الجمهورية الجزائرية الديمقراطية الشعبية وزارة التعليم العالى و البحث العلمي

NATIONAL HIGHER SCHOOL FOR HYDRAULICS

"The Mujahid Abdellah ARBAOUI"

المدرسة الوطنية العليا للربي "المجامد عبد الله عرباوي"

+>UO#3+ I X#I>3> U.IN#Y. X.OO#Y.

MEMOIRE DE FIN D'ETUDES

Pour l'obtention du diplôme d'Ingénieur d'Etat en Hydraulique

Option: CONCEPTION DES SYSTEMES D'ASSAINISSEMENT

THEME:

Dimensionnement d'un réseau d'assainissement de la nouvelle ville de BOUINAN – Lot : B et D – (W. Blida)

<u>Présenté par</u>: AZARI Seif El-Islam

Devant les membres du jury

Nom et Prénoms	Grade	Qualité
HACHEMI Abdelkader	M.C.B	Président
KAHLERRAS Malika	M.C.B	Examinateur
BOUKHELIFA Mustapha	M.C.A	Examinateur
TAFAT Leila	M.C.A	Examinateur
TOUMI Samir	M.C.B	Promoteur

Session: Novembre 2019

Dédicace:

Je dédie ce travail

À ma famille qui a fait de moi ce que je suis aujourd'hui

Particulièrement à mes très chers parents que je ne pourrais jamais assez les remercier car leur affection, leur bienveillance et leur présence à mes cotés sont la source de ma force.

A ma chère sœur: Asma

et mes chers frères : Mohammed El-Amine, Alaeddine et Abdelhak

Une spéciale dédicace à ma grand-mère et ma grande famille

A mes amis et tous ceux qui m'aiment et qui m'aident

Je vous remercie de tout mon cœur, et vous souhaite tout le bonheur du monde.

Que dieu vous garde pour moi.

Remerciement:

Tout d'abord je remercie Dieu le tout puissant de m'avoir donné cette ambition, force, volonté et courage pour réaliser ce modeste travail qui a été fait avec amour, passion et honnêteté.

Ensuite je tiens à remercier mes chers parents, qui se sont donné cœurs et âmes pour que je réussisse, qui m'ont aidé moralement et financièrement, et qui m'ont toujours encouragé à donner le meilleur de moi-même. Ainsi que mes chers frères et sœurs qui ont toujours étaient là pour moi.

Toute ma gratitude à mon promoteur M^r TOUMI S. pour sa disponibilité, son aide et ses conseils.

Je remercie également les membres du jury qui me feront l'honneur d'évaluer et d'apprécier mon travail.

Ainsi que toutes mes gratitudes à l'ensemble des enseignants de l'ENSH qui m'ont éclairé, orienté et aidé durant toute ma formation.

Sans oublier mes amis qui m'ont beaucoup encouragé, et toutes les personnes ayant contribué de près ou de loin à l'élaboration de ce travail.

ملخص:

تهدف هذه المذكرة أساسا لتصميم شبكة الصرف الصحي بالنسبة لحي " B & D " في المدينة الجديدة لبوينان (ولاية البليدة). في إطار إنشاء مدينة مثالية لبيئة سليمة، اخترنا نظام منفصل لتصريف مياه الأمطار إلى المجرى المائي ومياه الصرف الصحي نحو محطة المعالجة.

فبعدما جمعنا كامل المعطيات اللازمة لتحقيق هذا المشروع، قمنا بتقدير حجم تدفقات المياه الواجب صرفها ثم حساب الأبعاد و تنفيذ مخطط الشبكة. إضافة إلى تقييم المشروع من الناحية الاقتصادية وذلك بتقدير التكلفة الإجمالية.

الكلمات المفتاحية: المدينة الجديدة لبوينان – شبكة الصرف الصحى – نظام تصريف المياه

Résume:

La projection d'un réseau d'assainissement du Quartier B&D de la nouvelle ville de BOUINAN (Wilaya de Blida), fait l'objet de notre mémoire. Dans le but de réalisation d'une ville exemplaire pour un environnement agréable, nous avons opté pour un système séparatif, pour évacuer les eaux usées vers la STEP et les eaux pluviales vers le milieu naturel.

Une fois avoir rassemblé toutes les données nécessaires pour ce travail, nous avons entamer l'estimation des débits à évacuer en premier lieu, puis le dimensionnement et le tracé des réseaux. De plus nous avons élaboré un devis quantitatif et estimatif.

Mots clés : nouvelle ville de Bouinan – système d'assainissement – réseau pluvial – réseau des eaux usées.

Abstract:

The design of a sanitation network for the B&D district in the new city of BOUINAN (BLIDA province) is the object of our dissertation. In order to realize an exemplary city for a pleasant environment, we opted for a separative system to evacuate wastewater to the WWTP and rainwater to the natural environment. Once we have gathered all the necessary data for this work, we have estimated the flows to be evacuated, then the sizing and layout of the networks. In addition, we have prepared a quantitative and estimative cost.

<u>Keywords:</u> new city of Bouinan – sanitation system – rainwater network - sewage network

Table des matières

Liste des figures	
Liste des planches	
Introduction générale	
CHAPITRE I : Présentation de la zone d'étude	
Introduction:	2
I. Situation géographique de Bouinan :	3
II. Localisation de la zone d'étude :	
III. Situation topographique :	
IV. Situation géologique :	
V. Sismicité:	5
VI. Situation Climatique :	5
VI.1. Climat :	
VI.2. Température :	
VI.3. Pluviométrie :	
VI.4. Humidité :	
VI.5. Vent:	
VI.6. Evaporation :	
VII. Hydrographie :	9
VIII. Situation hydraulique :	
VIII.1. Alimentation en eau potable :	
VIII.2. Assainissement :	10
Conclusion:	11
CHAPITRE II : Etude hydrologique	
Introduction:	11
I. La série des données pluviométriques :	
1. La serie des données provionieniques	11

Homogénéisation des données : _______13

Etude des précipitations maximales journalières : ______15

III.1. Caractéristiques empiriques de la série : ______15

II.

III.

III.2. Ajustement de la série :	16
III.3. Calcul des pluies et des intensités de courte durée :	21
IV. Intensité moyenne maximale :	23
Conclusion:	24
CHAPITRE III : Calcul de base	
	2.5
Introduction:	25
I. Situation démographique :	25
II. Découpage de l'air d'étude en surfaces élémentaires :	25
III. Système d'évacuation des eaux :	26
III.1. Les différents systèmes d'assainissement :	26
III.2. Le choix du système d'assainissement :	30
IV. Schéma d'évacuation des eaux :	30
IV.1. Les différents schémas d'assainissement :	
IV.2. Le choix du schéma d'évacuation :	32
V. Le coefficient de ruissellement :	33
V.1. Méthodes de détermination du coefficient de ruissellement :	33
V.2. Estimation du coefficient de ruissellement pour chaque sous bassin :	35
VI. Calcul de la population pour chaque sous bassin :	36
Conclusion :	37
CHAPITRE IV : Estimation des débits à évacuer	
Introduction:	38
I. Origine et nature des eaux à évacuer :	38
I.1. Les eaux usées :	
I.2. Les eaux pluviales :	
II. Estimation des débits des eaux usées :	40
II.1. Débits des eaux usées domestiques :	
II.2. Débits des eaux usées des établissements publics :	43
II.3. Débits totaux des eaux usées à évacuer :	
III. Estimation des débits des eaux pluviales :	46
III.1. La méthode rationnelle :	
III.2. La méthode superficielle :	
III.3. Choix de la méthode :	
III.4. Calcul des débits pluviaux :	52
Conclusion:	54

CHAPITRE V : Dimensionnement du réseau d'assainissement

Introduction:	55
I. Principe de conception d'un système d'assainissement :	
II. Mode de dimensionnement des canalisations :	56
II.1. Base de calcul :	
II.2. Formule de MANNING-STRICKLER:	
II.3. Formule de BAZIN :	
III. Conditions d'autocurage :	60
III.1. Réseaux des eaux usées :	
III.2. Réseaux pluviaux :	60
IV. Normes d'écoulement et d'implantation :	60
IV.1. Canalisations des eaux usés :	
VI.2. Canalisations des eaux pluviales :	
V. Résultats du dimensionnement :	61
Conclusion:	78
Introduction:	79
I. Les ouvrages principaux :	
I.2. Formes et sections de conduites :	79
I.3. Critères du choix de conduite :	
I.4. Types de matériaux :	80
I.5. Les essais de conduites préfabriqués :	83
I.6. Les remèdes :	84
I.7. Pose de canalisation :	84
II. Les ouvrages annexes :	
II.1. Les ouvrages normaux :	
II.2. Les ouvrages spéciaux :	88
Conclusion:	89
CHAPITRE VII: Organisation du chantier	
Introduction:	90
I. Les étapes de réalisation du projet :	90

I.1. Manutention et stockage des conduites :	90
I.2. Décapage de la terre végétale :	
I.3. Exécution des tranchées et des fouilles des regards :	90
I.4. Aménagement du lit de sable :	91
I.5. Emplacement des piquets :	91
I.6. Pose des canalisations :	91
I.7. Assemblage des canalisations :	91
I.8. Essai d'étanchéité :	91
I.9. Réalisation des regards :	
I.10. Réalisation des branchements :	92
I.11. Remblayage et compactage :	92
II. Choix des engins :	93
III. Détermination des différents volumes des travaux :	95
III.1. Volume du décapage de la couche végétale :	95
III.2. Volume du déblai des tranchées :	
III.3. Volume occupé par le lit de sable :	
III.4. Volume occupé par les conduites :	96
III.5. Volume de l'enrobage :	96
III.6. Volume du remblai de protection :	
III.7. Volume excédentaire :	
IV. Devis quantitatif et estimatif :	97
IV.1. Réseau des eaux usées :	
IV.2. Réseau des eaux pluviales :	
Conclusion:	98

Conclusion générale

Références bibliographiques

Annexe

Liste des tableaux

CHAPITRE I : Présentation de la zone d'étude

Tableau I-1 : Répartition mensuelle de la température de la Mitidja Orientale (1980-2010)	5
Tableau I-2 : Précipitations moyennes mensuelles (1990-2016)	
Tableau I-3 : Répartition mensuelle de la vitesse des vents	
Tableau I-4 : Répartition mensuelle de l'évaporation	7
Tableau I-5 : Les caractéristiques des forages projetés du champ de captage de Khodem	9
CHAPITRE II : Etude hydrologique	
Tableau II-1 : Identification de la station pluviométrique de Larbaa	11
Tableau II-2 : La série pluviométrique (station de Larbaa) 1975-2018	12
Tableau II-3 : Résultats du test de la médiane	13
Tableau II-4 : Calcul des paramètres du test de la médiane	
Tableau II-5 : Les caractéristiques de la série pluviométriques	15
Tableau II-6 : Résultat de l'ajustement à la loi de Gumbel (Hyfran)	16
Tableau II-7 : Résultat de l'ajustement à la loi Log-normale (Hyfran)	
Tableau II-8 : Résultat de l'ajustement à la loi GEV (Hyfran)	
Tableau II-9 : Résultat du test de Pearson $\chi 2$	21
Tableau II-10 : Pluies de courte durée de différentes périodes de retour et leurs intensités	22
CHAPITRE III : Calcul de base	27
Tableau III-1 : Avantages et inconvénients du système unitaire	27
Tableau III-1 : Avantages et inconvénients du système unitaire	28
Tableau III-1 : Avantages et inconvénients du système unitaire	28 34
Tableau III-1 : Avantages et inconvénients du système unitaire	28 34 35
Tableau III-1 : Avantages et inconvénients du système unitaire	28 34 35 35
Tableau III-1 : Avantages et inconvénients du système unitaire	28 34 35 35
Tableau III-1 : Avantages et inconvénients du système unitaire	28 34 35 35 35 36
Tableau III-1 : Avantages et inconvénients du système unitaire	28 34 35 35
Tableau III-1: Avantages et inconvénients du système unitaire	28 34 35 35 35 36
Tableau III-1 : Avantages et inconvénients du système unitaire	28 34 35 35 35 36
Tableau III-1: Avantages et inconvénients du système unitaire	28 34 35 35 35 36
Tableau III-1: Avantages et inconvénients du système unitaire	28 34 35 35 36 37 42 45
Tableau III-1 : Avantages et inconvénients du système unitaire	288 34 35 35 36 37 42 45 46
Tableau III-1: Avantages et inconvénients du système unitaire	28 34 35 35 36 37 42 45

CHAPITRE V : Dimensionnement du réseau d'assainissement

Tableau V-1 : Calculs du réseau projeté des eaux usées					
Tableau V-2 : Calculs du réseau projeté des eaux pluviales	69				
CHAPITRE VI : Les éléments constitutifs du réseau					
Tableau VII-1 : Devis quantitatif et estimatif du réseau des eaux usées	97				
Tableau VII-2 : Devis quantitatif et estimatif du réseau des eaux pluviales	98				

Liste des figures

CHAPITRE I : Présentation de la zone d'étude

Figure I-1 : Carte géographique de la commune de Bouinan	2
Figure I-2 : Localisation géographique de la nouvelle ville de Bouinan	3
Figure I-3 : Localisation de la zone d'étude (Quartier B&D)	3
Figure I-4 : Variation des précipitations moyennes mensuelles (1990-2016)	6
Figure I-5 : Cours d'eau de la nouvelle ville de Bouinan	8
CHAPITRE II : Etude hydrologique	
Figure II-1 : Ajustement graphique à la loi de Gumbel	17
Figure II-2 : Ajustement graphique à la loi Log-normale	18
Figure II-3 : Ajustement graphique à la loi GEV	19
CHAPITRE III : Calcul de base	
Figure III-1 : schéma représentatif des branchements dans le système unitaire	26
Figure III-2 : schéma représentatif des branchements dans le système séparatif	28
Figure III-3 : schéma représentatif des branchements dans le système pseudo-séparatif	29
Figure III-4 : Schéma perpendiculaire	31
Figure III-5 : Schéma par déplacement latéral	
Figure III-6 : Schéma à collecteur transversal ou oblique	31
Figure III-7 : Schéma par zones étagées	
Figure III-8 : Schéma radial	32
CHAPITRE VI : Les éléments constitutifs du réseau	
Figure VI-1 : Joints sur tuyaux en amiante ciment	80
Figure VI-2 : Joints sur tuyau en grès	81
Figure VI-3: Joints sur tuyaux en béton	82
Figure VI-4 : Pose de canalisation sur un terrain ordinaire	84
Figure VI-5 : Pose de canalisation sur un mauvais terrain	85
Figure VI-6 : Pose de canalisation sur un terrain très mauvais	85
Figure VI-7 : Exemple d'un branchement simple	
Figure VI-8 : Exemple d'une bouche d'égout sans décantation	
Figure VI-9 : Exemple d'un regard simple	87

CHAPITRE VII: Organisation du chantier

Figure VII-1 : Pose du lit de sable	91
Figure VII-2: Niveleuse	94
Figure VII-3: Bulldozer	94
Figure VII-4 : Pelle à chenille	94
Figure VII-5: Chargeuse	95
Figure VII-6: Compacteur à rouleaux lisses	95

Liste des planches

Planche n°1/5: Plan de masse avec levé topographique

Planche n°2/5: Tracé du réseau projeté des eaux pluviales

Planche n°3/5: Tracé du réseau projeté des eaux usées

Planche n°4/5 : Profil en long (réseau pluvial)

Planche n°5/5 : Profil en long (réseau des eaux usées)

Introduction générale

L'assainissement est une science qui consiste à collecter, transporter et évacuer par voie hydraulique les eaux usées et pluviales à travers un réseau bien dimensionné, assurant le rejet dans un exutoire, dans le but de protéger la santé humaine, conserver la faune et la flore et enfin préserver l'environnement.

