plus long entre le point défavorable et le R1
Tableau IV. 4 : le chemin le plus long entre le point défavorable et le R2
Tableau IV. 5 : le chemin le plus long entre le point défavorable et le R3
Tableau IV. 6: le chemin le plus long entre le point défavorable et le R4
Therefore I is a constant to prime to point with structure of the Islandian
Chapitre V : Réhabilitation du réseau D'AEP à l'horizon 2054
Tableau V. 1 : Calcul des débits nodaux du réseau projeté cas de pointe (l'horizon 2054).
(Voir l'ANNEXE V.1)
Tableau V. 2 : Résultat des Caractéristiques Hydrauliques et diamètres des tronçons (cas de
pointe). (Voir l'ANNEXE V.2)79
Tableau V. 3 : Résultat charge et pression des nœuds (Cas de pointe). (Voir L'ANNEXE V.3)
80
Tableau V. 4 : Résultat des Caractéristiques Hydrauliques et diamètres des tronçons (Cas de
pointe+ incendie). (Voir L'ANNEXE V.4)
Tableau V. 5 : Résultat charge et pression des nœuds (Cas de pointe+ incendie). (Voir
L'ANNEXEV.5)
Chapitre VI : Adduction et pompage
Tableau VI. 1 : Prix de revient des conduites PN16 (source GROUPE CHIALI)95
Tableau VI. 2 : les données de bases de forage hassi nor vers (château N°1 et château N°2)
95
Tableau VI. 3 : choix de diamètre de la conduite de l'adduction vers (Château N°1 et château
N°2)96
Tableau VI. 4 : Calcul de la Hmt des tronçons (Forage-château N°1) (Forage-château N°2)
96
Tableau VI. 5 : Calcul des frais d'exploitation «Fexp» tronçon (Forage-château N°1)96
Tableau VI. 6: Calcul des frais d'amortissement tronçon (Forage-château N°1)96
, , , , , , , , , , , , , , , , , , , ,

Tableau VI. 7 : Calcul du bilan du tronçon (Forage-château N°1)	97
Tableau VI. 8 : Calcul des frais d'exploitation «Fexp» (Forage-château N°2)	97
Tableau VI. 9 : Calcul des frais d'amortissement «Famt» (Forage-château N°2)	
Tableau VI. 10 : Calcul du bilan du tronçon (Forage-château N°2)	97
Tableau VI. 11 : les Données de Bases de forage N°4 de centre-ville zelfana vers le châte	
N°3	
Tableau VI. 12 : Choix de diamètre de la conduite de l'adduction vers le château N°3	98
Tableau VI. 13 : Calcul de la Hmt du tronçon (Forage N°4-château N°3)	98
Tableau VI. 14: Calcul des frais d'exploitation «Fexp» (Forage-château N°3)	
Tableau VI. 15 : Calcul des frais d'amortissement «Famt» (Forage-château N°3)	
Tableau VI. 16 : Calcul du bilan du tronçon (Forage-château N°3)	99
Tableau VI. 17 : les Données de Bases de forage (projeté) de centre-ville zelfana vers le	
château N°4	99
Tableau VI. 18 : choix de diamètre de la conduite de l'adduction vers le château N°4	100
Tableau VI. 19 : Calcul de la Hmt du tronçon (Forage –château N°4)	100
Tableau VI. 20 : Calcul des frais d'exploitation «Fexp» (Forage-château N°4)	100
Tableau VI. 21 : Calcul des frais d'amortissement «Famt» (Forage-château N°4)	100
Tableau VI. 22 : Calcul du bilan du tronçon Forage-château N°4	101
Tableau VI. 23 : les Données de Bases de forage (projeté) de centre-ville zelfana vers le	
château N°5	101
Tableau VI. 24 : choix de diamètre de la conduite de l'adduction vers le château N°5	101
Tableau VI. 25 : Calcul de la Hmt du tronçon (Forage (projeté) — château $N^{\circ}5$)	102
$Tableau\ VI.\ 26: Calcul\ des\ frais\ d'exploitation\ «Fexp»\ (Forage-château\ N°5)$	102
$Tableau\ VI.\ 27: Calcul\ des\ frais\ d'amortissement\ «Famt»\ (Forage-château\ N°5)$	102
Tableau VI. 28 : Calcul du bilan du tronçon Forage-château N°5	102
Tableau VI. 29 : les Données de Bases de forage N°4 vers Hammames	103
Tableau VI. 30 : Calcul de la Hmt du tronçon Forage N°4-Hammams	103
Tableau VI. 31 : Calcul de la Hmt	
$Tableau\ VI.\ 32: Calcul\ des\ frais\ d'exploitation\ «Fexp»\ (Forage\ N^\circ 4-Hammams)\$	103
$Tableau\ VI.\ 33: Calcul\ des\ frais\ d'amortissement\ «Famt»\ (Forage\ N°4-Hammams)$	103
Tableau VI. 34 : Calcul du bilan du tronçon (Forage N°4-Hammams)	104
Chapitre VII : Protection contre le coup de bélier	
Tableau VII. 1 : Les caractéristiques des différents tronçons de l'adduction de refoulemen	t.113
Tableau VII. 2 : Calcul de célérité d'onde des différents tronçons de l'adduction de	110
refoulement	
Lapieau VII. 5 : Caicul de volume des différents reservoirs d'air de l'adduction de réfoulement.	114

Chapitre IX : Organisation de chantier

Tableau IX. 1 : Calcul du volume de déblai	136
Tableau IX. 2 : Calcul du volume de sable	137
Tableau IX. 3 : Calcul du volume de TVC	138
Tableau IX. 4 : Calcul du volume des remblais (réseau)	139
Tableau IX. 5 : le calcul des châteaux d'eau	140
Tableau IX. 6 : calcul de volume de (décapage , déblai) réservoir	142
Tableau IX. 7 : Les taches de réalisation les quartes châteaux d'eaux	147
Tableau IX. 8 : temps de réalisation des opérations de réseau de distribution et d'addu	ction 147
Tableau IX. 9 : Tâches qui précèdent et qui succèdent pour la réalisation des quarts ch	nâteaux
d'eaux	148
Tableau IX. 10: Tâches qui précèdent et qui succèdent pour la réalisation du réseau d	.e
distribution et d'adduction	148
Tableau IX. 11: Devis estimatif de l'établissement des conduites et les ouvrages	150

LISTES DU PLANCHES

Planches 01 : plan de masse de réseau existant.

Planches 02 : plan de masse avec réseau projeté.

Planches 03 : plan de profile en long de la conduite principale.

Planches 04 : plan de réservoir surélever de 1000m³.

Introduction Générale

Introduction Générale:

L'eau est essentielle à la vie et au développement, et elle est considérée comme l'une des richesses naturelles les plus précieuses, ayant un impact significatif sur le développement social et économique d'un pays. Pour garantir l'approvisionnement en eau potable, elle doit traverser un système d'alimentation conçu pour une certaine période, mais ce système peut perdre son efficacité hydraulique avec le temps.

Notre étude se concentre sur l'agglomération du centre-ville de la commune de Zelfana, située dans la wilaya de Ghardaïa, qui fait face à un problème critique concernant l'injection directe dans le réseau en raison du manque d'ouvrages de stockage. Dans ces conditions, il est crucial de concevoir des systèmes efficaces pour l'adduction, le stockage et la distribution de l'eau, ainsi qu'une gestion adéquate pour répondre à la demande et minimiser les pertes.

Le thème de notre mémoire est intitulé : « Diagnostic et réhabilitation du système d'AEP de la commune de Zelfana (W. Ghardaïa) ». L'objectif de ce travail est de diagnostiquer le réseau existant, d'identifier les problèmes rencontrés et d'améliorer l'approvisionnement en eau potable de la ville afin de garantir une alimentation en eau de qualité jusqu'en 2054.

Pour atteindre cet objectif, notre travail est structuré en neuf chapitres principaux :

- Présentation de la ville ;
- Estimation des besoins en eau ;
- Diagnostic du système d'AEP existant ;
- Étude du réservoir ;
- Étude du réseau de distribution ;
- Adduction et pompage;
- Protection des conduites contre le coup de bélier ;
- Pose de canalisations et accessoires ;
- Organisation du chantier et management de projet.

Chapitre I:

Présentation de la zone d'étude

Introduction:

Avant d'entamer les différentes étapes nécessaires à l'analyse du projet, il convient de souligner les particularités spécifiques à la ville de ZELFANA. Ces caractéristiques, telles que la situation géographique, topographique, climatique et hydraulique, sont des facteurs clés qui nous permettent de mettre en place efficacement le schéma d'alimentation prévu.

I.1 Situation géographique de la wilaya:

La Wilaya de Ghardaïa se situe dans le Sahara Nord Central algérien s'étend sur une superficie de 84,660 km2. Elle est limitée :

- Au Nord par la wilaya de Laghouat ;
- Au Nord Est par la wilaya de Djelfa;
- A l'Est par la wilaya d'Ouargla;
- Au Sud par la wilaya de Tamanrasset;
- Au Sud-Ouest par la wilaya d'Adrar ;
- A l'Ouest par la wilaya d'El Bayadh.

L'étude se concentre sur la commune de Zelfana, qui fait partie des 13 communes de la région. Zelfana a été élevée au rang de commune en 1985, puis au rang de Daïra en 1991.

La région thermale de Zelfana peut s'enorgueillir d'être considérée comme un espace de convivialité pour les populations de la wilaya de Ghardaïa et les régions avoisinantes. Les eaux thermales de Zelfana sont captées à partir de la nappe du Continental intercalaire.

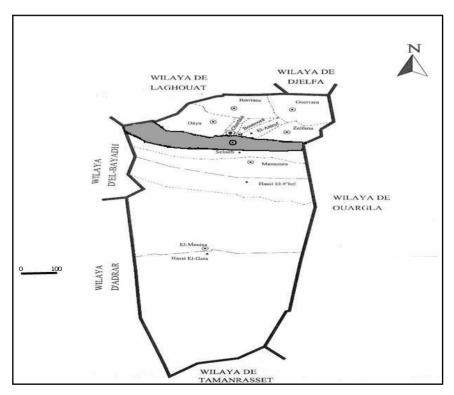


Figure I. 1 : Situation géographique de la wilaya de Ghardaïa

(Source: www.memoireonline.com)

I.2 Situation de la ville :

La ville de Zelfana est située au Sud-est de la ville de Ghardaïa à 65 km du chef-lieu de la Wilaya. Elle s'étend sur une superficie de 2220 km², mais d'après le cadastre des communes il faut noter que la surface de la commune dans l'ancien PDAU (**Plan directeur d'aménagement et urbanisme**) est de 2400km².

La ville de Zelfana est à 43 Km seulement de l'Aéroport International Moufdi Zakaria.

Cette petite localité est composée de quatre grands quartiers : Zelfana centre, Gouifla, Zelfana

Oued et Hassi Nour.

Elle est limitée:

- Au Nord par la commune de Guerrara.
- Au Sud par la commune de Métlili.
- A l'Est par la willaya d'Ouargla.
- A l'Ouest par la commune d'El Atteuf.

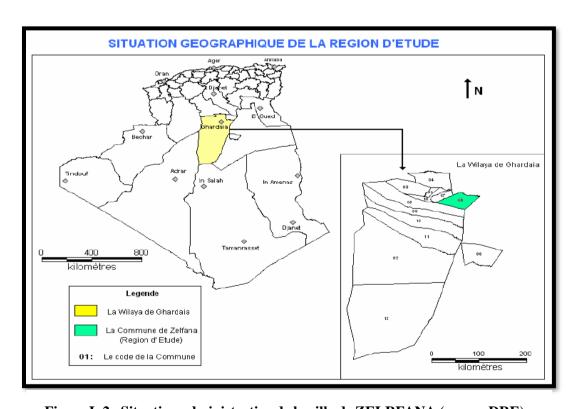


Figure I. 2 : Situation administrative de la ville de ZELRFANA (source DRE).

I.3 Historique de la ville :

Avant son urbanisation, la région de Zelfana était un point de rencontre et de passage, en sachant que c'était le seul passage praticable reliant le Sud Est, le Sud-Ouest et le Centre. Elle était le point de rencontre de toutes les caravanes se dirigeant vers n'importe quelle direction.

Après le forage du premier puit en 1947, Zelfana a connu une grande activité urbaine, où se sont fixés les habitants venus des villes avoisinantes : Metlili, Ghardaia et Ouargla, composés surtout de fellahs et d'éleveurs pour s'adonner à leurs fonctions dont le principal est la culture des palmiers.

I.4 Situation topographique:

La conception du réseau est influencée par la topographie. On réalise la levée topographique du site à l'échelle 1/2000. La pente dans la zone d'étude est extrêmement faible. La totalité des terrains de l'agglomération sont relativement plats « pente $\approx 4\%$ vers la direction Sud-ouest ». L'altitude moyenne de la région d'étude est d'environ 360m.

Tableau I. 1: tableau de coordonnées.

La station	Code de la station	Coordonnées		
		Latitude	Longitude	Altitude
Ghardaïa	60-56-60	32,4 N	3,81 E	360 m

Figure I. 3: Photo satellite de la ville de Zelfana « GOOGLE EARTH ».

I.5 Situation Climatologique:

I.5.1 Climat:

La commune de ZELFANA, située dans le bassin versant du Sahara septentrional, présente un climat saharien marqué par des hivers courts et rigoureux, et des étés longs et extrêmement chauds avec des températures pouvant atteindre 50°C. Les précipitations annuelles sont faibles, entre 100 et 200 mm, ce qui entraîne une grande sécheresse de l'air et un déficit d'humidité. Cette situation influe directement sur l'hydrographie et les activités économiques locales. Le territoire est diversifié physiquement, avec une grande aridité, une faible nébulosité, et une forte insolation, ce qui accentue les phénomènes thermiques. La rareté des pluies limite la végétation, mais les microclimats locaux, comme les palmeraies et petits jardins, jouent un rôle important dans la région.

I.5.2 Températures :

L'étude hydrologique d'une région comporte l'analyse de son bilan thermique. La température est définie comme l'état atmosphérique de l'air ; elle varie selon les altitudes et la latitude de chaque région. Les données disponibles des températures moyennes mensuelles, moyennes des maximales, les moyennes des minimales durant la période (1999-2019) sont représentées graphiquement par la figure

Tableau I. 2 : Valeurs moyennes maximales et minimales de températures de l'air

Mois	Sep	Oct	Nov	Déc	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Aou
Tmoy	28.50	22.3	15.8	11.8	10.8	13.3	16.5	20.3	25.4	30.8	33.8	33.31
(° C)												
Tm (°C)	22.24	16.5	10.6	6.95	5.72	7.66	10.3	13.7	18.5	23.6	26.5	26.39
Tmax	34.66	28.3	21.5	17.3	16.4	19.1	22.4	26.5	31.6	37.8	40.4	39.70
(° C)												

(source DRE Zelfana 2024)

Chapitre I : Présentation de la zone d'étude

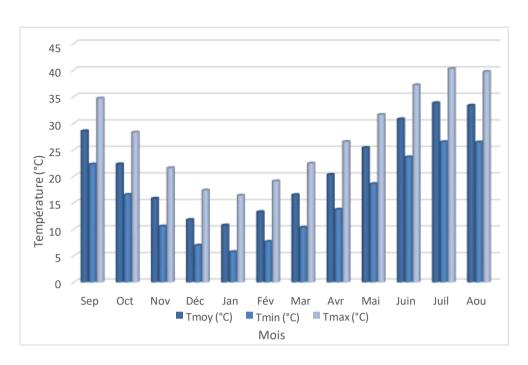


Figure I. 4: Variations moyennes maximales et minimales de températures del'air (C) station de Ghardaïa (1999-2019)

I.5.3 Pluviométrie:

La station pluviométrique la plus proche et la plus crédible par rapport au bassin versant d'étude est celle de Ghardaïa (DAUG : 60-56-60) qui est la plus représentative, tant pour sa période d'observation (2003-2012) que pour sa proximité de notre zone d'étude.

Les années d'observations ont été traitées en tenant compte de toute la série avec les années communes soit 10 ans d'observation complète sans lacunes qui donne une pluie moyenne annuelle de 100 mm.

La distribution mensuelle des précipitations en mm et en pourcent de la station de Ghardaïa est portée dans le tableau suivant :

Mois	Sep	Oct	Nov	Dec	Jan	Fev	Mar	Avr	Mai	Juin	Juil	Aou	Année
P moy (mm)	25.91	10.55	5.07	4.23	13.71	1.81	11.86	9.85	1.52	3.16	3.30	9.42	100.39
P moy	25.81	10.51	5.05	4.21	13.66	1.80	11.81	9.81	1.51	3.15	3.29	9.38	100.00

Tableau I. 3 Répartition saisonnière des pluies moyennes annuelles.

Chapitre I : Présentation de la zone d'étude

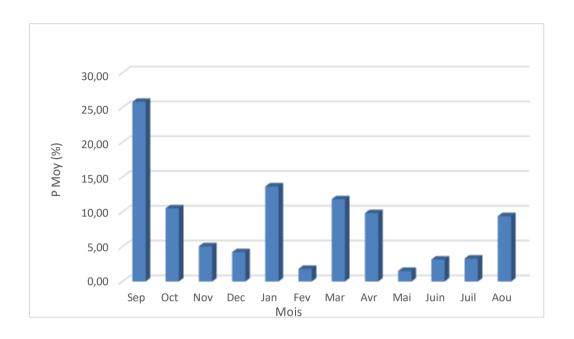


Figure I. 5 : Réparation saisonnière des pluies moyennes annuelles.

I.5.4 Humidité relative de l'air :

Les variations de l'humidité relative de l'air sont fondamentalement conditionnées par les variations de la température et par la nature des masses d'air locales. On admet que la variation de la température de l'air provoque, en règle générale, une variation contraire de l'humidité relative de l'air. La distribution spatiale des valeurs de l'humidité de l'air et variations journalières et annuelles, peuvent être modifiées par l'action des facteurs locaux.

Tableau I. 4 : Répartition saisonnière de Humidite moyennes annuelles en (%).

Mois	Sep	Oct	Nov	Déc	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Aoû
H(%)	34.57	43.65	52.94	56.91	55.06	46.91	40.50	35.16	30.76	26.58	23.29	25.01

(Source DRE Zelfana 2024)

Chapitre I : Présentation de la zone d'étude

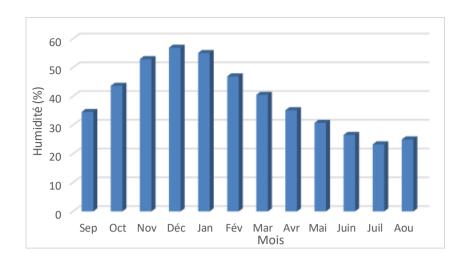


Figure I. 6 : Répartition saisonnière d'Humidité moyennes annuelles.

L5.5 Vitesse du vent :

La vitesse moyenne du vent présente une petite variation pendant toute l'année, en oscillant entre une valeur minimale en Octobre de l'ordre de 11.43 m/s, et une valeur maximale de 17.43 m/s environ en Avril. Le graphique ci- après présente une illustration de ce paramètre su l'année.

Tableau I. 5 : présente les valeurs moyennes mensuelles de la vitesse du vent (m/s).

Mois	Sep	Oct	Nov	Déc	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Aou
V (m/s)	12,49	11,43	11,61	12,74	13,46	14,70	15,80	17,43	16,71	15,64	13,45	12,43

(Source DRE Zelfana 2024)

I.6 Situation géologique :

La région de Zelfana est à l'Est de la Chebka du M'zab, le terrain est le résultat des formations Néogène et revente d'origine Quaternaire ou mio-pliocéne, les formations Néogènes au niveau de Zelfana reposent sur des formations de calcaires et dolomies

Ces formations mio-pliocène qui marquent le contact avec le tertiaire et le quaternaire sont :

- > Une croute calcaire.
- > Sables légèrement gypseux.
- Argiles versicolores gypseux et hydrophiles.
- Sables roses à gris.
- Sables argileux et argiles sableux.

I.6.1 Sol:

L'étude géotechnique de commune Zelfana révèle que le sol de la région est fissurable avec le temps, malgré les projets d'urbanisation. Le terrain est quasi-aride et plat, avec un sol sablo-caillouteux et des éléments gypso-calcaires. Les sondages carottés jusqu'à 9 mètres ne montrent pas de nappes d'eau, mais les analyses granulométriques indiquent une forte proportion de sable. De plus, les analyses chimiques révèlent une forte concentration en ions sulfatés, ce qui rend le sol agressif pour les fondations.

I.7 Situation Hydrologique:

Dans le désert, les précipitations sont rares et irrégulières, tandis que l'évaporation est élevée, dépassant les précipitations. La commune de Zelfana, située dans le bassin du Sahara septentrional, est directement affectée par ces conditions climatiques, ce qui entraîne une rareté des eaux superficielles et une abondance d'eaux souterraines.

Le climat saharien se caractérise par des hivers courts et rigoureux, des étés longs et chauds, et une pluviométrie annuelle moyenne de 141 mm, répartie en quatre périodes : sécheresse, légère augmentation, période la plus pluvieuse, puis régularisation des précipitations. Des phénomènes rares comme des inondations peuvent se produire, comme celles observées en 1991, 1994 et en octobre 2008. L'oued M'Zab traverse la partie sud-ouest de Zelfana.

Figure I. 7: Photo satellite de OuedM'zab « GOOGLE EARTH ».

I.8 Situation hydrogéologique :

Les eaux souterraines du Continental Intercalaire, une nappe chaude et importante réservoir géothermique dans le Sahara algérien, couvrent environ 700 000 km². Elle est limitée au Nord par la frontière tunisienne et aux environs de Béchar, à l'Est par les frontières algéro-tunisienne et algéro-libyenne, à l'Ouest par Béchar-Adrar, et au Sud par In Salah et In Amenas. Cette nappe fossile, alimentée principalement par infiltration des eaux de ruissellement des oueds, présente un gradient de profondeur allant de 1000 m au Nord-Est à moins de 350 m à l'Ouest, et 450 à 800 m ailleurs dans la région. La commune de Zelfana utilise cette nappe pour ses besoins en eau potable, irrigation et autres.

Tableau I. 6 : Inventaire des infrastructures hydrogéologiques.

N°	Description	Utilisation	Q (l/s)	Date
1,00	Zelfana 01	AEP	10	1948
2,00	Zelfana 04	AEP	60	1978
3,00	Guifla (02)8	AEP	60	1954
4,00	Zelfana 17	IRR	30	1991
5,00	El moussalaha	AEP	45	2007
6,00	Nouveau forage HASSI NOR	AEP	55	2012

1.9 Caractéristiques des eaux thermales de zelfana :

Les eaux thermales de Zelfana sont extraites du Continental Intercalaire, dont les particularités de profondeur, de température et de salinité varient en fonction de la formation géologique spécifique à la région étudiée. Le réservoir du Continental Intercalaire, présent à Zelfana et Guerrara, affiche un gradient de profondeur allant de 400 à 1000 m, du Sud-ouest vers le Nord-est. Bien que la nappe soit artésienne, elle subit un rabattement significatif dans presque toute la région du M'Zab, en raison de son exploitation excessive. Les eaux thermales de cette nappe sont de type chloruré sodique, avec une température moyenne supérieure à 46 °C et une salinité moyenne de 1 g/l.

Tableau I. 7: Composition minerale des eaux thermales de zelfana.

Potentiel en H	6.5
Température	41.5°
Résidu sec (mg)	18.1
Calcium	163
Magnésium	61
Sodium	518
Potassium	22
Chlorure	497
Sulfate	518
Bicarbonates	165
Nitrate	15

Conclusion:

La région de Zelfana est située dans la wilaya de Ghardaïa et appartient au bassin versant du Sahara Septentrional. Le climat dominant est celui du Sahara, caractérisé par des hivers courts et rigoureux et des étés longs et chauds, avec des températures pouvant dépasser les 40°C en été. Les précipitations sont irrégulières, avec une moyenne annuelle de 141 mm,

L'humidité relative de la région varie entre 23,29 % et 56,91%, et la vitesse du vent oscille entre 11,43 m/s et 17,43 m/s.

Chapitre II:

Estimation des besoins en Eau potable

Chapitre II: Estimation des besoins en Eau potable

Introduction:

L'évaluation des besoins en eau est une étape cruciale pour le projet. L'estimation de ces besoins dépend de l'évolution de la population, qui prend en compte non seulement l'augmentation de la population au fil du temps, mais aussi l'extension des équipements dans la zone étudiée à différents horizons.

Dans ce chapitre, nous commencerons par estimer la population, puis nous définirons les besoins en eau pour les différentes catégories de consommation, notamment les besoins domestiques et les besoins des équipements publics.

II.1 Evolution de la Population :

L'estimation de la population future se fait pour les différents horizons court, moyen et long terme.

D'après l'APC de la commune de **ZELFANA**, le taux d'accroissement de la région est de 3.42 %, le nombre d'habitants dans le futur est estimé par la formule suivante :

$$P_N = P_0(1 + \tau) \text{ II. } 1$$

Avec:

- N : Période de Saturation du Projet
- PN: population à l'horizon d'étude 2054 (habitants.
- Po = : Population de base (2008);
- τ : taux moyen annuel d'accroissement de la population en (%) : (τ=3.42 %) (source
 : APC de Commune de ZELFANA).

Tableau II. 1 : Evaluation de la population à différents horizons.

Année	Population
2008	8920
2012	10205
2016	11674
2022	14284
2024	15277
2027	16899
2032	19994
2054	41897

Chapitre II: Estimation des besoins en Eau potable

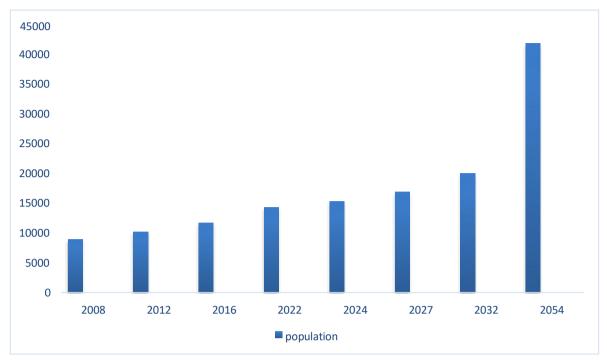


Figure II. 1 : Evaluation De La Population de Centre-ville (Zone d'étude).

II.2 Estimation des besoins en eau:

Pour établir un projet d'alimentation en eau potable, et donc son exploitation ultérieure, il faut savoir la quantité d'eau globale qu'on exige et le régime des consommations de cette quantité, donc il est nécessaire de procéder à un recensement de toutes les catégories de consommations rencontré au niveau du centre-ville de **Zelfana**. Les besoins en eau potable seront déterminés d'après les données recueillies du **PDAU** (**Plan directeur d'aménagement et urbanisme**), de l'enquête faite au niveau de **L'A.P.C** de **Zelfana**.

II.2.1 Consommation movenne journalière:

La consommation moyenne journalière désignée par Q_{moy} j est donnée par la formule suivant :

$$Q_{moy,j} = \frac{N_i \times D}{1000}$$
 II. 2

Avec:

- **Q moy j :** consommation moyenne journalière en (m3/j).
- **D**: dotation journalière en (1/j/cons).
- Ni : nombre de consommateurs.

Besoins en eau domestiques :

Pour une agglomération on peut tabler, en première approximation sur les bases ci- après

- Ville de 20 000 à 100 000 hab.200 à 300 1/hab/j

Pour notre cas le nombre d'habitants du centre de ZELFANA est égale à 27800 hab à l'horizon 2054, appartient au premier intervalle (20 000 à 100 000 hab.) donc la consommation sera entre 150 à 200 l/hab/j.

Tableau II. 2 : calcul des besoins domestique pour différents horizons.

période	Nbre d'hab	Dotation	Besoins Dom
année	hab	l/j/hab	m3/j
2024	15277	200	3055,40
2027	16899	200	3379,80
2032	19994	200	3998,80
2054	41897	200	8379,40

Besoins des équipements publics :

Les besoins publics sont évalués sur la base d'une dotation, soit par unité de surface occupée ou par capacité de production, soit par nombre d'usagers selon le cas, et l'importance de l'établissement.

Tableau II. 3: Les besoins d'équipement scolaire (Source DRE Zelfana 2024).

Les équipements scolaires	nombre d'utilisateurs	unité	Dotation (1/j/hab)	Qmoyi (m3/j)	Qmoy j (1/s)
03 écoles	929		15	13,93	0,16
03 CEM	1089		15	16,33	0,19
01 Lycée	730		15	10,95	0,13
01 C F P A	450	Élève	15	6,75	0,08
Totale				47.96	0,56

Tableau II. 4: Les besoin d'équipement sanitaire (Source DRE Zelfana 2024).

Les besoin sanitaire	nombre d'utilisateurs	unité	Dotation (1/j/hab)	Qmoyi (m3/j)	Qmoyj (l/s)
01 hôpital	40	Lit	100	4	0,05
02 pharmacies	2	Per	50	0,1	0,001
Totale				4,1	0,051

Tableau II. 5: Les besoin d'équipement sportifs (Source DRE Zelfana 2024).

Les besoin sportifs	nombre d'utilisateurs	Unité	Dotation (1/j/hab)	Qmoyj (m3/j)	Qmoy j (l/s)
01 salle de sport	100		100	10	0,12
01 stade de foot	50	Sportif/ve	100	5	0,06
Totale				15	0,18

Tableau II. 6: Les besoin d'équipement socioculturels (Source DRE Zelfana 2024).

besoins socioculturels	nombre d'utilisateurs	unité	Dotation (1/j/hab)	Qmoyj (m3/j)	Qmoy j (1/s)
04 Mosquées	2000	Fidèles	20	40	0,46
01 bibliothèque	200	Personne	10	2	0,023
Totale				42	0,48

Tableau II. 7: Les besoin d'équipement administratifs (Source DRE Zelfana 2024).

besoin administratifs	nombre d'utilisateurs	Unité	Dotation (1/j/hab)	Qmoyj (m3/j)	Qmoy j (1/s)
01 Daïra	40	Personne	20	0,8	0,009
01 APC	50		20	1	0,011
01 PTT	20		20	0,4	0,004
02 Gendarmerie	40	Gendarme	20	0,8	0,009
01 Protection civile	20	Pompier	20	0,4	0,004
01 SD,Hy	15		20	0,3	0,003

Chapitre II : Estimation des besoins en Eau potable

besoin administratifs	nombre d'utilisateurs	Unité	Dotation (l/j/hab)	Qmoyj (m3/j)	Qmoy j (l/s)
01 ADE	5		20	0,1	0,001
01 Travaux public	5		20	0,1	0,001
01 CNAC	10		20	0,2	0,002
01 Habitat	10	personne	20	0,2	0,002
01 Fiance	10		20	0,2	0,002
01 ADS	10		20	0,2	0,002
01 bureau d'emploi	10		20	0,2	0,002
01 caserne	30		20	0,6	0,006
01 Communale	30		20	0,6	0,006
totale				6,1	0,07

Tableau II. 8 : Les besoin d'équipement Commerciaux (Source DRE Zelfana 2024).

besoin	nombre	Unité	Dotation	Qmoyj	Qmoyj
commerciaux	d'utilisateurs	Office	(l/j/hab)	(m3/j)	(1/s)
					0,0006
10 café	6		10	0,06	94
02 Boulangerie	6		10	0,06	0,00069
10 restaurent	60	Personnes	10	0,6	0,00694
40 boucheries	20		50	1	0,01157
1 St-service	50		50	2,5	0,02893
01 marché	50		10	0,5	0,00578
04 Piscine -					
hammam	750		200	150	1,73611
Totale				154,72	1,79074

Tableau II. 9: Les besoin d'équipement Divers (Source DRE Zelfana 2024)

Besoin Divers	nombre d'utilisateurs	Unité	Dotation (l/j/hab)	Qmoyj (m3/j)	Qmoyj (l/s)
04 Entreprise	10	Personnes	40	0,4	0,0046
03 Park APC	15		40	0,6	0,0069
01 Parc CAPS	8		30	0,24	0,0027
Totale				1,24	0,0143

Tableau II. 10: Les besoin d'équipement Touristique.

Besoin touristique	capacité	Unité	Dotation (l/j/hab)	Qmoyj (m3/j)	Qmoyj (l/s)
07 Centre de repot	500	Touriste	150	75	0,86
01hotel	70	Touriste	200	14	0,16
01hobérge	50		200	10	0,11
totale				99	1,145

Tableau II. 11: Les besoin d'équipement projeté.

équipe	ement projeté	nombre	unité	Dotation (1/j/hab)	Qmoyj (m3/j)	Qmoy j (1/s)
scolaire	04 écoles	1500	Élève	15	22,5	0,26
scolune	02 Cem	700	Lieve	15	10,5	0,12
	01 Lycée	400		15	6	0,069
	01 CFPA	450		15	6,75	0,078

Chapitre II : Estimation des besoins en Eau potable

équipement projeté ı		nombre	unité	Dotation (l/j/hab)	Qmoyj (m3/j)	Qmoy j (l/s)
			personne			
sanitaire	02 pharmacies	2		50	0,1	0,001
	02 salles de soin	15	malade	10 0	1,5	0,017
Socio-Cul	01mosqué	200	fidèles	20	4	0,046
Socio-Cui	01 bibliothèque	100		10	1	0,011
						0,000
	05 cafés	3	personne	10	0,03	3
Commerciau			-			0,000
X	2 Boulangerie	3		10	0,03	3
	5 Restaurent	30		10	0,3	0,003
	2 Boucherie	2	personne	50	0,1	0,001
	01 St-service	15		50	0,75	0,008
	04 Piscine -					
	hammam	750		20	150	1,74
	10	1000		0 15	150	1.72
touristique	10 centres de repos	1000		0	130	1,73
	02 hôtels	140	Touriste	20	28	0,32
	01hobérge	100		20	20	0,23
	OTHOOLIGE	100		0	20	0,23
totale						
					401.56	4.64

Tableau II. 12: Besoins globaux de l'agglomération.

Tableau II. 12: Besoins globaux de l'agglomeration.							
les Besoir	les Besoin						
	scolaire	47,96	0,55				
Les besoin d'équipement	sanitaire	4,1	0,047				
	sportif	15	0,173				
	socioculturels	42	0,48				
	administratif	6,1	0,07				
	commerciaux	154,72	1,79				
	touristique	99	1,14				
	Divers	1,24	0,014				
	Tt projeté	401,56	4,65				
Totale		771,68	8,94				

N.B: Étant donné que la région de Zelfana est une destination thermale prisée des touristes, il est essentiel que les forages fournissent un débit d'eau plus important et à une température adéquate. Dans cette optique, nous proposons de raccorder directement les hammams et les bains touristiques au débit de la source, sans passer par un stockage dans les châteaux d'eau, afin de préserver les propriétés thermales de l'eau. Pour répondre aux besoins en eau des hammams et des bains sur le long terme, nous envisageons de réaliser un nouveau forage spécialement dédié à leur alimentation.

Tableau II. 13: la consommation moyenne journalière totale de l'agglomération.

Zone	Horizon	Besoin domestique (m ³ /j)	Besoins d'équipements de base (m ³ /j)	consommation moyenne journalière totale (m ³ /j)
Centre-ville	2024	3055,40	370,12	3425,52
zelfana	2032	3998,80	471,68	4470,48
	2054	8379,40	471,68	8851,08

l'équipements	Horizon	consommation
		moyenne Journalière
		(m^3/j)
Piscine + hammams	2032	300
	2054	

II.3 Etude de la variation de débit :

Généralement le débit consommé par les habitants n'est pas constant, il varie selon la consommation due aux variations : Annuelles, mensuelles, horaire et journalières

- Annuelles : suivant le développement de l'agglomération.
- Mensuelles : sont dues à l'importance de la vie (villes touristiques, grande ville...).
- Horaire : représentant la variation la plus importante à l'heure de pointe de la journée.

Journalier : variée suivant les jours de la semaine

II.3.1 Débit moyen journalier :

Le débit moyen journalier est calculé pour la journée la plus chargée de l'année, en prenant en compte les fuites du réseau. Ces fuites sont caractérisées par un coefficient (KF) qui augmente la quantité d'eau consommée de 0 à 50 %. Dans le cadre de ce projet, nous avons

estimé ce coefficient à 1,3. Ainsi, le débit moyen journalier, en tenant compte des fuites, sera évalué selon la relation suivante :

$$QMoyj\ total = BT * KF$$
 II. 3

avec:

• Qmoyj: Débit Moyen Journalier (m³/j).

• KF : Coefficient de Fuite pris à 1,3.

• BT: Besoins en Eau Journaliers (m³/j).

Tableau II. 14 : la consommation moyenne journalière totale de l'agglomération avec fuites.

Zones	Horizon	Qmoy.j (m3/j)	KF	Qmoy.j total(m3/j
	2024	3425,52		4453,76
Center-Ville zelfana	2032	4470,48		5811,624
	2054	8851,08	1.3	11506,40

II.3.2 La consommation journalière maximale et minimale :

Le coefficient d'irrégularité journalière maximum, noté Kmaxj, représente le rapport entre la consommation journalière maximale et la consommation journalière moyenne. Ce coefficient varie entre 1.1 et 1.3 et indique le nombre de fois que la consommation maximale dépasse la consommation moyenne journalière. Il est donné par la relation suivante :

$$Qmax j = Qmoy j \times Kmax j (m3/j)$$
 II. 4

Avec:

- Qmoyj: débit moyen journalier (m3/j)
- Qmax j: débit maximum journalier (m3/j) Dans notre cas, nous avons pris Kmaxj=1.2

Le coefficient d'irrégularité journalière minimum, noté Kminj, représente le rapport entre la consommation journalière minimale et la consommation journalière moyenne.

Ce coefficient varie entre 0.7 et 0.9 et indique le nombre de fois que la consommation minimale est inférieure à la consommation moyenne journalière.

Il est donné par la relation suivante :

Qminj = Qmoyj
$$\times$$
 Kminj (m3/j) II. 5

Avec:

- Qmoyj: débit moyen journalier (m3/j)
- Qmin j : débit minimum journalier (m3/j) Dans notre cas, nous avons pris
- Kmin j = 0.8

Les débits maximum et minimum journalier des différentes zones sont représentés dans le tableau suivant :

Tableau II. 16: Récapitulatif des débits journaliers Qmoyj, Qmaxj, Qminj.

Horizon	Q moy j (m3/j)	K max j	Q max j (m3/j)	K min j	Q min j (m3/j)
2024	4453,76	1.3	5789,888	0,8	3563,008
2031	5811,62	1.3	7555,106	0,8	4649,296
2054	11506,40	1.3	14958,32	0,8	9205,12

II. 4Etude les variations des débits horaires :

II.4.1 Débit moyen horaire :

Le débit moyen horaire est la consommation de la journée la plus chargé devisé par 24 heures.

$$Q moyh = Qmaxj/24 = Kmax.J Qmoy.J/24$$
 II. 6

Avec:

• **Q moyh**: débit moyen horaire en m3/h;

• Q maxj : débit maximum journalier en m3/j

II.4.2 Calculs les débits maximum et minimum horaires par des formules :

II.4.2.1 Débits maximum horaire :

Il est déterminé par la relation suivante :

$$Q \max h = Q \max h \times K \max h \pmod{3/h}$$
 II. 7

Avec:

• Qmax h : débit max horaire en (m3/h)

• **Qmoyh**: débit moyen horaire en (m3/h)

• Kmaxh: coefficient d'irrégularité maximum horaire

II.4.2.1.1 Coefficient d'irrégularité maximum horaire (Kmaxh) :

Ce coefficient reflète l'augmentation de la consommation horaire au cours de la journée, en prenant en compte l'accroissement de la population, le niveau de confort et le régime de travail de l'industrie. Il peut être décomposé en deux autres coefficients : α max et β max, de sorte que :

K maxh =
$$a$$
ma × β max II. 8

Avec:

- αmax : ce coefficient prend en compte le développement industriel, qui dépend de l'importance de l'agglomération, ainsi que les habitudes de la population. Il varie entre 1,2 et 1,4. Dans notre cas, nous avons choisi une valeur de αmax égale à 1,3.
- βmax : ce coefficient est directement lié à l'accroissement de la population, en fonction du nombre d'habitants. Le tableau suivant indique la variation de ce coefficient en fonction du nombre d'habitants.

Nombre < 1.0 2,5 4,0 6,0 10,0 20,0 30,0 10 300 >1000 0 habitant(x1000) 1,2 2,0 1.8 1.6 1.5 1.4 1.3 1,15 1,1 1.03 1.0 β_{max}

Tableau II. 17: β min en fonction du nombre d'habitants.

Tableau II. 18: Débits (max) horaires pour chaque horizon.

Horizon	populations	Qmoy h (m3/h)	α max	B max	K maxh	Qmax h(m3/h)
2024	15277	185,57	1.3	1,2	1.6	296,912
2032	19994	242,15	1.3	1,2	1,6	387,44
2054	41897	479,43	1.3	1.1	1.5	719,145

II.4.2.2 Débits minimum horaire :

Il est déterminé par la relation suivante :

$$Q \min h = Q \max h \times K \min h \quad (m3/h) \quad II.9$$

Avec:

• **Qmin h**: débit min horaire (m3/h)

• **Omovh**: débit moyen horaire (m3/h)

• Kmin h : coefficient d'irrégularité minimum horaire

II.4.2.2.1 Coefficient d'irrégularité minimum horaire (Kminh):

Ce coefficient nous permet de calculer le débit minimum horaire, ce qui nous permet d'évaluer le fonctionnement de notre réseau en termes de pression dans celui-ci :

$$Kminh = amin \times Qmin II. 10$$

Avec:

- αmin : Coefficient qui tient compte du confort des équipements de l'agglomération etdu régime de travail,, il varie de 0.4 à 0.6, dans notre cas on prend αmin= 0.5
- βmin : coefficient lié à l'accroissement de la population,

Tableau II. 19 : β min en fonction du nombre d'habitants.

Nombre	< 1,0	1,5	2,5	4,0	6,0	10,0	20,0	30,0	10	300	>1000
habitant(x1000)									0		
β_{min}	0,1	0,1	0,1	0,2	0,25	0,4	0,5	0,6	0,7	0,85	1,0

Tableau II. 20 : Débits (min) horaires pour chaque horizon.

Horizon	populations	Qmoy h (m3/h)	amin	βmin	Kminh	Qmin h(m3/h)
2024	15277	185,57	0.5	0.5	0.25	46,39
2032	19994	242,15	0.5	0,5	0,25	60,53
2054	41897	479,43	0.5	0.7	0.35	167,80

II.5 Etude de la variation des débits horaires (la méthode graphique) :

Le débit horaire d'une agglomération varie en fonction du nombre d'habitants. Cette variationest exprimée en pourcentage (%) par rapport au débit maximal journalier de cette agglomération.

