الجمهورية الجزائرية الديمقراطية الشعبية وزارة التعليم العالى و البحث العلمي

NATIONAL HIGHER SCHOOL FOR HYDRAULICS

"The MujahidAbdellah ARBAOUI"

المدوسة الوطنية العليا للري "رواب عبد الله عرواوي"

HELIOSET I XELEZE USINERS XOGOSTO

MEMOIRE DE FIN D'ETUDES

Pour l'obtention du diplôme d'Ingénieur d'Etat en Hydraulique

Option : Conception des Systèmes d'Assainissement

THEME:

PROTECTION DE LA VILLE DE CHOUF LEKDAD CONTRE LES INONDATIONS (W. SETIF)

<u>Présenté par</u>: MAARIG Issad

Devant les membres du jury

Nom et Prénoms	Grade	Qualité	
AMMARI Abdelhadi	M.C.A	Président	
BELLABAS CHARIFI Salima	M.C.B	Examinateur	
DAHMANE Mouloud	M.C.B	Examinateur	
DJOUDAR HALLAL Dahbia	M.C.A	Promoteur	

Session septembre 2024

REMERCIEMENTS

aman et Papa, pour votre amour inconditionnel et votre soutien indéfectible tout au long de mon parcours. Vous avez toujours cru en moi et m'avez encouragé(e) à poursuivre mes rêves, même dans les moments les plus difficiles. Je vous serai à jamais reconnaissant(e) pour les valeurs que vous m'avez transmises et pour avoir façonné la personne que je suis aujour-d'hui. Ce mémoire est le fruit de vos sacrifices et de votre dévouement.

À mes sœurs et frères, mes complices de toujours, qui ont partagé mes joies et mes peines. Merci pour votre soutien indéfectible et votre présence à chaque étape de mon parcours.

À mes cousins (Djaafer, Faouzi et Chaouki), pour leurs encouragements constants, leur soutien précieux, et les nombreux services qu'ils m'ont rendus. Merci pour votre aide et votre présence tout au long de ce parcours.

À mes amis (Moussa, Wadoud, Sifou, Miloud, Chouaib, Firass, Ilies, moudjib), et à tous les autres, chacun par son nom, pour les moments de rire, de soutien et de folie partagés. Vous avez rendu cette aventure encore plus mémorable, et vous avez été là pour moi dans les bons comme dans les mauvais jours. Nos souvenirs resteront à jamais gravés dans mon cœur.

À tous ceux qui ont croisé mon chemin, pour les leçons apprises et les expériences partagées. Ce mémoire est le fruit de nos efforts collectifs et des rencontres qui ont façonné la personne que je suis aujourd'hui.

À ma chère amie Imane Ketita, pour ton soutien indéfectible et ta présence constante à mes côtés, je te dédie ce mémoire. Tu as été là dans les moments de doute, toujours prête à m'encourager et à me rappeler que chaque effort en valait la peine.

À ma chère amie Nahida, je te remercie pour ton soutien sans faille, tes rires communicatifs et ta présence apaisante. Tu as rendu ce parcours véritablement inoubliable

DÉDICACES

Premièrement, je remercie Allah de m'avoir accordé la volonté, la force et la sagesse nécessaires pour accomplir ce travail. Sans Sa bénédiction, rien de cela n'aurait été possible.

Tout d'abord, je tiens à exprimer mes sincères remerciements à mes professeurs pour leurs précieux conseils et leur soutien tout au long de mon parcours académique. Votre passion pour l'enseignement a éveillé en moi le désir d'apprendre et de me surpasser.

Je tiens également à exprimer ma profonde gratitude à ma promotrice de mémoire, Mme DJOU-DAR Dahbia, pour sa disponibilité, sa patience et ses retours constructifs. Votre expertise et votre accompagnement ont été d'une aide inestimable dans la réalisation de ce travail

Je tiens à exprimer ma sincère gratitude aux membres de mon jury pour avoir pris le temps d'évaluer mon travail et pour leurs retours constructifs. Votre expertise et vos conseils précieux ont grandement contribué à l'élaboration de cette mémoire. Je vous remercie pour vos observations pertinentes, qui m'ont permis d'approfondir ma réflexion et d'améliorer la qualité de mon travail.

Je n'oublie pas ma famille, qui m'a toujours soutenue et encouragée tout au long de mes études. Merci pour votre amour inconditionnel et pour la confiance que vous m'avez toujours témoignée.

Enfin, je tiens à exprimer ma profonde gratitude à toutes les personnes qui ont contribué à la réalisation de ce mémoire.

RÉSUMÉ

Résumé

Le but de cette étude est l'aménagement et la protection de la zone de Chouf Lekdad contre les inondations. Nous avons commencé par une étude hydrologique pour identifier les cours d'eau et les débits d'écoulement susceptibles de menacer cette zone. En utilisant des logiciels comme Lyfran et HEC-HMS, nous avons obtenu les débits pour les trois bassins versants. Par la suite, nous avons simulé et étudié les écoulements non aménagés à l'aide de HEC-RAS et ArcGIS. Trois variantes ont été proposées, suivies d'une étude technico-économique. Nous avons finalement opté pour la canalisation des cours d'eau afin de gérer les eaux de crue de manière sécurisée.

Abstract

The objective of this study is the planning and protection of the Chouf Lekdad area against floods. We began with a hydrological study to determine the watercourses and flow rates that could threaten the area. Using software such as Lyfran and HEC-HMS, we obtained the flow rates for the three watersheds. We then simulated and studied the unmanaged flows using HEC-RAS and ArcGIS. Three alternatives were proposed, followed by a techno-economic study. We ultimately opted for canalizing the watercourses to safely manage floodwaters

TABLE DES MATIÈRES

			Page
Li	iste d	les tableaux	xi
	TAE	BLEAUX	Page
Ta	able d	des figures	xiii
		EURES	Page
1	pré	sentation de la zone d'étude	3
	1.1	Introduction	. 3
	1.2	Situation géographique de la commune de CHOUF LEKDAD	. 3
	1.3	Localisation de la zone d'étude	. 5
	1.4	Situation topographique	. 6
	1.5	Situation géologique et tectonique de la ville CHOUF LEKDAD	. 6
	1.6	Sismicité	. 8
	1.7	Situation climatologique	. 9
		1.7.1 Température	. 9
		1.7.2 Pluviométrie	. 9
		1.7.3 Humidité	. 10
		1.7.4 Vent	. 10
	1.8	Hydrographie	. 11
	1.9	Population	. 12
2	Étu	de hydrologique	13
	2.1	Introduction	. 13
	2.2	Caractéristiques Hydro-Morphométriques	. 14
		2.2.1 Caractéristiques Géométrique	. 14
		2.2.1.1 La Superficie (S)	. 14
		2.2.1.2 Le Périmètre (P)	. 15
		2.2.1.3 Longueur de Thalweg (L)	. 15
		2.2.2 Caractéristiques de Forme	. 15
		2 2 2 1 Indice de Compacité de Gravelius (Kc)	15

		2.2.2.2	Coefficient d'allongement (Ca)	15
		2.2.2.3	Rectangle équivalant	16
	2.2.3	Caracté	ristiques de relief	16
		2.2.3.1	Courbe Hypsométrique	17
		E	Bassin versant N°1:	17
		E	Bassin versant N°2:	18
		E	Bassin versant N°3:	19
		2.2.3.2	Les altitudes caractéristiques	20
		2.2.3.3	Les indices des pentes	22
		I	l'indice de pente de roche (Ip)	22
		I	indice de pente globale (Ig)	22
		2.2.3.4	Le réseau d'écoulement	23
		I	a densité de drainage (Dd)	23
		I	a pente moyenne de bassin versant (Ic)	23
		I	Le temps de concentration	23
2.3	Analys	se des dor	nnées pluviométriques	26
	2.3.1	Les don	nées disponibles	26
	2.3.2	Pluies n	naximales journalière	26
		2.3.2.1	Ajustement statistique	27
		A	Ajustement à la loi de Gumbel	27
		C	Calcul des Quantiles	29
		A	Ajustement à la loi de Log normal (Galton)	29
		C	Calcul des quantiles	30
		A	Ajustement par la loi de GEV	31
		C	Calcul des quantiles	32
		2.3.2.2	Test visuel	32
		I	nterprétation des graphiques	32
		Г	l'est d'adéquation du X^2 (Pearson) $\ldots \ldots \ldots \ldots \ldots$	32
		2.3.2.3	Les pluies des courtes durées	33
2.4	Estima	ation des	débits de crues	35
	2.4.1	Calcul d	le débit de crue par les formules empiriques	36
		2.4.1.1	Formule de Turraza	36
		2.4.1.2	Formule de Sokolovsk	36
		2.4.1.3	Formule de maillet – Gauthier	37
	2.4.2	La Méth	node Soil Conservation Service « SCS »	38
		2.4.2.1	Modélisation Hydrologique avec le Logiciel HEC-HMS	41
		I	a Période de Retour Centennale 100 ans	43
		Т	a Période de Retour 50 ans	46

TABLE DES MATIÈRES

		La Période de Retour 20 ans	47
		La Période de Retour 10 ans	48
		La Période de Retour 5 ans	49
	2.5	Conclusion	50
3	Étu	de des cours d'eau non aménager	5 1
	3.1	Introduction	51
	3.2	Description générale des cours d'eaux	51
	3.3	Modélisation Hydraulique	58
		3.3.1 Définition	58
		3.3.2 Modèle HEC-RAS	58
		3.3.3 La Démarche de la simulation	58
		3.3.4 Visualisation des résultats	61
	3.4	Discussion des résultats	68
4	Étu	de des variantes et calcul hydraulique	7 1
	4.1	Introduction	71
	4.2	Ecoulement dans les canaux à surface libre	71
		4.2.1 Définition	71
		4.2.2 Les types d'écoulements[2]	72
		Variabilité dans le temps	72
		Variabilité dans l'espace	72
		4.2.3 Régime d'écoulement[2]	73
		4.2.3.1 Le nombre de Froude	73
		4.2.3.2 Le nombre de Reynolds	74
		4.2.4 Dimensionnement des Canaux	74
	4.3	Proposition des Variantes	74
	4.4	Etude des variantes pour BV N°1 et N°2	75
		4.4.1 Bassin versant N°1	75
		4.4.1.1 Dimensionnement des tronçons	75
		Dimensionnement de tronçon N° 1 de BV N° 1	75
		Dimensionnement des tronçons N° 2	77
		4.4.1.2 Variante N°2	80
		4.4.1.3 Variante N°3	80
		4.4.1.4 Estimations du cout des variantes et étude comparative	82
		4.4.2 Bassin versant N°2	82
		4.4.2.1 Variante N°1	82
		Dimensionnement de tronçon N°2 de BV N°2	82
		Dimensionnement de tronçon N°1 de BV N°2	83

		4.4.2.2	Variante N°2	84
		Ι	Dimensionnement de tronçon N°2 de BV N°2	84
		4.4.2.3	Variante N°3	85
		4.4.2.4	Estimation du coût des variantes et étude comparative	86
	4.4.3	Bassin v	versant N°3	86
		4.4.3.1	Dimensionnement de canal C de BV N°3	86
4.5	Ouvra	ges et élé	ments utilisés	88
	4.5.1	Les cana	alisations [20]	88
		4.5.1.1	Conduites en béton non armé	88
		4.5.1.2	Conduites en béton armé	89
		4.5.1.3	Conduites en amiante – ciment	89
		4.5.1.4	Conduites en grés	89
		4.5.1.5	Conduites en chlorure de polyvinyle (p.v.c) non plastifié	89
	4.5.2	Les join	ts des conduites en béton armé	90
		4.5.2.1	Joint type Rocla	90
		4.5.2.2	Joint à demi-emboîtement	90
		4.5.2.3	Joint à collet	90
		4.5.2.4	Joint torique	90
		4.5.2.5	Joint à mortier de ciment	91
		4.5.2.6	Joints plastiques	91
		4.5.2.7	Joint à double anneaux	91
		4.5.2.8	Joint mécanique	91
	4.5.3	Les ouv	rages de recueillie et de transport [20]	91
		4.5.3.1	Les fossés	91
		4.5.3.2	Les caniveaux	91
		4.5.3.3	Les bouches d'égout	91
	4.5.4	Les rega	ards [10]	92
		4.5.4.1	Espacement et emplacement des regards	92
		4.5.4.2	Type des regards	92
4.6	Conclu	asions		93
Org	anisati	ion de Cl	hantier et Planification des Travaux	95
5.1				95
5.2			es Travaux	95
5.3			tif et Estimatif	95
5.4		-	Fravaux de Réalisation	96
0.1	5.4.1		ion des Tranchées et des Fouilles	96
	5.4.2		eur de la Tranchée	96
	O. 1.2		Largeur de la Tranchée	96
		11. T. 4. I	Darenn de la Hallouge	-71

5

TABLE DES MATIÈRES

		5.4.2.2 Volume des Tranchées	97
		5.4.2.3 Volume des Déblais	97
	5.4.3	Le Lit de Sable	98
	5.4.4	Le Remblai des Tranchées	98
		5.4.4.1 Volume de Remblai	98
		5.4.4.2 Volume excédentaire	98
5.5	La Pla	nification des Travaux	100
	5.5.1	Techniques de Planification	100
		5.5.1.1 Méthode basées sur le réseau	100
		Définition:	100
		5.5.1.2 Méthodes basées sur le graphique :	102
	5.5.2	Les Étapes de la Planification	102
	5.5.3	Choix de la Méthode de Calcul	102
		5.5.3.1 Les paramètres de la méthode C.P.M	102
		Le chemin critique CC	103
	5.5.4	Elaboration du réseau selon la méthode C.P.M	103
	5.5.5	Conclusion	105
Conclu	sion G	eneral 1	107
Bibliog	raphie	1	109
Annexs	;	1	111

LISTE DES TABLEAUX

1.1	Température Moyenne 1991/2021	9
1.2	Les pluies moyennes mensuelles	10
1.3	Caractéristiques de la station pluviométrique retenue pour l'étude	10
1.4	Humidité relative station SETIF 1991/2021	10
1.5	Recensement de la population pour différentes périodes dans la Commune de Sétif,	
	(DPAT, Wilaya de Sétif, 2010)	12
2.1	les résultats des caractéristiques géométriques	15
2.2	les caractéristiques de forme des bassins versants	16
2.3	Répartition en pourcentage de la surface élémentaire du BV01	17
2.4	Répartition en pourcentage de la surface élémentaire du BV02	18
2.5	Répartition en pourcentage de la surface élémentaire du BV03	19
2.6	Les résultats des caractéristiques de forme des trois bassins versants	21
2.7	Répartition de relief en fonction de l'indice de pente global [12]	22
2.8	les indices des pentes pour les trois bassins versants :	23
2.9	les indices des pentes pour les trois bassins versants :	23
2.10	Le temps de concentration par différentes méthodes empiriques	25
2.11	Caractéristiques de la station pluviométrique retenue pour l'étude	26
2.12	pluies maximales journalières	26
2.13	pluies maximales journalières	27
2.14	les paramètres d'ajustement par loi de Gumbel	29
2.15	Calcule les quantiles par loi de Gumbel	29
2.16	Les paramètres d'ajustement par la loi de Galton	30
2.17	Calculer les quantiles par loi de Galton	30
2.18	les paramètres d'ajustement par loi de GEV	32
2.19	Calculer les quantiles par loi de GEV	32
2.20	résultat du test du $kh2$	33
2.21	calcule des quantiles par loi de Galton	33
2.22	Pluies et intensités maximales de durée $t(h)$ et période de retour $T(ans)$	34
2.23	le coefficient de ruissellement en fonction de période de retour	36

LISTE DES TABLEAUX

2.24	Les résultats du calcul des débits de crues	38
2.25	Classification des sols selon NRCS (USDA,SCS , 1972)	40
2.26	CN selon le Type d'occupation de sol (USDA,SCS , 1972)	40
2.27	CN selon le Type d'occupation de sol (USDA,SCS , 1972)	41
2.28	Résultats de simulation pour la période de retour 100 ans	43
2.29	Résultats de simulation pour la période de retour 50 ans	46
2.30	Résultats de simulation pour la période de retour 20 ans	47
2.31	Résultats de simulation pour la période de retour 10 ans	48
2.32	Résultats de simulation pour la période de retour 5 ans $\dots \dots \dots \dots$	49
2.33	Résultats des débits de la simulation pour les différents périodes de retour	50
3.1	La division des cours d'eaux en tronçons	53
3.2	Ouvrages d'infrastructures routières et ferroviaires traversent les trois oueds dans la	
	zone d'étude	57
3.3	Valeurs des coefficients de rugosité de Manning [15]	60
3.4	Résultats de simulation des oueds de BV01 - Tronçons : TR11	66
3.5	Résultats de simulation des oueds de BV01 - Tronçons : TR21	66
3.6	Résultats de simulation des oueds de BV02 - Tronçons : B1	67
3.7	Résultats de simulation des oueds de BV02 - Tronçons : B2	67
3.8	Résultats de simulation des oueds de BV03 - Tronçons : TR13	68
4.1	Les calcul des paramètres d'écoulement et les résultat	76
4.2	Résultats des calculs des paramètres d'écoulement du canal du TR $2 \ \dots \dots \dots$	78
4.3	Verification de l'Autocurage	79
4.4	Résultats de dimensionnement de tronçon $N^{\circ}1et~2-BV~N^{\circ}1~\dots$	81
4.5	Vérification de vitesse d'auto curage le 1/10 et le 1/100 du Débit plaine section $$	81
4.6	Estimation des coûts de réalisation	82
4.7	Résultats de dimensionnement pour tronçon 1 de BV N°2 \ldots	83
4.8	Vérification de vitesse d'auto curage le 1/10 et le 1/100 du Débit plaine section $$	84
4.9	Résultats de dimensionnement de troncon 1 et $2 \dots \dots \dots \dots \dots$	85
4.10	Vérification de vitesse d'auto curage le 1/10 et le 1/100 du Débit plaine section \dots	86
4.11	Estimation des coûts de réalisation	86
4.12	Résultats de dimensionnement de BV N°3 $\ \ldots \ \ldots \ \ldots \ \ldots \ \ldots$	87
4.13	Vérification de vitesse d'auto curage le 1/10 et le 1/100 du Débit plaine section \dots	88
5.1	Devis quantitatif et estimatifs de projet	99
5.2	Les paramètres de la méthode C.P.M	102
5.3	Symboles des opérations et leurs durées de réalisation	103

TABLE DES FIGURES

1.1	Situation géographique de la commune de CHOUF LEKDAD (Google Photo, 2023)	4
1.2	Communes limitrophes de CHOUF LEKDAD	4
1.3	localisation de la zone d'étude (Google map , 2024)	5
1.4	Extrait de la carte cartes topographiques	5
1.5	Extraie de la carte géologique de la zone d'étude Échelle $1/250.000~[5]$ (Vila, 1980)	7
1.6	Carte de zonage sismique du territoire national selon RPA 2003 [10]	8
1.7	Réseau hydrographique de la zone d'étude	11
2.1	Délimitation de bassins versants (ArcGIS)	14
2.2	La carte hypsométrique de BV N°01	17
2.3	Diagramme et courbe Hypsométrique du BV01	18
2.4	La carte hypsométrique de BV N°02	18
2.5	Diagramme et courbe Hypsométrique du BV02	19
2.6	La carte hypsométrique de BV N°3	19
2.7	Diagramme et courbe Hypsométrique du BV03	20
2.8	La droite d'ajustement de la loi de Gumbel	28
2.9	La droite d'ajustement de la loi log normal (Galton)	30
2.10	La droite d'ajustement de la loi de GEV	31
2.11	les précipitations en fonction du temps pour différentes périodes de retour	35
2.12	Carte d'occupation du sol du bassin versant (ArcGIS)	41
2.13	Hydrogramme de crue du BV 01	43
2.14	Hydrogramme de crue du BV 02	44
2.15	Hydrogramme de crue du BV 03	45
2.16	Hydrogramme de crue à l'exutoire T=50ans	46
2.17	Hydrogramme de crue à l'exutoire T=20ans	47
2.18	Hydrogramme de crue à l'exutoire T=10ans	48
2.19	Hydrogramme de crue à l'exutoire T=5ans	49
3.1	les différents tronçons des cours d'eaux	52
3.2	Transport des sédiments sur tout l'axe de l'oued	54
3.3	Dégradation du lotissement due au débordement des eaux	54

TABLE DES FIGURES

3.4	La présence des nouvelles constructions (bâtiments)	55
3.5	Vétuste total de regard et canal	55
3.6	Obstruction du canal	56
3.7	Grande quantité de remblai et déchets au cours d'eau	56
3.8	Profil du plan d'eau d'Oued du BV 01 au passage de la crue de projet	61
3.9	Profil du plan d'eau d'Oued du BV 02 au passage de la crue de projet	62
3.10	Profil du plan d'eau d'Oued du BV 03 au passage de la crue de projet	63
3.11	Profil en travers d'un tronçon d oued du BV01	63
3.12	Profil en travers d'un tronçon d oued du BV02	64
3.13	Profil en travers d'un tronçon d oued du BV02	64
3.14	Profil en travers d'un tronçon d oued du BV03	65
3.15	Profil en travers d'un tronçon d oued du BV03	65
4.1	Schéma représentant les différents régimes d'écoulement[2]	73
4.2	Section transversal du TR N°1	76
4.3	Section transversal du tronçon 2	80
4.4	Section transversal du tronçon 2 bassin 02	83
4.5	Section transversal du tronçon 2	84
5.1	Diagramme à flèches	101
5.2	Diagramme à nœuds	101
5.3	Réseau à nœud	104
1	Abaque de variation des débits et des vitesses en fonction de la hauteur de remplissage	
	[6]	112
2	la carte de la Zone inondable du bassin 01	113
3	la carte des Zones inondables du bassin 02	113
1	Enter Contin	111

Introduction Générale

es inondations représentent l'une des catastrophes naturelles les plus fréquentes au monde, affectant de nombreux groupes de population. Cette récurrence est liée à diverses causes d'inondations. Quant aux conséquences, les dégâts causés par ce phénomène sont significatifs.

Comme de nombreux autres pays, l'Algérie subit également des inondations dévastatrices. Autrefois, ces inondations étaient principalement observées après le débordement de grands fleuves dans de vastes plaines agricoles. Cependant, au cours des deux dernières décennies, elles ont été principalement enregistrées dans les grandes villes et les zones métropolitaines, où les pertes en vies humaines et les dégâts matériels sont considérables.

Les cours d'eau en Algérie sont de plus en plus aménagés en raison des fréquentes inondations causées par l'affaissement des sites, le soulèvement tectonique des lits d'oueds ou les glissements de terrain induits par des tremblements de terre qui peuvent obstruer les cours d'eau. Les pertes humaines et matérielles augmentent considérablement chaque année, non pas nécessairement en raison d'une augmentation du nombre ou de l'intensité des inondations, mais plutôt à cause d'une augmentation des facteurs de vulnérabilité.

Notre étude actuelle vise à protéger la ville de CHOUF LEKDAD wilaya de SETIF contre les inondations, à aménager les oueds et à les utiliser pour évacuer les eaux pluviales de la zone concernée. Pour atteindre cet objectif, le travail est structuré en cinq chapitres :

- **Chapitre I :** Présentation de la zone d'étude.
- Chapitre II: Etude hydrologique
- Chapitre III : Etude des écoulements dans le cours d'eau non aménagé.
- **Chapitre V**: Etude des variantes et calcul hydraulique.
- **Chapitre VI** : Organisation de chantier et sécurité de travail.

CHAPITRE

PRÉSENTATION DE LA ZONE D'ÉTUDE

1.1 Introduction

e document vise à calculer les caractéristiques morphométriques et à analyser les données climatiques et pluviométriques pour déterminer les débits fréquents, nécessaires au dimensionnement des ouvrages hydrauliques destinés à l'évacuation des eaux pluviales. Avant toute étude hydraulique, il est essentiel de comprendre les données géographiques, topographiques, géologiques et climatiques du site pour protéger les villes des inondations. Cette approche permet de concevoir des systèmes hydrauliques efficaces et adaptés aux besoins spécifiques de la zone d'étude.

1.2 Situation géographique de la commune de CHOUF LEKDAD

La commune de CHOUF LEKDAD se trouve au centre de la wilaya de SETIF et est bordée par :

- 1. OURICIA au nord.
- 2. GUEDJEL au sud.
- 3. MEZLOUG et AIN-ERNET à l'ouest.
- 4. OULED SABER à l'est.

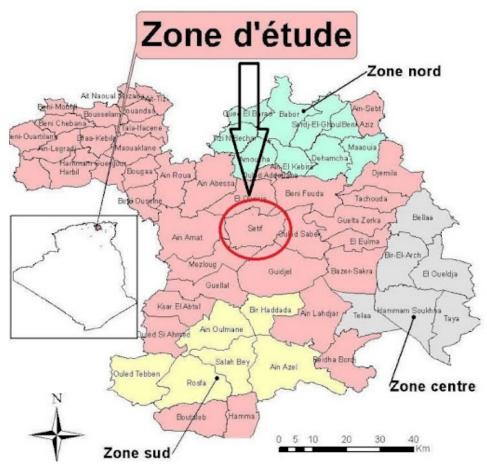


FIGURE 1.1 – Situation géographique de la commune de CHOUF LEKDAD (Google Photo, 2023)

La commune localiser dans le centre de la wilaya

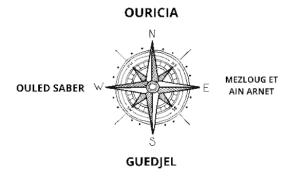


FIGURE 1.2 – Communes limitrophes de CHOUF LEKDAD

1.3 Localisation de la zone d'étude

La zone d'étude de CHOUF LEKDAD se situe à environ 3 kilomètres au nord-ouest du centreville de Sétif. Elle est délimitée à l'est et au sud par l'oued Bousselem, à l'ouest par les limites administratives d'Ain Arnat, et au nord par Fermatou. Ce site est défini par les coordonnées UTM de la zone 31 :

- 1. $\mathbf{x} = 713772.65 \ \text{à} \ \mathbf{x} = 713074.99$.
- 2. y = 4009281.51 à y = 4010332.32.
- 3. z = 1008 à z = 1089.

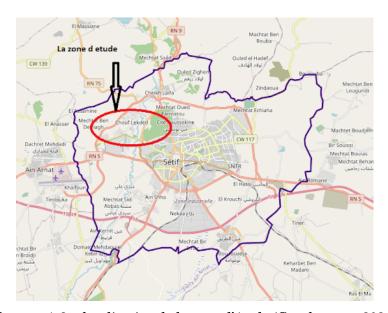


Figure 1.3 – localisation de la zone d'étude (Google map , 2024)

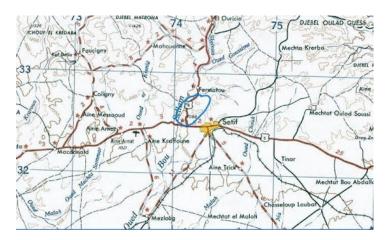


FIGURE 1.4 - Extrait de la carte cartes topographiques

1.4 Situation topographique

La topographie joue un rôle crucial dans la conception du projet. La zone étudiée présente des pentes prononcées qui favorisent un écoulement rapide des eaux de pluie, sans infiltration dans le sol. Par conséquent, on peut s'attendre à des écoulements à des vitesses élevées et à une réduction du temps de réponse des crues, signifiant que les crues potentielles peuvent se produire dans un laps de temps relativement court.

1.5 Situation géologique et tectonique de la ville CHOUF LEKDAD

La géologie constitue une étape essentielle et importante dans les études hydrologiques et hydrogéologiques. La lithologie, la tectonique et la structure jouent un rôle primordial dans la détermination des zones perméables et imperméables. Géologiquement, le territoire de la wilaya de Sétif appartient aux séries telliennes, qui font partie des zones externes de l'orogenèse alpine maghrébine ou « chaîne des Maghrébides [22].

La wilaya de Sétif se distingue par la diversité de ses faciès géologiques et par sa complexité structurelle. Gé morphologiquement, la région correspond à un vaste édifice montagneux (l'Atlas tellien au nord et le HODNA au sud) entourant le plateau sétifien.

La surface géologique du bassin étudié est majoritairement recouverte de faciès hétérogènes composés de graviers, de galets et de marnes calcaires lacustres. On observe également que la lithologie est principalement constituée de formations imperméables (environ 90% de la surface totale) avec une petite proportion de zones semi-perméables ou perméables (environ 10% de la superficie totale) [22].