De nos jours, la wilaya de BLIDA connait, comme toutes les grandes villes du pays, une explosion dans le domaine de construction de logements aussi bien sociaux qu'autres. Ce qui entraine inévitablement une production croissante de rejets, et nécessite donc une évacuation convenable des eaux usées et également des eaux pluviales.

C'est donc dans ce sens que nous avons élaboré ce mémoire, qui est axé sur la conception d'un système d'évacuation des eaux usées et pluviales du Quartier B&D (Constructions de série AADL) de la nouvelle ville de BOUINAN, située au centre de la Wilaya de BLIDA.

Dans notre travail, nous avons procédé en commençant par la présentation de la zone d'étude du point de vue (topographie, hydrologie, ...) en premier lieu. En deuxième lieu, le calcul des différents débits à évacuer et le dimensionnement du réseau séparatif. Et en dernier lieu, le tracé du plan d'évacuation.

CHAPITRE I:

Présentation de la zone d'étude

Introduction:

Pour tout projet en hydraulique, la présentation de la zone d'étude constitue une étape indispensable qui consiste à décrire le site du point de vue : géographique, topographique, géologique, climatique, démographique et hydraulique ... ; afin de bien déterminer les facteurs influents sur la conception du projet.

I. Situation géographique de Bouinan :

La commune de Bouinan est située au centre de la Wilaya de Blida, à environ 16 km au nord-est du chef-lieu de Wilaya. Elle est limitée au nord par Boufarik et Chebli, au sud par Chréa et Hammam Melouane, à l'est par Bougara, et à l'ouest par la commune de Soumaa.

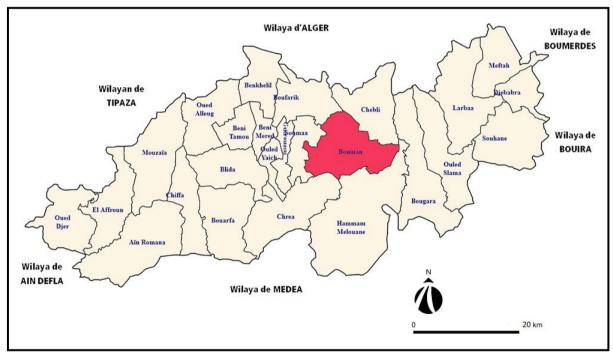


Figure I-1 : Carte géographique de la commune de Bouinan

Source: DRE Blida (2019)

II. Localisation de la zone d'étude :

La nouvelle ville de Bouinan, s'étale sur les agglomérations de Bouinan, Amroussa, Mellaha et Hassainia. Elle s'étend sur une superficie totale d'environ 2175 ha.

La zone d'étude c'est le Quartier B&D de la nouvelle ville. Il représente un projet AADL de 5000 logements, composé de 185 blocs et plusieurs équipements, sur une superficie de 50 ha.

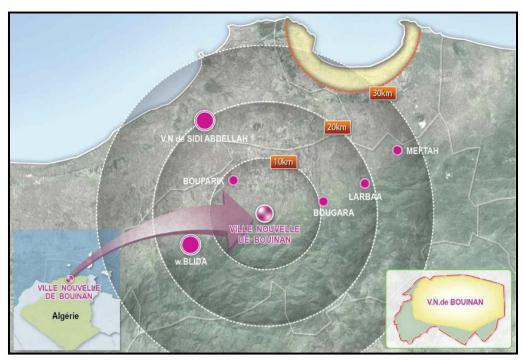


Figure I-2 : Localisation géographique de la nouvelle ville de Bouinan

Source: Dune Architecture (2019)

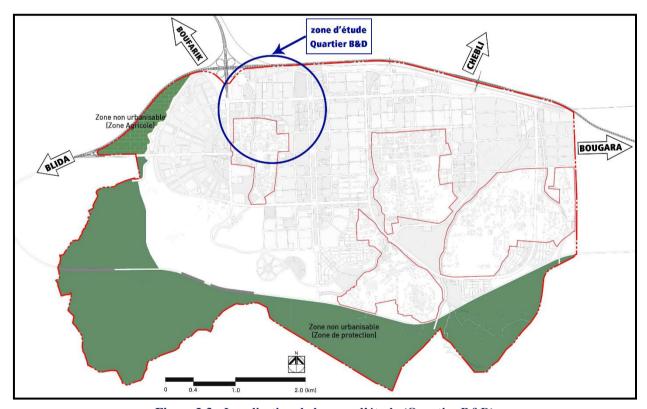


Figure I-3: Localisation de la zone d'étude (Quartier B&D)

Source : Dune Architecture (2019)

III. Situation topographique:

L'étude topographique joue un rôle important dans la conception du réseau d'assainissement ; vu que l'évacuation des eaux s'effectue avec un écoulement gravitaire, sauf dans le cas de contre pente où le relief exige un relevage.

La nouvelle ville de Bouinan se divise en deux zones : zone plaine de petite dénivelée et une autre collinaire de grande dénivelée. La région se caractérise par un relief plat dont les côtes topographiques du site varient entre 85.20 m et 65.56 m, sachant que l'altitude augmente en allant vers le sud.

IV. Situation géologique :

La géologie étudie la nature du sol pour déterminer le mode de réalisation des tranchées et les engins à utiliser.

Le périmètre d'étude fait partie de la Mitidja dont elle est très riche par les terres fertiles qui sont favorables pour les exploitations agricultures.

Les faciès géologiques, de la nouvelle ville de Bouinan, sont formés essentiellement des alluvions (argile, limon, sable), représentant plus de 50% de sa composition géologique.

V. Sismicité:

La zone d'étude située au-dessus de la faille tectonique qui sépare le continent Africain du continent Européen, est géologiquement instable. Selon le Centre National de Recherche Appliquée en Génie Parasismique (CGS), elle appartient à la zone II-b de moyenne sismicité caractérisée par une période de retour de 30 à 40 ans.

VI. Situation Climatique :

VI.1. Climat:

La ville de Bouinan possède un climat méditerranéen semi-aride, qui se caractérise par des étés chauds et secs et des hivers doux et humides.

VI.2. Température :

La température est parmi les facteurs à prendre en considération, car elle a une influence importante sur la viscosité de l'eau.

Les observations des températures de la Mitidja orientale durant la période 1980-2010, effectuées à la station de Dar El Beida par l'office national de la météorologie, sont les plus complètes et les plus régulières. (Tableau I.1)

 $Tableau\ I-1: R\'{e}partition\ mensuelle\ de\ la\ temp\'erature\ de\ la\ Mitidja\ Orientale\ (1980-2010)$

Mois	Sep.	Oct.	Nov.	Déc.	Jan.	Fév.	Mars	Avr.	Mai	Juin	Juil.	Août	Moyenne inter- annuelle (°C)
Moy. (°C)	23.57	20.12	15.44	12.5	11.13	11.65	13.25	15.05	18.33	22.25	25.2	26.11	17.88
Min. (°C)	17.6	14.2	10	6.9	5.6	5.1	7.1	9.4	13	16.5	19	20.1	12.04
Max. (°C)	29.54	26.04	20.88	18.1	16.66	18.2	19.4	20.7	23.66	28	31.4	32.12	23.72

Source: ANRH Blida (2017)

Selon le tableau au-dessus, on peut distinguer deux périodes :

- Une période froide qui s'étale de Novembre à Avril ; les mois les plus froids sont Janvier et Février où la température moyenne mensuelle est de 5.1 °C.
- Une période chaude qui s'étale de Mai à Octobre ; les mois les plus chauds sont Juillet et Août où la température moyenne mensuelle dépasse 32 °C.

VI.3. Pluviométrie :

Selon les données de la station de Soumaa, on note que les pluies sont généralement irrégulières et peuvent être torrentielles.

Le tableau suivant (Tableau I-2) présente les précipitations moyennes mensuelles sur une période d'observation de 26 ans (1990-2016) :

Mois	Sep.	Oct.	Nov.	Déc.	Jan.	Fév.	Mars	Avr.	Mai	Juin	Juil.	Août	Total
P (mm)	30.2	59.2	93.5	89.8	110.7	84.1	69	65.9	54.2	6.4	1.7	7.7	672.4
P (%)	4.49	8.80	13.91	13.36	16.46	12.51	10.26	9.80	8.06	0.95	0.25	1.15	100

Tableau I-2: Précipitations moyennes mensuelles (1990-2016)

Source: ANRH Blida (2017)

L'analyse de la variation des précipitations (Figure I-4) montre que :

- La période pluvieuse s'étale du mois de Novembre au mois de Mars ; avec une hauteur maximale de précipitation de 110.7 mm enregistrée au mois de Janvier.
- Les mois de Juin, Juillet et Août sont les plus secs ; avec un minimum de précipitation de 1.7 mm au mois de Juillet.

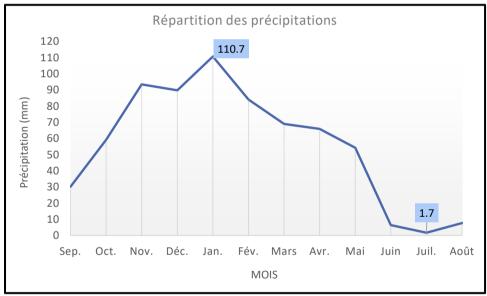


Figure I-4 : Variation des précipitations moyennes mensuelles (1990-2016)

VI.4. Humidité:

Concernant la ville de Bouinan, et selon l'ANRH de Blida, l'humidité relative de l'air varie entre 77% et 80%. C'est un taux considérable.

VI.5. Vent:

Tableau I-3 : Répartition mensuelle de la vitesse des vents

Mois	Jan.	Fév.	Mars	Avr.	Mai	Juin	Juil.	Août	Sep.	Oct.	Nov.	Déc.
V (km/h)	10.08	12.60	11.52	11.88	11.88	10.80	10.44	10.80	10.44	11.52	11.16	13.32

Source: DRE Blida (2019)

Les vents sont généralement accompagnés d'orage et de pluies. La moyenne annuelle de la vitesse du vent est de 11.37 km/h, donc ils ne sont pas assez puissants.

Les vents dominants chargés d'humidité soufflent généralement :

- Dans la direction Ouest Nord-ouest, durant la période allant d'Octobre jusqu'à Mai.
- Dans la direction Est Sud-est, durant la période de Juin jusqu'à Septembre.

VI.6. Evaporation:

La répartition mensuelle de l'évaporation (Tableau I-4) montre une variation irrégulière d'un mois à un autre.

Tableau I-4: Répartition mensuelle de l'évaporation

Mois	Sep.	Oct.	Nov.	Déc.	Jan.	Fév.	Mars	Avr.	Mai	Juin	Juil.	Août	Moyenne inter- annuelle (mm)
Max. (mm)	156.6	192.3	195.5	224.1	170.3	209.7	186.4	162.7	308.9	277.4	281.4	233.4	2598.7
Min. (mm)	48.41	23.2	38.8	28.4	26.4	44.8	31.1	70.8	80.5	56.6	40	153.6	642.61
Moy. (mm)	102.5	107.8	117.2	126.3	98.35	127.3	108.8	116.8	194.7	167	160.7	193.5	1620.7

Source: ANRH Blida (2010)

Selon le tableau au-dessus, le minimum de l'évaporation mensuelle est de 23.2 mm enregistré au mois d'Octobre et le maximum est de 308.9 mm au mois de Mai.

VII. Hydrographie:

Le réseau hydrographique du site de la nouvelle ville de Bouinan est constitué de quatre (04) oueds de Magtaa-Lazreg : Oued Amroussa (le plus proche de la zone d'étude), Oued Klab, Oued El-Had et Oued Safsaf. Ces oueds ont un débit presque nul durant la saison sèche, mais durant la saison pluviale, s'étalant de Novembre à Février, le débit augmente considérablement en charriant des sédiments. Une partie importante de ces eaux s'infiltre dans le sol.

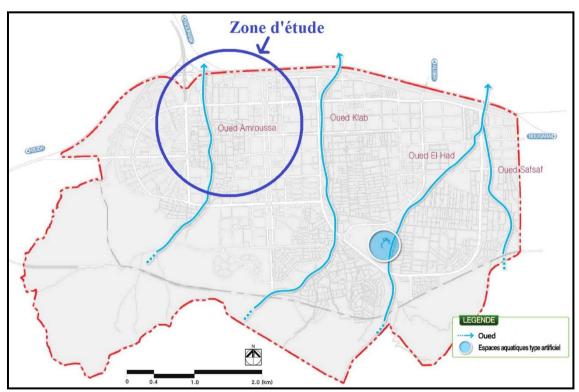


Figure I-5 : Cours d'eau de la nouvelle ville de Bouinan

Source: Dune Architecture (2019)

VIII. Situation hydraulique:

VIII.1. Alimentation en eau potable :

L'approvisionnement en eau potable, de la nouvelle ville de Bouinan, se fait à partir du nouveau champ de captage de Khodem, avec un système de collecte des eaux qui possède huit (08) forages. (Tableau I-5)

Tableau I-5 : Les caractéristiques des forages projetés du champ de captage de Khodem

Forage projeté	X	Y	CTN (m)	Niveau dynamique (m)	Débit d'exploitation (L/s)
F1	496 707 m E	4 049 201 m N	45.81	-27.81	15
F2	496 810 m E	4 048 998 m N	44.65	-25.35	15
F3	496 986 m E	4 048 093 m N	47.84	-22.16	15
F4	497 008 m E	4 047 849 m N	48.66	-21.34	20
F5	496 195 m E	4 048 284 m N	46.03	-23.97	15
F6	496 351 m E	4 048 461 m N	45.58	-24.42	20
F7	495 977 m E	4 048 428 m N	44.91	-25.09	15
F8	495 661 m E	4 048 621 m N	43.71	-26.29	15

Source : DRE Blida (2018)

Le système d'alimentation en eau potable comporte un réservoir de capacité de 1000 m3 et une station de pompage.

La nouvelle ville est dotée d'un réseau de distribution du type maillé qui est constitué principalement en PEHD.

VIII.2. Assainissement:

Pour les eaux pluviales, le rejet se fait au niveau d'Oued Amroussa qui est le plus proche du Quartier B&D.

Concernant les eaux usées, le collecteur principal permet d'acheminer ces eaux vers une station d'épuration qui est projetée dans le côté Nord-est de la zone d'étude.

Conclusion:

Dans ce chapitre ; on a donné un aperçu général sur la zone d'étude, on a défini les caractéristiques nécessaires du site et on a déterminé les données de base pour entamer le projet qui est le dimensionnement et la conception du réseau d'assainissement du Quartier B&D de la nouvelle ville de Bouinan, tout en respectant les exigences de la santé publique et l'environnement.

CHAPITRE II:

Etude hydrologique

Introduction:

D'une façon générale, L'hydrologie peut se définir comme la science qui étudie le cycle de l'eau dans la nature, plus précisément les échanges entre l'atmosphère, la surface terrestre et son sous-sol. Elle s'intéresse aussi à l'estimation de ses différents flux.

Pour la conception des systèmes d'assainissement, l'étude hydrologique est un volet important dont le but est de déterminer l'intensité moyenne maximale d'après l'étude des pluies extrêmes et des averses et le choix de la période de retour, afin de protéger le réseau contre les risques des fortes crues.