La méthode que nous allons utiliser est une détermination graphique des coefficients d'irrégularité de la consommation horaire.

- ➤ On 2024 le commun centre-ville de zelfana aura une population de **15277** habitants
- ➤ A l'horizon 2054 le commun centre-ville de zelfana aura une population de 41897 habitants

Nous construirons le diagramme qui nous indiquera l'heure à laquelle la consommation est maximale et celle où elle est minimale La variation des débits horaires d'une journée est représentée en fonction du nombre d'habitants, Cette variation des débits horaires est exprimée en pourcentage (%) par rapport au débit maximal journalier de l'agglomération.

Cette variation des débits horaires est exprimée en pourcentage (%) par rapport au débitmaximal journalier de l'agglomération. Pour notre cas. Les résultats de calcul sont obtenus dans le tableau suivant :

Horizons 2024 jusqu'à 2054 dans l'intervalle (10001à 50000) habitants.

Remarque : On exprime cette fluctuation des débits horaires en pourcentage (%) par rapport au débit maximal quotidien de la ville.

$$Qh = maxj * C\% /100$$
 II. 11

Avec:

• *Q_h*: Débit horaire nécessaire;

• *Q*_{maxj}: Débit maximal journalière nécessaire;

• C%: Pourcentage horaire.

Tableau II. 21 : Variation des débits horaires de la commune de Centre de ville ZELEFANA (2024).

Heures	Consommation totale $Q_{maxj} = 5789,888 \ m^3/j$			ourbe de la ation cumulée (intégrale)	
(h)	%	m ³ /h	%	m ³ /h	
0-1	1.5	86.848	1.5	86.848	
1-2	1.5	86.848	3	173.696	
2-3	1.5	86.848	4.5	260.544	
3-4	1.5	86.848	6	347.393	
4-5	2.5	144.747	8.5	492.140	
5-6	3.5	202.646	12	694.786	
6-7	4.5	260.544	16.5	955.331	
7-8	5.5	318.443	22	1273.775	
8-9	6.25	361.868	28.25	1635.643	
9-10	6.25	361.868	34.5	1997.511	
10-11	6.25	361.868	40.75	2359.379	
11-12	6.25	361.868	47	2721.247	
12-13	5	289.494	52	3010.741	
13-14	5	289.494	57	3300.236	
14-15	5.5	318.443	62.5	3618.68	
15-16	6	347.393	68.5	3966.073	
16-17	6	347.393	74.5	4313.466	
17-18	5.5	318.443	80	4631.910	
18-19	5	289.494	85	4921.404	
19-20	4.5	260.544	89.5	5181.949	
20-21	4	231.595	93.5	5413.545	
21-22	3	173.696	96.5	5587.241	
22-23	2	115.797	98.5	5703.039	
23-24	1.5	86.848	100	5789.888	
Total	100	5789.888			

Chapitre II: Estimation des besoins en Eau potable

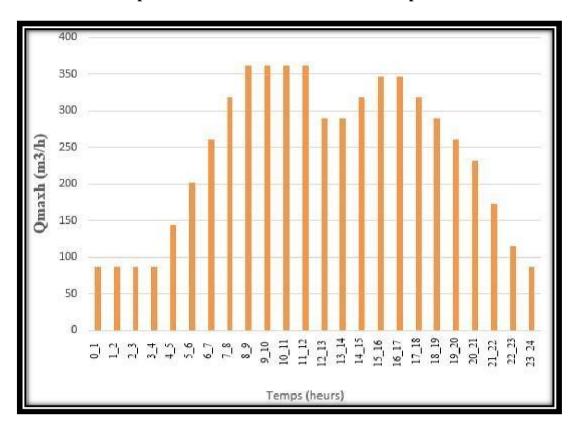


Figure II. 2 : Diagramme la consommation de Center-Ville de zelfana (2024).

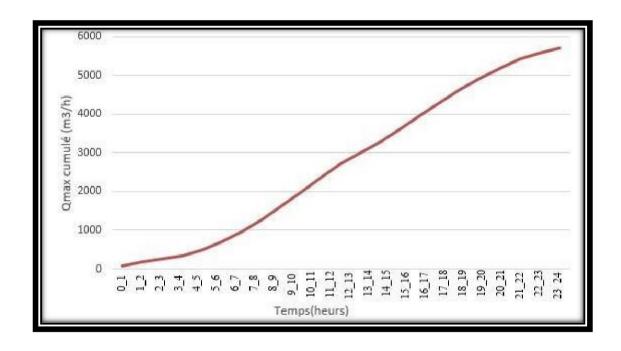


Figure II. 3 : Courbe cumulée de la consommation de Centre-Ville zelfana .

Tableau II. 22 : Variation des débits horaires de la commune de Center de ville ZELEFANA (2032).

Heures		nmation totale 7555,106 <i>m</i> ³ /j		ourbe de la tion cumulée (intégrale)
(h)	%	m ³ /h	%	m^3/h
0-1	1.5	113.326	1.5	113.326
1-2	1.5	113.326	3	226.653
2-3	1.5	113.326	4.5	339.979
3-4	1.5	113.326	6	453.306
4-5	2.5	188.877	8.5	642.184
5-6	3.5	264.428	12	906.612
6-7	4.5	339.979	16.5	1246.592
7-8	5.5	415.530	22	1662.123
8-9	6.25	472.194	28.25	2134.317
9-10	6.25	472.194	34.5	2606.511
10-11	6.25	472.194	40.75	3078.705
11-12	6.25	472.194	47	3550.899
12-13	5	377.755	52	3928.655
13-14	5	377.755	57	4306.410
14-15	5.5	415.530	62.5	4721.941
15-16	6	453.306	68.5	5175.247
16-17	6	453.306	74.5	5628.553
17-18	5.5	415.530	80	6044.084
18-19	5	377.755	85	6421.840
19-20	4.5	339.979	89.5	6761.819
20-21	4	302.204	93.5	7064.024
21-22	3	226.653	96.5	7290.677
22-23	2	151.102	98.5	7441.779
23-24	1.5	113.326	100	7555.106
Total	100	7555.106		

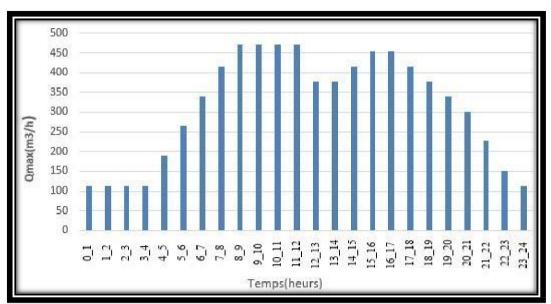


Figure II. 4 : Diagramme la consommation de Center-Ville de zelfana (2032).

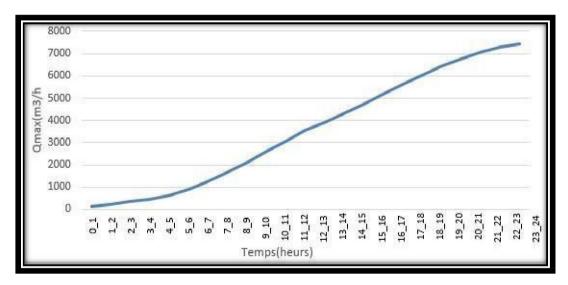


Figure II. 5 : Courbe cumulée de la consommation de Centre-Ville zelfana.

Tableau II. 23 : Variation des débits horaires de la commune de Center de ville ZELEFANA (2054).

Heures		14958,32 m ³ /j		ourbe de la ation cumulée	
	Q maxj —		(intégrale)		
(h)	%	m ³ /h	%	m ³ /h	
0-1	1.5	224.374	1.5	224.374	
1-2	1.5	224.374	3	448.749	
2-3	1.5	224.374	4.5	673.124	
3-4	1.5	224.374	6	897.499	
4-5	2.5	373.958	8.5	1271.457	
5-6	3.5	523.541	12	1794.998	
6-7	4.5	673.124	16.5	2468.122	
7-8	5.5	822.707	22	3290.830	
8-9	6.25	934.895	28.25	4225.725	
9-10	6.25	934.895	34.5	5160.620	
10-11	6.25	934.895	40.75	6095.515	
11-12	6.25	934.895	47	7030.410	
12-13	5	747.916	52	7778.326	
13-14	5	747.916	57	8526.242	
14-15	5.5	822.707	62.5	9348.95	
15-16	6	897.499	68.5	10246.449	
16-17	6	897.499	74.5	11143.948	
17-18	5.5	822.707	80	11966.656	
18-19	5	747.916	85	12714.572	
19-20	4.5	673.124	89.5	13387.696	
20-21	4	598.332	93.5	13986.029	
21-22	3	448.749	96.5	14434.778	
22-23	2	299.1664	98.5	14733.945	
23-24	1.5	224.3748	100	14958.32	
Total	100	14958.32			

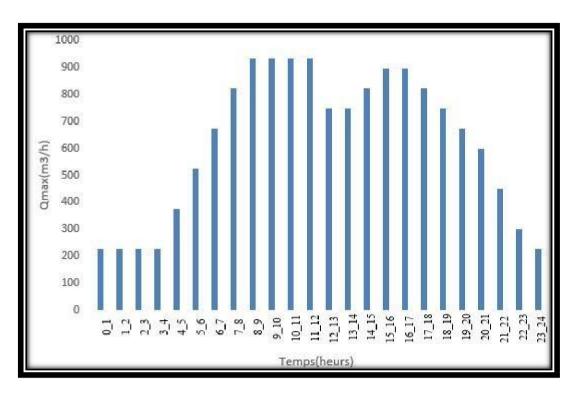


Figure II. 6 : Diagramme la consommation de Center-Ville de zelfana (2054) .

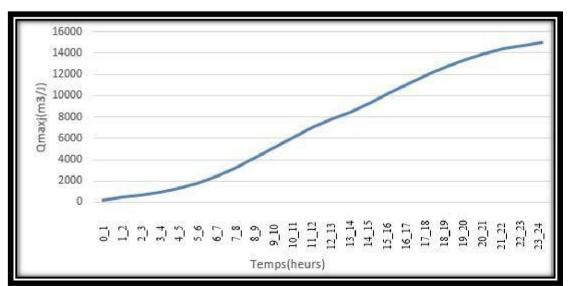


Figure II. 7 : Courbe cumulée de la consommation de Center-Ville

II.6Bilan de ressources en eau et les besoins pour l'horizon 2024 jusqu'à 2054 :

Après calcul de la consommation maximale journalière. Il est donc nécessaire de vérifierà ce que nos sources vont satisfaire la demande de notre agglomération dans le temps. Nous allons déterminer la balance de ressources en eau par rapport les besoins.

Tableau II. 24: Production de la ressource « center-ville zelfana ».

	Production				
	Ressources	l/s	m ³ /j		
Center-Ville	FN°4 center-ville	60	5184		
zelfana	Nouveau forage	60	5184		
	El hassi				
	Nouveau forage pour	45	3888		
	les hammaes				
	Total	160	13824		

Le tableau suivant nous permet de mettre une comparaison entre les besoins en eau potablede Center- ville zelfana et la capacité de stockage disponibles pour les différents horizons.

Tableau II. 25: Bilan de ressources en eau et les besoins.

Horizon	2024	2032	2054
Besoins journaliers			
(m^3/j)	5789,888	7555,106	14958,32
Production (m ³ /j)	10368	10368	10368
Forages			
Bilan (m³/j)	+4578,12	+2812,894	-4590,32
Bilan (l/s)	+52,98	+32,55	-53,13

Bilan = Production Forages - Besoins journaliers II. 12

Selon le bilan des besoins en eau potable et le volume produit pour le centre-ville de Zelfana, la ressource disponible est actuellement suffisante. Cependant, à l'horizon 2054, il y aura un déficit. Il convient donc d'envisager la réalisation d'un nouveau forage.

Conclusion:

Ce chapitre nous a permis d'évaluer les débits utiles pour le dimensionnement du réseau d'alimentation en eau potable du centre-ville de Zelfana à l'horizon 2051.

Dans ce chapitre, nous avons calculé tous les débits journaliers (maximum et minimum) actuels (2024) et prévisionnels pour les horizons d'étude 2032 et 2054, afin de déterminer tous les débits horaires (moyens, maximums et minimums). Nous avons également établi le bilan des besoins en eau potable et le volume produit.

D'après la comparaison ressources/besoins, nous avons constaté que les ressources existantes sont suffisantes pour répondre aux besoins actuels. Cependant, à l'horizon 2054, les ressources seront insuffisantes. Par conséquent, nous devons soit réaliser un nouveau forage, soit envisager un raccordement avec un autre forage supplémentaire.

Chapitre III Diagnostic du Réseau D'AEP Existant

Introduction:

L'étude diagnostique servira à évaluer la situation actuelle, à identifier d'éventuelles fuites dans le réseau et à confirmer un programme de travaux pluriannuel. L'objectif principal de cette phase de diagnostic est d'établir un schéma directeur pour la rénovation et la rééquilibration du réseau d'AEP.

L'objectif global de ce chapitre est de réaliser un diagnostic physique et hydraulique ainsi qu'une modélisation du réseau d'alimentation en eau potable (AEP) de Centre-Ville, afin de proposer un plan d'actions pluriannuel.

III.1 Diagnostic physique:

Etat physique du réseau de distribution (actuel) :

Le réseau de distribution du centre-ville de Zelfana couvre pratiquement la totalité de la ville et est de type mixte (ramifié + mailles). Le réseau de distribution est alimenté directement par les forages, sans stockage dans les châteaux d'eau qui ont été abandonnés en raison de leur état de dégradation. Le réseau de Zelfana a été entièrement rénové en 2015, avec des conduites en PEHD remplaçant les anciennes conduites en PVC et en acier. Ce réseau est de 14982.10 m linéaire dont 100 % sont en PEHD.

Malgré la présence d'un réseau qui alimente la majorité des habitations, l'injection directe dans les forages entraîne une usure prématurée des organes tels que les pompes, qui fonctionnent 24 heures sur 24 sans interruption. De plus, les variations de pression et les débits dans les conduites peuvent causer à long terme un vieillissement prématuré de celles-ci. Sachant que la ville de Zelfana est caractérisée par le tourisme en raison de ses hammams, qui se distinguent par une eau riche en calcaire et en minéraux, le DRE de Zelfana propose une injection des réseaux des hammams directement dans les forages afin de préserver les propriétés chimiques et physiques des eaux telles que la température

La longueur du réseau primaire et secondaire par diamètre et par matériau est donnée dans le tableau (III.1) ci-joint :

Tableau III. 1 : La longueur du réseau primaire et secondaire

Matériaux	Diamètre (mm)	Longueur (m)
	1125	141.90
	200 Ø	1706.35
	63 Ø	1512.45
	125 Ø	3240.40
	75 Ø	1811.30
	160 Ø	3659.35
PEHD	220 Ø	230.10
	250 Ø	1238.8
	90 Ø	1386.45
	200 Ø	1758.15
	400 Ø	112.70
	110 Ø	567.75

III.2 Diagnostic des ressources en eau :

Le center-ville zelfana été alimenté par deux forages ayant pour coordonnées suivantes Tableau (III.2).

Tableau III. 2 : Les Coordonnées des deux forages.

Désignation	Coordonnées	CTN (m)	
	Latitude		
Forage N°4 de center-ville zelfana	32°24′21,62″ Nord	4° 13′ 25,62″ Est	362
Forage Hassi Nor « F2 »	32°23′40,34″ Nord	4° 13′ 17,64″ Est	354

NB: L'actualisation des cartes géographiques sont en coordonnés UTM. La source des coordonnées est GOOGLE EARTH.

III.2.1 Forage N°4 Centre-ville (ANNEXE III.1):

Le forageN°4 est situé au sud-est de centre-ville zelfana . Son débit d'exploitation actuelle est de **60 l/s** d'après les services de l'ADE. Ce forage était destiné à l'alimentation en eau potable de center-ville zelfana et , de l'agglomération ZET (Zone touristique).

Le réseau de ces communes est directement connecté aux forages, sans système de stockage, lorsque les châteaux d'eau de ces communes sont en mauvais état et font l'objet de rénovations. Il a été constaté que :

- Les équipements et accessoires de L'abri du forage sont en bons états.
- La situation physique de la conduite de refoulement est satisfaisante.
- L'injection de chlore se fait de façon régulière.
- Le Béton armé de l'abri de forage est en bon état

III.2.2 Nouveau forage de hassi nor :

Le nouveau forage de Hassi est situé au sud-est du centre-ville de Zelfana. Son débit d'exploitation actuel est de 60 l/s, selon les services de l'ADE. Ce forage était initialement destiné à l'alimentation en eau potable des cités suivantes : la cité (360+206) LOG et la cité Ezzohor, qui sont rattachées au centre-ville de Zelfana. De plus, il alimente également la cité Hassi Nor . Sachant que pour le moment ce forage et raccorder directement dans le réseau d'alimentation sans stockage dans les châteaux.

III.2.3 Le forage de Guifla (04) (ANNEXE III.2):

Le forage de Guifla était initialement destiné à l'alimentation en eau potable de la cité du 5 juillet et de Guifla. Cependant, actuellement, ce forage est en cours de réparation en raison d'une casse au niveau de sa conduite, ce qui a provoqué une fuite. Au fil du temps, le niveau de ce forage a baissé. Par conséquent, le DRE de Zelfana propose de changer le point de piquage et la plateforme de ce forage. En attendant, les cités qui étaient alimentées par ce forage ont été raccordées au forage N°4 du centre-ville.

Tableau III. 3 : les caractéristiques des forages de centre-ville N°4 et hassi nor .

Nom du	Caractéristiqu Débit du forage		-	Volume		Année de	Communes
forage	exploité (l/s)	Prof (m)	N IIIeau statique	Total exploité (m3/j)	Gestionnaire	réalisation	desservies
Centre- ville N°4	60	170	17	1036,8	ADE	1978	Zelfana
Hassi Nor	60	140	17	691,2	ADE	2012	zelfana

Observation et recommandations concernant les forages :

Le forage N°4 de center-Ville :

- Les équipements électriques fonctionnent bien et l'armoire de commande en bonne états.
- Vanne et Tête de Forage sur la conduite de refoulement.
- L'absence les équipements conter les dépressions et les surpressions
- Le fonctionnement H24 de pompe sans arrêter a cause de l'absence des ouvrages se stockages
- Donc, il faut assurer la disponibilité des ouvrages de stockage pour éviter les problèmes de pannes de la pompe et le fatigue des autres équipements.

♦ Le nouveau forage de Hassi nor:

Les équipements hydromécaniques ainsi que l'armoire de commande fonctionnent correctement, leur clôture est en bon état, car ce forage est de nouvelle réalisation. Cependant, l'absence d'un ouvrage de stockage peut causer un problème de panne dans la pompe.

III.3 Diagnostic des ouvrages de stockage :

Comme mentionné précédemment dans le chapitre I, le réseau du centre-ville de Zelfana est injecté directement dans les forages, sans stockage, en raison du mauvais état des châteaux d'eau qui sont hors service et en cours de réparation.

III.3.1 Château d'eau centre-ville N°4 de volume 750m³:

Etat physique de la chambre des vannes (chambre de manœuvre) : Ce château d'eau, d'une hauteur de 9m et d'un volume de 750m3, qui alimentait le centre-ville de Zelfana, a été abandonné en raison de la dégradation de ses équipements. Actuellement, il est en cours de renouvellement de ses équipements, tels que les conduites d'arrivée et de départ, ainsi que les vannes.

Tableau III. 4 : Chateaux d'eau de center-ville zelefana de 750m3.

Equipment	Remarque	photo
Chateaux d'eau de center-ville zelefana de 750m3		
Vanne	Nouveau étatSans regardSans bras	

l'enceinte regarde vannage	abondonner.état dégrader	
-By-pass - Conduit de trop pleine - Conduit de vidange	 nouveau état manque de protection 	

III.4 Calcul des débits de dimensionnement :

III.4.1 Cas de pointe (l'horizon 2024):

III.4.1.1 Débit de point (route) :

$$Qp = Qmaxh = \sum Qr + \sum Qconc$$
 III. 1

Avec:

- Qmaxh: débit consommé (l/s)
- Qr : est le débit en route globale (l/s).
- Qconc: Débit concentré (l/s), dans notre cas Qconc = 0
- Qp : Débit de pointe (l/s).

AN:

$$\sum Qr = Qp = Q_{maxh} = 361.868 \, m3/h = 100.52 \, l/s$$

III.4.1.2 Débit spécifique :

Le débit spécifique c'est le débit transité à travers un mètre de conduite pendant une seconde, est définie comme étant le rapport entre le débit route et la somme des longueurs des tronçons où il y a une distribution en route.

On écrit:

$$q_{sp} = \frac{\sum Q_{ri}}{\sum L_I}$$
 III. 2

Avec:

- Σ Li: Somme des longueurs des tronçons qui assurant la distribution en route.
- Qr : est le débit en route globale (1/s).

AN:

$$q_{SP} = 100.52/14982.10 = 0.0067093 l/s/ml$$

III.4.1.3 Débit en route de chaque tronçon :

Il est donné par la formule suivante :

$$qri = qsp \times Li$$
 [1/s] III. 3

Avec:

- **qri**: Débit en route de chaque tronçon (1/s).
- **qsp**: Débit spécifique (l/s/ml).

Sachant que \sum Qni = Qp = **100.52** l/s

III.4.1.4 Détermination des Débits aux nœuds :

$$QNi = 0.5 \times \sum qri + Qconc$$
 III. 4

Avec:

• Qi : est le débit du tronçon affectant ce nœud.

Tableau III. 5: Calcul des débits nodaux du réseau l'horizon 2024. (voir l'annexe 3)

Nœud	Tronçons	Longueur(m)	Qsp (l/s/ml)	Qr (l/s)	$QN=0.5*\sum Qr(1/s)$
N01	N1-N10	300	0.01736	5.209	2.605
N02	N2-N21	263.2	0.01736	4.570	4.398
	N2-N48	243.35	0.01736	4.225	
N03	N03-N40	150.9	0.01736	2.620	4.455

Chapitre III : diagnostic du réseau d'AEP existant

Nœud	Tronçons	Longueur(m)	Qsp (l/s/ml)	Qr (1/s)	$QN=0.5*\sum Qr(1/s)$
	N03-N11	245	0.01736	4.254	
	N03-N04	117.25	0.01736	2.036	
N04	N04-N03	117.25	0.01736	2.036	1.018
N05	N05-N06	102	0.01736	1.771	4.013
	N05-N24	222	0.01736	3.855	
	N05-N29	138.2	0.01736	2.400	
N06	N06-N05	102	0.01736	1.771	3.548
	N06-N31	109.8	0.01736	1.907]
	N06-N33	196.85	0.01736	3.418]
N07	N07-N27	345.6	0.01736	6.001	6.821
	N07-N34	161.2	0.01736	2.799]
	N07-N38	80.55	0.01736	1.399]
	N07-N25	198.3	0.01736	3.443]
N08	N08-N28	187.2	0.01736	3.250	5.425
	N08-N44	137.35	0.01736	2.385	
	N08-N45	300.3	0.01736	5.214	
N09	N09-N10	105.5	0.01736	1.832	4.019
	N09-N43	139.35	0.01736	2.420	
	N09-N45	76.2	0.01736	1.323	
	N09-N46	141.9	0.01736	2.464	
N10	N10-N1	300	0.01736	5.209	4.867
	N10-N09	105.5	0.01736	1.832	
	N10-N11	155.1	0.01736	2.693]
N11	N11-N10	155.1	0.01736	2.693	4.930
	N11-N03	245	0.01736	4.254]
	N11-N46	167.75	0.01736	2.913]
N12	N12-N33	51.1	0.01736	0.887	1.762
	N12-N35	123.7	0.01736	2.148]
	N12-N36	28.2	0.01736	0.490]
N13	N13-N19	83.8	0.01736	1.455	4.139
	N13-N18	210.5	0.01736	3.655]
	N13-N51	182.5	0.01736	3.169]
N14	N14-N53	299.3	0.01736	5.197	4.317
	N14-N52	198	0.01736	3.438	
N15	N15-N18	260.6	0.01736	4.525	3.157
	N15-N20	103	0.01736	1.788	
N16	N16-N19	231.2	0.01736	4.014	5.494
	N16-N21	241.65	0.01736	4.196	
	N16-N48	160	0.01736	2.778	
N17	N17-N20	490	0.01736	8.508	5.383
	N17-N58	130	0.01736	2.257]

III.5 Résultats de la simulation hydraulique du réseau horizon actuel (2024) :

III.5.1 Les vitesses et pertes de charges :

Les résultats des différents tronçons (vitesses et pertes de charges) sont donnés dans les tableaux suivant :

Tableau III. 6 : Résultat des différents tronçons (Vitesses et pertes de charges dans le réseau existant en cas de pointe) l'horizon 2024 (voir l'annexe 4)

Diamétre Troncon matérieux débit longueur vitesse **Perte** Intrieur mm LPS m/km m m/s 0.83 117.25 **PEHD** 0.50 8.28 Tuyau 1 46 814.6 PEHD -17.55 Tuyau 2 155.1 0.03 0.00 58 **PEHD** -12.74 478.29 Tuyau 3 210.5 4.82 Tuyau 4 83.8 814.6 **PEHD** 22.24 0.04 0.00 Tuyau 5 241.65 154.8 **PEHD** -1.33 0.07 0.05 Tuyau 6 333.50 230.8 **PEHD** 14.51 0.35 0.55 52.30 230.8 PEHD Tuyau 7 18.17 0.43 0.84 371.45 115.4 PEHD 16.75 23.53 Tuyau 8 1.60 345.60 115.4 PEHD 18.26 1.75 27.80 Tuyau 9 Tuyau 10 278 115.4 PEHD 12.15 1.16 12.70 Tuyau 11 187.20 83 **PEHD** 5.14 0.95 13.06 83 Tuyau 12 **PEHD** -1.77 0.33 1.79 288.50 230.8 Tuyau 13 138.20 **PEHD** -145.77 3.48 45.50 Tuyau 14 424.75 184.6 PEHD 61.83 2.31 26.80 Tuyau 15 198.30 184.6 PEHD -43.31 1.62 13.44 Tuyau 16 PEHD 3.78 160.70 115.4 -6.41 0.61 Tuyau 17 136.70 154.8 PEHD -13.38 0.71 3.47 Tuyau 18 109.80 154.8 **PEHD** -20.15 1.07 7.55 Tuyau 19 161.20 115.4 PEHD -3.68 0.35 1.34 Tuyau 20 197.25 69.2 **PEHD** -3.47 0.92 15.49 197.10 69.2 **PEHD** 0.97 16.96 Tuyau 21 3.63 137.10 115.4 PEHD Tuyau 22 -3.72 0.36 1.37 Tuyau 23 107.70 115.4 **PEHD** -3.21 0.31 1.05

III.5.2 Les charges et les pressions :

Les résultats des différents nœuds (charges et les pressions) sont donnés dans les tableaux suivant :

Tableau III. 7 : charges et pressions dans le réseau existant en cas de pointe (Voir l'annexe 5).

Noeud	Elevation	Débit nodale	Cote peizométrique	Pression
	m	LPS	m	m
Noeud 1	346.70	2.13	376.82	30.12
Noeud 2	357.51	3.59	381.22	23.71
Noeud 3	353.07	3.64	380.10	27.03
Noeud 4	353.03	0.83	379.13	26.10
Noeud 5	358.58	2.54	393.01	34.43
Noeud 6	358.32	2.89	389.83	31.51
Noeud 7	358.03	5.56	385.25	27.22
Noeud 8	355.20	4.43	378.61	23.41
Noeud 9	351.06	3.28	377.48	26.42
Noeud 10	349.15	3.97	378.68	29.53
Noeud 11	348.98	4.02	378.68	29.70
Noeud 12	357.29	1.44	384.83	27.54
Noeud 13	356.24	1.98	384.71	28.47
Noeud 14	354.86	2.15	487.90	133.04
Noeud 15	355.98	27.39	484.97	128.99
Noeud 16	355.71	5.04	383.17	27.46
Noeud 17	354.19	3.12	492.23	138.04
Noeud 18	355.59	2.81	485.39	129.80
Noeud 19	356.57	4.14	384.71	28.14
Noeud 20	354.91	4.35	486.27	131.36
Noeud 21	357.8	7.48	383.15	25.35
Noeud 22	357.59	4.06	383.36	25.77
Noeud 23	359.11	3.65	383.34	24.23
Noeud 24	358.74	1.98	383.38	24.64
Noeud 25	359.05	8.18	387.92	28.87
Noeud 26	359.90	4.60	379.18	19.28
Noeud 27	358.12	32.18	375.65	17.53
Noeud 28	356.40	3.37	376.16	19.76
Noeud 29	358.62	4.77	399.30	40.68

Ces résultats se traduisent par les graphiques suivants :

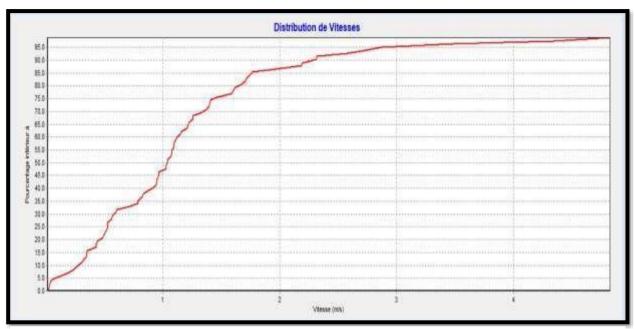


Figure III. 1 : Distribution des vitesses dans le réseau existant (cas de point l'horizone 2024)

On remarque que:

- 75 % des vitesses sont inférieur à 1.5 m/s.
- 17.5 % des vitesses sont entre à 1.5 et 2.5 m/s.
- 7.5 % des vitesses sont supérieur à 2,5 m/s.

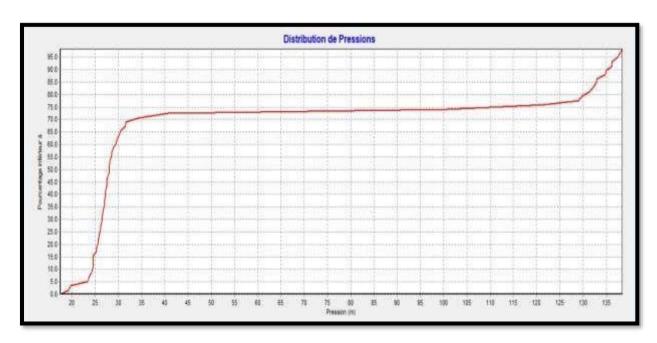


Figure III. 2 : Distribution des pressions dans le réseau existant (cas de point l'horizone 2024)

On remarque que:

- 70 % des pressions sont inférieur à 32.5 m.c.e.
- 10 % des pressions sont entre 32.5 à 130 m.c.e.
- 20% des pressions sont supérieur à 130 m.c.e.

Remarque:

On observe que la pression aux nœuds du réseau est supérieure à 3,5 bar et très élevée pratiquement sur la totalité du réseau, avec des points morts (conduits en impasse) où la pression augmente. Cette augmentation de pression est due à l'injection directe dans le réseau, provoquant une incompatibilité entre le régime de refoulement et le régime de consommation d'eau, ainsi qu'un vieillissement prématuré des conduites. L'impact est important en raison de la forte demande en eau, particulièrement pendant les heures de pointe. De plus, les vitesses dans les canalisations sont pour la majorité extrêmement inférieure à 1,5 m/s. Ces sous-vitesses sont causées par un surdimensionnement des diamètres des canalisations, ce qui peut entraîner des dépôts importants à l'intérieur des canalisations et une prolifération accrue des bactéries, l'eau stagnant dans certaines zones (bouts de ligne).

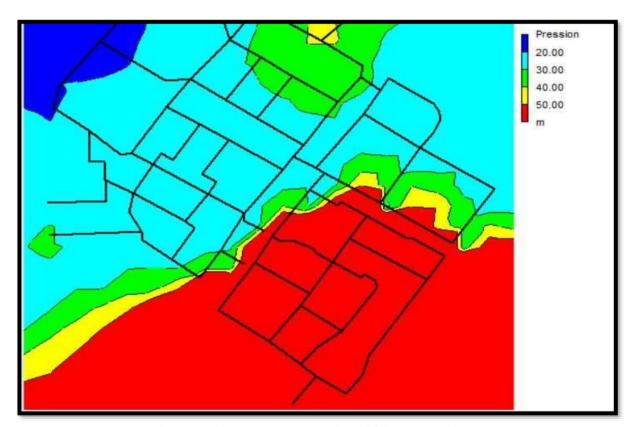


Figure III. 3 : courbe de pression 2024 (cas de pointe)

RESULTATS DE SIMULATION

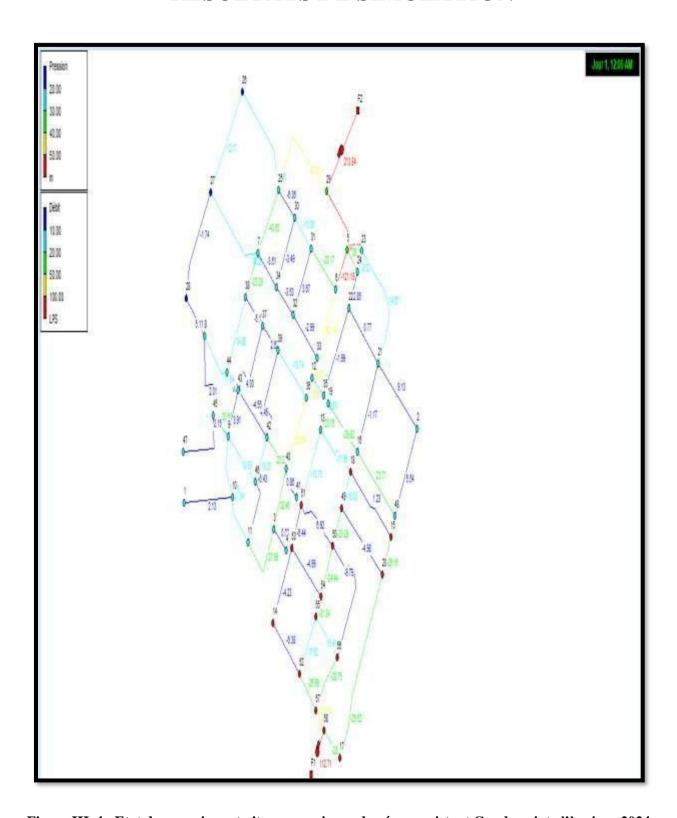


Figure III. 4 : Etat des pressions et vitesses au niveau du réseau existant Cas de pointe l'horizon 2024

III.5.3 Cas de pointe + incendie (horizon 2024) :

Étant donné que nous avons une injection directe dans le réseau, nous constatons un manque d'ouvrages de stockage, tels que les châteaux d'eau. Cela entraîne une insuffisance dans les réserves d'incendie de notre réseau, due à un manque dans les châteaux d'eau. Par conséquent, nous devons projeter des châteaux d'eau pour répondre à ces besoins.

III.5.4 Cas de pointe (l'horizon 2054) : Débit de point (route) :

$$Qp = Qmaxh = \sum Qr + \sum Qconc$$

Avec:

• Qmaxh: débit consommé (l/s)

• Qr : est le débit en route globale (l/s).

• Qconc: Débit concentré (1/s), dans notre cas Qconc = 0

• Qp : Débit de pointe (1/s).

AN:

$$\sum Qr = Qp = Qmaxh = 934.895 \, m3/h = 259.69 \, l/s$$

Débit spécifique :

Le débit spécifique c'est le débit transité à travers un mètre de conduite pendant une seconde, est définie comme étant le rapport entre le débit route et la somme des longueurs des tronçons où il y a une distribution en route.

On écrit:

$$q_{sp} = \frac{\sum_{Q_{r^i}}}{\sum_{L_I}}$$
 III. 5

AN:

$$qsp = 259.69/14956.12 = 0.01736366 \ l/s/ml$$

Débit en route de chaque tronçon :

Il est donné par la formule suivante :

$$qri = qsp \times Li$$
 [1/s]

Avec:

• **qri**: Débit en route de chaque tronçon (l/s).

• **qsp**: Débit spécifique (l/s/ml).

Sachant que \sum Qni = Qp = **259.69** l/s

Tableau III. 8 : Calcul des débits nodaux (réseaux actuel l'horizon 2054). (Voir l'annexe 6)

1 ableau 1	11. 8 : Caicui	des debits nodau		rnorizon 20:	54). (Voir l'annexe 6)
Nœud	Tronçons	Longueur(m)	Qsp (l/s/ml)	Qr (l/s)	QN= $0.5*\sum Qr(1/s)$
N01	N1-N10	300	0.01736	5.209	2.605
N02	N2-N21	263.2	0.01736	4.570	4.398
	N2-N48	243.35	0.01736	4.225	4.390
N03	N03-N40	150.9	0.01736	2.620	
	N03-N11	245	0.01736	4.254	4.455
	N03-N04	117.25	0.01736	2.036	
N04	N04-N03	117.25	0.01736	2.036	1.018
N05	N05-N06	102	0.01736	1.771	
	N05-N24	222	0.01736	3.855	4.013
	N05-N29	138.2	0.01736	2.400	
N06	N06-N05	102	0.01736	1.771	
	N06-N31	109.8	0.01736	1.907	3.548
	N06-N33	196.85	0.01736	3.418	
N07	N07-N27	345.6	0.01736	6.001	
	N07-N34	161.2	0.01736	2.799	
	N07-N38	80.55	0.01736	1.399	6.821
	N07-N25	198.3	0.01736	3.443	
N08	N08-N28	187.2	0.01736	3.250	
	N08-N44	137.35	0.01736	2.385	5.425
	N08-N45	300.3	0.01736	5.214	
N09	N09-N10	105.5	0.01736	1.832	
- 1 - 1	N09-N43	139.35	0.01736	2.420	
	N09-N45	76.2	0.01736	1.323	4.019
	N09-N46	141.9	0.01736	2.464	
N10	N10-N1	300	0.01736	5.209	
-,	N10-N09	105.5	0.01736	1.832	4.867
	N10-N11	155.1	0.01736	2.693	
N11	N11-N10	155.1	0.01736	2.693	
	N11-N03	245	0.01736	4.254	4.930
	N11-N46	167.75	0.01736	2.913	
N12	N12-N33	51.1	0.01736	0.887	
	N12-N35	123.7	0.01736	2.148	1.762
	N12-N36	28.2	0.01736	0.490	
N13	N13-N19	83.8	0.01736	1.455	
	N13-N18	210.5	0.01736	3.655	4.139
	N13-N51	182.5	0.01736	3.169	
N14	N14-N53	299.3	0.01736	5.197	
	N14-N52	198	0.01736	3.438	4.317
N15	N15-N18	260.6	0.01736	4.525	0.155
	N15-N20	103	0.01736	1.788	3.157
N16	N16-N19	231.2	0.01736	4.014	
	N16-N21	241.65	0.01736	4.196	5.494
	N16-N48	160	0.01736	2.778	
N17	N17-N20	490	0.01736	8.508	5 202
	N17-N58	130	0.01736	2.257	5.383

III.6 Résultats de la simulation hydraulique du réseau horizon 2054 :

III.6.1 Les vitesses et pertes de charges :

Tableau III. 9 : Vitesses et pertes de charges dans le réseau existant en cas de pointe) l'horizon 2054 (Voir l'annexe 7)

Tronçon	longueur	Diamétre Intrieur	matérieux	débit	vitesse	Perte
	m	mm		LPS	m/s	m/km
Tuyau 1	117.25	46	PEHD	1.53	0.92	25.89
Tuyau 2	155.1	814.6	PEHD	-16.72	0.03	0.00
Tuyau 3	210.5	58	PEHD	-15.06	5.70	664.49
Tuyau 4	83.8	814.6	PEHD	20.59	0.04	0.00
Tuyau 5	241.65	154.8	PEHD	-6.70	0.36	0.95
Tuyau 6	333.50	230.8	PEHD	10.36	0.25	0.30
Tuyau 7	52.30	230.8	PEHD	15.38	0.37	0.62
Tuyau 8	371.45	115.4	PEHD	14.46	1.38	17.74
Tuyau 9	345.60	115.4	PEHD	11.43	1.09	11.30
Tuyau 10	278	115.4	PEHD	6.00	0.57	3.34
Tuyau 11	187.20	83	PEHD	0.64	0.12	0.29
Tuyau 12	288.50	83	PEHD	5.55	1.03	15.14
Tuyau 13	138.20	230.8	PEHD	-178.40	4.26	67.64
Tuyau 14	424.75	184.6	PEHD	74.72	2.79	38.77
Tuyau 15	198.30	184.6	PEHD	-50.70	1.89	18.23
Tuyau 16	160.70	115.4	PEHD	-5.49	0.52	2.83
Tuyau 17	136.70	154.8	PEHD	-15.95	0.85	4.83
Tuyau 18	109.80	154.8	PEHD	-25.98	1.38	12.29
Tuyau 19	161.20	115.4	PEHD	-1.19	0.11	0.17
Tuyau 20	197.25	69.2	PEHD	-4.02	1.07	20.49
Tuyau 21	197.10	69.2	PEHD	4.26	1.13	22.95
Tuyau 22	137.10	115.4	PEHD	-3.62	0.35	1.31
Tuyau 23	107.70	115.4	PEHD	-5.12	0.49	2.48
Tuyau 24	196.85	230.8	PEHD	114.72	2.74	28.47
Tuyau 25	222	115.4	PEHD	26.36	2.52	56.71
Tuyau 26	217.75	69.2	PEHD	0.34	0.09	0.22

Chapitre III : diagnostic du réseau d'AEP existant

III.6.2 Les charges et les pressions :

Tableau III. 10 : charges et pressions dans le réseau existant en cas de pointe l'horizon 2054. (Voir l'annexe 8)

Noeud	Elevation	Débit nodale	Cote peizométrique	Pression
	m	LPS	m	m
Noeud 1	346.70	3.91	304.38	-42.32
Noeud 2	357.51	6.60	316.26	-41.25
Noeud 3	353.07	6.68	311.56	-41.51
Noeud 4	353.03	1.53	308.53	-44.50
Noeud 5	358.58	6.02	329.33	-29.25
Noeud 6	358.32	5.32	324.67	-33.65
Noeud 7	358.03	10.23	318.59	-39.44
Noeud 8	355.20	8.14	310.37	-44.83
Noeud 9	351.06	6.03	309.92	-41.14
Noeud 10	349.15	7.30	310.22	-38.93
Noeud 11	348.98	7.39	310.22	-38.76
Noeud 12	357.29	2.64	317.84	-39.45
Noeud 13	356.24	6.21	317.77	-38.47
Noeud 14	354.86	6.48	449.76	94.90
Noeud 15	355.98	4.74	461.79	105.81
Noeud 16	355.71	8.24	316.84	-38.87
Noeud 17	354.19	8.07	467.76	113.57
Noeud 18	355.59	7.27	457.65	102.06
Noeud 19	356.57	4.34	317.77	-38.80
Noeud 20	354.91	11.27	461.94	107.03
Noeud 21	357.8	13.75	316.61	-41.19
Noeud 22	357.59	7.47	316.66	-40.93
Noeud 23	359.11	5.02	316.71	-42.40
Noeud 24	358.74	4.98	316.74	-42.00
Noeud 25	359.05	15.04	322.21	-36.84
Noeud 26	359.90	8.46	315.62	-44.28
Noeud 27	358.12	11.88	314.69	-43.43
Noeud 28	356.40	6.19	310.32	-46.08
Noeud 29	358.62	7.33	338.68	-19.94

Chapitre III : diagnostic du réseau d'AEP existant

Ces résultats se traduisent par les graphiques suivants :

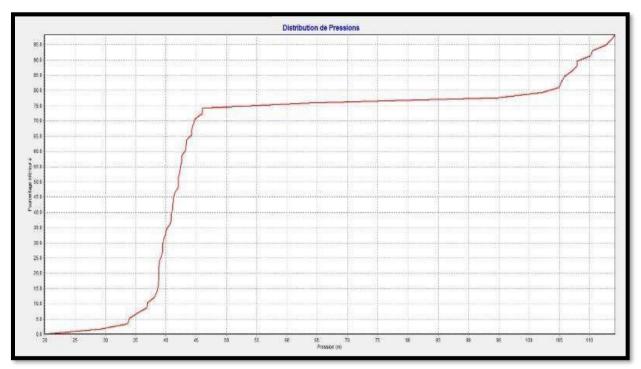


Figure III. 5 : Distribution des pressions dans le réseau existant (cas de point l'horizon 2054)

On remarque que:

- 75% des pressions sont inférieur à 20 m.c.e.
- 10% des pressions sont entre à 20 et 105 m.c.e.
- 15% des pressions sont supérieur à 105 m.c.e.