FIGURE 1.5 – Extraie de la carte géologique de la zone d'étude Échelle 1/250.000 [5] (Vila, 1980)

1.6 Sismicité

Les systèmes sismiques appliqués sont ceux du R.P.A (Règlement Parasismique Algérien), modifié et complété après le séisme du 21 mai 2003 et développé par le CGS (Centre de Recherche Appliquée en Génie Parasismique) [20].

Le pays est divisé en cinq zones de sismicité :

- 1. **Zone 0** : Activité sismique négligeable.
- 2. Zone 1 : Faible sismicité.
- 3. **Zone 2** : Activité sismique moyenne.
- 4. **Zone 3** : Forte activité sismique.
- 5. Zone 4 : Activité sismique très élevée.

La région de CHOUF LEKDAD est classée en Zone, caractérisée par une activité sismique modérée, conformément à la réglementation sismique algérienne (R.P.A 2003).

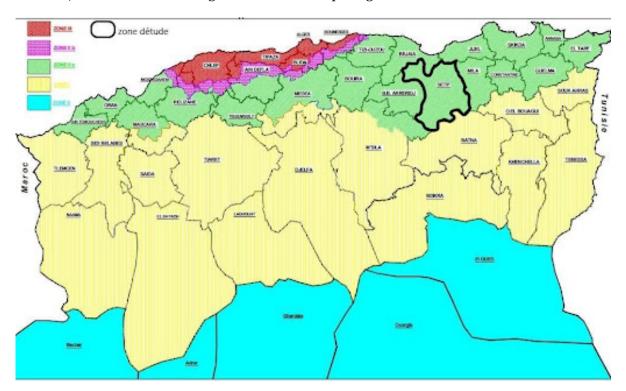


FIGURE 1.6 - Carte de zonage sismique du territoire national selon RPA 2003 [10]

1.7 Situation climatologique

1.7.1 Température

L'établissement du bilan hydrologique est crucial car il permet de caractériser le système climatique de la région. La température est l'un des facteurs essentiels qui doivent être pris en compte et déterminés lors de cette analyse.

La saison très chaude dure 2,8 mois, du 14 juin au 9 septembre, avec une température quotidienne moyenne maximale supérieure à 28 °C. Le mois le plus chaud de l'année à Sétif est juillet, avec une température moyenne maximale de 32 °C et minimale de 19 °C.

La saison fraîche dure 4,1 mois, du 17 novembre au 21 mars, avec une température quotidienne moyenne maximale inférieure à 14 °C. Le mois le plus froid de l'année à Sétif est janvier, avec une température moyenne minimale de 1 °C et maximale de 9 °C.

Nov Dec Jan Fév Sep Oct Mar T C° 20.9 16.2 5.5 6.2 9.2 10 6.4 Avr May Juin Jui Aout M T C° 22.3 16.9 26.3 25.9 14.8

TABLE 1.1 – Température Moyenne 1991/2021

(Office National de la météorologie de l'Algérie.)

1.7.2 Pluviométrie

La saison la plus pluvieuse à Sétif dure 9 mois, du 1er septembre au 1er juin, avec une probabilité quotidienne de précipitation supérieure à 16%. Le mois de février est celui avec le plus grand nombre de jours de précipitation, avec en moyenne 7,3 jours de précipitation d'au moins 1 millimètre. La saison la plus sèche dure 3 mois, du 1er juin au 1er septembre, et le mois de juillet est le plus sec, avec en moyenne 1,4 jour de précipitation d'au moins 1 millimètre.

Les jours de précipitation peuvent se diviser en jours de pluie seule, de neige seule ou de mélange des deux. Avril est le mois avec le plus grand nombre de jours de pluie seule, avec une moyenne de 6,9 jours. En général, la forme de précipitation la plus courante à Sétif est la pluie seule, atteignant une probabilité maximale de 24% le 19 avril.

Pannuels: 393 mm

Table 1.2 - Les pluies moyennes mensuelles

	Sep	Oct	Nov	Dec	Jan	Fév	Mar
%	8.57	8.05	8.91	9.6	10.8	9.77	10.8
P(mm)	40	30	35	40	40	30	40
	A	7. /	т .	т .	A 1	5 D ()	
	Avr	May	Juin	Jui	Aout	$\sum P(mm)$	
%	Avr 11.7	Мау 11	4.28	2.06	4.46	$\frac{\sum P(mm)}{100.0}$	

TABLE 1.3 – Caractéristiques de la station pluviométrique retenue pour l'étude

	Source	Coordonnées			Années	N
150601	ANRH	X(Km)	Y(Km)	Z(m)	1070 2022	45
190001	A.N.R.H	36.2399	5.3955	1030	1979-2022	40

(Direction des ressources en eau W.Setif La station pluviométrique se situe à proximité de la zone étudiée, à une distance de 3 km.

1.7.3 Humidité

L'humidité relative est élevée à moyenne et varie d'un mois à un autre durant toute l'année. L'humidité moyenne est de 62% celle du maximum est 77% (mois de décembre)

Alors que l'humidité minimale est de 43% relevée durant le mois de juillet. Ces valeurs de l'humilité témoignent du caractère semi-aride de la région.

TABLE 1.4 – Humidité relative station SETIF 1991/2021

	Sep	Oct	Nov	Dec	Jan	Fév	Mar
H%	60	65	73	77	76	73	66
	Avr	May	Juin	Jui	Aout	M	
H%	63	60	51	43	46	61.75	

1.7.4 Vent

Cette section traite du vecteur vent moyen horaire étendu (vitesse et direction) à 10 mètres au-dessus du sol. Le vent observé à un emplacement donné dépend fortement de la topographie locale et d'autres facteurs, et la vitesse et la direction du vent instantané varient plus que les moyennes horaires.

La vitesse horaire moyenne du vent à Sétif connaît une variation saisonnière modérée au cours de l'année.

La période la plus venteuse de l'année dure 6,0 mois, du 30 octobre au 30 avril, avec des vitesses de vent moyennes supérieures à 11,9 kilomètres par heure. Le mois le plus venteux de l'année à Sétif est décembre, avec une vitesse horaire moyenne du vent de 13,2 kilomètres par heure.

La période la plus calme de l'année dure 6,0 mois, du 30 avril au 30 octobre. Le mois le plus calme de l'année à Sétif est août, avec une vitesse horaire moyenne du vent de 10,3 kilomètres par heure.

1.8 Hydrographie

Notre zone d'étude est traversée par trois (03) cours d'eau (oued CHEBBA) dont les crues peuvent être particulièrement violentes, est depuis toujours sujette aux inondations. Ces 03 cours d'eau se jettent dans la vallée de Bousselam.

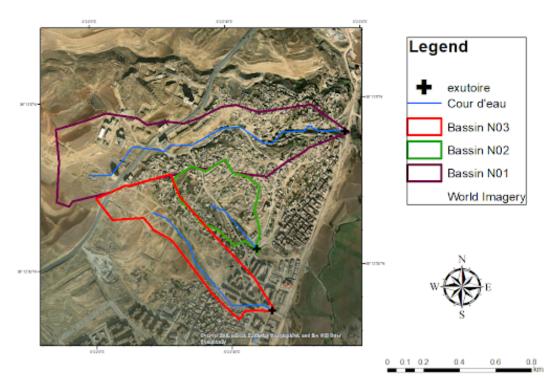


FIGURE 1.7 – Réseau hydrographique de la zone d'étude

1.9 Population

La commune de Sétif est entourée de quatre agglomérations principales : Ain Trick au sud, El Hassi à l'est, Fermatou au nord, et Chouf Lekdad au nord-ouest. Parmi ces localités, Chouf Lekdad a connu la croissance démographique la plus rapide (CENEAP, 2007). Au cours des deux dernières décennies, la ville de Sétif s'est étendue au-delà de ses limites occidentales, dans une vallée verdoyante traversée par le principal fleuve de la ville, Boussellam.

Deux établissements humains, Ouled Hachiche et Chouf Lekdad, ont occupé les hautes collines de ce versant jusqu'à la fin des années 90. La population de Chouf Lekdad, principalement issue de l'exode rural du sud de Sétif, a été multipliée par six, avec plus de cinq cents nouveaux arrivants chaque année depuis 1987. La période la plus intense d'exode rural a eu lieu dans les années 90, en raison de l'ère du terrorisme. Les premiers occupants illégaux des années 80 étaient des travailleurs saisonniers des terres agricoles environnantes.

Cette croissance urbaine rapide nécessite une stratégie globale pour intégrer ce quartier marginal dans la ville et stopper l'expansion de nouveaux bidonvilles autour d'Ouled Hachiche, qui menace l'écosystème fragile de la vallée et dégrade l'environnement de Chouf Lekdad et de ses environs. À la fin des années 90, Chouf Lekdad n'était qu'une colonie marginale en périphérie ouest de Sétif, mais tout a changé au début des années 2000.

TABLE 1.5 – Recensement de la population pour différentes périodes dans la Commune de Sétif, (DPAT, Wilaya de Sétif, 2010)

	Population 1987	Population 1998	Population 2000	Population 2008
Setif	170182	214932	226680	261670
Chouf Lekdad	1399	5623	7200	8701
Ain Trick	3692	6303	6931	12455
El Hassi	610	1339	1540	988
Fermatou	3172	4883	5272	6769

ÉTUDE HYDROLOGIQUE

2.1 Introduction

'hydrologie est la science qui étudie l'eau sur Terre, y compris sa distribution, sa circulation et ses propriétés. Elle s'intéresse aux différents états de l'eau (liquide, solide et gazeux) et à ses interactions avec l'environnement naturel et humain. Les principaux domaines d'étude de l'hydrologie incluent : Le cycle de l'eau, Les précipitations, L'évaporation et la transpiration, Les cours d'eau et les rivières, Les nappes souterraines, L'infiltration et le ruissellement[4]. L'étude hydrologique constitue la partie la plus sensible des études de crues et détermine la taille exacte des ouvrages. Dans ce cadre, nous réaliserons une étude hydrologique et définirons un bassin versant spécifique pour les hydrogrammes de crue à différentes périodes de retour. Nous déterminerons les débits potentiels maximaux correspondants qui seront utilisés comme conditions aux limites dans l'étude hydraulique.

2.2 Caractéristiques Hydro-Morphométriques

La délimitation de nos bassins versants est illustrée dans la figure suivante :

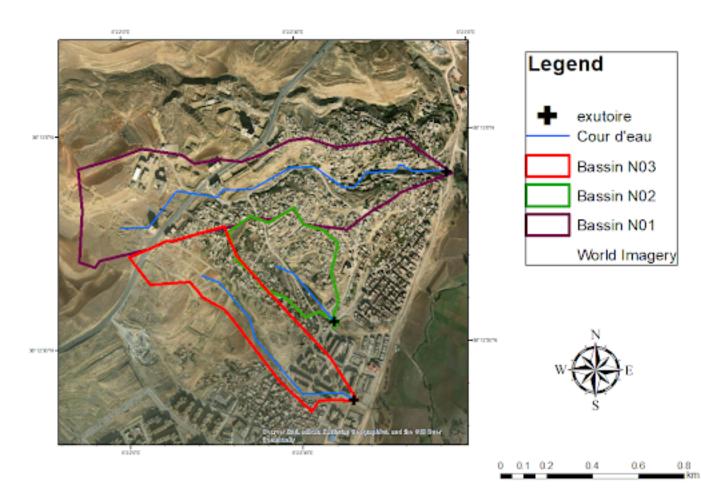


FIGURE 2.1 – Délimitation de bassins versants (ArcGIS)

2.2.1 Caractéristiques Géométrique

La topographie influence le régime d'écoulement et est représentée par des courbes de niveau et caractérisée par une courbe hypsométrique. Ces paramètres servent à déterminer la classe de relief.

2.2.1.1 La Superficie (S)

La superficie d'un bassin versant est la caractéristique primordiale et la plus importante. Elle se détermine en mesurant une surface sur une carte topographique après avoir tracé les limites topographiques et éventuellement hydrogéologiques. La superficie d'un bassin versant est généralement exprimée en kilomètres carrés (km^2) [3].

2.2.1.2 Le Périmètre (P)

Le périmètre correspond à la longueur de la ligne de partage des eaux délimitant le bassin versant. Il peut être mesuré à l'aide d'un curvimètre et s'exprime en kilomètres (km)[3].

2.2.1.3 Longueur de Thalweg (L)

C'est la longueur du cours d'eau principal d'un bassin versant, depuis sa source jusqu'à son exutoire[3].

Le tableau ci-dessous présente les résultats des caractéristiques géométriques des trois bassins versants :

Valeurs	Superficie (Km^2)	Périmètre (Km)	Longueur de talweg (Km)
Bassin N°1	0.51	3.92	1.62
Bassin N°2	0.14	1.6	0.36
Bassin N°3	0.23	2.73	0,93

Table 2.1 – les résultats des caractéristiques géométriques

2.2.2 Caractéristiques de Forme

2.2.2.1 Indice de Compacité de Gravelius (Kc)

Également connu sous le nom d'indice de forme, cet indice caractérise la forme du bassin versant et joue un rôle crucial dans la configuration de l'hydrogramme de la tempête [18]. Il est déterminé à l'aide de la formule suivante :

(2.1)
$$K_c = \frac{P}{2\pi\sqrt{\frac{s}{\pi}}} \approx 0,28 \times \frac{p}{\sqrt{S}}$$

Définitions:

- 1. KC: Indice de compacité de Gravelius
- 2. **P** : Périmètre du bassin versant (en km)
- 3. S: Superficie du bassin versant (en km²)

Si $\mathbf{Kc} = \mathbf{1} =>$ basin parfaitement circularise Si $\mathbf{Kc} < \mathbf{1} =>$ bassin ramassé Si $\mathbf{Kc} > \mathbf{1.128} =>$ bassin allongé

2.2.2.2 Coefficient d'allongement (Ca)

Défini par la relation suivante :

$$(2.2) \underline{ca} = \frac{L^2}{s}$$

Définitions:

1. L: la longueur du talweg principal (Km)

2. S: la superficie du bassin versant (Km2)

2.2.2.3 Rectangle équivalant

Il s'agit d'une transformation purement géométrique du bassin versant en un rectangle aux dimensions L et l. Cette transformation permet de comparer les bassins versants entre eux en termes de débits. La longueur (L) et la largeur (l) sont définies par les expressions suivantes [18] :

1.

(2.3)
$$L = Kc \times \frac{\sqrt{s}}{1.128} \times \left(1 + \sqrt{1 - (\frac{1.128}{Kc})^2}\right)^2$$

2.

(2.4)
$$I = Kc \times \frac{\sqrt{s}}{1.128} \times \left(1 - \sqrt{1 - (\frac{1.128}{Kc})^2}\right)^2$$

Définitions:

1. L: Longueur du rectangle (en km)

2. I: Largeur du rectangle (en km)

3. KC: Indice de compacité de Gravelius

4. S:Superficie du bassin versant (en km²)

Le tableau ci-dessous présente les résultats des caractéristiques de forme pour les trois bassins versants :

TABLE 2.2 – les caractéristiques de forme des bassins versants

Valeurs	Kc	Ca	L (Km)	I (Km)	Observations
Bassin N°1	1.54	3.67	1.64	0.31	allongé
Bassin N°2	1.2	0.35	0.53	0.26	allongé
Bassin N°3	1.6	1.8	1.16	0.2	allongé

2.2.3 Caractéristiques de relief

La topographie influence le régime d'écoulement et est représentée par des courbes de niveau et caractérisée par une courbe hypsométrique. Ces paramètres servent à déterminer la classe de relief.

2.2.3.1 Courbe Hypsométrique

La courbe hypsométrique représente la fraction ou le pourcentage de la superficie totale du bassin versant située entre différentes courbes de niveau. En abscisse, elle affiche l'altitude (en mètres), et en ordonnée, le pourcentage de la surface du bassin pour laquelle chaque point se trouve à une altitude au moins égale à cette valeur.

Cette courbe est établie en mesurant les surfaces correspondant aux valeurs des ordonnées pour chacune des courbes de niveau [18].

Bassin versant N°1:

Le tableau et les figures suivantes représentent les résultats des surfaces partielles de BV N°1 :

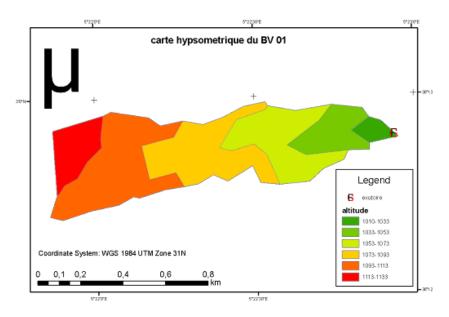


FIGURE 2.2 - La carte hypsométrique de BV N°01

Cette carte représente la répartition de la surface du bassin versant en fonction de son altitude.

altitudes (m)	superficies partielles		superficies	cumulées	altituda masusana
aititudes (III)	(Km^2)	%	(Km^2)	%	altitude moyenne
1113-1133	0.05115	10	0.0511498	10	1123
1113-1093	0.153013	30	0.2041628	40	1103
1097-1073	0.125635	25	0.3297974	65	1083
1053-1073	0.105488	21	0.4352852	86	1063
1053-1033	0.054921	11	0.4902057	97	1043
1033-1010	0.014951	3	0.5051569	100	1021.5
Total	0.505157	100			

TABLE 2.3 – Répartition en pourcentage de la surface élémentaire du BV01

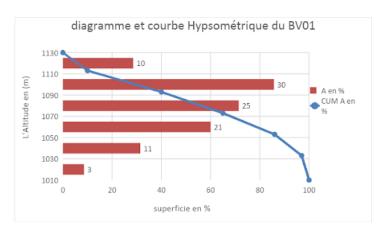


FIGURE 2.3 – Diagramme et courbe Hypsométrique du BV01

Cette courbe représente la répartition de la surface du bassin versant en fonction de son altitude.

Bassin versant N°2:

Le tableau et les figures suivantes représentent les résultats des surfaces partielles de BV N°2 :

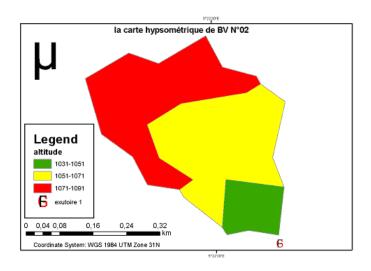


FIGURE 2.4 – La carte hypsométrique de BV N°02

Table 2.4 – Répartition en pourcentage de la surface élémentaire du BV02

altitudes (m)	superficies partielles		superficies	cumulées	altitude moyenne
artitudes (III)	(Km2)	%	(Km2)	%	amude moyemie
1091-1071	0.0616725	44	0.061672	44	1081
1071-1051	0.0633992	45	0.125072	89	1061
1051-1031	0.0162361	11	0.141308	100	1041
Total	0.1413078	100			

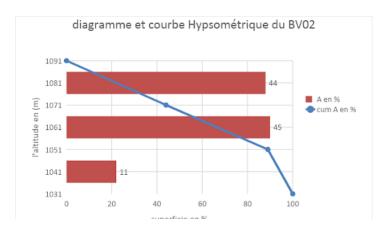


FIGURE 2.5 – Diagramme et courbe Hypsométrique du BV02

Bassin versant N°3:

Le tableau et les figures suivantes représentent les résultats des surfaces partielles de BV N°3 :

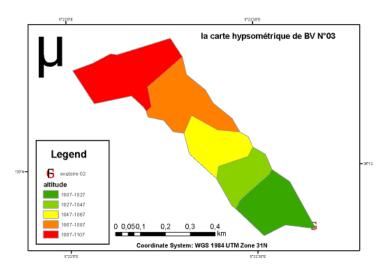


FIGURE 2.6 – La carte hypsométrique de BV N°3

TABLE 2.5 – Répartition en pourcentage de la surface élémentaire du BV03

altitudes (m)	superficies	s partielles superficies cumulées		altitude moyenne	
attitudes (III)	(Km2)	%	(Km2)	%	annude moyenne
1107-1087	0.0647	28	0.0647	28	1097
1087-1067	0.0552	24	0.1198	52	1077
1067-1047	0.037	16	0.1569	68	1057
1047-1027	0.0288	12	0.1857	80	1037
1027-1007	0.0457	20	0.2314	100	1017
Total	0.231386	100			

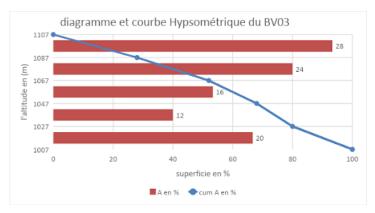


FIGURE 2.7 – Diagramme et courbe Hypsométrique du BV03

2.2.3.2 Les altitudes caractéristiques

- 1. Les altitudes maximales et minimales (Hmax et Hmin) : Elles sont obtenues à partir des cartes du Modèle Numérique de Terrain (MNT). L'élévation maximale correspond au point le plus élevé du bassin tandis que l'élévation minimale correspond au point le plus bas généralement situé à l'exutoire.
- 2. L'altitude moyenne (Hmoy) : L'altitude moyenne est directement déduite à partir de la courbe hypsométrique ou de la lecture d'une carte topographique. Elle peut être définie comme suit :

Où:

— **Hmoy**: altitude moyenne du bassin versant (m)

— **Ai**: surface située entre deux courbes de niveau (km²)

— **hi**: altitude moyenne entre deux courbes de niveau (m)

— A superficie totale du bassin versant (km²)

L'altitude moyenne n'est pas toujours représentative juste de la réalité. Néanmoins elle est parfois utilisée pour évaluer certains paramètres hydrométéorologiques ou pour mettre en œuvre des modèles hydrologiques.

- 3. **L'altitude médiane (H50%) :** L'altitude médiane est l'altitude correspondant au point d'abscisse représentant 50% de la surface totale du bassin telle que déterminée sur la courbe hypsométrique. Cette valeur est proche de l'altitude moyenne lorsque la courbe hypsométrique du bassin versant présente une pente régulière.
- 4. La dénivelée simple (D) : La dénivelée D est définie comme la différence d'altitude entre H5% et H95% ces valeurs étant lues sur la courbe hypsométrique [12] :

$$(2.6) D = H5\% - H95\%$$

Le tableau ci-dessous présente les résultats des caractéristiques de forme des trois bassins versants :

 ${\it TABLE}\,\, 2.6 - Les\, r\'esultats\, des\, caract\'eristiques\, de\, forme\, des\, trois\, bassins\, versants$

Valeurs	Hmax (m)	Hmin (m)	Hmoy (m)	H50% (m)	H95% (m)	H5% (m)	D (m)
Bassin N°1	1133	1010	1082.76	1086	1035	1125	90
Bassin N°2	1091	1031	1067.43	1069	1087	1043	44
Bassin N°3	1107	1007	1064.76	1068	1103	1011	92

2.2.3.3 Les indices des pentes

Ces indices ont pour objectif de caractériser les pentes d'un bassin versant, facilitant ainsi les comparaisons et les classifications :

L'indice de pente de roche (Ip) Il s'agit de la moyenne des racines carrées des pentes mesurées sur le rectangle équivalent, pondérée par les surfaces situées entre deux courbes de niveau Hi et Hi-1. Elle est calculée à l'aide de la formule suivante [18] :

(2.7)
$$Ip = \frac{1}{\sqrt{L}} \sum \sqrt{S_i \times (H - H_{i-1})}$$

Où:

- L: longueur de bassin versant
- **Di**: la surface partielle (%) entre 2 courbes de niveau consécutives (Hi) et (Hi-1)

L'indice de pente globale (Ig)

Il est défini comme le rapport entre la différence de dénivelée du bassin (l'altitude entre 5% et 95% de la surface du bassin) et la longueur du rectangle équivalent. La formule suivante permet de le calculer [18] :

$$(2.8) Ig = \frac{H5\% - H95\%}{Lrec}$$

Avec:

- H5% et H95%: les altitudes comprises entre S5% et S95% en (m)
- L: longueur de rectangle équivalant en (m).

Cet indice, simple à calculer et largement utilisé, sert de base pour l'une des classifications O.R.S.T.O.M. Il est particulièrement applicable aux bassins versants d'une surface d'environ $25 \text{ } km^2$ [12].

TABLE 2.7 – Répartition de relief en fonction de l'indice de pente global [12]

R1	Relief tres faible		lg <	0.002
R2	Relief faible	0.002	< lg <	0.005
R3	Relief assez faible	0.005	< lg <	0.01
R4	Relief moderé	0.01	< lg <	0.02
R5	Relief assez fort	0.02	< lg <	0.05
R6	Relief fort	0.05	< lg <	0.1
R7	Relief tres fort	0.1	< lg	

Le tableau suivant résume les résultats des pentes :

TABLE 2.8 – les indices des pentes pour les trois bassins versants :

Valeurs	lp(%)	lg	Remarques
BV N°01	2.58	0.054	Relief fort
BV N°02	3.2	0.081	Relief fort
BV N°03	2.9	0.079	Relief fort

2.2.3.4 Le réseau d'écoulement

La densité de drainage (Dd)

La densité de drainage, pour un bassin donné de superficie « S », est définie comme la longueur moyenne du réseau par kilomètre carré. Elle reflète la dynamique du bassin, la stabilité du réseau hydrographique et le type de ruissellement de surface [21] :

$$(2.9) Dd = \frac{\Sigma Li}{s}$$

La pente moyenne de bassin versant (Ic)

Elle fournit une bonne indication sur le temps de concentration et influence directement le débit de pointe en cas d'averse. Elle est calculée selon la formule suivante :

(2.10)
$$Ic = \frac{\Delta H \times (0.5l_1 + l_2 + \dots + 0.5l_n)}{s}$$

Avec:

- Δ **H** : Dénivelée H 5%-H95%
- L: longueur de la courbe de niveau d'ordre 1, 2,...n (Km)
- **S**: Surface du bassin versant (Km^2) .

Voici un résumé des résultats de la pente moyenne et de la densité de drainage, présenté dans le tableau ci-dessous :

TABLE 2.9 – les indices des pentes pour les trois bassins versants :

Valeurs	lC(%)	Dd (Km-1)
BV N°01	5.4	3.2
BV N°02	8.1	2.54
BV N°03	7.9	4.01

Le temps de concentration

Le temps de concentration est le temps maximal nécessaire pour qu'une goutte d'eau parcoure

tout le bassin versant jusqu'à son exutoire. Dans les modèles hydrologiques, il est souvent considéré comme le temps entre la fin de la pluie nette et la fin du ruissellement direct. Bien que des formules empiriques existent pour l'estimer, leur application doit être prudente, car elles sont souvent calibrées pour des bassins versants spécifiques et peuvent ne pas être universellement valides [6].

Le temps de concentration est estimé à l'aide des formules empiriques suivantes :

1. Formule de passini [6]:

(2.11)
$$Tc = 0.108 \times \frac{\sqrt[3]{S^*L}}{\sqrt{I}}$$

Avec:

- **Tc**: le temps de concentration en heurs
- **S**: surface de bassin versant en Km^2
- L: la longueur de cours d'eau principale en Km
- I: la pente moyenne de cours d'eau m/m

2. Formule californienne [6]:

(2.12)
$$Tc = 0.0663 \times (\frac{L}{\sqrt{I}})^{0.77}$$

Avec:

- **Tc**: le temps de concentration en heurs
- L: la longueur de cours d'eau principale en Km
- I: la pente moyenne de cours d'eau m/m

3. Formule de kirpich[6]:

(2.13)
$$Tc = 0.0195 \times \frac{L^{0.77}}{I^{0.385}}$$

Avec:

- Tc: le temps de concentration en minute
- L: la longueur de cours d'eau principale en m
- I: la pente moyenne de cours d'eau principale en m/m

4. Formule de Ventura [14]:

$$(2.14) Tc = 76.3 \times \sqrt{\frac{S}{I}}$$

Avec:

- Tc: le temps de concentration en minute
- I : la longueur de cours d'eau principale en %
- **S**: surface de bassin en Km^2

5. Formule de Giandotti [21]:

(2.15)
$$Tc = \frac{4 \times S^{0.5} + 1.5 \times L}{0.8 \times \sqrt{Hmax - Hmin}}$$

Avec:

— Tc: le temps de concentration en heurs

— **S**: surface de bassin en Km^2

— I: la longueur de cours d'eau principale

Hmax: altitude maximale en mHmin: altitude minimale en m

Le tableau suivant présente les résultats des temps de concentration pour diverses méthodes :

TABLE 2.10 – Le temps de concentration par différentes méthodes empiriques

	le temps de concentration (min)						
Bassins	BV N°01	BV N°02	BV N°03				
Passini	22	5,88	12				
californienne	15,6	3,6	9				
Kirpich	15,6	3,61	8,88				
Ventura	19,7	7,024	11,19				
giandotti	35,4	19,8	24,6				

Étant donné la superficie des bassins versants, il est important de choisir la formule appropriée pour calculer le temps de concentration. La formule de Kirpich et la formule californienne sont généralement adaptées aux petits bassins versants d'une superficie inférieure à $0,453\ km^2$, tandis que la formule de Giandotti convient mieux aux grands bassins. Cependant, pour des résultats précis, la formule de Passini est recommandée pour les bassins versants de superficie inférieure à $20\ km^2$.