I. La série des données pluviométriques :

L'analyse des pluies est basée sur les relevés pluviométriques effectués dans un certain nombre de stations sur une surface topographique considérée. Elle est basée sur l'hypothèse que la pluie tombée à une station est représentative de celle tombée tout autour de cette station sur une étendue plus ou moins large selon la densité du réseau que l'on appelle zone d'influence du pluviomètre

La station pluviométrique de Larbaa est prise comme station de référence, ses caractéristiques sont présentées dans le tableau suivant :

Tableau II-1: Identification de la station pluviométrique de Larbaa

Nom	Code	Coord	lonnées	Période d'observation
		X (km)	541.15	1975-2018
Larbaa	021403	Y (km)	362.95	(43 ans)
		Z (m)	100	(43 ans)

Source: ANRH Blida (2019)

La station fournit une série pluviométrique comportant les pluies maximales mensuelles et annuelles. Cette série s'étend sur une période d'observation de 43 ans allant de 1975/1976 jusqu'à 2017/2018. Les données de la série sont présentées dans le tableau suivant (Tableau II-2) :

Tableau II-2 : La série pluviométrique (station de Larbaa) 1975-2018

Tableau l	11-2 : La	serie p	luviome	trique (s	station o	le Larb	aa) 1975	-2018					
Année			1		1				es (mm				Max.
	Sep.	Oct.	Nov.	Déc.	Jan.	Fév.	Mars	Avr.	Mai	Juin	Juil.	Août	
75-76	59.5	6.5	34	19	10.5	36	17	12	12	1.5	0	7	59.5
76-77	2	19	16	12	13	0	17	22.5	19	1	0	1.5	22.5
77-78	12	1	20	1	14	4	8	70	30	2	0	0	70
78-79	15	28	23	22.5	28	43.5	48.5	16.5	6.5	2	0	0.5	48.5
79-80	34	66.6	25	55	34.5	15	47	68	18.5	1.5	0.5	0.9	68
80-81	0	22	26	68	17	23	25	76.1	15.5	1	0	25.5	76.1
81-82	1.5	13	9.5	29	39	40.5	12	10	17	16	0	1.5	40.5
82-83	26	24	37.5	18.5	1.5	19	7.5	5	6.5	0	8.5	6	37.5
83-84	0	19	13	45	55.5	38	12	18.5	46.5	11	0	0	55.5
84-85	19.5	84	17	19	25	17	66	5.5	54.5	0.5	0	0	84
85-86	22	24	91	11.5	11	34	81	12	2.5	23	19.5	0	91
86-87	42	8	28.5	40	33	25.5	4.5	0.5	101.5	32	0.5	0.5	101.5
87-88	17	17.5	35	16.5	19.5	20.5	42	15.5	22	16.6	0	0	42
88-89	13	38	19.5	55.5	3	12.5	4.5	28	19	3.5	1	1.5	55.5
89-90	1.5	2	2.5	25	2.1	0	8.8	16	10	0	2.4	0	25
90-91	2	8	8	16	30	22.8	20	10.8	18	2.4	0	2	30
91-92	5	80	16.6	3.4	77.6	14.1	24.9	38.1	37	12.5	2	0	80
92-93	5.5	73	69.7	13.9	22.4	24.8	19	18	38.6	0	2.7	2.8	73
93-94	19	34.7	26.2	34.6	128	26.5	0	28.5	0.5	0	0	0	128
94-95	43	17.1	22.6	40	80	25	41	6.8	0.5	15.6	0	5	80
95-96	8.4	20	15.5	10	43	32.1	16	72	8	14.5	1	1.2	72
96-97	40.3	15	9.3	22	14	25.5	16.9	44	13	7	1.7	9.1	44
97-98	25	53	42.8	30.5	27.3	33	15.4	31	46	3.9	0	6	53
98-99	8.6	11.2	24.5	30	28	55	29.9	7.1	3.6	2.9	0	1.5	55
99-00	25	16	18.2	42.8	2.3	7.3	10	12.5	19.5	0	0	0	42.8
00-01	4.4	14.8	24.5	24	37	27.5	0	14.3	2.4	0	0	0	37
01-02	10.8	8.5	29.6	20.4	28	15.8	22.8	27.2	13.3	0	3.6	26	29.6
02-03	24.2	26.5	45	70.5	37	56.3	10	44.4	27	0	0.6	0	70.5
03-04	19	10	25.2	33.9	38.4	34.5	43.8	32.2	33	0	8.1	0	43.8
04-05	16.5	26.5	62	36.1	32	18.8	14.4	8.1	2.4	0	0.1	0	62
05-06	10.2	26.5	20.9	32	34.2	39	12.1	1	16	0	0	3.8	39
06-07	5.5	25	25.8	54	2.1	31.4	76.8	37	3.2	0.9	0	8	76.8
07-08	42.2	47.6	40	32	0	13.2	24.7	19	19.6	0.9	5.5	0	47.6
08-09	12	6	35	40	36	14.6	22.5	12	12.8	0.9	0	0	40
09-10	45	22	27.3	36	35.2	12.5	56	10	11.3	0	0	24	56
10-11	4	18.6	12	20.1	62	27.8	11.5	21.6	47.9	15.2	0	1	62
11-12	18.8	18.7	9.5	22.5	15.8	38.5	30.2	21.0	6.2	0	0	16.5	38.5
12-13	4.5	26.1	18.9	12	16	28.5	18.5	30.9	86.3	3.4	0	7.8	86.3
13-14	7.4	12.5	31.5	60.3	35	23.7	32.8	1.4	3.1	49.8	0	0	60.3
14-15	23.1	15.3	12.8	43.7	40	24.3	28.2	0	5.5	2.8	0	0	43.7
15-16	2.6	28.5	15.2	0	48.1	32.7	51.4	26.1	39.4	0	0	0	51.4
16-17	2.2	7.2	29.3	50.6	52.9	7.5	22.6	8.8	15.9	16.5	0	0	52.9
17-18	43.8	23.2	43.9	35.6	9.7	25.3	21.1	49.1	39.9	37.5	0	0	49.1

Source : ANRH Blida (2019)

II. Homogénéisation des données :

On doit s'assurer que notre série est dépourvue de ruptures artificielles et vérifier si la série des données est homogène ou pas. Pour cela, on fait appel au test de la médiane, dont les démarches sont les suivantes :

- 1- Trier la série par ordre croissant.
- 2- Déterminer la valeur M de la médiane d'ordre m (de telle sorte que 50% des x_i soient inférieurs à x et 50% des x_i soient supérieure à x). Deux cas sont alors possibles :
- Si N est impair, on prend la $\left(\frac{N+1}{2}\right)^{\text{ième}}$ valeur.
- Si N est pair, on prend la moyenne entre la $\left(\frac{N}{2}\right)^{\text{ième}}$ valeur et la $\left(\frac{N}{2}+1\right)^{\text{ième}}$ valeur.

On a :
$$N=43$$
 , donc : $m=\frac{43+1}{2}=22$, alors la médiane est : $\mathbf{M}=\mathbf{55}$ mm.

3- Pour la série non triée, attribuer à chaque valeur un signe (+) si $x_i > M$ ou bien un signe (-) si $x_i < M$.

Les calculs des étapes précédentes sont résumés dans le tableau II-4 (la page suivante).

4- Calculons les quantités N_S et T_S tel que : Ns est le nombre total des séries (+) ou (-), et Ts est la taille de la plus grande série (+) ou (-).

Pour un seuil de signification compris entre 91% et 95%, les conditions du test sont :

$$N_S > \frac{1}{2} (N + 1 - 1.96 \times \sqrt{N+1})$$
 (II.1)

$$T_S < 3.3 [\log_{10}(N) + 1]$$
 (II.2)

Tableau II-3: Résultats du test de la médiane

Paramètre	Valeur	Comparaison		
N_S	24			
$\frac{1}{2}(N+1-1.96\times\sqrt{N+1})$	15.50	24 > 15.50 → condition n°1 vérifiée		
Ts	5	5 < 8.96 → condition n°2 vérifiée		
$3.3 [\log_{10}(N) + 1]$	8.96	5 (0.50 2 condition in 2 verifice		

Interprétation : d'après les résultats du test de la médiane (Tableau II-3), on conclut que la série des pluies maximales journalières est homogène.

Tableau II-4 : Calcul des paramètres du test de la médiane

Série	triée par ordre crois	sant	Série	non triée
Année	$P_{\text{max,j}}$ (mm)	Ordre m	Année	P _{max,j} (mm)
1993-94	128	43	1975-76	+ 59.5
1986-87	101.5	42	1976-77	- 22.5
1985-86	91	41	1977-78	+ 70
2012-13	86.3	40	1978-79	- 48.5
1984-85	84	39	1979-80	+ 68
1991-92	80	38	1980-81	+ 76.1
1994-95	80	37	1981-82	- 40.5
2006-07	76.8	36	1982-83	- 37.5
1980-81	76.1	35	1983-84	+ 55.5
1992-93	73	34	1984-85	+ 84
1995-96	72	33	1985-86	+ 91
2002-03	70.5	32	1986-87	+ 101.5
1977-78	70	31	1987-88	- 42
1979-80	68	30	1988-89	+ 55.5
2004-05	62	29	1989-90	- 25
2010-11	62	28	1990-91	- 30
2013-14	60.3	27	1991-92	+ 80
1975-76	59.5	26	1992-93	+ 73
2009-10	56	25	1993-94	+ 128
1983-84	55.5	24	1994-95	+ 80
1988-89	55.5	23	1995-96	+ 72
1998-99	55	22	1996-97	- 44
1997-98	53	21	1997-98	+ 53
2016-17	52.9	20	1998-99	+ 55
2015-16	51.4	19	1999-00	- 42.8
2017-18	49.1	18	2000-01	- 37
1978-79	48.5	17	2001-02	- 29.6
2007-08	47.6	16	2002-03	+ 70.5
1996-97	44	15	2003-04	- 43.8
2003-04	43.8	14	2004-05	+ 62
2014-15	43.7	13	2005-06	- 39
1999-00	42.8	12	2006-07	+ 76.8
1987-88	42	11	2007-08	- 47.6
1981-82	40.5	10	2008-09	- 40
2008-09	40	9	2009-10	+ 56
2005-06	39	8	2010-11	+ 62
2011-12	38.5	7	2011-12	- 38.5
1982-83	37.5	6	2012-13	+ 86.3
2000-01	37	5	2013-14	+ 60.3
1990-91	30	4	2014-15	- 43.7
2001-02	29.6	3	2015-16	- 51.4
1989-90	25	2	2016-17	- 52.9
1976-77	22.5	1	2017-18	- 49.1

III. Etude des précipitations maximales journalières :

Le calcul des valeurs extrêmes ou quantiles nécessite un ajustement statistique à une loi de probabilité. Donc, il faut effectuer un ajustement adéquat à une loi théorique de la série des pluies maximales journalières afin de déterminer les intensités de pluie les plus extrêmes et d'estimer le débit de crue. Les principales étapes de l'étude sont les suivantes :

- Classer la série des P_{max,i} par ordre croissant.
- Calculer la fréquence expérimentale F(x) (au non dépassement).
- Calculer les caractéristiques empiriques de la série.
- Ajuster la série graphiquement.
- Déterminer les quantiles et leurs intervalles de confiance.
- Calculer les averses et les intensités de courte durée.

III.1. Caractéristiques empiriques de la série :

\Lambda La moyenne $\ll \overline{P_{max,1}} \gg$:

Avec N = 43, la moyenne interannuelle des précipitations maximales journalière :

$$\overline{P_{\text{max,j}}} = \frac{\sum_{i=1}^{N} P_{\text{max,j}}}{N} = 57.71 \text{ mm}$$
(II.3)

\L'\'ecart-type \(\sigma_{P_{max,i}} \) :

Pour N = 43 supérieur à 30 ans, on a :

$$\sigma_{P_{\text{max, j}}} = \sqrt{\frac{\sum_{i=1}^{N} (P_{\text{max,j}} - \overline{P_{\text{max,j}}})^2}{N}} = 21.31 \text{ mm}$$
 (II.4)

Le coefficient de variation « Cv » :

$$C_{V} = \frac{\sigma_{P_{\text{max},j}}}{\overline{P_{\text{max},j}}} = 0.369 \tag{II.5}$$

Tableau II-5 : Les caractéristiques de la série pluviométriques

Nombres d'années d'observation	43
Valeur maximale (mm)	128
Valeur Minimale (mm)	22.5
Médiane (mm)	55
Moyenne (mm)	57.71
Ecart-type (mm)	21.31
Coefficient de variation	0.369

III.2. Ajustement de la série :

L'efficacité d'une méthode d'estimation dépend de la loi de probabilité, de la taille de l'échantillon et de ses caractéristiques. Toutefois, de nombreuses études comparatives, autant empiriques que théoriques, ont été menées afin de déterminer dans quelles circonstances une loi donnée est efficace.

Pour faciliter le travail, l'ajustement sera traité par le logiciel « Hyfran » avec les trois lois suivantes : la loi de Gumbel, la loi de Galton (Log-normal) et la loi GEV.

III.2.1. Ajustement à la loi de Gumbel :

La fonction de répartition de la loi de Gumbel :

$$F(x) = e^{-e^{-y}}$$
 (II.6)

Sachant que « y » est la variable réduite de la loi de Gumbel :

$$y = \frac{x - x_0}{\alpha} = -\ln[-\ln(F(x))] \tag{II.7}$$

Avec:

- x: variable étudiée ($P_{max,j}$); x_0 : paramètre de position (ordonnée à l'origine).
- α : paramètre de l'échelle ($\alpha > 0$) appelé aussi « gradex ».
- * L'expression de quantile est alors :

$$x = \alpha y + x_0 \tag{II.8}$$

❖ Les paramètres de la loi de Gumbel, par la méthode du maximum de vraisemblance :

$$\alpha = 17.37$$
 ; $x_0 = 47.79 \text{ mm}$

* Résultats de l'ajustement à la loi de Gumbel :

Tableau II-6: Résultat de l'ajustement à la loi de Gumbel (Hyfran)

Période de retour T (ans)	Fréquence au non dépassement q	Valeur théorique X _T (mm)	Ecart-type	Intervalle de confiance
100	0.99	128	10.8	106 – 149
50	0.98	116	9.43	97.1 – 134
20	0.95	99.4	7.57	84.5 – 114
10	0.90	86.9	6.17	74.8 – 99
5	0.80	73.8	4.79	64.4 - 83.2

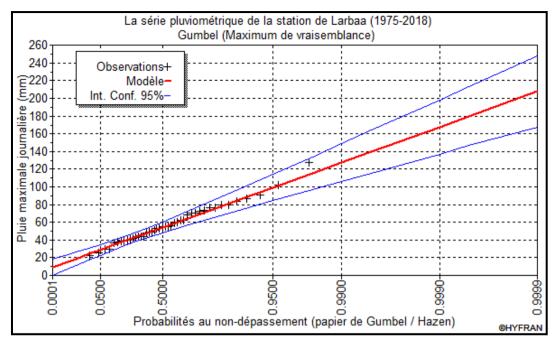


Figure II-1: Ajustement graphique à la loi de Gumbel

III.2.2. Ajustement à la loi de Galton (Log-normale) :

La fonction de répartition de la loi Log-normale :

$$F(x) = \sqrt{2\pi} \int_{-\infty}^{u} e^{\frac{u^2}{2}} du$$
 (II.9)

Sachant que « u » est la variable centrée réduite de Gauss :

$$u = \frac{\ln(x) - \overline{\ln(x)}}{\sigma_{\ln(x)}}$$
 (II.10)

Avec:

- x : variable étudiée (P_{max,j}).
- ln(x): la moyenne des logarithmes de la variable x
- $\sigma_{ln(x)}$: l'écart-type des logarithmes de la variable x.
- * L'expression de quantile est alors :

$$ln(x) = u \sigma_{ln(x)} + \overline{ln(x)}$$
 (II.11)

Les paramètres de la loi par la méthode du maximum de vraisemblance :

$$\sigma_{ln(x)} = \textbf{0.37} \hspace{1cm} ; \hspace{1cm} \overline{ln(x)} = \textbf{3.99} \label{eq:sigma_ln(x)}$$

Résultats de l'ajustement à la loi de Galton :

Tableau II-7 : Résultat de l'ajustement à la loi	Log-normale	(Hyfran)
--	-------------	----------

Période de retour T (ans)	Fréquence au non dépassement q	Valeur théorique X _T (mm)	Ecart-type	Intervalle de confiance
100	0.99	128	14.2	101 – 156
50	0.98	116	11.7	93.1 – 139
20	0.95	99.7	8.75	82.5 – 118
10	0.90	87	6.71	73.9 – 100
5	0.80	73.9	4.9	64.3 – 83.5

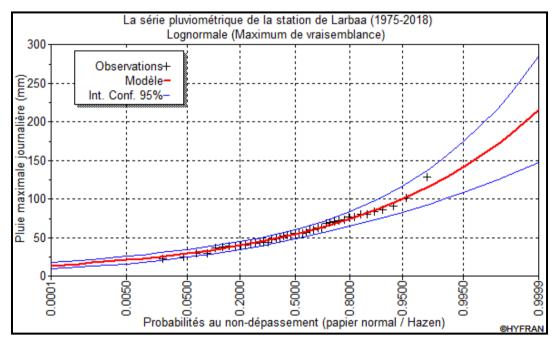


Figure II-2: Ajustement graphique à la loi Log-normale

III.2.3. Ajustement à la loi GEV:

La fonction de répartition de la loi d'extrémum généralisée :

$$F(x) = e^{-e^{-y}}$$
 (II.12)

Sachant que « y » est la variable réduite :

$$y = -\frac{1}{k} \ln \left[1 - \frac{k}{\alpha} (x - u) \right]$$
 (II.13)

Avec:

- x : variable étudiée (P_{max,j}).