Figure III. 6 : Distribution des vitesses dans le réseau existant (cas de pointe l'horizon 2054)

Chapitre III : diagnostic du réseau d'AEP existant

On remarque que:

- 80 % des vitesses sont inférieur à 2 m/s.
- 15 % des vitesses sont entre à 2 et 4m/s.
- 5 % des vitesses sont supérieur à 4 m/s

Remarque:

On observe que la pression aux nœuds du réseau est inférieure à 1 bar (cas dedépression), avec des points morts (conduits en impasse) où la pression est plus élevée. Ces problèmes de pression sont dus à l'injection directe dans le réseau, ce qui provoque une incompatibilité entre le régime de refoulement et le régime de consommation d'eau, ainsi qu'un vieillissement prématuré des conduites. L'impact est significatif en raison de la forte demande en eau, particulièrement pendant les heures de pointe. De plus, les vitesses dans les canalisationssont, pour la majorité, extrêmement inférieures à 1,5 m/s. Ces sous-vitesses résultent d'un surdimensionnement des diamètres des canalisations, de dépôts importants à l'intérieur des conduites et d'une prolifération accrue des bactéries, avec de l'eau stagnante dans certaines zones (bouts de ligne). En revanche, dans certaines sections, les vitesses sont très élevées, supérieures à 2 m/s, ce qui peut entraîner des régimes transitoires dans les canalisations, susceptibles de provoquer des dommages aux équipements et aux matériaux du réseau

Observation:

Après la simulation et l'analyse des résultats du réseau à l'horizon 2054, nous observons des pressions négatives sur la majorité des conduites et une variation inacceptable de la vitesse due à l'injection directe dans le réseau. L'absence de châteaux d'eau dans le système d'alimentation cause une grande panne dans les conduites, due à la grande variation des débits qui provoque une fatigue des matériaux et un vieillissement prématuré des équipements du réseau. De plus, cela entraîne un manque de réserve d'incendie (l'indétection de débit d'incendie).

Après la simulation du modèle du système d'AFP de la commune de Zelfana, nous constatons l'importance des châteaux d'eau dans le système d'alimentation. Pour cette raison, nous allons projeter les châteaux d'eau nécessaires dans le système.

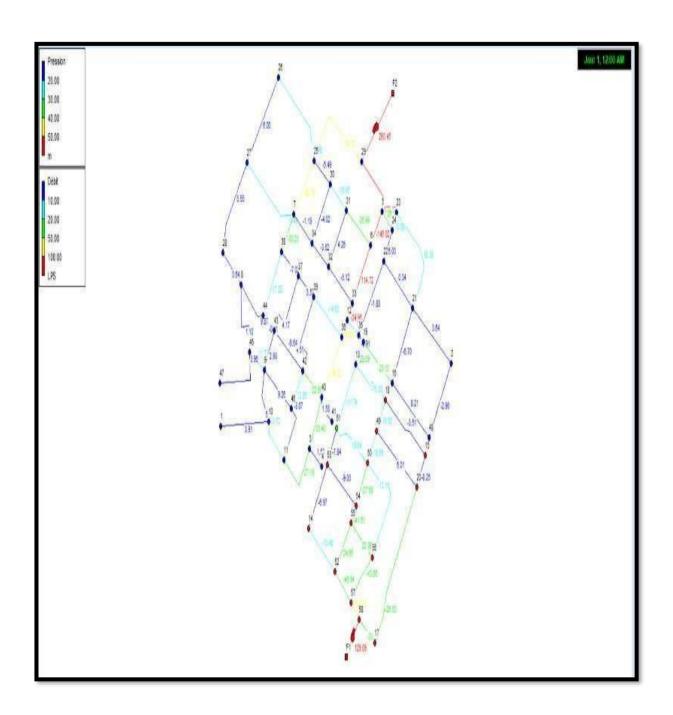


Figure III. 7 : Etat des pressions et vitesses au niveau du réseau existant (Cas de pointe l'horizon 2054)

.

Chapitre III: diagnostic du réseau d'AEP existant

Conclusion:

Dans ce chapitre, nous avons étudiés l'état physique et hydraulique du commun de ZELFANA.

Le diagnostic a permis de cerner de plus prêt certains problèmes du réseau qui sont

- ✓ Des problèmes sur le manque des ouvrages de stockage
- ✓ L'injection directe dans le réseau
- ✓ Des pressions faibles
- ✓ La création d'un régime intense (transitoire) dans les conduites. Ce qui endommager les pèces et les appareilles de mesure
- ✓ Des vitesses faibles
- ✓ Des débits insuffisants

Après ce diagnostic nous devons faire une réhabilitation donc nous Allons projeter des nouveaux châteaux d'eaux et maintenir les conduites par ce que sont en bon état avec un type des matériaux en PEHD et en respectant les normes de pose de canalisation. Renouvellement des accessoires, nous allons mettre une nouvelle source p

C'est pour permettre à la population de la commune de **Zelfana** d'avoir accès à de l'eau de bonne qualité et en quantité suffisante.

Chapitre IV:

Les Réservoir de stockage

Introduction:

Un réservoir est un récipient scellé de différentes capacités, conçu pour fournir une alimentation adéquate en eau potable à une agglomération. L'étude du stockage est d'une grande importance économique et technique, car elle représente entre 40 et 50 % du coût total de l'installation.

Après avoir évalué les besoins en eau de la population, il est nécessaire de sélectionner un réseau capable de fournir une alimentation en eau potable fiable à la localité concernée. L'objectif principal de ce chapitre est de déterminer les ouvrages de stockage nécessaires pour le réseau étudié.

IV.1 Classification des reservoirs:

Les réservoirs doivent être conçus et construits à l'aide de matériaux garantissant leur stabilité et leur durabilité, tout en préservant la qualité de l'eau stockée. En fonction des matériaux de construction utilisés, les réservoirs peuvent être classés en trois catégories : les réservoirs métalliques, les réservoirs en maçonnerie et les réservoirs en béton armé.

En fonction du site d'implantation ou des conditions topographiques, les réservoirs peuvent également être classés en quatre catégories :

- Les réservoirs enterrés,
- Les réservoirs semi-enterrés,
- Les réservoirs posés sur le sol
- Les réservoirs surélevés (châteaux d'eau).

IV.1.1 Les réservoirs rectangulaires ou carrés

Sont utilisés principalement pour les grandes capacités. Dans ce cas, le compartimentage est facilement réalisable pour assurer la continuité de la distribution. Ils sont construits en béton armé, chaque compartiment devant avoir la même tuyauterie qu'un réservoir unique.

IV.1.2 Les réservoirs circulaires

Sont préférés pour les petites capacités. La position de la tuyauterie est la même que pour les réservoirs rectangulaires. Ils sont construits en béton armé.

Dans le cas de deux réservoirs jumelés, la chambre de manœuvre est prévue entre eux.

Les réservoirs enterrés et semi-enterrés sont préférables aux réservoirs surélevés car ils présentent les avantages suivants :

- Étude architecturale simplifiée et moins sujette à critique.
- Étanchéité plus facile à réaliser.
- Conservation de l'eau à une température constante.

IV.2 Rôle des réservoirs :

Le réservoir remplit plusieurs fonctions techniques et économiques importantes :

IV.2.1 Fonctions techniques :

- ➤ Il assure la régulation du débit pour tous les ouvrages situés en amont et en aval.
- > Il régule la pression dans le réseau de distribution.
- ➤ Il garantit la continuité de l'approvisionnement en cas de panne dans les ouvrages situés en amont.
- ➤ Il participe au traitement de l'eau en permettant l'utilisation de réactifs.

IV.2.2 Fonctions économiques :

- ➤ Il permet de réduire les investissements sur les autres ouvrages du réseau d'AEP.
- > Il permet de réduire les coûts de l'énergie.
- La capacité d'un réservoir dépend du mode d'exploitation des ouvrages en amont et de la variabilité de la demande en eau.
- L'emplacement d'un réservoir dépend de la topographie de l'agglomération : il peut être enterré, semi-enterré ou surélevé.

IV.2.3 Emplacement des réservoirs :

Le choix de l'emplacement du réservoir prend en compte le relief afin de minimiser les coûts d'investissement et d'exploitation. Pour cela, plusieurs facteurs doivent être pris en considération :

- Le point le plus éloigné à alimenter.
- La hauteur maximale des bâtiments.
- Les pertes de charge entre le réservoir et le point le plus défavorisé de la ville.
- L'état du relief de la ville qui peut favoriser la construction d'un réservoir au sol plutôt qu'en hauteur, en raison des avantages suivants :
- Une réalisation plus simple du coffrage.
- Une étanchéité plus facile à réaliser

IV.3 Principe de fonctionnement :

Les réservoirs ont plusieurs fonctions principales :

IV.3.1 Régulation du débit :

Ils assurent la régulation entre le régime d'adduction (déterminé par le pompage et le traitement) et le régime de distribution (déterminé par la consommation).

IV.3.2 Régulation de la pression :

Ils permettent de fournir aux abonnés une pression suffisante et plus ou moins constante

en tout point du réseau, en compensant les variations de pression causées par la mise en marche

et l'arrêt des pompes.

IV.3.3 Sécurité:

Ils offrent une réserve d'eau en cas d'incendie ou de demande exceptionnelle, et présentent

d'autres avantages tels que :

• Une réserve pour les imprévus tels que les ruptures, les pannes de pompes, les

réparations et les extensions du réseau.

• La possibilité de pomper la nuit lorsque les tarifs d'électricité sont les plus bas.

• Une régularité dans le fonctionnement du pompage, les pompes refoulant à un débit

constant.

• Une simplification de exploitation.

• Une sollicitation régulière des points d'eau qui ne subissent pas de variations

journalières au moment de la pointe.

• Une régularité des pressions dans le réseau.

IV.4 Méthodes de calcul des capacités des réservoirs :

Le dimensionnement d'un réservoir doit prendre en compte les fonctions qui lui sont

assignées et les conditions les plus exigeantes (demande de pointe) auxquelles il sera soumis

pendant toute sa durée de vie.

IV.4.1 Le cas d'un réservoir tampon :

Le réservoir tampon est un réservoir de régulation qui assure la transition entre

l'écoulement en charge provenant de la station de pompage et l'écoulement gravitaire vers le

réservoir d'alimentation. Il garantit également un volume ou une réserve de sécurité pour la mise

en charge de la conduite gravitaire.

La formule pour calculer le volume du réservoir tampon est la suivante :

V = Qtr * t/2 IV. 1

Avec:

• V : volume du réservoir

• Qtr : débit transitant dans la conduite

• t : temps de vannage du robinet situé à l'extrémité de la conduite gravitaire.

55

IV.4.2 Le cas d'un réservoir d'alimentation :

Pour déterminer la capacité d'un réservoir d'alimentation, il est nécessaire de prendre en compte les variations de débit à l'entrée comme à la sortie, le mode d'exploitation des ouvrages situés en amont et la variabilité de la demande en eau.

La capacité du réservoir est calculée en fonction du débit d'apport et du débit de sortie, auquel s'ajoute la réserve incendie. Deux méthodes peuvent être utilisées pour ce calcul : la méthode analytique et la méthode graphique.

IV.4.2.1 La méthode analytique :

Cette méthode prend en compte les débits d'apport et les débits de sortie du réservoir et consiste à calculer le résidu dans le réservoir pour chaque heure de la journée. Le volume de régulation est déterminé à l'aide de la formule suivante :

$$Vr = a \, (\%) \times maxj / 100 \, [m3] \, IV. 2$$

Avec:

- Vr est la capacité résiduelle en m3,
- a est la fraction horaire du débit maximum journalier en %,
- Qmax est la consommation maximale journalière en m3/j.

Le volume total du réservoir est obtenu en ajoutant le volume d'incendie au volume de régulation, comme suit :

$$VT = (Vr + Vinc) IV. 3$$

Avec:

- VT est la capacité totale du réservoir en m3
- Vinc est le volume d'incendie estimé à 120 m3.

IV.4.2.2 Méthode graphique :

La méthode graphique prend en compte la courbe de consommation totale, obtenue à partir des coefficients de variation horaire de la consommation, et la courbe du débit pompé en fonction de la durée de pompage. La capacité du réservoir est déterminée en fonction des écarts maximaux entre les cumuls de consommation et les cumuls d'apports. La capacité totale du réservoir est égale à la somme des deux variations de volume ($\Delta V1$ et $\Delta V2$).

Le volume total sera:

$$Vt = Vr + Vinc$$

IV.4.3 Analyse de la capacité de stockage :

Le réservoir est un ouvrage conçu pour stocker l'eau et réguler les débits et les pressions. Pour estimer la capacité du réservoir, il est important de prendre en compte les variations de débit à l'entrée et à la sortie. La capacité doit être calculée en fonction des variations journalières de la consommation d'eau, en prenant en compte la journée de pointe de consommation et la réserve d'eau destinée à l'incendie.

IV.4.4 Principe de calcul:

Pour estimer la capacité d'un réservoir, deux méthodes peuvent être utilisées : la méthode graphique ou la méthode analytique. Dans ce cas, nous utilisons la méthode analytique qui consiste à déterminer le résidu dans le réservoir pour chaque heure de la journée afin de calculer son volume, qui est donné par la formule suivante :

$$Vr = a (\%) \times maxj / 100 \text{ [m3] IV. 4}$$

Avec:

- Vr est la capacité résiduelle en m3,
- a est la fraction horaire du débit maximum journalier en %,
- Qmaxi est la consommation maximale journalière en m3/j.

Le volume total du réservoir est obtenu en ajoutant le volume d'incendie au volume résiduel, comme suit :

$$VT = V + Vinc [m3] IV. 5$$

Avec:

- VT est la capacité totale du réservoir en m3,
- Vr est la capacité résiduelle en m3
- Vinc est le volume d'incendie estimé à 120 m3.

IV.4.5 Calcul du Débit d'apport (Qapp) :

Le calcul du débit d'apport est basé sur le débit d'apport et le débit de consommation. Le débit d'apport (Qapp) est réparti sur 24 heures, avec un écoulement pompé pendant 14 heures sur 24 vers le réservoir projeté.

La formule pour calculer Qapp est la suivante :

$$Qapp = Qmax.j / 20 heures (m3/j)IV. 6$$

Avec:

• Qapp est le débit entrant dans le réservoir projeté en m3/j.

Tableau IV. 1 : Détermination de la capacité du stockage nécessaire au long terme (2054).

Heure	Consommation	Qarrivé	Stockage	Départ de	capacité
	horaire			distribution	horaire
	%	%	%	%	%
0-1	1.5	5	3.5	-	12
1-2	1.5	5	3.5	-	15.5
2-3	1.5	5	3.5	-	19
3-4	1.5	5	3.5	-	22.5
4-5	2.5	5	2.5	-	25
5-6	3.5	5	1.5	-	26.5
6-7	4.5	5	0.5	-	27
7-8	5.5	5	-0.5	-	26.5
8-9	6.25	5	-1.25	-	25.25
9-10	6.25	5	-	0.6	24.65
11-12	6.25	5	-1.25	-	23.4
12-13	6.25	5	-1.25	-	22.15
13-14	5	5	0	0	22.15
14-15	5	5	0	-	22.15
15-16	5.5	5	-0.5	-	21.65
16-17	6	5	-1	-	20.65
17-18	6	5	-1	-	19.65
18-19	5.5	0	-	5.5	14.15
19-20	5	0	-	5	9.15
20-21	4.5	0	-	4.5	4.65
21-22	4	0	-	4	0
22-23	3	5	2	-	2
23-24	2	5	3	-	5

Alors le maximum des restes dans le réservoir : a(%)= 27%

Ce tableau nous donne un résidu maximum égal à 26.5 %, sans prise en compte de la réserve d'incendie donc le volume du réservoir est donné par la relation suivante :

La capacité totale du réservoir (Vt) est calculée en ajoutant la réserve d'incendie (Vinc) au produit du maximum des restes de la consommation maximale journalière (a%) et de la

consommation maximale journalière (Qmaxj), divisé par 100, comme suit :

$$Vt = ((\%) \times Qmax_i) / 100 + Vinc \text{ IV. } 7$$

Avec:

- a(%) représente le maximum des restes de Qmaxj en pourcentage
- Vinc est la réserve d'incendie qui est égale à 120 m3.

Tableau IV. 2 : Bilan de capacité de stockage.

	Actuel 2024	Long
Horizons	Actual 2024	terme 2054
a(%)	27	27
Q max j (m3/j).	5789.888	14958
Vu (m ³).	1563.269	4039
Vinc (m ³).	120	120
Besoins en stockage (m3).	1683.269	4159

IV.4.6 les réservoirs existants :

Étant donné qu'il y a une injection directe dans le réseau, il n'y a pas d'ouvrages de stockage, à l'exception des châteaux d'eau qui sont déjà existants dans le centre-ville de Zelfana, mais qui ont été abandonnés et sont dans un état dégradé et sont en traine de réparation. Un château d'eau de 300m3 et déjà en traine réparation qui alimente le sud de center ville-zelfana Le problème de manque de stockage calculé pour le centre-ville zelfana sera résolu par la réalisation 3 châteaux d'eaux (Projeté) de volume 1000m3.

➤ Volume projeté = Besoin de stockage.

IV.5 Dimensionnement du réservoir :

Calculées en utilisant la formule suivante :

$$D = \sqrt{(4 \times Vres)/(\pi \times H)}$$
 IV. 8

où:

- V res représente le volume du réservoir en mètres cubes.
- D représente le diamètre du réservoir en mètres
- H représente la hauteur d'eau dans le réservoir, qui peut varier entre 3 et 6 mètres.

Cependant, dans les grands ouvrages, cette hauteur peut atteindre 7 à 8 mètres.

Dans ce cas, nous avons choisi H = 8 mètres.

En utilisant la formule ci-dessus, nous obtenons :

$$D = \sqrt{(4 \times 1000)/(\pi \times 8)} = 12,61 \text{ mètres} \approx 13 \text{ mètres}$$

Pour déterminer la hauteur d'eau destinée à lutter contre l'incendie, nous divisons le volume D'incendie par la superficie de la section du réservoir :

Hauteur d'incendie =
$$120 / (\pi \times (D/2)^2) = 0.90$$
 mètre

Par conséquent :

- ❖ La hauteur destinée à la distribution est de 7.1 mètres (H hauteur d'incendie).
- ❖ La hauteur destinée à l'incendie est de 0,9 mètre.

IV.6 Emplacement et altitude :

Les 4 châteaux d'eau de volume 1000 m3 qui sera projeté doivent alimenter ensemble le réseau dans le cas de forte consommation, en choisissant un pointdéfavorable commun (un nœud "X") aux la cote du radier du châteaux de volume 1000 m3 sera comme inconnue!

Donc on pose l'équation suivante :

Cote terrain nœud "X" + Pression $(0.8 \text{ bars}) = \text{cote radier R}_11000 - \text{somme des pdc}$ (du nœud "X" jusqu'à R1000).

On fait la répartition arbitraire des débits en respectant les deux lois de KIRCHOFF (loi des nœuds et loi des mailles), nous arrivons à l'obtention les résultats suivants :

Donc on pose l'équation suivante :

➤ Cote terrain nœud "X1" + Pression (0,8 bars) = cote radier R11000 - somme des pertes des charges (dunœud "X1" jusqu'à R1000).

Chapitre IV : Les réservoirs de stockage

Tableau IV. 3 : le chemin le plus long entre le point défavorable et le R1.

Tableau IV. 5. le chemin le plus long entre le point détavoi able et le KI.						
Tronçon	Débit	Longueur	Perte des			
			charges			
	l/s	m	m, c, e			
C1	3.19	300	0.019			
C2	6,10	105.50	0.003			
C3	12.33	76.20	0.010			
C4	2.01	132.75	0,00045			
C5	10.35	137.35	0.0093			
C6	1.62	187.20	0,0015			
C7	4.57	288.50	0.0146			
C8	5,03	278	0.0027			
C9	13,49	371.45	0.015			
C10	9,01	160.70	0.007			
C11	18,99	136.70	0.006			
C12	28,30	109.80	0.014			
C13	125,44	102	0.033			
C14	119,13	138.20	0.030			

❖ Cote terrain nœud "X1" + Pression (0,8 bars) = cote radier R11000 - somme des pdc (du nœud "X1" jusqu'à R1000).

On choisir la cote terrain de nœud X = 358.62m

- ✓ Cote radier R12000= 358.62+0.8+ 0.16555
- ✓ Cote radier R12000= 359.5855 m
- ✓ Cote du trop-plein : CTP =366.68m
- ➤ Cote terrain nœud "X2" + Pression (0,8 bars) = cote radier R21000 somme des pertes des charges (dunœud "X2" jusqu'à R21000).

Tableau IV. 4 : le chemin le plus long entre le point défavorable et le R2.

Tronçon	Débit	Longueur	Perte des charges
	l/s	m	m, c, e
C1	3.19	300	0.019
C2	6.10	105.50	0.003
C3	12.33	76.20	0.01
C4	2.01	132.75	0.00045
C5	10.35	137.35	0.0093
C6	1.62	187.20	0.0015
C7	4.57	288.50	0.0146
C8	5.03	278	0.0027
C9	13.49	371.45	0.015
C10	9.01	160.70	0.007
C11	18.99	136.70	0.006
C12	28.30	109.80	0.014
C13	125.44	102	0.019
C14	12.33	222	0.019
C15	33.30	52.30	0.003

❖ Cote terrain nœud "X2" + Pression (0,8 bars) = cote radier R21000 - somme des pertes charges (dınœud "X2" jusqu'à R21000).

On choisir la cote terrain de nœud X = 359.11m

- ✓ Cote radier R21000= 359.11+0.8+ 0.18055
- ✓ Cote radier R21000= 360.566 m
- ✓ Cote du trop-plein : CTP =367.66m
- ➤ Cote terrain nœud "X3" + Pression (0,8 bars) = cote radier R31000 somme des pertes des charges (du nœud "X3" jusqu'à R31000).

Tableau IV. 5 : le chemin le plus long entre le point défavorable et le R3.

Tronçon	Débit	Longueur	Pertes des
	l/s	m	charges m, c, e
C1	3.68	304	0.01157
C2	11.06	76.2	0.00068
C3	7.85	141.9	0.001
C4	4.63	167.75	0.00261
C5	27.75	245	0.00381
C6	35.38	150.9	0.00606
C7	66.44	230.1	0.01258
C8	86.93	28.2	0.01103
C9	16.06	123.7	0.00045
C10	15.02	18.42	0.0012
C11	29.47	231.2	0.00428
C12	19.34	256.85	0.00591

❖ Cote terrain nœud "X3" + Pression (0,8 bars) = cote radier R31000 - somme des pertes des charges (du nœud "X3" jusqu'à R31000).

On choisir la cote terrain de nœud X = 356.04m

- ✓ Cote radier R31000= 356.04+0.8+ 0.06118
- ✓ Cote radier R31000= 356.90 m
- ✓ Cote du trop-plein : CTP =364 m
- ightharpoonup Cote terrain nœud "X4" + Pression (0,8 bars) = cote radier R₄1000 somme des pertes des charges (du nœud "X4" jusqu'à R₄1000).

Tableau IV. 6 : le chemin le plus long entre le point défavorable et le R4.

Tronçon	Débit	Longueur	Pertes des charges
	l/s	m	m, c, e
C1	2.13	300	0.00617
C2	17.95	155.10	0
C3	28.01	245	0.00582
C4	32.48	150.90	0.0077
C5	58.15	230.10	0.014
C6	10.79	162.65	0.01
C7	2.66	94.20	0.0038
C8	5.12	15030	0.012
C9	14.77	230.80	0.0049
C10	11.56	137.35	0.0115
C11	5.14	187.20	0.0136

❖ Cote terrain nœud "X₄" + Pression (0,8 bars) = cote radier R₄1000 - somme des pertes des charges (du nœud "X₄" jusqu'à R41000).

On choisir la cote terrain de nœud X = 356.04m

- \checkmark Cote radier R₄1000= 356.40+0.8+ 0.08949
- ✓ Cote radier R41000= 357.28 m
- ✓ Cote du trop-plein : CTP =364.38m

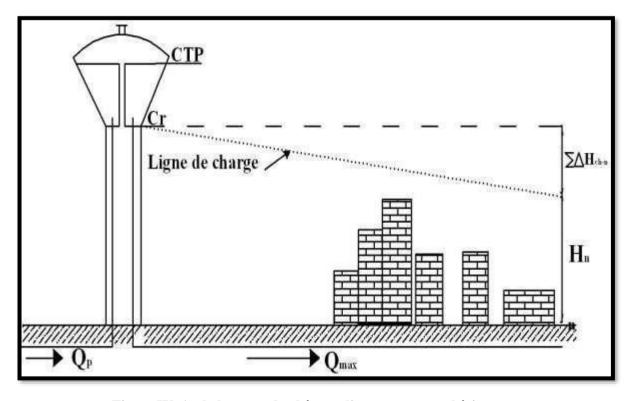


Figure IV. 1: la hauteur du château d'eau par apport bâtiment.

IV.7 Dimensions du réservoir projeté :

IV.7.1 Les dimensions générales d'un château d'eau :

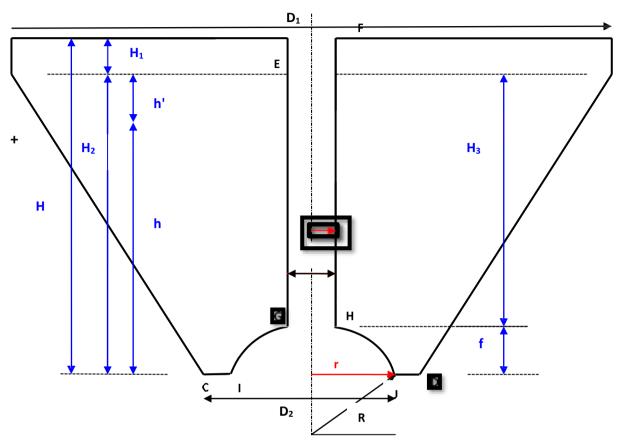


Figure IV. 2: Les dimensions générales d'un château d'eau

Le volume d'eau net est : V=1000m³

IV.7.2 La hauteur :

Elle est fixée d'après les conditions d'exploitation. Pour une meilleure exploitation, on a :

2m < h < 7 m

On prend h eau =7,10m

La hauteur total H = h + h' (diamètre de conduite d'alimentation); H = 8 m

IV.7.3 Le diamètre intérieur de la cuve :

 $D1 = 1,405 \, ^{3}\sqrt{V} = 1,405 \, ^{3}\sqrt{1000} = 14,05m \, \text{On prend: D1} = 20,00m$

On prend : D1 = 20,00m

D2=10,00m

D3=7,00m

IV.7.4 L'épaisseur de la paroi:

 $6cm \le e \le 15cm$ donc e = 10 cm

IV.7.5 Flèche de la coupole supérieure:

f = 0.104.D1 f = 2.08 m On prend: f = 2.1 m

IV.7.6 Flèche de la coupole inférieure :

f = 0.104. D2 f = 1.04 m On prend: f = 1 m

IV.7.7 L'épaisseur maximale de la paroi (la cuve) en haut :

 $e1 \ge h * D/4$

 $e1 \ge 8,00*20,00/4$ $e1 \ge 40$ On prend: e1 = 40,00 cm

IV.7.8 L'épaisseur maximale de la paroi à la base :

 $e2 = 0.207 * D^2$ $e2 = 0.207*(20.00)^2$ e2 = 82.8cm, On prend : e2 = 83.00cm

IV.8 Les équipements des réservoirs :

Les réservoirs sont équipés de divers tuyaux, éléments et accessoires pour permettre leur utilisation. Chacun d'entre eux est doté, entre autres, d'une conduite d'arrivée d'eau. Cette conduite se termine dans le réservoir et doit être équipée d'un dispositif d'obturation pour empêcher l'eau de dépasser son niveau maximum. Si l'alimentation en eau est gravitaire (comme dans notre cas), l'obturation se fait à l'aide d'un robinet flotteur. Si l'alimentation se fait par refoulement, un dispositif d'arrêt du moteur est nécessaire.

IV.8.1 La conduite d'arrivée :

Peut être installée de différentes manières :

a. Par le haut : soit en laissant l'eau tomber librement, soit en immergeant l'extrémité de la conduite pour qu'elle soit toujours submergée. La première méthode peut entraîner une oxygénation de l'eau, ce qui libère facilement le dioxyde de carbone dissous et favorise la formation de tartre dans le réservoir et les conduites.

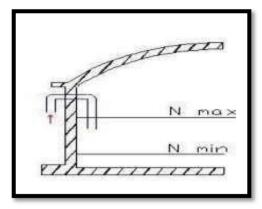


Figure IV. 4 : Arrivée par surverse (Noyée)

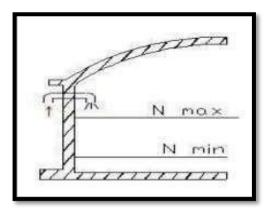


Figure IV. 3 : Arrivée par surverse (Chute libre).

b. **Par-dessous :** soit en passant à travers les parois du réservoir, soit en passant par le fond à travers le radier.



Figure IV. 6 : Arrivée par- dessous (Par le fond)

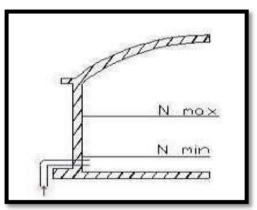


Figure IV. 5 : Arrivée par dessous (Par le bas).

NB: Notons aussi que, pour les châteaux d'eau, et pour des raisons économiques, on doit éviter des surélévations de plus de 40m. Dans notre cas la surélévation est 19.65 m < 40 m.

IV.8.2 Conduite de départ ou de distribution :

La conduite de distribution doit être installée à une hauteur minimale de 8,15 m ou 8,2 m au-dessus du radier, afin d'éviter que des boues ou des sables ne pénètrent dans le réseau de distribution. Pour éviter le phénomène de vortex, qui peut entraîner l'entrée d'air dans la conduite, l'extrémité de celle-ci est équipée d'une grille ou d'une crépine courbée.

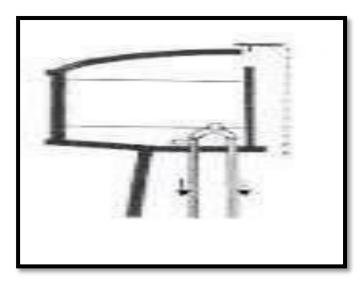


Figure IV. 7: conduite de distribution.

IV.8.3 Conduite de trop-plein :

La conduite de trop-plein a pour fonction d'évacuer l'excédent d'eau lorsque le niveau maximal est atteint dans le réservoir, en cas de défaillance du système d'arrêt des pompes ou de la vanne flotteur. Pour garantir une évacuation efficace de l'eau dans un délai raisonnable, la conduite de trop-plein doit être dimensionnée correctement. De plus, un siphon est installé pour empêcher l'introduction de corps étrangers dans la conduite.

IV.8.4 La conduite de vidange :

Est utilisée pour vider complètement le réservoir lorsque cela est nécessaire, par exemple pour des travaux de nettoyage ou de maintenance. Cette conduite doit être installée au point le plus bas du réservoir pour permettre une vidange complète. Le diamètre de la conduite doit être suffisant pour permettre une vidange rapide et efficace. Un robinet de vidange doit être installé à l'extrémité de la conduite pour contrôler le débit d'eau sortant du réservoir.

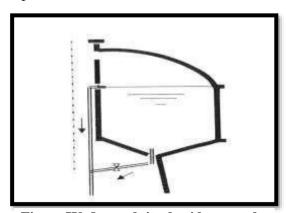


Figure IV. 8 : conduite de vidange et de trop-plein.

IV.8.5 Conduite By-pass:

Pour garantir la continuité de la distribution d'eau pendant le nettoyage du réservoir, il est nécessaire d'installer un by-pass entre la conduite d'arrivée et la conduite de distribution. Le by-pass est un tronçon de conduite qui permet de contourner le réservoir pendant les opérations de maintenance, afin que l'eau puisse continuer à être distribuée aux utilisateurs.

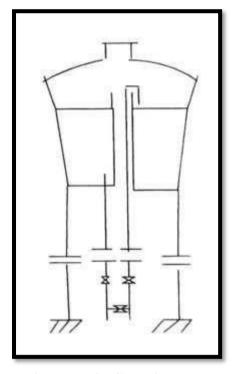


Figure IV. 9: Conduit by-pass.

IV.8.6 Matérialisation de la réserve d'incendie :

Pour garantir la disponibilité d'une réserve d'eau en cas d'incendie, il est important d'en restreindre l'utilisation. Pour ce faire, un système de siphon est installé. En temps normal, la vanne 1 est fermée et la vanne 2 est ouverte. En cas d'incendie, il suffit d'ouvrir la vanne 1 pour accéder à la réserve d'eau. Cependant, cette méthode peut entraîner la formation d'une zone d'eau stagnante dans le réservoir, ce qui peut causer une odeur désagréable à long terme. Le système de siphon est équipé d'un évent qui empêche l'utilisation de l'eau en dessous du niveau N-N tant que la vanne 2 (vanne d'incendie) est fermée. Son fonctionnement est le suivant .

- En temps normal : les vannes 3 et 1 sont ouvertes, tandis que la vanne 2 est fermée.
- En cas d'incendie : il suffit d'ouvrir les vannes 1 et 2 pour accéder à la réserve d'eau.

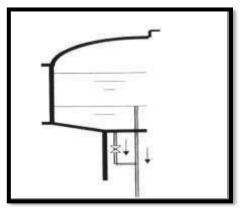


Figure IV. 10 : système d'incendie a deux prise.

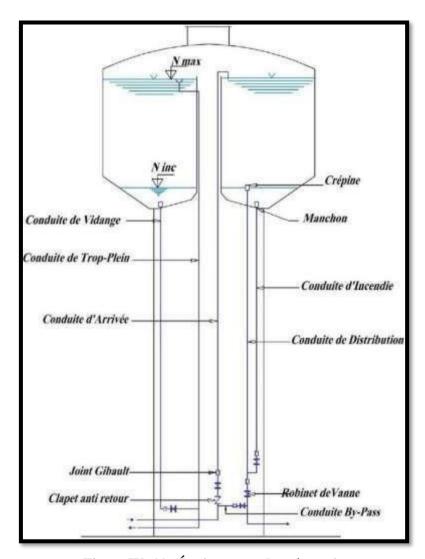


Figure IV. 11 : Équipements des réservoirs.

Conclusion:

Le centre-ville de Zelfana ne possède actuellement aucun ouvrage de stockage. Après avoir effectué les calculs, nous avons trouvé que les besoins en stockage à l'horizon 2054 seront de 4158,7464 m³. Nous allons donc construire quatre châteaux d'eau d'une capacité de 1000 m³ chacun, ainsi qu'un château d'eau de 750 m³, actuellement en réparation. Ce dernier est calculé sur la base d'un bilan entre le débit d'apport et le débit de consommation, correspondant aux besoins de l'agglomération du centre-ville de Zelfana, pour un bon rendement (pompage/consommation). Nous proposons donc de chercher de nouvelles sources supplémentaires à partir de l'horizon 2054.

Chapitre V:

Réhabilitation du réseau
D'AEP à l'horizon 2054

Introduction:

Après avoir effectué un diagnostic hydraulique du réseau actuel et identifié les problèmes liés à l'injection directe d'eau dans le réseau sans stockage préalable, nous allons procéder à la réhabilitation du réseau en prévoyant la construction des nouveaux châteaux d'eau. L'objectif est d'améliorer les conditions de distribution d'eau pour les consommateurs.

Dans ce chapitre, nous allons également réaliser une simulation hydraulique du réseau de distribution à l'horizon 2054, en prenant en compte les débits de pointe et les débits de pointe en cas d'incendie. Avant de lancer cette simulation, nous allons déterminer les débits aux nœuds et les débits en route pour chaque tronçon du réseau.

Cette simulation nous permettra de dimensionner correctement le réseau pour garantir un débit et une pression adéquats pour chaque consommateur, même en cas de forte demande ou d'incendie.

V.1 Description des travaux :

Les travaux comprennent la fourniture complète, les opérations et les obligations nécessaires à la restauration de divers ouvrages, notamment :

- L'amélioration de la qualité de l'eau ;
- L'assurance de l'étanchéité des ouvrages, à la fois de l'intérieur vers l'extérieur et de l'extérieur vers l'intérieur ;
- Le remplacement de tous les équipements hydrauliques ;
- Le traitement des fissures par injection, projection et/ou pontage;
- Le décapage et le nivellement des zones non adhérentes et/ou endommagées, y compris le traitement de la rouille et la passivation des métaux ;
- L'amélioration de la ventilation des ouvrages et la préservation de la propreté des châteaux d'eau en empêchant l'intrusion d'insectes et de poussière.

V.1.1 Le système d'AEP:

Le système d'AEP comporte différents composants dont les constructions et les installations affectées au captage (1, 3). Au traitement (5). Au transport (2, 6, 8), au stockage (7) et au réseau de distribution (9) et enfin les différents consommateurs (10).

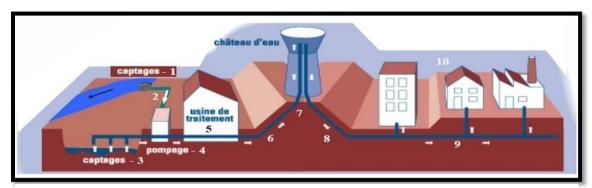


Figure V. 2 : Schéma synoptique d'alimentation en eau potable.

(Source Google 2024)

V. 2Choix du type de réseau de distribution :

En fonction de la structure et de l'importance de l'agglomération, il existe différents types de réseaux de distribution d'eau.

V.2.1 Réseau ramifié:

Dans ce type de réseau, l'eau circule dans les conduites dans un seul sens, des conduites principales vers les conduites secondaires.

> Avantages : Ce type de réseau est économique.

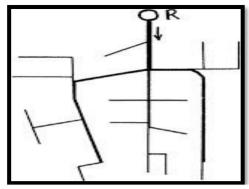


Figure V. 3: schéma d'un réseau ramifié.

V.2.2 Réseau maillé:

Une variante du réseau ramifié est la dérivation du réseau ramifié, qui consiste à connecter les extrémités des conduites pour permettre une alimentation en retour.

- Avantages: Cette variante offre une sécurité accrue, car en cas de rupture d'une conduite, il suffit de l'isoler et tous les abonnés situés en aval seront alimentés par les autres tronçons. De plus, la répartition de la pression et du débit est plus uniforme.
- ➤ **Inconvénients :** Cependant, cette variante est plus coûteuse et plus difficile à calculer que le réseau ramifié simple.

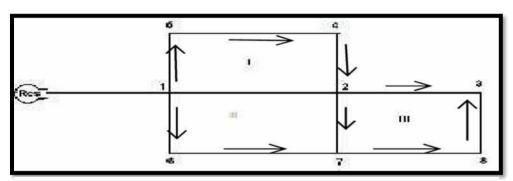


Figure V. 4 : schéma d'un réseau maillé.

V.2.3 Réseau combiné ou mixte :

Mélange d'un réseau maillé et d'un réseau ramifié.

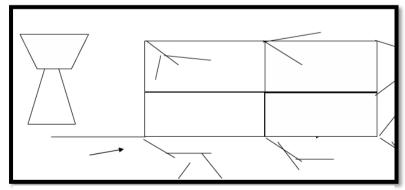


Figure V. 5: schéma d'un réseau mixte.

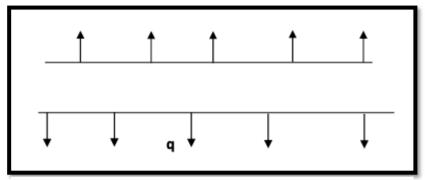


Figure V. 6: tronçon à distribution mixte

V.3 Conception du réseau de distribution :

Pour la conception d'un réseau de distribution efficace, il est essentiel de prendre en compte plusieurs facteurs qui peuvent avoir une influence sur le réseau. Les facteurs suivants doivent être pris en considération :

- L'emplacement des quartiers ;
- L'emplacement des consommateurs ;
- Le relief;
- La nécessité d'assurer un service souple et précis.

V.4 Choix du type de matériaux :

Pour choisir le matériau approprié pour les conduites d'eau, plusieurs paramètres doivent être pris en compte :

- Le diamètre ;
- La pression de service que le matériau doit supporter ;
- Les conditions de pose ;
- Le coût de la conduite ;
- La durée de vie du matériau ;
- La disponibilité du matériau sur le marché.

V.5 Choix du système de distribution :

Dans le domaine de l'alimentation en eau potable, il existe deux principaux systèmes de distribution :

- le système à réservoir de tête
- le système à contre-réservoir ou à injection directe.