Après avoir analysé les conditions d'application des différentes formules, j'ai opté pour la formule californienne pour les deux derniers bassins, en raison de leur taille plus petite, et pour la formule de Passini pour le premier bassin, qui correspond mieux aux caractéristiques de ce bassin.

2.3 Analyse des données pluviométriques

2.3.1 Les données disponibles

Dans cette section, nous avons utilisé des stations de mesure situées à proximité de notre zone d'étude, en prenant comme référence la station pluviométrique de « FARMATOU ». Ses caractéristiques sont détaillées ci-dessous :

TABLE 2.11 – Caractéristiques de la station pluviométrique retenue pour l'étude

	Source	Coc	ordonnées	Années	N	
150601	A.N.R.H	X(Km)	Y(Km)	Z(m)	1979-2022	45
		36.2399 5.3955		1030	1919-2022	40

(Direction des ressources en eau W. Sétif)

2.3.2 Pluies maximales journalière

L'objectif de cette étude est d'ajuster la série des précipitations maximales journalières afin de déterminer l'intensité des pluies pour une durée et une période de retour spécifiques. Le tableau ci-dessous présente la répartition des pluies maximales journalières de 1978 à 2022 :

Pj max (mm) Pj max (mm) Pj max (mm) P jmax (mm) Année Année Année 1978 1989 2000 59.48 24.6 41.525.32011 1979 101 31.1 71.6 2012 26 1990 2001 1980 34.4 1991 45.7 2002 38.7 2013 31.5 1981 39.4 1992 2003 61.1 201421.29 28.11982 24.5 1993 22.7 2004 28.9 2015 38.11 1983 28 1994 43.5 2005 33.4 2016 33.16 1984 211995 18 2006 18.4 2017 36.05 1985 28 31.2 2007 38 2018 1996 28.8 1986 29.6 1997 2008 22.52019 50.3 28.21 1987 1998 30.2 2009 2020 28.4 31.1 27.3 1988 1999 26.3 2010 31.52 2021 29.9 63.87 2022 44.93

Table 2.12 – pluies maximales journalières

(Direction des ressources en eau W. Sétif)

Les caractéristiques de la série pluviométrique ont été déterminées à l'aide du logiciel HYFRAN et sont présentées dans le tableau ci-dessous :

TABLE 2.13 - pluies maximales journalières

Statistique	Nombre [n]	Minimum	Maximum	Moyenne	Écart type	MÃCdiane	Coefficient [Cv]
Valeur 46.0		18.2	101.0	35.9	15.7	31.1	0.437

2.3.2.1 Ajustement statistique

Les lois d'ajustement sont variées et ne peuvent être appliquées à un échantillon que si les conditions d'homogénéité et de stationnarité sont respectées. Le choix d'une loi s'appuie d'abord sur un ajustement graphique, suivi d'un test de dispersion. L'apparence des points sur le papier à probabilité permet de déterminer si la loi est acceptée ou rejetée (toute sinuosité, courbure incorrecte ou rupture de pente est interprétée comme un mauvais ajustement)[21].

Dans notre étude, l'ajustement de la série des pluies maximales journalières sera réalisé à l'aide du logiciel HYFRAN en utilisant les trois lois suivantes :

- Loi de Gumbel (double exponentielle)
- Loi de Galton (log-normale)
- Loi de GEV (loi des valeurs extrêmes généralisée)

Ajustement à la loi de Gumbel La distribution statistique de Gumbel, également connue sous le nom de loi doublement exponentielle, a été développée pour étudier la distribution des fréquences des valeurs extrêmes, telles que les maximums ou minimums annuels.

La fonction de répartition de la loi de Gumbel est [21] :

(2.16)
$$F(x) = e^{-e^{\frac{(x-x^0)}{\alpha}}}$$

En faisant un changement de variable, soit :

$$(2.17) Y = \frac{(x - x0)}{\alpha}$$

Avec:

- Y: dite variable de réduite de Gumbel
- x: Coefficients d'ajustement
- **x0**: Paramètre de position (mode)
- a : Paramètre d'échelle différent de zéro et positif appelé aussi « gradex ».

Ainsi, l'équation de la droite de Gumbel, représentée sur le papier de Gumbel, est donnée par la formule suivante :

$$(2.18) X = Y\alpha + X0$$

Avant de procéder à l'ajustement, les étapes suivantes doivent être respectées :

- Classer les valeurs par ordre croissant en leur attribuant un numéro d'ordre
- Calculer la fréquence expérimentale en utilisant la formule de Hazen, qui s'applique aux lois normale

$$(2.19) F(x) = \frac{M - 0.5}{N}$$

- M: Numéro d'ordre
- N: Taille de la série
- Calculer les caractéristiques empiriques de la série, telles que la moyenne, l'écart type, etc
- Calculer la variable de Gumbel pour chaque valeur observée :

$$(2.20) Yi = -(ln(-lnF(xi))$$

- Reporter les valeurs observées sur le papier Gumbel
- Représenter graphiquement les valeurs de (X) et (Y) sur le papier Gumbel
- Calculer les paramètres d'ajustement de la loi de Gumbel, α et X_0 . Avec :
 - $-X_0$: est l'ordonnée à l'origine
 - $-\frac{1}{\alpha}$: Pente de la droite

Les résultats de l'ajustement réalisé à l'aide du logiciel Hyfran, selon la loi de Gumbel, sont illustrés dans la figure suivante :

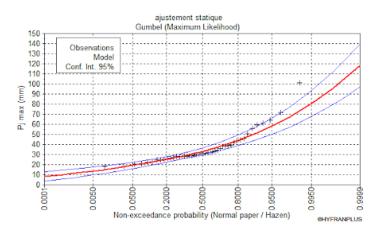


FIGURE 2.8 - La droite d'ajustement de la loi de Gumbel

D'après le tracé de graphe de Gumbel, les paramètres d'ajustement par loi de Gumbel sont donnés par le tableau suivant :

TABLE 2.14 – les paramètres d'ajustement par loi de Gumbel

Coordonnées					
Nombre d'observations	Paramètres				
Nombre a observations	U	α			
46	29.674	9.61			

Calcul des Quantiles

Le tableau suivant montre le calcul des quantiles par la loi de Gumbel :

TABLE 2.15 - Calcule les quantiles par loi de Gumbel

T	Q (ans-1)	XT (mm)	écart type	intervalle de confiance (mm)
100	0.9900	73.9	5.8	62.5 - 85.3
50	0.9800	67.2	5.04	57.3 - 77.1
20	0.9500	58.2	4.05	50.3 - 66.2
10	0.9000	51.3	3.3	44.8 - 57.8
5	0.8000	44.1	2.56	39.1 - 49.1
2	0.5000	33.2	1.66	29.9 - 36.4

Ajustement à la loi de Log normal (Galton)

La loi de Galton, également connue sous le nom de loi log-normale ou loi Gausso-logarithmique, découle de la loi normale mais devient asymétrique en raison d'un changement de variable. Sa fonction de répartition est représentée par l'expression suivante [21].

(2.21)
$$F(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{u} e^{-\frac{1}{2}u^2} du$$

Par un changement de variable :

$$(2.22) u = \frac{lnx - \overline{l}n\overline{x}}{\delta lnx}$$

Ainsi, l'équation de la droite de Galton, représentée sur un papier Gausso-logarithmique, est donnée par la formule suivante :

$$(2.23) lnx = lnx^{--} + \delta lnx$$

Les résultats de l'ajustement selon la loi de Galton, réalisés à l'aide du logiciel Hyfran, sont illustrés dans la figure suivante :

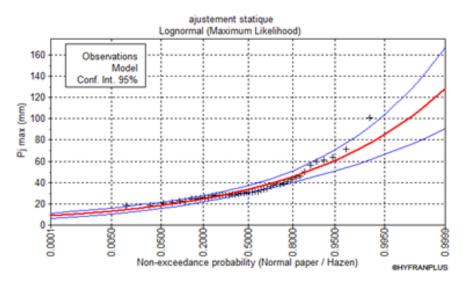


FIGURE 2.9 – La droite d'ajustement de la loi log normal (Galton)

Selon le tracé du graphique de Galton, les paramètres d'ajustement par la loi de Galton sont récapitulés dans le tableau suivant :

TABLE 2.16 – Les paramètres d'ajustement par la loi de Galton

Log normale (Maximum de vraisemblance)					
Nombre d'observations 46					
Paramètres)					
$\overline{l}n\overline{x}$	3.51046				
δlnx	0.36177				

Calcul des quantiles

TABLE 2.17 – Calculer les quantiles par loi de Galton

T	Q (ans-1)	XT (mm)	écart type	intervalle de confiance (mm)
100	0.99	77.7	8.04	61.9 - 93.4
50	0.98	70.4	6.67	57.3 - 83.4
20	0.95	60.7	5	50.9 - 70.5
10	0.9	53.2	3.85	45.7 - 60.8
5	0.8	45.4	2.82	39.8 - 50.9
2	0.5	33.5	1.78	30.0 - 37.0

Ajustement par la loi de GEV

En hydrologie, la loi des extrêmes généralisée (GEV) est l'une des distributions les plus couramment utilisées pour l'analyse des extrêmes. Il s'agit d'une distribution à trois paramètres qui regroupe les trois types de distributions en une seule forme [9].

La fonction de répartition est exprimée par la relation suivante [21] :

(2.24)
$$F(x) = exp(-(1 - K(\frac{x - u}{\alpha}))^{\frac{1}{k}})$$

Avec:

α : Paramètre de disposition

— *u* : paramètre de position

-K: paramètre de forme

La variable de réduite est :

(2.25)
$$y^{2} = -\frac{1}{k}ln(1 - k\frac{x - u}{\alpha})$$

On aura donc:

(2.26)
$$x = u + \frac{\alpha}{k} (1 - (-\ln F(x))^k)$$

Les Résultats de l'ajustement sous logiciel Hyfran par la méthode de GEV sont donnés par la figure suivante :

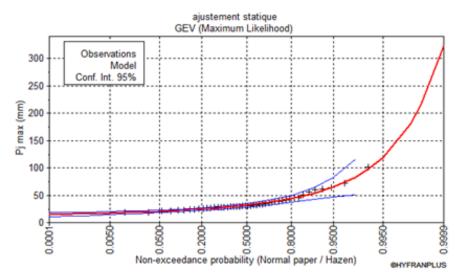


FIGURE 2.10 – La droite d'ajustement de la loi de GEV

D'après le tracé de graphe de Galton, les paramètres d'ajustement par loi de GEV est donnée par le tableau :

TABLE 2.18 – les paramètres d'ajustement par loi de GEV

GEV (Maximum de vraisemblance))						
Nombre d'observations 46						
Paramètres)						
α	8.26013					
K	-0.2482					
U	2.85744					

Calcul des quantiles

TABLE 2.19 – Calculer les quantiles par loi de GEV

T	Q (ans-1)	XT (mm)	écart type	intervalle de confiance (mm)
100	0.99	99.5	25.4	N/D
50	0.98	82.9	16.7	50.2 - 116
20	0.95	64.9	9.04	47.1 - 82.6
10	0.9	53.5	5.43	42.8 - 64.1
5	0.8	43.6	3.21	37.3 - 49.9
2	0.5	31.7	1.66	28.5 - 35.0

2.3.2.2 Test visuel

Lors de l'ajustement d'une loi de probabilité théorique, le défi est de déterminer si cette loi s'adapte correctement aux données. Le test visuel, directement lié à l'ajustement graphique, consiste à observer la disposition des points sur le papier de probabilité et à vérifier si ceux-ci forment un alignement correct, sans présence de courbure indésirable [20].

Interprétation des graphiques D'après l'examen visuel des graphiques d'ajustement présentés dans les figures, on observe que :

- La loi de GEV montre un ajustement moins satisfaisant par rapport aux deux autres lois, car l'intervalle de confiance inclut des valeurs négatives et d'autres indéfinies.
- L'ajustement graphique selon les lois de Gumbel et de Galton est supérieur, avec des points très proches de la droite théorique et une bonne convergence.

Test d'adéquation du X^2 (**Pearson**) Lors de la sélection de la loi à utiliser, nous comparons les variables X^2 calculée et X^2 théorique à un niveau de signification de 95%, c'est-à-dire avec un risque de 5%[21].

D'après le logiciel « Hyfran », les résultats du test sont donnés par le tableau suivant :

Table 2.20 – résultat du test du kh2

	loi d'ajustement	nombre de paramètre	degré de liberté	X^2 calculé	X^2 théorique	Observations
ſ	Gumbel	Q	6	10.74	12.59	X^2 calculé < X^2 théorique
	Guilibei	J	0	10.74	12.00	condition vérifié
	Galton	0	c	9.57	12.59	X^2 calculé < X^2 théorique
Gaillo	Galton	9	0	9.57	12.59	Condition vérifié

D'après le tableau ci-dessus, la condition du test Khi² est vérifiée pour les lois de Gumbel et Log-Normale. Ainsi, l'un de ces deux modèles peut être choisi comme la meilleure loi. Pour notre étude, nous opterons pour la loi Log-Normale, car elle s'ajuste bien aux valeurs de Pjmax dans la région du nord de l'Algérie.

On prendra donc les quantiles calculés par la loi de Log normal :

TABLE 2.21 – calcule des quantiles par loi de Galton

T	Q (ans-1)	XT (mm)	écart type	intervalle de confiance (mm)
100	0.99	77.7	8.04	61.9 - 93.4
50	0.98	70.4	6.67	57.3 - 83.4
20	0.95	60.7	5	50.9 - 70.5
10	0.9	53.2	3.85	45.7 - 60.8
5	0.8	45.4	2.82	39.8 - 50.9
2	0.5	33.5	1.78	30.0 - 37.0

2.3.2.3 Les pluies des courtes durées

Les pluies de courte durée fournissent la hauteur d'eau précipitée sur une durée spécifique pour chaque période de retour. Le passage des pluies maximales journalières aux pluies de courte durée est réalisé à l'aide de la formule de K. Body (ANRH, 1984) [21].

$$(2.27) Pc.d = P_{maxj}.p$$

Avec:

- t: durée de l'averse ($t \le 24h$)
- b: exposant climatique (b = 0.39 selon les études régionales de l'ANRH)
- $P_{maxj}.p\%$: Pluie maximale journalière de fréquence (p%)
- Pc.d : Pluie de courte durée

Les intensités maximales pour une durée t (en heures) et une période de retour T (en années) sont calculées à l'aide de la formule suivante :

$$(2.28) Ic.d = \frac{Pc.d}{t}$$

Avec:

— I: intensité de période t(h)

Les résultats du calcul des pluies et des intensités maximales pour une durée t (en heures) et une période de retour T (en années) sont présentés dans le tableau ci-dessous :

Table 2.22 – Pluies et intensités maximales de durée t(h) et période de retour T(ans)

Quantiles (mm)	45	5.4	53	.2	60	.7	70	0.4	77	'.7
T(ans)	5	5	10		2	0	50		100	
Temps (h)	Pct (mm)	I(mm/h)	Pct (mm)	I mm/h)	Pct (mm)	I(mm/h)	Pct (mm)	I(mm/h)	Pct (mm)	I(mm/h)
1	17.5	17.5	20.5	20.5	23.4	23.4	27.13	27.13	29.95	29.95
2	21.54	10.77	25.24	12.62	28.8	14.4	33.41	16.7	36.87	18.43
3	24.33	8.11	28.51	9.5	32.53	10.84	37.73	12.58	41.64	13.88
4	26.52	6.63	31.08	7.77	35.46	8.87	41.13	10.28	45.39	11.35
5	28.36	5.67	33.23	6.65	37.92	7.58	43.97	8.79	48.53	9.71
6	29.95	4.99	35.1	5.85	40.05	6.67	46.45	7.74	51.26	8.54
7	31.37	4.48	36.76	5.25	41.94	5.99	48.65	6.95	53.69	7.67
8	32.65	4.08	38.26	4.78	43.66	5.46	50.63	6.33	55.88	6.99
9	33.83	3.76	39.64	4.4	45.23	5.03	52.45	5.83	57.89	6.43
10	34.91	3.49	40.91	4.09	46.68	4.67	54.14	5.41	59.75	5.98
11	35.93	3.27	42.1	3.83	48.03	4.37	55.71	5.06	61.49	5.59
12	36.88	3.07	43.21	3.6	49.3	4.11	57.18	4.77	63.11	5.26
13	37.77	2.91	44.26	3.4	50.5	3.88	58.57	4.51	64.65	4.97
14	38.62	2.76	45.26	3.23	51.64	3.69	59.89	4.28	66.1	4.72
15	39.43	2.63	46.2	3.08	52.72	3.51	61.14	4.08	67.48	4.5
16	40.2	2.51	47.11	2.94	53.75	3.36	62.34	3.9	68.8	4.3
17	40.94	2.41	47.97	2.82	54.73	3.22	63.48	3.73	70.06	4.12
18	41.65	2.31	48.8	2.71	55.68	3.09	64.58	3.59	71.28	3.96
19	42.33	2.23	49.6	2.61	56.59	2.98	65.63	3.45	72.44	3.81
20	42.98	2.15	50.37	2.52	57.47	2.87	66.65	3.33	73.56	3.68
21	43.62	2.08	51.11	2.43	58.32	2.78	67.64	3.22	74.65	3.55
22	44.23	2.01	51.83	2.36	59.14	2.69	68.59	3.12	75.7	3.44
23	44.82	1.95	52.53	2.28	59.93	2.61	69.51	3.02	76.71	3.34
24	45.4	1.89	53.2	2.22	60.7	2.53	70.4	2.93	77.7	3.24

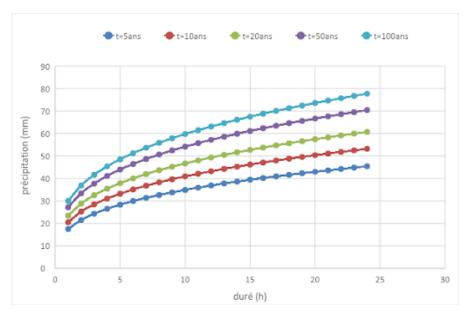


FIGURE 2.11 – les précipitations en fonction du temps pour différentes périodes de retour

2.4 Estimation des débits de crues

Sur la base des études antérieures concernant les caractéristiques des bassins et les précipitations pour chaque bassin, il est possible d'analyser les débits de crue correspondant à différentes périodes de retour et de sélectionner des aménagements appropriés pour chaque bassin. Une inondation se définit comme une quantité excessive d'eau transportée par un système hydraulique. Elle est caractérisée par plusieurs paramètres : le débit (m^2/s) , le volume d'eau (m^2) , la durée (h), la vitesse (m/s), et la fréquence d'apparition (période de retour annuelle) [21]. Les inondations peuvent survenir dans diverses situations, notamment [21] :

- Phénomènes hydrométéorologiques uniques ou complexes : comme des précipitations anormales ou une fonte des neiges et des glaces inhabituelles.
- Embâcles et brise-glaces : typiques des régions froides, ces phénomènes se produisent lors de la fonte des neiges au printemps dans les zones où les cours d'eau gèlent en hiver.
- Autres causes d'inondations : rupture d'un barrage naturel ou artificiel, débordement au sommet du barrage dû à une capacité insuffisante d'évacuation de l'eau, ou remplissage soudain du réservoir par des matériaux ou des débris flottants.
- Phénomènes associés : les inondations peuvent être accompagnées de coulées torrentielles, de glissements de terrain et d'érosion intensive.

En l'absence d'une station hydrométrique dans la région, nous avons dû calculer les débits en utilisant des méthodes indirectes

2.4.1 Calcul de débit de crue par les formules empiriques

Il existe plusieurs méthodes pour estimer les crues, qui donnent des résultats variés, telles que les méthodes historiques, expérimentales, probabilistes, et les courbes enveloppes. Le choix de la méthode la plus adaptée à la zone d'étude dépend de la disponibilité des données ainsi que de leur adéquation au climat et aux caractéristiques régionales [20].

Pour notre étude, le débit des crues est déterminé en utilisant des formules empiriques qui établissent des relations entre le débit, les caractéristiques du bassin versant et la période de retour.

2.4.1.1 Formule de Turraza

Cette formule prend en compte le temps de concentration, un facteur essentiel pour décrire la propagation des crues. Elle est particulièrement adaptée aux petits bassins versants et s'exprime ainsi [7] :

$$Q_{max\%} = \frac{Cr \times H \times A}{3.6 \times Tc}$$

Avec:

- A: la superficie de bassin versant en (Km^2)
- *Tc* : le temps de concentration en heurs
- H: la hauteur totale maximale (en mm) des précipitations pendant une durée égale au temps de concentration (Tc)
- Cr: coefficient de ruissellement de la crue considérée pour une probabilité (P%)

L'estimation du coefficient de ruissellement doit tenir compte de plusieurs éléments, tels que la pente moyenne du bassin versant, la classification hydrologique et l'utilisation des sols. Ce coefficient peut également varier en fonction de ces paramètres ainsi que d'autres facteurs, comme la période de retour [13].

Pour notre étude, nous utiliserons les coefficients de ruissellement présentés dans le tableau suivant :

TABLE 2.23 – le coefficient de ruissellement en fonction de période de retour

T	5	10	20	50	100
\mathbf{Cr}	0.6	0.65	0.7	0.75	0.8

2.4.1.2 Formule de Sokolovsk

Selon Sokolovsky, une crue correspond au débit maximum généré par une précipitation de courte durée, dont la durée est égale au temps de concentration.

Le débit maximum est donné par la formule suivante [7] :

(2.30)
$$Q_{max\%} = \frac{0.28 \times Ptc(p\%) \times \infty \times S}{Tc} \times f$$

Avec:

— S: Superficie du bassin (Km^2)

— Tc: temps de concentration(h)

- Pct : pluie fréquentielle de courte durée correspondant au temps de concentration

- 0.28 : coefficient de changement d'unité

— f : Coefficient de forme de la crue

Le coefficient de forme de la crue peut être calculé par la formule :

$$(2.31) f = \frac{12}{4+3\nu}$$

— Pour $S < 50Km^2$, on a (y = 2)

— *Tc*: temps de concentration(*h*)

— Pour des petits bassins non boisé, sol peu perméable, on a y = (2/2.5)

— Pour bassin boisé, sol perméable on a y = 3/4)

Pour notre cas on prend y = 2.25, car nous avons un des petits bassins non boisés, sol peu perméable.

- α : Coefficient de ruissellement en fonction de la fréquence est calculé par la formule :

(2.32)
$$\alpha = \frac{\sqrt{Xp\%} - \sqrt{H0}}{\sqrt{Xp\%} + \sqrt{H0}}$$

Avec : Xp% : précipitation en mm, de probabilité p%

2.4.1.3 Formule de maillet - Gauthier

L'équation de Maillet et Gauthier a été conçue pour estimer les inondations en fonction d'une période de retour T. Elle s'exprime par la formule suivante [1] :

(2.33)
$$Q_{max\%} = 2kLo(1+mP).\frac{S}{\sqrt{Lp}}.\sqrt{1+4LogT-LogS}$$

Avec:

— S: superficie de bassin versant en (Km^2)

— Lp: longueur du cours d'eau principale en (Km)

— m: coefficient régionale varie entre 20 et 30 (pour notre zone, on prend m = 20)

— K: constante compris entre 1 et 3 (on prend k = 2)

- -P: pluie moyenne interannuelle en m
- T : période de retour en années

Les résultats du calcul des débits de crues sont représentés dans le tableau ci- dessous :

le débit de crue (m^3/s) bassin versant 01 100 ans période de retour 5 ans 10 ans 20 ans 50 ans Turraza 2.974 3.775 4.638 5.764 6.785 Scolovosky 0.3910.6720.9881.450 1.830 maller - gauthier 4.99 5.677 6.289 7.017 7.521 bassin versant 02 période de retour 5 ans 10 ans 20 ans 50 ans 100 ans Turraza 2.95 3.74 4.6 5.71 6.72 Scolovosky 0.007 0.077 0.203 0.435 0.653 maller -gauthier 3.15 3.53 3.88 4.3 4.58 bassin versant 03 période de retour 5 ans 10 ans 20 ans 50 ans 100 ans 2.5422.979 3.965 4.927 5.801 Turraza Scolovosky 0.1210.2790.4750.7801.042 maller -gauthier 3.134 3.535 3.894 4.323 4.622

Table 2.24 – Les résultats du calcul des débits de crues

2.4.2 La Méthode Soil Conservation Service « SCS »

La méthode SCS-CN, développée dans les années 1950 par le NRCS (Natural Resources Conservation Service), est une approche conceptuelle qui repose sur une caractérisation empirique de la relation entre la pluie et le débit. Elle nécessite uniquement des informations sur le type de sol et l'occupation du sol. Cette méthode est intégrée dans de nombreux modèles hydrologiques et d'érosion, tels que SWAT (Arnold et al., 1996), HEC-HMS (US Army Corps of Engineers, 2011), AFFDEF (Montanari et al., 2004) et AGNPS (Agence de contrôle des pollutions du Minnesota, 1987). Elle peut être appliquée à des bassins versants allant de $0.25 \ ha$ à $100 \ km^2$ [23].

Le principe fondamental de la méthode est que l'on considère qu'un événement pluvieux ayant une période de retour T génère un ruissellement avec la même période de retour.

Le choix de la durée de l'épisode pluvieux et du pas de temps de calcul lors de la transformation pluie-débit dépend du "temps de réponse" ou "Lag" du bassin versant. Ce temps correspond à l'intervalle nécessaire entre le centre de gravité de la pluie et le pic de l'hydrogramme de crue qui en résulte. En l'absence de station hydrométrique sur nos oueds, l'estimation du temps de réponse sera déterminée à partir d'une formule empirique basée sur le temps de concentration (Tc), selon la formule suivante [23] :

$$(2.34) Lag = 0.6Tc$$

Selon la méthode SCS, l'hydrogramme élémentaire résultant de la pluie pendant un intervalle de temps D (en heures) est supposé avoir une forme triangulaire [23].

$$(2.35) \frac{1}{3T_c} < D < \frac{2}{3T_c}$$

Ce Hydrogramme est caractérisé par :

- *Qp* : Le débit de pointe

— Tp : Le temps à la pointe $Tp = \frac{D}{2} + 0.6Tc$

— Tb: Le temps de base Tb = Tp + Tc

— Tr : le temps de décrue de l'hydrogramme.

Le rapport entre Tr et Tp est exprimé sous la forme d'une constante, tel que [23] :

$$(2.36) Tr = 1.67Tp$$

Le modèle SCS repose sur le concept selon lequel la précipitation totale sur un bassin peut être divisée en trois composantes : la pluie effective (P_{eff}) , la rétention dans le bassin (F), et les pertes initiales (Ia). La relation entre la précipitation totale (P) et les trois composantes est exprimée comme suit [23] :

$$(2.37) FS = \frac{P_{eff}}{p - Ia}$$

(S) représente la rétention potentielle maximale. En d'autres termes, le rapport entre l'infiltration réelle et l'infiltration potentielle est égal au rapport entre le ruissellement réel et le ruissellement potentiel [23]. La rétention réelle se définit par la relation suivante : $F = (P - Ia) - P_{eff}$

Par remplacement on obtient:

(2.38)
$$P_{eff} = \frac{(P - Ia)^2}{(P - Ia) + S}$$

En se basant sur l'étude d'un grand nombre d'averses, les experts du SCS ont établi une relation empirique entre (Ia) et (S):

$$(2.39) la = 0.2 \times S$$

on obtient:

(2.40)
$$P_{eff} = \frac{(P - 0.2 \times S)^2}{(P + 0.8S)}$$

Cette relation constitue l'équation fondamentale pour calculer le ruissellement (Q) à partir de la précipitation (P).