- u : paramètre de position

- α : paramètre de dispersion ($\alpha > 0$).
- *k* : paramètre de forme appelé indice des valeurs extrêmes.
- L'expression de quantile est alors :

$$x = u + \frac{\alpha}{k} (1 - e^{-ky})$$
 (II.14)

Les paramètres de la loi par la méthode du maximum de vraisemblance :

$$u = 48.15 \text{ mm}$$
 ; $\alpha = 17.17$; $k = 0.023267$

* Résultats de l'ajustement à la loi d'extrémum généralisé :

Tableau II-8 : Résultat de l'ajustement à la loi GEV (Hyfran)

Période de retour T (ans)	Fréquence au non dépassement q	Valeur théorique X_T (mm)	Ecart-type	Intervalle de confiance
100	0.99	123	17	89.7 – 156
50	0.98	112	12.8	87 – 137
20	0.95	97.4	8.48	80.8 - 114
10	0.90	85.8	6.14	73.8 – 97.8
5	0.80	73.5	4.56	64.5 – 82.4

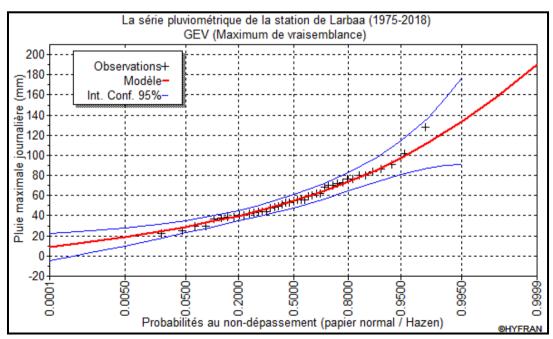


Figure II-3: Ajustement graphique à la loi GEV

III.2.4. Choix de la loi d'ajustement :

Lorsqu'on a procédé à un ajustement d'une loi de probabilité théorique, le problème qui se pose est de savoir si cette loi s'adapte ou non. Les critères de choix d'une loi sont liés à un ajustement graphique et un test de dispersion.

***** Test graphique :

Ce test est basé sur une observation visuelle des graphes d'ajustement ; il consiste à examiner l'allure des points sur le papier de probabilité, et vérifier s'il s'agit d'un bon alignement sans existence de mauvaises courbures.

Interprétation des graphiques :

D'après l'examen visuel des graphiques d'ajustement présentés dans les figures II-1, II-2 et II-3, on remarque que :

- La loi GEV donne un mauvais ajustement par rapport aux deux autres lois, vu que l'allure des intervalles de confiances compte des valeurs négatives et autres non définies → la loi est inadéquate ; à rejeter.
- L'ajustement graphique à la loi de Gumbel et à celle de Galton est meilleur ; les points sont très proches de la droite théorique avec une bonne convergence.

❖ Test d'adéquation de Khi-deux « χ^2 » :

Appelé aussi test de Khi-carré ou de Pearson. Ce test consiste à prendre une règle de décision concernant l'ajustement, en comparant entre les valeur calculées et théoriques de χ^2 . Il est donné pour un seuil de signification (risque) $\alpha = 5\%$ et dépend du nombre de degré de liberté de la loi.

D'après le logiciel « Hyfran », les résultats du test sont donnés par le (Tableau II-9) comme suit :

Tableau II-9 : Résultat du test de Pearson χ²

Loi d'ajustement	Nombre de paramètres m	Degré de liberté γ	χ ² calculé	χ ² théorique	Observation
Gumbel	2	6	2.84	12.592	$\chi^2_{\text{calculé}} < \chi^2_{\text{théorique}}$ The Condition vérifiée
Log-normale	2	6	4.09	12.592	$\chi^2_{\text{calculé}} < \chi^2_{\text{théorique}}$ Condition vérifiée

Interprétation des résultats du test :

D'après le tableau au-dessus, la condition du test est vérifiée pour les deux lois. Donc, le test de Khi-deux montre que les lois Log-normale et de Gumbel sont adéquates.

❖ Sélection de la loi :

Sachant que l'adéquation de l'ajustement par les deux lois est confirmée, et que les valeurs théoriques X_t sont très proches pour les deux. Mais vu que plusieurs études en Hydrologie montrent que la loi Log-normale est celle qui s'adapte mieux au Nord d'Algérie, donc on opte pour celle-ci : la loi de **Galton (Log-normal)**.

III.3. Calcul des pluies et des intensités de courte durée :

Dans ce volet, on va déterminer les valeurs des pluies de courte durée et leurs intensités. En se basant sur les résultats de l'ajustement à la loi Log-normale.

Pluies de courte durée :

La détermination des pluies de courte durée (les averses) se fait à la base des pluies maximales journalières, par la relation suivante :

$$P_{t,p\%} = P_{\text{max,j}} \left(\frac{t}{24}\right)^b \tag{II.15}$$

Avec:

- P_{t,p%}: pluie (mm) de courte durée correspondante à une fréquence de dépassement donnée (p%).
- P_{max,j}: pluie maximale journalière (mm) correspondante à une fréquence de dépassement donnée (p%).
- t : durée de l'averse (h)
- b: exposant climatique; selon l'ANRH Blida, b = 0.37 pour la région d'étude.

! Intensités de courte durée :

Pour le calcul de l'intensité moyenne « $i_{t,p\%}$ » de précipitation « $P_{t,p\%}$ (mm) » de courte durée « t (h) » à une fréquence de dépassement donnée « p% », nous utilisons la formule de Montanari :

$$i_{t,p\%} = \frac{P_{t,p\%}}{t}$$
 (mm/h) (II.16)

→ Les calculs sont résumés dans le tableau et les graphes suivants :

Tableau II-10 : Pluies de courte durée de différentes périodes de retour et leurs intensités

T	5 ans		10 ans		20 ans		50 ans		100 ans	
X_{t}	73.8 mm		86.9 mm		99.4 mm		116 mm		128 mm	
t (h)	P _t (mm)	i _t (mm/h)								
0.1	9.71	97.14	11.44	114.38	13.08	130.83	15.27	152.68	16.85	168.47
0.2	12.55	62.77	14.78	73.91	16.91	84.54	19.73	98.66	21.77	108.86
0.25	13.63	54.54	16.05	64.22	18.36	73.45	21.43	85.72	23.65	94.59
0.5	17.62	35.24	20.75	41.49	23.73	47.46	27.69	55.39	30.56	61.12
0.75	20.47	27.30	24.11	32.14	27.57	36.76	32.18	42.90	35.51	47.34
1	22.77	22.77	26.81	26.81	30.67	30.67	35.79	35.79	39.49	39.49
2	29.43	14.71	34.65	17.33	39.64	19.82	46.26	23.13	51.04	25.52
3	34.19	11.40	40.26	13.42	46.05	15.35	53.74	17.91	59.30	19.77
4	38.03	9.51	44.78	11.20	51.22	12.81	59.78	14.94	65.96	16.49

5	41.30	8.26	48.64	9.73	55.63	11.13	64.92	12.98	71.64	14.33
6	44.19	7.36	52.03	8.67	59.51	9.92	69.45	11.58	76.64	12.77
7	46.78	6.68	55.08	7.87	63.01	9.00	73.53	10.50	81.14	11.59
8	49.15	6.14	57.87	7.23	66.20	8.27	77.25	9.66	85.25	10.66
9	51.34	5.70	60.45	6.72	69.15	7.68	80.70	8.97	89.04	9.89
10	53.38	5.34	62.86	6.29	71.90	7.19	83.90	8.39	92.58	9.26
11	55.30	5.03	65.11	5.92	74.48	6.77	86.92	7.90	95.91	8.72
12	57.11	4.76	67.24	5.60	76.91	6.41	89.76	7.48	99.04	8.25
13	58.82	4.52	69.26	5.33	79.23	6.09	92.46	7.11	102.02	7.85
14	60.46	4.32	71.19	5.08	81.43	5.82	95.03	6.79	104.86	7.49
15	62.02	4.13	73.03	4.87	83.53	5.57	97.48	6.50	107.57	7.17
16	63.52	3.97	74.79	4.67	85.55	5.35	99.84	6.24	110.17	6.89
17	64.96	3.82	76.49	4.50	87.49	5.15	102.10	6.01	112.67	6.63
18	66.35	3.69	78.13	4.34	89.36	4.96	104.29	5.79	115.08	6.39
19	67.69	3.56	79.70	4.19	91.17	4.80	106.39	5.60	117.40	6.18
20	68.99	3.45	81.23	4.06	92.92	4.65	108.43	5.42	119.65	5.98
21	70.24	3.34	82.71	3.94	94.61	4.51	110.41	5.26	121.83	5.80
22	71.46	3.25	84.15	3.82	96.25	4.38	112.32	5.11	123.94	5.63
23	72.65	3.16	85.54	3.72	97.85	4.25	114.19	4.96	126.00	5.48
24	73.80	3.08	86.90	3.62	99.40	4.14	116.00	4.83	128.00	5.33

IV. Intensité moyenne maximale :

Pour les projets d'assainissement, et concernant l'estimation des débits pluviaux, on s'intéresse généralement à l'intensité moyenne maximale correspondante à une courte durée $t=15\ min=0.25\ h$ et une période de retour $T=10\ ans$, pour des raisons technico-économiques et de sécurité.

D'après les résultats précédents illustrés dans le tableau II-10, On a :

$$i_{15\text{min},10\%} = 64,22 \text{ mm/h}$$

$$i_{15\text{min},10\%} = \frac{64.22 \times 10000}{3600} = 178.39 \text{ L/s/ha}$$

Avec : $\frac{10000}{3600}$ est le terme de conversion du (mm/h) en (L/s/ha)

Conclusion:

L'étude des précipitations maximales journalières nous a permis de déterminer l'intensité moyenne maximale ; cela en utilisant les résultats obtenus par l'ajustement de la série pluviométrique à la loi Log-normale, et les calculs des pluies de courte durée.

$$i = 178 \frac{L}{s \cdot ha}$$

CHAPITRE III:

Calcul de base

Introduction:

L'objectif de l'assainissement est d'évacuer, hors des agglomérations, les eaux usées de différentes origines. Dans ce contexte, on est contraint de passer par certaines phases préliminaires dont le calcul de base en fait partie ; pour une meilleure estimation des débits à évacuer, par la suite.

Cette phase inévitable consiste en :

- L'estimation du nombre d'habitants.
- Le découpage du site en surfaces élémentaires et la détermination du coefficient de ruissellement.
- Le choix du système et du schéma du réseau d'évacuation des eaux.

I. Situation démographique :

En hydraulique urbaine, l'ingénieur doit prévoir, dès le stade de la conception, quelle sera la population à desservir durant la durée de vie de la structure projetée ; pour répondre aux besoins de cette population.

Concernant la nouvelle ville de Bouinan, et vu qu'il n'y aura pas d'extensions car ce sont des logements sociaux, le bureau d'étude concepteur « Dune Architecture » a fixé un taux d'occupation de sept (07) personnes par logement pour un horizon d'étude de 30 ans.

Et sachant que le site (Quartier B&D) comporte 5002 logements, donc le nombre d'habitants sera :

$$P_{2049} = 5002 \times 7 = 35 \text{ 014 habitants}$$

II. Découpage de l'air d'étude en surfaces élémentaires :

Pour procéder au choix du découpage d'un site en sous-bassins élémentaires, on prend en considération ce qui suit :

- La nature du sol.
- La densité des habitants.
- Les courbes de niveau ; les pentes et les contre pentes.
- Les limites naturelles (talweg, oued, etc...).
- Les routes et les voiries.
- Le réseau existant.
- → Concernant ce projet, on va découper le site en 21 sous-bassins.

III. Système d'évacuation des eaux :

III.1. Les différents systèmes d'assainissement :

Le réseau d'assainissement, quelle que soit sa nature, projeté au niveau d'une zone rurale, urbaine ou industrielle permet d'évacuer :

- Les eaux pluviales, en quantité importante, qui englobent toutes les eaux de ruissellement.
- Les eaux usées d'origine domestique (eaux-vannes, ménagères...), les eaux usées provenant des industries et celles des services publics.
- Et, dans certains cas, les eaux parasites claires ou de drainage.

Plusieurs systèmes d'évacuation des eaux résiduaires et des eaux de pluie sont susceptibles d'être mis en service, on peut citer les suivants :

III.1.1. Le système unitaire :

L'évacuation de l'ensemble des eaux usées et pluviales est assurée par un seul réseau. Ce dernier est généralement pourvu de déversoir permettant, en cas d'orage, le rejet direct d'une partie des eaux dans le milieu naturel.

Ce système est intéressant pour sa simplicité puisqu'il suffit d'une canalisation unique dans chaque voie publique et d'un seul branchement pour chaque immeuble.

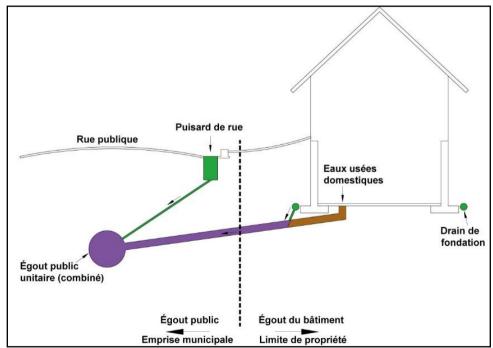


Figure III-1 : schéma représentatif des branchements dans le système unitaire

Source: www.gatineau.ca (2019)

Tableau III-1: Avantages et inconvénients du système unitaire

Domaine	- Milieu récepteur éloigné des points de collecte.					
d'utilisation	- Topographie à faible relief.					
privilégié	- Imperméabilisation importante et topographie accentuée de la commune.					
privilegie	- Débit d'étiage du cours d'eau récepteur important					
	- Conception simple : un seul collecteur, un seul branchement par					
	immeuble.					
	- Encombrement réduit du sous-sol.					
Avantages	- A priori économique (dimensionnement moyen imposé par les seules					
	eaux pluviales).					
	- Aspect traditionnel, dans l'évolution historique des cités.					
	- Pas de risque d'inversion de branchement.					
	- Débit à la station d'épuration très variable.					
	- Lors d'un orage, les eaux usées sont diluées par les eaux pluviales.					
	- Apport de sable important à la station d'épuration.					
Inconvénients	- Acheminement d'un flot de pollution assez important lors des premières					
	pluies après une période sèche.					
	- Rejet direct vers le milieu récepteur du mélange " eaux usées - Eaux					
	pluviales " au droit des déversoirs d'orage.					
Contraintes	- Entretien régulier des déversoirs d'orage et des bassins de stockage.					
d'exploitation	- Difficulté d'évaluation des rejets directs vers le milieu récepteur.					
	S OFF I-toti1 d-12 (2000)					

Source: Office International de l'eau (2000)

III.1.2. Le système séparatif :

Dans lequel deux réseaux séparés sont mis en place :

- Réseau des eaux pluviales : il est conçu pour évacuer les eaux d'origine pluviale, c'està-dire les pointes pluviales. Il suit la ligne de plus grande pente pour déverser les eaux dans le cours d'eau le plus proche et afin d'augmenter la vitesse d'écoulement. Son tracé dépend de l'implantation des espaces producteurs de ruissellement
- Réseau d'eaux usées : il est prévu pour l'évacuation des eaux usées d'origine domestique, publique et industrielle jusqu'à la station d'épuration avec une pente adéquate pour l'écoulement. Le tracé du réseau des eaux usées est en fonction de l'implantation des différentes entités à drainer.