Compte tenu de la configuration du terrain de notre commune, nous avons choisi dans notre étude de concevoir un système à réservoir de tête. Dans notre cas, le réseau de distribution est de type maillé avec quelques ramifications.

V.6 Principe de tracé du réseau :

- ➤ Le tracé de notre réseau de distribution a été conçu en tenant compte des paramètres suivants :
- Déterminer les quartiers les plus denses de la population.
- Repérer les consommateurs importants (débit concentré).
- ➤ Déterminer le sens principal pour assurer la distribution aux consommateurs.
- Tracer les conduites principales, parallèlement entre elles et doivent être situées sur les côtes les plus élevés pour bien répartir l'eau.
- Pour avoir des mailles, il faut raccorder les conduites maîtresses par des conduites secondaires
- Les conduites principales doivent être reliées entre elle, par les conduites secondaires pour former des boucles à fin d'alimenter l'intérieur des quartiers.

V.7Calcul hydraulique du réseau de distribution :

V.7.1 Hypothèses de calculs :

Les principes fondamentaux évoqués pour les conduites d'adduction s'appliquent également aux canalisations de distribution, notamment en ce qui concerne les pertes de charges linéaires et singulières, les lignes piézométriques, etc.

a. Débit:

- Pour estimer les besoins en eau de l'agglomération de manière précise, il est nécessaire de prendre en compte plusieurs facteurs.
- Les calculs hydrauliques des canalisations doivent être effectués en utilisant le débit de pointe horaire.
- Il est important de vérifier les conditions d'incendie. Le débit d'incendie à prévoir au point le plus défavorable du réseau est de 60 m3/h (17 l/s). Dans le cas d'une grande ville ou d'un risque élevé d'incendie, il est nécessaire de prendre en compte plusieurs incendies simultanés.

b. Pression:

- Le réseau doit satisfaire les conditions de pression suivantes : une charge minimale de 10 m aux robinets les plus élevés et une charge maximale de 60 m (afin de limiter les fuites et les bruits causés par les coups de bélier). Si une telle pression devait se manifester, il est nécessaire de prévoir des réducteurs de pression ou un réseau étagé.
- Le réseau doit être conçu pour fournir les pressions aux sols suivants : 18 m pour un étage, 22 m pour 2 étages, 26 m pour 3 étages, 36 m pour 5 étages, 40 m pour 6 étages, 44 m pour 7 étages et 31 m pour 4 étages.
- Pour les immeubles plus élevés, les propriétaires doivent installer des surpresseurs dans le sous-sol.
- Les canalisations équipées de bouches d'incendie doivent pouvoir fournir une pression supérieure à 10 m en cas d'incendie.

c. Choix du diamètre :

Dans les tronçons équipés de bouches d'incendie, le diamètre minimal des conduites est de 100 mm. La vitesse de l'eau dans les conduites de distribution doit être comprise entre 0,6 et 1,2 m/s pour éviter les dépôts solides et les fuites, ainsi que les coups de bélier. Cependant, en cas d'incendie, une vitesse plus élevée allant jusqu'à 2,5 m/s peut être tolérée.

V.8 Le calcul du réseau de distribution se fera pour les deux cas :

- \triangleright Cas de pointe (Q_p),
- \triangleright Cas de pointe plus incendie $(Q_p + Q_{inc})$.

V.8.1 Calcul des débits de dimensionnement :

V.8.1.1 Cas de pointe:

V.8.1.1.1 Débit de point:

$$Q_p = Q_{maxh} = \sum Q_{ri} + \sum Q_{conc} V.1$$

Avec:

- Q_{maxh}: débit consommé (l/s)
- Q_{ri}: est le débit en route globale (l/s)
- Q_{conc} : Débit concentré (l/s), dans notre cas $Q_{conc} = 0$

AN:

$$\sum Q_{ri} = Qp = Q_{maxh} = 259,693 l/s$$

V.8.1.1.2 Débit spécifique :

$$q_{sp} = rac{\sum Q_{ri}}{\sum L_I}$$
 [l/s/ml] V. 2

Avec:

- Σ L_{i:} Somme des longueurs des tronçons qui assurant la distribution en route.
- Q_{ri}: est le débit en route globale (1/s).

AN:

$$q_{sp} = 259,693/16088.82 = 0.01614121 l/s/ml$$

$$qsp = 0,01614121 l/s/ml$$

V.8.1.1.3 Débit en route de chaque tronçon :

Il est donné par la formule suivante :

$$Q_{ri} = q_{sp} \times L_i [l/s] \text{ V. } 3$$

Avec:

- Q_{ri}: Débit en route de chaque tronçon (l/s).
- Qsp : Débit spécifique (l/s/ml).
- Li: La longueur du tronçon (m).

V.8.1.1.4 Détermination des Débits aux nœuds :

$$Q_{Ni} = 0.5 \times \sum Qri + Q_{con} \text{ V. } 4$$

Avec:

- q_{ri}: est le débit du tronçon affectant ce nœud.
- $\Sigma QNi = Qp = 259,693l/s$

Tableau V. 1 : Calcul des débits nodaux du réseau projeté cas de pointe (l'horizon 2054). (Voir l'ANNEXE V.1)

NOUEDS	TRANCONS	LONG. (m)	Qs l/s/m	Qrout l/s	QN l/s
N01	N1-N10	300	0.017364	5.2091	2.6045
N02	N2-N21	263.2	0.017364	4.5701	
	N2-N48	243.35	0.017364	4.2254	4.3978
N03	N03-N40	150.9	0.017364	2.6202	
	N03-N11	245	0.017364	4.2541	
	N03-N04	117.25	0.017364	2.0359	4.4551
N04	N04-N03	117.25	0.017364	2.0359	1.0179
N05	N05-N06	102	0.017364	1.7711	
	N05-N24	222	0.017364	3.8547	
	N05-N29	138.2	0.017364	2.3997	4.0127
N06	N06-N05	102	0.017364	1.7711	
	N06-N31	109.8	0.017364	1.9065	
	N06-N33	196.85	0.017364	3.4180	3.5478
N07	N07-N27	345.6	0.017364	6.0009	
	N07-N34	161.2	0.017364	2.7990	
	N07-N38	80.55	0.017364	1.3986	
	N07-N25	198.3	0.017364	3.4432	6.8209
N08	N08-N28	187.2	0.017364	3.2505	
	N08-N44	137.35	0.017364	2.3849	
	N08-N45	300.3	0.017364	5.2143	5.4248
N09	N09-N10	105.5	0.017364	1.8319	
	N09-N43	139.35	0.017364	2.4196	
	N09-N45	76.2	0.017364	1.3231	
	N09-N46	141.9	0.017364	2.4639	4.0193
N10	N10-N1	300	0.017364	5.2091	
	N10-N09	105.5	0.017364	1.8319	
	N10-N11	155.1	0.017364	2.6931	4.8670
N11	N11-N10	155.1	0.017364	2.6931	
	N11-N03	245	0.017364	4.2541	
	N11-N46	167.75	0.017364	2.9128	4.9300
N12	N12-N33	51.1	0.017364	0.8873	
	N12-N35	123.7	0.017364	2.1479	
	N12-N36	28.2	0.017364	0.4897	1.7624
N13	N13-N19	83.8	0.017364	1.4551	
	N13-N18	210.5	0.017364	3.6551	
	N13-N51	182.5	0.017364	3.1689	4.1395
N14	N14-N53	299.3	0.017364	5.1969	
	N14-N52	198	0.017364	3.4380	4.3175
N15	N15-N18	260.6	0.017364	4.5250	2 1565
3.74 <	N15-N20	103	0.017364	1.7885	3.1567
N16	N16-N19	231.2	0.017364	4.01447819	
	N16-N21	241.65	0.017364	4.19592844	F 101
N1177	N16-N48	160	0.017364	2.7781856	5.494
N17	N17-N20	490	0.017364	8.508	
	N17-N58	130	0.017364	2.257	5.383

V.9 Détermination des paramètres hydrauliques du réseau :

V.9.1 Cas de pointe :

Les résultats des différents tronçons cas de pointe est donnée dans les tableaux suivants :

Tableau V. 2 : Résultat des Caractéristiques Hydrauliques et diamètres des tronçons (cas de pointe). (Voir l'ANNEXE V.2)

Tronçon	Longueur m	Diamétre Intrieur	Débit LPS	vitesse m/s	Perte m/km
	111	mm	LIS	111/8	III/ KIII
Tuyau 1	117.25	46	1.53	0.78	16.98
Tuyau 2	155.1	814.6	-16.02	0.51	1.35
Tuyau 3	210.5	58	1.72	0.55	6.67
Tuyau 4	83.8	814.6	-12.28	0.39	0.82
Tuyau 5	241.65	154.8	16.33	1.44	18.36
Tuyau 6	333.50	230.8	39.00	0.79	2.37
Tuyau 7	52.30	230.8	-32.80	0.67	1.71
Tuyau 8	371.45	115.4	8.86	0.72	4.65
Tuyau 9	345.60	115.4	4.79	0.39	1.48
Tuyau 10	278	115.4	0.40	0.03	0.02
Tuyau 11	187.20	83	-10.46	1.64	33.76
Tuyau 12	288.50	83	-6.69	1.05	14.30
Tuyau 13	138.20	230.8	-104.42	2.13	15.75
Tuyau 14	424.75	184.6	53.95	1.72	13.66
Tuyau 15	198.30	184.6	-35.71	1.14	6.17
Tuyau 16	160.70	115.4	-5.66	0.46	2.01
Tuyau 17	136.70	154.8	-14.99	0.75	3.64
Tuyau 18	109.80	154.8	-23.79	1.18	8.78
Tuyau 19	161.20	115.4	-3.05	0.25	0.64
Tuyau 20	197.25	69.2	-2.89	0.65	7.32
Tuyau 21	197.10	69.2	3.02	0.68	7.98
Tuyau 22	137.10	115.4	-6.62	0.54	2.69
Tuyau 23	107.70	115.4	-9.35	0.76	5.16
Tuyau 24	196.85	230.8	82.91	1.69	10.07
Tuyau 25	222	115.4	-13.62	1.11	10.54
Tuyau 26	217.75	69.2	1.27	0.29	1.59
Tuyau 27	107.80	154.8	14.21	0.71	3.29
Tuyau 28	248	69.2	5.47	1.24	24.61
Tuyau 29	18.42	184.6	17.25	0.55	1.55
Tuyau 30	123.70	230.8	-17.64	0.36	0.54
Tuyau 31	51.10	230.8	68.92	1.40	7.05

Résultat charge et pression des nœuds dans le cas de point sont dans le tableau suivant :

Tableau V. 3: Résultat charge et pression des nœuds (Cas de pointe). (Voir L'ANNEXE V.3)

Noeud	Elevation	Débit nodale	Cote peizométrique	Pression
	m	LPS	m	m
Noeud 1	346.70	3.90	361.92	15.22
Noeud 2	357.51	6.60	375.05	17.54
Noeud 3	353.07	6.68	366.93	13.86
Noeud 4	353.03	1.53	364.94	11.91
Noeud 5	358.58	6.02	375.01	16.43
Noeud 6	358.32	5.32	373.17	14.85
Noeud 7	358.03	10.23	370.16	12.13
Noeud 8	355.20	8.14	367.45	12.25
Noeud 9	351.06	6.03	365.63	14.57
Noeud 10	349.15	7.30	365.79	16.64
Noeud 11	348.98	7.39	366.00	17.02
Noeud 12	357.29	2.64	370.82	13.53
Noeud 13	356.24	6.21	370.85	14.61
Noeud 14	354.86	6.48	366.49	11.63
Noeud 15	355.98	4.74	369.56	13.58
Noeud 16	355.71	8.24	372.21	16.50
Noeud 17	354.19	8.07	372.02	17.83
Noeud 18	355.59	7.27	369.44	13.85
Noeud 19	356.57	4.34	370.92	14.35
Noeud 20	354.91	11.27	369.62	14.71
Noeud 21	357.8	13.75	376.65	18.85
Noeud 22	357.59	7.47	376.99	19.40
Noeud 23	359.11	5.02	377.44	18.33
Noeud 24	358.74	4.98	377.35	18.61
Noeud 25	359.05	15.04	371.38	12.33
Noeud 26	359	8.46	369.65	10.65
Noeud 27	358.12	11.88	369.65	11.53
Noeud 28	356.40	6.20	373.77	17.37
Noeud 29	358.62	7.33	377.18	18.56
Noeud 30	357.97	6.44	371.70	13.73
Noeud 31	357.30	5.78	372.20	14.90
Noeud 32	357.69	5.76	370.63	12.94
Noeud 33	357.14	4.63	371.18	14.04
Noeud 34	357.93	6.45	370.26	12.33

Les résultats obtenus pour les pressions et les vitesses sont représentés dans les figures qui suivent :

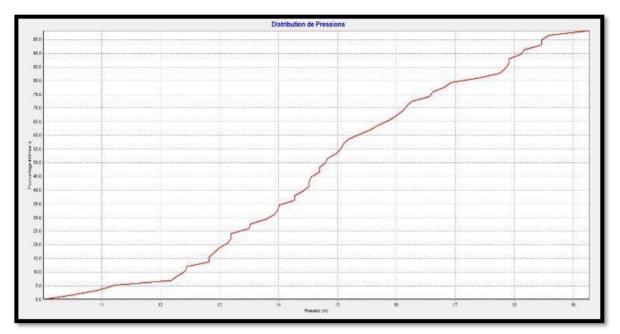


Figure V. 7 : Distribution des pressions dans le réseau projeter (cas de point).

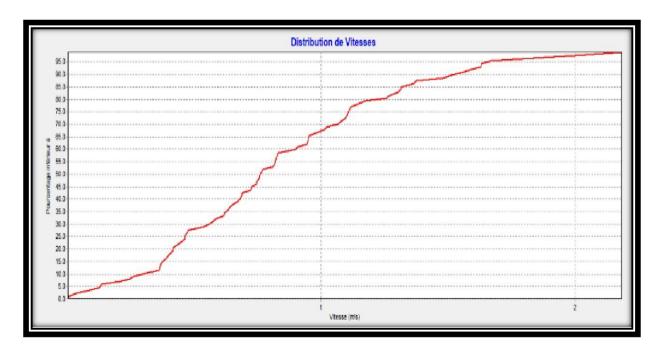


Figure V. 8 : Distribution des vitesses dans le réseau projeter (cas de point).

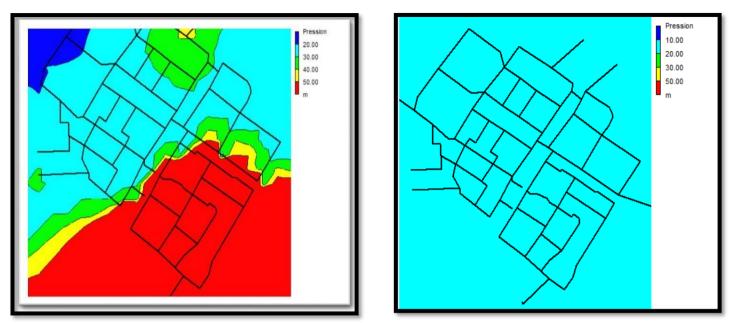


Figure V. 9 : Courbe de distribution de pression avant et après la construction des châteaux d'eaux (case de pointe).

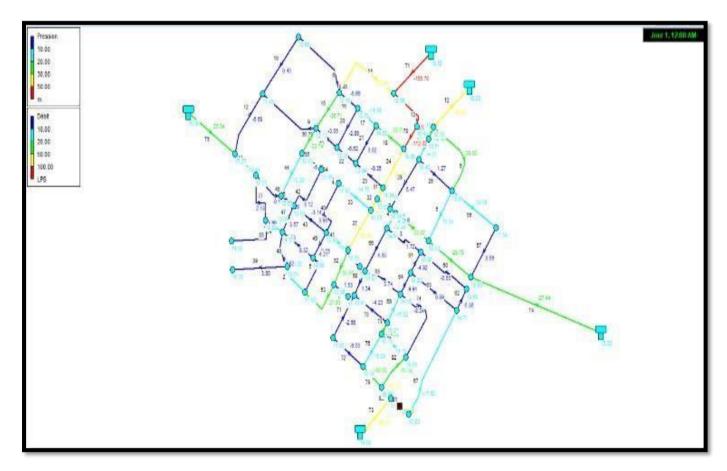


Figure V. 10 : Résultats de simulation de Vitesses et pressions pour le cas de Pointe.

Chapitre V: Réhabilitation du réseau D'AEP à l'horizon 2054

Résultats de simulation :

En 2054, le scénario garantit des pressions entre 1 et 2 bar sur ensemble du Réseau et donc unservice de qualité pour les usagers. Les quartiers de centre-ville Zelfana Sont correctement alimentés en eau aux heures de pointe.

Le scénario permet d'assurer la continuité du service et des pressions sur l'ensemble Du réseau àl'horizon 2054, et d'étendre la couverture du réseau vers les quartiers en Développement de Centre-ville Zelfana en réalisant des nouveaux châteaux d'eaux,

La simulation ensuite sur le fichier Epanet nous a permis d'avoir des différentes vitesses dans Tout le réseau.

En dehors de quelques tronçons ou la vitesse La simulation ensuite sur le fichier Epanet nous a permis d'avoir des bonnes vitesses sur tout le réseau. En dehors de quelques tronçons en bout deréseau ou la vitesse reste inférieur à 0,3m/s.

Donc le fonctionnement de résrau projeté est meilleur à ce réseau existant.

V.9.2 Cas de pointe +incendie :

On doit s'assurer que le débit d'incendie donné par le réservoir (17 l/s) se trouve au point le plus défavorable c.à.d au nœud N°02. Donc :

$$Qni = 0.5 * \Sigma Qri + Qcc V.5$$

AN:

$$Qnoeud\ 02 = 4,088164 + 17 = 21,08816\ l/s$$

$$Qmaxh + inc = 259.693345 + 17 = 279,693345 l/s$$

Les résultats des différents tronçons pour le cas de pointe + incendie sont donnés dans les tableaux suivants :

Chapitre V : Réhabilitation du réseau D'AEP à l'horizon 2054

Tableau V. 4 : Résultat des Caractéristiques Hydrauliques et diamètres des tronçons (Cas de pointe+ incendie). (Voir L'ANNEXE V.4)

Tronçon	longueur	Diamétre	débit	vitesse	Perte
	m	mm	LPS	m/s	m/km
Tuyau 1	117.25	50	1.53	0.78	16.98
Tuyau 2	155.1	200	-15.98	0.51	1.35
Tuyau 3	210.5	63	1.51	0.49	5.22
Tuyau 4	83.8	200	-12.00	0.38	0.79
Tuyau 5	241.65	120	16.36	1.45	18.43
Tuyau 6	333.50	250	46.85	0.95	3.36
Tuyau 7	52.30	250	-32.98	0.67	1.73
Tuyau 8	371.45	125	8.87	0.72	4.67
Tuyau 9	345.60	125	4.65	0.38	1.40
Tuyau 10	278	125	0.41	0.30	0.02
Tuyau 11	187.20	90	-10.65	1.67	34.99
Tuyau 12	288.50	90	-6.81	1.07	14.82
Tuyau 13	138.20	250	-106.93	2.18	16.49
Tuyau 14	424.75	200	54.60	1.74	13.98
Tuyau 15	198.30	200	-36.17	1.15	6.33
Tuyau 16	160.70	125	-5.48	0.45	1.89
Tuyau 17	136.70	160	-14.84	0.74	3.58
Tuyau 18	109.80	160	-23.71	1.18	8.72
Tuyau 19	161.20	125	-2.70	0.22	0.52
Tuyau 20	197.25	75	-2.92	0.66	7.48
Tuyau 21	197.10	75	3.09	0.70	8.30
Tuyau 22	137.10	125	-6.23	0.51	2.41
Tuyau 23	107.70	125	-8.91	0.73	4.70
Tuyau 24	196.85	250	85.13	1.73	10.60
Tuyau 25	222	125	-13.25	1.08	9.99
Tuyau 26	217.75	75	1.78	0.40	2.99
Tuyau 27	107.80	160	14.76	0.73	3.54
Tuyau 28	248	75	5.50	1.25	24.90
Tuyau 29	18.42	200	14.10	0.45	1.06
Tuyau 30	123.70	250	-14.52	0.30	0.37

Chapitre V: Réhabilitation du réseau D'AEP à l'horizon 2054

Les résultats des différents nœuds pour le cas de pointe + incendie sont donnés dans les tableaux suivants :

Tableau V. 5 : Résultat charge et pression des nœuds (Cas de pointe+ incendie). (Voir L'ANNEXE V.5)

Noeud	Elevation	Débit nodale	Cote peizométrique	Pression
	m	LPS	m	m
Noeud 1	346.70	3.90	361.64	14.94
Noeud 2	357.51	32.10	371.07	13.56
Noeud 3	353.07	6.68	366.64	13.57
Noeud 4	353.03	1.53	364.65	11.62
Noeud 5	358.58	6.02	374.89	16.31
Noeud 6	358.32	5.32	372.98	14.66
Noeud 7	358.03	10.23	369.97	11.94
Noeud 8	355.20	8.14	367.22	12.02
Noeud 9	351.06	6.03	365.36	14.30
Noeud 10	349.15	7.30	365.51	16.36
Noeud 11	348.98	7.39	365.72	16.74
Noeud 12	357.29	2.64	370.50	13.21
Noeud 13	356.24	6.21	370.50	14.26
Noeud 14	354.86	6.48	366.46	11.60
Noeud 15	355.98	4.74	369.53	13.55
Noeud 16	355.71	8.24	371.62	15.91
Noeud 17	354.19	8.07	372.01	17.82
Noeud 18	355.59	7.27	369.41	13.82
Noeud 19	356.57	4.34	370.57	14.00
Noeud 20	354.91	11.27	369.59	14.68
Noeud 21	357.8	13.75	376.08	18.28
Noeud 22	357.59	7.47	376.73	19.14
Noeud 23	359.11	5.02	377.20	18.09
Noeud 24	358.74	4.98	377.11	18.37
Noeud 25	359.05	15.04	371.23	12.18
Noeud 26	359	8.46	369.50	10.50
Noeud 27	358.12	11.88	369.49	11.37
Noeud 28	356.40	6.20	373.77	17.37
Noeud 29	358.62	7.33	377.17	18.55
Noeud 30	357.97	6.44	371.53	13.56
Noeud 31	357.30	5.78	372.02	14.72

Chapitre V: Réhabilitation du réseau D'AEP à l'horizon 2054

Les résultats obtenus pour les pressions et les vitesses sont représentés dans les figures qui suivent :

Figure V. 11 : Distribution des vitesses dans le réseau projeter (cas de pointe+incendie)

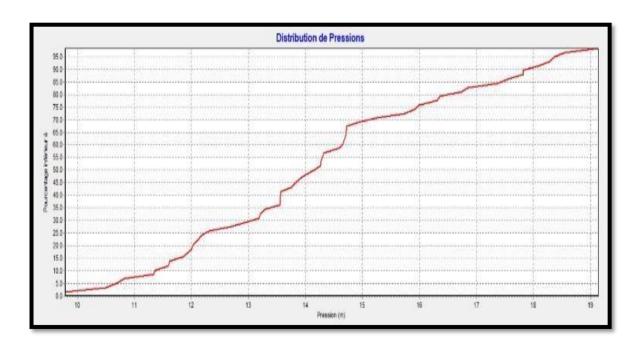


Figure V. 12 : Distribution des pressions dans le réseau projeté (cas de pointe+ incendie).

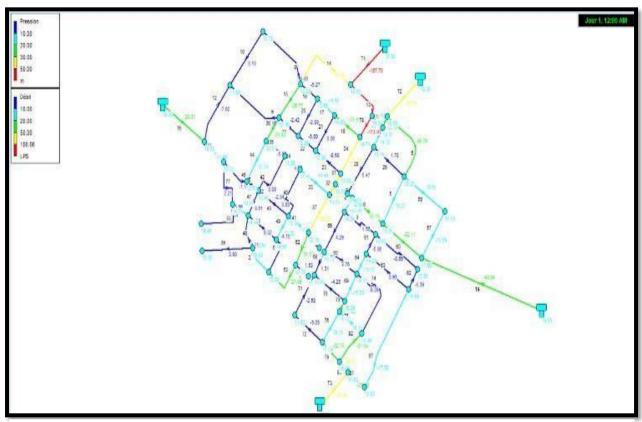


Figure V. 13 : Résultats de simulation de Vitesses et pressions pour le cas de Pointe+incendie.

Résultats de simulation (cas de pointe+incendie):

On remarque que le réseau réagit bien en cas d'incendie

- La pression dans les normes entres (1bars et 2bars) avec quelque diminution de pression.
- La simulation ensuite sur le fichier Epanet nous a permis d'avoir des bonnes vitesses Sur les tronçonsprincipaux de réseau. En dehors de quelques tronçons en bout de réseau ou la vitesse reste inférieur à 0,3m/s.

Chapitre V: Réhabilitation du réseau D'AEP à l'horizon 2054

Conclusion:

Pour conclure, nous avons dimensionné le réseau d'alimentation en eau potable de notre zone d'étude en utilisant EPANET. On peut dire que notre réseau fonctionne normalement dans les deux cas : de pointe et pointe + incendie. Les pressions et les vitesses sont conformes aux normes. Cependant, pour le tronçon qui a une faible vitesse, nous préconisons une vidange périodique afin d'éviter les dépôts minéraux dans les conduites. Dans notre cas, l'injection directe dans le réseau ne permet pas d'assurer une distribution correcte, ce qui entraîne des pressions négatives dans certains nœuds. C'est la raison pour laquelle il nous a été nécessaire de projeter de nouveaux châteaux d'eau pour éviter ce problème

Chapitre VI

Adduction

Et

Pompage

Introduction:

Après avoir calculé les besoins en eau et en stockage, ce chapitre vise à trouver une solution technico-économique pour dimensionner le réseau d'adduction afin de combler le déficit et alimenter le centre-ville zelfana. De plus, il s'agira d'étudier et de choisir le type de pompes idéales adaptées à notre projet, ce qui nous permettra d'assurer le débit requis et la hauteur manométrique totale au niveau des stations de pompage le long de l'adduction.

VI.1 Généralité sur l'adduction :

VI.1.1 Définition :

L'adduction d'eau englobe les techniques permettant d'acheminer l'eau depuis sa source jusqu'aux points de consommation via un réseau de conduites. Les conduites d'adduction ont pour fonction de transférer l'eau entre deux points, dans notre cas, entre les forages et les réservoirs de stockage.

VI.1.2 Type de l'adduction :

D'après leur fonctionnement, les adductions peuvent être classées en trois groupes :

- Adduction gravitaire
- Adduction par refoulement
- Adduction mixte

VI.1.3 Les critères de choix du tracé :

Connaissant son point de départ et son point d'arrivée, le tracé de notre conduite d'adduction doit respecter certains impératifs :

- ➤ Avoir un itinéraire aussi direct que possible.
- Éviter autant que possible les contre-pentes, qui peuvent entraîner des poches d'air et des phénomènes de cavitation (dans ce cas, des ventouses et des dispositifs anti-bélier sont nécessaires).
- Eviter les profils horizontaux, qui peuvent perturber le régime d'écoulement.
- ➤ Il sera préférable de suivre les accotements des routes pour faciliter les travaux, l'acheminement des matériaux et l'accès aux regards contenant les appareils de robinetterie.
- Éviter la traversée des massifs boisés.

VI.1.4 Choix des matériaux de canalisation :

Le choix du matériau des conduites enterrées pour le transport du fluide dépend à la fois de leur faisabilité technique et économique. Le choix des différentes conduites se fait en fonction des critères suivants :

- Diamètre.
- Pressions supportées.
- Conditions d'installation.
- Disponibilité.
- Prix unitaire.
- Type de sol.

Dans notre projet, nous avons opté pour les conduites en PEHD (polyéthylène haute densité) pour les raisons suivantes :

- Elles sont très économiques.
- Elles sont disponibles sur le marché.
- Elles permettent une pose simple et adéquate.
- Elles ont une résistance élevée aux fortes pressions (supérieures à 20 bars).
- Elles ont une faible rugosité (conduite lisse).
- L'assemblage des tuyaux en PEHD se fait par soudage bout à bout, en fusionnant les extrémités des conduites à l'aide d'une plaque chauffante.

VI.1.5 Les Conditions limites de la vitesse :

Pour le choix du diamètre des conduites, il est nécessaire de vérifier les conditions limites de la vitesse d'écoulement, à savoir :

- La vitesse d'écoulement maximale ne doit pas dépasser 1,5 m/s, afin d'éviter la cavitation dans les conduites et d'assurer une meilleure sécurité de fonctionnement du réseau.
- ➤ La vitesse d'écoulement minimale doit être supérieure ou égale à 0,5 m/s, afin d'éviter les phénomènes de dépôt des sédiments et d'assurer un auto-curage continu des conduites.

Ainsi, pour choisir le diamètre des conduites, il est essentiel de vérifier ces conditions limites de vitesse.

VI.2 Etude d'adduction:

En se basant sur les résultats de calcul et de diagnostic effectué dans le chapitres II, Il ressort une insuffisance de la ressource en eau disponible actuellement à l'horizon 2054 qui sont 2 forage pour assurer l'alimentation en eau potable de toute la population de centre-ville zelfana

Afin de remédier à ce problème, nous proposons de projeter de nouveaux forages pour combler le déficit en eau. De plus, nous avons projeté un nouveau forage pour les hammams avec une injection directe dans le réseau afin de garantir la température nécessaire.

Au premier temps, nous allons trouver le nombre des forages nécessaires pour assurer les besoins de consommation des habitants de centre-ville zelfana.

VI.2.1 Étude technico-économique [2]

Cette étude vise à déterminer le diamètre de conduite le plus économique en se basant sur deux critères principaux :

- Critère technique: Le diamètre de la conduite doit permettre le transit du débit maximal à des vitesses adéquates, tout en garantissant une pression de service compatible avec la résistance de la conduite. La vitesse d'écoulement doit être comprise entre 0,5 et 2 m/s.
- Critère économique : Les coûts d'investissement, comprenant les frais d'exploitation et les frais d'amortissement, sont proportionnels au diamètre des conduites.

VI.2.2 Dimensionnement de l'adduction :

VI.2.2.1 Méthode de calcul :

Pour le calcul des diamètres économiques des conduites de refoulement, on utilise lesdeux formules approchées suivantes:

Formule de BRESS:

$$D = 1.5 \sqrt{Q} \text{ VI. } 1$$

Formule de BONNIN:

$$D = \sqrt{Q}$$
 VI. 2

Avec:

• **Q**: Débit refoulé en m³/s.

Remarque : La formule de Bress n'est valable que pour les petits projets (longueur de conduite <1 Km)

A partir de ces deux diamètres déterminés, on choisit une gamme de diamètres parmi lesquels on optera pour celui qui présentera les frais les moins élevés.

VI.2.1.1) Calcul de la vitesse

Elle est donnée par la formule suivante :

$$V = \frac{4Q}{\pi D^2}$$
 VI. 3

Calcul des pertes de charge :

Pertes de charge linéaires :

Pour un tronçon donné, les pertes de charge linéaires dépendent de :

- Diamètre D de la conduite en (m);
- Débit Q en (m3/s);
- La rugosité absolue Ks exprimée en mm;
- La longueur du tronçon L en (m).

$$\Delta H = \lambda . L VI. 4$$

- λ: Coefficient de frottement
- V: Vitesse moyenne d'écoulement en (m/s).
- ΔH_l : Pertes de charge linéaires en (m)I: Gradient hydraulique en (m/m)

Le coefficient λ est obtenu par les formules suivantes :

$$\lambda = (1,14 - 0.86 Ln D^{\frac{\varepsilon}{2}})^{-2} VI. 5$$

• ε: Rugosité absolue de la conduite

Pertes de charge singulières :

Elles sont occasionnées par les singularités des différents accessoires de la conduite (Coude, vannes, clapets,), elles sont estimées à 10% des pertes de charges linéaire

$$\Delta Hs = 0, 10 * \Delta Hl$$
 VI. 6

Pertes de charge totales (Δ Ht):

Ce sont la somme des pertes de charge linéaires et les pertes de charge singulières, alors :

$$\Delta H_t = \Delta H_l + \Delta H_s \Leftrightarrow \Delta H_t = \Delta H_l + 0.10 * \Delta H_l$$

$$\Delta H_t = 1.10 * \Delta H_l$$
 VI. 7

❖ Calcul de la hauteur manométrique totale Hmt :

La hauteur manométrique totale est la somme de pertes et de la hauteur géométrique.

$$HMT = Hg + \Delta H_a + \Delta H_r = Hg + \Delta H_t$$
 VI. 8

Avec:

• Hg: La hauteur géométrique

• ΔH_a : Pertes de charge à l'aspiration

• ΔH_r : Pertes de charge au refoulement

Puissance absorbée par la pompe :

C'est la puissance fournie à la pompe, définie comme suit :

$$P = \frac{\rho * g * Q * HMT}{\eta}$$
 VI. 9

Avec:

• η : Rendement de la pompe en (%) ($\eta = 80\%$)

• Q: Débit refoulé par la pompe en (m³/s)

• g: Pesanteur (9.81 m/s^2)

• ρ: Masse volumique de l'eau (1000 Kg/m³).

***** Energie consommée par la pompe :

$$E = P * t * 365 [KWh] VI. 10$$

Avec:

• t: Temps de pompage par jour en (heure); dans notre cas t = 20h

• P: Puissance de la pompe en (kW)

***** Frais d'exploitation :

Les frais d'exploitation sont définis par la formule suivante:

$$Fex = E * e [DA] VI. 11$$

Avec:

• E: Energie consommée par la pompe en (KWh))

• e: Prix unitaire d'un KWh imposé par SONELGAZ. (e=4,17DA)

* Frais d'amortissement :

Les frais d'amortissement seront calculés à partir de la formule suivante :

$$Fam = Pu \times L \times A$$
 VI. 12

Avec:

- P_U: Le prix unitaire de la conduite (DA/ml).
- L: Longueur de la conduite en m.
- A: Annuité.

❖ Calcul de l'amortissement annuel

$$A = \frac{i}{(i+1)^n}$$
 VI. 13

Avec:

- A: L'amortissement annuel (Annuité).
- i: Taux d'annuité = 8 %.
- n: Nombre d'années sur lequel s'effectuera l'amortissement (n = 25 ans)

A=10,41%

❖ Calcul de Bilan :

Le bilan sera calculé par la formule suivante :

$$BL = Fexp + Fam$$
 VI. 14

VI.2.3 Prix des conduites :

Le prix des conduites est pris en tenant compte des coûts de transport et de pose celles-ci par mètre linéaire. Les valeurs nous ont été remises par **DIST. GROUPE CHIALI**, elles sont récapitulées dans le tableau suivant :

Tableau VI. 1: Prix de revient des conduites PN16 (source GROUPE CHIALI).

Diamètre extérieur en (mm)	Prix de revient (DA/ml)
20	34.64
25	56.20
32	88.30
40	136.47
50	211.40
63	337.16
75	473.63
90	571.69
110	844.30
125	1093.08
160	1786.51
200	2805.48
250	4340.56
315	6881.37
400	11116.05
500	17335.76
630	26341.10

VI.2.4 Calcul des diamètres économiques pour les différents tronçons :

VI.2.4.1 Adduction par refoulement :

- **❖** Adduction De Forage Hassi nor Ver (château N°1 et château N°2) :
- ➤ Données de Base (châteaux N°1 et châteaux N°2) : (Source DRE Zelfana 2024)
- Le choix de diamètre :

Tableau VI. 2 : les données de bases de forage hassi nor vers (château $N^{\circ}1$ et château $N^{\circ}2$) .

Conduit adduction	Débit de forage (l/s)	Longueu rde conduit (m)	CTN (forage)	Z _{max R} (m)	F	H _g (m)	E (m)	V (m/s²)
Forage hassi nor vers chateau N°1	60	21.43	358.73	363.0 1	283. 6	79. 3	0.006	1.0E-06
Forage hassi nor vers chateau N°2	60	215	358.73	364.5	283. 6	80. 9	0.006	1.0E-06

Tableau VI. 3 : choix de diamètre de la conduite de l'adduction vers (château $N^{\circ}1$ et château $N^{\circ}2$) :

Conduit Adduction	Diamètre Calculé		Diar Norm	nètre alisé
	Bonine Ø(mm)	Bress Ø(mm)	Bonine Ø(mm)	Bress Ø(mm)
Forage Hassi nor vers Château N°1	244.94	367.42	250	400
Forage Hassi nor vers Chateau N°2	244.94	367.42	250	400

Ø (mm)	V (m/s)	Re	E/Ø	λ
250	1.27	280 255	0.040	0.065
400	0.565	175 159	0.0272	0.055
500	0.28	140 127	0.012	0.041

Tableau VI. 4 : Calcul de la Hmt des tronçons (Forage-château 1) (Forage-château 2).

Conduit Adduction	Forage Hass	si nor ver	s CHN°1	Forage CHN°2	hassi nor vo	ers
Diameter Normaliser	Ø250	Ø400	Ø500	Ø250	Ø400	Ø500
Ø(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)
Perte de charge linéaire ΔHL (m)	1.24	1.05	1.007	13.975	11.825	8.815
Perte de charge totale ΔHT (m)	1.367	1.155	1.107	15.372	13.007	9.696
Hauteur manomètre totale HMT (m)	82.96	82.41	81.64	96.252	93.887	90.576

Tableau VI. 5 : Calcul des frais d'exploitation «Fexp» tronçon (Forage-château 1).

D _{ext} (m)	P (K.w)	E (K.w.h)	Fexp (DA)
0.250	59.35	433 261.70	1806701.28
0.400	59.19	432 122.21	1801949.6
0.500	59.16	431 868.99	1800893.68

Tableau VI. 6 : Calcul des frais d'amortissement tronçon (Forage-château 1).

D _{ext} (m)	Prix (DA/ml)	L (m)	Famort (DA)
0.250	4340.56	21.43	6258.641
0.400	11116.05	21.43	14609.230
0.500	17335.76	21.43	27560.951

Tableau VI. 7: Calcul du bilan du tronçon (Forage-château 1).

D _{ext} (m)	Fexp (DA)	Famort (DA)	Bilan (DA)
0.250	1806701.28	6258.641	1812959.92
0.400	1801949.6	14609.230	1816558.83
0.500	1800893.68	27560.951	1828454.63

➤ D'après les résultats obtenus dans le tableau ci-dessus. On remarque que le diamètre le plus économique est Ø 250. Avec un bilan minimal de 1812959.92 DA.

Tableau VI. 8 : Calcul des frais d'exploitation «Fexp» (Forage-château 2).

D _{ext} (m)	Fexp (DA)	Famort (DA)	Bilan (DA)
0,250	2155763.946	97148.2436	2252912.189
0,400	2102795.122	248793.873	2351588.995
0,500	2028638.768	388000.312	2416639.081

Tableau VI. 9: Calcul des frais d'amortissement «Famt» (Forage –château 2).

D _{ext} (m)	Prix (DA/ml)	L (m)	Famort (DA)
0.250	4340.56	215	97148.243
0.400	11116.05	215	248793.873
0.500	17335.76	215	388000.312

Tableau VI. 10 : Calcul du bilan du tronçon (Forage-château 2).

D _{ext} (m)	Fexp (DA)	Famort (DA)	Bilan (DA)
0.250	2155763.946	97148.243	2252912.189
0.400	2102795.122	248793.873	2351588.995
0.500	2028638.768	388000.312	2416639.081

- ➤ D'après les résultats obtenus dans le tableau ci-dessus. on remarque que le diamètre Le plus économique est Ø 250. avec un bilan minimal de 2252912.189 DA.
- ❖ Adduction de forage N°4 de center-ville vers château N°3 :
 Données de Base (châteaux N°3) : (Source DRE Zelfana 2024)

Tableau VI. 11 : les Données de Bases de forage N°4 de centre-ville zelfana vers le château N°3.

Conduit adduction	Débit de forage (l/s)	Longueu rde conduit (m)	CTN (forage)	Z _{max R} (m)	Z _{min} F (m)	H g (m)	E (m)	V (m/s²)
Forage N°4 de centre-ville vers CHN°3	60	368.03	354.40	376.0 0	278. 4	97.6	0.006	1.0E-06

> Choix de diamètre :

Tableau VI. 12 : Choix de diamètre de la conduite de l'adduction vers le château $N^{\circ}3$.

Conduit Adduction	Diameter Calculé		Diameter Normalisé	
Forage N°4 de centre-ville vers	Bonine Ø(mm)	Bress Ø(mm)	Bonine Ø(mm)	Bress Ø(mm)
CHN°3	244.94	367.42	250	400

Ø (mm)	V (m/s)	Re	E/Ø	λ
250	1,16	280 255	0,040	0.065
400	0,518	175 159	0,0272	0.055
500	0,28	140 127	0,012	0.041

Tableau VI. 13 : Calcul de la Hmt du tronçon (Forage N°4-château 3).

Conduit	Forage N°4 de centre-ville vers CHN°3				
Adduction					
Diameter Normaliser	Ø250 (mm)	Ø400 (mm)	Ø500 (mm)		
Ø(mm)					
Perte de charge linéaire ΔH L (m)	23.92	20.24	15.08		
Perte de charge totale	26.314	22.265	16.598		
ΔΗ Τ (m)					
Hauteur manomètre totale	123.91	119.86	114.218		
HMT (m)					

Tableau VI. 14: Calcul des frais d'exploitation «Fexp» (Forage –château N°3).

D _{ext} (m)	P (K.w)	E (K.w.h)	Fexp (DA)
0,250	91.169	665539.774	2775300.862
0,400	88.191	643796.295	2684630.553
0,500	84.036	613462.844	2558140.061

Tableau VI. 15: Calcul des frais d'amortissement «Famt» (Forage –château N°3).

D _{ext} (m)	Prix (DA/ml)	L (m)	Famort (DA)
0.250	4340.56	368.03	166295.200
0.400	11116.05	368.03	425877.251
0.500	17335.76	368.03	664166.302

Tableau VI. 16: Calcul du bilan du tronçon (Forage –château N°3).

D _{ext} (m)	Fexp (DA)	Famort (DA)	Bilan (DA)
0,250	2775300.862	166295.200	2941596.062
0,400	2684630.553	425877.251	3110507.805
0,500	2558140.061	664166.302	3222306.363

D'après les résultats obtenus dans le tableau ci-dessus, on remarque que le diamètre le plus économique est Ø 250, avec un bilan minimal de 2941596.062 DA.

➤ Adduction de nouveau forage (projeté) vers château N° 4 :

Tableau VI. 17 : les Données de Bases de forage (projeté) de centre-ville zelfana vers le château $N^{\circ}4$.