Pour évaluer la seule inconnue, (S), le SCS a développé l'indice de ruissellement (CN) (runoff curve number). L'indice (CN) est lié au stockage (S) par la relation suivante [23] :

$$(2.41) CN = \frac{25400}{S + 254}$$

Le CN est déterminé en tenant compte principalement des types de sol et du couvert végétal dans le bassin. Le NRCS a classé les sols en quatre catégories en fonction de leur potentiel d'infiltration [23].

TABLE 2.25 – Classification des sols selon NRCS (USDA,SCS, 1972)

Sol	Group
Sableux, limoneux-sableux	A
Limoneux	В
Sablo-argileux	С
Argileux, argileux limoneux, Sol salins	D

Pour Notre zone d'étude elle est entièrement formée par un terrain des sables argileux donc il s'agit d'un sol de type C.

Pour un bassin versant comportant plusieurs classes d'occupation du sol et types de sols, un CN composite doit être calculé à l'aide de la formule suivante :

$$(2.42) CN_p = \frac{\sum A_i \times CN_i}{\sum A_i}$$

Voici les valeurs CN associé de chaque Type d'occupation de sol :

TABLE 2.26 - CN selon le Type d'occupation de sol (USDA,SCS, 1972)

Occupation de sol	Classe de sols			
Occupation de soi	A	В	С	D
Terres agricoles	72	81	88	91
Forêt	36	60	79	79
Terrain nu	68	79	89	89
zone urbaine	80	85	90	95

Étant donné l'absence de cartes d'occupation du sol pour de nombreuses régions à l'échelle nationale, nous avons décidé de créer une carte d'occupation du sol pour notre bassin versant en utilisant un logiciel SIG, tel qu'ArcGIS. Pour cela, nous avons utilisé une carte d'occupation du sol de l'année 2022 avec une résolution de 10 mètres, ce qui nous a permis d'obtenir une représentation détaillée et précise de l'occupation du sol dans la zone étudiée.

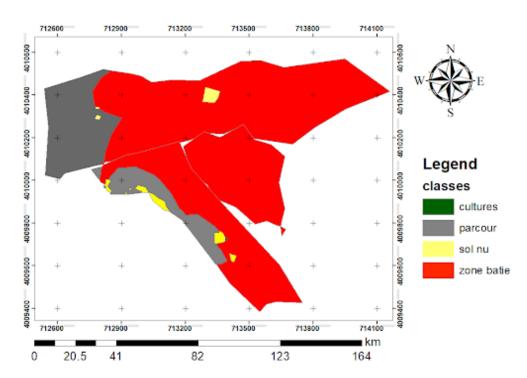


FIGURE 2.12 - Carte d'occupation du sol du bassin versant (ArcGIS)

Voici les résultats d'occupation de sols :

TABLE 2.27 – CN selon le Type d'occupation de sol (USDA,SCS, 1972)

Occupation de sol (Km^2)							
Bassins versants Zone urbaine Terrain nu Parcours Terres agricoles CN pondéré Ia							
1	0.383	0.0046	0.117	/	89.99	5.65	
2	0.141	/	/	/	90	5.644	
3	0.171	0.00822	0.055	0.00014	89.96	5.6672	

L'application de la méthode SCS pour nos sous bassins versants nécessite l'utilisation d'une modélisation et ceux à l'aide d'un logiciel et dans notre cas ce logiciel est le HEC HMS.

2.4.2.1 Modélisation Hydrologique avec le Logiciel HEC-HMS

La modélisation hydrologique est un outil numérique qui permet de représenter la relation pluie-débit à l'échelle d'un bassin versant, transformant les séries temporelles climatiques en séries de débits. Il existe plusieurs types de modélisation :

- Modélisation à base physique : Représente les processus hydrologiques à l'aide de lois physiques, nécessitant des données de qualité pour identifier les facteurs déterminants.
- **Modélisation conceptuelle :** Simplifie la réalité en considérant le bassin versant comme un ensemble de réservoirs interconnectés, avec moins de paramètres et une mise en œuvre

plus facile [19].

Le modèle HEC-HMS (Hydrologic Modeling System), développé par l'Hydrologic Engineering Center du "US Army Corps of Engineers", est un système complet pour la modélisation hydrologique des bassins versants. Il simule les processus pluie-débit, de la précipitation brute au débit total de ruissellement, incluant des phénomènes tels que l'infiltration, le ruissellement, l'évaporation, et la fonte des neiges [17].

Le modèle repose sur deux fonctions principales [17] :

- Fonction de production : Sépare la pluie nette, qui ruisselle, de la pluie brute tombée.
- Fonction de transfert : Transfère cette pluie vers l'exutoire du bassin versant.

Pour notre étude, la simulation du processus hydrologique a été réalisée pour des périodes de retour allant de 5 ans à 100 ans. Les résultats obtenus après l'application du modèle de perte par infiltration SCS-CN et la méthode de transfert d'hydrogramme unitaire de SCS sont présentés ci-dessous :

La Période de Retour Centennale 100 ans

Table 2.28 – Résultats de simulation pour la période de retour 100 ans

Sous bassin	La surface drainée (Km^2)	Débit de pointe (m^3/s)	Volume (mm)
1	0.505027	5.5589	77.759
2	0.141	2.1763	92.41
3	0.234041	3.5599	92.25

Ce graphe représente l'hydrogramme de crues pour le sous bassin 01 :

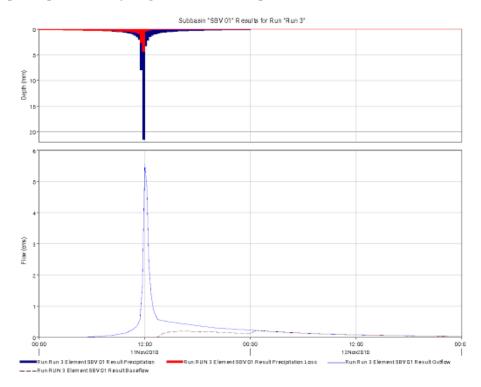


FIGURE 2.13 – Hydrogramme de crue du BV 01

Ce graphe représente l'hydrogramme de crues pour le sous bassin 02 :

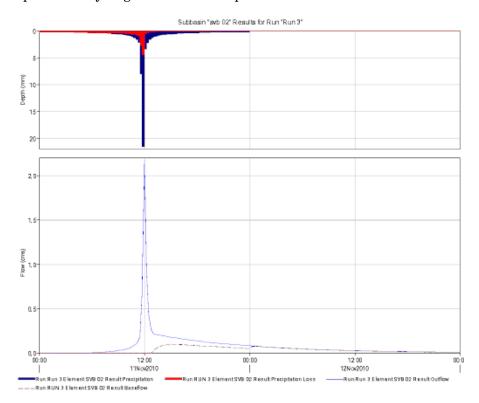
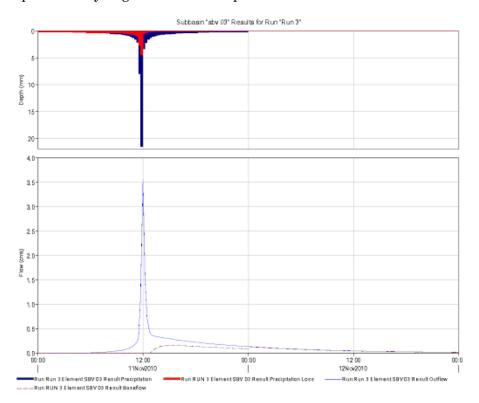



FIGURE 2.14 – Hydrogramme de crue du BV 02

Ce graphe représente l'hydrogramme de crues pour le sous bassin 03 :

 $FIGURE\ 2.15-Hydrogramme\ de\ crue\ du\ BV\ 03$

La Période de Retour 50 ans

Table 2.29 – Résultats de simulation pour la période de retour 50 ans

Sous bassin	La surface drainée (Km^2)	Débit de pointe (m^3/s)	Volume (mm)
1	0.505027	4.841	67.57
2	0.141	1.9019	80.42
3	0.234041	3.1105	80.27

La Figure suivant illustre l'hydrogramme de crue à l'exutoire de l'oued 01 pour la période de retour 50 ans. Le débit simulé est de l'ordre de $4.841\ m^3/s$ avec un temps de pic de 12:00h

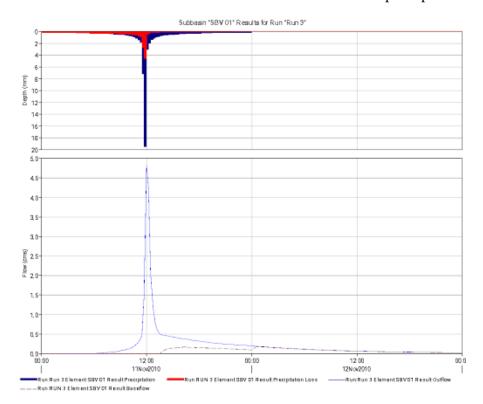


FIGURE 2.16 – Hydrogramme de crue à l'exutoire T=50ans

La Période de Retour 20 ans

Table 2.30 – Résultats de simulation pour la période de retour 20 ans

Sous bassin	La surface drainée (Km^2)	Débit de pointe (m^3/s)	Volume (mm)
1	0.505027	3.8969	54.29
2	0.141	1.5401	64.73
3	0.234041	2.5179	64.59

La Figure suivant illustre l'hydrogramme de crue à l'exutoire de l'oued 01 pour la période de retour 20 ans. Le débit simulé est de l'ordre de $3.8969\ m^3/s$ avec un temps de pic de 12:00h

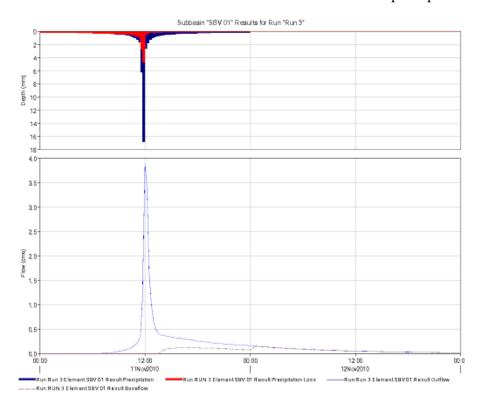


FIGURE 2.17 – Hydrogramme de crue à l'exutoire T=20ans

La Période de Retour 10 ans

Table 2.31 – Résultats de simulation pour la période de retour 10 ans

Sous bassin	La surface drainée (Km^2)	Débit de pointe (m^3/s)	Volume (mm)
1	0.505027	3.1795	44.268
2	0.141	1.264	52.86
3	0.234041	2.0659	52.73

La Figure suivant illustre l'hydrogramme de crue à l'exutoire de l'oued 01 pour la période de retour 10 ans. Le débit simulé est de l'ordre de $3.1795\ m^3/s$ avec un temps de pic de 12:00h

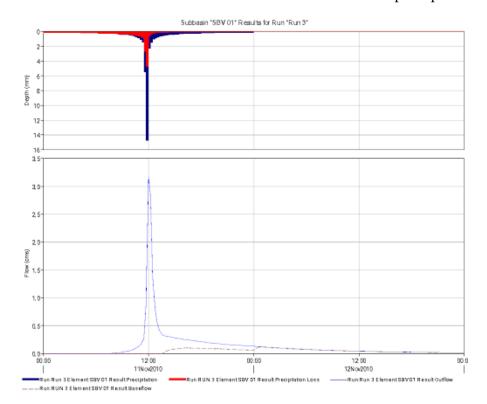


FIGURE 2.18 – Hydrogramme de crue à l'exutoire T=10ans

La Période de Retour 5 ans

TABLE 2.32 – Résultats de simulation pour la période de retour 5 ans

Sous bassin	La surface drainée (Km^2)	Débit de pointe (m^3/s)	Volume (mm)
1	0.505027	2.4521	34.168
2	0.141	0.9829	40.897
3	0.234041	1.6056	40.767

La Figure suivant illustre l'hydrogramme de crue à l'exutoire de l'oued 01 pour la période de retour 5 ans. Le débit simulé est de l'ordre de $3.1795\ m^3/s$ avec un temps de pic de 12:00h

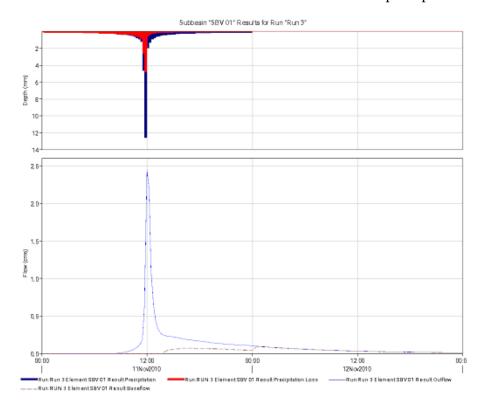


FIGURE 2.19 – Hydrogramme de crue à l'exutoire T=5ans

Le tableau suivant résume les Résultats de simulation pour les différents périodes de retour :

TABLE 2.33 – Résultats des débits de la simulation pour les différents périodes de retour

le débit de crue (m^3/s)						
bassin versant 01						
période de retour	5 ans	10 ans	20 ans	50 ans	100 ans	
Turraza	2.974	3.775	4.638	5.764	6.785	
Scolovosky	0.391	0.672	0.988	1.450	1.830	
maller - gauthier	4.99	5.677	6.289	7.017	7.521	
SCS	2.4521	3.1795	3.8969	4.841	5.5589	
	bass	in versa	nt 02			
période de retour	5 ans	10 ans	20 ans	50 ans	100 ans	
Turraza	2.95	3.74	4.6	5.71	6.72	
Scolovosky	0.007	0.077	0.203	0.435	0.653	
maller -gauthier	3.15	3.53	3.88	4.3	4.58	
SCS	0.9829	1.264	1.5401	1.9019	2.1763	
	bass	in versa	nt 03			
période de retour	5 ans	10 ans	20 ans	50 ans	100 ans	
Turraza	2.542	2.979	3.965	4.927	5.801	
Scolovosky	0.121	0.279	0.475	0.780	1.042	
maller -gauthier	3.134	3.535	3.894	4.323	4.622	
SCS	1.6056	2.0659	2.5179	3.1105	3.5599	

Nous retenons les valeurs des débits fréquentiels obtenues par la méthode SCS car elles sont les plus proches et les plus précises. De plus, cette méthode s'avère la plus adaptée à notre zone d'étude puisqu'elle prend en compte plusieurs paramètres, tels que l'occupation des sols.

2.5 Conclusion

Dans ce chapitre, nous avons étudié les débits de crues correspondant aux différentes périodes de retour pour nos bassins versants en utilisant deux méthodes distinctes : les formules empiriques et la méthode SCS-CN du modèle hydrologique HEC-HMS. D'après les résultats obtenus, nous avons opté pour la méthode SCS-CN. Par la suite, nous avons construit les hydrogrammes de crue, ce qui permet d'observer l'évolution des crues au fil du temps pour chaque bassin versant. La prochaine étape consistera en la localisation des zones inondables et l'étude hydraulique, qui nous permettront de dimensionner les ouvrages de protection pour la ville de Chouf Lekdad.

ÉTUDE DES COURS D'EAU NON AMÉNAGER

3.1 Introduction

Les études de protection contre les inondations nécessitent une modélisation des écoulements dans les cours d'eau afin de déterminer les hauteurs d'eau et les zones susceptibles d'être inondées lors de crues de différentes fréquences. Cette modélisation permet également de comprendre les caractéristiques de l'écoulement et d'identifier les types de protections les plus appropriés. L'objectif principal est de définir les zones à risque d'inondation pour des crues de fréquence donnée, en élaborant une carte d'inondabilité pour la région traversée par les oueds de BV01, BV02, et BV03. Cette carte aidera à préciser les sections de cours d'eau nécessitant des aménagements et à sélectionner les interventions les plus adaptées.

3.2 Description générale des cours d'eaux

Suite à notre investigation sur le site, nous avons constaté que la zone d'étude est traversée par trois cours d'eau (dont l'oued CHEBBA), qui sont historiquement sujets à des crues violentes et fréquentes inondations. Ces cours d'eau se déversent dans la vallée de Bousselam et présentent les caractéristiques suivantes :

- 1. Zone déprimée et obstruée : Les cours d'eau sont obstrués par des déchets solides et ménagers, augmentant la rugosité et le risque d'inondation.
- 2. Érosion des berges : Les berges des oueds CHEBBA sont altérées et érodées, soumises à des processus d'érosion latérale qui transportent et déposent des matériaux solides provenant des parties amont du bassin versant.

- 3. Utilisation dangereuse : Les oueds constituent un réceptacle pour les écoulements pluviaux et sont utilisés par les enfants comme un espace de jeu dangereux.
- 4. Absence de passerelles piétonnes : Il n'y a pas de passerelles pour piétons, compliquant les déplacements sécurisés à travers les oueds.
- 5. Accumulation d'eaux usées : Une accumulation d'eaux usées dégage une odeur désagréable, perturbant la vie des riverains.
- 6. Présence de bidonvilles en amont : La partie amont est marquée par des habitations de type bidonville avec un paysage dégradé et des déchets entassés le long des rives.
- 7. Zone urbaine en aval : Les parties intermédiaires et avales se trouvent dans la zone urbaine.
- 8. Infrastructures vétustes : Les ouvrages hydrauliques, y compris les passages busés rétrécis, sont dans un état de vétusté et de dégradation avancée.

Cette situation rend la zone d'étude particulièrement vulnérable aux risques d'inondation et aux impacts environnementaux.

Pour décrire plus précisément les oueds, nous avons divisé le tracé en tronçons en fonction des ouvrages existantes le long du parcours, comme l'illustrent le tableau et la figure ci-dessous :



FIGURE 3.1 – les différents tronçons des cours d'eaux

Oued Troncon Aval Amont Longueur bv 01 T11 434m Exutoire conduite existante bv 01 T21 conduite existante route 567m by 02 **B**1 270m route conduite existante by 02 B2424m de l'exutoire conduite existante 159m bv 03 T13 conduite existen Habitation 980m

TABLE 3.1 – La division des cours d'eaux en tronçons

- Troncon T11: Ce tronçon a une longueur de 434 m situé entre un ouvrage de rejet avec deux conduites circulaires de diamètre 1000 mm, en très bon état, qui déversent vers l'oued Bousselam, et en aval, une conduite circulaire de diamètre 1000 mm qui sépare les deux tronçons, Sur une zone urbaine, le lit a une largeur d'environ 4 m et n'a pas été aménagé et les berges sont végétalisées, la pente moyenne du tronçon est environ de 0.079.
- Troncon T21 : Ce tronçon a une longueur de 567 m situé entre la route RN 09 et la conduite séparent, Sur une zone urbaine, le lit a une largeur d'environ 4 m et n'a pas été aménagé et les berges sont végétalisées, la pente moyenne du tronçon est environ de 0.078.
- **Troncon B2 :** Ce tronçon a une longueur de 154 m situé sur une zone urbaine, le lit a une largeur d'environ 5 m et n'a pas été aménagé et les berges sont végétalisées, la pente moyenne du tronçon est environ de 0.058.
- Troncon B1 : Ce tronçon a une longueur de 270 m situé sur une zone urbaine, le lit a une largeur d'environ 10 m et n'a pas été aménagé et les berges sont végétalisées, la pente moyenne du tronçon est environ de 0.058.
- **Troncon T13 :** Ce tronçon a une longueur de 980 m situé sur une zone urbanisée, en Aval en trouve la partie sud de la ville de (CHOUF LEKDAD) et en Amont l'oued passe par la petite conduite vétuste. Le lit a une largeur d'environ 5 m, et n'a pas été aménagé et les berges sont végétalisées, la pente moyenne du tronçon est environ de 0.068.

Les figures si après montrent des différentes situations :

 ${\tt FIGURE~3.2-Transport~des~s\'ediments~sur~tout~l'axe~de~l'oued}$

FIGURE 3.3 – Dégradation du lotissement due au débordement des eaux

FIGURE 3.4 – La présence des nouvelles constructions (bâtiments)

La présence des nouvelles constructions traduise la violenté des autorités locales a orienté l'extension de ville vers CHOUF LEKDAD :

FIGURE 3.5 – Vétuste total de regard et canal

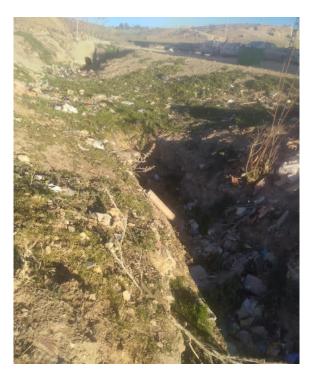
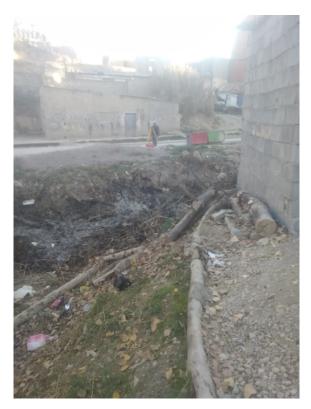



FIGURE 3.6 – Obstruction du canal

 ${\tt FIGURE~3.7-Grande~quantit\'e~de~remblai~et~d\'echets~au~cours~d\'eau}$

Les images sont faites par moi (MAARIG ISSAD) le (25/07/2024)

Sur les tronçons étudiés, plusieurs ouvrages d'infrastructures routières et ferroviaires traversent les trois oueds dans la zone d'étude. Ces ouvrages peuvent influencer l'écoulement, notamment en provoquant des pertes de charge locales et des embâcles (accumulations de bois flottants). De plus, ils peuvent eux-mêmes être menacés par la dynamique de l'oued, en particulier par les phénomènes d'érosion, tels que l'érosion du lit et des berges. Ces infrastructures sont répertoriées dans le tableau suivant, allant de l'aval vers l'amont :

TABLE 3.2 – Ouvrages d'infrastructures routières et ferroviaires traversent les trois oueds dans la zone d'étude

Oued de bv01	Oued de bv02	Oued de bv03
Ouvrage de rejet avec 2	Conduite existantee de dia-	Conduite vétuste
conduites circulaires de dia-	mètre 1000, en état vétuste	
mètre 1000 en très bon état		
Conduite de diamètre 1000 sé-	Ouvrage de rejet avec conduite	
parant les 2 tronçons En très	circulaire de diamètre 1500 en	
bon état	très bon état	

3.3 Modélisation Hydraulique

3.3.1 Définition

La modélisation hydraulique vise à simuler l'écoulement des cours d'eau et constitue une étape cruciale dans l'évaluation des risques d'inondation. Son principal objectif est d'estimer l'impact des incertitudes sur les débits, les niveaux d'eau et les surfaces inondées. Pour un évéa division des cours d'eaux en tronçonsnement hydrologique donné, le modèle numérique calcule, à chaque point prédéfini, le niveau d'eau, le débit et la vitesse de l'écoulement.

Il existe deux types de modèles hydrodynamiques :

- **Modèles 1D :** Ces modèles décrivent l'écoulement dans une section de vallée. L'analyse de plusieurs sections unitaires permet de comprendre le comportement global de la rivière.
- **Modèles 2D :** Ces modèles simulent l'écoulement sur l'ensemble de la plaine alluviale à l'aide d'un maillage qui reproduit le relief. Ils peuvent également intégrer une dimension temporelle en tenant compte des variations de débit au cours du temps [16].

3.3.2 Modèle HEC-RAS

Hydrologic Engineering Center – River Analysis System est un logiciel de modélisation hydraulique unidimensionnelle développé par le Corps des ingénieurs de l'armée des États-Unis (US Army Corps of Engineers).

Il est conçu pour simuler les écoulements à surface libre dans les canaux naturels et artificiels. HEC-RAS permet de modéliser les écoulements en régimes permanent (steady flow) et transitoire (unsteady flow), de calculer les profils de lignes d'eau en régime dynamique, et de simuler les effets des obstacles tels que les ponts, les dalots, et autres structures de franchissement sur le cours d'eau.

Le logiciel est également capable de modéliser le transport de sédiments et le transfert de pollution. En utilisant les données géométriques des profils en travers et des ouvrages, HEC-RAS calcule les profils en long des cours d'eau, basés sur les altitudes topographiques perpendiculaires au sens de l'écoulement, permettant de représenter avec précision la forme et le comportement hydraulique des rivières.

3.3.3 La Démarche de la simulation

En HEC-RAS, plusieurs étapes et fichiers sont nécessaires pour effectuer une analyse hydraulique d'un cours d'eau :

- Construction du modèle géométrique: La première étape consiste à créer un modèle géométrique du tronçon de rivière étudié en utilisant un modèle numérique de terrain (MNT). À l'aide d'AutoCAD Civil 3D ou d'ARC-GIS, on trace des sections transversales à intervalles réguliers et crée un fichier (.geo) qui sera importé dans HEC-RAS, ou exporté directement via HEC-GeoRAS d'ARC-GIS. Les levés de terrain des sections transversales sont recommandés pour améliorer la précision des simulations d'écoulement [16].
- Création d'un nouveau projet HEC-RAS: La deuxième étape est la création d'un nouveau projet dans HEC-RAS. Le fichier de projet contient le titre, la description, le système d'unités utilisé, les liens vers tous les fichiers associés, ainsi que les variables par défaut modifiables par l'utilisateur et une référence au dernier plan utilisé [16].
- Importation des sections transversales: La troisième étape consiste à créer un nouveau fichier de géométrie et à importer les sections transversales dans le projet. Ce fichier comprend toutes les informations géométriques du cours d'eau, telles que la structure arborescente, les sections transversales, la distance entre elles, les coefficients de Manning pour chaque section ou tronçon, ainsi que les ouvrages présents (ponts, ponceaux, etc.).

Dans notre cas, les sections transversales sont espacées de 35 mètres. Les coefficients de Manning, choisis en fonction de la forme du cours d'eau, des matériaux du lit, de l'état de la végétation, etc., sont de 0,035 pour les berges et de 0,035 pour le lit de l'oued. Les valeurs des coefficients de rugosité de Manning sont résumées dans le tableau ci-dessous [16].

TABLE 3.3 – Valeurs des coefficients de rugosité de Manning [15]

Type of Channel and Description	Minimum	Normal	Maximum
1. Main Channels			
a. Clean, straight, full, no rifts or deep pools	0.025	0.03	0.033
b. Same as above, but more stones and	0.03	0.035	0.04
weeds			
c. Clean, winding, some pools and shoals	0.033	0.04	0.045
d. Same as above, but some weeds and	0.035	0.045	0.05
stones			
e. Same as above, lower stages, more inef-	0.04	0.048	0.055
fective slopes and sections			
f. Same as 'd' but more stones	0.045	0.05	0.06
g. Sluggish reaches, weedy, deep pools	0.05	0.07	0.08
h. Very weedy reaches, deep pools, or flood-	0.07	0.1	0.15
ways with heavy stands of timber and			
brush			
2. Flood Plains			
a. Pasture no brush			
1. Short grass	0.025	0.03	0.035
2. High grass	0.03	0.035	0.05
b. Cultivated areas			
1. No crop	0.02	0.03	0.04
2. Mature row crops	0.025	0.035	0.045
3. Mature field crops	0.03	0.04	0.05
c. Brush			
1. Scattered brush, heavy weeds	0.035	0.05	0.07
2. Light brush and trees, in winter	0.035	0.05	0.06
3. Light brush and trees, in summers	0.04	0.06	0.08
4. Medium to dense brush, in winter	0.045	0.07	0.11
5. Medium to dense brush, in summers	0.07	0.1	0.16
d. Trees			
1. Cleared land with tree stumps, no	0.03	0.04	0.05
sprouts			
2. Same as above, but heavy sprouts	0.05	0.06	0.08

— Création du fichier "Flow" (Débit): La quatrième étape est la création du fichier de débit, utilisé pour simuler les écoulements en régime permanent. Ce fichier contient le nombre de profils à calculer, les données de débit pour chacun et les conditions aux limites pour chaque tronçon. Un profil correspond à l'ensemble des niveaux d'eau calculés pour des conditions de débit spécifiques. Pour notre étude, nous avons choisi le débit pour une période de retour de 100 ans (centennale). Les débits choisis pour le dimensionnement sont de 5.56 m³/s pour l'oued (01), 3.56 m³/s pour l'oued (03), et 2.17 m³/s pour l'oued (02). Les conditions aux limites sont nécessaires pour déterminer la hauteur d'eau initiale aux

- extrémités de chaque tronçon; nous avons opté pour la hauteur critique pour les trois oueds [16].
- **Création du fichier "Plan" :** La cinquième étape consiste à créer le fichier de plan, qui contient les références aux fichiers de géométrie et de débit associés au plan [16].
- **Exécution de la simulation :** La dernière étape est l'exécution de la simulation et la création automatique du fichier "Run" par HEC-RAS, une fois la simulation lancée [16].