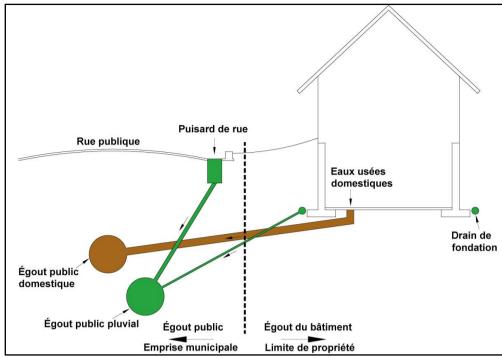


Figure III-2 : schéma représentatif des branchements dans le système séparatif

Source: www.gatineau.ca (2019)

Tableau III-2: Avantages et inconvénients du système séparatif

Domaine	- Petites et moyennes agglomérations.						
d'utilisation	- Extension des villes.						
privilégié	- Faible débit d'étiage du cours d'eau récepteur.						
	- Diminution du diamètre moyen du réseau de collecte des eaux usées.						
Avantages	- Exploitation plus facile de la station d'épuration.						
Tivantages	- Meilleure préservation de l'environnement des flux polluants.						
	- Certains coûts d'exploitation sont limités (relevage des effluents,)						
	- Encombrement important du sous-sol.						
Inconvénients	- Coût d'investissement élevé.						
	- Risque important d'erreur de branchement.						
	- Surveillance accrue des branchements.						
	- Entretien d'un linéaire important de collecteurs (eaux usées et pluviales).						
Contraintes	- Entretien des ouvrages particuliers (siphons, chasses d'eau, avaloirs).						
d'exploitation	- Entretien des postes de relèvement et des chambres à sables.						
	- Détection et localisation des anomalies (inversion de branchement,						
arrivée d'eaux parasites).							

Source : Office International de l'eau (2000)

III.1.3. Le système pseudo-séparatif :

Ce système repose sur une collecte des eaux usées avec une fraction des eaux pluviales provenant généralement des toitures et des espaces privés, dans un réseau commun. L'autre fraction des eaux pluviales est transitée à travers les caniveaux et les ouvrages pluviaux, dans un autre réseau.

Il est assez comparable au système séparatif, avec un inconvénient au moins ; c'est le risque du mauvais fonctionnement de la station d'épuration, grâce à l'apport des eaux pluviales.

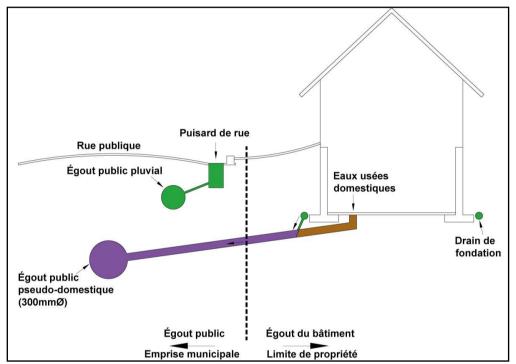


Figure III-3 : schéma représentatif des branchements dans le système pseudo-séparatif

Source : www.gatineau.ca (2019)

III.1.4. Système mixte:

Dans ce type, une partie de la zone est assainie par un réseau unitaire et l'autre partie par le système séparatif. Il est appliqué dans les villes disposant d'un ancien réseau de type unitaire et dont les débits de l'extension ne pourraient être supportés par le réseau ancien.

III.1.5. Système autonome :

C'est un système individuel non raccordé à un réseau public (assainissement noncollectif). Ce système est utilisé dans les sites ruraux où on rencontre une faible densité d'habitations (espaces isolés et entités individuelles), ce qui rend la mise en place des réseaux publics très coûteuse.

III.1.6. Système composite :

C'est une variante du système séparatif. Il prévoit, grâce à divers aménagements, une dérivation partielle des eaux les plus polluées du réseau pluvial vers le réseau d'eaux usées en vue de leur épuration.

III.2. Le choix du système d'assainissement :

Pour le choix du système d'assainissement, il faut prendre en considération :

- L'aspect technique et Les conditions locales (la topographie du terrain, le régime des précipitations atmosphériques, les points de rejet, la répartition des masses d'habitations, etc...).
- S'il s'agit d'une extension du réseau (il faut tenir compte du système existant).
- L'aspect économique prenant en compte les dépenses d'investissement et les frais d'entretien, d'exploitation et de gestion de l'ensemble des installations et de pompage des eaux usées.
- Les considérations urbanistiques d'avenir (répartition des quartiers résidentiels, commerciaux et industriels, etc...).
- → Pour notre projet, on va adopter le système séparatif, pour les raisons suivantes :
 - Réalisation d'une nouvelle ville exemplaire, référence nationale en matière de production urbaine et architecturale, avec un réseau d'assainissement hermétique qui répond aux exigences de qualité de l'eau et de la santé, pour un environnement urbain agréable; vu que le système séparatif offre une meilleure préservation de l'environnement des flux polluants.
 - Présence d'un cours d'eau (Oued Amroussa) qui est très proche de la zone et peut recevoir la charge des surverses des eaux de ruissellement ; ça sert à diminuer le diamètre du réseau des eaux usées (minimiser certains coûts de conception) qui vont être acheminées vers la station d'épuration projetée au sein de la commune de Bouinan.

IV. Schéma d'évacuation des eaux :

IV.1. Les différents schémas d'assainissement :

Les réseaux d'Assainissement fonctionnent généralement, sauf dans des cas particuliers, en écoulement gravitaire ; on distingue cinq (05) schémas différents :

IV.1.1. Schéma perpendiculaire:

L'écoulement se fait directement dans le cours d'eau. Ce type de schéma ne permet pas la concentration des eaux vers un point unique d'épuration ; il convient lorsque l'épuration n'est pas jugée nécessaire et aussi pour l'évacuation des eaux pluviales en système séparatif.

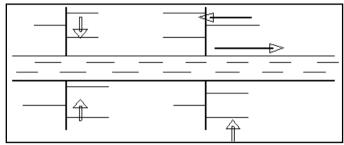


Figure III-4 : Schéma perpendiculaire

IV.1.2. Schéma par déplacement latéral :

C'est le schéma le plus simple, permettant de transporter l'effluent à l'aval de l'agglomération vers un seul point. Les eaux sont recueillies dans un collecteur parallèle au cours d'eau, dans ce cas l'épuration est nécessaire.

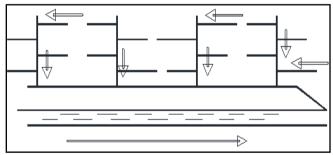


Figure III-5 : Schéma par déplacement latéral

IV.1.3. Schéma transversal ou oblique :

Ce schéma comporte des ramifications de collecteurs qui permettent de rapporter l'effluent à l'aval de l'agglomération. Ce type de schéma est adopté lorsque la pente du terrain est faible.

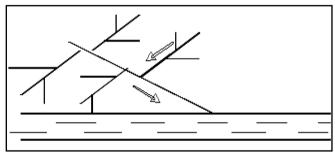


Figure III-6 : Schéma à collecteur transversal ou oblique

IV.1.4. Schéma par zones étagées :

Ce schéma est une transposition du schéma par déplacement latéral, mais avec multiplication des collecteurs longitudinaux ; ils permettent l'évacuation à plusieurs niveaux pour ne pas trop charger le collecteur.

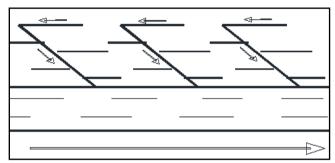


Figure III-7 : Schéma par zones étagées

IV.1.5. Schéma radial:

Le schéma radial convient pour les terrains plats. Il permet la collecte des effluents en un ou plusieurs points où ils seront évacués, par relevage, vers un point éloigné de l'agglomération (un cours d'eau récepteur ou une station d'épuration).

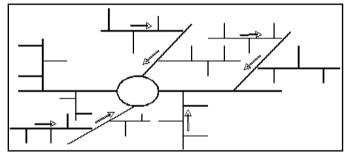


Figure III-8: Schéma radial

IV.2. Le choix du schéma d'évacuation :

Le choix du schéma du réseau d'évacuation à adopter, dépend de divers paramètres :

- Les conditions techniques et locales du lieu : système existant, la topographie du terrain et la répartition géographique des habitats à desservir.
- Les conditions d'environnement : nature de rejet, le milieu récepteur et l'emplacement de la station d'épuration si elle existe.
- Les conditions économiques : le coût et les frais d'investissement et d'entretien.
- → Pour notre projet, on va adopter un schéma par déplacement latérale.

V. Le coefficient de ruissellement :

V.1. Méthodes de détermination du coefficient de ruissellement :

Le coefficient de ruissellement « C_r » d'une surface donnée est défini comme étant le rapport entre le volume d'eau ruisselé et le volume tombé sur le bassin considéré. Il a un rôle prépondérant dans l'évaluation des débits de pointe pluviaux qui servent au dimensionnement du réseau.

La valeur du coefficient de ruissellement dépend de plusieurs paramètres :

- La nature du sol.
- Le mode d'occupation du sol.
- L'inclinaison du terrain (la pente).
- La durée et l'intensité de la pluie.
- La densité de la population.
- Le degré de saturation du sol en eau.
- L'humidité de l'air.

L'estimation du coefficient de ruissellement est faite à titre empirique, d'une façon approchée vu l'hétérogénéité des surfaces, suivant différents facteurs :

En fonction du type d'occupation du sol :

Tableau III-3: Valeurs du coefficient de ruissellement en fonction du type d'occupation du sol

Tyl	pe d'occupation du sol	Cr					
Commercial		0.70 - 0.95					
	Lotissement	0.3 - 0.5					
Résidentiel	Collectifs	0.5 - 075					
	Habitat dispersé	0.25 - 0.4					
Industriel		0.5 - 0.8					
Parcs et jardin	ns public	0.05 - 0.25					
Terrains de s ₁	port	0.1 - 0.3					
Terrains vagu	ies	0.05 - 0.15					
Terres	Drainées	0.05 - 0.13					
agricoles	Non drainées	0.03 - 0.07					

Source: Satin et al. (2006)

> En fonction de la catégorie d'urbanisation :

Tableau III-4 : Valeurs du coefficient de ruissellement en fonction de la catégorie d'urbanisation

Catégorie d'urbanisation	$ m C_r$
Habitations très denses	0.90
Habitations denses	0.60 - 0.70
Habitations moins denses	0.40 - 0.50
Quartiers résidentiels	0.20 - 0.30
Square – garde – prairie	0.05 - 0.20

Source: Water Environment Federation (1970)

En fonction de la densité de population :

Tableau III-5 : Valeurs du coefficient de ruissellement en fonction de la densité de population

Densité de la population (habitant/ha)	Cr
20	0.20
30 – 80	0.20 - 0.25
60 – 150	0.25 - 0.30
150 – 200	0.30 - 0.45
200 – 300	0.45 - 0.60
300 – 400	0.60 - 0.80
> 400	0.80 - 0.90

Source: Water Environment Federation (1970)

En fonction de la nature de la surface :

Tableau III-6: Valeurs du coefficient de ruissellement en fonction de la nature des surfaces

Nature de la surface	Cr
Toits en métal, tuile, ardoise	0.9
Chaussée avec peu de joints	0.85 - 0.9
Pavés en pierres naturelles, brique avec joints cimentés	0.75 - 0.85
Pavage en blocages	0.40 - 0.50
Surfaces goudronnées	0.25 - 0.60
Chemin en gravier	0.25 - 0.30
Gare, terrain de sport	0.10 - 0.30
Parcs, jardins, gazons	0.05 - 0.25
Forêts	0.01 - 0.20

Source : Gomella et Guerree (1967)

V.2. Estimation du coefficient de ruissellement pour chaque sous bassin :

On va estimer la valeur de coefficient de ruissellement pondéré pour chaque sous bassin, en se basant sur le plan de masse de la zone d'étude.

→ Les résultats sont dans le tableau suivant :

Tableau III-7: Valeurs de coefficients de ruissellement pour chaque sous bassin

N° SB	Surface : A (ha)	$\mathbf{C_r}$		
01	0,923	0,66		
02	0,93	0,73		
03	0,846	0,71		
04	1,37	0,67		
05	2,126	0,76		
06	1,341	0,49		
07	2,608	0,73		
08	2,326	0,72		
09	2,781	0,66		
10	2,449	0,65		
11	1,844	0,69		
12	2,805	0,62		
13	1,393	0,65		
14	2,22	0,71		
15	2,644	0,75		
16	2,315	0,68		
17	3,231	0,73		
18	2,99	0,73		
19	3,989	0,8		
20	2,263	0,71		
21	3,592	0,69		
Somme :	49,986	-		

VI. Calcul de la population pour chaque sous bassin :

Tableau III-8: Nombre d'habitants pour chaque sous bassin

N° SB	Surface : A (ha)	Nombre de logements	Nombre d'habitants		
01	0,923	112	784		
02	0,93	142	994		
03	0,846	142	994		
04	1,37	165	1155		
05	2,126	-	-		
06	1,341	-	-		
07	2,608	404	2828		
08	2,326	334	2338		
09	2,781	284	1988		
10	2,449	364	2548		
11	1,844	184	1288		
12	2,805	259	1813		
13	1,393	152	1064		
14	2,22	228	1596		
15	2,644	282	1974		
16	2,315	468	3276		
17	3,231	165	1155		
18	2,99	94	658		
19	3,989	495	3465		
20	2,263	280	1960		
21	3,592	448	3136		
Somme :	46,986	5002	35014		

Conclusion:

Ce chapitre nous a permis la détermination des paramètres de base pour une bonne estimation des débits d'évacuation afin de permettre un calcul hydraulique adéquat pour notre agglomération :

- Le système adopté est le système séparatif avec un schéma par déplacement latérale.
- La détermination du coefficient de ruissellement pour chaque sous bassin, ainsi que le nombre d'habitants.

CHAPITRE IV:

Estimation des débits à évacuer

Introduction:

Le réseau d'assainissement est appelé à assurer la collecte et l'évacuation des eaux de ruissellement et des eaux usées des différentes origines. Donc, il est impératif de passer par la phase d'évaluation des débits d'eaux usées et pluviales, avant d'entamer le dimensionnement du réseau.

Le but principal de l'évaluation des débits des eaux usées est de connaître la quantité et la qualité des rejets liquides provenant des habitations et lieux d'activités. Ces rejets, qui varient d'une agglomération à une autre selon la vocation adoptée, doivent être évacués le plus rapidement possible et par le moyen le plus sûr afin d'éviter toute contamination de l'être humain ou pollution de l'environnement ; d'où ressort l'utilité de l'évaluation des quantités à traiter.