Conduit adduction	Débit de forage (l/s)	Longueu rde conduit (m)	CTN (forage)	Z _{max R} (m)	Z _{mi} n F (m)	H g (m)	E (m)	V (m/s²)
Forage (projeté) vers chateau N°4	55	20.53	354	375.3 9	278	97.3 9		1.0E- 06

> Choix de diamètre :

Tableau VI. 18 : choix de diamètre de la conduite de l'adduction vers le château N°4.

Conduit	Diameter		Diameter		
Adduction	Calculé		Norm	alisė	
Forage (projeté) vers CH4	Bonine Ø(mm)	Bress Ø(mm)	Bonine Ø(mm)	Bress Ø(mm)	
	234.45	351.78	250	400	

Ø (mm)	V (m/s)	Re	E/Ø	λ
250	1.16	280 255	0.042	0.067
400	0.565	175 159	0.028	0.056
500	0.28	140 127	0.012	0.041

Tableau VI. 19 : Calcul de la Hmt du tronçon (Forage-château N°4).

Conduit	Forage (projeté) vers CH4					
Adduction						
Diameter Normaliser	Ø200 (mm)	Ø300 (mm)	Ø350 (mm)			
Ø(mm)						
Perte de charge linéaire ΔH L (m)	1.363	1.139	0.834			
Perte de charge totale	1.499	1.253	0.917			
ΔH T (m)						
Hauteur manomètre totale	98.59	98.39	98.352			
HMT (m)						

Tableau VI. 20: Calcul des frais d'exploitation «Fexp» (Forage-Château N°4).

$\mathbf{D}_{\mathrm{ext}}(\mathbf{m})$	P (K.w)	E (K.w.h)	Fexp (DA)
0.250	66.50	485 438.40	2024278.14
0.400	66.36	484 446.51	2020141.95
0.500	66.33	484 226.09	2019222.79

Tableau VI. 21 : Calcul des frais d'amortissement «Famt» (Forage- N° 4).

D _{ext} (m)	D _{int} (m)	Prix (DA/ml)	L (m)	Famort (DA)
0.250	0.220	4340.56	20.35	5943.227
0.400	0.353	11116.05	20.35	13872.974
0.500	0.441	17335.76	20.35	26171.972

Tableau VI. 22: Calcul du bilan du tronçon (Forage-N°4).

D _{ext} (m)	Fexp (DA)	Famort (DA)	Bilan (DA)
0.250	2024278.14	5943.227	2030221.36
0.400	2020141.95	13872.974	2034014.92
0.500	2019222.79	26171.972	2045394.77

D'après les résultats obtenus dans le tableau ci-dessus, on remarque que le diamètre le plus économique est **Ø 250**, avec un bilan minimal de 2030221.36DA.

❖ Adduction de nouveau forage (projeté) vers Château N° 5 :

Tableau VI. 23 : les Données de Bases de forage (projeté) de centre-ville zelfana vers le château $N^{\circ}5$.

Conduit adduction	Débit de forage (l/s)	Longeur de conduit (m)	CTN (forage)	Z _{ma} x R (m)	Z _{mi} n F (m)	H _g (m	E (m)	V (m/s²)
Forage (projeté) vers CH5	55	62.33	358	375	278	79	0.006	1.0E- 06

> Choix de diamètre :

Tableau VI. 24 : choix de diamètre de la conduite de l'adduction vers le château N°5.

Conduit Adduction	Diameter Calculé		Diameter Normalisé	
Forage (projeté) vers château	Bonine Ø(mm)	Bress Ø(mm)	Bonine Ø(mm)	Bress Ø(mm)
N°5	234.45	351.78	250	400

Ø (mm)	V (m/s)	Re	E/Ø	λ
250	1.16	280 255	0.042	0.067
400	0.565	175 159	0.028	0.056
500	0.28	140 127	0.012	0.041

Tableau VI. 25 : Calcul de la Hmt du tronçon (Forage (projeté)-château 5).

Conduit Adduction	Forage (projeté) vers CH5				
Diameter Normaliser Ø(mm)	Ø200 (mm)	Ø300 (mm)	Ø350 (mm)		
Perte de charge linéaire Δ H L (m)	4.176	3.490	2.555		
Perte de charge totale ΔHT (m)	4.593	3.839	2.811		
Hauteur manomètre totale HMT (m)	83.593	82.839	81.811		

Tableau VI. 26: Calcul des frais d'exploitation «Fexp» (Forage –château 5).

$\mathbf{D}_{\mathrm{ext}}(\mathbf{m})$	P (K.w)	E (K.w.h)	Fexp (DA)
0.250	56.38	411 564.80	1 716 225.23
0.400	55.87	407 851.61	1700741.232
0.500	55.18	402 788.17	1679626.689

Tableau VI. 27: Calcul des frais d'amortissement «Famt» (Forage -château 5).

D _{ext} (m)	Prix (DA/ml)	L (m)	Famort (DA)
0.250	2805.48	62.33	18203.505
0.400	6548.69	62.33	42491.522
0.500	12354.39	62.33	80162.114

Tableau VI. 28 : Calcul du bilan du tronçon (Forage -château N°5).

D _{ext} (m)	Fexp (DA)	Famort (DA)	Bilan (DA)
0.250	1 716 225.23	18203.505	1734428.736
0.400	1700741.232	42491.522	1743232.754
0.500	1679626.689	80162.114	1759788.803

D'après les résultats obtenus dans le tableau ci-dessus. on remarque que le diamètre le plus économique est **Ø 250**. avec un bilan minimal de 1734428.736 **DA**.

Adduction de FN°4 Ver Les Hammams :

Tableau VI. 29 : les Données de Bases de forage N°4 vers Hammames .

Conduit Adduction	Debit de forage (l/s)	Diameter Calculé		Diameter Normalisé	
Forage N°4 Ver Les	30	Bonine Ø(mm)	Bress Ø(mm)	Bonine Ø(mm)	Bress Ø(mm)
Hammams		173.21	259.81	200	300

> Choix de diamètre :

Tableau VI. 30 : Calcul de la Hmt du tronçon Forage N°4-Hammams.

Ø (mm)	V (m/s)	Ŗе	E/Ø	λ
200	0.96	191 083	0.030	0.058
300	0.42	127 389	0.020	0.049
350	0.31	109 190	0.017	0.047

Tableau VI. 31: Calcul de la Hmt.

Conduit Adduction	Forage (projeté) vers CH4					
Diameter Normaliser Ø(mm)	Ø250 (mm)	Ø400 (mm)	Ø500 (mm)			
Perte de charge linéaire ΔH L (m)	1.088	0.266	0.089			
Perte de charge totale AH T (m)	1.25	0.31	0.10			
Hauteur manomètre totale HMT (m)	89.57	88.63	88.42			

Tableau VI. 32: Calcul des frais d'exploitation «Fexp» (Forage N°4-Hammams).

$\mathbf{D}_{\mathrm{ext}}(\mathbf{m})$	P (K.w)	E (K.w.h)	Fexp (DA)
0.200	108.927	795172.401	3315868.913
0.300	101.827	743343.835	3099743.793
0.350	92.146	672668.517	2805027.72

Tableau VI. 33 : Calcul des frais d'amortissement «Famt» (Forage N° 4-Hammams) .

D _{ext} (m)	Prix (DA/ml)	L (m)	Famort (DA)
0.200	2805.48	18.76	5478.866
0.300	6548.69	18.76	12789.041
0.350	12354.39	18.76	24127.085

Tableau VI. 34: Calcul du bilan du tronçon (Forage N°4-Hammams).

Dext(m)	Fexp (DA)	Famort (DA)	Bilan (DA)
0.200	1002453.337	5478.866	1007932.204
0.300	1000373.51	12789.041	1013162.552
0.350	999911.326	24127.085	1024038.412

D'après les résultats obtenus. on constate que le diamètre économique est le Ø 200. du fait qu'ilprésente le plus petit bilan.

Conclusion:

Dans ce chapitre consacré à l'adduction, nous avons abordé les principaux aspects de l'étude technique, qui est loin d'être succincte. Nous avons calculé divers paramètres, tels que la vitesse d'écoulement, les pertes de charge, l'énergie consommée, ainsi que les coûts d'exploitation. Nous avons également choisi le matériau qui nous semble le plus adapté au projet, à savoir le PEHD.

Selon le chapitre (III), le débit nominal de chaque pompe est supérieur au débit maximum journalier ainsi qu'à la HMT, ce qui signifie qu'il n'est pas nécessaire de remplacer les pompes existantes.

Chapitre VII

Protection contre

Le

Coup de bélier

Introduction:

Dans les systèmes hydrauliques en charge, les variations de pression causées par des changements de régime plus ou moins rapides, voire brusques, exercent des contraintes sur le matériel, affectant ainsi l'adduction par ces valeurs extrêmes. Étant donné la complexité de ce phénomène, des méthodes approximatives, graphiques ou numériques ont été développées pour permettre aux ingénieurs de quantifier ces effets.

VII.1 Vue d'ensemble sur le phénomène

Le régime transitoire, ou coup de bélier, est un phénomène oscillatoire causé par un changement de régime d'écoulement dans la conduite. Il se manifeste par une série d'ondes de pression qui se propagent le long de la conduite et s'amortissent progressivement en raison des pertes d'énergie dues au frottement.

Les causes les plus fréquentes de ce phénomène sont :

- Le démarrage d'un groupe électropompe ;
- L'arrêt brutal, par disjonction inopinée, d'un ou plusieurs groupes électropompes alimentant une conduite de refoulement ;
- La fermeture instantanée ou trop rapide d'une vanne de sectionnement ou d'un robinet d'obturation placé à l'extrémité d'une conduite d'adduction.

Le coup de bélier est caractérisé par des surpressions et des dépressions dont les variations peuvent être nuisibles pour les canalisations, surtout si leurs épaisseurs sont faibles. Il est donc crucial, lors de l'étude d'un projet d'AEP, de rechercher des moyens pour atténuer les effets néfastes de ce phénomène.

VII.2 Analyse physique du phénomène [2]:

Considérons le cas d'une conduite de refoulement de longueur L dont le débit est brusquement interrompu suite à une disjonction du moteur électrique de la pompe.

VII.2.1 Première phase

De manière compressible, une réduction locale de pression est provoquée, entraînant une décompression du fluide et, par conséquent, la contraction de la conduite. Cela engendre une dépression qui se propage dans la conduite à la vitesse des ondes élastiques « a », jusqu'à ce que toute la conduite soit soumise à cette dépression (Figure VII-1). Ce phénomène se produitaprès un temps T = L/a, où L est la longueur de la conduite entre les pompes et le réservoir.

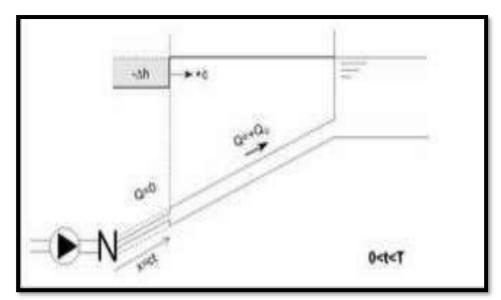


Figure VII. 1 : Contraction de la conduite (phase 1 du phénomène).

VII.2.2 Deuxième phase:

Il en résulte que la pression à l'entrée de la conduite dans le réservoir est inférieure à la pression dans ce dernier, ce qui provoque un écoulement en sens inverse (Figure VI-2). Cette onde se propage du réservoir vers la station de pompage et atteint la vanne clapet après un temps 2T, à compter du début du phénomène.

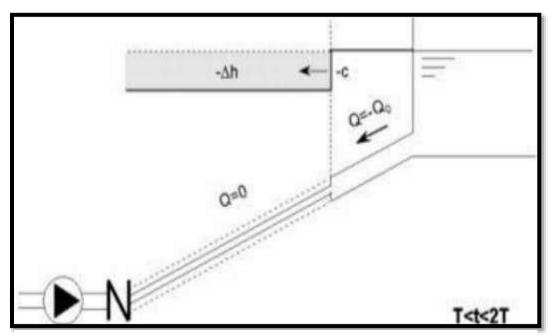


Figure VII. 2 : Ecoulement en sens inverse (phase 2 du phénomène).

VII.2.3 Troisième phase :

La couche de fluide près de la pompe est contrainte de s'arrêter. Cette réduction d'énergie cinétique entraîne une augmentation locale de la pression, provoquant une compression du fluide et une distension de la conduite. Ce processus se propage jusqu'au réservoir, où il arrive après un temps de 3T (Figure VI-3).

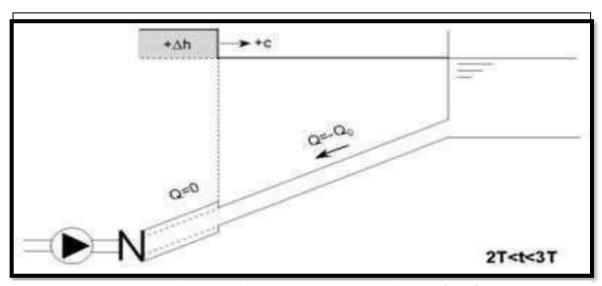


Figure VII. 3 : Distension de la conduite (phase 3 du phénomène).

VII.2.4 Quatrième phase :

Lorsque cette onde de surpression atteint le réservoir, la pression du réservoir est inférieure à celle de la conduite, ce qui provoque une inversion de l'écoulement pour revenir aux conditions initiales de pression et de vitesse. Cette onde se propage ensuite vers les pompes (Figure VI-4).



Figure VII. 4 : Retour aux conditions initiales, (phase 4 du phénomène).

VII.3 Etude des valeurs du coup de bélier

Elle consiste à évaluer les valeurs de surpression et de dépression, en s'assurant qu'elles ne dépassent pas les limites admissibles et qu'elles ne causent pas de dommages à la conduite et aux joints.

Pour la dépression, la valeur absolue trouvée ne doit pas dépasser la pression atmosphérique (10 m.c.e.) aux points écrêtés par la ligne piézométrique de dépression. Cependant, il serait prudent de se limiter à 8 m.c.e.

Pour la surpression, la valeur calculée doit être inférieure à la pression maximale admissible donnée par le constructeur.

Dans le cas contraire, et afin d'atténuer la brutalité du phénomène transitoire, il sera nécessaire d'envisager des moyens de protection des conduites.

VII.4 Dispositifs de protection

Les dispositifs de protection contre le coup de bélier incluent :

- Le volant d'inertie ;
- La soupape de décharge;
- La cheminée d'équilibre ;
- Le réservoir d'air.

VII.4.1 Volant d'inertie

Le volant d'inertie est une roue de masse importante fixée à l'arbre du groupe motopompe. Il permet, en cas de coupure d'alimentation, d'allonger le temps de fermeture en dissipant l'énergie cinétique de rotation accumulée. Cependant, son utilisation nécessite un volume d'encombrement suffisant et les démarrages de pompes ne pourront pas être rapides.

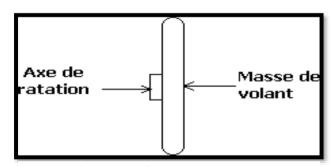


Figure VII. 5: Volant d'inertie.

VII.4.2 Chambre ou cheminée d'équilibre

Les cheminées d'équilibre sont des dispositifs simples qui permettent de transformer les surpressions et dépressions en variations de hauteur de la colonne d'eau, comme l'illustre la Figure VII-6. Elles ne sont pas utilisées dans le domaine de l'AEP.

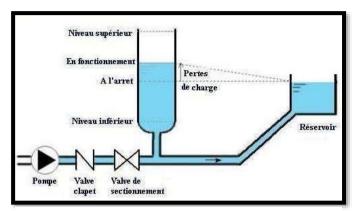


Figure VII. 6: Cheminé d'équilibre.

VII.4.3 Soupapes de décharge [2] :

Les soupapes de décharge sont des équipements mécaniques qui s'ouvrent pour réduire la surpression à une valeur acceptable. Ces dispositifs sont généralement constitués d'une soupape maintenue par un ressort, dont la pression est ajustée à une valeur légèrement supérieure (5 %) à la pression maximale d'opération. L'ouverture de la soupape permet le passage d'un débit qui doit être évacué vers l'extérieur. Ces appareils sont couramment utilisés en irrigation.

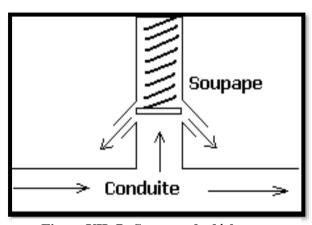


Figure VII. 7 : Soupape de décharge.

VII.4.4 Réservoir d'air

Les réservoirs hydropneumatiques sont des réservoirs où le volume d'eau est équilibré par la pression de fonctionnement en régime permanent. Cette réserve d'eau permet de réduire les dépressions en fournissant la quantité d'eau demandée sous forme d'un débit contrôlé par un orifice, une tuyère ou un clapet percé. Il est essentiel d'introduire un amortissement dans le système, sans quoi les oscillations pourraient durer longtemps. L'expérience a montré qu'il est préférable d'avoir une plus grande perte de charge au retour qu'à l'aller, dans le sens du réservoir vers la conduite. Ces reservoirs sont couramment utilisés en AEP.

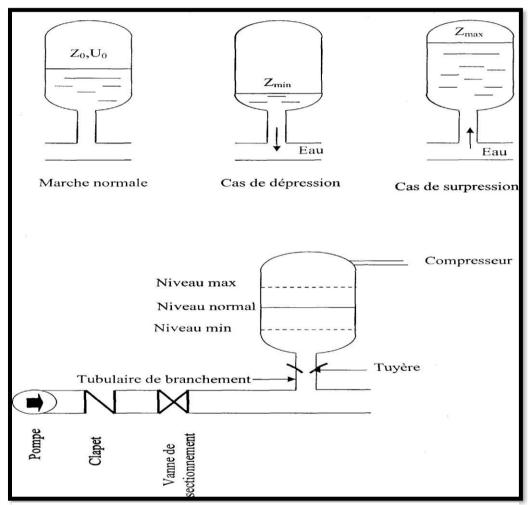


Figure VII. 8: Réservoir d'air.

VII.5 Calcul des réservoirs d'air [3] :

Le calcul du réservoir d'air permet de déterminer les valeurs maximales de surpression et de dépression dans les conduites de refoulement, ainsi que le volume du réservoir d'air.

Les méthodes de calcul incluent :

- a) **Méthode de VIBERT** La méthode de VIBERT donne de bons résultats pour les petites installations, mais elle risque de donner des volumes de réservoirs d'air importants pour les grandes installations.
- b) **Méthode de BERGERON** La méthode de BERGERON est la plus répandue et donne de bons résultats aussi bien pour les petites que pour les grandes installations.

VII.5.1 Dimensionnement des réservoirs d'air

La célérité de l'onde élastique c*c* dépend du fluide écoulé (ici de l'eau) et des caractéristiques de la conduite (diamètre et épaisseur) ainsi que du sol.

Dans le cas d'une conduite indéformable, cc correspond à la vitesse de propagation du son dans l'eau (~1400 m/s). Cependant, lorsque l'on prend en compte la déformation de la conduite, cette vitesse de propagation diminue.

Elle est donnée par la formule publiée par B. SALAH, qui tient compte de l'effet du sol sur la conduite [4].

$$C = \frac{\sqrt{\frac{K}{\rho}}}{\sqrt{1 + \frac{K.2.a.(1 - \upsilon_m^2).(1 - \upsilon_s)}{(1 - \upsilon_m^2).a.E_s + E_m.e_m.(1 - \upsilon_s)}}}$$
 VII. 1

Avec:

- C : Célérité en [m/s]
- K : Coefficient de compressibilité de l'eau ; k = 2,07*109 pascal
- ρ : Masse volumique de l'eau ; $\rho = 1000 \text{ kg} / \text{m}$ 3
- em : Epaisseur de la conduite (m)
- a : Rayon intérieur de la conduite (m)
- vm : Coefficient de poisson du matériau de la conduite ; vm=0.46 (PEHD)
- vs : Coefficient de poisson du sol entourant la conduite ; vs=0,33
- Em : Le module de Young du matériau de la conduite;
- Em = 3*103 Mpa
- Es : Module de Yong du sol considéré
- Es =200 Mpa (PEHD)

a) La charge tenant compte du coup de bélier :

$$Z = Hg + \frac{C * V_0}{g} \quad VII. 2$$

Avec:

- V₀: vitesse moyenne de refoulementen(m/s).
- g: l'accélération de pesanteur.
- b) La charge statique absolue :

$$Z_0 = Hg + 10$$
 VII. 3

c) La charge maximale absolue :

$$Z_{\text{max}} = Z_0 + \frac{C * V_0}{g}$$
 VII. 4

D'où :
$$\frac{Z_{\text{max}}}{Z_0} \\ h_0 = \frac{V_0^2}{2*g} \Rightarrow \frac{h_0}{Z_0}$$
 \Rightarrow Abaque de VIBERT
$$\Rightarrow \frac{U_0}{LS}; \frac{Z_{\text{min}}}{Z_0}$$

(Annexe VII-1

$$U_0*Z_0=U_{\max}*Z_{\min}\Rightarrow U_{\max}=\frac{U_0}{\frac{Z_{\min}}{Z_0}} \qquad \qquad \text{VII. 5}$$

Avec:

- U_{max}: volume du réservoir d'air.
- d) le volume total du reservoir :

$$Vt = 1.2 \times Umax \text{ VII. } 6$$

Avec:

• V_t: le volume total du réservoir

Les caractéristiques de l'adduction de refoulement sont représentées dans le tableau suivant :

Tableau VII. 1 : Les caractéristiques des différents tronçons de l'adduction de refoulement.

		1			3	udduction de i	
La Conduit	Type de matériau	D (mm)	Dint (mm)	S (m ²)	V (m/S)	L (m)	Hg(m)
Forage Hassinor vers CH1	PEHD	250	244.94	0.0472	1.27	21.43	79.39
Forage Hassinor vers CH2	PEHD	250	244.94	0.0472	1.27	215	80.88
Forage N°4 vers CH3	PEHD	250	244.94	0.0517	1.27	368.03	97.60
Nouveau forage vers CH4	PEHD	250	234.45	0.0433	1.16	20.53	97.39
Nouveau forage vers CH5	PEHD	250	234.45	0.0433	1.16	62.33	79
Forage versles hammes	PEHD	200	173.21	0.0312	0.96	18.76	88.32

VII.5.2 Calcul de la célérité d'onde C

Les résultats trouvés pour le calcul de la célérité d'onde C sont regroupés dans le tableau suivant :

Tableau VII. 2 : Calcul de célérité d'onde des différents tronçons de l'adduction de refoulement.

La	K (Pa)	D (17 - /3)	a		٧s	E _S (Pa)	E _m (Pa)	em (m)	C	
Conduit	$(x 10^9)$	P (Kg/m ³)	(m)	(m) vm		(*10 ⁸)	$(\mathbf{x} 10^9)$		(m/s)	
Forage Hassi nor vers CH1	2.07	1000	0.12	0.46	0.33	2	3	0.003	425.988	
Forage Hassi nor vers CH2	2.07	1000	0.12	0.46	0.33	2	3	0.003	425.988	
Forage N°4 vers CH3	2.07	1000	0.12	0.46	0.33	2	3	0.003	425.988	
Nouveau forage versCH4	2.07	1000	0.117	0.46	0.33	2	3	0.008	423.945	
Nouveau forage versCH5	2.07	1000	0.117	0.46	0.33	2	3	0.008	423.945	
Forage vers les hammes	2.07	1000	0.086	0.46	0.33	2	3	0.0135	609.748	

VII.5.3 Calcul des capacités des différents réservoirs d'air

Tableau VII. 3 : Calcul de volume des différents réservoirs d'air de l'adduction de refoulement.

La conduit	(m)	Zmax (m)	(s/m)	g (m/s²)	h0 (m)	Zmax/ Z0	h0/Z0 (x10 ⁻³)	U0/L*S (x10 ⁻²)	Zmin/Z0	U0 (m³)	Umax (m³)	V t (litre)
Forage Hassi nor vers CH1	793.9	849.048	1.27	9.81	0.082	1.069	0.103	7	0.945	0.070	0.075	89.910
Forage Hassi nor vers CH2	808.8	863.948	1.27	9.81	0.082	1.068	0.101	7	0.94	0.710	0.755	906.84
Forage N°4 vers CH3	976	1031.14	1.27	9.81	0.082	1.056	0.084	7	0.9525	1.331	1.398	1677.9
Nouveau forage vers CH4	973.9	1024.03	1.16	9.81	0.068	1.051	0.070	5	0.9525	0.044	0.046	55.996
Nouveau forage vers CH5	790	840.130	1.16	9.81	0.069	1.063	0.0868	5	0.952	0.134	0.141	170.00
Forage versles hammes	883.2	942.869	0.96	9.81	0.047	1.067	0.053	3	0.94	0.017	0.019	22.416

Conclusion:

L'objectif de ce chapitre était de déterminer le moyen de protection le plus adapté contre le régime transitoire (coup de bélier). Cela nous a conduits à choisir les réservoirs d'air en raison des avantages qu'ils offrent. Après calcul, nous avons trouvé le volume d'air maximal nécessaire pour contrer le coup de bélier des quatre adductions.

Chapitre VIII

Pose de conduite

Introduction:

Dans ce chapitre, nous nous intéressons à la pose de canalisations en tranchée et aux diverses techniques d'assemblage des tubes en PEHD, ainsi qu'aux différents accessoires utilisés dans unréseau d'alimentation en eau potable.

En Algérie, la réglementation relative à la pose des canalisations relève du ministère des ressources en eau. À cet effet, un document technique réglementaire (DTR) a été élaboré en 2008par cette institution, intitulé « Règles de pose des canalisations en plastiques destinées aux projets d'alimentation en eau potable ».

VIII.1 Pose de canalisation :

VIII.1.1 Principe de pose des canalisations : [5]

Le principe de l'installation des canalisations est fondamentalement le même pour toutes les conduites. Cependant, la méthode d'installation peut varier en fonction des conditions du terrain, afin de minimiser l'impact des diverses contraintes qui affectent la canalisation. L'épaisseur du matériau de remblai au- dessus de la partie supérieure de la conduite varie selon les régions, principalement en raison des variations de température, notamment le gel. En général, cette épaisseur est d'environ 1 mètre. Pour garantir un bon écoulement, une conduite doit toujours être installée avec une légère pente, créant ainsi des points bas pour la vidange et des points hauts pour l'évacuation de l'air, que ce soit lors du remplissageinitial de la conduite ou pendant son fonctionnement. Par conséquent, un tracé en forme de dent de scie est généralement adopté, avec des pentes de quelques millimètres par mètre et des changements de pente tousles 200 à 400 mètres.

a) Pose selon la nature de terrain :

Dans un terrain ordinaire, la canalisation est installée dans une tranchée d'une largeur minimalede 60 cm et d'une profondeur suffisante pour accueillir le lit de pose (en sable), la conduite et l'épaisseur du remblai (au moins 80 cm). Le fond de la tranchée est recouvert d'une couche de sable de 10 à 20 cm d'épaisseur, destinée à former un matelas élastique sous le tuyau. Avant l'excavation, les conduites sont triées pour écarter celles qui présentent des chocs, des fissures, etc. Ensuite, les conduites sont descendues dans le lit de pose, soit manuellement, soit mécaniquement, de manière lente et contrôlée. Le remblayage se fait par couches de 20 à 30 cm, exemptes de pierres et bien tassé, et est finalisé à l'aide d'engins.

b) Pose selon la nature des conduites :

Dans notre projet, étant donné que les canalisations sont en polyéthylène haute densité (PEHD), l'enfouissement à la charrue est interdit, sauf dérogations spécifiques. Si un cintrage est nécessaire, il doit suivre une courbure dont le diamètre est compris entre 6 et 16 fois le diamètre extérieur du tuyau, et doit être réalisé à chaud ; des courbures plus prononcées sont à éviter. En cas de pose par temps chaud, le serrage des jonctions extrêmes des canalisations et le remblayage doivent être effectués pendant les heures les plus fraîches, de préférence le matin.

c) Traversées des routes :

Dans notre projet, nous devons traverser plusieurs routes. En raison des charges supportées, qui peuvent entraîner des ruptures et, par conséquent, des infiltrations nuisibles au niveau des conduites etdes routes, il est recommandé de limiter autant que possible les traversées de routes. Si aucune autre alternative n'est disponible, les conduites doivent être installées dans une gaine (une buse de diamètre supérieur dans laquelle la conduite est introduite), afin de protéger la canalisation des chocs et des vibrations, et d'évacuer les fuites éventuelles hors de la chaussée. De plus, la profondeur d'enfouissement doit être d'au moins un mètre sous la chaussée (0,70 m sous l'accotement). Enfin, le remblayage et la reconstitution de la chaussée doivent être réalisés avec soin.

d) Traversée des Oueds :

La pose de canalisation à la traversée d'un oued nécessite des travaux spéciaux en fonction de l'état dela traversée. La présence d'un pont-route peut également servir de support pour la canalisation. En l'absence de pont-route, une traversée aérienne sera choisie. Le franchissement aérien des oueds est assuré par l'installation de piliers au niveau du lit de l'oued. Ces piliers seront dimensionnés de manière à supporter les charges appliquées par la conduite.

VIII.2 Critères de choix des canalisations :

Lors de la conception, du renouvellement et de la pose des canalisations, il est essentiel d'utiliser des matériaux appropriés en prêtant une attention particulière au choix des conduites. Le revêtement interne etexterne doit être sélectionné en fonction de sa conformité sanitaire, de sa compatibilité avec la qualité de l'eau et de sa résistance aux agents externes, notamment les problèmes de corrosion du sol.

Les matériaux doivent répondre aux critères suivants :

- Forte compacité ;
- Résistance à l'abrasion ;

- Adaptation aux types de sol et à leur consistance ;
- Compatibilité avec la nature du milieu traversé (saturé ou sec) ;
- Étanchéité à l'eau ;
- Faible rugosité;
- Faible porosité.

Il est également nécessaire de vérifier que l'eau transportée n'est pas agressive pour les conduites, les pièces spéciales (telles que les Tés, les coudes, les joints et autres équipements). L'opérateur peut orienterle choix du matériau en fonction de critères techniques, économiques et de disponibilité sur le marché national.

VIII.2.1 Choix des canalisations en fonction du liquide transporté :

L'eau transportée dans les réseaux présente des caractéristiques physicochimiques très variées. Deuxprincipaux types d'eaux doivent être pris en compte :

- Les eaux corrosives, capables d'attaquer les métaux non revêtus ;
- Les eaux agressives, susceptibles de détériorer les matériaux à base de ciment.

VIII.2.2 Choix des canalisations en fonction du type de sol :

Un revêtement extérieur a pour fonction de garantir une protection durable contre la corrosivité des sols. Pour déterminer le tuyau adapté à un type de sol spécifique, il est recommandé de réaliser une étude préalable sur la corrosivité et l'agressivité du terrain. En première analyse, on peut distinguer les terrainssuivants :

- À faible risque : sables, graviers, matériaux d'empierrements et calcaires.
- À risque élevé : marnes et argiles.
- À risque très élevé : gypse, pyrite et combustibles.

VIII.3 Type de canalisation :

Pour notre projet, nous avons choisi les tubes en Polyéthylène Haute Densité (PEHD)PN16 en raison de leurs nombreux avantages. Les conduites en PEHD destinées à la distribution d'eau potable doivent répondre à certaines normes.

VIII.3.1 Spécifications :

Couleur : Les tubes en Polyéthylène doivent être de couleur bleue ou de couleur noireavec des traits bleus. Les tuyaux de couleur noire doivent comporter au minimum trois (03) traits de repérage de petites dimensions.

Aspect visuel : Les tubes doivent présenter des surfaces intérieures et extérieures propreset lisses, exemptes de rainures, cavités, entailles et autres défauts pouvant nuire à leur qualité.

VIII.3.2 Marquage des tubes :

Les tubes en polyéthylène (PE) destinés aux réseaux publics d'eau potable doivent porter de manière apparente et indélébile, à intervalles d'un mètre le long du tube, les indications minimales suivantes :

- La désignation commerciale et/ou le sigle du fabricant ;
- La matière constitutive de base et sa désignation ;
- L'origine de la matière première.

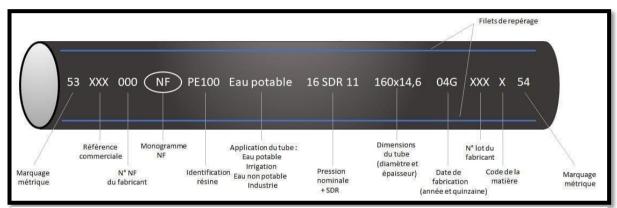


Figure VIII. 1: marquage du tube en PEHD.

(source:.manomano.fr/conseil/tube-en-polyethylene-comment-choisir-4727)

- Le soudage bout à bout par élément chauffant est utilisé pour assembler des tubes et des raccordsen polyéthylène de même épaisseur ; il est particulièrement adapté aux canalisations de diamètresupérieur ou égal à 90 mm.
- Ce procédé consiste à chauffer les extrémités des tubes et/ou des raccords à l'aide d'un outil chauffant (miroir) pour les porter à la température requise pour le soudage. Une fois cette température atteinte, l'outil est retiré et les extrémités plastiques sont mises en contact sous pression pendant tout le cycle de refroidissement. La soudure ainsi réalisée doit parfaitement reconstituer la continuité de la canalisation et garantir une résistance mécanique au moins égale àcelle du tube utilisé.

VIII.4 Pose des conduites :

VIII.4.1 Pose des canalisations en tranchée ouverte :

La plupart du temps, les conduites sont posées en tranchée ouverte. Cette opération se fait par tronçons successifs, en commençant par les points hauts pour assurer, si nécessaire, l'écoulement naturel des eauxd'infiltration.

La largeur de la tranchée doit permettre à un homme de travailler confortablement. Elle est rarement inférieure à 0,70 m pour les petits diamètres. Pour les diamètres supérieurs à 150 mm, cette largeur doit être augmentée. Aux endroits des joints, des élargissements appelés niches sont pratiqués dans les paroislatérales de la tranchée.

Il est essentiel que les tuyaux soient posés en files bien alignées et bien nivelées. L'enfouissement des canalisations vise à les protéger contre les dégradations extérieures, à conserver la fraîcheur de l'eau et à lamettre à l'abri du gel. L'épaisseur de la couche de terre est généralement de l'ordre de 1 mètre.

Le fond d'une tranchée doit être bien plan tout le long d'une même pente, afin que la conduite soit bienrectiligne entre deux changements de pente ou de direction consécutifs. Une fois le fond de la tranchéebien préparé, les tuyaux y sont descendus, soit à bras pour les petits diamètres, soit à l'aide d'engins spéciaux pour les gros diamètres, puis ils sont mis en place bout à bout ; les assemblages sont ensuite réalisés.

Pour les tuyaux en acier, les revêtements doivent être rigoureusement reconstitués partout où ils auraientété détériorés. Ce type de tuyau permet de descendre dans une tranchée de largeur réduite plusieurs centaines de mètres de canalisations assemblées et éprouvées sur le bord de la fouille.

VIII.4.2 Pose de canalisation dans un terrain ordinaire :

La canalisation est posée dans une tranchée ayant une largeur minimale de 70 cm. Le fond de la tranchéeest recouvert d'un lit de sable d'une épaisseur de 15 à 20 cm, convenablement nivelé. Avant la mise en fouille, un triage des conduites est effectué pour écarter celles qui présentent des chocs, des fissures, etc. Ensuite, les tuyaux sont descendus dans le lit, soit manuellement, soit mécaniquement, de manière lente.

En cas de soudage de joints, cette opération doit être réalisée de préférence en fond de tranchée, en calant la canalisation soit avec des butées de terre, soit avec des tronçons de madriers en bois disposés dans le sens de la longueur de la tranchée. Pour plus de sécurité, l'essai de

pression des conduites et des joints doittoujours avoir lieu avec remblayage. L'essai consiste à remplir la conduite d'eau sous une pression de 1,5 fois la pression de service à laquelle sera soumise la conduite en cours de fonctionnement. Cette épreuve doit durer environ 30 minutes, et la variation de niveau ne doit pas excéder 0,2 bars.

Le remblayage doit être effectué par couches de 20 à 30 cm, exemptes de pierres et bien tassées, et seraensuite achevé à l'aide d'engins.

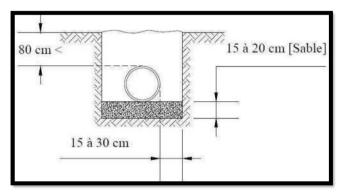


Figure VIII. 2: pose de canalisation dans un terrain ordinaire.

(Source: 5.1.2 GUI1 Réalisation de tranchees.pdf)

VIII.4.3 Cas particulier de pose en terre :

Lorsque la conduite traverse des terrains marécageux ou tourbeux, des travaux de consolidation doivent être prévus pour éviter tout mouvement ultérieur des tuyaux. Selon les circonstances, une semelle continueen béton armé peut être installée sous le tuyau, enserrant la conduite sous un angle de 90°. De plus, les tuyaux peuvent reposer sur des tasseaux en béton dans lesquels des pieux en chêne, préalablement battus jusqu'au bon sol, seront noyés.

VIII.4.4 Pose des canalisations en élévation :

Lorsque les tuyaux sont placés dans une galerie, un caniveau d'ouvrage d'art ou en élévation, ils reposent sur des tasseaux et sont, si nécessaire, maintenus par des colliers, des berceaux ou des consoles. Les piècesmécaniques reçoivent un revêtement protecteur avant la pose pour assurer leur maintien. Dans les lieux humides, la protection est assurée par un revêtement épais à base de goudron ou de bitume. Dans les autres locaux, trois couches de peinture antirouille sont appliquées.

Dans le cas des canalisations exposées aux intempéries, il convient de procéder au calorifugeage desconduites. Le matériau utilisé doit offrir des qualités d'imputrescibilité, d'isolation et de résistance

Lors de la pose des canalisations aériennes, les éléments suivants doivent être prévus :

- Un support pour tuyau.
- Un berceau d'appui ($\theta = 120^{\circ}$).

• Un collier de fixation avec une protection en élastomère.

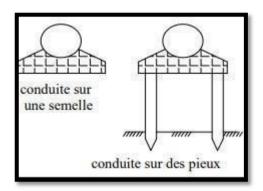


Figure VIII. 3 : Pose des canalisations en élévation.

(Source: 5.1.2 GUI1 Réalisation de tranchees.pdf)

VIII.4.5 Pose de canalisation dans un mauvais terrain :

Si le terrain est de mauvaise qualité, plusieurs solutions peuvent être envisagées :

- Cas d'un terrain peu consistant : Pour éviter tout mouvement de la canalisation, celleci doit être posée surune semelle en béton armé. La semelle peut être continue ou non, en fonction de la nature du sol.
- ➤ Cas d'un terrain mouillé : Un système de drainage (comme une conduite) doit être installé dans latranchée, recouvert d'un lit de gravier de gros diamètre, suivi d'un lit en béton sur lequel repose lacanalisation.

VIII.4.6 Pose de canalisation en galerie (Traversée d'une route) :

Dans certains cas, le tracé de la canalisation peut rencontrer des obstacles nécessitant le placement de la conduite dans une galerie. Les conduites de grand diamètre (sauf aqueducs) doivent être placées sur des madriers (en bois de chêne) et calées de part et d'autre pour éviter leur mouvement. Les canalisations de petit diamètre peuvent être placées dans un fourreau de diamètre supérieur et reposant sur des tasseaux enbéton. Les robinets et vannes doivent être placés de chaque côté de la route. [6]

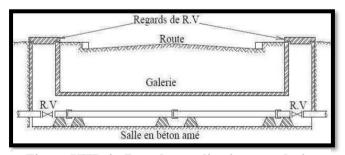


Figure VIII. 4 : Pose de canalisation en galerie.

(Source: 5.1.2 GUI1 Réalisation de tranchees.pdf)

VIII.4.7 Cas de Butées d'un coude :

Les butées et ancrages seront calculés sans tenir compte du poids des remblais (en tranchée ouverte). Les butées seront généralement de type poids et, exceptionnellement, de type traîneau. Dans le calcul à soumettre au Maître d'Œuvre, le titulaire du marché devra prendre en compte le poids de la pièce, le poids de l'eau contenue, un coefficient de frottement correspondant à la nature du terrain, et une pression calculée à partir de la pression statique de service définie par le projet. Les joints et pièces seront protégéspar une membrane synthétique.

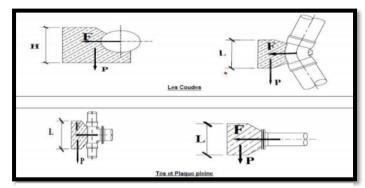


Figure VIII. 5 : Schéma des butées.

VIII.5 Essais de mise en service des canalisations :

- Les épreuves des canalisations consistent à mettre l'eau sous pression à l'intérieur des tubes pour vérifier l'étanchéité et la résistance mécanique des canalisations. Ces épreuves sont réalisées au furet à mesure de l'avancement des travaux.
- Avant de réaliser l'épreuve, un contrôle des canalisations est effectué pour en expurger tout corpsétranger.

VIII.6 Mise en Œuvre :

Les tâches constituant les travaux à réaliser sont :

VIII.6.1 Excavation des tranchées :

Avant de commencer les travaux de pose, il est nécessaire de procéder aux opérations de piquetage, quipermettent :

- De matérialiser sur le terrain le tracé et le profil en long de la canalisation.
- De reporter la position de tous les ouvrages enterrés (réseaux d'assainissement, câbles électriqueset PTT, canalisations de gaz).

La réalisation de la tranchée dépend des paramètres suivants :

- Environnement;
- Type de joint et diamètre ;

- Nature du terrain :
- Profondeur de pose.

L'excavation sera réalisée mécaniquement à l'aide d'une pelle mécanique. La profondeur minimale de latranchée à excaver est de 0,6 m. L'excavation des tranchées s'effectue par tronçons successifs, en commençant par les points hauts pour assurer, si nécessaire, l'écoulement naturel des eaux d'infiltration.

a) Largeur de la tranchée :

Elle sera calculée en fonction du diamètre de la conduite, en laissant 0,25 m d'espace de chaque côté pourfaciliter les travaux. La largeur de la tranchée est donnée par la formule suivante :

$$b = D + (2 \times 0.30)$$
 VIII. 1

Où:

- b : largeur de la tranchée (m);
- D : diamètre de la conduite (m).

b) Profondeur de la tranchée :

La profondeur varie de 0,60 m à 1,20 m pour assurer la protection de la conduite contre le risque d'écrasement sous l'effet des surcharges et les variations de température. On peut calculer la profondeur la tranchée en utilisant la formule suivante :

$$Htr = D + e + H$$
 VIII. 2

Avec:

- Htr : la profondeur de la tranchée (m) ;
- e = [20 à 30cm] épaisseur de lit du pose (e = 0.2m)
- H = [80 à 120cm] distance verticale au-dessus de la génératrice supérieure de la conduite,
- D : diamètre de la conduite (mm).