3.3.4 Visualisation des résultats

Après avoir lancé les calculs sous HEC-RAS, de nombreux résultats peuvent être obtenus. Nous pouvons visualiser les profils des zones inondables en fonction du débit considéré, les vitesses d'écoulement, ainsi que les lignes d'eau et d'énergie. Cela permet d'observer la variation de la vitesse d'écoulement dans le lit mineur et sur les deux rives pour chaque section transversale [16].

Un des résultats particulièrement intéressants à examiner est la vue en profil du tronçon simulé, accessible via la fonction « View Profiles » dans la barre d'outils. Les figures suivantes illustrent les vues en profil pour chaque oued :

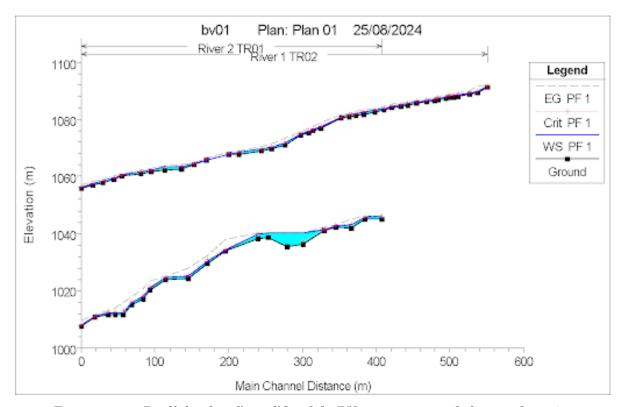


FIGURE 3.8 – Profil du plan d'eau d'Oued du BV 01 au passage de la crue de projet

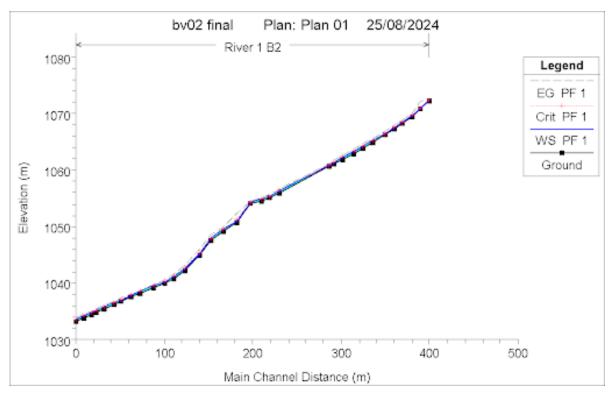


FIGURE 3.9 – Profil du plan d'eau d'Oued du BV 02 au passage de la crue de projet

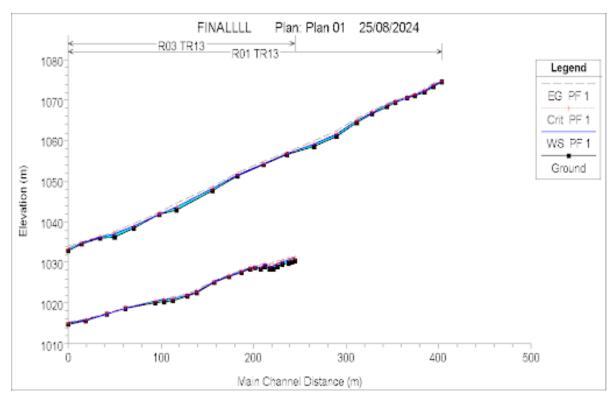


FIGURE 3.10 - Profil du plan d'eau d'Oued du BV 03 au passage de la crue de projet

Une autre option graphique utile est accessible via le bouton « View Cross Sections » (Voir les profils en travers). Les figures ci-dessous présentent les différents profils en travers des tronçons pour chaque oued.

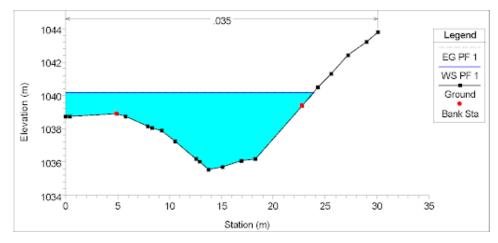


FIGURE 3.11 – Profil en travers d'un tronçon d oued du BV01

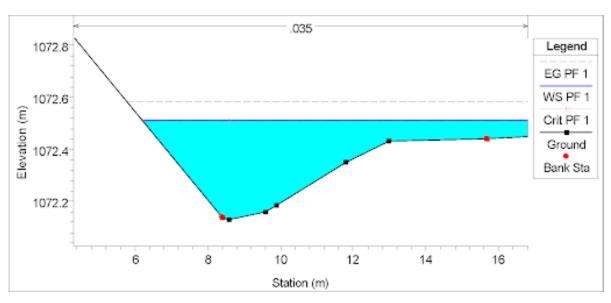
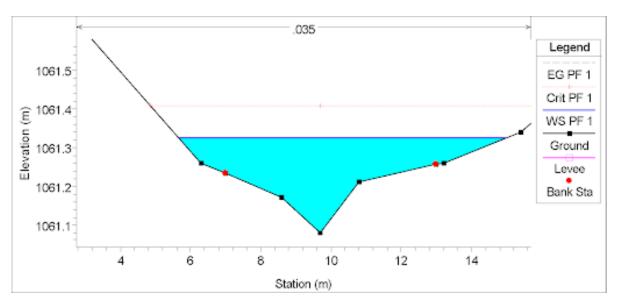



FIGURE 3.12 – Profil en travers d'un tronçon d oued du BV02

 $FIGURE\ 3.13-Profil\ en\ travers\ d'un\ tronçon\ d\ oued\ du\ BV02$

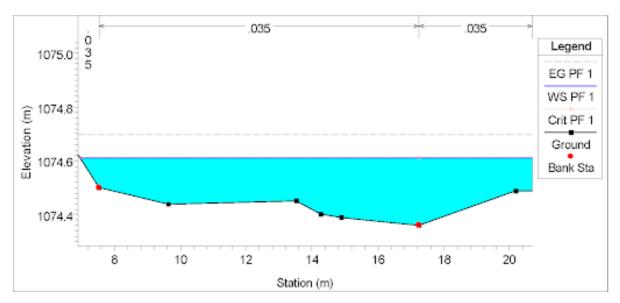


FIGURE 3.14 – Profil en travers d'un tronçon d oued du BV03

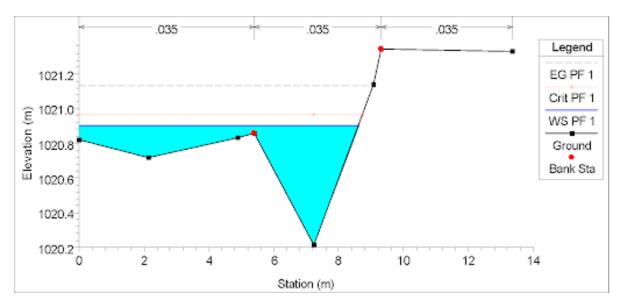


FIGURE 3.15 – Profil en travers d'un tronçon d oued du BV03

Les détails et résultats de la simulation sont résumés dans le tableau ci-dessous :

Table 3.4 – Résultats de simulation des oueds de BV01 - Tronçons : TR11

Station	Débit total (m3/s)	Cote Fond Oued (m)	N.L(eau)(m)	H critique (m)	N.L (Energie (m)	Pente L.e (m/m)	Vitesse (m/s)	S. mouillé (m2)	L. miroir (m)	Froude
428	5.56	1045.18	1045.92	1045.92	1046.04	0.008747	1.6	4.32	18.11	0.74
405	5.56	1045.19	1045.49	1045.54	1045.7	0.037257	1.84	2.74	12.1	1.33
387	5.56	1041.97	1042.47	1042.87	1044.26	0.219057	5.91	0.94	2.99	3.37
366	5.56	1042.2	1042.58	1042.59	1042.73	0.021638	1.84	3.24	12.29	1.09
350	5.56	1040.94	1041.06	1041.23	1041.83	0.204646	2.22	1.51	10.96	2.66
322	5.56	1036.08	1039.63	1037.12	1039.64	0.000019	0.23	30.3	22.79	0.04
300	5.56	1035.52	1039.63		1039.63	0.000006	0.12	47.89	23.15	0.02
274	5.56	1038.51	1039.57		1039.63	0.003362	1.06	5.24	10	0.47
260	5.56	1038.41	1039.3	1039.3	1039.52	0.017834	2.11	2.64	5.96	1.01
216	5.56	1034.02	1034.07	1034.35	1036.87	1.040.188	3.47	0.77	6.71	5.46
191	5.56	1029.44	1030.13	1030.4	1031.03	0.089301	4.2	1.33	3.81	2.21
165	5.56	1024.44	1024.85	1025.16	1026.72	0.385754	6.06	0.92	4.51	4.29
136	5.56	1023.82	1024.35	1024.37	1024.54	0.02191	1.96	2.84	9.09	1.11
115	5.56	1020.34	1020.72	1021.05	1023.04	0.530448	6.75	0.82	4.36	4.96
93	5.56	1017.22	1017.66	1017.94	1019.08	0.262323	5.29	1.05	4.73	3.58
77	5.56	1015.07	1015.71	1015.99	1016.65	0.094482	4.29	1.31	3.96	2.28
66	5.56	1011.41	1012.08	1012.57	1014.69	0.327618	7.16	0.78	2.33	3.96
55	5.56	1011.47	1012.23	1012.44	1012.87	0.060219	3.53	1.57	4.12	1.83
45	5.56	1011.67	1012.28	1012.28	1012.42	0.017319	1.72	3.45	12.5	0.98
28	5.56	1010.68	1010.89	1011.02	1011.54	0.3231	3.43	1.56	15.18	3.51
9	5.56	1007.42	1007.9	1008.11	1008.63	0.080139	3.9	1.54	5.81	2.14

Table 3.5 – Résultats de simulation des oueds de BV01 - Tronçons : TR21

Station	Débit total (m3/s)	Cote Fond Oued (m)	N.L(eau) (m)	H critique (m)	N.L (Energie (m)	Pente L.e (m/m)	Vitesse (m/s)	S. mouillé (m2)	L. miroir (m)	Froude
566	5.56	1091.06	1091.46	1091.46	1091.6	0.018615	1.72	3.32	11.85	1.01
553	5.56	1089.32	1089.62	1089.86	1090.87	0.283426	4.98	1.14	6.73	3.66
541	5.56	1088.66	1089.03	1089.14	1089.39	0.052723	2.72	2.16	9.47	1.68
527	5.56	1087.9	1088.25	1088.37	1088.63	0.052658	2.78	2.08	8.1	1.69
520	5.56	1087.55	1088.13	1088.17	1088.35	0.02593	2.08	2.67	8.77	1.2
513	5.56	1087.48	1087.98	1088.02	1088.18	0.024678	1.96	2.88	11.04	1.16
509	5.56	1087.32	1087.72	1087.81	1088.01	0.057886	2.36	2.35	11.64	1.68
499	5.56	1086.86	1087.24	1087.31	1087.47	0.043148	2.15	2.62	13.33	1.47
495	5.56	1086.65	1086.99	1087.07	1087.27	0.048173	2.49	2.53	14.38	1.59
485	5.56	1086.13	1086.4	1086.49	1086.72	0.060823	2.43	2.23	10.39	1.72
471	5.56	1085.52	1085.82	1085.91	1086.13	0.033003	1.57	2.38	8.3	1.23
459	5.56	1084.93	1085.24	1085.37	1085.66	0.04721	1.77	2.02	7.16	1.44
449	5.56	1084.53	1084.72	1084.87	1085.18	0.048723	1.39	1.94	6.66	1.38
437	5.56	1083.94	1084.22	1084.37	1084.68	0.064269	2.29	1.92	7.7	1.73
427	5.56	1083.34	1083.64	1083.74	1083.99	0.079272	2.73	2.12	11.36	1.96
414	5.56	1082.61	1083.03	1083.12	1083.32	0.038054	2.51	2.51	11.65	1.45
399	5.56	1081.86	1082.35	1082.47	1082.72	0.040614	2.92	2.27	10.29	1.55
388	5.56	1081.35	1081.84	1081.97	1082.22	0.048004	2.8	2.1	8.91	1.63
379	5.56	1081.04	1081.4	1081.52	1081.75	0.058385	2.63	2.13	9.84	1.73
368	5.56	1080.32	1080.66	1080.77	1081	0.077517	2.69	2.22	13.15	1.93
341	5.56	1076.94	1077.31	1077.52	1078.09	0.154646	3.92	1.45	8.14	2.74
331	5.56	1075.97	1076.38	1076.53	1076.87	0.087438	3.13	1.81	9.4	2.1
324	5.56	1075.33	1075.65	1075.8	1076.19	0.124168	3.25	1.71	9.24	2.41
312	5.56	1074.31	1074.61	1074.74	1075.04	0.077988	2.87	1.93	8.88	1.97
291	5.56	1070.9	1071.31	1071.58	1072.47	0.2003	4.76	1.18	5.51	3.17
274	5.56	1069.63	1070.07	1070.21	1070.51	0.060403	2.94	1.89	6.9	1.79
260	5.56	1068.95	1069.48	1069.56	1069.76	0.041715	2.34	2.38	9.54	1.48
230	5.56	1067.92	1068.36	1068.42	1068.58	0.0349	2.17	2.79	13.03	1.36
215	5.56	1067.56	1067.7	1067.8	1068	0.041379	1.09	2.42	11.16	1.22
185	5.56	1065.58	1065.79	1065.86	1066.06	0.111636	2.37	2.45	21.6	2.15
168	5.56	1063.95	1064.24	1064.34	1064.57	0.071371	2.53	2.21	12	1.85
151	5.56	1062.71	1063.21	1063.34	1063.61	0.043183	2.82	2.03	6.88	1.57
129	5.56	1062.22	1062.9	1062.9	1063.09	0.017444	1.93	2.89	7.91	1.01
110	5.56	1061.58	1061.85	1061.99	1062.37	0.116575	3.23	1.77	9.82	2.36
98	5.56	1061.11	1061.51	1061.53	1061.65	0.026351	1.66	3.35	15.59	1.14
72	5.56	1060.06	1060.3	1060.39	1060.61	0.06843	2.69	2.38	14.3	1.82
60	5.56	1059.01	1059.26	1059.37	1059.65	0.096319	2.06	2.1	13.65	1.96
45	5.56	1057.86	1058.24	1058.29	1058.59	0.053563	2.17	2.16	9.09	1.59
32	5.56	1057.04	1057.31	1057.45	1057.78	0.091499	3.06	1.86	9.17	2.13
16	5.56	1055.93	1056.16	1056.25	1056.46	0.072597	2.42	2.3	13.19	1.84

Table 3.6 – Résultats de simulation des oueds de BV02 - Tronçons : B1

Station	Débit total (m3/s)	Cote Fond Oued (m)	N.L(eau) m)	H critique (m)	N.L (Energie (m)	Pente L.e (m/m)	Vitesse (m/s)	S. mouillé (m2)	L. miroir (m)	Froude
409	2.18	1072.19	1072.52	1072.52	1072.58	0.013341	0.9	2.09	14.51	0.76
399	2.18	1070.77	1070.9	1071.03	1072.04	0.771783	3.33	0.53	9.66	4.84
390	2.18	1069.46	1069.66	1069.76	1069.96	0.087933	2.5	0.91	6.49	1.99
379	2.18	1068.17	1068.42	1068.52	1068.76	0.114527	2.52	0.84	5.98	2.19
370	2.18	1067.28	1067.52	1067.6	1067.8	0.092163	2.3	0.93	6.6	1.98
359	2.18	1066.23	1066.44	1066.53	1066.76	0.104531	2.13	0.87	6.28	2.03
345	2.18	1064.82	1065.2	1065.32	1065.58	0.076798	2.95	0.86	5.33	1.95
334	2.18	1063.86	1064.2	1064.34	1064.65	0.08594	3	0.74	3.76	2.05
324	2.18	1062.93	1063.27	1063.42	1063.76	0.097242	3.11	0.7	3.31	2.16
311	2.18	1061.92	1062.29	1062.39	1062.58	0.078872	2.39	0.92	5.94	1.88
300	2.18	1061.08	1061.33	1061.41	1061.62	0.106442	2.46	0.96	9.31	2.13
295	2.18	1060.7	1060.86	1060.94	1061.12	0.094519	2.34	1.01	9.34	2.01
239	2.18	1055.97	1056.31	1056.41	1056.63	0.069201	2.47	0.88	4.65	1.81
228	2.18	1055.01	1055.26	1055.38	1055.67	0.11024	2.83	0.77	4.68	2.23

Table 3.7 – Résultats de simulation des oueds de BV02 - Tronçons : B2

Station	Débit total (m3/s)	Cote Fond Oued (m)	N.L(eau) m)	H critique (m)	N.L (Energie (m)	Pente L.e (m/m)	Vitesse (m/s)	S. mouillé (m2)	L. miroir (m)	Froude
218	2.18	1054.5	1054.84	1054.89	1055.03	0.036868	1.88	1.16	5.7	1.34
206	2.18	1054.12	1054.28	1054.34	1054.46	0.063453	1.88	1.16	8.67	1.64
190	2.18	1050.7	1051.01	1051.26	1052.33	0.335334	5.09	0.43	2.42	3.87
175	2.18	1049.08	1049.46	1049.6	1049.92	0.079167	3	0.73	3.07	1.97
162	2.18	1047.6	1047.88	1048.02	1048.44	0.17148	3.3	0.66	4.73	2.73
148	2.18	1044.95	1045.2	1045.37	1045.92	0.195299	3.76	0.58	3.51	2.96
132	2.18	1042.18	1042.49	1042.68	1043.19	0.156799	3.69	0.59	3.08	2.69
119	2.18	1040.81	1041.14	1041.27	1041.56	0.094699	2.85	0.77	4.08	2.1
109	2.18	1039.96	1040.25	1040.36	1040.61	0.089375	2.64	0.82	4.75	2.03
96	2.18	1039.23	1039.52	1039.58	1039.68	0.053829	1.59	1.24	9.27	1.48
80	2.18	1038.23	1038.47	1038.53	1038.66	0.066005	2.04	1.22	11.85	1.7
69	2.18	1037.54	1037.82	1037.9	1038.06	0.050679	2.3	1.03	5.9	1.58
58	2.18	1036.77	1037.05	1037.15	1037.39	0.075134	2.68	0.88	5.28	1.91
51	2.18	1036.24	1036.55	1036.65	1036.86	0.067111	2.59	0.91	5.32	1.81
40	2.18	1035.45	1035.76	1035.86	1036.08	0.069972	2.62	0.9	5.3	1.84
30	2.18	1034.8	1035.1	1035.2	1035.41	0.068672	2.56	0.92	5.45	1.82
25	2.18	1034.41	1034.74	1034.84	1035.06	0.065898	2.6	0.91	5.29	1.8
17	2.18	1033.87	1034.18	1034.28	1034.51	0.071658	2.64	0.89	5.29	1.86
8	2.18	1033.26	1033.55	1033.64	1033.85	0.065549	2.58	1.09	11.64	1.79

Table 3.8 – Résultats de simulation des oueds de BV03 - Tronçons : TR13

Station	Débit total (m3/s)	Cote Fond Oued (m)	N.L(eau) m)	H critique (m)	N.L (Energie (m)	Pente L.e (m/m)	Vitesse (m/s)	S. mouillé (m2)	L. miroir (m)	Froude
254	3.56	1030.29	1031.16	1031.16	1031.4	0.01865	2.19	1.63	3.41	1.01
251	3.56	1030.14	1030.89	1031.02	1031.31	0.042756	2.88	1.24	3.31	1.5
247	3.56	1029.93	1030.66	1030.81	1031.13	0.049363	3.04	1.17	3.23	1.61
240	3.56	1029.43	1030.13	1030.3	1030.69	0.081885	3.32	1.07	3.85	2.01
234	3.56	1028.88	1029.68	1029.88	1030.27	0.060292	3.41	1.04	2.61	1.72
230	3.56	1028.5	1029.88	1029.49	1029.94	0.00336	1.14	3.13	4.73	0.45
226	3.56	1028.37	1029.89		1029.92	0.001193	0.81	4.6	7.21	0.28
221	3.56	1029.01	1029.75	1029.75	1029.9	0.014246	1.81	2.21	7.43	0.9
216	3.56	1028.3	1028.66	1028.93	1029.66	0.137037	4.42	0.81	2.69	2.58
211	3.56	1028.72	1028.85	1028.89	1029.02	0.042078	1.25	2.03	12.46	1.27
206	3.56	1028.35	1028.55	1028.62	1028.78	0.049563	1.81	1.83	12.87	1.48
196	3.56	1027.58	1027.76	1027.87	1028.14	0.088777	2.15	1.4	10.44	1.93
183	3.56	1026.51	1026.68	1026.78	1027.02	0.078824	1.83	1.47	10.55	1.77
167	3.56	1025.11	1025.26	1025.35	1025.61	0.101659	1.95	1.45	12.58	1.98
148	3.56	1022.53	1022.8	1022.94	1023.32	0.121912	3.46	1.17	7.35	2.43
138	3.56	1021.71	1022	1022.1	1022.33	0.069976	2.73	1.46	8.58	1.86
121	3.56	1020.69	1021.23	1021.29	1021.47	0.040626	2.37	1.73	8.99	1.44
112	3.56	1020.21	1020.91	1020.97	1021.13	0.032507	2.29	1.83	8.62	1.3
103	3.56	1020.11	1020.5	1020.56	1020.72	0.052423	1.9	1.74	9.42	1.48
71	3.56	1018.56	1018.68	1018.79	1018.98	0.057793	1.03	1.51	8.33	1.36
50	3.56	1017.19	1017.35	1017.45	1017.64	0.07314	1.45	1.56	11.62	1.62
27	3.56	1015.68	1015.94	1015.99	1016.13	0.056585	1.48	1.88	13.05	1.48
9	3.56	1014.81	1014.98	1015.03	1015.17	0.047055	1.61	1.83	10.03	1.41
407	3.56	1074.36	1074.61	1074.61	1074.7	0.021676	1.36	2.76	16.41	1.01
399	3.56	1073.44	1073.61	1073.76	1074.2	0.272618	3.38	1.06	10.23	3.29
388	3.56	1072.02	1072.32	1072.43	1072.65	0.087904	2.51	1.42	8.75	1.99
379	3.56	1071.16	1071.38	1071.46	1071.68	0.117425	2.42	1.47	11.97	2.2
369	3.56	1070.38	1070.61	1070.67	1070.82	0.070476	2.02	1.77	12.98	1.74
358	3.56	1069.4	1069.67	1069.74	1069.91	0.081708	2.17	1.65	12.23	1.87
348	3.56	1068.41	1068.71	1068.82	1069.04	0.094486	2.55	1.39	8.88	2.06
333	3.56	1066.64	1066.95	1067.1	1067.49	0.109437	3.28	1.12	5.97	2.31
315	3.56	1064.43	1064.86	1065.03	1065.44	0.125818	3.37	1.06	5.4	2.43
293	3.56	1061.11	1061.63	1061.87	1062.53	0.138856	4.19	0.85	3.27	2.63
270	3.56	1058.48	1059.12	1059.35	1059.88	0.092281	3.86	0.92	2.83	2.16
240	3.56	1056.44	1056.81	1056.91	1057.16	0.081243	2.83	1.36	7.48	1.96
215	3.56	1054.04	1054.29	1054.44	1054.79	0.082868	2.05	1.2	6.01	1.85
186	3.56	1051.26	1051.58	1051.73	1052.1	0.127413	2.87	1.11	6.21	2.31
160	3.56	1047.77	1048.12	1048.27	1048.64	0.114379	3.18	1.12	5.83	2.32
121	3.56	1042.9	1043.62	1043.87	1044.47	0.097755	4.08	0.87	2.42	2.17
102	3.56	1041.66	1041.89	1042.03	1042.4	0.1154	3.23	1.14	6.55	2.34
75	3.56	1038.46	1038.95	1039.13	1039.57	0.094602	3.48	1.02	3.93	2.18
54	3.56	1036.34	1037.01	1037.22	1037.71	0.083271	3.71	0.96	2.89	2.05
38	3.56	1035.82	1036.3	1036.38	1036.56	0.054589	2.38	1.77	14.57	1.64
18	3.56	1034.47	1034.81	1034.92	1035.15	0.102582	2.77	1.39	9.96	2.14
4	3.56	1032.73	1033.34	1033.53	1033.95	0.07025	3.62	1.09	4.11	1.94

Les cartes d'inondabilité sont incluses à la fin du document dans les annexes.

3.4 Discussion des résultats

On observe que le tronçon TR13 déborde tout au long de son parcours à proximité de la ville. De plus, le chemin du tronçon ne parvient pas à atteindre l'exutoire, mais se déverse plutôt dans un nouveau lotissement. Cette situation nécessite un reprofilage ou un aménagement de ce tronçon afin de le diriger correctement vers l'exutoire prévu, l'oued Bousselam.

Le tronçon TR23 représente la partie amont du tronçon précédent, qui forme l'oued du bassin 03. On constate des débordements sur les deux rives de ce tronçon, particulièrement dans la partie amont, ainsi que la présence d'eaux usées à ciel ouvert et de déchets ménagers et solides. Cette situation nécessite des aménagements le long de ce tronçon pour contrôler les débordements et améliorer les conditions environnementales.

Le tronçon B2 est entièrement urbanisé à ses extrémités. On y observe des débordements

à ces deux endroits, ce qui indique des problèmes d'écoulement des eaux dans cette zone urbaine.

Les cours d'eau de notre zone d'étude ne sont pas aménagés et se trouvent dans un état catastrophique. Ils sont vétustes, proches du tissu urbain, et totalement obstrués par des déchets, des sédiments, et des résidus de construction. De plus, la croissance urbaine illégale et accélérée ne respecte pas l'aspect naturel des cours d'eau, aggravant ainsi la situation.

Les résultats de simulation montrent que le nombre de Froude le long des tronçons varie entre 0,02 et 5,46, indiquant principalement un régime fluvial subcritique (Froude < 1), avec quelques sections présentant un régime supercritique (Froude > 1). Les vitesses d'écoulement varient de 0,12 m/s à 7,16 m/s, suggérant des zones à écoulement lent propices à l'accumulation de sédiments et d'autres à écoulement rapide qui pourraient entraîner l'érosion des berges. Cela indique la nécessité d'aménagements adaptés pour gérer les différents comportements hydrauliques et prévenir les débordements et l'érosion.

ÉTUDE DES VARIANTES ET CALCUL HYDRAULIQUE

4.1 Introduction

Le développement du réseau hydrographique est une démarche visant à augmenter la capacité d'un cours d'eau à gérer en toute sécurité un débit de crue donné. Cela inclut l'élimination des obstacles à l'écoulement, l'amélioration de l'expansion du lit du cours d'eau (comme le confinement ou l'élargissement), l'augmentation de la capacité d'évacuation (par exemple, en augmentant la pente), ainsi que le renforcement de la stabilité des fondations et des berges de la rivière. Ce chapitre présentera différentes options d'aménagement pour corriger les déséquilibres bservés dans les cours d'eau, avec pour objectif principal de protéger les zones traversées par les rivières contre des crues centennales.

4.2 Ecoulement dans les canaux à surface libre

4.2.1 Définition

Un canal est un système de transport d'eau dont la surface libre est en contact direct avec la pression atmosphérique. Pour les ingénieurs, l'étude hydraulique d'un canal consiste généralement à répondre à la question suivante :

Avec une pente longitudinale descendante, quel débit d'eau peut être acheminé? Il s'agit alors de déterminer la forme et les dimensions appropriées du canal pour garantir un écoulement optimal

Il existe deux catégories de canaux :

— Canaux naturels: Ce sont des cours d'eau qui se forment naturellement, comme les

- ruisseaux, torrents, rivières, fleuves et estuaires. Ces canaux se situent au-dessus ou parfois en dessous du sol
- **Canaux artificiels :** Ce sont des voies d'eau créées par l'homme, qui peuvent être en surface ou souterraines. Ils comprennent les canaux ouverts, construits à la surface (tels que les canaux d'alimentation, d'évacuation, d'irrigation et de drainage), ainsi que les canaux couverts (comme les tunnels hydrauliques, les canaux et les conduites d'égouts) où le liquide ne remplit pas toute la section[2].