I. Origine et nature des eaux à évacuer :

I.1. Les eaux usées :

On distingue, selon la nature des matières polluantes contenues dans l'effluent, quatre (04) origines :

- Les eaux usées d'origine domestique.
- Les eaux usées des services publics.
- Les eaux usées d'origine industrielle.
- Les eaux parasites.

I.1.1. Les eaux usées domestiques :

Ce sont les eaux de ménage qui proviennent des habitations aux centres des agglomérations. Elles sont constituées essentiellement des :

- Eaux ménagères : les eaux de cuisine, de vaisselle, de lavage, de bains et de douches ; elles sont évacuées par les éviers des lavabos et des baignoires.
- **Eaux vannes** : les eaux provenant des sanitaires.

La quantité des eaux à évacuer dépend de la consommation en eau potable qui ellemême dépend essentiellement des facteurs suivants :

- Type d'habitations et leurs degrés de confort.
- Conditions climatiques.

I.1.2 Les eaux usées des services publiques :

Ce sont les eaux usées provenant des établissements ou des équipements publics : administratifs, éducatifs, touristiques, sanitaires et autres services d'utilité publique.

L'estimation de ces eaux tient compte de la dotation en eau potable requise pour chaque activité ; cette dotation est basée sur la notion d'équivalent habitant qui représente une unité de compte homogène pour tous usagers.

I.1.3. Les eaux usées industrielles :

Ces eaux proviennent des différentes activités industrielles de diverses usines. La quantité d'eau évacuée par les industries dépend des facteurs suivants :

- Nature de l'industrie (de fabrication ou de transformation)
- Procédé de fabrication utilisé.
- Taux de recyclage effectivement réalisé.

Cette quantité peut être évaluée selon deux principes :

- ➤ Industrie de production : on s'intéresse aux produits ; c'est-à-dire l'estimation du nombre de produits et la quantité d'eau nécessaire jusqu'au produit fini.
- ➤ Industrie de transformation : on s'intéresse au nombre de travailleurs employés par l'industrie, et une estimation de la quantité d'eau utilisée par chacun.

Mis à part la quantité à évacuer, il y a toujours certains paramètres à prendre en considération :

- La température élevée peut nuire aux caractéristiques mécaniques des canalisations ; les eaux chaudes doivent avoir une température inférieure à 35°C.
- L'agressivité de l'effluent exige un prétraitement à l'intérieur de l'unité industrielle, pour éviter les méfaits des matières chimiques corrosives (acides ou bases), des substances toxiques (traitement difficile au niveau de la station d'épuration) et parfois même des métaux lourds (frottement contre les parois des conduites).

I.1.4. Les eaux parasites :

Les eaux claires parasites désignent, le plus souvent, l'ensemble des eaux provenant de drainage, des infiltrations après une chute de pluie ou de la remontée de la nappe.

Ces eaux pénètrent dans les collecteurs, généralement à travers :

- Les joints mal confectionnés (mauvais raccordement) ou déboités à cause d'une mauvaise pose de canalisation.

 Les fissurations dans les collecteurs à cause des tassements de la terre autour de la conduite ou bien des racines des arbres cherchant l'humidité (phénomène d'hydrotropisme).

La présence de ces eaux perturbe le bon fonctionnement de la station d'épuration. Néanmoins leur évaluation est assez difficile, elle ne peut être faite que sur terrain ; seule la modélisation peut donner une approche d'estimation du débit de ces eaux.

En pratique et en absence des valeurs mesurées, on préconise un débit d'eau parasite compris entre 0,05 et 0,15 L/s/ha.

I.2. Les eaux pluviales :

Ce sont les eaux de ruissellement de surface ; composées principalement de celles qui proviennent des précipitations atmosphériques. Ces eaux doivent être collectées et conduites vers la canalisation d'évacuation afin d'éviter, essentiellement, les risques d'inondations.

Les eaux provenant d'arrosage, de lavage (des marchés, des rues, ...), des espaces publics, des jardins et des cours d'immeubles sont assimilées à des eaux pluviales. Elles sont recueillies par les ouvrages de collecte des eaux pluviales, sauf dans le cas d'un système unitaire.

Dans les premières minutes d'une chute de pluie, la teneur en matières organiques est plus importante surtout pour des agglomérations à dominance industrielle ; du fait du balayage des surfaces par les eaux de ruissellement et de lavage.

Ces eaux aussi transportent du sable qui peut se déposer dans la canalisation à la moindre chute de vitesse d'écoulement.

II. Estimation des débits des eaux usées :

L'évaluation de la quantité journalière des eaux usées à évacuer s'effectue à partir de la consommation d'eau potable.

L'évacuation quantitative des rejets est en fonction du type et de la nature de l'agglomération et les diverses catégories d'urbanisation (établissements publics et privés, industries, usines ...). Plus l'agglomération est urbanisée, plus la quantité d'eau rejetée est élevée.

II.1. Débits des eaux usées domestiques :

L'eau utilisée par le consommateur n'est pas rejetée en totalité dans le réseau, il est admis que l'eau évacuée n'est que 70% à 80% de l'eau consommée.

II.1.1. Débit moyen journalier :

Pour calculer le débit des eaux usées à évacuer, on prend comme base la dotation de la consommation d'eau potable.

Le débit moyen journalier rejeté est donné par la relation suivante :

$$Q_{\text{moy,j}}^{\text{dom}} = \frac{K_r \times D \times N_{\text{hab}}}{86400}$$
 (IV.1)

Avec:

- $Q_{moy,j}^{dom}$: débit moyen journalier des eaux usées domestiques en (L/s)
- N_{hab}: nombre d'habitants à l'horizon d'étude (habitant).
- K_r: coefficient de rejet pris égal à 80% de la quantité d'eau potable consommée.
- D: dotation journalière estimée à 150 L/hab/j.
- Le terme $\frac{1}{86400}$ est pour la conversion de (L/j) en (L/s).

II.1.2. Débit de pointe :

Comme la consommation, le rejet des eaux usées est aussi variable dans la journée, d'où on est appelé à déterminer le débit de pointe. Ce dernier est donné par la formule suivante :

$$Q_{p}^{\text{dom}} = K_{p} \times Q_{\text{mov,i}}^{\text{dom}}$$
 (IV.2)

Avec:

- Q_p^{dom} : débit de pointe des eaux usées domestiques (L/s).
- Q^{dom}_{moy,i} : débit moyen journalier rejeté (L/s).
- K_p : coefficient de pointe ; calculé à partir du débit moyen de rejet :

$$K_p = 1.5 + \frac{2.5}{\sqrt{Q_{\text{moy},j}^{\text{dom}}}}$$
 si: $Q_{\text{moy},j}^{\text{dom}} \ge 2.81 \text{ L/s}$ (IV.3)

$$K_p = 3$$
 si: $Q_{\text{moy,j}}^{\text{dom}} < 2.81 \text{ L/s}$ (IV.4)

→ Les débits des eaux usées domestiques à évacuer sont illustrés dans le tableau suivant :

Tableau IV-1: Débits des eaux usées domestiques pour chaque sous bassin

N° SB	Nhab	Kr	D (L/j/hab)	Q ^{dom} _{moy,j} (L/s)	Kp	Q _p ^{dom} (L/s)	Q ^{dom} (m ³ /s)
01	784	0,8	150	1,333	3	4	0,004
02	994	0,8	150	2,000	3	6	0,006
03	994	0,8	150	2,000	3	6	0,006
04	1155	0,8	150	2,333	3	7	0,007
05	-	-	-	-	-	-	-
06	-	-	-	-	-	-	-
07	2828	0,8	150	5,333	3	16	0,016
08	2338	0,8	150	4,333	3	13	0,013
09	1988	0,8	150	4,000	3	12	0,012
10	2548	0,8	150	4,000	3	12	0,012
11	1288	0,8	150	2,667	3	8	0,008
12	1813	0,8	150	3,667	3	11	0,011
13	1064	0,8	150	1,333	3	4	0,004
14	1596	0,8	150	3,333	3	10	0,01
15	1974	0,8	150	4,000	3	12	0,012
16	3276	0,8	150	4,000	3	12	0,012
17	1155	0,8	150	2,333	3	7	0,007
18	658	0,8	150	1,333	3	4	0,004
19	3465	0,8	150	7,000	3	21	0,021
20	1960	0,8	150	1,667	3	5	0,005
21	3136	0,8	150	6,333	3	19	0,019

II.2. Débits des eaux usées des établissements publics :

L'évaluation de ces débits se fait de la même manière que les eaux domestiques, en se basant sur la consommation d'eau potable pour chaque type d'usager.

II.2.1. Débit moyen journalier :

Le débit moyen journalier des eaux usées des services publics est donné par la relation suivante :

$$Q_{\text{moy,j}}^{\text{éq}} = \frac{K_r \times D_{\text{\'e}q} \times N_u}{86400}$$
 (IV.5)

Avec:

- $Q_{moy,j}^{\text{\'eq}}$: débit moyen journalier des eaux usées publiques en (L/s)
- N_u : nombre des usagers (des unités) concernés par chaque service.
- K_r: coefficient de rejet pris égal à 80% de la quantité d'eau potable consommée.
- $D_{\acute{e}q}$: dotation de la consommation journalière d'eau potable (L/j/unité) ; une donnée qui diffère d'un type d'usager à un autre.
- Le terme $\frac{1}{86400}$ est pour la conversion de (L/j) en (L/s).

II.2.2. Débit de pointe :

On est appelé à déterminer le débit de pointe des eaux usées des équipements publics. Il est donné par la formule suivante :

$$Q_p^{\text{\'eq}} = K_p \times Q_{\text{mov},i}^{\text{\'eq}} \tag{IV.6}$$

Avec:

- $Q_p^{\acute{e}q}$: débit de pointe des eaux usées publiques (L/s).
- $Q_{\text{mov,i}}^{\text{\'eq}}$: débit moyen journalier rejeté (L/s).
- K_p : coefficient de pointe ; calculé à partir du débit moyen de rejet :

$$K_{p} = 1.5 + \frac{2.5}{\sqrt{Q_{\text{moy},j}^{\text{éq}}}}$$
 si : $Q_{\text{moy},j}^{\text{éq}} \ge 2.81 \text{ L/s}$ (IV.7)

$$K_p = 3$$
 si: $Q_{\text{moy,i}}^{\text{\'eq}} < 2.81 \text{ L/s}$ (IV.8)

→ Les débits des eaux usées des équipements publics à évacuer sont illustrés dans le tableau suivant :

Tableau IV-2 : Débits des eaux usées des équipements publics pour chaque sous bassin

N° SB	Equipement	S (m ²)	Unité de mesure	Nu	D _{éq} (L/j/unité)	Q ^{éq} (L/s)	Kp	Q _p ^{éq} (L/s)	Q _p ^{éq} ((m ³ /s)
20	Ecole primaire	3036	Élève	380	30	0,660	3	1,979	0,002	0,002
	Bibliothèque communale	1244	Lecteur	90	15	0,078	3	0,234	0,0002	
	Polyclinique	2010	Patient	215	185	2,302	3	6,905	0,007	
18	Maison de jeune	3134	Personne	235	35	0,476	3	1,428	0,001	0,0117
	Crèche	1598	Enfant	105	25	0,152	3	0,456	0,0005	
	CEM	5990	Élève	580	30	1,007	3	3,021	0,003	
17	Lycée	7776	Élève	630	35	1,276	3	3,828	0,004	0.007
17	Ecole primaire	6184	Élève	530	30	0,920	3	2,760	0,003	0,007
15	Ecole primaire	6184	Élève	530	30	0,920	3	2,760	0,003	0,003
11	Ecole primaire	3171	Élève	380	30	0,660	3	1,979	0,002	0,002
09	Ecole primaire	3801	Élève	410	30	0,712	3	2,135	0,002	0,002
06	Mosquée	3353	Fidèle	730	40	1,690	3	5,069	0,005	0,005
	Salle de sport	3241	Vestiaire	165	60	0,573	3	1,719	0,002	
05	CEM	3088	Élève	450	30	0,781	3	2,344	0,002	0,007
	Lycée	4834	Élève	540	35	1,094	3	3,281	0,003	

II.3. Débits totaux des eaux usées à évacuer :

Pour le calcul du débit total des eaux usées à évacuer, et en l'absence des renseignements précis sur la répartition dans le temps, on doit prendre en considération l'hypothèse de la superposition des débits de pointes de tout type d'eaux usées.

→ Les débits totaux des eaux à évacuer sont illustrés dans le tableau suivant :

Tableau IV-3 : Débits totaux des eaux usées pour chaque sous bassin

N° SB	A (ha)	Q _p ^{dom} (L/s)	$Q_p^{\acute{e}q}$ (L/s)	Q _t ^{EU} (L/s)	Q ^{EU} _t (m ³ /s)
01	0,923	4	-	4	0,004
02	0,93	6	-	6	0,006
03	0,846	6	-	6	0,006
04	1,37	7	-	7	0,007
05	2,126	-	7	7	0,007
06	1,341	-	5	5	0,005
07	2,608	16	-	16	0,016
08	2,326	13	-	13	0,013
09	2,781	12	2	14	0,014
10	2,449	12	-	12	0,012
11	1,844	8	2	10	0,01
12	2,805	11	-	11	0,011
13	1,393	4	-	4	0,004
14	2,22	10	-	10	0,01
15	2,644	12	-	12	0,012
16	2,315	12	-	12	0,012
17	3,231	7	7	14	0,014
18	2,99	4	11,7	16	0,016
19	3,989	21	-	21	0,021
20	2,263	5	-	5	0,005
21	3,592	19	-	19	0,019

III. Estimation des débits des eaux pluviales :

Le calcul de base pour le dimensionnement d'un réseau pluvial est la pluie la plus forte susceptible de survenir dans une période de 10 ans (débit décennal).

Lors d'une chute de pluie, seule la fraction d'eau ruisselée intéresse le dimensionnement d'un ouvrage appelé à évacuer dans les conditions suffisantes le débit d'eau de cette fraction du bassin considéré.

En fonction de l'étendue du bassin et de son urbanisation, on considère différentes méthodes pour l'évaluation du débit pluvial, dont nous citons :

- La méthode rationnelle.
- La méthode superficielle.

III.1. La méthode rationnelle :

Cette méthode a fait ses preuves surtout pour les bassins urbains à faible surface. Elle exige un découpage de bassin-versant en secteurs limités par les lignes isochrones quand la surface est importante.

Elle consiste à estimer les débits pluviaux suite à une averse d'intensité moyenne « i » supposée constante durant la chute de pluie sur des surfaces d'influence de superficie « A » caractérisée par un coefficient de ruissellement « C_r ».

Cependant, on tient compte que l'intensité n'est pas uniforme (ça veut dire que l'averse a un épicentre et se diffuse dans l'espace). Pour cela, il convient d'appliquer un coefficient « α » de répartition de la pluie.

La méthode rationnelle s'exprime par la formule suivante :

$$Q = \alpha \times C_r \times i \times A \tag{IV.9}$$

Avec:

- Q : débit d'eau de ruissellement (L/s).
- A: surface d'apport (ha).
- C_r: coefficient de ruissellement.
- i : intensité moyenne de précipitation (L/s/ha).
- α : coefficient réducteur (correcteur) de l'intensité tenant compte de la distribution de la pluie dans l'espace.

III.1.1. Coefficient réducteur de l'intensité :

En réalité, la répartition d'une pluie au niveau d'un bassin est irrégulière surtout pour les pluies de courte durée et de forte intensité. Pour en tenir compte, on doit ajouter un paramètre de correction pour chaque surface élémentaire ; c'est un coefficient réducteur de l'intensité : $\alpha \le 1$.