VIII.6.2 Lit de sable :

Pose d'un lit de sable d'une épaisseur de 10 cm sous la génératrice inférieure extérieure, en sable decarrière concassé ou granulé.

VIII.6.3 L'enrobage:

L'enrobage d'une épaisseur de 20 cm au-dessus de la génératrice supérieure extérieure, avec mise en placed'un grillage avertisseur bleu.

VIII.6.4 Le remblayage supérieur :

Les remblais sont systématiquement effectués avec des matériaux d'apport conformes à la réglementationen vigueur, compatibles avec les recommandations éventuelles issues de l'étude géotechnique et permettant à l'entreprise de respecter les objectifs de densification adaptés au type de chaussée.

Les tuyaux seront posés de préférence butés ; l'utilisation de pièces verrouillées est soumise à l'autorisation de la Métropole.

Les tuyaux seront posés avec un minimum de 0,80 m de couverture par rapport à la génératrice supérieure.

VIII.7 Les accessoires et pièces spéciales en AEP :

VIII.7.1 Les accessoires du réseau :

A. Les vannes de régulation :

Ces vannes utilisent l'énergie de l'eau qui les traverse pour limiter ou maintenir la pression ou le débit à la valeur souhaitée. Elles régulent le débit du fluide en fonction du changement de position de l'obturateur dela vanne, obtenu sous l'effet de la force de l'actionneur. Pour ce faire, la vanne doit :

- ✓ Retenir le fluide sans laisser passer de fuites.
- ✓ Avoir la capacité adaptée à l'usage prévu.
- ✓ Résister à l'érosion, à la corrosion et à l'influence de la température du procédé.On distingue :
 - ✓ Robinets à soupape.
 - ✓ Vannes sanitaires.
 - ✓ Vannes rotatives.

B. Les poteaux d'incendie:

Le poteau incendie est un appareil de lutte contre l'incendie permettant le raccordement audessusdu sol du matériel mobile des services de secours à un réseau sous pression. C'est également une prise d'eau disposée sur un réseau souterrain, permettant d'alimenter les fourgons des sapeurs- pompiers. Ces réseaux sont dédiés à la lutte contre l'incendie et à l'alimentation en eau potable dupublic. Les installations sont situées à proximité de la chaussée pour rester toujours accessibles.

Les poteaux d'incendie sont caractérisés par :

- La conception du système de fermeture et d'étanchéité ;
- Le DN (diamètre nominal);
- La réversibilité ou non de l'appareil.

Ils doivent répondre aux exigences des produits destinés à être installés sur des réseaux d'eau destinée à la consommation humaine.

Figure VIII. 6: Le poteau d'incendie.

Source: Travaux d'assainissement à Afa – Demandez votre devis gratuit(terrassement-ajaccio.fr)

C. Coudes:

Les coudes sont des accessoires particulièrement utiles pour les réseaux maillés et ramifiés, lorsque la conduite change de direction. Généralement, les coudes sont maintenus par des massifsde butées, convenablement dimensionnés. On distingue :

- Les coudes à deux emboîtements.
- Les coudes à emboîtement et à bout lisse.

Figure VIII. 7: Coude.

Source: Coudes à patin BLUTOP | Saint-Gobain PAM France (pamline.fr)

D. Coudes:

Les cônes sont utilisés pour relier deux conduites de diamètres différents, comme on les rencontreégalement à l'entrée et à la sortie des pompes. On distingue :

- Les cônes à deux emboîtements.
- Les cônes à deux brides.
- Les cônes à emboîtement et à bride.

Figure VIII. 8 : Cône à bride.

Source : Adaptateur hydraulique - Frischhut - de réduction / pour tuyaux / à bride (directindustry.fr)

E. Tés:

Les tés sont utilisés pour soutirer un débit d'une canalisation ou pour ajouter un débit complémentaire. Ils sont rencontrés dans les réseaux maillés, ramifiés et les canalisations d'adduction en cas de piquage. Les tés se présentent soit à trois emboîtements, soit à deux emboîtements et bride.

Figure VIII. 9: Tés à 3 Brides.

Source: Bienvenue sur le site web de HOLAM:: Voirie, Assainissement,

F. Les manchons:

Les manchons sont principalement utilisés lors de l'assemblage d'accessoires tels que les robinets-vannes et certains types de joints. Leur conception permet de les adapter à des tuyaux fabriqués en divers matériaux, ou d'être spécifiquement conçus pour un matériau particulier.

Figure VIII. 10: manchons pour tube PEHD.

Source: Manchon plastique pour tube PE (anjou-connectique.com)

VIII.7.2 Organes de mesure :

Dans notre projet, les composants principaux sont principalement des compteurs débit métriques et desmanomètres.

VIII.7.2.1 Mesure de la pression :

Les compteurs débit métriques sont positionnés à deux endroits stratégiques : à la sortie du réservoir et ausein du réseau de distribution. Leur placement est crucial pour la gestion du réseau, notamment pour le comptage et la détection de fuites. De plus, ils sont installés aux extrémités des tronçons qui forment les mailles de notre réseau.

Quant aux manomètres, ils sont utilisés pour mesurer la pression au niveau des nœuds. Les manomètres àaiguille sont employés à cet effet. Dans ce type de manomètres, le mouvement de l'aiguille est généré soitpar un secteur denté, soit par un levier, soit par une membrane. Cette méthode de transmission présente l'avantage d'être facile à calibrer, mais elle présente l'inconvénient d'une usure rapide des dents, en particulier si le manomètre est soumis à des vibrations.

Figure VIII. 12 : Manomètre a membrane.

Figure VIII. 11 : Manomètre à souffle.

Figure VIII. 13: Manomètre à capsule.

VIII.7.2.2 Mesure de débit :

Dans notre projet, les éléments essentiels comprennent principalement des compteurs de débit métriques. Ceux-ci sont stratégiquement placés en deux points cruciaux : à la sortie du réservoiret dans le réseau de distribution. Leur position est fondamentale pour la gestion du réseau, car elle permet de mesurer le débit et de détecter les fuites. En outre, ces compteurs sont situés aux extrémités des sections formant les mailles de notre réseau.

VIII.7.2.2.1 Diaphragme:

Il s'agit d'un disque perforé au centre, fabriqué dans un matériau adapté au liquide en question. Lediaphragme concentrique restreint le passage du fluide, créant ainsi une différence de pression entre ses deux côtés. Cela engendre une pression élevée en amont et une pression réduite en aval,proportionnelle au carré de la vitesse d'écoulement. Ce dispositif est le plus simple, le moins encombrant et le plus économique.

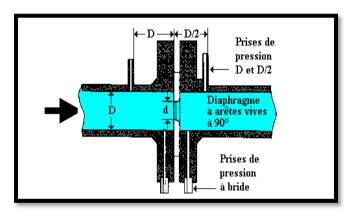


Figure VIII. 14: Diaphragm.

VIII.7.2.2.2 Tube de Venturi

Le tube de Venturi se compose d'un cône convergent, suivi d'un col cylindrique, puis d'un cône divergent. Bien qu'il offre une grande précision, il est relativement coûteux et encombrant. Il présente de bonnes performances en termes de perte de charge, d'usure et d'encrassement. Comme avec le diaphragme, les mesures de pression différentielle sont converties en débit volumique.

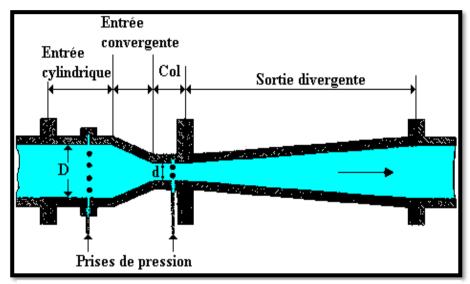


Figure VIII. 15: Tube de Venturi.

Source : Mesure et capteurs de débit

(sitelec.org)

VIII.7.2.2.3 Tuyère:

La tuyère est une variante du tube de Venturi. Son orifice crée un étranglement elliptique du flux, sans section de sortie pour restaurer la pression initiale. Les prises de pression sont placées à environ la moitié du diamètre de la conduite en aval et à un diamètre en amont.

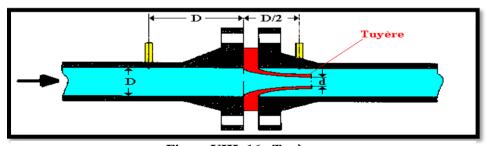


Figure VIII. 16: Tuyère.

Source : Mesure et capteurs de débit (sitelec.org)

VIII.7.2.3 Joints de raccordements :

Les joints de raccordement ont pour fonction d'assurer l'étanchéité des jointures des tuyaux et derésister aux sollicitations mécaniques et chimiques. Les joints constituent la partie la plus fragilede la canalisation en raison de leur souplesse. Tout mouvement du tuyau s'articule sur le joint, cequi provoque des usures mécaniques. De plus, l'action des produits chlorés de l'eau et le dessèchement induisent le vieillissement des joints.

Les joints sont définis, fabriqués et mis en œuvre selon les normes. Ils appartiennent aux types suivants :

- Joints avec garniture d'étanchéité.
- Joints automatiques avec emboîture ou par manchon.

- Joints mécaniques.
- Joints soudés ou électro-soudés.
- Joints isolants spéciaux.
- Joints verrouillés ou auto-butés.
- Joints à brides.
- Joints collés ou laminés.

VIII.7.2.4 By-pass:

Le Principe du by-pass consiste à créer une portion de circuit parallèle à un endroit du circuit hydraulique. Cela permet de doubler une portion du circuit primaire avec un circuit secondaire.

Lors de la création du by-pass, des vannes sont judicieusement disposées pour permettre de choisir quelleportion du circuit, primaire ou secondaire, sera parcourue par le liquide, ou pour mélanger les proportions de liquide passant par le primaire et le secondaire.

- Faciliter la manœuvre de la vanne à fermeture lente ;
- Remplir la conduite à débit réduit avant sa mise en service ;
- Relier la conduite d'arrivée à la conduite de départ du réservoir.

Conclusion:

Dans ce chapitre, nous avons présenté les normes, les méthodes et les installations liées à la mise en place des conduites, garantissant ainsi le bon fonctionnement du réseau. Dans la seconde partie, nousavons également abordé les accessoires utilisés pour relier les conduites, en soulignant l'importance d'une connexion appropriée pour assurer une gestion efficace du réseau.

Chapitre IX:

Organisation

De

chantier

Introduction:

Dans le cadre de notre projet, l'organisation du chantier est d'une importance cruciale. Elle nouspermet non seulement de définir l'ordre d'exécution des travaux par zones, mais aussi d'anticiper les étapes préliminaires nécessaires à certaines activités et les mesures requises pour une exécution conforme aux normes professionnelles. Avant de commencer les travaux sur le terrain, une phase d'étude théorique, appelée planification, est toujours nécessaire. La planification des travaux permet de déterminer la meilleure approche de travail et d'optimiser les coûts. Dans notregestion de projet, nous utiliserons la méthode CPM.

Enfin, nous procéderons à l'étude du devis estimatif, qui nous fournira une estimation du coûttotal du projet. Ce calcul implique la détermination des quantités nécessaires pour toutes les opérations sur le terrain, que l'on multiplie ensuite par le prix unitaire correspondant.

IX.1 Définition de l'organisation de chantier :

Avant de commencer un chantier, il est essentiel de mettre en place une organisation bien structurée. Cette organisation englobe toutes les mesures nécessaires pour exécuter le travail de manière optimale. Elle consiste à définir et à coordonner les moyens nécessaires à la réalisation de l'ouvrage, tout en respectant les directives générales imposées par le maître d'ouvrage. Une bonne organisation permet d'assurer la rapidité d'exécution, la qualité du produit et l'économie.

IX.2 Réalisation du réseau d'AEP:

La réalisation des travaux sur les chantiers de construction des réseaux d'AEP nécessite plusieursétapes, notamment :

- Le traçage des tranchées.
- L'excavation des tranchées.
- La préparation du lit de pose des conduites (sable).
- La pose des conduites.
- Les tests de joints et de canalisations (essais de pression et d'étanchéité).
- Le recouvrement des conduites (sable).
- Le remblayage de la tranchée.

IX.3 Implantation des tracés des tranchées sur le terrain :

a) Matérialisation:

On matérialise la trajectoire de la tranchée sur le terrain en utilisant des jalonnettes placées en ligne droite, avec un espacement de 50 mètres entre chacune. Cette opération est réalisée en mesurant, sur le plan, la distance entre les jalonnettes en se basant sur des points fixes tels que des bornes ou des repères, y compris les limites du chemin, etc. De cette manière, la direction desaxes ainsi que leurs points de départ et d'arrivée sont clairement définis.

b) Le nivellement :

Cette méthode est utilisée pour dresser le profil topographique d'un terrain en mesurant l'altitude de plusieurs points de référence. Toutes les altitudes sont rapportées à un niveau de base, appelé plan de comparaison. Lorsque des obstacles limitent la visibilité, on procède à un nivellement en suivant un itinéraire spécifique et en réalisant des calculs simples. Cela permet de déterminer l'altitude de chaque point ainsi que la profondeur de latranchée à ces points, facilitant ainsi l'estimation des volumes de terrassement, tels que l'excavation et le remblaiement.

IX.4 Excavation des tranchées :

Selon les caractéristiques du terrain, l'excavation sera réalisée mécaniquement. La profondeur minimalede la tranchée à excaver atteint généralement 0,80 m pour les raisons suivantes :

- Pour maintenir la fraîcheur de l'eau pendant les grandes chaleurs.
- Pour éviter la conduite d'assainissement si elle existe en dessous.

La largeur de la tranchée doit être suffisante pour qu'un homme puisse y travailler sans difficulté (en général 15 cm de part et d'autre de la conduite) ; elle est augmentée en fonction des diamètres des conduites à mettre en place. Aux endroits des joints des tuyaux, des élargissements et approfondissements de la tranchée, appelés « niches », sont pratiqués. L'excavation nécessite donc la détermination de plusieurs paramètres tels que :

- Profondeur de la tranchée « Htr »
- Largeur de la tranchée « b »
- Distance de la mise de la cavalière.

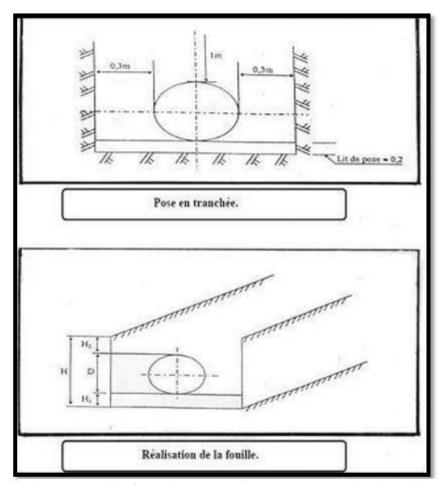


Figure IX. 1 : Schéma d'une tranchée avec une conduite circulaire.

(Source: https://www.viry74.fr/annexe-3-guide-technique-tranchees-nov2015v2.pdf)

IX.5 Aménagement du lit de pose des conduites :

Le lit de pose a pour fonction principale d'assurer une répartition uniforme des charges sur la zone d'appui, évitantainsi tout appui linéaire ou ponctuel. Avant la pose des conduites, les opérations suivantes doivent être réalisées :

- Éliminer les grosses pierres sur les talus de la tranchée.
- Respecter les côtes du profil en long.
- Niveler soigneusement le fond de la tranchée.
- Établir une suite au fond de la fouille en confectionnant un lit de pose (sable).

IX.6 Pose des conduites :

Avant de descendre les conduites dans la tranchée, une sélection préliminaire est effectuée pour éliminer celles susceptibles d'être endommagées lors de la manœuvre. Ensuite, les

conduites sont descendues lentement au fondde la tranchée à l'aide d'un équipement de levage, notamment pour les conduites de gros diamètre.

Pendant l'installation, l'alignement des tuyaux est régulièrement surveillé pour garantir une mise en place correcte. Pour ce faire, des nivelettes sont utilisées et des vérifications sont effectuées tous les 80 mètres environ. Si nécessaire, de la terre légère ou du sable est utilisé pour ajuster l'alignement des tuyaux, mais jamais des pierres. À chaque arrêt de l'installation, les extrémités de la section de conduite en attente sont solidement bouchées à l'aide de tampons.

IX.7 Les opérations pour la réalisation du réseau :

- Travaux de découpage de la tranche.
- Fourniture et pose du lit de sable.
- Pose des conduites.
- Travaux de remblaiement de la tranche.

IX.7.1 Calcul de la profondeur de la tranchée Htr:

$$Htr = e + d + Hmin (IX. 1)$$

Avec:

- Htr: la profondeur de la tranchée (m);
- e = [10 à 30cm] épaisseur de lit du pose (e =0.2m)
- Hmin = [80 à 120cm] distance verticale au-dessus de la génératrice supérieure dela conduite,
- D : diamètre de la conduite (mm).

Donc:

$$Htr = d + 0.20 + 1.0$$

 $Htr = d + 1.20$

IX.7.2 Calcul de la Largeur de la tranchée :

Elle sera calculée en fonction du diamètre de la conduite, en laissant 0.30 m d'espace de Chaquecôté de celle-ci pour faciliter les travaux.

La largeur de la tranchée est donnée par la formule suivante :

$$b = D + (0.3 \times 2)$$
 (IX. 2)

Avec:

- b : largeur de la tranchée (m);
- D : diamètre de la conduite (m) ;

IX.7.3 Calcul du volume de déblai :

Selon la largeur du godet de la pelle choisie, les volumes excavés pour chaque type de Diamètre seront :

$$Vd = b.Htr.L[m3]$$
 (IX. 3)

Avec:

• Vd : volume de déblai (m3) ;

• L: la langueur de la tranche

• Htr: la profondeur de la tranchée (m);

• b : largeur de la tranchée (m).

Le tableau suivant donne le volume de déblai

Tableau IX. 1 : Calcul du volume de déblai.

	Trancon	Longueur	D	Htr=1,2+D	b=D+(0,3*2)	V déblai
	(m)	(m)	(m)	(m)	(m)	(m3)
	T1	112.7	400	1.6	1	180.320
Distribution	T2	130	250	1.45	0.85	160.225
	Т3	20	250	1.45	0.85	24.650
	T4	870	250	1.45	0.85	1 072.275
	T(Forage- CH1)	21.43	250	1.45	0.85	26.412
Adduction	T(Forage- CH2)	215	250	1.45	0.85	264.988
	T(Nouveau forage- CH4)	20.35	250	1.45	0.85	25.081
	T(Nouveau forage- CH5)	62.33	250	1.45	0.85	76.82
					V total	1 830.77

IX.7.4 Calcul du volume de sable pour le lit de pose :

$$VLS = \sum bi. e. Li \qquad (IX. 4)$$

Avec:

• L: longueur de la tranchée (m);

• e : épaisseur de lit de sable, e = 0.2 m;

• b : largeur de la tranchée (m)

A partir du tableau suivant on tire la valeur du volume de sable.

Tableau IX. 2 : Calcul du volume de sable.

	Trancon	longueur	D	épaisseur	b=D+(0,3*2)	V sable
	(m)	(m)	(m)	(m)	(m)	(m3)
	T1	112.7	400	0,2	1	22.54
Distribution	Т2	130	250	0,2	0.85	22.1
	Т3	20	250	0,2	0.85	3.4
	T4	870	250	0,2	0.85	147.9
	T(Forage-CH1)	21.43	250	0,2	0.85	3.6431
Adduction	T(Forage-CH2)	215	250	0,2	0.85	36.55
	T(Nouveau forage-CH4)	20.35	250	0,2	0.85	3.4595
	T(Nouveau forage-CH5)	62.33	250	0.2	0.85	10.5961
					Vtotal	250.1887

IX.7.5 Calcul du volume de TVC:

Le terrain de notre zone et très rocheux c'est pour ça en utilise une couche de **TVC** (**TOUT VENANT CARRIERE**) de 30 cm pour protégée notre conduite

$$Vtvc = b.e.Li$$
 (IX.5)

Avec:

• L: longueur de la tranchée (m);

• e : épaisseur de TVC, e = 0.3m;

• b : largeur de la tranchée (m)

A partir du tableau suivant on tire la valeur du volume de TVC.

Tableau IX. 3: Calcul du volume de TVC.

	Trancon	longueur	D	épaisseur	b=D+(0,3*2)	V TVC
	(m)	(m)	(m)	(m)	(m)	(m3)
	T1	112.7	400	0,3	1	33.81
Distribution	T2	130	250	0,3	0.85	33.15
	Т3	20	250	0,3	0.85	5.1
	T4	870	250	0,3	0.85	221.85
	T(Forage-CH1)	21.43	250	0,3	0.85	5.464
	T(Forage-CH2)	215	250	0,3	0.85	54.825
Adduction	T(Nouveauforage- CH4)	20.35	250	0,3	0.85	5.189
	T(Nouveauforage- CH5)	62.33	250	0.3	0.85	15.894
					Vtotal	375.283

IX.7.6 Calcul du remblaiement des tranchées :

$$VR = Vd - Vc - Vsable - VTVC$$
 (IX. 6)

Avec:

• VR: volume de remblai (m3).

• Vd : volume de déblai (m3) ;

• Vsable : volume de lit de sable (m3) ;

• VTVC : toute venante carrière (m3)

 \bullet V_C: volume de tuyaux

• D : diamètre de la conduite (m);

• L: longueur de la conduite (m);

Avec:

$$V_C = \frac{\pi D^2}{4} \times L \qquad (IX. 7)$$

Le calcul des volumes : déblais, remblais et conduites sont donnés par le tableau suivant :

Tableau IX. 4 : Calcul du volume des remblais (réseau).

	Trancon	V déblai	V sable	V TVC	VConduit	V remblais
	(m)	(m3)	(m3)	(m3)	(m3)	(m3)
	T1	180.32	22.54	33.81	14.16	109.81
	T2	160.23	22.1	33.15	6.38	98.60
Distribution	Т3	24.65	3.4	5.1	0.98	15.17
	T4	1 072.28	147.9	221.85	42.69	659.84
	T(Forage- CH1)	26.41	3.6431	5.464	1.05	16.25
Adduction	T(Forage- CH2)	264.99	36.55	54.825	10.55	163.06
	T(Nouveau forage-CH4)	25.08	3.459	5.189	1.00	15.43
	T(Nouveau forage-CH5)	76.82	10.596	15.894	3.12	47.21
VT		1 830.77	250.188	375.2830	79.93	1 125.37

IX.8 Calcul de foisonnement initial et final :

Lors d'un terrassement, le foisonnement des terres correspond à une augmentation du volume des matériaux après excavation. Ce volume foisonné est utilisé comme base pour établir un devis de transport du matériau d'un point A à un point B. En cas de remblaiement, l'application d'un coefficient de foisonnement permet de déterminerle volume restant après tassement.On a :

$$V'=(1+Fi) imes V\,dcute{e}blai$$
 (IX. 8)
$$V''=(1+T) imes remblai\,compact cute{e}$$
 (IX. 9)

Sachant que:

• V': le volume de foisonnement initial

• Fi: le coefficient de foisonnement

• V'': le volume de remblai non compacté

• T : le coefficient de terrassement des déblais On prend : Fi = 0,2 etT= 1,15

Alors on aura:

$$V' = 1,2 \times 1753.95 = 2104,74 \, m3$$

$$V'' = 1,15 \times 1078.16 = 1293,79 \, m3$$

IX.9 Calcule de réservoir :

On a projeté 03 réservoirs surélevé (châteaux d'eau) tronconique est nous avons proposé une variante telle que :

Tableau IX. 5 : le calcul des châteaux d'eau.

Capacité	Prof.de	Diamètre	Epaisseur	Epaisseur	Flèche	Hauteur
V (m3)	Terrassement	Intérieur	Du radier	Des	dela	du
(IIIC)	(m)	D	a	parois	coupole f	réservoir
	(-1.)	(m)	(m)	b	(m)	H (m)
				(m)		
1000	5	20	0.83	0.1	2,1	8
1000	5	20	0.83	0.1	2,1	8
1000	5	20	0.83	0.1	2,1	8
1000	5	20	0.83	0.1	2,1	8

IX.9.1 Le diamètre extérieur :

$$Dext = Din + 2b$$
 (IX. 10)

Avec:

- D int : diamètre intérieur.
- b: épaisseur de la paroi.

$$Tq : D ext = 20 + (2 \times 0.1) = 20.2 m$$

IX.9.2 Le volume de décapage :

$$Vd\acute{e}capage = Sr\acute{e}servoir \times e d\acute{e}capage$$
 (IX. 11)

Avec:

- S : surface de réservoir
- e : épaisseur de décapage (e=0.1m).

IX.9.3 Le volume de déblai :

$$Vd\acute{e}blai = Sr\acute{e}servoir \times h$$
 (IX. 12)

Avec:

- S : surface de réservoir.
- h: hauteur de terrassement.

IX.9.4 Le volume de béton de propreté (sous radier) :

$$Vbp = Sr\acute{e}servoir. \times ebp$$
 (IX. 13)

Avec:

- S : surface de réservoir.
- e bp :L'épaisseur de béton de propreté. (e=0.1 m)

IX.9.5 Le volume de béton armé (radier) :

$$Vbr = S réservoir \times a$$
 (IX. 14)

Avec:

- S : surface de réservoir.
- a : L'épaisseur de radier.

IX.9.6 Le volume de béton armé de coupole :

Avec:

- E coupole : L'épaisseur de la coupole (E= 0.2m).
- S coupole : La surface de coupole.

Telle que:

Scoupole =
$$2\pi x R moy x f$$
 (IX. 16)

Et

$$Rmoy = \frac{int^2 + f^2}{2f}$$
 IX. 17

Avec:

- Rint : rayon intérieur.
- f: la flèche de coupoles.

Ce tableau synthétise toutes les opérations de calcul pour le réservoir :

Tableau IX. 6 : calcul de volume de (décapage, déblai) pour les quartes réservoir.

Volume	Volume	Volume de	Volume	Le volume debéton
de	de	béton de	de béton	armé de coupole
décapage	déblai	propreté	armé	
		(sous	(radier)	
		radier)		
m 3	m 3	m³	m 3	m 3
4×32,04	4×1602,37	4×32,047	4×265,99	4×133.27
128,16	6409,48	128,18	1063,96	533,08

IX.10 Les engins utilisés :

Le matériel utilisé est standard dans le domaine des travaux publics. L'utilisation d'équipements lourds mécanisés permettra de réduire significativement les coûts et les délais de terrassement, minimisant ainsi son impact sur la construction des chantiers.

Les engins que nous allons mobiliser sont les suivants :

Un bulldozer équipé d'une rétro caveuse est utilisée pour éliminer les roches et les racines des arbres.

Un camion-citerne est employé pour arroser le remblai avant le compactage.

Un chargeur sert à charger les déblais excédentaires dans les camions.

Une pelle mécanique est utilisée pour extraire les déblais et, si possible, les charger directement dans le camion, en plus de poser le lit de sable et le remblai.

Un compacteur à rouleau lisse est utilisé pour compacter une couche de sable de 20 cm d'épaisseur.

Un camion est déployé pour évacuer les déblais.

L'appareil de soudure est responsable de l'assemblage des conduites.

Une dame sauteuse assure le compactage du remblai autour de la conduite pour obtenir un support solide.

La niveleuse se charge du décapage de la terre végétale sur une épaisseur de 30 cm et effectue le terrassement en terrain léger.

IX.11 Protection et sécurité de travail :

L'impact des incidents sur le lieu de travail et leurs problématiques associées a une influence significative sur les aspects financiers, la planification de la production, ainsi que le bien-être des employés.

Chaque accident engendre des souffrances pour la personne directement touchée, tandis que de nombreux incidents plongent sa famille dans l'angoisse, en particulier lorsque ces incidents sont mortels ou entraînent une incapacité permanente.

Pour relever ces défis, de multiples dispositifs, directives, et règles de sécurité ont été instaurés. Cependant, la stricte mise en application des mesures préventives n'est pas suffisante en ellemême. Il est également crucial d'instaurer une culture de la sécurité.

IX.11.1 Origines des incidents professionnels sur un chantier hydraulique :

Les incidents professionnels résultent de deux facteurs : des conditions dangereuses et des actionsà risque :

IX.11.1.1 Facteurs humains :

- 1. Facteurs Comportementaux et Organisationnels :
 - Défaut de contrôle et négligence.
 - Fatigue parmi les travailleurs, les superviseurs et les responsables.
 - Prises de décisions erronées ou raisonnements inadéquats.
 - Adhésion à un rythme de travail inapproprié.
- 2. Facteurs Relatifs à l'Environnement de Travail :
 - Congestion lors des différentes étapes de l'exécution des travaux.

IX.11.1.2 Facteurs matériels :

- Équipements, véhicules et machines de travail
- Caractéristiques des matériaux utilisés
- Complexité rencontrée lors de la réalisation du travail
- Systèmes mécaniques et électriques installés

IX.11.1.3 Liste des conditions dangereuses :

- Absence de protection pour les installations.
- Protection insuffisante des installations.
- Outils, engins et machines en mauvais état.
- Absence de protection individuelle.
- Problèmes de conception et de construction.

- Utilisation de matériaux défectueux.
- Stockage peu rationnel.
- Mauvaise disposition des espaces
- Éclairage défaillant.
- Conditions environnementales inadéquates.
- Conditions climatiques défavorables.

IX.11.1.4 Liste des actions dangereuses :

- Effectuer des interventions imprudentes sur des machines en mouvement.
- Effectuer des interventions sans précaution sur des installations sous pression ou sous tension.
- Agir sans avertissement préalable ou sans autorisation.
- Désactiver les dispositifs de sécurité.
- Omettre l'utilisation de l'équipement de protection individuelle.

IX.11.2 Mesures préventives pour éviter les causes des accidents :

IX.11.2.1 Protection individuelle:

Les mesures de protection individuelle sont moins fiables que les dispositifs de protection collective et doivent être utilisées en dernier recours lorsque ces derniers ne sont pas possibles. Cependant, la protection individuelle demeure souvent nécessaire. Il peut arriver qu'elle ne soitpas respectée par les travailleurs ou qu'elle ne soit pas fournie par l'employeur.

Ces mesures incluent des combinaisons étanches ou spécifiques à certains risques, des gants et des crèmes protectrices pour les mains, des chaussures de protection avec semelles épaisses, antidérapantes et coquille de protection pour les orteils, des lunettes de sécurité pour la protection contre les UV, la chaleur et les projections de débris, des protecteurs auditifs tels que les casques anti-bruit et les bouchons d'oreille, ainsi que des masques et des cagoules pour la protection contre les poussières et les gaz.

Figure IX. 2 : Exemples de moyens de protection.

Source: www.cftc-dartyidf.fr

IX.11.2.2 Protection collective:

1) Équipement de mise en œuvre du béton :

Dans ce domaine, l'entrepreneur ou le chef de chantier doit insister sur les points suivants :

- Respect strict des règlements de sécurité.
- Attribution rigoureuse des responsabilités du personnel pour les points critiques d'une installation moderne.

2) Engins de levage :

Les grues, les engins de pose de tuyaux et autres équipements, en raison de leur précision et deleurs capacités de manutention variées, constituent des lieux de travail où la sécurité ne tolère aucune négligence. Le technicien responsable devra donc :

- Effectuer les vérifications périodiques des engins conformément aux instructions du fabricant.
- Établir une zone de sécurité autour des engins de levage, en particulier pour éviter tout stationnement sous une charge suspendue.

3) Appareillage électrique :

Pour prévenir les risques liés aux appareils électriques, il est impératif de proscrire toute forme debricolage. En effet, une ligne électrique ou une installation électrique ne doit être manipulée que par des électriciens qualifiés.

IX.12 Réorganisation de la Planification des Travaux du Réseau de Distribution :

Avant de commencer les opérations sur le chantier, il est impératif d'effectuer une planificationpréliminaire. Cette planification implique une analyse théorique visant à optimiser l'utilisation des ressources humaines et autres ressources disponibles. Les étapes de cette planification englobent :

- L'organisation des postes de travail.
- Des observations en temps réel.
- Une analyse détaillée des tâches.
- La mesure du temps nécessaire à chaque tâche.
- L'établissement des objectifs et des responsabilités.
- La simplification des méthodes de travail.

L'objectif fondamental de cette planification est de garantir que l'ensemble des travaux se déroulede manière :

- Chronologiquement correcte (en respectant une séquence d'opérations appropriée pour le réseau).
- Sans délais superflus.
- Aussi économique que possible.

Pour organiser les travaux ultérieurs, la méthode du réseau, notamment la méthode du chemin critique (CPM), sera utilisée. Cette approche, également connue sous le nom de méthode PERT (Programme Evaluation Review Technique), représente les différentes étapes ou événements à accomplir sous forme de nœuds et de flèches, liés par une échelle temporelle. Chaque nœud ouflèche correspond à une étape ou un événement spécifique. Cette méthode a été développée pardes chercheurs américains en 1958.

IX.12.1 Principe de la méthode PERT :

Réduire la durée totale d'un projet en examinant minutieusement les tâches ou les activités fondamentales ainsi que leur ordre chronologique. Cette analyse se concentre sur les délais et neprend pas en considération les ressources nécessaires.

IX.12.1.1 Construction du réseau :

La construction d'un réseau implique l'exécution des six étapes suivantes :

- 1. Établissement d'une liste des tâches.
- 2. Identification des tâches préliminaires.
- 3. Élaboration de sous-graphes partiels.
- 4. Intégration des sous-graphes partiels.
- 5. Détermination des tâches d'ouverture et de clôture du projet.
- 6. Finalisation de la mise en place du réseau.

IX.12.1.2 Définitions des tâches et leurs durées :

❖ Les châteaux d'eaux:

Les taches concernant la réalisation d'un réservoir et leurs durées sont mentionnées dans le tableau suivant :

Tableau IX. 7 : Les taches de réalisation les quatre châteaux d'eaux.

Notation	Opération	Durée (j)
A	Installation du chantier	30
В	Excavation	20
С	Pose de béton de propreté	4
D	Constriction du radier	45
Е	Constriction du voile (fut)	75
F	Constriction des parois (cuve)	45
G	Constriction du la ceinture supérieure	22
Н	Constriction de la coupole supérieure / la dalle	30
I	Pose de l'étanchéité	10
J	Emplacement d'échelle et passerelles	10
K	Equipements hydromécaniques	10
L	Travaux de finitions	10

* Réseau d'adduction et distribution :

Les tâches de réalisation de réseau de d'adduction et distribution, et leurs durées sont mentionnées dans le tableau :

Tableau IX. 8 : temps de réalisation des opérations de réseau de distribution et adduction.

Notation	Opération	Durée
		(j)
A	Décapage de la couche de goudron	20
В	Exécution des tranchées du réseau et des fouilles pour les regards	30
С	Pose du lit de sable	20
D	Pose des conduites	40
E	Montage et raccordement des conduites	30
F	Remblayage des tranchées	20
G	Nivellement et compactage	10

IX.12.2 Planification par la méthode du réseau (la méthode CPM) :

Les opérations qui précèdent et qui succèdent pour chaque opération de réalisation sont dans les tableaux suivantes :

 $\begin{table}{ll} Tableau IX. 9: Tâches qui précèdent et qui succèdent pour la réalisation des quatre château d'eaux . \end{table}$

Opérations	Précède	Succède
A	/	В
В	A	С
С	В	D
D	С	Е
Е	D	F
F	Е	G
G	F	Н
Н	G	I, J
I	Н	K
J	Н	K
K	I, J	L
L	K	/

Tableau IX. 10 : Tâches qui précèdent et qui succèdent pour la réalisation de réseau de distribution et d'adduction.

Opérations	Précède	Succède
A	/	В
В	A	С
С	В	D, E
D	С	Е
Е	С	Е
F	Е	G
G	F	Н
Н	G	/

Détermination du chemin critique : Les paramètres indispensables dans l'exécutionde cette méthode sont les suivants :

Chapitre IX: Organisation de chantier

DCP	TR
DFP	DCPP
DFPP	MT

Avec:

• TR : temps de réalisation

• DCP : date de commencement au plus tôt

• DCPP: date de commencement au plus tard DCPP = DFPP – TR

• DFP : date de finition au plus tôt DFP = DCP + TR

• DFPP: date de finition au plus tard

• MT : marge totale

Chemin critique : C'est le chemin qui donne la durée totale du projet (DTP) reliant les opérations Possédant la marge totale nulle.

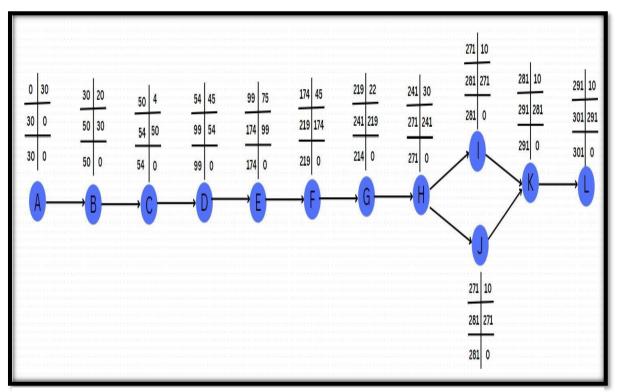


Figure IX. 3 : Réseaux à nœuds et calcul du temps de réalisation des réservoirs surélevés.

Chemin critique : A-B-C-D-E-F-G-H-I-J-K-L. C'est le chemin qui donne la durée totale du projet(DTP).

DTP (la durée totale de pose de canalisation du projet) = 301 jours.

Chapitre IX: Organisation de chantier

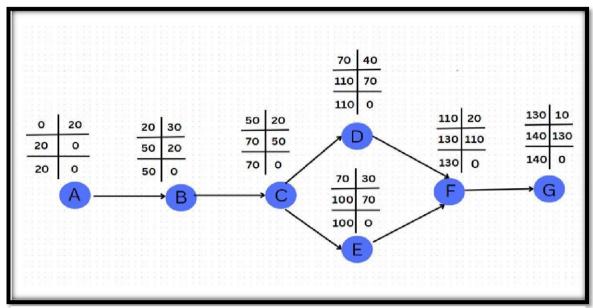


Figure IX. 4 : Réseaux à nœuds et calcul du temps de réalisation du réseau d'adduction et distribution.

Chemin critique : A-B-C-D-F-G C'est le chemin qui donne la durée totale du projet(DTP).

DTP (la durée totale de pose de canalisation du projet) = 140 jours.

IX.13 Devis estimatif d'établissement du projet

Le tableau ci-dessous présente l'estimation du coût de la mise en place du système d'alimentation en eau potable de notre commune

Tableau IX. 11: Devis estimatif de l'établissement des conduites et les ouvrages.

	ETUDE DE SCHEMA DERECTEUR DU RESAUX D'AEP Devis Quantitatif Et Estimatif							
Prix n°	Description du prix	Unité	Quantité	P.U DA	Prix TOTAL en DA			
1	Terrassements pour conduits							
11	Déblais	m3	1830.77	800,00	1464618.4			
12	lit de sable	m3	250.188	1300,00	325245.31			
13	remblaiement	m3	1 125.37	600,00	675222			
	sous total 1				2465085.71			

Chapitre IX : Organisation de chantier

2	F/P Tuyaux en PN16 et de diamètre DN	Unité	Quantité	P.U DA	Prix TOTAL en DA
21	F/P Tuyaux en PN16 etd e diamètre DN 250	ML	1318,76	3 500,00	4 615660,00
2—2	F/P Tuyaux en PN16 etde diamètre DN 400	ML	112,70	3 000,00	338100,00
2—3	F/P grillage avertisseur couleur bleu	ML	1928,43	100,00	192843,00
	sous	total 2			5146603,00
3	F/P des Vannes de	Unité	Quantité	P.U DA	Prix TOTAL en DA
31	vanne DN 400 PN16	U	1	60000	60 000,00
32	vanne DN 250 PN16	U	8	45 000,00	315000,00
	So	ous total	3		375000
4	Le reservoire	m3	4		
41	décapage	m3	128,16	500	64080,00
4— 2	Déblais	m3	6409,48	450	2884266,00
43					
43	Béton de propreté	m3	128,18	13 000	1666340,00
44	Béton de propreté Béton armé	m3	128,18 1063,96	13 000 55 000,00	1666340,00 58517800,00
	Béton armé		1063,96		
	Béton armé	m3	1063,96		58517800,00
	Béton armé	m3 Dus total TOTAL	1063,96		58517800,00 60532486,00

Chapitre IX: Organisation de chantier

♥ Quatre-vingt-un million cinq cent trente-sept mille huit cents dix-sept dinars algériens

Conclusion:

L'analyse de ce chapitre permet de conclure que l'organisation des chantiers est essentielle pour la bonne exécution d'un projet. Elle facilite non seulement le calcul des volumes de travaux requis, tels que le déblaiement et le remblaiement pour le réseau, mais aussi l'identification des engins de terrassement nécessaires pour l'installation des conduites. De plus, elle permet d'évaluer le coût total du projet, qui s'élève à **81537817,9** DA. Enfin, grâce à la méthode du CPM, nous avons pu estimer la durée de réalisation du projet à 441 jours soit environ 15 mois

Conclusion Générale

Conclusion Générale

L'étude de diagnostic que nous avons menée nous a permis de présenter le système d'alimentation en eau potable existant du centre-ville de la commune de Zelfana, ainsi que d'analyser son fonctionnement actuel et son comportement à long terme (horizon 2054), tout en tenant compte de l'accroissement de la population et de l'augmentation de ses besoins en eau.

Notre diagnostic s'est essentiellement basé sur les résultats des simulations, qui ont permis d'identifier les problèmes existants au niveau du réseau de distribution, de l'adduction, des ouvrages de stockage, ainsi que l'insuffisance des sources.

Ces problèmes causent des dysfonctionnements, entraînant des perturbations dans la distribution actuelle et rendant difficile l'assurance de l'alimentation en eau potable à l'horizon 2054.

Pour remédier à ces problèmes, nous avons proposé les actions suivantes :

- La projection de nouveaux ouvrages de stockage pour éviter l'injection directe dans le réseau. Ces ouvrages ont été conçus pour équilibrer les paramètres de vitesse et de pressionafin que le réseau réponde aux exigences de l'agglomération à l'horizon 2054.
- La projection d'un nouveau forage pour combler le déficit en eau.
- ➤ Le redimensionnement du réseau d'adduction pour permettre le transport du débit vers les châteaux d'eau.
- ➤ L'installation d'un réservoir d'air d'une capacité de 700 litres pour protéger contre les phénomènes transitoires (pressions et dépressions) au niveau du tronçon entre les forages et les châteaux d'eau.
- ➤ La projection de nouveaux châteaux d'eau d'un volume de 1000 m³, avec la réhabilitation des châteaux d'eau abandonnés d'une capacité de 750 m³.