4.2.2 Les types d'écoulements[2]

Les courants peuvent être classés en fonction de la variation de profondeur h ou de la différence de profondeur Delta h en fonction du temps et de l'espace.

Variabilité dans le temps

Un écoulement est qualifié de permanent si la vitesse moyenne V, la vitesse ponctuelle u, la profondeur h ou la différence de profondeur Delta h, ainsi que le débit, restent constants en magnitude et en direction au fil du temps. Si ces paramètres changent au cours du temps, l'écoulement est alors considéré comme non permanent.

Toutefois, en raison des variations temporelles très lentes, un écoulement peut être approximé comme permanent sur de courtes périodes. En réalité, les écoulements dans les canaux sont rarement complètement permanents

Variabilité dans l'espace

On distingue deux situations:

- a. Écoulement uniforme : Si la profondeur et les autres paramètres restent constants d'une section du canal à l'autre, l'écoulement est dit uniforme. Dans ce cas, la pente du fond du canal est parallèle à la surface libre de l'eau. L'écoulement uniforme peut être permanent ou non permanent.
- b. Écoulement non uniforme : L'écoulement est qualifié de non uniforme lorsque la profondeur et les autres paramètres varient d'une section à l'autre. Dans ce cas, la pente du fond du canal diffère de celle de la surface libre :
 - Si les changements sont progressifs, la profondeur et les autres paramètres évoluent lentement d'une section à l'autre.
 - Si les changements sont brusques, la profondeur et les autres paramètres varient rapidement, voire de manière discontinue. Ce phénomène se produit souvent près de singularités

telles que des débordements, des rétrécissements, des ressauts hydrauliques ou des pentes abruptes[2].

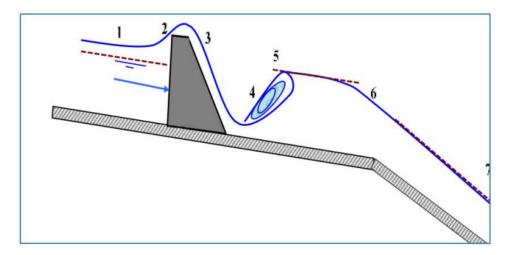


FIGURE 4.1 – Schéma représentant les différents régimes d'écoulement[2]

Avec:

- 1. Écoulement fluvial uniforme
- 2. Graduellement décéléré
- 3. Rapidement accéléré
- 4. Création d'un ressaut hydraulique
- 5. Uniforme et fluvial
- 6. Rapidement accéléré
- 7. Écoulement torrentiel uniforme

4.2.3 Régime d'écoulement[2]

Les forces de gravité et de friction (liées à la viscosité et à la rugosité) influencent l'écoulement réel du fluide dans un canal à surface libre [2]. Les équations de mouvement simplifiées prennent en compte les coefficients ou nombres sans dimension suivants :

4.2.3.1 Le nombre de Froude

Il représente le rapport entre les forces de gravité et les forces d'inertie et est utilisé pour classer les types d'écoulement :

Écoulement fluvial: Fr < 1 Écoulement torrentiel: Fr > 1

— Écoulement critique : Fr = 1

4.2.3.2 Le nombre de Reynolds

Il exprime le rapport entre les forces de friction (visqueuses) et les forces d'inertie et permet de distinguer différents régimes d'écoulement :

- Écoulement laminaire : Re < 500
- Écoulement turbulent : Re > 500à600

4.2.4 Dimensionnement des Canaux

Les formules les plus couramment utilisées pour un écoulement uniforme sont :

— La formule de Chézy[5]:

La formule de Chézy est de la forme :

$$(4.1) V = C\sqrt{Rh.l}$$

En substituant la formule précédente dans l'équation de continuité mentionnée cidessous :

$$(4.2) Q = V.S$$

Avec:

- C: coefficient de Chézy(m0.5/s)
- S: section mouille(m^2)
- Rh: rayon hydraulique,Rh = S/P(m)
- I: pente de fond du canal(mm/mm)

— La formule de MANNING-STRICKLER [2]:

Il s'agit de la formule la plus couramment utilisée, connue sous le nom de formule de Manning-Strickler :

(4.3)
$$Q^2 = K.S.Rh^{\frac{2}{3}}.I^{\frac{1}{2}}$$

Avec:

- K=1/N : coefficient de rugosité de **STRICKLER**, dépend de la nature du matériau du canal
- N : Coefficient de rugosité de Manning

4.3 Proposition des Variantes

— Le réseau hydrographique des cours d'eaux à aménagées est située au plein cœur de l'aménagement de la ville de CHOUF LEKDAD projetés.

- Les routes principales projetés au milieu du CHOUF sont situées pratiquement sur les servitudes et les axes des oueds des bassins.
- Les oueds représentent un grand danger pour les enfants car elle est à ciel ouvert, ce qui nous oblige à la couvrir pour éviter les dangers

Donc, les trois variantes proposées pour l'aménagement des cours d'eau sont :

- Variante n° 01 : reprofilage trapézoïdale + collecteur circulaire
- Variante n° 02 : canal rectangulaire en béton + collecteur circulaire
- Variante n° 03 : collecteur circulaire le long des oueds

4.4 Etude des variantes pour BV N°1 et N°2

4.4.1 Bassin versant N°1

L'aménagement du réseau hydrographique du bassin versant N°1 consiste à conserver son tracé actuel. Un reprofilage trapézoïdal, d'une largeur de 1.5 m, sera utilisé pour le tronçon N°1, tandis que des canaux circulaires en béton armé, dont le diamètre variera en fonction du débit et de la pente, seront mis en place pour le tronçon N°2

4.4.1.1 Dimensionnement des tronçons

Dimensionnement de tronçon N° 1 de BV N°1

Pour ce tronçon, la première variante proposée consiste à concevoir un reprofilage trapézoïdal, avec une rugosité de 0,035 et une pente variante entre 7% et 6%.

— Largeur du fond : b = 1.5m

— Fruit de talus : m = 2

— **Hauteur** : h = 1.2m

Les dimensions de ce canal ont été calculées en conséquence

Grâce au programme HEC-RAS, il est possible de visualiser les sections après aménagement. La figure suivante illustre la section du tronçon N°1, qui permet de gérer une crue centennale.

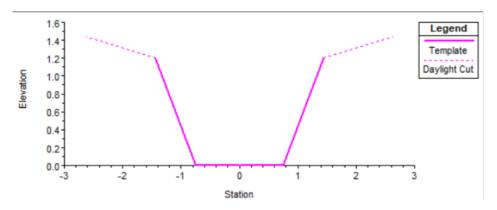


FIGURE 4.2 – Section transversal du TR $N^{\circ}1$

À l'aide du logiciel HEC-RAS, nous effectuons Le calcul des paramètres d'écoulement et les résultats de calcul se résument dans le tableau suivant :

Table 4.1 – Les calcul des paramètres d'écoulement et les résultat

Stations	Q Total	cote fond	N.L eau	H critique	N.L energie	Vel Chnl	N°Froude
Stations	(m^3/s)	(m)	(m)	(m)	(m)	(m/s)	N Froude
425	5.56	1043	1043.98	1043.98	1044.37	2.76	2.01
403	5.56	1040.99	1041.53	1041.97	1043.2	5.74	3.71
385	5.56	1039.41	1040.08	1040.39	1041.08	4.43	1.9
375	5.56	1038.56	1039.21	1039.54	1040.29	4.6	2
363	5.56	1037.46	1038.1	1038.44	1039.2	4.64	2.73
348	5.56	1036.14	1036.78	1037.12	1037.88	4.65	3.03
319	5.56	1033.54	1034.18	1034.52	1035.28	4.65	5.43
299	5.56	1031.72	1032.36	1032.7	1033.46	4.65	3.55
272	5.56	1029.29	1029.93	1030.27	1031.03	4.65	2.33
259	5.56	1028.11	1028.75	1029.09	1029.85	4.65	2.24
235	5.56	1026	1026.64	1026.98	1027.74	4.65	3.23
214	5.56	1024.15	1024.79	1025.13	1025.89	4.65	2.03
189	5.56	1021.89	1022.53	1022.87	1023.63	4.66	4.04
164	5.56	1019.64	1020.28	1020.62	1021.38	4.64	3.24
135	5.56	1017.08	1017.72	1018.06	1018.83	4.66	2.79
114	5.56	1015.2	1015.84	1016.18	1016.94	4.64	2.85
91	5.56	1013.16	1013.8	1014.14	1014.91	4.66	2.11
77	5.56	1011.95	1012.59	1012.93	1013.69	4.66	1.86
66	5.56	1010.97	1011.61	1011.94	1012.7	4.63	1.6
56	5.56	1010.06	1010.7	1011.04	1011.8	4.64	3.8
45	5.56	1009.1	1009.74	1010.08	1010.85	4.67	2.15
28	5.56	1007.56	1008.2	1008.54	1009.3	4.63	3.2
11	5.56	1006	1006.64	1006.98	1007.75	4.66	3

Dimensionnement des tronçons N° 2

Pour ces tronçons, nous proposons à concevoir des canaux circulaires en béton armées avec une rugosité de 70 et une pente varie entre 1.4% et 3%.

Dans notre dimensionnement, on utilisera la formule de MANNING-STRICKLER

a. Selon la formule de Manning-Strickler, L'expression du débit est :

$$(4.4) Q = S.Ks.\sqrt{I.R^{\frac{2}{3}}}$$

b. Nous calculons le diamètre par la formule suivante :

$$Dcal = 2.(\frac{4.Qt}{KS.\pi.\sqrt{I}})^{\frac{3}{8}}$$

c. par la relation suivante nous calculons Le débit en pleine section :

$$Qp = \frac{Vps.\pi(Dnor)^2}{4}$$

En remplaçant la pente et le débit dans la formule (b) pour calculer le diamètre et on le normalise.

d. Puis, on calcule la vitesse en pleine section par la relation suivante :

$$Vps = KS.\sqrt{I.Rh^{\frac{2}{3}}}$$

Sachant que : Rh = Dnor/4 pour une section circulaire et D son diamètre

- e. À partir de la relation de Qps, nous calculons le débit en pleine section et établissons les rapports Rq, Rv, ainsi que Rh. Les relations sont les suivantes :
 - Rapport des débits :

$$(4.8) Rq = \frac{Q}{Qps}$$

En utilisant les abaques présentés dans l'annexe II, nous pouvons calculer les rapports Rv et Rh.

— Rapport des vitesses:

$$(4.9) RV = \frac{V}{Vp}$$

— Rapport des hauteurs :

$$(4.10) Rh = \frac{H}{Dnor}$$

Avec:

- Q: Débit transporté dans la conduite circulaire en (m^3/s)
- V: vitesse moyenne d'écoulement en (m/s)
- H: hauteur de remplissage dans la conduite en (m)
- Dnor: diamètre normalisé de la conduite en (mm)
- I: pente du collecteur en (m/m)
- Qps: débit en pleine section en (m^3/s)
- Vps: vitesse à pleine section en (m/s)

f. Il faut vérifier les conditions d'auto curage :

Le réseau d'assainissement doit être auto-curait pour empêcher la décantation et éviter les dépôts, tout en ne provoquant pas l'érosion des parois de la conduite.

- a) Pour 1/10Qps : V >= o.6m/s
- b) Pour 1/100Qps : V >= 0.3m/s

Ces limites sont respectées avec :

- a) Vps = 1m/s: Pour une section circulaire
- b) Vps = 0.9m/s: Pour une section ovoïde

Voici un résumé des résultats des calculs des paramètres d'écoulement du canal A, présenté dans le tableau suivant :

TABLE 4.2 – Résultats des calculs des paramètres d'écoulement du canal du TR 2

troncons	Cote T	'N (m)	distance	pente	Q	V	Dcal	Dnor	Vps	Qps	Rq	Rv	Rh
tronçons	amont	Aval	(m)	(m/m)	(m^3/s)	(m/s)	(mm)	(mm)	(m/s)	(m^3/s)	nq	1tv	1011
R20-R21	1082.89	1080.44	51	0.007869	5.6	4.941	1302.26	1500	4.61	8.148	0.69	1.073	0.61
R21-R22	1080.44	1078.44	62	0.007236	5.6	4.775	1322.92	1500	4.42	7.81	0.72	1.081	0.62
R22-R23	1078.44	1075.15	30	0.008	5.6	4.975	1298.24	1500	4.65	8.22	0.68	1.071	0.6
R23-R24	1075.15	1071.12	30	0.007667	5.6	4.889	1308.64	1500	4.55	8.04	0.7	1.075	0.61
R24-R25	1071.12	1066.94	30	0.007667	5.6	4.889	1308.64	1500	4.55	8.04	0.7	1.075	0.61
R25-R26	1066.94	1065.86	30	0.007667	5.6	4.889	1308.64	1500	4.55	8.04	0.7	1.075	0.61
R26-R27	1065.86	1064.94	34	0.007895	5.6	4.948	1301.46	1500	4.62	8.16	0.69	1.072	0.6
R27-R28	1064.94	1062.89	50	0.008	5.6	4.975	1298.24	1500	4.65	8.22	0.68	1.071	0.6
R28-R29	1062.89	1061.41	30.623	0.007511	5.6	4.848	1313.7	1500	4.51	7.96	0.7	1.077	0.62
R29-R30	1061.41	1059.48	50	0.00756	5.6	4.86	1312.09	1500	4.52	7.99	0.7	1.076	0.61
R30-R31	1059.48	1057.67	50	0.0072	5.6	4.766	1324.14	1500	4.41	7.79	0.72	1.082	0.62
R31-R32	1057.67	1053.68	60	0.008167	5.6	5.018	1293.23	1500	4.7	8.3	0.14	0.692	0.25
R32-R33	1053.68	1051.45	50.48	0.007528	5.6	4.852	1313.14	1500	4.51	7.97	0.7	1.077	0.61

Table 4.3 – Verification de l'Autocurage

02041	m age	érifie												
Vitogo Anton	vivesse raunom age	Autocurage vérifie												
Q'min	(m ³ /s)	0.0815	0.0781	0.0822	0.0804	0.0804	0.0804	0.0816	0.0822	9610.0	0.0799	0.0779	0.083	0.0797
Hmin	(III)	0.044	0.044	0.044	0.044	0.044	0.044	0.044	0.044	0.044	0.044	0.044	0.38	0.044
Vmin	(s/m)	0.83	0.796	0.837	0.82	0.82	0.82	0.832	0.837	0.811	0.814	0.794	3.25	0.812
Phmin		0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.25	0.03
Rumin		0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18	69.0	0.18
Domin	M.	0.144	0.145	0.144	0.143	0.142	0.143	0.149	0.145	0.147	0.141	0.139	0.141	0.142
Qmin	m ³ /s)	0.81	0.78	0.82	8.0	8.0	8:0	0.82	0.82	8.0	8.0	0.78	0.83	8.0
ops.	(m ³ /s)	8.148	7.81	8.22	8.04	8.04	8.04	8.16	8.22	96.7	7.99	7.79	8.3	7.97
Nps	(s/m)	4.61	4.42	4.65	4.55	4.55	4.55	4.62	4.65	4.51	4.52	4.41	4.7	4.51
Dnor	(mm)	1500	1500	1500	1500	1500	1500	1500	1500	1500	1500	1500	1500	1500
8	(m ³ /s)	9.6	9.6	9.6	5.6	9.6	9.6	9.6	9.6	9.6	9.6	9.6	9.6	9.6
pente	(m/m)	0.0079	0.0072	800.0	0.0077	0.0077	0.0077	0.0079	0.008	0.0075	0.0076	0.0072	0.0082	0.0075
distance	Œ	50.831	62.193	88	8	8	88	34.199	26	30.623	50.266	26	09	50.48
lonA	TAVAL	1080.44	1078.44	1075.15	1071.12	1066.94	1065.86	1064.94	1062.89	1061.41	1059.48	1057.67	1053.68	1051.45
Cote TIN (m)	Amont	1082.89	1080,44	1078.44	1075.15	1071.12	1066.94	1065.86	1064.94	1062.89	1061.41	1059.48	1057.67	1053.68
110011011011	SIIOJIIOIO	R20-R21	R21-R22	R22-R23	R23-R24	R24-R25	R25-R26	R26-R27	R27-R28	R28-R29	R29-R30	R30-R31	R31-R32	R32-R33

4.4.1.2 Variante N°2

Pour ce tronçon, la deuxième option proposée consiste à concevoir un canal rectangulaire en béton avec une rugosité de 63 et une pente variante entre 3% et 4.5%. Les dimensions de ce canal trapézoïdal sont déterminées à l'aide de la formule de Strickler-Manning :

- Largeur du fond : b = 1.1m
- Fruit de talus : m = 0 / (Rectangle type Dalot)
- Hauteur: h = 1m

Nous pouvons visualiser les sections après l'aménagement grâce au programme HEC-RAS, et la figure suivante montre la section du tronçon $N^{\circ}2$ qu'il assure la crue centennale.

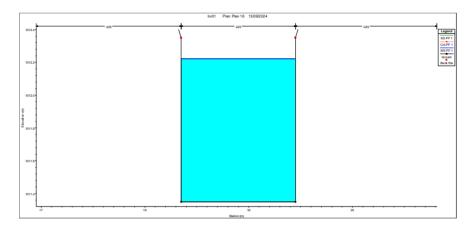


FIGURE 4.3 – Section transversal du tronçon 2

4.4.1.3 Variante N°3

La troisième variante consiste à construire un canal rectangulaire le long de l'oued, avec un diamètre de 1500 mm et une pente inférieure à 1%.

Voici un résumé des résultats des calculs des paramètres d'écoulement du **canal A**, présenté dans le tableau suivant :

Table 4.4 – Résultats de dimensionnement de tronçon N°1et 2 – BV N°1

t	Cote T	'N (m)	distance	pente	Q	V	Dcal	Dnor	Vps	Qps	Rq	Rv	Rh
tronçons	amont	Aval	(m)	(m/m)	(m^3/s)	(m/s)	(mm)	(mm)	(m/s)	(m^3/s)	nq	ιν	KII
R20-R21	1082.89	1080.44	50831	0.0079	5.56	4.941	1298.76	1500	4.61	8.15	0.68	1071	0.6
R21-R22	1080.44	1078.44	62193	0.0072	5.56	4.775	1319.37	1500	4.42	7.81	0.71	1080	0.62
R22-R23	1078.44	1075.15	30	0.008	5.56	4.975	1294.76	1500	4.65	8.22	0.68	1070	0.6
R23-R24	1075.15	1071.12	30	0.0077	5.56	4.889	1305.13	1500	4.55	8.04	0.69	1074	0.61
R24-R25	1071.12	1066.94	30	0.0077	5.56	4.889	1305.13	1500	4.55	8.04	0.69	1074	0.61
R25-R26	1066.94	1065.86	30	0.0077	5.56	4.889	1305.13	1500	4.55	8.04	0.69	1074	0.61
R26-R27	1065.86	1064.94	34.199	0.0079	5.56	4.948	1297.97	1500	4.62	8.16	0.68	1.071	0.6
R27-R28	1064.94	1062.89	50	0.008	5.56	4.975	1294.76	1500	4.65	8.22	0.68	1.07	0.6
R28-R29	1062.89	1061.41	30.623	0.0075	5.56	4.848	1310.17	1500	4.51	7.96	0.7	1.076	0.61
R29-R30	1061.41	1059.48	50.266	0.0076	5.56	4.86	1308.57	1500	4.52	7.99	0.7	1.075	0.61
R30-R31	1059.48	1057.67	50	0.0072	5.56	4.766	1320.59	1500	4.41	7.79	0.71	1.08	0.62
R31-R32	1057.67	1053.68	60	0.0082	5.56	5.018	1289.76	1500	4.7	8.3	0.67	1.068	0.59
R32-R33	1053.68	1051.45	50.48	0.0075	5.56	4.852	1309.61	1500	4.51	7.97	0.7	1.075	0.61
R33-R34	1051.45	1049.5	30	0.0083	5.56	5.061	1284.88	1500	4.75	8.38	0.66	1.066	0.59
R34-R35	1049.5	1046.78	30	0.0073	5.56	4.801	1316.05	1500	4.45	7.87	0.71	1.078	0.62
R35-R36	1046.78	1043.5	30	0.0077	5.56	4.889	1305.13	1500	4.55	8.04	0.69	1.074	0.61
R36-R37	1043.5	1041.45	30	0.0067	5.56	4.626	1339.78	1500	4.25	7.5	0.74	1.09	0.64
R37-R38	1041.45	1039.89	30.702	0.0085	5.56	5.096	1281.01	1500	4.79	8.45	0.66	1.065	0.59
R38-R39	1039.89	1038	50	0.0078	5.56	4.923	1300.92	1500	4.59	8.11	0.69	1.072	0.6
R39-R40	1038	1033.93	50	0.0074	5.56	4.819	1313.82	1500	4.47	7.9	0.7	1.077	0.62
R40-R41	1033.93	1028.93	50	0.02	5.56	6.99	1090.37	1500	6.34	7.16	0.78	1.103	0.66
R41-R42	1028.93	1025.39	30	0.008	5.56	4.975	1294.76	1500	4.65	8.22	0.68	1.07	0.6
R42-R43	1025.39	1021.81	30	0.0077	5.56	4.889	1305.13	1500	4.55	8.04	0.69	1.074	0.61
R43-R44	1021.81	1018.24	30	0.0073	5.56	4.801	1316.05	1500	4.45	7.87	0.71	1.078	0.62
R44-R45	1018.24	1013.74	40.091	0.0075	5.56	4.84	1311.08	1500	4.5	7.95	0.7	1.076	0.61

Table 4.5 – Vérification de vitesse d'auto curage le 1/10 et le 1/100 du Débit plaine section

trongong	Cote T	'N (m)	distance	pente	Q	Dnor	Vps	Qps	Qmin	Vmin	Hmin	Qʻmin	Vitesse Autocurage
tronçons	Amont	Aval	(m)	(m/m)	(m^3/s)	(mm)	(m/s)	(m^3/s)	m^3/s)	(m/s)	(m)	$m^3/\mathrm{s})$	vitesse Autocurage
R20-R21	1082.89	1080.44	50.831	0.0079	5.56	1500	4.61	8.15	0.81	0.83	0.044	0.0815	Autocurage vérifie
R21-R22	1080.44	1078.44	62.193	0.0072	5.56	1500	4.42	7.81	0.78	0.796	0.044	0.0781	Autocurage vérifie
R22-R23	1078.44	1075.15	30	0.008	5.56	1500	4.65	8.22	0.82	0.837	0.044	0.0822	Autocurage vérifie
R23-R24	1075.15	1071.12	30	0.0077	5.56	1500	4.55	8.04	0.8	0.82	0.044	0.0804	Autocurage vérifie
R24-R25	1071.12	1066.94	30	0.0077	5.56	1500	4.55	8.04	0.8	0.82	0.044	0.0804	Autocurage vérifie
R25-R26	1066.94	1065.86	30	0.0077	5.56	1500	4.55	8.04	0.8	0.82	0.044	0.0804	Autocurage vérifie
R26-R27	1065.86	1064.94	34.199	0.0079	5.56	1500	4.62	8.16	0.82	0.832	0.044	0.0816	Autocurage vérifie
R27-R28	1064.94	1062.89	50	0.008	5.56	1500	4.65	8.22	0.82	0.837	0.044	0.0822	Autocurage vérifie
R28-R29	1062.89	1061.41	30.623	0.0075	5.56	1500	4.51	7.96	0.8	0.811	0.044	0.0796	Autocurage vérifie
R29-R30	1061.41	1059.48	50.266	0.0076	5.56	1500	4.52	7.99	0.8	0.814	0.044	0.0799	Autocurage vérifie
R30-R31	1059.48	1057.67	50	0.0072	5.56	1500	4.41	7.79	0.78	0.794	0.044	0.0779	Autocurage vérifie
R31-R32	1057.67	1053.68	60	0.0082	5.56	1500	4.7	8.3	0.83	0.846	0.044	0.083	Autocurage vérifie
R32-R33	1053.68	1051.45	50.48	0.0075	5.56	1500	4.51	7.97	0.8	0.812	0.044	0.0797	Autocurage vérifie
R33-R34	1051.45	1049.5	30	0.0083	5.56	1500	4.75	8.38	0.84	0.854	0.044	0.0838	Autocurage vérifie
R34-R35	1049.5	1046.78	30	0.0073	5.56	1500	4.45	7.87	0.79	0.802	0.044	0.0787	Autocurage vérifie
R35-36	1046.78	1043.5	30	0.0077	5.56	1500	4.55	8.04	0.8	0.82	0.044	0.0804	Autocurage vérifie
R36-R37	1043.5	1041.45	30	0.0067	5.56	1500	4.25	7.5	0.75	0.764	0.044	0.075	Autocurage vérifie
R37-R38	1041.45	1039.89	30.702	0.0085	5.56	1500	4.79	8.45	0.85	0.861	0.044	0.0845	Autocurage vérifie
R38-R39	1039.89	1038	50	0.0078	5.56	1500	4.59	8.11	0.81	0.827	0.044	0.0811	Autocurage vérifie
R39-R40	1038	1033.93	50	0.0074	5.56	1500	4.47	7.9	0.79	0.805	0.044	0.079	Autocurage vérifie
R40-R41	1033.93	1028.93	50	0.02	5.56	1500	6.34	7.16	0.72	1.141	0.035	0.0716	Autocurage vérifie
R41-R42	1028.93	1025.39	30	0.008	5.56	1500	4.65	8.22	0.82	0.837	0.044	0.0822	Autocurage vérifie
R42-R43	1025.39	1021.81	30	0.0077	5.56	1500	4.55	8.04	0.8	0.82	0.044	0.0804	Autocurage vérifie
R43-R44	1021.81	1018.24	30	0.0073	5.56	1500	4.45	7.87	0.79	0.802	0.044	0.0787	Autocurage vérifie
R44-R45	1018.24	1013.74	40.091	0.0075	5.56	1500	4.5	7.95	0.79	0.81	0.044	0.0795	Autocurage vérifie

4.4.1.4 Estimations du cout des variantes et étude comparative

Pour comparer les différentes variantes, il est nécessaire de connaître le coût de réalisation de chacune d'entre elles. Le Tableau **4.5** présente une estimation des coûts de réalisation.

Variantes

Designation des travaux

HT totale (DA)

variante N°1

Travaux de terrassement et canalisations
de 1500mm et reprofilage 1.5*1.2

variante N°2

Travaux de terrassement et canalisations de
1500mm et Canal rectangulaire en béton 1*1.1

variante N°3

Canalisations de 1500mm le l'oued 01

43993440

TABLE 4.6 – Estimation des coûts de réalisation

Dans les études comparatives, les variables sont sélectionnées en fonction de plusieurs critères :

- Potentiel d'amélioration de la capacité hydraulique grâce aux mesures proposées.
- Niveau de difficulté technique pour la mise en œuvre.
- Aspects environnementaux, prenant en compte l'utilisation des terres et les impacts environnementaux existants ou les ressources de la zone (urbaines, agricoles, etc.).
- La durabilité dans le cadre du développement est également considérée.
- Étendue et fréquence de l'entretien nécessaire.
- Existence d'autres impacts, correspondant aux effets secondaires du développement sur l'environnement.
- Le coût, conformément aux estimations de construction [11].

Il est constaté que, pour la deuxième et la première variante, la difficulté de réalisation réside principalement dans les défis liés à la construction des canaux, notamment les problèmes de terrassement, l'ajustement des pentes de la section, et les risques d'effondrement.

Cependant, la troisième variante présente de nombreux avantages, tels qu'une économie en terrassement et une facilité d'exploitation de l'ouvrage. Après cette comparaison, il apparaît clairement que la variante N°3 est la solution optimale pour le bassin versant n°1, tant du point de vue technique et écologique.