- ❖ Ce coefficient peut être déterminé d'après une loi de répartition de pluie :
 - Pour des bassins longs (rectangles étroits, ...) ; ce coefficient sera égal à :

$$\alpha = 1 - 0.006 \times \sqrt{d/2} \tag{IV.10}$$

- Pour des bassins ramassés (carrés, cercles, ...):

$$\alpha = 1 - 0.005 \times \sqrt{d/2} \tag{IV.11}$$

Avec:

- d : longueur du milieu de l'aire élémentaire (m).

III.1.2. Validité de la méthode rationnelle :

Cette méthode est efficace pour des surfaces relativement limitées (généralement inférieures à 10 ha). Le résultat est meilleur pour des aires encore plus faibles, du fait de la bonne estimation du coefficient de ruissellement.

Ainsi, elle est applicable pour des surfaces où le temps de concentration ne dépasse pas 30 min.

Par contre, elle n'est pas susceptible d'être utilisée pour les zones étendues, car les calculs deviendraient fastidieux.

III.1.3. Hypothèses de la méthode rationnelle :

La méthode rationnelle est fondée sur trois (03) hypothèses de base :

- Le débit de pointe « Qp » est observé à l'exutoire seulement si la durée de l'averse est supérieure au temps de concentration « tc » du bassin-versant.
- Le débit de pointe « Qp » est proportionnel à l'intensité moyenne maximale « i » sur une durée égale au temps de concentration « tc » du bassin-versant.
- Le débit de pointe « Qp » a la même période de retour que l'intensité « i » qui le provoque, ceci suppose que le coefficient de ruissellement « Cr » du bassin-versant est constant.

III.1.4. Temps de concentration :

C'est une caractéristique du bassin ; définie comme étant le temps mis par la pluie tombée au point le plus éloigné, en durée d'écoulement, pour atteindre l'entrée du collecteur qui doit évacuer l'apport de la surface considérée.

- - ➤ t₁ (min): temps mis par l'eau pour s'écouler dans les canalisations.

$$t_1 = \frac{L}{60 \times v} \tag{IV.12}$$

Avec:

- L: longueur de canalisation (m).
- v : vitesse d'écoulement (m/s).
- Le terme $\frac{1}{60}$ pour la conversion de secondes (s) en minutes (min).
- > t₂: temps mis par l'eau pour atteindre le premier ouvrage d'engouffrement. En général, il varie de 2 à 20 min.
- > t₃ (min): temps de ruissellement superficiel dans un bassin ne comportant pas de canalisations.

$$t_3 = \frac{L_s}{11 \times \sqrt{I}} \tag{IV.13}$$

Avec:

- L_s: parcours superficiel de l'eau dans le bassin (km).
- I : pente moyenne du parcours (%).
- ❖ Donc, trois (03) cas peuvent être envisagés :
 - Le bassin ne comporte pas de canalisation : $t_c = t_3$.
 - Le bassin comporte un parcours superficiel puis une canalisation : $t_c = t_1 + t_3$.
 - Le bassin est urbanisé et comporte une canalisation : $t_c = t_1 + t_2$.
- ❖ Dans le cas général, pour les zones peu allongées, le temps de concentration « t_c (min) » est donné par la relation suivante :

$$t_{c} = 3.98 \times \left[\frac{L}{\sqrt{I}}\right]^{0.77} \tag{IV.14}$$

Avec:

- L : cheminement hydraulique le plus long (km).
- I : pente moyenne du chemin parcouru (%).

III.1.5. Critique de la méthode rationnelle :

- La décomposition du bassin en aires élémentaires est grossièrement approchée.
- Le coefficient de ruissellement « C_r » est constant sur tout le sous bassin et pendant toute la durée de l'averse. La méthode ne tient pas compte du stockage de l'eau de ruissellement sur le bassin ; en négligeant le rôle des surfaces non revêtues (trous, crevasse, ...).

III.2. La méthode superficielle :

La méthode de Caquot ou la méthode superficielle est une variante de la méthode rationnelle. Ce modèle établit le bilan hydraulique du débit précipité sur le bassin versant jusqu'à l'instant à peu près égal au temps de concentration « t_c » où on observe le débit de pointe « Q_p » à l'exutoire. L'expression générale de la formule de Caquot est la suivante :

$$Q_p = K^{\frac{1}{u}} \times C_r^{\frac{1}{u}} \times I^{\frac{v}{u}} \times A^{\frac{w}{u}}$$
 (IV.15)

Avec:

- $Q_p(f)$: le débit pluvial de pointe de fréquence de dépassement « F » ; en (m^3/s) .
- C_r : est le coefficient de ruissellement du sous bassin considéré.
- I : la pente moyenne calculée selon le plus long cheminement hydraulique (m/m).
- A : la superficie drainée du sous bassin (ha).
- K, u, v, w : coefficients d'expression, donnés en fonction des paramètres de Caquot par les formules suivantes :

$$K = \frac{a \times \mu}{6 \times (\beta + \delta)}$$
 (IV.16)

$$u = 1 - b \times f \tag{IV.17}$$

$$v = c \times b \tag{IV.18}$$

$$w = 1 - \varepsilon + d \times b \tag{IV.19}$$

III.2.1. Evaluation des paramètres de Caquot :

• Paramètres liés à la pluviométrie :

 a, b : sont les coefficients de la formule de Montana (courbes IDF). Les valeurs qu'ils prennent sont issues d'un calcul purement hydrologique selon les régions, les périodes de retour et les fréquences. - ε: abattement spatial de la pluie;

 $\epsilon = 0.5$ pour S < 100 ha.

 $\epsilon = 0.03$ la valeur la plus adoptée.

• Paramètres caractérisant la transformation de la pluie en débit :

- $\beta + \delta = 1.1$: représente l'effet de stockage et d'écrêtement, cette valeur devrait augmenter avec la taille des bassins.

• Paramètres concernant le bassin versant :

- c = -0.41 ; d = 0.51 ; f = -0.29.
- μ : coefficient d'ajustement de la forme du bassin, donnée par :

$$\mu = 0.28 \times M^{0.84} \tag{IV.20}$$

Où:

$$M = \frac{L}{\sqrt{S_c}}$$
 (IV.21)

Avec:

- M : coefficient d'allongement qui caractérise la forme du bassin-versant.
- L: le plus long chemin hydraulique (m).
- S_c: étant la surface du carré équivalent qui est égale à celle du bassin (m²).

Remarque:

La valeur de « M » doit être supérieure à 0.8 (une valeur qui correspond à un bassinversant en forme de demi-cercle). La formule de Caquot est donnée pour M=2. Et pour des valeurs de « M » différentes de 2, le débit de pointe « Q_p » donnée par la formule doit être corrigé par le coefficient d'influence :

$$m = \left(\frac{M}{2}\right)^{0.7 \times b} \tag{IV.22}$$

• Temps de concentration :

D'après DESBORDES, Le temps de concentration (valable pour les deux méthode) est donné par l'expression suivante :

$$t_c = 0.28 \times M^{0.84} \times I^{-0.41} \times A^{0.51} \times Q_p^{-0.29} \tag{IV.23}$$

Avec:

- t_c (min) ; I (m/m) ; Q_p (m³/s)

III.2.2. Validité de la méthode superficielle :

Il est nécessaire de vérifier les conditions d'application de la formule de Caquot pour pouvoir l'appliquer, ces limites sont celles préconisées par l'instruction technique 1977 :

- Superficie totale : A < 200 ha.

- Coefficient de ruissellement : $0.2 < C_r < 1$

- Pente : 0.2 % < I < 5 %

- Coefficient d'allongement : M > 0.8

III.2.3. Formules d'assemblage et d'équivalence :

Les méthodes de calcul du débit pluvial sont en général valables pour des bassins de caractéristiques physiques homogènes. L'application du modèle superficielle à un groupement de sous bassins hétérogènes nécessite l'emploi de formules d'équivalence.

Ces formules diffèrent selon la hiérarchie des sous bassins constituant le groupement ; des bassins seront dits en série lorsque l'exutoire d'un des bassins constitue l'entrée de l'autre, les bassins seront dits en parallèle lorsque leurs exutoires convergent vers le même bassin versant.

Le tableau suivant fournit les règles d'assemblage à utiliser :

Tableau IV-4 : Formules d'assemblage des bassins versants dans la méthode de Caquot

Paramètres équivalents	Aéq	Céq	Iéq	Méq
Bassins en série	$\sum A_i$	$\frac{\sum (C_i \times A_i)}{\sum A_i}$	$\left[\frac{\sum L_i}{\sum (\frac{L_i}{\sqrt{I_i}})}\right]^2$	$\frac{\sum L_i}{\sqrt{\sum A_i}}$
Bassins en parallèle			$\frac{\sum (I_i \times Q_i)}{\sum Q_i}$	$\frac{L(t_{c,max})}{\sqrt{\sum A_i}}$

Avec:

- Aéq, Céq, Iéq, Méq: sont les paramètres du bassin équivalent.
- A_i, C_i, I_i, L_i, Q_i : sont les paramètres individuels du sous bassin (i) considéré seul.
- L(t_{c,max}): cheminement hydraulique le plus long du sous bassin ayant le temps de concentration le plus long.

Pour calculer le coefficient d'allongement « $M_{\text{\'eq}}$ » qui est sans unité, les longueurs « L_i ; $L(t_{c,max})$ » et les surfaces « A_i » doivent être exprimés en des unités similaires (par exemple : m et m²).

III.2.4. Critique de la méthode superficielle :

- Les débits livrés par la méthode de Caquot sont sensiblement supérieurs (surestimation) en comparaison avec ceux de la méthode rationnelle. Ce surplus des débits donné par la méthode superficielle est dû essentiellement aux conditions de calcul, notamment les tronçons disposés en parallèle, ainsi que l'effet implicite du temps de concentration et qui ne relève pas le comportement plus au moins réel du réseau.
- Le modèle de groupement des bassins, peut conduire à des anomalies :
 - Pour les bassins en série, il peut arriver que le débit de pointe du bassin équivalent soit inférieur au maximum des débits de pointe des sous bassins. Donc on prend :
 Q_p = Max (Q_i).
 - Pour les bassins en parallèle, il peut arriver que le débit de pointe du bassin équivalent soit supérieur à la somme des débits de pointe des sous bassins, ce qui est impossible.
 Donc on prend : Q_p = Σ Q_i.

III.3. Choix de la méthode :

Selon les limitations et les critiques de chacune de ces méthodes ; on opte pour la méthode rationnelle pour l'évaluation des débits pluviaux, car les conditions de validité de celle-ci sont respectées sur tous les sous bassins ; des superficies inférieures à 10 ha.

III.4. Calcul des débits pluviaux :

Vu que les surfaces des sous bassins sont petites, les valeurs du coefficient « α » s'approchent de l'unité, par conséquent il sera pris égal à 1. Les résultats de calcul des débits pluviaux pour chaque surface élémentaire sont reportés respectivement dans le tableau suivant :

Tableau IV-5 : Débits totaux des eaux pluviales à évacuer

N° réseau	N° SB	A (ha)	Cr	α	I (L/s/ha)	Q ^{EP} (L/s)	Q ^{EP} (m3/s)	
EP1	01	0,923	0,66	1	178	108,434	0,108	1.541
	02	0,93	0,73	1	178	120,8442	0,121	
	03	0,846	0,71	1	178	106,9175	0,107	
	04	1,37	0,67	1	178	163,3862	0,163	
	05	2,126	0,76	1	178	287,6053	0,288	
	06	1,341	0,49	1	178	116,962	0,117	
	07	2,608	0,73	1	178	338,8835	0,339	
	08	2,326	0,72	1	178	298,1002	0,298	
EP2	09	2,781	0,66	1	178	326,7119	0,327	0,836
	10	2,449	0,65	1	178	283,3493	0,283	
	11	1,844	0,69	1	178	226,4801	0,226	
EP3	12	2,805	0,62	1	178	309,5598	0,310	0,752
	13	1,393	0,65	1	178	161,1701	0,161	
	14	2,22	0,71	1	178	280,5636	0,281	
EP4	15	2,644	0,75	1	178	352,974	0,353	1,053
	16	2,315	0,68	1	178	280,2076	0,280	
	17	3,231	0,73	1	178	419,8361	0,420	
EP5	18	2,99	0,73	1	178	388,5206	0,389	1,684
	19	3,989	0,8	1	178	568,0336	0,568	
	20	2,263	0,71	1	178	285,9979	0,286	
	21	3,592	0,69	1	178	441,1694	0,441	

Conclusion:

Dans ce chapitre, on a estimé et évalué les quantités des eaux à évacuer. Ces débits incluent des eaux usées et des eaux pluviales ; on signale que la zone d'étude ne comporte aucune unité industrielle.

D'après les valeurs des débits obtenues, on constate que les débits des eaux usées (domestiques et publiques) ne représentent qu'une faible fraction des débits pluviaux.

La présente phase constitue une étape importante pour entamer le prochain chapitre ; le calcul hydraulique et le dimensionnement des conduites.

CHAPITRE V:

Dimensionnement du réseau d'assainissement

Introduction:

Une fois que les débits des eaux à évacuer sont déterminés, on passe au calcul hydraulique du système d'assainissement qui consiste à dimensionner les ouvrages (collecteurs et regards) des deux réseaux de ce système séparatif.

Ce calcul hydraulique doit respecter certaines normes d'écoulement et conditions d'implantation des réseaux d'assainissement. L'implantation en profondeur se fait d'une manière à satisfaire les conditions de résistance mécanique aux charges extérieures, tout en définissant le meilleur tracé possible.

I. Principe de conception d'un système d'assainissement :

La conception d'un réseau d'assainissement est la concrétisation de tous les éléments constituant les branches du réseau sur un schéma :

- Les collecteurs : doivent pouvoir transporter en tout temps la totalité des débits apportés par les conduites qu'ils desservent. Ils sont définis par leurs :
 - Emplacements.
 - Profondeurs.
 - Dimensions (diamètres intérieur et extérieur, ...).
 - Pentes.
- Les regards : de différents types (de visite, de jonction, ...). Ils sont également définis par leurs :
 - Emplacements.
 - Profondeurs.
 - Côtes.

Un système d'assainissement fonctionne généralement en écoulement gravitaire, sauf dans des cas particuliers comme les contre-pentes, où il nécessite un relevage.

Avant de procéder au calcul hydraulique d'un réseau d'assainissement, on considère les hypothèses suivantes :

- L'écoulement est uniforme à surface libre.
- La perte de charge engendrée est une énergie potentielle égale à la différence des côtes du plan d'eau en amont et en aval.
- Les canalisations d'égouts sont dimensionnées pour un débit en pleine section « Q_{ps} » ; malgré qu'en réalité, et dans la plupart du temps, elles ne débitent pas cette quantité.

II. Mode de dimensionnement des canalisations :

II.1. Base de calcul:

L'écoulement dans les collecteurs est un écoulement à surface libre ; dont le débit est donné par la formule de la continuité :

$$Q = v \times S_m \tag{V.1}$$

Avec:

- Q : le débit capable de l'ouvrage (m³/s).
- S_m : section mouillée (m^2).
- v : vitesse d'écoulement (m/s).

Les ouvrages sont calculés suivant une formule d'écoulement résultant de celle de CHEZY ; où la vitesse d'écoulement se calcule par l'expression suivante :

$$v = C \times \sqrt{R_h \times I} \tag{V.2}$$

Avec:

- v : vitesse d'écoulement (m/s).
- C : coefficient de Chézy, qui dépend des paramètres hydrauliques et géométriques de l'écoulement.
- I : pente motrice de l'écoulement (m/m).
- R_h: rayon hydraulique (m), donné par :

$$R_{h} = \frac{S_{m}}{P_{m}} \tag{V.3}$$

Où:

- S_m: la surface de la section transversale mouillée de la conduite (m²)
- P_m: le périmètre mouillé (m).