Cette étude nous a permis de mettre en pratique toutes les connaissances acquises durant notre formation. Nous espérons que ce travail pourra servir de guide pour les promotions futures.

Références Bibliographiques

Référence bibliographique :

- [1] ALMAS, M. et MAAKNI, R.: "Réhabilitation de la chaine de refoulement de TABLIENTETICHY Wilaya de Bejaia". Mémoire de fin d'études, Université de Bejaia, 2007.
- [2] DUPONT, A.: "Hydraulique urbaine", Tome II. Edition EYROLLES, Paris, 1979
- [3] Boualem SALAH:"ALIMENTATION EN EAU POTABLE DESAGGLOMIRATION", 2014.
- [4] **BONIN**, **J.:** "Hydraulique urbaine appliquée aux agglomérations de petite et moyenne importance". Edition Eyrolles, 1977.

Les sites :

- Catalogue des conduites en PEHD PIPE CHIALI.
- Googleearth.com.
- dspace.ensh.dz
- plomberie.ooreka.fr
- www.memoireoline.com
- www.montpellier3m.fr

ANNEXES

ANNEXE II.1 La variation de la consommation horaire en fonction du nombre d'habitant.

	Nombre d'habitants						
Heures	< à 10000	10000 à 50000	50000 à 100000	> à 1000000	Agglomération Rurale		
0-1	1	1.5	3	3.35	0.75		
1-2	1	1.5	3.2	3.25	0.75		
2-3	1	1.5	2.5	3.3	1		
3-4	1	1.5	2.6	3.2	1		
4-5	2	2.5	3.5	3.25	3		
5-6	3	3.5	4.1	3.4	5.5		
6-7	5	4.5	4.5	3.85	5.5		
7-8	6.5	5.5	4.9	4.45	5.5		
8-9	6.5	6.25	4.9	5.20	3.5		
9-10	5.5	6.25	4.6	5.05	3.5		
10-11	4.5	6.25	4.8	4.85	6		
11-12	5.5	6.25	4.7	4.6	8.5		
12-13	7	5	4.4	4.6	8.5		
13-14	7	5	4.1	4.55	6		
14-15	5.5	5.5	4.2	4.75	5		
15-16	4.5	6	4.4	4.7	5		
16-17	5	6	4.3	4.65	3.5		
17-18	6.5	5.5	4.1	4.35	3.5		
18-19	6.5	5	4.5	4.4	6		
19-20	5	4.5	4.5	4.3	6		
20-21	4.5	4	4.5	4.3	6		
21-22	3	3	4.8	3.75	3		
22-23	2	2	4.6	3.75	2		
23-24	1	1,5	3.3	3.7	1		
Total	100	100	100	100	100		

ANNEXE III.1:

Les photos de diagnostic de Forage N°4 de centre-Ville Zelfana :

a) tête de Forage centre-ville

b) Armoire de commande de la pompe

c) Moteur électrique de la pompe

d) Citerne de javellisation pour le traitement d'eau

e) Forage AEP de centre-ville

ANNEXE III .2:

Les photos de diagnostic de Forage Guifla

a) la tête de forage Guifla après la renouvellation

b) l'enceint position de la tête

c) l'enceint position de la tête

d) l'enceint forage de Guifla

ANNEXE III .3 : Tableau représente calcul des débits nodaux (réseau actuel l'horizon 2024).

N18 N18-N49 87.5 0.006721 0.5 N18-N15 260.6 0.006721 1.7 N19-N16 231.2 0.006721 1.5 N19-N35 18.42 0.006721 0.5 N19-N13 83.8 0.006721 0.5 N20-N15 103 0.006721 0.6 N20-N17 490 0.006721 3.2 N20-N49 272.2 0.006721 1.8 N21-N02 263.2 0.006721 1.7	415 588 1.008 751 554 124 1.724 563 692 293 2.908 829
N18-N49 87.5 0.006721 0.5 N18-N15 260.6 0.006721 1.7 N19-N16 231.2 0.006721 1.5 N19-N35 18.42 0.006721 0.5 N19-N13 83.8 0.006721 0.5 N20-N15 103 0.006721 0.6 N20-N17 490 0.006721 3.2 N20-N49 272.2 0.006721 1.8 N21-N02 263.2 0.006721 1.7	751 554 124 1.724 563 692 293 2.908
N19-N16 231.2 0.006721 1.3 N19-N35 18.42 0.006721 0.3 N19-N13 83.8 0.006721 0.3 N20-N15 103 0.006721 0.3 N20-N17 490 0.006721 3.3 N20-N49 272.2 0.006721 1.8 N21-N02 263.2 0.006721 1.3	554 124 1.724 563 692 293 2.908
N19 N19-N35 18.42 0.006721 0.0 N19-N13 83.8 0.006721 0.0 N20-N15 103 0.006721 0.0 N20 N20-N17 490 0.006721 3.2 N20-N49 272.2 0.006721 1.8 N21-N02 263.2 0.006721 1.7	124 1.724 563 692 293 2.908
N19-N13 83.8 0.006721 0.5 N20-N15 103 0.006721 0.6 N20 N20-N17 490 0.006721 3.2 N20-N49 272.2 0.006721 1.8 N21-N02 263.2 0.006721 1.7	563 692 293 2.908
N20 N20-N15 103 0.006721 0.0 N20 N20-N17 490 0.006721 3.2 N20-N49 272.2 0.006721 1.8 N21-N02 263.2 0.006721 1.7	692 293 2.908
N20 N20-N17 490 0.006721 3.2 N20-N49 272.2 0.006721 1.8 N21-N02 263.2 0.006721 1.7	2.908
N20-N49 272.2 0.006721 1.8 N21-N02 263.2 0.006721 1.7	
N21-N02 263.2 0.006721 1.7	829
	027
N21-N16 241.65 0.006721 1.0	769
	624
N21 N21-N22 217.75 0.006721 1.4	3.583
N21-N23 333.5 0.006721 2.2	241
N22-N24 107.8 0.006721 0.7	725
N22 N22-N21 217.75 0.006721 1.4	463 1.927
N22-N35 248 0.006721 1.0	667
N23-N21 333.5 0.006721 2.2	241
N23 N23-N24 52.3 0.006721 0.3	352
N24-N23 52.3 0.006721 0.3	352
N24 N24-N05 222 0.006721 1.4	492 1.307
N24-N22 107.8 0.006721 0.7	725
N25-N29 424.75 0.006721 2.8	855
N25-N30 160.7 0.006721 1.0	080
N25 N25-N07 198.3 0.006721 1.3	3.920
N25-N26 371.45 0.006721 2.4	497
N26-N25 371.45 0.006721 2.4	497
N26 N26-N27 278 0.006721 1.8	2.182
N27-N26 278 0.006721 1.8	868
N27 N27-N07 345.6 0.006721 2.3	I .
N27-N28 288.5 0.006721 1.9	323 3.065

Nœud	Tronçons	Longueur(m)	Qsp (l/s/ml)	Qr (1/s)	QN=0.5*∑Qr (1/s)
N28	N28-N27	288.5	0.006721	1.939	1.599
N28	N28-N08	187.2	0.006721	1.258	1.399
N29	N29-N05	138.2	0.006721	0.929	1 902
N29	N29-N25	424.75	0.006721	2.855	1.892
	N30-N31	136.7	0.006721	0.919	
N30	N30-N34	197.25	0.006721	1.326	1.662
	N30-N25	160.7	0.006721	1.080	
	N31-N06	109.8	0.006721	0.738	
N31	N31-N30	136.7	0.006721	0.919	1.491
	N31-N32	197.1	0.006721	1.325	
	N32-N33	107.92	0.006721	0.725	
N32	N32-N31	197.1	0.006721	1.325	1.486
	N32-N34	137.1	0.006721	0.921	
	N33-N06	196.85	0.006721	1.323	
N33	N33-N32	107.92	0.006721	0.725	1.196
	N33-N12	51.1	0.006721	0.343	
	N34-N07	161.2	0.006721	1.083	
N34	N34-N32	137.1	0.006721	0.921	1.665
	N34-N30	197.25	0.006721	1.326	
	N35-N12	123.7	0.006721	0.8314	
N35	N35-N22	248	0.006721	1.6668	1.3110
	N35-N19	18.42	0.006721	0.1238	
	N36-N12	28.2	0.006721	0.1895	
N36	N36-N39	162.65	0.006721	1.0932	1.4146
	N36-N40	230.1	0.006721	1.5465	
	N37-N39	94.2	0.006721	0.6331	
N37	N37-N38	150.3	0.006721	1.0102	1.6823
	N37-N43	248.55	0.006721	1.6705	
	N38-N37	150.3	0.006721	1.0102	
N38	N38-N44	230.8	0.006721	1.5512	1.5596
	N38-N07	80.55	0.006721	0.5414	
N39	N39-N36	162.65	0.006721	1.0932	1.7679

Nœud	Tronçons	Longueur(m)	Qsp (l/s/ml)	Qr (l/s)	QN=0.5*∑Qr (1/s)
	N39-N37	94.2	0.006721	0.6331	
	N39-N42	261.3	0.006721	1.7562	
	N40-N42	131.7	0.006721	0.8852	
N140	N40-N41	121.3	0.006721	0.8153	2.1605
N40	N40-N03	150.9	0.006721	1.0142	2.1695
	N40-N36	230.1	0.006721	1.5465	
N41	N41-N40	121.3	0.006721	0.8153	0.4076
	N42-N40	131.7	0.006721	0.8852	
N140	N42-N39	261.3	0.006721	1.7562	2.2700
N42	N42-N46	140.2	0.006721	0.9423	2.2709
	N42-N43	142.55	0.006721	0.9581	
	N43-N37	248.55	0.006721	1.6705	
N142	N43-N44	132.75	0.006721	0.8922	2 2297
N43	N43-N09	139.35	0.006721	0.9366	2.2287
	N43-N42	142.55	0.006721	0.9581	
	N44-N38	230.8	0.006721	1.5512	
N44	N44-N43	132.75	0.006721	0.8922	1.6833
	N44-N08	137.35	0.006721	0.9231	
N45	N45-N09	76.2	0.006721	0.5121	2.2979
N43	N45-N08	300.3	0.006721	2.0183	2.2868
	N45-N47	304	0.00672	2.0432	
	N46-N42	140.2	0.00672	0.9423	
N46	N46-N09	141.9	0.00672	0.9537	1.512
	N46-N11	167.75	0.00672	1.1274	
N47	N47-N45	304	0.00672	2.0432	1.022
N140	N48-N02	243.35	0.00672	1.6356	1 255
N48	N48-N16	160	0.00672	1.0754	1.355
	N49-N18	87.5	0.00672	0.5881	
N49	N49-N20	272.2	0.00672	1.8295	1.518
	N49-N50	92.1	0.00672	0.6190	
N50	N50-N49	92.1	0.00672	0.6190	2 605
N50	N50-N56	346.2	0.00672	2.3268	2.685

Nœud	Tronçons	Longueur(m)	Qsp (l/s/ml)	Qr (l/s)	$QN=0.5*\sum Qr (1/s)$
	N50-N51	205	0.00672	1.3778	
	N50-N54	155.75	0.00672	1.0468	
	N51-N13	182.5	0.00672	1.2266	
N51	N51-N53	130.65	0.00672	0.8781	1.741
	N51-N50	205	0.00672	1.3778	
	N53-N14	299.3	0.00672	2.0116	
	N53-N54	194.15	0.00672	1.3049	
	N54-N50	155.75	0.00672	1.0468	
N54	N54-N55	29	0.00672	0.1949	1.273
	N54-N53	194.15	0.00672	1.3049	
	N55-N54	29	0.00672	0.1949	
N55	N55-N56	153.65	0.00672	1.0327	1.333
	N55-N52	214	0.00672	1.4383	
	N56-N50	346.2	0.00672	2.3268	
N56	N56-N55	153.65	0.00672	1.0327	2.368
	N56-N57	204.75	0.00672	1.3761	
N57	N57-N56	204.75	0.00672	1.3761	1.243
1037	N57-N52	121.15	0.00672	0.8142	1.243
	N57-N58	44	0.00672	0.2957	
N58	N58-N17	130	0.00672	0.8737	0.585
				Somme Qn	100.52

ANNEXE III.4 : Résultat des différents tronçons (Vitesses et pertes de charges dans le réseau existant en cas de pointe) l'horizon 2024.

Tronçon	longueur	Diamétre Intrieur	matérieux	débit	vitesse	Perte
	m	mm		LPS	m/s	m/km
Tuyau 23	107.70	115.4	PEHD	-3.21	0.31	1.05
Tuyau 24	196.85	230.8	PEHD	97.21	2.32	20.62
Tuyau 25	222	115.4	PEHD	22.97	2.20	43.38
Tuyau 26	217.75	69.2	PEHD	0.77	0.20	0.95
Tuyau 27	107.80	154.8	PEHD	2.82	0.15	0.20
Tuyau 28	248	69.2	PEHD	-2.00	0.53	5.52
Tuyau 29	18.42	184.6	PEHD	-11.99	0.45	1.17
Tuyau 30	123.70	230.8	PEHD	18.13	0.43	0.84
Tuyau 31	51.10	230.8	PEHD	91.48	2.19	18.32
Tuyau 32	28.20	230.8	PEHD	71.91	1.72	11.48
Tuyau 33	162.65	115.4	PEHD	-10.79	1.03	10.12
Tuyau 34	94.20	83	PEHD	2.66	0.49	3.80
Tuyau 35	150.30	83	PEHD	-5.12	0.95	12.98
Tuyau 36	80.55	154.8	PEHD	-23.17	1.23	9.86
Tuyau 37	230.10	204.6	PEHD	58.15	1.77	14.06
Tuyau 38	121.30	46	PEHD	0.86	0.52	8.81
Tuyau 39	300	69.2	PEHD	2.13	0.57	6.17
Tuyau 40	261.30	83	PEHD	4.45	0.82	9.95
Tuyau 41	131.70	154.8	PEHD	20.32	1.08	7.67
Tuyau 42	248.55	83	PEHD	4.30	0.79	9.30
Tuyau 43	142.55	154.8	PEHD	-4.64	0.25	0.49
Tuyau 44	230.80	115.4	PEHD	14.77	1.41	18.48
Tuyau 45	132.75	115.4	PEHD	0.34	0.03	0.02
Tuyau 46	137.35	115.4	PEHD	11.56	1.11	11.55
Tuyau 47	139.35	69.2	PEHD	3.91	1.04	19.49
Tuyau 48	105.50	115.4	PEHD	11.46	1.10	11.36
Tuyau 49	140.20	115.4	PEHD	15.34	1.47	19.87
Tuyau 50	141.90	1125	PEHD	18.59	0.02	0.00
Tuyau 51	167.75	101.8	PEHD	-6.44	0.79	7.14

Tronçon	longueur	Diamétre Intrieur	matérieux	débit	vitesse	Perte
	m	mm		LPS	m/s	m/km
Tuyau 52	150.90	184.4	PEHD	32.48	1.22	7.77
Tuyau 53	245	184.6	PEHD	28.01	1.05	5.82
Tuyau 54	76.20	184.6	PEHD	-30.68	1.15	6.93
Tuyau 55	304	69.2	PEHD	2.15	0.57	6.32
Tuyau 56	231.20	184.6	PEHD	-30.08	1.12	6.67
Tuyau 57	243.35	115.4	PEHD	5.54	0.53	2.87
Tuyau 58	256.85	154.8	PEHD	23.72	1.26	10.31
Tuyau 59	263.20	115.4	PEHD	9.13	0.87	7.36
Tuyau 60	260.60	69.2	PEHD	1.03	0.27	1.63
Tuyau 61	87.5	115.4	PEHD	-16.58	1.59	23.09
Tuyau 62	103	154.8	PEHD	-26.36	1.40	12.64
Tuyau 63	272.20	101.8	PEHD	-4.85	0.60	4.20
Tuyau 64	92.10	154.8	PEHD	-23.71	1.26	10.31
Tuyau 65	205	58	PEHD	7.27	2.75	159.19
Tuyau 66	182.50	58	PEHD	-11.47	4.34	389.14
Tuyau 67	490	154.8	PEHD	-25.86	1.37	12.18
Tuyau 68	130.65	58	PEHD	-6.81	2.58	140.34
Tuyau 69	155.75	154.8	PEHD	-24.99	1.33	11.40
Tuyau 70	194.15	58	PEHD	-5.19	1.97	82.79
Tuyau 71	229.30	58	PEHD	-4.41	1.67	60.35
Tuyau 72	198	83	PEHD	-6.56	1.21	20.79
Tuyau 73	29	154.8	PEHD	-32.08	1.70	18.46
Tuyau 74	346.20	115.4	PEHD	-10.01	0.96	8.78
Tuyau 75	153.65	154.8	PEHD	15.77	0.84	4.73
Tuyau 76	214	154.8	PEHD	18.31	0.97	6.29
Tuyau 77	300.30	69.2	PEHD	2.00	0.53	5.51
Tuyau 78	102	230.8	PEHD	-120.26	2.87	31.22
Tuyau 79	121.15	184.6	PEHD	-27.55	1.03	5.63
Tuyau 80	44	230.8	PEHD	-58.74	1.40	7.77
Tuyau 81	130	184.6	PEHD	-28.98	1.08	6.21
Tuyau 82	204.75	184.6	PEHD	-29.33	1.10	6.35

ANNEXE III.5 : Tableaux représente les charges et les pressions dans le réseau existant en cas de pointe.

Noeud	Elevation	Débit nodale	Cote peizométrique	Pression
	m	LPS	m	m
Noeud 30	357.97	3.50	388.53	30.56
Noeud 31	357.30	3.14	389.00	31.70
Noeud 32	357.69	3.13	385.66	27.97
Noeud 33	357.14	2.52	385.77	28.63
Noeud 34	357.93	3.51	385.47	27.54
Noeud 35	356.65	4.14	384.73	28.08
Noeud 36	357.27	2.98	384.51	27.24
Noeud 37	357.95	3.49	382.51	24.56
Noeud 38	357.40	3.27	384.46	27.06
Noeud 39	356.92	3.67	382.86	25.94
Noeud 40	355.54	4.49	381.27	25.73
Noeud 41	355.59	0.86	380.21	24.62
Noeud 42	353.73	4.78	380.26	26.53
Noeud 43	353.60	4.70	380.20	26.59
Noeud 44	354.90	3.55	380.19	25.29
Noeud 45	350.71	30.53	376.95	26.24
Noeud 46	350.65	3.18	377.48	26.83
Noeud 47	346.95	2.15	375.03	28.08
Noeud 48	356.04	29.26	380.52	24.48
Noeud 49	355.28	2.27	487.41	132.13
Noeud 50	355.55	4.02	488.36	132.81
Noeud 51	355.02	2.61	455.73	100.71
Noeud 52	355.79	2.68	492.02	136.23
Noeud 53	352.36	2.79	474.06	121.70
Noeud 54	355.09	1.91	490.14	135.05
Noeud 55	355.91	2.00	490.67	134.76
Noeud 56	355.14	3.54	491.40	136.26
Noeud 57	355.28	1.86	492.70	137.42
Noeud 58	354.62	0.97	493.04	138.42
Forage N1	324.90	-88.69	487.35	162.45
Forage N2	328.60	-212.37	492.90	164.30

ANNEXE III .6 : Tableau représente les calcul des débits nodaux (l'horizon 2054).

Neud Tronçons Longueur(m) Qsp (l/s/ml) Qr (l/s) QN-0.5*∑Qr (l/s) N18 N18-N13 210.5 0.01736 3.655 1.519 1.702 N18-N15 260.6 0.01736 4.525 1.702 1.702 N19-N16 231.2 0.01736 4.014 1.702 1.702 N19-N13 83.8 0.01736 1.455 1.7885 1.7885 1.7885 1.7885 1.7885 1.7885 1.7885 1.7885 1.7885 1.7885 1.7885 1.7885 1.7885 1.75115 1.7885 1.75115 1.7885 1.7885 1.75115 1.7885 1.7885 1.75115 1.7885 1.75115 1.7885 1.7515 1.7885 1.75115 1.7885 1.75115 1.7885 1.75115 1.7885 1.75115 1.7885 1.7885 1.75115 1.7885 1.75115 1.7885 1.75115 1.7885 1.75115 1.7818 1.75115 1.7818 1.75115 1.7818 1.75115 1.7824 1.75115	ANNE	AE III.0 : Tai	oleau représente le	es caicul des den	ns nouaux ((1 [*] norizon 2054).	
N18	Nœud	Tronçons	Longueur(m)	Qsp (l/s/ml)	Qr (l/s)	QN= $0.5*\sum Qr (1/s)$	
N18-N15		N18-N13	210.5	0.01736	3.655		
N19-N16	N18	N18-N49	87.5	0.01736	1.519	1.702	
N19		N18-N15	260.6	0.01736	4.525		
N19-N13		N19-N16	231.2	0.01736	4.014		
N20-N15	N19	N19-N35	18.42	0.01736	0.320	2.895	
N20		N19-N13	83.8	0.01736	1.455		
N20-N49		N20-N15	103	0.0173637	1.7885		
N21 N21-N02 263.2 0.0173637 4.5701 N21-N16 241.65 0.0173637 4.1959 N21-N22 217.75 0.0173637 3.7809 N21-N23 333.5 0.0173637 5.7908 N22-N24 107.8 0.0173637 1.8718 N22-N35 248 0.0173637 3.7809 N22-N35 248 0.0173637 5.7908 N23-N21 333.5 0.0173637 5.7908 N23-N24 52.3 0.0173637 5.7908 N24-N23 52.3 0.0173637 0.9081 N24-N23 52.3 0.0173637 0.9081 N24-N22 107.8 0.0173637 0.9081 N24-N22 107.8 0.0173637 1.8718 N25-N29 424.75 0.0173637 7.3752 N25-N29 424.75 0.0173637 7.3752 N25-N29 198.3 0.0173637 3.4432 N25-N29 371.45 0.0173637 6.4497 <t< td=""><td>N20</td><td>N20-N17</td><td>490</td><td>0.0173637</td><td>8.5082</td><td>7.5115</td></t<>	N20	N20-N17	490	0.0173637	8.5082	7.5115	
N21 N21-N16 241.65 0.0173637 4.1959 9.1689 N21-N22 217.75 0.0173637 3.7809 9.1689 N21-N23 333.5 0.0173637 5.7908 N22-N24 107.8 0.0173637 1.8718 N22-N21 217.75 0.0173637 3.7809 N22-N35 248 0.0173637 4.3062 N23-N21 333.5 0.0173637 5.7908 N23-N24 52.3 0.0173637 0.9081 N24-N23 52.3 0.0173637 0.9081 N24-N23 52.3 0.0173637 0.9081 N24-N22 107.8 0.0173637 0.9081 N24-N22 107.8 0.0173637 3.8547 N24-N22 107.8 0.0173637 1.8718 N25-N29 424.75 0.0173637 7.3752 N25-N30 160.7 0.0173637 7.3752 N25-N07 198.3 0.0173637 3.4432 N25-N26 371.45 0.0173637		N20-N49	272.2	0.0173637	4.7264		
N21 N21-N22 217.75 0.0173637 3.7809 9.1689 N21-N23 333.5 0.0173637 5.7908 N22-N24 107.8 0.0173637 1.8718 N22-N21 217.75 0.0173637 3.7809 N22-N35 248 0.0173637 4.3062 N23-N21 333.5 0.0173637 5.7908 N23-N24 52.3 0.0173637 0.9081 N24-N23 52.3 0.0173637 0.9081 N24-N23 52.3 0.0173637 0.9081 N24-N25 107.8 0.0173637 0.9081 N24-N22 107.8 0.0173637 3.8547 N24-N22 107.8 0.0173637 1.8718 N25-N29 424.75 0.0173637 7.3752 N25-N30 160.7 0.0173637 3.4432 N25-N07 198.3 0.0173637 3.4432 N26-N25 371.45 0.0173637 6.4497 N26-N27 278 0.0173637 4.8271 </td <td></td> <td>N21-N02</td> <td>263.2</td> <td>0.0173637</td> <td>4.5701</td> <td></td>		N21-N02	263.2	0.0173637	4.5701		
N21-N22	NO1	N21-N16	241.65	0.0173637	4.1959	0.1690	
N22 N22-N24 107.8 0.0173637 1.8718 N22-N21 217.75 0.0173637 3.7809 4.9795 N22-N35 248 0.0173637 4.3062 N23-N21 333.5 0.0173637 5.7908 N23-N24 52.3 0.0173637 0.9081 N24-N23 52.3 0.0173637 0.9081 N24-N23 52.3 0.0173637 0.9081 N24-N22 107.8 0.0173637 3.8547 N24-N22 107.8 0.0173637 1.8718 N25-N29 424.75 0.0173637 7.3752 N25-N30 160.7 0.0173637 3.4432 N25-N07 198.3 0.0173637 6.4497 N25-N26 371.45 0.0173637 6.4497 N26-N27 278 0.0173637 4.8271 N26 278 0.0173637 4.8271 N27-N26 278 0.0173637 5.0094 N28-N27 288.5 0.0173637 5.0094 <	1\21	N21-N22	217.75	0.0173637	3.7809	9.1069	
N22 N22-N21 217.75 0.0173637 3.7809 4.9795 N23-N21 333.5 0.0173637 5.7908 3.3495 N23-N24 52.3 0.0173637 0.9081 N24-N23 52.3 0.0173637 0.9081 N24-N22 107.8 0.0173637 3.8547 N24-N22 107.8 0.0173637 1.8718 N25-N29 424.75 0.0173637 7.3752 N25-N30 160.7 0.0173637 3.4432 N25-N26 371.45 0.0173637 3.4432 N25-N26 371.45 0.0173637 6.4497 N26-N25 371.45 0.0173637 4.8271 N26-N27 278 0.0173637 4.8271 N27-N26 278 0.0173637 5.0094 N27-N28 288.5 0.0173637 5.0094 N28-N27 288.5 0.0173637 5.0094 N29-N05 138.2 0.0173637 2.3997 N29-N25 424.75 0.0173637		N21-N23	333.5	0.0173637	5.7908		
N22-N35 248 0.0173637 4.3062 N23-N21 333.5 0.0173637 5.7908 N23-N24 52.3 0.0173637 0.9081 N24-N23 52.3 0.0173637 0.9081 N24-N23 52.3 0.0173637 0.9081 N24-N22 107.8 0.0173637 3.8547 N25-N29 424.75 0.0173637 7.3752 N25-N29 424.75 0.0173637 7.3752 N25-N29 424.75 0.0173637 7.3752 N25-N20 198.3 0.0173637 3.4432 N25-N26 371.45 0.0173637 6.4497 N26-N25 371.45 0.0173637 6.4497 N26-N27 278 0.0173637 4.8271 N27-N26 278 0.0173637 4.8271 N27-N28 288.5 0.0173637 5.0094 N28-N27 288.5 0.0173637 5.0094 N29-N05 138.2 0.0173637 2.3997 N29-N25		N22-N24	107.8	0.0173637	1.8718		
N23 N23-N21 N23-N24 333.5 52.3 52.3 52.3 0.0173637 5.7908 0.9081 3.3495 N24-N23 52.3 52.3 0.0173637 0.9081 0.9081 3.3495 N24-N23 52.3 0.0173637 0.9081 0.9081 3.3173 N24-N25 107.8 0.0173637 0.9081 3.8547 3.3173 N25-N29 424.75 0.0173637 0.0173637 7.3752 0.0173637 10.0293 N25-N30 160.7 198.3 0.0173637 0.0173637 0.0173637 6.4497 0.4497 N25-N26 371.45 371.45 0.0173637 0.0173637 0.0173637 5.6384 N26-N25 N26-N27 278 0.0173637 4.8271 0.0173637 5.6384 N27-N26 278 0.0173637 4.8271 0.0173637 7.9187 N27-N28 288.5 0.0173637 5.0094 0.0173637 4.1299 N28-N27 N28-N08 187.2 0.0173637 0.0173637 0.0173637 3.2505 0.0173637 4.8874 N29-N25 N29-N25 424.75 0.0173637 0.0173637 0.0173637 2.3736 0.0173637 4.2945	N22	N22-N21	217.75	0.0173637	3.7809	4.9795	
N23 N23-N24 52.3 0.0173637 0.9081 3.3495 N24-N23 52.3 0.0173637 0.9081 3.3173 N24-N25 107.8 0.0173637 3.8547 3.3173 N24-N22 107.8 0.0173637 1.8718 N25-N29 424.75 0.0173637 7.3752 N25-N30 160.7 0.0173637 2.7903 N25-N26 371.45 0.0173637 6.4497 N25-N26 371.45 0.0173637 6.4497 N26-N27 278 0.0173637 4.8271 N27-N26 278 0.0173637 4.8271 N27-N27-N28 288.5 0.0173637 5.0094 N28-N27 288.5 0.0173637 5.0094 N28-N08 187.2 0.0173637 3.2505 N29-N05 138.2 0.0173637 2.3997 N29-N25 424.75 0.0173637 2.3736 N30-N31 136.7 0.0173637 3.4250 4.2945		N22-N35	248	0.0173637	4.3062		
N23-N24 52.3 0.0173637 0.9081 N24-N23 52.3 0.0173637 0.9081 N24-N05 222 0.0173637 3.8547 3.3173 N24-N22 107.8 0.0173637 1.8718 N25-N29 424.75 0.0173637 7.3752 N25-N30 160.7 0.0173637 2.7903 N25-N26 371.45 0.0173637 6.4497 N25-N26 371.45 0.0173637 6.4497 N26-N27 278 0.0173637 4.8271 N27-N26 278 0.0173637 4.8271 N27-N26 278 0.0173637 6.0009 N27-N28 288.5 0.0173637 5.0094 N28-N27 288.5 0.0173637 5.0094 N28-N08 187.2 0.0173637 2.3997 N29-N05 138.2 0.0173637 2.3997 N29-N25 424.75 0.0173637 2.3736 N30-N31 136.7 0.0173637 3.4250 <td< td=""><td>NO2</td><td>N23-N21</td><td>333.5</td><td>0.0173637</td><td>5.7908</td><td>2 2405</td></td<>	NO2	N23-N21	333.5	0.0173637	5.7908	2 2405	
N24 N24-N05 222 0.0173637 3.8547 3.3173 N24-N22 107.8 0.0173637 1.8718 N25-N29 424.75 0.0173637 7.3752 N25-N30 160.7 0.0173637 2.7903 N25-N07 198.3 0.0173637 6.4497 N25-N26 371.45 0.0173637 6.4497 N26-N25 371.45 0.0173637 6.4497 N26-N27 278 0.0173637 4.8271 N27-N26 278 0.0173637 4.8271 N27-N28 288.5 0.0173637 5.0094 N27-N28 288.5 0.0173637 5.0094 N28-N08 187.2 0.0173637 5.0094 N29-N05 138.2 0.0173637 2.3997 N29-N25 424.75 0.0173637 7.3752 N30-N31 136.7 0.0173637 2.3736 N30-N34 197.25 0.0173637 3.4250	N23	N23-N24	52.3	0.0173637	0.9081	3.3493	
N24-N22 107.8 0.0173637 1.8718 N25-N29 424.75 0.0173637 7.3752 N25-N30 160.7 0.0173637 2.7903 N25-N07 198.3 0.0173637 3.4432 N25-N26 371.45 0.0173637 6.4497 N26-N25 371.45 0.0173637 6.4497 N26-N27 278 0.0173637 4.8271 N27-N26 278 0.0173637 4.8271 N27-N28 288.5 0.0173637 5.0094 N27-N28 288.5 0.0173637 5.0094 N28-N27 288.5 0.0173637 5.0094 N28-N08 187.2 0.0173637 3.2505 N29-N05 138.2 0.0173637 2.3997 N29-N25 424.75 0.0173637 7.3752 N30-N31 136.7 0.0173637 3.4250 N30-N34 197.25 0.0173637 3.4250		N24-N23	52.3	0.0173637	0.9081		
N25-N29 424.75 0.0173637 7.3752 N25-N30 160.7 0.0173637 2.7903 N25-N07 198.3 0.0173637 3.4432 N25-N26 371.45 0.0173637 6.4497 N26-N25 371.45 0.0173637 6.4497 N26-N27 278 0.0173637 4.8271 N27-N26 278 0.0173637 4.8271 N27-N26 278 0.0173637 6.0009 N27-N28 288.5 0.0173637 5.0094 N27-N28 288.5 0.0173637 5.0094 N28-N27 288.5 0.0173637 5.0094 N28-N08 187.2 0.0173637 3.2505 N29-N05 138.2 0.0173637 2.3997 N29-N25 424.75 0.0173637 7.3752 N30-N31 136.7 0.0173637 3.4250 N30-N34 197.25 0.0173637 3.4250	N24	N24-N05	222	0.0173637	3.8547	3.3173	
N25 N25-N30 160.7 0.0173637 2.7903 N25-N07 198.3 0.0173637 3.4432 N25-N26 371.45 0.0173637 6.4497 N26 N26-N25 371.45 0.0173637 6.4497 N26-N27 278 0.0173637 4.8271 N27-N26 278 0.0173637 4.8271 N27-N27 345.6 0.0173637 6.0009 N27-N28 288.5 0.0173637 5.0094 N28-N27 288.5 0.0173637 5.0094 N28-N08 187.2 0.0173637 3.2505 N29-N05 138.2 0.0173637 2.3997 N29-N25 424.75 0.0173637 7.3752 N30-N31 136.7 0.0173637 2.3736 N30-N34 197.25 0.0173637 3.4250 4.2945		N24-N22	107.8	0.0173637	1.8718		
N25 N25-N07 198.3 0.0173637 3.4432 N25-N26 371.45 0.0173637 6.4497 N26 N26-N25 371.45 0.0173637 6.4497 N26-N27 278 0.0173637 4.8271 N27-N26 278 0.0173637 4.8271 N27-N07 345.6 0.0173637 6.0009 N27-N28 288.5 0.0173637 5.0094 N28-N27 288.5 0.0173637 5.0094 N28-N08 187.2 0.0173637 3.2505 N29-N05 138.2 0.0173637 2.3997 N29-N25 424.75 0.0173637 7.3752 N30-N31 136.7 0.0173637 2.3736 N30-N34 197.25 0.0173637 3.4250 4.2945		N25-N29	424.75	0.0173637	7.3752		
N25-N07 198.3 0.0173637 3.4432 N25-N26 371.45 0.0173637 6.4497 N26 N26-N25 371.45 0.0173637 6.4497 N26-N27 278 0.0173637 4.8271 N27-N26 278 0.0173637 4.8271 N27-N07 345.6 0.0173637 6.0009 7.9187 N27-N28 288.5 0.0173637 5.0094 7.9187 N28-N27 288.5 0.0173637 5.0094 4.1299 N28-N08 187.2 0.0173637 3.2505 4.1299 N29-N05 138.2 0.0173637 2.3997 4.8874 N30-N31 136.7 0.0173637 2.3736 N30-N34 197.25 0.0173637 3.4250 4.2945	N25	N25-N30	160.7	0.0173637	2.7903	10.0202	
N26 N26-N25 371.45 0.0173637 6.4497 N26-N27 278 0.0173637 4.8271 N27-N26 278 0.0173637 4.8271 N27-N07 345.6 0.0173637 6.0009 7.9187 N27-N28 288.5 0.0173637 5.0094 N28-N27 288.5 0.0173637 5.0094 N28-N08 187.2 0.0173637 3.2505 N29-N05 138.2 0.0173637 2.3997 N29-N25 424.75 0.0173637 2.3736 N30-N31 136.7 0.0173637 2.3736 N30-N34 197.25 0.0173637 3.4250 4.2945	11/23	N25-N07	198.3	0.0173637	3.4432	10.0293	
N26 N26-N27 278 0.0173637 4.8271 N27-N26 278 0.0173637 4.8271 N27 N27-N07 345.6 0.0173637 6.0009 N27-N28 288.5 0.0173637 5.0094 N28-N27 288.5 0.0173637 5.0094 N28-N08 187.2 0.0173637 3.2505 N29-N05 138.2 0.0173637 2.3997 N29-N25 424.75 0.0173637 7.3752 N30-N31 136.7 0.0173637 2.3736 N30-N34 197.25 0.0173637 3.4250 4.2945		N25-N26	371.45	0.0173637	6.4497		
N26-N27 278 0.0173637 4.8271 N27-N26 278 0.0173637 4.8271 N27 N27-N07 345.6 0.0173637 6.0009 7.9187 N27-N28 288.5 0.0173637 5.0094 4.1299 N28-N27 288.5 0.0173637 5.0094 4.1299 N28-N08 187.2 0.0173637 3.2505 4.1299 N29-N05 138.2 0.0173637 2.3997 4.8874 N29-N25 424.75 0.0173637 7.3752 4.8874 N30-N31 136.7 0.0173637 2.3736 4.2945 N30-N34 197.25 0.0173637 3.4250 4.2945	N26	N26-N25	371.45	0.0173637	6.4497	5 6294	
N27 N27-N07 345.6 0.0173637 6.0009 7.9187 N27-N28 288.5 0.0173637 5.0094 N28 N28-N27 288.5 0.0173637 5.0094 N28-N08 187.2 0.0173637 3.2505 N29 N29-N05 138.2 0.0173637 2.3997 N29-N25 424.75 0.0173637 7.3752 N30-N31 136.7 0.0173637 2.3736 N30-N34 197.25 0.0173637 3.4250 4.2945	N20	N26-N27	278	0.0173637	4.8271	3.036 4	
N27-N28 288.5 0.0173637 5.0094 N28 N28-N27 288.5 0.0173637 5.0094 N28-N08 187.2 0.0173637 3.2505 N29 N29-N05 138.2 0.0173637 2.3997 N29-N25 424.75 0.0173637 7.3752 N30-N31 136.7 0.0173637 2.3736 N30-N34 197.25 0.0173637 3.4250 4.2945		N27-N26	278	0.0173637	4.8271		
N28 N28-N27 288.5 0.0173637 5.0094 N28-N08 187.2 0.0173637 3.2505 N29 N29-N05 138.2 0.0173637 2.3997 N29-N25 424.75 0.0173637 7.3752 N30-N31 136.7 0.0173637 2.3736 N30-N34 197.25 0.0173637 3.4250 4.2945	N27	N27-N07	345.6	0.0173637	6.0009	7.9187	
N28 N28-N08 187.2 0.0173637 3.2505 N29 N29-N05 138.2 0.0173637 2.3997 N29-N25 424.75 0.0173637 7.3752 N30-N31 136.7 0.0173637 2.3736 N30-N34 197.25 0.0173637 3.4250 4.2945		N27-N28	288.5	0.0173637	5.0094		
N28-N08 187.2 0.0173637 3.2505 N29 N29-N05 138.2 0.0173637 2.3997 N29-N25 424.75 0.0173637 7.3752 N30-N31 136.7 0.0173637 2.3736 N30-N34 197.25 0.0173637 3.4250 4.2945	NOO	N28-N27	288.5	0.0173637	5.0094	4 1200	
N29 N29-N25 424.75 0.0173637 7.3752 4.8874 N30-N31 136.7 0.0173637 2.3736 N30 N30-N34 197.25 0.0173637 3.4250 4.2945	1N20	N28-N08	187.2	0.0173637	3.2505	4.1477	
N29-N25 424.75 0.0173637 7.3752 N30-N31 136.7 0.0173637 2.3736 N30 N30-N34 197.25 0.0173637 3.4250 4.2945	NO	N29-N05	138.2	0.0173637	2.3997	1 9971	
N30 N30-N34 197.25 0.0173637 3.4250 4.2945	11/29	N29-N25	424.75	0.0173637	7.3752	4.00/4	
		N30-N31	136.7	0.0173637	2.3736		
N30-N25 160.7 0.0173637 2.7903	N30	N30-N34	197.25	0.0173637	3.4250	4.2945	
		N30-N25	160.7	0.0173637	2.7903		

Nœud	Tronçons	Longueur(m)	Qsp (l/s/ml)	Qr (l/s)	QN= $0.5*\sum Qr (l/s)$
	N31-N06	109.8	0.0173637	1.9065	
N31	N31-N30	136.7	0.0173637	2.3736	3.8513
	N31-N32	197.1	0.0173637	3.4224	
	N32-N33	107.92	0.0173637	1.8739	3.8384
N32	N32-N31	197.1	0.0173637	3.4224	
	N32-N34	137.1	0.0173637	2.3806	
	N33-N06	196.85	0.01736	3.418	
N33	N33-N32	107.92	0.01736	1.874	3.0896
	N33-N12	51.1	0.01736	0.887	
	N34-N07	161.2	0.01736	2.799	
N34	N34-N32	137.1	0.01736	2.381	4.3023
	N34-N30	197.25	0.01736	3.425	
	N35-N12	123.7	0.01736366	2.148	
N35	N35-N22	248	0.01736366	4.306	3.387
	N35-N19	18.42	0.01736366	0.320	
	N36-N12	28.2	0.01736366	0.490	
N36	N36-N39	162.65	0.01736366	2.824	3.655
	N36-N40	230.1	0.01736366	3.995	
	N37-N39	94.2	0.01736366	1.636	
N37	N37-N38	150.3	0.01736366	2.610	4.281
	N37-N43	248.55	0.01736366	4.316	
	N38-N37	150.3	0.01736366	2.610	
N38	N38-N44	230.8	0.01736366	4.008	4.008
	N38-N07	80.55	0.01736366	1.399	
	N39-N36	162.65	0.01736366	2.824	
N39	N39-N37	94.2	0.01736366	1.636	4.498
	N39-N42	261.3	0.01736366	4.537	
	N40-N42	131.7	0.01736366	2.287	
N/40	N40-N41	121.3	0.01736366	2.106	5 504
N40	N40-N03	150.9	0.01736366	2.620	5.504
	N40-N36	230.1	0.01736366	3.995	
N41	N41-N40	121.3	0.01736366	2.106	1.053
	N42-N40	131.7	0.01736366	2.287	
N/A2	N42-N39	261.3	0.01736366	4.537	5 067
N42	N42-N46	140.2	0.01736366	2.434	5.867
	N42-N43	142.55	0.01736366	2.475	
N43	N43-N37	248.55	0.01736366	4.316	5.758

Nœud	Tronçons	Longueur(m)	Qsp (l/s/ml)	Qr (l/s)	$QN=0.5*\sum Qr (1/s)$
	N43-N44	132.75	0.01736366	2.305	
	N43-N09	139.35	0.01736366	2.420	
	N43-N42	142.55	0.01736366	2.475	
	N44-N38	230.8	0.01736366	4.008	
N44	N44-N43	132.75	0.01736366	2.305	4.349
	N44-N08	137.35	0.01736366	2.385	
N/45	N45-N09	76.2	0.01736366	1.323	5,000
N45	N45-N08	300.3	0.01736366	5.214	5.908
	N45-N47	304	0.01736366	5.279	
N46	N46-N42	140.2	0.01736366	2.434	3.906
	N46-N09	141.9	0.01736366	2.464	
	N46-N11	167.75	0.01736366	2.913	
N47	N47-N45	304	0.01736366	5.279	2.639
N140	N48-N02	243.35	0.01736366	4.225	2.502
N48	N48-N16	160	0.01736366	2.778	3.502
	N49-N18	87.5	0.01736366	1.519	
N49	N49-N20	272.2	0.01736366	4.726	3.922
	N49-N50	92.1	0.01736366	1.599	
	N50-N49	92.1	0.01736366	1.599	
N50	N50-N56	346.2	0.01736366	6.011	6.937
1130	N50-N51	205	0.01736366	3.560	0.937
	N50-N54	155.75	0.01736366	2.704	
	N51-N13	182.5	0.01736366	3.169	
N51	N51-N53	130.65	0.01736366	2.269	4.498
	N51-N50	205	0.01736366	3.560	
	N52-N55	214	0.0173637	3.716	
N52	N52-N14	198	0.0173637	3.438	4.629
	N52-N57	121.15	0.0173637	2.104	
	N53-N51	130.65	0.0173637	2.269	
N53	N53-N14	299.3	0.0173637	5.197	5.418
	N53-N54	194.15	0.0173637	3.371	
	N54-N50	155.75	0.0173637	2.704	
N54	N54-N55	29	0.0173637	0.504	3.290
	N54-N53	194.15	0.0173637	3.371	
	N55-N54	29	0.0173637	0.504	
N55	N55-N56	153.65	0.0173637	2.668	3.444
	N55-N52	214	0.0173637	3.716	

Nœud	Tronçons	Longueur(m)	Qsp (l/s/ml)	Qr (l/s)	QN= $0.5*\sum Qr(1/s)$
	N56-N50	346.2	0.0173637	6.011	
N56	N56-N55	153.65	0.0173637	2.668	6.117
	N56-N57	204.75	0.0173637	3.555	
N57	N57-N56	204.75	0.0173637	3.555	3.211
1137	N57-N52	121.15	0.0173637	2.104	3.211
	N57-N58	44	0.0173637	0.764	
N58	N58-N17	130	0.006721	0.874	0.585
				Somme Qn	259.693

ANNEXE III.7 : Tableau représente Vitesses et pertes de charges dans le réseau existant en cas de pointe) l'horizon 2054.