4.4.2 Bassin versant N°2

4.4.2.1 Variante N°1

Dimensionnement de tronçon $N^{\circ}2$ de BV $N^{\circ}2$

Pour ce tronçon, la première option proposée consiste à concevoir un reprofilage avec une une pente variante entre 5% et 6%

— Largeur du fond : b = 1m

— Fruit de talus :m = 2

— **Hauteur** : h = 0.5m

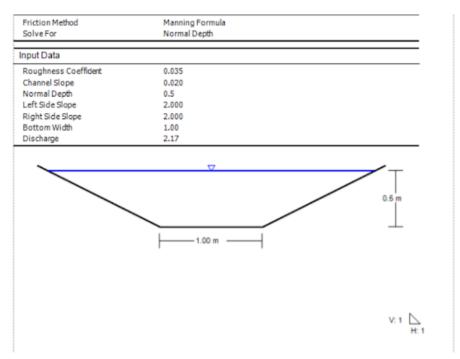


FIGURE 4.4 – Section transversal du tronçon 2 bassin 02

Dimensionnement de tronçon N°1 de BV N°2

Pour ce tronçon, la première option proposée consiste à concevoir des canaux circulaires en béton armé avec une rugosité de 70 et une pente variante entre 1% et 1.4%.

Grâce au mode de calcul mentionné précédemment pour les conduites circulaires, nous sommes en mesure de dimensionner ces canaux de manière précise.

Le tableau suivant résume les résultats des calculs des paramètres d'écoulement :

troncons	Cote TN (m)		distance	pente	Q	V	Dcal	Dnor	Vps	Qps	Rq	Rv	Rh
tronçons	amont	Aval	(m)	(m/m)	(m^3/s)	(m/s)	(mm)	(mm)	(m/s)	(m^3/s)	1tq	160	1011
R01-R02	1069.67	1067.88	20257	0.012	2.17	4.58	845.24	1000	4.32	3391	0.64	1060	0.58
R02-R03	1067.88	1065.95	20613	0.011	2.17	4.465	854.8	1000	4.19	3.29	0.66	1065	0.59
R03-R04	1065.95	1064.17	20724	0.014	2.17	4.835	824.68	1000	4.61	3.62	0.6	1048	0.55
R04-R05	1064.17	1062.57	20506	0.01	2.17	4.224	876.64	1000	3.92	3.08	0.71	1078	0.62
R05-R06	1062.57	1061.59	20547	0.014	2.17	4.852	823.35	1000	4.63	3.64	0.6	1047	0.55
R06-R07	1061.59	1059.75	20524	0.012	2.17	4.554	847.32	1000	4.29	3.37	0.64	1061	0.58
R07-R08	1059.75	1058.12	20449	0.014	2.17	4.861	822.61	1000	4.64	3.65	0.6	1047	0.55
R08-R09	1058.12	1056.04	20135	0.014	2.17	4.891	820.23	1000	4.68	3.67	0.59	1045	0.55

Table 4.7 – Résultats de dimensionnement pour tronçon 1 de BV N°2

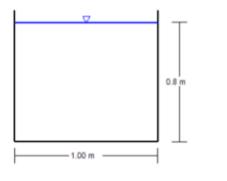
TABLE 4.8 – Vérification de vitesse d'auto curage le 1/10 et le 1/100 du Débit plaine section

troncona	Cote TN (m)		distance	pente	Q	Dnor	Vps	Qps	Qmin	Vmin	Hmin	Qʻmin	Vitesse Autocurage
tronçons	Amont	Aval	(m)	(m/m)	(m^3/s)	(mm)	(m/s)	(m^3/s)	$m^3/\mathrm{s})$	(m/s)	(m)	$m^3/\mathrm{s})$	vitesse Autocurage
R01-R02	1069.67	1067.88	20.257	0.0118	2.17	1000	4.32	3.391	0.34	0.83	0.029	0.0339	Autocurage vérifie
R02-R03	1067.88	1065.95	20.613	0.0112	2.17	1000	4.19	3.29	0.33	0.796	0.029	0.0329	Autocurage vérifie
R03-R04	1065.95	1064.17	20.724	0.0135	2.17	1000	4.61	3.62	0.36	0.837	0.029	0.0362	Autocurage vérifie
R04-R05	1064.17	1062.57	20.506	0.0098	2.17	1000	3.92	3.08	0.31	0.82	0.029	0.0308	Autocurage vérifie
R05-R06	1062.57	1061.59	20.547	0.0136	2.17	1000	4.63	3.64	0.36	0.82	0.029	0.0364	Autocurage vérifie
R06-R07	1061.59	1059.75	20.524	0.0117	2.17	1000	4.29	3.37	0.34	0.82	0.029	0.0337	Autocurage vérifie
R07-R08	1059.75	1058.12	20.449	0.0137	2.17	1000	4.64	3.65	0.36	0.832	0.029	0.0365	Autocurage vérifie
R08-R09	1058.12	1056.04	20.135	0.0139	2.17	1000	4.68	3.67	0.37	0.837	0.029	0.0367	Autocurage vérifie

4.4.2.2 Variante N°2

Il s'agit également de développer le réseau hydrographique du bassin versant $N^\circ 2$ dans son tracé actuel, en optant pour un canal rectangulaire en béton armé d'une largeur de 1 m pour le tronçon $N^\circ 2$, tout en conservant la variante des canaux circulaires en béton armé pour le tronçon $N^\circ 1$.

Dimensionnement de tronçon N°2 de BV N°2


Pour ce tronçon, nous proposons de concevoir un canal rectangulaire en béton armé, avec une rugosité de 63 et une pente variante entre 1.5% et 2%

— Largeur du fond : b = 1m

— Fruit de talus :m = 0

— **Hauteur** : h = 0.8m

Input Data									
Roughness Coeffident	0.025								
Channel Slope	0.020								
Normal Depth	0.8								
Bottom Width	1.00								
Discharge	2.17								

V: 1 H: 1

FIGURE 4.5 – Section transversal du tronçon 2

4.4.2.3 Variante N°3

Elle consiste également à construire un canal circulaire le long de l'oued, avec un diamètre de $1000~\rm mm$ et une pente comprise entre 1% et 1.5%.

TABLE 4.9 – Résultats de dimensionnement de troncon 1 et 2

trongong	Cote T	'N (m)	distance	pente	Q	V	Dcal	Dnor	Vps	Qps	Rq	Rv	Rh
tronçons	amont	Aval	(m)	(m/m)	(m^3/s)	(m/s)	(mm)	(mm)	(m/s)	(m^3/s)	Ivq	Itv	1111
R01-R02	1069.67	1067.88	20.257	0.0118	2.17	4.58	845.24	1000	4.32	3.391	0.64	1.06	0.58
R02-R03	1067.88	1065.95	20.613	0.0112	2.17	4.465	854.8	1000	4.19	3.29	0.66	1.065	0.59
R03-R04	1065.95	1064.17	20.724	0.0135	2.17	4.835	824.68	1000	4.61	3.62	0.6	1.048	0.55
R04-R05	1064.17	1062.57	20.506	0.0098	2.17	4.224	876.64	1000	3.92	3.08	0.71	1.078	0.62
R05-R06	1062.57	1061.59	20.547	0.0136	2.17	4.852	823.35	1000	4.63	3.64	0.6	1.047	0.55
R06-R07	1061.59	1059.75	20.524	0.0117	2.17	4.554	847.32	1000	4.29	3.37	0.64	1.061	0.58
R07-R08	1059.75	1058.12	20.449	0.0137	2.17	4.861	822.61	1000	4.64	3.65	0.6	1.047	0.55
R08-R09	1058.12	1056.04	20.135	0.0139	2.17	4.891	820.23	1000	4.68	3.67	0.59	1.045	0.55
R09-R10	1056.04	1053.81	20.607	0.0136	2.17	4.846	823.8	1000	4.63	3.63	0.6	1.048	0.55
R10-R11	1053.81	1051.31	20.739	0.0145	2.17	4.968	814.19	1000	4.77	3.75	0.58	1.041	0.54
R11-R12	1051.31	1049.02	20.19	0.0119	2.17	4.586	844.72	1000	4.33	3.4	0.64	1.06	0.58
R12-R13	1049.02	1047.04	19.958	0.014	2.17	3.251	818.87	1000	4.7	3.69	0.14	0.692	0.25
R13-R14	1047.04	1045.17	20	0.011	2.17	4.439	857.09	1000	4.16	3.27	0.66	1.066	0.59
R14-R15	1045.17	1043.2	20	0.011	2.17	4.439	857.09	1000	4.16	3.27	0.66	1.066	0.59
R15-R16	1043.2	1040.62	20	0.014	2.17	4.904	819.2	1000	4.7	3.69	0.59	1.044	0.55
R16-R17	1040.62	1037.98	20	0.0145	2.17	4.01	813.82	1000	4.78	3.75	0.58	1.131	0.54
R17-R18	1037.98	1035.16	20	0.011	2.17	4.439	857.09	1000	4.16	3.27	0.66	1.066	0.59
R18-R19	1035.16	131.61	20	0.0125	2.17	4.683	836.79	1000	4.44	3.48	0.62	1.056	0.57
R19-R20	131.61	1029.58	20	0.0115	2.17	4.523	849.97	1000	4.26	3.34	0.65	1.063	0.58

TABLE 4.10 – Vérification de vitesse d'auto curage le 1/10 et le 1/100 du Débit plaine section

t	Cote T	'N (m)	distance	pente	Q	Dnor	Vps	Qps	Qmin	Vmin	Hmin	Qʻmin	Vitesse Autocurage
tronçons	Amont	Aval	(m)	(m/m)	(m^3/s)	(mm)	(m/s)	(m^3/s)	m^3/s)	(m/s)	(m)	$m^3/\mathrm{s})$	vitesse Autocurage
R01-R02	1069.67	1067.88	20.257	0.0118	2.17	1000	4.32	3.391	0.34	0.778	0.029	0.0339	Autocurage vérifie
R02-R03	1067.88	1065.95	20.613	0.0112	2.17	1000	4.19	3.29	0.33	0.755	0.029	0.0329	Autocurage vérifie
R03-R04	1065.95	1064.17	20.724	0.0135	2.17	1000	4.61	3.62	0.36	0.83	0.029	0.0362	Autocurage vérifie
R04-R05	1064.17	1062.57	20.506	0.0098	2.17	1000	3.92	3.08	0.31	0.705	0.029	0.0308	Autocurage vérifie
R05-R06	1062.57	1061.59	20.547	0.0136	2.17	1000	4.63	3.64	0.36	0.834	0.029	0.0364	Autocurage vérifie
R06-R07	1061.59	1059.75	20.524	0.0117	2.17	1000	4.29	3.37	0.34	0.772	0.029	0.0337	Autocurage vérifie
R07-R08	1059.75	1058.12	20.449	0.0137	2.17	1000	4.64	3.65	0.36	0.836	0.029	0.0365	Autocurage vérifie
R08-R09	1058.12	1056.04	20.135	0.0139	2.17	1000	4.68	3.67	0.37	0.842	0.029	0.0367	Autocurage vérifie
R09-R10	1056.04	1053.81	20.607	0.0136	2.17	1000	4.63	3.63	0.36	0.833	0.029	0.0363	Autocurage vérifie
R10-R11	1053.81	1051.31	20.739	0.0145	2.17	1000	4.77	3.75	0.37	0.859	0.029	0.0375	Autocurage vérifie
R11-R12	1051.31	1049.02	20.19	0.0119	2.17	1000	4.33	3.4	0.34	0.779	0.029	0.034	Autocurage vérifie
R12-R13	1049.02	1047.04	19.958	0.014	2.17	1000	4.7	3.69	0.37	3.251	0.253	0.0369	Autocurage vérifie
R13-R14	1047.04	1045.17	20	0.011	2.17	1000	4.16	3.27	0.33	0.749	0.029	0.0327	Autocurage vérifie
R14-R15	1045.17	1043.2	20	0.011	2.17	1000	4.16	3.27	0.33	0.749	0.029	0.0327	Autocurage vérifie
R15-R16	1043.2	1040.62	20	0.014	2.17	1000	4.7	3.69	0.37	0.845	0.029	0.0369	Autocurage vérifie
R16-R17	1040.62	1037.98	20	0.0145	2.17	1000	4.78	3.75	0.38	0.86	0.029	0.0375	Autocurage vérifie
R17-R18	1037.98	1035.16	20	0.011	2.17	1000	4.16	3.27	0.33	0.749	0.029	0.0327	Autocurage vérifie
R18-R19	1035.16	131.61	20	0.0125	2.17	1000	4.44	3.48	0.35	0.799	0.029	0.0348	Autocurage vérifie
R19-R20	131.61	1029.58	20	0.0115	2.17	1000	4.26	3.34	0.33	0.766	0.029	0.0334	Autocurage vérifie

4.4.2.4 Estimation du coût des variantes et étude comparative

Le coût des réalisations des deux variantes est présenté dans le tableau suivant :

TABLE 4.11 – Estimation des coûts de réalisation

Variantes	Designation des travaux	HT totale (DA)
variante N°1	Travaux de terrassement et canalisations	11985365
	de 1000mm et reprofilage 1*0.5	
variante N°2	Travaux de terrassement et canalisations de	12039568
	1000mm et Canal rectangulaire en béton 1*0.8	
variante N°3	Canalisations de 1000mm le l'oued 01	12431907

A partir d'une étude comparative pour ce bassin, nous constatons également pour la variante N°1 et 2, une difficulté de réalisation des travaux de terrassement d'une coté de construction, Alors nous choisirons la variante N°3 adaptés pour le bassin versant N° 2.

4.4.3 Bassin versant N°3

Pour le bassin versant N°3, aucune variante alternative n'a été proposée pour l'aménagement du réseau hydrologique, à l'exception de la réalisation de canaux circulaires en béton armé avec des diamètres variables selon le débit et la pente. Cela s'explique par les raisons mentionnées précédemment.

4.4.3.1 Dimensionnement de canal C de BV N°3

La proposition pour ce tronçon consiste à concevoir des canaux circulaires en béton armé, avec une rugosité de 70 et une pente inférieure à 1%. Le dimensionnement de ces canaux peut

être effectué en utilisant la méthode de calcul mentionnée précédemment pour les conduites circulaires. Les résultats du calcul des paramètres d'écoulement sont résumés dans le tableau ci-dessous :

Table 4.12 – Résultats de dimensionnement de BV N°3

tronconc	Cote 7	N (m)	distance	pente	Q	V	Dcal	Dnor	Vps	Qps	Rq	Rv	Rh
tronçons	amont	Aval	(m)	(m/m)	(m^3/s)	(m/s)	(mm)	(mm)	(m/s)	(m^3/s)	nq	ικν	Kn
R01-R02	1070.21	1067.4	19.196	0.0083	3.56	4.502	1087.02	1200	4.09	4.62	0.77	1.1	0.66
R02-R03	1067.4	1062.47	44.607	0.0096	3.56	4.756	1057.78	1200	4.4	4.97	0.72	1.081	0.62
R03-R04	1062.47	1058.73	52.277	0.0094	3.56	4.704	1063.36	1200	4.34	4.9	0.73	1.084	0.63
R04-R05	1058.73	1054.64	39.57	0.0099	3.56	4.798	1053.39	1200	4.45	5.03	0.71	1.078	0.62
R05-R06	1054.64	1051.45	30.536	0.0095	3.56	4.728	1060.74	1200	4.37	4.94	0.72	1.083	0.63
R06-R07	1051.45	1048.33	27.07	0.01	3.56	4.821	1051.04	1200	4.48	5.06	0.7	1.077	0.62
R07-R08	1048.33	1044.19	32.979	0.0103	3.56	4.886	1044.54	1200	4.55	5.14	0.69	1.074	0.61
R08-R09	1044.19	1041.56	22.681	0.0101	3.56	4.853	1047.78	1200	4.51	5.1	0.7	1.075	0.61
R09-R10	1041.56	1037.78	39.112	0.0097	3.56	4.77	1056.23	1200	4.42	4.99	0.71	1.08	0.62
R10-R11	1037.78	1033.8	36.926	0.0089	3.56	4.619	1072.91	1200	4.24	4.79	0.74	1.09	0.64
R11-R12	1033.8	1028.93	39.975	0.0105	3.56	4.924	1040.84	1200	4.59	5.19	0.69	1.072	0.6
R12-R13	1028.93	1023.52	61.773	0.0147	3.56	5.488	976.93	1200	4.82	3.78	0.94	1.139	0.76
R13-R14	1023.52	1021.05	38.584	0.0096	3.56	4.746	1058.82	1200	4.39	4.96	0.72	1.081	0.62
R14-R15	1021.05	1017.77	38.171	0.01	3.56	4.817	1051.41	1200	4.47	5.05	0.7	1.077	0.62
R15-R16	1017.77	1013.78	68.894	0.0107	3.56	4.97	1036.54	1200	4.64	5.25	0.68	1.07	0.6
R16-R17	1013.78	1010.29	88.296	0.0106	3.56	4.951	1038.27	1200	4.62	5.23	0.68	1.071	0.6
R17-R18	1010.29	1006.63	52.181	0.0098	3.56	4.782	1055.05	1200	4.43	5.01	0.71	1.079	0.62
R18-R19	1006.63	1002.18	73.621	0.0109	3.56	4.994	1034.29	1200	4.67	5.28	0.67	1.069	0.6
R19-R20	1002.18	1000.43	47.578	0.0105	3.56	4.925	1040.79	1200	4.59	5.19	0.69	1.072	0.6
R20-R21	1000.43	997.79	38.448	0.0101	3.56	4.854	1047.73	1200	4.51	5.1	0.7	1.075	0.61
R21-R22	997.79	995.04	32.032	0.0084	3.56	4.52	1084.74	1200	4.11	4.65	0.77	1.099	0.65
R22-R23	995.04	993.31	29.599	0.0095	3.56	4.721	1061.53	1200	4.36	4.93	0.72	1.083	0.63
R23-R24	993.31	992.5	26.752	0.0078	3.56	4.407	1099.31	1200	3.97	4.49	0.79	1.11	0.67

TABLE 4.13 – Vérification de vitesse d'auto curage le 1/10 et le 1/100 du Débit plaine section

tmomooma	Cote T	'N (m)	distance	pente	Q	Dnor	Vps	Qps	Qmin	Vmin	Hmin	Qʻmin	Vitesse Autocurage
tronçons	Amont	Aval	(m)	(m/m)	(m^3/s)	(mm)	(m/s)	(m^3/s)	m^3/s)	(m/s)	(m)	$m^3/\mathrm{s})$	vitesse Autocurage
R01-R02	1070.21	1067.4	19.196	0.0083	3.56	1200	4.09	4.62	0.46	0.736	0.035	0.0462	Autocurage vérifie
R02-R03	1067.4	1062.47	44.607	0.0096	3.56	1200	4.4	4.97	0.5	0.792	0.035	0.0497	Autocurage vérifie
R03-R04	1062.47	1058.73	52.277	0.0094	3.56	1200	4.34	4.9	0.49	0.781	0.035	0.049	Autocurage vérifie
R04-R05	1058.73	1054.64	39.57	0.0099	3.56	1200	4.45	5.03	0.5	0.801	0.035	0.0503	Autocurage vérifie
R05-R06	1054.64	1051.45	30.536	0.0095	3.56	1200	4.37	4.94	0.49	0.786	0.035	0.0494	Autocurage vérifie
R06-R07	1051.45	1048.33	27.07	0.01	3.56	1200	4.48	5.06	0.51	0.806	0.035	0.0506	Autocurage vérifie
R07-R08	1048.33	1044.19	32.979	0.0103	3.56	1200	4.55	5.14	0.51	0.819	0.035	0.0514	Autocurage vérifie
R08-R09	1044.19	1041.56	22.681	0.0101	3.56	1200	4.51	5.1	0.51	0.812	0.035	0.051	Autocurage vérifie
R09-R10	1041.56	1037.78	39.112	0.0097	3.56	1200	4.42	4.99	0.5	0.795	0.035	0.0499	Autocurage vérifie
R10-R11	1037.78	1033.8	36.926	0.0089	3.56	1200	4.24	4.79	0.48	0.763	0.035	0.0479	Autocurage vérifie
R11-R12	1033.8	1028.93	39.975	0.0105	3.56	1200	4.59	5.19	0.52	0.827	0.035	0.0519	Autocurage vérifie
R12-R13	1028.93	1023.52	61.773	0.0147	3.56	1200	4.82	3.78	0.38	0.867	0.029	0.0378	Autocurage vérifie
R13-R14	1023.52	1021.05	38.584	0.0096	3.56	1200	4.39	4.96	0.5	0.79	0.035	0.0496	Autocurage vérifie
R14-R15	1021.05	1017.77	38.171	0.01	3.56	1200	4.47	5.05	0.51	0.805	0.035	0.0505	Autocurage vérifie
R15-R16	1017.77	1013.78	68.894	0.0107	3.56	1200	4.64	5.25	0.53	0.836	0.035	0.0525	Autocurage vérifie
R16-R17	1013.78	1010.29	88.296	0.0106	3.56	1200	4.62	5.23	0.52	0.832	0.035	0.0523	Autocurage vérifie
R17-R18	1010.29	1006.63	52.181	0.0098	3.56	1200	4.43	5.01	0.5	0.797	0.035	0.0501	Autocurage vérifie
R18-R19	1006.63	1002.18	73.621	0.0109	3.56	1200	4.67	5.28	0.53	0.841	0.035	0.0528	Autocurage vérifie
R19-R20	1002.18	1000.43	47.578	0.0105	3.56	1200	4.59	5.19	0.52	0.827	0.035	0.0519	Autocurage vérifie
R20-R21	1000.43	997.79	38.448	0.0101	3.56	1200	4.51	5.1	0.51	0.812	0.035	0.051	Autocurage vérifie
R21-R22	997.79	995.04	32.032	0.0084	3.56	1200	4.11	4.65	0.47	0.741	0.035	0.0465	Autocurage vérifie
R22-R23	995.04	993.31	29.599	0.0095	3.56	1200	4.36	4.93	0.49	0.785	0.035	0.0493	Autocurage vérifie
R23-R24	993.31	992.5	26.752	0.0078	3.56	1200	3.97	4.49	0.45	0.715	0.035	0.0449	Autocurage vérifie

4.5 Ouvrages et éléments utilisés

Les principaux ouvrages d'évacuation des eaux pluviales de notre zone vers le point de rejet sont les suivants :

4.5.1 Les canalisations [20]

Dans notre projet, nous utilisons des canalisations de forme circulaire pour l'évacuation des eaux pluviales. Ces canalisations sont définies par leur diamètre intérieur, également appelé diamètre nominal, exprimé en millimètres.

Il existe plusieurs types de conduites, qui varient en fonction de leur matériau et de leur utilisation spécifique [20] :

4.5.1.1 Conduites en béton non armé

Les tuyaux en béton ordinaire ou non armé sont fabriqués à la machine selon un procédé assurant une haute densité du béton. Leur longueur utile ne doit pas excéder 2,50 m. Ce type de canalisation présente un risque d'éclatement soudain si la couverture n'est pas suffisamment épaisse, un problème qui peut survenir dès les premières phases de l'installation. Il est déconseillé d'utiliser des canalisations non armées pour les conduites nécessitant une inspection [20].

4.5.1.2 Conduites en béton armé

Les tuyaux en béton armé sont fabriqués mécaniquement à l'aide de procédés tels que la compression radiale, la vibration ou la centrifugation, garantissant une densité élevée du béton. Ces conduites sont renforcées par deux rangées d'armatures : la première composée de barres droites, appelées génératrices, et la seconde de spires hélicoïdales continues avec un pas régulier ne dépassant pas 1,5 m. La longueur effective de ces tuyaux ne doit pas excéder 2 m [20].

4.5.1.3 Conduites en amiante – ciment

Les tuyaux et raccords en amiante-ciment sont fabriqués à partir d'un mélange de ciment Portland et de fibres d'amiante, réalisé en présence d'eau. Ce type de tuyau existe en deux versions, selon la méthode d'installation : verrouillables ou non emboîtables avec deux extrémités lisses. Les diamètres varient de 60 à 500 mm, et les longueurs entre 4 et 5 m. L'assemblage des tuyaux s'effectue à l'aide d'un raccord à rouleaux pour les diamètres de 100 à 600 mm, tandis que pour les tuyaux sans diamètre d'installation, une liaison coulissante peut être ajustée entre 700 et 800 mm, Bien que ces tuyaux soient résistants à la corrosion électrochimique, un inconvénient majeur est l'absence de grands diamètres sur le marché. De plus, ils ont été interdits en raison de leur caractère cancérigène [20].

4.5.1.4 Conduites en grés

Le grès utilisé pour la fabrication des tuyaux est composé en parts égales d'argile siliceuse, d'oxyde d'aluminium et de sable argileux, puis cuit à des températures comprises entre 1 200°C et 1 300°C. Ce procédé permet d'obtenir un matériau extrêmement imperméable, résistant à la plupart des produits chimiques, à l'exception de l'acide fluorhydrique. Ce type de tuyau est particulièrement recommandé pour une utilisation dans les zones industrielles. Sa longueur minimale est de 1 mètre, bien que son principal inconvénient soit sa faible résistance à l'affaissement. L'assemblage des tuyaux s'effectue par joint au mortier de ciment, joint avec corde goudronnée et mortier de ciment, ou par joint à double anneaux [20].

4.5.1.5 Conduites en chlorure de polyvinyle (p.v.c) non plastifié

Le PVC est un thermoplastique, une résine synthétique issue de la polymérisation du chlorure de vinyle, qui est lui-même synthétisé à partir du chlorure d'hydrogène. Le PVC rigide, non plastifié, couramment utilisé dans les équipements sanitaires, est opaque et standardisé dans une teinte gris clair. Il présente une excellente résistance aux agressions chimiques, ce qui le rend idéal pour les installations industrielles en intérieur. Si le tuyau n'est pas assemblé avec une douille à double bague d'étanchéité, une extrémité est équipée d'une douille formée en usine, comportant un dispositif de réception ou de retenue d'une bague en élastomère. Les raccordements par collage sont uniquement autorisés pour les tuyaux de petit diamètre, généralement destinés

aux branchements. Toutefois, les tuyaux en PVC non plastifiés sont sensibles aux variations de température.

Le choix des différents types de conduites est déterminé par plusieurs facteurs, tels que les pentes du terrain, les diamètres utilisés, la nature du sol traversé, la composition chimique des eaux usées, ainsi que les efforts extérieurs dus au remblai [20].

- Pour notre projet, nous avons choisi d'utiliser des canalisations en béton armé en raison des avantages qu'elles offrent :
 - 1. Une étanchéité essentielle
 - 2. Une résistance accrue aux efforts mécaniques et aux agressions chimiques.

4.5.2 Les joints des conduites en béton armé

'assemblage est conditionné par la qualité des connexions, qui doivent être adaptées à la nature de l'eau, à la stabilité du sol, ainsi qu'aux caractéristiques de la canalisation, telles que le diamètre et l'épaisseur. Pour les tuyaux en béton armé, nous proposons une gamme variée de joints [10]:

4.5.2.1 Joint type Rocla

La connexion se réalise à l'aide d'un manchon équipé d'un anneau en caoutchouc, garantissant un ajustement sûr. Ce type de joint offre une excellente étanchéité, tant à l'intérieur qu'à l'extérieur, et convient aux terrains à pente modérée. Il est adapté à tous les diamètres de tuyaux.

4.5.2.2 Joint à demi-emboîtement

Cette liaison, réalisée avec un cordon d'étanchéité en mortier de ciment, est destinée à être utilisée sur des supports stables. Cependant, en cas de pression excessive, il existe un risque de lessivage. Il est donc conseillé d'éviter son utilisation sur des terrains à forte pente

4.5.2.3 Joint à collet

Ce joint est scellé avec du mortier de ciment et est utilisé uniquement sur des sols de bonne qualité, légèrement en pente.

4.5.2.4 Joint torique

Adapté aux sols fragiles, il assure une bonne étanchéité tant que la pression n'est pas trop élevée et est utilisé pour des diamètres de 500 à 1 000 mm.

4.5.2.5 Joint à mortier de ciment

L'espace entre les deux tuyaux est rempli de mortier à base de ciment et de sable. Cependant, cette articulation est très rigide.

4.5.2.6 Joints plastiques

Ce type de joint est étanche et durable, même sous charge. La présence d'un cordon d'arrêt en asphalte et d'un anneau ou manchon en plastique garantit une excellente étanchéité. Cette conception bien pensée s'adapte à presque tous les types de sols.

4.5.2.7 Joint à double anneaux

L'anneau, en polyester, comporte deux parties : l'une en contact avec le fluide de la douille et l'autre en contact avec le fluide du tuyau

4.5.2.8 Joint mécanique

Les connexions mécaniques sont utilisées pour relier les extrémités lisses des tuyaux à des manchons d'étanchéité ou, pour les tuyaux sous pression, à des raccords

 Dans notre projet, nous utilisons des joints de type ROCLA pour les canalisations circulaires.

4.5.3 Les ouvrages de recueillie et de transport [20]

4.5.3.1 Les fossés

Les fossés servent à collecter l'eau provenant des routes rurales, sous condition d'un entretien régulier.

4.5.3.2 Les caniveaux

Leur rôle est de recueillir l'eau de pluie qui s'écoule des routes et des trottoirs, pour ensuite l'évacuer vers le réseau d'égouts.

4.5.3.3 Les bouches d'égout

Utilisées pour collecter les eaux de surface, qu'il s'agisse d'eau de pluie ou d'eau de lavage des routes. Elles sont généralement installées au point le plus bas des caniveaux, au niveau du trottoir, avec une distance moyenne de 50 mètres entre deux bouches d'égout [20].

4.5.4 Les regards [10]

Un regard est en réalité une ouverture permettant au personnel de maintenance d'accéder au réseau pour en assurer l'entretien et la surveillance. Le type de regard utilisé dépend de la taille et de la pente du terrain ainsi que du système d'évacuation en place [20].

4.5.4.1 Espacement et emplacement des regards

- L'espacement entre deux regards peut atteindre jusqu'à 80 m dans les terrains plats.
- Une distance de 200 à 300 m peut être laissée pour les ouvrages visitables, c'est-à-dire de grands diamètres.
- Pour les canalisations non visitables en terrains à pente régulière, la distance entre deux regards varie de 50 à 80 m.
- Les regards sont installés à chaque point de jonction, de changement de direction, de modification de pente, ainsi qu'aux points de chute [20]

4.5.4.2 Type des regards

On distingue plusieurs types, notamment :

- Regard de visite :

Conçu pour l'entretien courant et le curage régulier des canalisations, tout en assurant une bonne ventilation. L'espacement entre deux regards de visite varie entre 35 et 80 mètres [20].

— Regard de ventilation :

La circulation d'air dans les égouts est essentielle pour prévenir la fermentation et la production de sulfure d'hydrogène gazeux. La ventilation s'effectue à travers :

- 1. Des tampons de regards équipés d'orifices adaptés
- 2. Des tuyaux de chute prolongés jusqu'à l'air libre
- 3. Des cheminées placées le long de l'axe de la canalisation [20]

— :

Utilisé pour relier deux collecteurs de même ou de sections différentes. Ce regard est conçu pour :

- 1. Assurer une bonne ventilation des collecteurs à la jonction
- 2. Gérer les dénivelés entre les radiers des collecteurs
- 3. Éviter le reflux d'eau en période sèche
- 4. Maintenir les niveaux d'eau des conduites à la même hauteur [20]

- Regard de chute [20]:

Couramment utilisé dans les systèmes d'assainissement, ce type de regard permet de

dissiper l'énergie à des points localisés, particulièrement dans les zones à relief accidenté. Il existe deux types de chutes :

- a. **Chute verticale profonde :** Employée pour les canalisations de faible diamètre et fort débit, elle vise à réduire la vitesse d'écoulement.
- b. **Chute toboggan :** Utilisée pour des canalisations de plus grand diamètre, elle assure la continuité de l'écoulement et réduit les risques de remous.

- Regard de chasse:

Ce type de regard sert de réservoir périodique dans les sections où la pente d'écoulement est insuffisante. Il est placé aux endroits où les dépôts ont tendance à s'accumuler, risquant de bloquer la conduite [20]

4.6 Conclusions

Dans ce chapitre, nous présentons trois variantes d'aménagement urbain pour les bassins versants N°1 et 2, ainsi qu'une seule variante pour le bassin versant N°3, dans le but de protéger la zone d'étude des inondations.

Par la suite, une étude technico-économique a été réalisée afin de déterminer la solution la plus adaptée à la zone d'étude.

L'aménagement proposé se concentre sur l'utilisation de canaux circulaires pour l'évacuation des eaux pluviales.

Cette solution vise à couvrir l'ensemble de la zone d'étude, à protéger les résidents vivant de part et d'autre du réseau, et à résoudre définitivement les problèmes d'inondations récurrents lors des saisons pluvieuses, en assurant principalement le drainage des eaux de pluie issues de la zone d'étude.

ORGANISATION DE CHANTIER ET PLANIFICATION DES TRAVAUX

5.1 Introduction

Avant de déterminer toutes les caractéristiques et les éléments du projet et de débuter sa mise en œuvre, il est essentiel de passer par l'étape de calcul des quantités de travail. Cette phase consiste à évaluer et à coordonner l'utilisation des ressources nécessaires afin de réaliser les travaux de manière optimale et dans les délais les plus courts. Ce chapitre évalue l'ampleur des travaux à effectuer ainsi que le coût global du projet.

5.2 Planification des Travaux

La planification d'entreprise consiste à identifier la manière la plus efficace d'utiliser les ressources, notamment la main-d'œuvre, afin d'assurer l'efficience des activités. Cela inclut l'aménagement des postes de travail, le suivi et l'analyse des tâches, la définition claire des objectifs et des responsabilités, ainsi que la simplification des méthodes et la stabilisation des processus de travail[8].

5.3 Devis Quantitatif et Estimatif

Pour évaluer le coût de mise en œuvre d'un projet, il est nécessaire de réaliser des estimations quantitatives et financières. Ce calcul prend en compte le volume de tous les travaux à effectuer sur le site, ainsi que la quantité d'équipements et de matériaux nécessaires à la réalisation du projet, puis multiplie ces quantités par les prix unitaires correspondants[20].

Les principales tâches incluent :

- Creusement des tranchées
- Livraison et installation de lits de sable
- Livraison et pose des canalisations
- Construction de puits en béton armé
- Remplissage des espaces vides
- Transport des excédents de terre et travaux de génie civil

5.4 Les Différents Travaux de Réalisation

Les principaux travaux de construction de notre projet comprennent la réalisation detranchées et d'excavations, la mise en place de lits, la pose de canalisations et de regards, l'assemblage des canalisations, les essais de traction des canalisations et des joints, ainsi que le remblayage des tranchées[8].

5.4.1 Excavation des Tranchées et des Fouilles

Lors de la construction, il est essentiel de maintenir la pente conformément au profil longitudinal. L'excavation doit être effectuée mécaniquement, en progressant de l'aval vers l'amont. Ces opérations requièrent des paramètres spécifiques, tels que la profondeur du puits, la profondeur de la tranchée, ainsi que la largeur de la tranchée.

5.4.2 Profondeur de la Tranchée

La profondeur de la tranchée est calculée de manière à éviter l'interconnexion avec d'autres canalisations et à permettre une exécution correcte des connexions.

La formule théorique pour calculer la profondeur d'une tranchée est la suivante :

$$(5.1) H = e + d + h(m)$$

Avec:

- -H: Profondeur de la tranchée en mètres (m)
- e: Hauteur totale du sable, avec e=0,2 (lit de pose r=0.1m et sable au-dessus de la conduite t=0,1m)
- *d* : Diamètre de la conduite en mètres (*m*)
- h: Hauteur du remblai au-dessus du sable, au-dessus de la conduite(h=0.85 m)

5.4.2.1 Largeur de la Tranchée

La largeur de la tranchée dépend principalement des dimensions extérieures des tuyaux, du type d'emboîtement, de la fondation, et de l'espace minimum requis entre la canalisation et la paroi de la tranchée pour assurer une pose correcte ainsi qu'un remblayage latéral compacté de manière adéquate. Sur le plan économique, il n'est pas avantageux de creuser des tranchées trop larges en raison des coûts élevés de terrassement. Il est donc préférable de réaliser desfouilles avec des largeurs minimales.

La largeur d'ouverture de la tranchée peut être calculée à l'aide de la formule suivante :

$$(5.2) B = d + (2 \times C)(m)$$

Avec:

- -B: la largeur de la tranchée en (m)
- -d: le diamètre extérieur de la conduite en (m)
- C: l'écartement entre les parois de la tranchée et la conduite :
 - 1. C=30m si H < 1.5m
 - 2. C=50m si 1.5 < H < 2m
 - 3. C=0.75 si H>2m

5.4.2.2 Volume des Tranchées

Le volume des tranchées est donné par la formule théorique suivante :

$$(5.3) Vtr = B \times H \times L$$

Où:

- Vtr: volume de la tranchée en mètres cubes (m^2)
- -B: largeur de la tranchée en mètres (m)
- -H: profondeur de la tranchée en mètres (m)
- L: longueur de la canalisation en mètres linéaires (ml)

5.4.2.3 Volume des Déblais

Le volume des déblais correspond au volume de terre extrait de la tranchée. Il est calculé à l'aide de la formule suivante :

$$(5.4) Vdeb = Vtr.Kf = B.H.L.Kf$$

Où:

- Vtr: volume de la tranchée en mètres cubes (m^3)
- Kf: coefficient de foisonnement (généralement pris à 1,4)

5.4.3 Le Lit de Sable

Une couche de sable de 0,1 m d'épaisseur est placée au fond des tranchées pour stabiliser les canalisations. Ce lit de sable, bien nivelé, suit les nervures du profil ongitudinal.

Le volume du lit de sable est calculé avec la formule suivante :

$$(5.5) Vls = B.L.0.1$$

Avec:

- Vls: volume du lit de sable en mètres cubes (m^3)
- B: largeur de la tranchée en mètres (m)
- L: longueur de la canalisation en mètres linéaires (ml)

5.4.4 Le Remblai des Tranchées

Dans un premier temps, on utilise un sable similaire à celui du remblayage latéral (lit de sable), jusqu'à 10 cm au-dessus de la génératrice supérieure de la canalisation, afin d'assurer un transfert uniforme des charges exercées sur la canalisation et de la protéger contre tout dommage lors de la mise en œuvre du remblai supérieur. Ensuite, le remblayage se poursuit avec les matériaux locaux précédemment excavés (déblais de tranchées).

5.4.4.1 Volume de Remblai

Le volume de remblai est calculé à l'aide de la formule suivante :

$$(5.6) Vrmb = (Vtr - Vls - Vsbl - Vcd) \times Kt$$

Où:

- *Vcd*: volume des conduites
- Kt: coefficient de tassement (généralement pris à 1,2)

5.4.4.2 Volume excédentaire

Une fois les tranchées remblayées, le surplus de volume doit être évacué vers une décharge publique. Ce volume excédentaire est déterminé par la formule suivante :

$$(5.7) Vexcé = Vdeb - Vrmb$$

Table 5.1 – Devis quantitatif et estimatifs de projet

N°	désignation des travaux	unités	quantités	prix unitaire DA	montant (DA)		
bassin versant N°1							
travaux de terrassement							
1	Déblai	m3	15079.4	700.00	10555580		
2	Pose du lit de sable	m3	1385.009	1100.00	1523522		
	et remblai de sable						
3	Remblai de la tranchée	m3	8069.73	600.00	4841838		
Canalisation							
1	D1500	ml	989	25000.00	24732500		
		Co	nstruction		1		
1	regards	u	26	90000.00	2340000		
		bassii	n versant N°2	2	,		
		travaux	de terrassem	ent			
1	Déblai	m3	3796.556	700.00	2657620		
2	Pose du lit de sable	m3	327.976	1100.00	360773.6		
	et remblai de sable						
3	Remblai de la tranchée	m3	3031.6904	600.00	1819014.24		
		Ca	nalisation				
1	D1000	ml	386.3	15000.00	5794500		
		Co	nstruction				
1	les regards	u	20	90000.00	1800000		
bassin versant N°3							
		travaux	de terrassem	ent			
1	Déblai	m3	8182.6	700.00	5727820		
2	Pose du lit de sable	m3	1012.928	1100.00	1114220.8		
	et remblai de sable		1				
3	Remblai de la tranchée	m3	5573.65	600.00	3344190		
Canalisation							
2	D1200	ml	980.03	20000.00	19600600		
Construction							
1	regards	u	24	90000.00	2160000		
				TOTAL(HT)	85078170		
				T V A (19%)	16164852,3		
				TOTAL(TTC)	101243022,3		

5.5 La Planification des Travaux

Il s'agit de l'étape la plus cruciale du processus de mise en œuvre du projet, car elle intervient au début et détermine la qualité du résultat final. Cette phase comprend plusieurs éléments :

- Installation des postes de travail
- Observation immédiate
- Analyse des tâches
- Élaboration du calendrier
- Définition des objectifs et des responsabilités
- Simplification des méthodes
- Stabilisation des emplois

L'objectif pour l'équipe projet est de convertir la stratégie en un flux logique et de formaliser les tâches à exécuter dans un ordre précis (planification). Pour le chef de projet, il s'agit d'identifier l'ensemble des travaux à mettre en œuvre, de les décrire précisément, de les partager, et de mettre en place rapidement un support de pilotage opérationnel.

Le processus d'analyse des tâches est considéré comme l'aspect le plus important de la planification. Il se déroule en deux étapes principales :

- 1. 1. La première consiste à cartographier les tâches et leurs relations séquentielles, permettant ainsi de créer un premier réseau logique.
- 2. La seconde se concentre sur l'examen des tâches du réseau et sur la fourniture des informations nécessaires à chacune d'elles.

5.5.1 Techniques de Planification

Les deux principales méthodes de planification sont les suivantes :

- Méthodes basées sur les réseaux
- Méthodes basées sur les graphiques

5.5.1.1 Méthode basées sur le réseau

Définition:

Un réseau est une représentation graphique d'un projet qui peut être utilisée pour exprimer les relations entre différentes activités qui peuvent être séquentielles, simultanées, convergentes et la durée de mise en œuvre [20]. Il existe deux types de réseaux :

— Diagramme à flèches :

Dans un diagramme à flèches, le processus est indiqué au-dessus des flèches, et la succession des opérations est représentée par des nœuds [20].

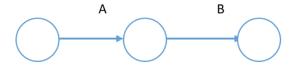


FIGURE 5.1 – Diagramme à flèches

— Diagramme à nœuds :

Dans un diagramme à nœuds, le processus est indiqué à l'intérieur des nœuds, et la succession des opérations est représentée par des flèches.

FIGURE 5.2 – Diagramme à nœuds

— Construction du réseau :

Il existe six (6) étapes pour construire un réseau [20] :

- 1. Créer une liste des tâches à accomplir : Cette première étape consiste à établir une liste précise et détaillée de toutes les activités nécessaires à la réalisation du projet.
- 2. Identifier les tâches préalables : Une fois la liste des tâches établie, il n'est pas toujours évident de déterminer l'ordre d'exécution des tâches, car elles peuvent être séquentielles ou simultanées.
- 3. Préparer les plannings partiels : Créer des calendriers partiels pour organiser les tâches.
- 4. Regrouper les sous-graphes : Fusionner les différents sous-graphes pour former un réseau complet.
- 5. Définir les tâches de début et de fin : Spécifier les tâches qui marquent le début et la fin du projet.
- 6. Construire le réseau : Élaborer le réseau final en tenant compte des étapes précédentes.

— Méthode CPM (méthode du chemin critique)[20]:

L'objectif de cette méthode est de réduire le temps de réalisation d'un projet en se basant sur trois phases :

1. **Étape 1**: Identifier les tâches nécessaires à la réalisation du projet

- 2. **Étape 2 :** Analyser systématiquement le réseau, en suivant le temps heure par heure, jour par jour, selon l'unité de temps choisie
- 3. **Étape 3 :** Ajuster le réseau en fonction des contraintes et exigences définies par l'entreprise.

5.5.1.2 Méthodes basées sur le graphique :

Les deux méthodes les plus couramment utilisées sont :

- **Méthode linéaire (technique du bilan) :** Cette méthode est utilisée pour la planification de projets de construction où les tâches se répètent de manière régulière
- **Méthode des barres :** Cette technique consiste à établir deux réseaux et à utiliser un diagramme à barres pour représenter le plan de travail.

5.5.2 Les Étapes de la Planification

La planification est l'exécution d'une ligne de travail organisée qui comprend les étapes suivantes :

- **Collecte de données :** La synthèse des informations obtenues à partir de l'analyse comparative permet une utilisation optimale du plan pour notre projet
- Configuration du projet : Cette étape est cruciale, car chaque projet peut être analysé différemment. Il s'agit de désigner la personne responsable de chaque tâche ainsi que de définir les ressources matérielles nécessaires
- **Relations entre les tâches :** Lors de l'exécution, deux types de relations sont importantes entre les tâches : l'une concerne la séquence logique, et l'autre l'ordre des priorités [20]

5.5.3 Choix de la Méthode de Calcul

Le choix de la méthode de calcul dépend principalement du type de structure à réaliser. Dans le cas où les processus sont séquentiels, comme dans notre situation, il est recommandé d'opter pour la méthode C.P.M [20]

5.5.3.1 Les paramètres de la méthode C.P.M

Les paramètres de base dans la mise en œuvre de cette méthode sont les suivants :

$$egin{array}{c|c} DCP & TR \\ \hline DFP & DCPP \\ \hline DFPP & MT \\ \hline \end{array}$$

TABLE 5.2 – Les paramètres de la méthode C.P.M

Tel que:

— TR: temps de réalisation

— *DCP* : date de commencement au plus tôt

— DCPP: date de commencement au plus tard

— *DFP*: date de finition au plus tôt

— MT: marge totale

- DFPP: date de finition au plus tard

Avec:

-DFP = DCP + TR

-DCP = DFPP - TR

Un autre paramètre très important c'est le chemin critique CC.

Le chemin critique CC

Le chemin critique correspond à la durée totale du projet (DTR) et regroupe les activités ayant une marge totale égale à zéro (0). Pour identifier le chemin critique [20], il suffit de vérifier les conditions suivantes :

1. MT = 0

2. $\sum TRcc = DCP$

5.5.4 Elaboration du réseau selon la méthode C.P.M

La méthode C.P.M est une méthode de planification visant à réduire le temps et le coût de réalisation d'un projet, tout en améliorant l'efficacité du travail. La première étape pour construire le réseau consiste à identifier et établir les différentes tâches [20].

m	1 / 1.	. 1	1 /	1 / 1 / / /
Table 5.3 – Symboles	des onerations	et leure	diirees i	de realigation
THE O. Symboles	aco operanom	Culculo	uuicco	ac i cambanon

notation	opération	Durée(j)		
		BV1	BV2	BV3
A	installation de chantier	15j		
Bi	Piquetage	20 10 20		
Ci	Exécution des tranchées et des	65 40 60		60
	fouilles pour les regards			
Di	Aménagement du lit de pose	20	10	20
Ei	Construction des regards			
	(de jonction et de chute)	35	30	35
Fi	La mise en place des			
	canalisations en tranchée	20	10	20
Gi	Assemblage des canalisations	30	10	25
Hi	Remblai des tranchées	35 20 30		
K	Travaux de finition	15j		

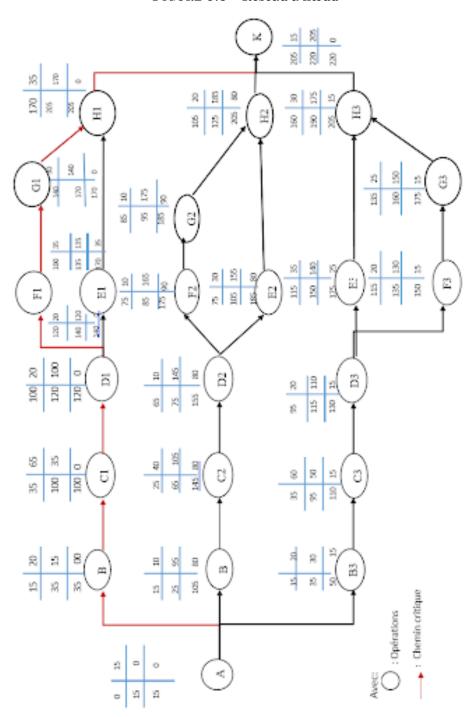


FIGURE 5.3 – Réseau à nœud

- Le chemin critique : A > B1 > C1 > D1 > F1 > G1 > G1 > H1 > k
- Avec un temps de réalisation égale à : $\sum TR = 220$

5.5.5 Conclusion

Ce chapitre a présenté un aperçu concis de la planification et de l'organisation du chantier de construction, indispensables pour assurer la bonne exécution des travaux. Les opérations sont réalisées dans un ordre rigoureusement défini, sans perte de temps, ce qui permet de libérer les ressources nécessaires en quantité suffisante. Grâce à une évaluation quantitative et estimative, nous avons pu évaluer l'impact financier du projet. Bien que ces données ne soient pas totalement précises, elles offrent une estimation de l'envergure du projet. Le coût total estimé s'élève à **101 243 022,3 DA TTC**, avec une durée de réalisation prévue de **220 jours**.

CONCLUSION GENERAL

objectif de cette étude était de protéger la ville de Chouf Lekdad contre les inondations centennales, en proposant des aménagements de ses cours d'eau pour optimiser l'évacuation des eaux pluviales de la région et augmenter leur capacité à gérer ces débits exceptionnels.

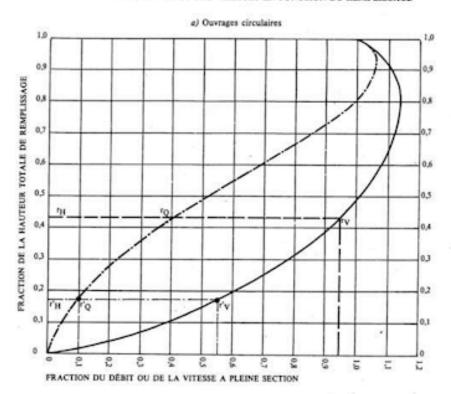
La première étape a consisté à recueillir divers documents et données nécessaires (cartes topographiques, informations géologiques, données pluviométriques, etc.) afin d'identifier les risques d'inondation dans les bassins versants de la zone d'étude. Ensuite, nous avons créé différentes cartes à l'aide du logiciel « ArcGIS », étudié les caractéristiques hydromorphométriques des bassins et analysé les précipitations maximales journalières avec le programme « HYFRON », basé sur des observations satellites GPM. Cette analyse a permis de déterminer une intensité de pluie de 77,7 mm/jour pour une période de retour centennale. Nous avons ensuite calculé les précipitations à court terme et tracé les courbes IDF

Les débits de crue pour les bassins versants ont été calculés en utilisant des formules empiriques et la méthode SCS, aboutissant à des débits de $5,56~m^3/s$, $2,17~m^3/s$ et $3,56~m^3/s$ pour les bassins N°1, N°2 et N°3, respectivement, pour une période de retour centennale. À l'aide du logiciel « HEC-RAS », une simulation hydraulique de l'écoulement a été réalisée pour évaluer le potentiel d'inondation dans la zone étudiée.

Enfin, les aménagements proposés pour les trois bassins versants consistent en des canalisations circulaires en béton armé. L'analyse technico-économique des différentes options a privilégié cette solution pour l'évacuation des eaux pluviales.

Des travaux d'entretien et de réparation sont également prévus afin d'assurer la durabilité et la fonctionnalité des infrastructures proposées.

BIBLIOGRAPHIE


[1]

- [2] A. BENABID, Contribution à l'étude des écoulements permanents graduellement variés en canal prismatique, Master's thesis, Université de Batna, 2009.
- [3] L. BENBRAHIM, Gestion et étude des bassins versants en Algérie, Éditions ENAG, 2018.
- [4] A. BENZIANE, Hydrologie et gestion des ressources en eau en Algérie, Éditions ENAG, 2015.
- [5] V. T. CHOW, Open-channel hydraulics, 1959.
- [6] F.-N. CRES, *Hydrologie urbaine quantitative Assainissement pluvial*, Ouagadougou 03, Burkina Faso, 2001.
- [7] T. DAIFALLAH, A. HANI, AND M. SAYAD, Prédétermination des débits de crue par différentes méthodes. cas du bassin versant d'el kébir ouest à ain-charchar (nord-est algérien), tech. rep., 2017.
- [8] J. DUPONT, Principes de planification d'entreprise, Presses Universitaires, 2018.
- [9] S. EL ADLOUNI AND T. B. OUARDA, Comparaison des méthodes d'estimation des paramètres du modèle gev non stationnaire, Revue des sciences de l'eau, 21 (2008), pp. 35–50.
- [10] T. N. IMENE, Risques majeurs naturels en algérie: Aspect juridique et institutionnel avec référence aux inondations, Master's thesis, Université Salah Boubnider Constantine 3, 2019.
- [11] K. Y. ISKOUNEN, Aménagement d'oued ouchaiah contre les inondations (w. alger), Master's thesis, ENSH Blida, 2015.
- [12] J. LABORDE, Éléments d'hydrologie de surface, École polytechnique de l'Université de Nice SOPHIA ANTIPOLIS, 2009.
- [13] A. MAILHOT, S. BOLDUC, AND M. GUILLOU, Hydrologie à l'échelle de petits bassins-versants agricoles, 2016.
- [14] A. Musy and C. Higy, Hydrologie appliquée, H*C*A, Bucarest, 1998.

- [15] U. A. C. OF ENGINEERS, HEC-RAS: Hydrologic Engineering Center River Analysis System User's Manual, 2010.
- [16] —, *HEC HMS User Manual*, 2016.
- [17] C. Perrin, C. Michel, and V. Andréassian, Improvement of a parsimonious model for streamflow simulation, (2003).
- [18] M. ROCHE, *Hydrologie de surface*, Office de la recherche scientifique et technique outre-mer, Paris, 1963.
- [19] N. R. C. SERVICE, Scs-cn: Conceptual method for runoff calculation, tech. rep., U.S. Department of Agriculture, 1950.
- [20] S. TABATOUCH, Protection contre les inondations des sites audl 13300 logements de la ville sidi abdellah mahelma (w.alger), Master's thesis, ENSH Blida, 2023.
- [21] B. TOIAIBIA, Manuel pratique d'hydrologie, Madani Frères, Guerrouaou Blida, 2004.
- [22] J.-M. VILA, Les séries telliennes et la chaîne des Maghrébides : géologie et orogenèse alpine au Maghreb, Éditions du CNRS, 1980.
- [23] A. ZEROUAL AND M. MEDDI, Introduction à la modélisation en hydrologie (cours), 2017.

ANNEXS

MODE D'EMPLOI.

Les abaques Ab. 3 et Ab. 4 (a et b) utilisés pour le choix des sections d'ouvrages, compte tenu de la pente et du débit, permettent d'évaluer la vitesse d'écoulement à pleine section.

Four l'évaluation des caractéristiques capacitaires des conduites, ou pour apprécier les possibilités d'autocurage, le nomogramme ci-dessus permet de connaître la vitesse atteinte en régime uniforme pour un débit inférieur à celui déterminé à pleine section.

Les correspondances s'établissent, soit en fonction de la fraction du débit à pleine section, soit en fonction de la hauteur de remplissage de l'ouvrage.

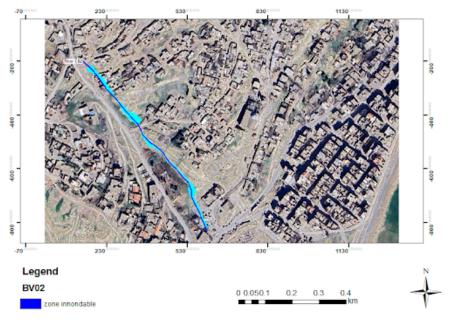
Exemples:

Pour r_Q = 0,40, on obtient r_V = 0,95 et r_H = 0,43.

Pour Qpg/10, on obtient $r'_V = 0.55$ et $r'_H = 0.17$ (autocurage).

Nota. — Pour un débit égal au débit à pleine section, la valeur du rapport $r_Q = 1,00$ est obtenue avec $r_H = 0,80$.

Le débit maximum ($t_Q = 1,07$) est obtenu avec $r_H = 0,95$.


La vitesse maximum (r_V = 1,14) est obtenue avec r_H = 0,80.

Ces dernières conditions d'écoulement à caractère assez théorique ne peuvent être obtenues que dans des conditions très particulières d'expérimentation.

FIGURE 1 – Abaque de variation des débits et des vitesses en fonction de la hauteur de remplissage [6]

 $FIGURE\ 2-la\ carte\ de\ la\ Zone\ inondable\ du\ bassin\ 01$

 $FIGURE \ 3-la \ carte \ des \ Zones \ in on dables \ du \ bassin \ 02$

FIGURE 4 – Enter Caption