Tronçon	longueur	DiaméteIntrieur	matérieux	débit	vitesse	Perte
-	m	mm		LPS	m/s	m/km
Tuyau 26	217.75	69.2	PEHD	0.34	0.09	0.22
Tuyau 27	107.80	154.8	PEHD	6.00	0.32	0.78
Tuyau 28	248	69.2	PEHD	-1.80	0.48	4.54
Tuyau 29	18.42	184.6	PEHD	-6.91	0.26	0.42
Tuyau 30	123.70	230.8	PEHD	13.79	0.33	0.50
Tuyau 31	51.10	230.8	PEHD	104.96	2.51	23.94
Tuyau 32	28.20	230.8	PEHD	88.53	2.12	17.19
Tuyau 33	162.65	115.4	PEHD	-14.83	1.42	18.61
Tuyau 34	94.20	83	PEHD	3.57	0.66	6.57
Tuyau 35	150.30	83	PEHD	-7.02	1.30	23.65
Tuyau 36	80.55	154.8	PEHD	-30.23	1.61	16.45
Tuyau 37	230.10	204.6	PEHD	68.22	2.07	19.17
Tuyau 38	121.30	46	PEHD	1.58	0.95	27.61
Tuyau 39	300	69.2	PEHD	3.91	1.04	19.47
Tuyau 27	107.80	154.8	PEHD	6.00	0.32	0.22
Tuyau 28	248	69.2	PEHD	-1.80	0.48	0.78
Tuyau 29	18.42	184.6	PEHD	-6.91	0.26	4.54
Tuyau 30	123.70	230.8	PEHD	13.79	0.33	0.42
Tuyau 31	51.10	230.8	PEHD	104.96	2.51	0.50
Tuyau 32	28.20	230.8	PEHD	88.53	2.12	23.94
Tuyau 33	162.65	115.4	PEHD	-14.83	1.42	17.19
Tuyau 34	94.20	83	PEHD	3.57	0.66	18.61
Tuyau 35	150.30	83	PEHD	-7.02	1.30	6.57
Tuyau 36	80.55	154.8	PEHD	-30.23	1.61	23.65
Tuyau 37	230.10	204.6	PEHD	68.22	2.07	16.45
Tuyau 38	121.30	46	PEHD	1.58	0.95	19.17
Tuyau 39	300	69.2	PEHD	3.91	1.04	27.61
Tuyau 40	261.30	83	PEHD	4.51	0.83	10.19
Tuyau 41	131.70	154.8	PEHD	22.98	1.22	9.71
Tuyau 42	248.55	83	PEHD	4.17	0.77	8.76
Tuyau 43	142.55	154.8	PEHD	-6.64	0.35	0.94
Tuyau 44	230.80	115.4	PEHD	17.20	1.64	24.78
Tuyau 45	132.75	115.4	PEHD	-0.81	0.08	0.09
Tuyau 46	137.35	115.4	PEHD	9.87	0.94	8.54
Tuyau 47	139.35	69.2	PEHD	2.98	0.79	11.61

Tronçon	longueur	DiaméteIntrieur	matérieux	débit	vitesse	Perte
	m	mm		LPS	m/s	m/km
Tuyau 48	105.50	115.4	PEHD	5.52	0.53	2.85
Tuyau 49	140.20	115.4	PEHD	12.05	1.15	12.50
Tuyau 50	141.90	1125	PEHD	9.26	0.01	0.00
Tuyau 51	167.75	101.8	PEHD	-3.07	0.38	1.80
Tuyau 52	150.90	184.4	PEHD	35.40	1.33	9.16
Tuyau 53	245	184.6	PEHD	27.19	1.02	5.50
Tuyau 54	76.20	184.6	PEHD	-11.73	0.44	1.13
Tuyau 55	304	69.2	PEHD	3.96	1.05	19.96
Tuyau 56	231.20	184.6	PEHD	-23.15	0.87	4.05
Tuyau 57	243.35	115.4	PEHD	-2.96	0.28	0.90
Tuyau 58	256.85	154.8	PEHD	8.21	0.44	1.39
Tuyau 59	263.20	115.4	PEHD	3.64	0.35	1.32
Tuyau 60	260.60	69.2	PEHD	-3.51	0.93	15.90
Tuyau 61	87.5	115.4	PEHD	-18.82	1.80	29.48
Tuyau 62	103	154.8	PEHD	-8.25	0.44	1.40
Tuyau 63	272.20	101.8	PEHD	6.01	0.74	6.28
Tuyau 64	92.10	154.8	PEHD	-18.69	0.99	6.54
Tuyau 65	205	58	PEHD	10.64	4.03	335.76
Tuyau 66	182.50	58	PEHD	-11.74	4.44	406.72
Tuyau 67	490	154.8	PEHD	-25.53	1.36	11.88
Tuyau 68	130.65	58	PEHD	-7.84	2.97	184.50
Tuyau 69	155.75	154.8	PEHD	-27.58	1.47	13.79
Tuyau 70	194.15	58	PEHD	-9.00	3.40	241.43
Tuyau 71	229.30	58	PEHD	-6.97	2.64	146.76
Tuyau 72	198	83	PEHD	-13.45	2.49	83.24
Tuyau 73	29	154.8	PEHD	-41.51	2.21	30.42
Tuyau 74	346.20	115.4	PEHD	-12.16	1.16	12.72
Tuyau 75	153.65	154.8	PEHD	22.03	1.17	8.95
Tuyau 76	214	154.8	PEHD	24.65	1.31	11.11
Tuyau 77	300.30	69.2	PEHD	1.10	0.29	1.81
Tuyau 78	102	230.8	PEHD	-146.02	3.49	45.65
Tuyau 79	121.15	184.6	PEHD	-45.04	1.68	14.50
Tuyau 80	44	230.8	PEHD	-93.22	2.23	19.00
Tuyau 81	130	184.6	PEHD	-33.60	1.26	8.24
Tuyau 82	204.75	184.6	PEHD	-43.36	1.62	13.47

ANNEXE III.8 : Tableau représente les charges et les pressions dans le réseau existant en cas de pointe l'horizon 2054.

Noeud	Elevation	Débit nodale	Cote peizométrique	Pression
	m	LPS	m	m
Noeud 30	357.97	6.44	322.66	-35.31
Noeud 31	357.30	5.78	323.32	-33.98
Noeud 32	357.69	5.76	318.80	-38.89
Noeud 33	357.14	4.63	319.07	-38.07
Noeud 34	357.93	6.45	318.62	-39.31
Noeud 35	356.65	5.08	317.78	-38.87
Noeud 36	357.27	5.48	317.36	-39.91
Noeud 37	357.95	6.42	313.71	-44.24
Noeud 38	357.40	6.01	317.27	-40.13
Noeud 39	356.92	6.75	314.33	-42.59
Noeud 40	355.54	8.26	312.95	-42.59
Noeud 41	355.59	1.58	309.60	-45.99
Noeud 42	353.73	8.80	311.67	-42.06
Noeud 43	353.60	8.64	311.54	-42.06
Noeud 44	354.90	6.52	311.55	-43.35
Noeud 45	350.71	8.86	309.83	-40.88
Noeud 46	350.65	5.86	309.92	-40.73
Noeud 47	346.95	3.96	303.76	-43.19
Noeud 48	356.04	5.25	316.48	-39.56
Noeud 49	355.28	5.88	460.23	104.95
Noeud 50	355.55	10.41	460.83	105.28
Noeud 51	355.02	6.75	392.00	36.98
Noeud 52	355.79	6.94	466.24	110.45
Noeud 53	352.36	8.13	416.10	63.74
Noeud 54	355.09	4.93	462.98	107.89
Noeud 55	355.91	5.17	463.86	107.95
Noeud 56	355.14	9.18	465.24	110.10
Noeud 57	355.28	4.82	467.99	112.71
Noeud 58	354.62	2.27	468.83	114.21
Forage N°1	324.40	-129.09	486.60	162.20
Forage N°2	328.60	-260.45	492.90	164.30

 ${\bf ANNEXE\ III.9:}$ Tableau représente les diamètres intérieurs ; extérieure ; épaisseur et pression nominal. Source (Google 2024)

SDR		33		26	2	21		didas e		3,6		11		9	7	,4	
S		16	1	2,5	1	0		8	6	,3		5		4	3	,2	
Tipo		- 1					Presi	ón Non	ninal (bar)	10				en.		į.
PE 40		-		-				4		-		6		-	1	10	
PE 80		4		5		6	1	8	1	10	- 1	2,5	1 33	16	2	20	
PE 100		5		6		8		10	13	2,5		16	112	20	2	25	
SN (kN/m²)	3	2		4	1000	8		16	- 3	32	570	64	- 4	30	1	28	
DN					Esp	esor N	omina	il (e) y	Diáme	tro inte	erior (Di)			1.00		Paso
(Dext)	e	Di	e	Di	е	Di	е	Di	е	Di	е	Di	е	Di	e	Di	nomin
20		-									2.0	16.0	2.3	15.4	3.0	14.0	15
25									2.0	21.0	2.3	20.4	3.0	19.0	3.5	18.0	20
32	4			1		1	2.0	28.0	2.4	27.2	3.0	26.0	3.6	24.8	4.4	23.2	25
40					2.0	36.0	2.4	35.2	3.0	34.0	3.7	32.6	4.5	31.0	5.5	29.0	32
50			2.0	46.0	2.4	45.2	3.0	44.0	3.7	42.6	4.6	40.8	5.6	38.4	6.9	36.2	40
63			2.5	58.0	3.0	57.0	3.8	55.4	4.7	53.6	5.8	51.4	7.1	48.8	8.6	45.8	50
75			2.9	69.2	3,6	67.8	4.5	66.0	5.6	63.8	6.8	61.4	8.4	58.2	10.3	54.4	65
90	1		3.5	83.0	4.3	81.4	5.4	79.2	6.7	76.6	8.2	73.6	10.1	69.8	12.3	65.4	80
110			4.2	101.8	5.3	99.4	6.6	96.8	8.1	93.8	10.0	90.0	12.3	85.4	15.1	79.8	100
125			4.8	115.4	6.0	113.0	7.4	110.2	9.2	106.6	11.4	102.2	14.0	97.0	17.1	90.8	100
140			5.4	129.2	6.7	126.6	8.3	123.4	10.3	119.4	12.7	114.6	15.7	108.6	19.2	101.6	125
160			6.2	147.6	7.7	144.6	9.5	141.0	11.8	136.4	14.6	130.8	17.9	124.2	21.9	116.2	150
180		-	6.9	166.2	8.6	162.8	10.7	158.6	13.3	153.4	16.4	147.2	20.1	139.8	24.6	130.8	150
200	ļ., .		7.7	184.6	9.6	180.8	11.9	176.2	14.7	170.6	18.2	163.6	22.4	155.2	27.4	145.2	200
225			8.6	207.8	10.8	203.4	13.4	198.2	16.6	191.8	20.5	184.0	25.2	174.6	30.8	163.4	200
250			9.6	230.8	11.9	226.2	14.8	220.4	18.4	213.2	22.7	204.6	27.9	194.2	34.2	181.6	250
280			10.7	258.6	13.4	253.2	16.6	246.8	20.6	238.8	25.4	229.2	31.3	217.4	38.3	203.4	250
315	9.7	295.6	12.1	290.8	15.0	285.0	18.7	277.6	23.2	268.6	28.6	257.8	35.2	244.6	43.1	228.8	300
355	10.9	333.2	13.6	327.8	16.9	321.2	21.1	312.8	26.1	302.8	32.2	290.6	39.7	275.6	48.5	258.0	350
400	12.3	375.4	15.3	369.4	19.1	361.8	23.7	352.6	29.4	341.2	36.3	327.4	44.7	310.6	54.7	290.6	400
450	13.8	422.4	17.2	415.6	21.5	407.0	26.7	396.6	33.1	383.8	40.9	368.2	50.3	349.4	61,5	327.0	450
500	15.3	469.4	19.1	461.8	23.9	452.2	29.7	440.6	36.8	426.4	45.4	409.2	55.8	388.4			500
560	17.2	525.6	21.4	517.2	26.7	506.6	33.2	493.6	41.2	477.6	50.8	458.4	62.5	435.0			550
630	19.3	591.4	24.1	581.8	30.0	570.0	37.4	555.2	46,3	537.4	57.2	515.6	70.3	489.4			600
710	21.8	666.4	27.2	655.6	33.9	642.2	42.1	625.8	52.2	605.6	64.5	581.0	79.3	641.4			700
800	24.5	751.0	30.6	738.8	38.1	723.8	47,4	705.2	58.8	682.4	72.6	654.8	89.3	621.4			800
900	27.6	844.8	34.4	831.2	42.9	814.2	53.3	793.4	66.1	767.8	81.7	736.6					900
1000	30.6	938.8	38.2	923.6	47.7	904.6	59.3	881.4	73.5	853.0	90.8	1018.4					1000
1200	36,7	1126.6	45.9	1108.2	57.2	1085.6	71.1	1057.8	88.2	1023.6							1200
1400	42.9	1314.2	53.5	1293.0	66.7	1266.6	83.0	1234.0	102.8	1194.4							1400
1600	49.0	1502.0	61.2	1477.6	76.2	1447.6	94.8	1410.4	117.5	1365.0							1600
1800	55.1	1689.8	68,8	1662.4	85.8	1628,4	106.6	1586.8	1		1	3	4				1800
2000	61.2	1877.6	76.4	1847.2	95.3	1809.4	118.5	1763.0	1			- 8	9				2000
2250	70.0	2110.0	86.0	2078.0	107.2	2035.6											2250
2500	77.7	2344.6	95.6	2308.8	119.1	2261.8											2500

ANNEXE V.1: Tableau représente calcul des débits nodaux (cas de point) (réseau projeté à l'horizon 2054).

NOUEDS	TRANCONS	LONG.	Qs l/s/m	Qrout l/s	QN l/s
	N18-N13	210.5	0.017364		
N18	N18-N49	87.5	0.017364	3.655	4.850
NIO				1.519	4.830
	N18-N15	260.6	0.017364	4.525	
	N19-N16	231.2	0.017364	4.014	
N19	N19-N35	18.42	0.017364	0.320	2.895
	N19-N13	83.8	0.017364	1.455	
	N20-N15	103	0.017364	1.788	
N20	N20-N17	490	0.017364	8.508	7.512
	N20-N49	272.2	0.017364	4.726	
	N21-N02	263.2	0.017364	4.570	
N21	N21-N16	241.65	0.017364	4.196	9.169
11/21	N21-N22	217.75	0.017364	3.781	9.109
	N21-N23	333.5	0.017364	5.791	
	N22-N24	107.8	0.017364	1.872	
	N22-N21	217.75	0.017364	3.781	
N22	N22-N35	248	0.017364	4.306	4.979
	N23-N21	333.5	0.017364	5.791	
	N23-N24	52.3	0.017364	0.908	
	N24-N23	52.3	0.017364	0.908	
N24	N24-N05	222	0.017364	3.855	3.317
	N24-N22	107.8	0.017364	1.872	
	N25-N29	424.75	0.017364	7.375	
N25	N25-N30	160.7	0.017364	2.790	10.029
1923	N25-N07	198.3	0.017364	3.443	10.027
	N25-N26	371.45	0.017364	6.450	

NOUEDS	TRANCONS	LONG. (m)	Qs l/s/m	Qrout l/s	QN l/s
N26	N26-N25	371.45	0.017364	6.450	5.638
11/20	N26-N27	278	0.017364	4.827	3.036
	N27-N26	278	0.017364	4.827	
N27	N27-N07	345.6	0.017364	6.001	7.919
	N27-N28	288.5	0.017364	5.009	
	N28-N27	288.5	0.017364	5.009	
N28	N28-N08	187.2	0.017364	3.250	4.130
11/20	N29-N05	138.2	0.017364	2.400	4.130
	N29-N25	424.75	0.017364	7.375	
	N30-N31	136.7	0.017364	2.374	
N30	N30-N34	197.25	0.017364	3.425	4.294
	N30-N25	160.7	0.017364	2.790	
	N31-N06	109.8	0.017364	1.907	
N31	N31-N30	136.7	0.017364	2.374	3.851
	N31-N32	197.1	0.017364	3.422	
	N32-N33	107.92	0.017364	1.874	
N32	N32-N31	197.1	0.017364	3.422	3.838
	N32-N34	137.1	0.017364	2.381	
	N33-N06	196.85	0.017364	3.418	
N33	N33-N32	107.92	0.017364	0.887	3.090
	N33-N12	51.1	0.017364	0.887	
	N34-N07	161.2	0.017364	2.799	
N34	N34-N32	137.1	0.017364	2.381	4.302
	N34-N30	197.25	0.017364	3.425	
N35	N35-N12	123.7	0.017364	2.148	2 207
1133	N35-N22	248	0.017364	4.306	3.387

NOUEDS	TRANCONS	LONG. (m)	Qs l/s/m	Qrout l/s	QN l/s	
	N35-N19	18.42	0.017364	0.320		
	N36-N12	28.2	0.017364	0.490		
N36	N36-N39	162.65	0.017364	2.824	3.655	
	N36-N40	230.1	0.017364	3.995		
	N37-N39	94.2	0.017364	1.636		
N37	N37-N38	150.3	0.017364	2.610	4.281	
	N37-N43	248.55	0.017364	4.316		
	N38-N37	150.3	0.017364	2.610		
N38	N38-N44	230.8	0.017364	4.008	4.008	
	N38-N07	80.55	0.017364	1.399		
	N39-N36	162.65	0.017364	2.824		
N39	N39-N37	94.2	0.017364	1.636	4.498	
	N39-N42	261.3	0.017364	4.537		
	N40-N42	131.7	0.017364	2.287		
N40	N40-N41	121.3	0.017364	2.106	5.504	
1140	N40-N03	150.9	0.017364	2.620	3.304	
	N40-N36	230.1	0.017364	3.995		
N41	N41-N40	121.3	0.017364	2.106	1.053	
	N42-N40	131.7	0.017364	2.287		
N/42	N42-N39	261.3	0.017364	4.537	5 967	
N42	N42-N46	140.2	0.017364	2.434	5.867	
	N42-N43	142.55	0.017364	2.475		
	N43-N37	248.55	0.017364	4.316		
N142	N43-N44	132.75	0.017364	2.305	£ 7£0	
N43	N43-N09	139.35	0.017364	2.420	5.758	
	N43-N42	142.55	0.017364	2.475		

NOUEDS	TRANCONS	LONG. (m)	Qs l/s/m	Qrout l/s	QN l/s
	N44-N38	230.8	0.017364	4.008	
N44	N44-N43	132.75	0.017364	2.305	4.349
	N44-N08	137.35	0.017364	2.385	
	N45-N09	76.2	0.017364	1.323	
N45	N45-N08	300.3	0.017364	5.214	5.908
	N45-N47	304	0.017364	5.279	
	N46-N42	140.2	0.017364	2.434	
N46	N46-N09	141.9	0.017364	2.464	3.906
	N46-N11	167.75	0.017364	2.913	
N47	N47-N45	304	0.017364	5.279	2.639
N48	N48-N02	243.35	0.017364	4.225	
1140	N48-N16	160	0.017364	2.778	
	N49-N18	87.5	0.017364	1.519	
N49	N49-N20	272.2	0.017364	4.726	3.922
	N49-N50	92.1	0.017364	1.599	
	N50-N49	92.1	0.017364	1.599	
N50	N50-N56	346.2	0.017364	6.011	6.937
1130	N50-N51	205	0.017364	3.560	0.937
	N50-N54	155.75	0.017364	2.704	
	N51-N13	182.5	0.017364	3.169	
N51	N51-N53	130.65	0.017364	2.269	4.4985
	N51-N50	205	0.017364	3.560	
	N52-N55	214	0.017364	3.716	
N52	N52-N14	198	0.017364	3.438	4.6287
	N52-N57	121.15	0.017364	2.104	
N53	N53-N51	130.65	0.017364	2.269	5.4183

NOUEDS	TRANCONS	LONG. (m)	Qs l/s/m	Qrout l/s	QN l/s
	N53-N14	299.3	0.017364	5.197	
	N53-N54	194.15	0.017364	3.371	
	N54-N50	155.75	0.017364	2.704	
N54	N54-N55	29	0.017364	0.504	3.2895
	N54-N53	194.15	0.017364	3.371	
	N55-N54	29	0.017364	0.504	
N55	N55-N56	153.65	0.017364	2.668	3.4436
	N55-N52	214	0.017364	3.716	
	N56-N50	346.2	0.017364	6.011	
N56	N56-N55	153.65	0.017364	2.668	6.1172
	N56-N57	204.75	0.017364	3.555	
	N57-N56	204.75	0.017364	3.555	
N57	N57-N52	121.15	0.017364	2.104	3.2114
1437	N57-N58	44	0.017364	0.764	3.2114
	N58-N57	44	0.017364	0.764	
					259.6933

L'ANNEXE V.2 : Tableau représente Résultat des Caractéristiques Hydrauliques et diamètres des Tronçons (cas de pointe) (l'horizon 2054).

Tronçon	Longueur	Diamétre Intrieur	Débit	vitesse	Perte
Tronçon	m	mm	LPS	m/s	m/km
Tuyau 32	28.20	230.8	83.91	1.71	10.30
Tuyau 33	162.65	115.4	-14.75	1.20	12.27
Tuyau 34	94.20	83	4.10	0.64	5.67
Tuyau 35	150.30	83	-5.43	0.85	9.65
Tuyau 36	80.55	154.8	-23.74	1.18	8.74
Tuyau 37	230.10	204.6	63.68	1.68	11.59
Tuyau 38	121.30	46	1.58	0.80	18.10
Tuyau 39	300	69.2	3.90	0.88	12.91
Tuyau 40	261.30	83	3.90	0.61	5.16
Tuyau 41	131.70	154.8	18.00	0.90	5.15
Tuyau 42	248.55	115.4	3.12	0.49	3.39
Tuyau 43	142.55	115.4	-3.14	0.16	0.20
Tuyau 44	230.80	115.4	12.29	1.00	8.66
Tuyau 45	132.75	69.2	-5.96	0.49	2.21
Tuyau 46	137.35	115.4	-0.19	0.02	0.00
Tuyau 47	139.35	115.4	3.57	0.81	10.94
Tuyau 48	105.50	1125	4.82	0.39	1.49
Tuyau 49	140.20	101.8	9.96	1.05	11.08
Tuyau 50	141.90	184.4	8.32	0.01	0.00
Tuyau 51	167.75	184.6	-4.21	0.44	2.19
Tuyau 52	150.90	184.6	35.84	1.14	6.22
Tuyau 53	245	69.2	27.63	0.88	3.78
Tuyau 54	76.20	184.6	-10.69	0.34	0.64
Tuyau 55	304	115.4	3.96	0.90	13.28
Tuyau 56	231.20	154.8	33.87	1.08	5.58
Tuyau 57	243.35	115.4	3.59	0.29	0.87
Tuyau 58	256.85	69.2	-25.78	1.28	10.24
Tuyau 59	263.20	115.4	10.19	0.83	6.06
Tuyau 60	260.60	154.8	-0.63	0.14	0.45

Tronçon	Longueur	Diamétre Intrieur	Débit	vitesse	Perte
Tronçon	m	mm	LPS	m/s	m/km
Tuyau 61	87.5	101.8	-4.92	0.40	1.55
Tuyau 62	103	154.8	-5.36	0.27	0.54
Tuyau 63	110	58	0.89	0.09	0.13
Tuyau 64	92.10	58	-9.91	0.49	1.67
Tuyau 65	205	154.8	3.74	1.20	28.85
Tuyau 66	182.50	58	4.35	1.39	38.51
Tuyau 67	490	154.8	-17.52	0.87	4.90
Tuyau 68	130.65	58	1.34	0.43	4.19
Tuyau 69	155.75	58	-15.82	0.79	4.03
Tuyau 70	194.15	83	-4.23	1.36	36.51
Tuyau 71	229.30	154.8	-2.56	0.82	14.02
Tuyau 72	198	115.4	-9.03	1.42	25.46
Tuyau 73	29	154.8	-24.98	1.24	9.64
Tuyau 74	346.20	154.8	-8.24	0.67	4.06
Tuyau 75	153.65	69.2	14.10	0.70	3.24
Tuyau 76	214	230.8	16.05	0.80	4.14
Tuyau 77	300.30	184.6	2.13	0.57	6.22
Tuyau 78	102	230.8	-112.02	2.28	18.05
Tuyau 79	121.15	184.6	-32.02	1.02	5.01
Tuyau 80	44	184.6	-68.36	1.39	6.94
Tuyau 81	130	83	-25.60	0.81	3.27
Tuyau 82	204.75	154.8	-31.52	1.00	4.86
Tuyau 83	112.7	400	-159.58	1.27	3.28
Tuyau 84	130	250	-81.97	1.67	9.85
Tuyau 85	20.00	250	-90.14	1.84	11.84
Tuyau 86	870	250	-37.88	0.77	2.24
Tuyau 87	252.97	250	21.44	0.44	0.77

L'ANNEXE V.19: Tableau représente le résultat de charge et pression des nœuds (Cas de point).

Noeud	Elevation	Débit nodale	Cote peizométrique	Pression
	m	LPS	m	m
Noeud 35	356.65	5.08	370.89	14.24
Noeud 36	357.27	5.48	370.53	13.26
Noeud 37	357.95	6.42	368.00	10.05
Noeud 38	357.40	6.01	369.45	12.05
Noeud 39	356.92	6.75	368.54	11.62
Noeud 40	355.54	8.26	367.87	12.33
Noeud 41	355.59	1.58	365.67	10.08
Noeud 42	353.73	8.80	367.19	13.46
Noeud 43	353.60	8.64	367.16	13.56
Noeud 44	354.90	6.52	367.45	12.55
Noeud 45	350.71	8.86	365.59	14.88
Noeud 46	350.65	5.86	365.63	14.98
Noeud 47	346.95	3.96	361.55	14.60
Noeud 48	356.04	5.25	374.84	18.80
Noeud 49	355.28	5.88	369.58	14.30
Noeud 50	355.55	10.41	369.73	14.18
Noeud 51	353	6.75	363.82	10.82
Noeud 52	355.79	6.94	371.53	15.74
Noeud 53	352.36	8.13	363.27	10.91
Noeud 54	355.09	4.93	370.36	15.27
Noeud 55	355.91	5.17	370.64	14.73
Noeud 56	355.14	9.18	371.14	16.00
Noeud 57	355.28	4.82	372.14	16.86
Noeud 58	354.62	2.27	372.44	17.82
Réservoir R1	359.58	-165.70	377.58	18.00
Réservoir R2	360.566	-76.83	378.57	18.00
Réservoir R3	354.71	-96.22	372.71	18.00
Réservoir R4	357.28	-27.44	375.03	19.00

L'ANNEXE V.4: Tableau représente le résultat de charge et pression des nœuds (Cas de pointe + incendie)

Tronçon	longueur	Diamétre	débit	vitesse	Perte
	m	mm	LPS	m/s	m/km
Tuyau 31	51.10	250	71.59	1.46	7.58
Tuyau 32	28.20	250	83.47	1.70	10.20
Tuyau 33	162.65	125	-14.63	1.19	12.08
Tuyau 34	94.20	90	4.00	0.63	5.41
Tuyau 35	150.30	90	-5.55	0.87	10.06
Tuyau 36	80.55	160	-23.99	1.19	8.92
Tuyau 37	230.10	220	63.36	1.67	11.47
Tuyau 38	121.30	50	1.58	0.80	18.10
Tuyau 39	75	75	3.90	0.88	12.91
Tuyau 40	261.30	90	3.88	0.61	5.11
Tuyau 41	131.70	160	17.75	0.88	5.01
Tuyau 42	248.55	90	3.13	0.49	3.42
Tuyau 43	142.55	160	-2.84	0.14	0.17
Tuyau 44	230.80	125	12.42	1.01	8.84
Tuyau 45	132.75	125	-6.26	0.51	2.42
Tuyau 46	137.35	125	-0.36	0.03	0.01
Tuyau 47	139.35	75	3.59	0.81	11.03
Tuyau 48	105.50	125	4.78	0.39	1.47
Tuyau 49	140.20	110	9.99	1.05	11.14
Tuyau 50	141.90	1125	8.32	0.01	0.00
Tuyau 51	167.75	110	-4.19	0.44	2.17
Tuyau 52	150.90	200	35.78	1.14	6.20
Tuyau 53	245	200	27.57	0.88	3.77
Tuyau 54	76.20	200	-10.66	0.34	0.63
Tuyau 55	304	75	3.96	0.90	13.28
Tuyau 56	231.20	200	30.44	0.97	4.55
Tuyau 57	243.35	125	-13.57	1.11	10.47
Tuyau 58	256.85	160	-22.32	1.11	7.76
Tuyau 59	263.20	125	18.53	1.51	19.02
Tuyau 60	260.60	75	-0.67	0.15	0.49
Tuyau 61	87.5	125	-5.10	0.42	1.66
Tuyau 62	103	160	-5.40	0.27	0.54
Tuyau 63	272.20	110	0.94	0.10	0.15
Tuyau 64	92.10	160	-10.04	0.50	1.72
Tuyau 65	205	63	3.77	1.21	29.30

Tuyau 66	182.50	63	4.27	1.37	37.27
Tuyau 67	490	160	-17.61	0.88	4.94
Tuyau 68	130.65	63	1.30	0.42	3.94

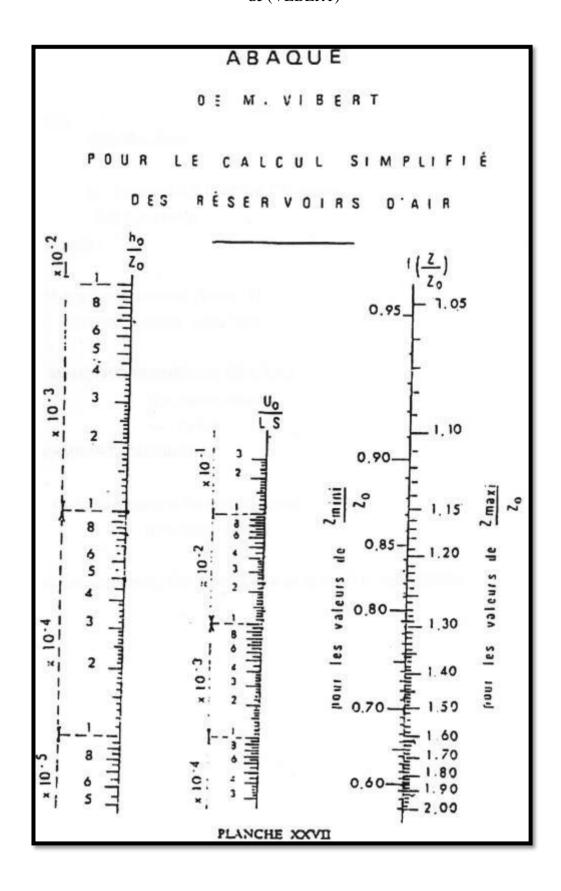
L'ANNEXE V.5 : Résultat charge et pression des nœuds (Cas de pointe+ incendie

Noeud	Elevation	Débit nodale	Cote peizométrique	Pression
	m	LPS	m	m
Noeud 32	357.69	5.76	370.63	12.94
Noeud 33	357.14	4.63	371.18	14.04
Noeud 34	357.93	6.45	370.26	12.33
Noeud 35	356.65	5.08	370.89	14.24
Noeud 36	357.27	5.48	370.53	13.26
Noeud 37	357.95	6.42	368.00	10.05
Noeud 38	357.40	6.01	369.45	12.05
Noeud 39	356.92	6.75	368.54	11.62
Noeud 40	355.54	8.26	367.87	12.33
Noeud 41	355.59	1.58	365.67	10.08
Noeud 42	353.73	8.80	367.19	13.46
Noeud 43	353.60	8.64	367.16	13.56
Noeud 44	354.90	6.52	367.45	12.55
Noeud 45	350.71	8.86	365.59	14.88
Noeud 46	350.65	5.86	365.63	14.98
Noeud 47	346.95	3.96	361.55	14.60
Noeud 48	356.04	5.25	374.84	18.80
Noeud 49	355.28	5.88	369.58	14.30
Noeud 50	355.55	10.41	369.73	14.18
Noeud 51	353	6.75	363.82	10.82
Noeud 52	355.79	6.94	371.53	15.74
Noeud 53	352.36	8.13	363.27	10.91
Noeud 54	355.09	4.93	370.36	15.27
Noeud 55	355.91	5.17	370.64	14.73
Noeud 56	355.14	9.18	371.14	16.00
Noeud 57	355.28	4.82	372.14	16.86
Noeud 58	354.62	2.27	372.44	17.82
Réservoir R1	359.58	-165.70	377.58	18.00
Réservoir R2	360.566	-76.83	378.57	18.00
Réservoir R3	354.71	-96.22	372.71	18.00
Réservoir R4	357.28	-27.44	375.03	19.00

ANNEXE VI.1: Prix et épaisseurs des conduites. (Source Chiali 2024)

Usine & Siège : Voie A Zone Industrielle BP 160 - 22000 Sidi Bel Abbès Téléphone : 048 70 31 90 Télécopie : 048 70 35 58 Site Web ::www.groupe-chiali.com e-mail : info@groupe-chiali.com

TUBE PEHD EAU PN06


Code	Désignation Article	UM	Prix MI HT	Prix MI TTC
110020201	TUBE PEHD Ø 20 PN 06 EP. 2.0 mm	ML	32,21	37,68
110020251	TUBE PEHD Ø 25 PN 06 EP. 2.0 mm	ML	41,09	48,08
110020321	TUBE PEHD Ø 32 PN 06 EP. 2.0 mm	ML	53,95	63,12
110020401	TUBE PEHD Ø 40 PN 06 EP. 2.0 mm	ML	69,88	81,76
110060501	TUBE PEHD Ø 50 PN 06 EP 2.4 mm	ML	87,64	102,54
110060631	TUBE PEHD EAU PE100 Ø 63 PN 06 EP. 2.5 mm	ML	131,72	154,11
110060751	TUBE PEHD EAU PE100 Ø 75 PN 06 EP. 2.9 mm	ML	186,46	218,15
110060901	TUBE PEHD EAU PE100 Ø 90 PN 06 EP. 3.5 mm	ML	257,19	300,91
110061101	TUBE PEHD EAU PE100 Ø 110 PN 06 EP. 4.2 mm	ML	374,09	437,68
110061251	TUBE PEHD EAU PE100 Ø 125 PN 06 EP. 4.8 mm	ML	477,23	558,36
110061601	TUBE PEHD EAU PE100 Ø 160 PN 06 EP. 6.2 mm	ML	787,69	921,60
110062001	TUBE PEHD EAU PE100 Ø 200 PN 06 EP. 7.7 mm	ML	1 216,17	1 422,92
110062501	TUBE PEHD EAU PE100 Ø 250 PN 06 EP. 9.6 mm	ML	1 898,66	2 221,44
110063151	TUBE PEHD EAU PE100 Ø 315 PN6 EP. 12.1 mm	ML	2 951,91	3 453,73
110064001	TUBE PEHD EAU PE100 Ø 400 PN6 EP. 15.3 mm	ML	4 703,04	5 502,55
110065001	TUBE PEHD EAU PE100 Ø 500 PN6 EP. 19.1 mm	ML	7 241,55	8 472,62
110066301	TUBE PEHD EAU PE100 Ø 630 PN6 EP. 19.1 mm	ML	11 492,57	13 446,30

TUBE PEHD EAU PN10

Code	Désignation Article	UM	Prix MI HT	Prix MI TTC
110030201	TUBE PEHD Ø 20 PN 10 EP. 2.0 mm	ML	34,32	40,15
110030251	TUBE PEHD Ø 25 PN 10 EP. 2.0 mm	ML	43,78	51,23
110070321	TUBE PEHD EAU PE100 Ø 32 PN10 EP. 2.0 mm	ML	55,10	64,47
110070401	TUBE PEHD EAU PE100 Ø 40 PN 10 EP. 2.4 mm	MIL	83,50	97,69
110070501	TUBE PEHD EAU PE100 Ø 50 PN10 EP. 3.0 mm	ML	128,66	150,53
110070631	TUBE PEHD EAU PE100 Ø 63 PN10 EP. 3.8 mm	ML	203,83	238,48
110070751	TUBE PEHD EAU PE100 Ø 75 PN 10 EP. 4.5 mm	ML	289,41	338,61
110070901	TUBE PEHD EAU PE100 Ø 90 PN10 EP. 5.4 mm	ML	381,88	446,80
110071101	TUBE PEHD EAU PE100 Ø 110 PN10 EP. 6.6 mm	ML	568,93	665,64
110071251	TUBE PEHD EAU PE100 Ø 125 PN10 EP. 7.4 mm	MIL	721,36	843,99
110071601	TUBE PEHD EAU PE100 Ø 160 PN10 EP. 9.5 mm	ML	1 181,58	1 382,45
110072001	TUBE PEHD EAU PE100 Ø 200 PN10 EP. 11.9 mm	ML	1 848,65	2 162,92
110072501	TUBE PEHD EAU PE100 Ø 250 PN10 EP. 14.8 mm	MIL	2 869,93	3 357,81
110073151	TUBE PEHD EAU PE100 Ø 315 PN10 EP. 18.7 mm	ML	4 322,93	5 057,83
110074001	TUBE PEHD EAU PE100 Ø 400 PN10 EP. 23.7 mm	ML	6 936,23	8 115,39
110075001	TUBE PEHD EAU PE100 Ø 500 PN10 EP. 29.7 mm	ML	10 783,03	12 616,15
110076301	TUBE PEHD EAU PE100 Ø 630 PN10 EP. 37.4 mm	MIL	17 077,20	19 980,32

TUBE PEHD EAU PN16

Code	Désignation Article	UM	Prix MI HT	Prix MI TTC
110080201	TUBE PEHD EAU PE100 Ø 20 PN 16 EP. 2.0 mm	ML	33,20	38,84
110080251	TUBE PEHD EAU PE100 Ø 25 PN 16 EP. 2.3 mm	ML	48,78	57,07
110080321	TUBE PEHD EAU PE100 Ø 32 PN 16 EP. 3.0 mm	ML	79,24	92,71
110080401	TUBE PEHD EAU PE100 Ø 40 PN 16 EP. 3.7 mm	ML	122,69	143,55
110080501	TUBE PEHD EAU PE100 Ø 50 PN 16 EP. 4.6 mm	ML	190,29	222,64
110080631	TUBE PEHD EAU PE100 Ø 63 PN 16 EP. 5.8 mm	ML	301,05	352,23
110080751	TUBE PEHD EAU PE100 Ø 75 PN 16 EP. 6.8 mm	ML	423,18	495,12
110080901	TUBE PEHD EAU PE100 Ø 90 PN 16 EP. 8.2 mm	ML	554,17	648,38
110081101	TUBE PEHD EAU PE100 Ø 110 PN 16 EP. 10.0 mm	ML	822,24	962,02
110081251	TUBE PEHD EAU PE100 Ø 125 PN16 EP. 11.4 mm	ML	1 048,61	1 226,87
110081601	TUBE PEHD EAU PE100 Ø 160 PN16 EP. 14.6 mm	ML	1 713,83	2 005,18
110082001	TUBE PEHD EAU PE100 Ø 200 PN16 EP. 18.2 mm	ML	2 691,35	3 148,88
110082501	TUBE PEHD EAU PE100 Ø 250 PN16 EP. 22.7 mm	ML	4 163,97	4 871,85
110083151	TUBE PEHD EAU PE100 Ø 315 PN16 EP. 28.6 mm	ML	6 309,37	7 381,96
110084001	TUBE PEHD EAU PE100 Ø 400 PN16 EP. 36.3 mm	ML	10 192,06	11 924,71
110085001	TUBE PEHD EAU PE100 Ø 500 PN16 EP. 45.4 mm	ML	15 889,78	18 591,04
110086301	TUBE PEHD EAU PE100 Ø 630 PN16 EP. 57.2 mm	ML	25 229,57	29 518,59