II.2. Formule de MANNING-STRICKLER :

Le coefficient de Chézy est exprimé comme suit :

$$C = K \times R_h^{1/6} \tag{V.4}$$

Avec:

- K : coefficient de rugosité (de Manning-Strickler) ; sa valeur dépend du type de l'ouvrage utilisé, son matériau et son état.

La vitesse d'écoulement se calcule par l'expression suivante :

$$v = K \times R_h^{2/3} \times I^{1/2}$$
 (V.5)

Et le débit capable de l'ouvrage :

$$Q = K \times R_h^{2/3} \times I^{1/2} \times S_m \tag{V.6}$$

❖ Procédé de calcul :

- 1- Déterminer le débit et la pente pour chaque point.
- 2- Le diamètre calculé est exprimé par :

$$D_{cal} = \left[\frac{3.2 \times Q}{K \times \sqrt{I}}\right]^{3/8} \tag{V.7}$$

Avec:

- D_{cal} (m)
- $Q (m^3/s)$
- I(m/m)
- 3- Fixer le diamètre normalisé de la conduite « D_N ».
- 4- La vitesse à pleine section est calculée à partir de la relation (V.5) :

Pour un rayon hydraulique $R_h = D_n/4$; on a:

$$v_{ps} = K \times \left(\frac{D_N}{4}\right)^{2/3} \times I^{1/2}$$
 (V.8)

Avec:

- v_{ps} (m/s)
- ; $D_N(m)$;
- I(m/m)

5- Le débit à pleine section :

$$Q_{ps} = v_{ps} \times \frac{\pi \times D_N^2}{4} \tag{V.9}$$

Avec:

- $Q_{ps} (m^3/s)$
- ; v_{ps} (m/s) ;
- $D_N(m)$

6- Le rapport des débits :

$$r_{Q} = \frac{Q}{Q_{ps}} \tag{V.10}$$

7- Déterminer les vitesses réelles par :

$$v = r_v \times v_{ps} \tag{V.11}$$

Avec:

- r_v : rapport des vitesses, donnée comme suit :

$$r_{v} = -25.63 \times r_{Q}^{6} + 93.647 \times r_{Q}^{5} - 134.25 \times r_{Q}^{4} + 95,24. r_{Q}^{3} - 35.151 \times r_{Q}^{2} + 7.0395 \times r_{Q} + 0.2263$$
 (V.12)

8- La hauteur de remplissage :

$$H = r_H \times D_N \tag{V.13}$$

Avec:

- r_H: rapport des hauteurs, donnée comme suit :

$$\begin{aligned} r_{H} &= -11.423 \times r_{Q}^{6} + 40.641 \times r_{Q}^{5} - 55.497 \times r_{Q}^{4} + 37.115 \times r_{Q}^{3} \\ &- 12.857 \times r_{Q}^{2} + 2.8373 \times r_{Q} + 0.0359 \end{aligned} \tag{V.14}$$

II.3. Formule de BAZIN:

Le coefficient de Chézy est donné, à son tour, par la formule de Bazin :

$$C = \frac{87}{1 + \frac{\gamma}{\sqrt{R_h}}} \tag{V.15}$$

Où:

 γ : un coefficient d'écoulement qui varie suivant les matériaux utilisés et la nature des eaux transportées.

II.3.1. Réseau des eaux usées en système séparatif :

Au niveau d'une canalisations il se forme une pellicule grasse sur les parois, ce qui améliore les conditions d'écoulement, donc le coefficient relatif à la relation de Bazin a été pris $\gamma=0.25$. Suivant cette base, le coefficient de Chézy a été, approximativement, représenté par l'expression suivante :

$$C = 70 \times R_h^{1/6}$$
 (V.16)

Alors, la vitesse d'écoulement et le débit capable de l'ouvrage sont représentés, respectivement, comme suit :

$$v = 70 \times R_h^{2/3} \times I^{1/2} \tag{V.17}$$

$$Q = 70 \times R_h^{2/3} \times I^{1/2} \times S_m \tag{V.18}$$

II.3.2. Réseau des eaux pluviales en système séparatif :

Il convient de tenir compte que des dépôts sont susceptibles de se former, ce qui conduit à admettre un écoulement sur des parois semi-rugueuses. Ainsi, le coefficient relatif à la relation de Bazin a été pris $\gamma=0.46$; le coefficient de Chézy a été, approximativement, représenté par l'expression suivante :

$$C = 60 \times R_h^{1/4} \tag{V.19}$$

Alors, la vitesse d'écoulement et le débit capable de l'ouvrage sont représentés, respectivement, comme suit :

$$v = 60 \times R_h^{3/4} \times I^{1/2} \tag{V.20}$$

$$Q = 60 \times R_h^{3/4} \times I^{1/2} \times S_m \tag{V.21}$$

II.3.3. Les abaques de Bazin :

Les abaques, illustrés dans l'annexe, ont été établis à la base de la formule de Chézy-Bazin. Pour tenir compte de la nature de l'effluent, la nature de la canalisation et du type de joint ; le coefficient « K » de la formule de Manning-Strickler a été pris K = 90. Ils sont construits pour le débit à pleine section avec $R_h = D_n/4$.

- Les abaques (1), (2-a) et (2-b) sont utilisés pour simplifier les calculs :
 - Abaque 1 : pour les réseaux des eaux usées en système séparatif.
 - Abaque 2 : pour les réseaux pluviaux en système séparatif ou les réseaux unitaire :
 - Abaque 2-a : pour les canalisations circulaires.
 - <u>Abaque 2-b</u>: pour les canalisations ovoïdes.
- Les nomogrammes (3-a) et (3-b) donnent les variations des débits et des vitesses en fonction de la hauteur de remplissage ; sont fournis pour l'évaluation des caractéristiques capacitaires des conduites ou pour apprécier les possibilités d'autocurage :
 - Abaque 3-a: pour les ouvrages circulaires.
 - <u>Abaque 3-b</u>: pour les ouvrages ovoïdes normalisés.

Procédé de calcul :

1- A l'aide de l'abaque (1), (2-a) ou (2-b) : En donnant la pente et le débit, on peut tirer le diamètre normalisé « D_N », la vitesse à pleine section « v_{ps} » et le débit à pleine section « Q_{ps} » d'où on peut déterminer le rapport des débits « v_{qs} » en utilisant la relation (V.10).

2- D'après l'abaque (3-a) ou (3-b) :
En connaissant le rapport des débits « r_Q », on peut tirer le rapport des vitesses « r_v » et le rapport des hauteurs « r_H » ; d'où on peut déterminer la vitesse d'écoulement « v » et la hauteur de remplissage « H » par les relations (V.11) et (V.13).

III. Conditions d'autocurage :

III.1. Réseaux des eaux usées :

Dans le cas des réseaux d'eaux usées en système séparatif, il faut prendre en compte la condition que :

- A pleine ou à demi-section : un tuyau circulaire doit assurer une vitesse d'écoulement de 0.7 m/s (ou à l'extrême rigueur 0.5 m/s). Dans ce cas, le rapport des vitesses est presque égal à 1 donc on vérifiera que la vitesse à pleine section est supérieure ou égale à 0.7 m/s.

$$r_{\rm H} = 0.5 \text{ ou } 1 \Rightarrow r_{\rm v} = \frac{\rm v}{\rm v_{\rm ps}} \approx 1 \Rightarrow \rm v_{\rm ps} = \rm v = 0.7 \ m/s$$

Remarque:

En pratique, on pourra considérer que l'autocurage est respecté si v > 0.3 m/s pour éviter le dépôt des vases organiques et fermentescibles.

III.2. Réseaux pluviaux :

Un réseau des eaux pluviales doit être auto-cureur, c'est-à-dire permettre l'évacuation du sable avec des débits couramment atteints, pour empêcher leur décantation et éviter les dépôts, sans provoquer l'érosion de la paroi de la conduite.

- 1- Pour $\frac{1}{10}$ Q_{ps} : $v \ge 0.6$ m/s.
- 2- Pour $\frac{1}{100}$ Q_{ps} : $v \ge 0.3$ m/s.

Ces limites sont respectées avec :

- $v_{ps} = 1 \text{ m/s}$; pour une section circulaire.

(
$$r_Q = 0.1 \Rightarrow r_v = \frac{v}{v_{ps}} = 0.55 \Rightarrow v_{ps} \ge 1 \text{ m/s}$$
)

- $v_{ps} = 0.9 \text{ m/s}$; pour une section ovoïde.

IV. Normes d'écoulement et d'implantation :

IV.1. Canalisations des eaux usés :

- Les canalisations des eaux usées sont généralement circulaires.
- Le diamètre minimal est fixé à 200 mm pour éviter les risques d'obstruction.

- A l'amont, les conditions d'autocurage sont difficiles à réaliser (débit faible), donc la pente minimale doit être de 0.4 à 0.5 %. A l'aval, elle doit être de 0.2 à 0.3 %.
- La couverture minimale de la canalisation est de 80 cm; en dessous de cette valeur, la canalisation sera protégée par une dalle de répartition pour éviter son écrasement sous les charges roulantes.
- Bien qu'elle dépende du matériau de la canalisation, il est préférable que la vitesse à pleine section ne dépasse pas l'ordre de 4 m/s afin d'éviter l'abrasion des tuyaux ; la limite correspondante a été tracée sur l'abaque. Sinon, il est nécessaire d'adopter un tuyau en matériau résistant tel que la fonte ou le polyéthylène à haute densité.

VI.2. Canalisations des eaux pluviales :

- Le diamètre minimal des canalisations circulaires est fixé à 300 mm ; pour éviter les risques d'obstruction.
- Il faut prendre la précaution de donner à la canalisation d'amont des pentes qui permettent l'autocurage ; la pente minimale est de 0.5%.
- Le relèvement des eaux par pompage à éviter le plus que possible, car les débits d'eaux pluviales peuvent être importants.
- La couverture minimale de la canalisation est de 80 cm.
- La même chose comme pour les eaux usées, il est préférable que la vitesse maximale à pleine section soit de l'ordre de 4 m/s (la limite correspondante a été tracée sur les abaques).

V. Résultats du dimensionnement :

Le dimensionnement de tous les collecteurs et la détermination de leur paramètres hydrauliques sont résumés dans les tableaux ci-dessous :

- Tableau V-1 : pour le réseau des eaux usées.
- Tableau V-2 : pour le réseau des eaux pluviales.

Tableau V-1 : Calculs du réseau projeté des eaux usées

Tronçon	L (m)	Pente (%)	Q (m ³ /s)	D _{cal} (mm)	D _N (mm)	R_{q}	R _v	R _h	H (mm)	V (m/s)	Q _{ps} (m³/s)	V _{ps} (m/s)	V _{min} (m/s)	Autocurage
R1 - R2	34	0,550	0,001	75	300	0,02	0,42	0,11	31	0,26	0,041	0,620	0,340	vérifié
R2 - R3	35	1,550	0,001	62	300	0,01	0,36	0,08	24	0,37	0,068	1,040	0,570	vérifié
R3 - R4	28,64	1,650	0,003	92	300	0,04	0,5	0,14	40	0,53	0,070	1,070	0,590	vérifié
R4 - R5	23,36	0,550	0,004	124	300	0,1	0,64	0,21	61	0,39	0,041	0,620	0,340	vérifié
R5 - R6	32,5	1,350	0,005	115	300	0,08	0,6	0,19	56	0,58	0,064	0,970	0,530	vérifié
R6 - R7	32,5	2,650	0,006	108	300	0,07	0,58	0,18	53	0,79	0,089	1,360	0,750	vérifié
R7 - R8	37,5	1,950	0,007	121	300	0,09	0,62	0,2	59	0,73	0,077	1,170	0,640	vérifié
R8 - R9	29	0,550	0,009	167	300	0,22	0,8	0,32	92	0,5	0,041	0,620	0,340	vérifié
R9 - R10	32,5	0,550	0,01	174	300	0,25	0,83	0,34	98	0,51	0,041	0,620	0,340	vérifié
R10 - R11	31	0,550	0,011	180	300	0,27	0,85	0,36	103	0,53	0,041	0,620	0,340	vérifié
R11 - R12	24,6	0,550	0,012	185	300	0,3	0,87	0,37	108	0,54	0,041	0,620	0,340	vérifié
R12 - R13	48,83	0,550	0,015	201	300	0,37	0,92	0,42	121	0,57	0,041	0,620	0,340	vérifié
R13 - R14	48,3	0,550	0,018	215	300	0,44	0,97	0,47	135	0,6	0,041	0,620	0,340	vérifié
R14 - R15	47,37	0,550	0,021	227	300	0,52	1,01	0,51	147	0,62	0,041	0,620	0,340	vérifié
R15 - R16	43,53	0,550	0,023	235	300	0,57	1,03	0,54	156	0,64	0,041	0,620	0,340	vérifié
R16 - R17	56,22	0,460	0,025	242	300	0,67	1,07	0,6	174	0,61	0,037	0,570	0,310	vérifié
R17 - R18	42,23	0,550	0,035	274	300	0,86	1,12	0,72	207	0,7	0,041	0,620	0,340	vérifié
R18 - R19	25,66	0,550	0,046	302	400	0,51	1	0,5	195	0,77	0,091	0,770	0,420	vérifié
R19 - R20	33,45	0,550	0,048	307	400	0,53	1,01	0,52	200	0,78	0,091	0,770	0,420	vérifié
R20 - R21	27,12	0,550	0,05	312	400	0,55	1,02	0,53	205	0,79	0,091	0,770	0,420	vérifié
R21 - R22	30,8	0,550	0,08	370	400	0,88	1,13	0,73	282	0,87	0,091	0,770	0,420	vérifié
R22 - R23	33,4	0,550	0,082	373	400	0,9	1,13	0,75	288	0,87	0,091	0,770	0,420	vérifié
R23 - R24	32,92	0,550	0,084	376	400	0,93	1,13	0,76	294	0,88	0,091	0,770	0,420	vérifié
R24 - R25	39,39	0,550	0,086	379	400	0,95	1,14	0,78	300	0,88	0,091	0,770	0,420	vérifié
R25 - R26	44	2,360	0,11	318	400	0,58	1,04	0,55	213	1,66	0,188	1,600	0,880	vérifié
R26 - R27	33	0,550	0,112	418	500	0,65	1,06	0,59	287	0,98	0,173	0,920	0,510	vérifié
R27 - R28	37	0,550	0,114	420	500	0,66	1,07	0,59	290	0,98	0,173	0,920	0,510	vérifié
R28 - R29	45,5	0,550	0,131	442	500	0,76	1,1	0,65	319	1,01	0,173	0,920	0,510	vérifié
R29 - R30	41	0,550	0,133	445	500	0,77	1,1	0,66	322	1,01	0,173	0,920	0,510	vérifié
R30 - R31	46,5	0,750	0,135	422	500	0,67	1,07	0,6	292	1,15	0,202	1,080	0,590	vérifié
R31 - R32	35	0,400	0,174	490	600	0,7	1,08	0,62	366	0,98	0,247	0,900	0,500	vérifié
R32 - R33	45	0,550	0,177	493	600	0,61	1,05	0,57	333	1,11	0,290	1,060	0,580	vérifié

R33 - R34	44,09	0,550	0,178	494	600	0,61	1,05	0,57	335	1,11	0,290	1,060	0,580	vérifié
R35 - R1	28,55	0,550	0,001	75	300	0,02	0,42	0,11	31	0,26	0,041	0,620	0,340	vérifié
R36 - R3	28,27	0,550	0,002	97	300	0,05	0,52	0,15	44	0,32	0,041	0,620	0,340	vérifié
R37 - R4	50,75	0,550	0,001	75	300	0,02	0,42	0,11	31	0,26	0,041	0,620	0,340	vérifié
R38 - R39	31,42	1,350	0,001	64	300	0,02	0,36	0,09	25	0,35	0,064	0,970	0,530	vérifié
R39 - R40	38,13	1,250	0,002	83	300	0,03	0,46	0,12	36	0,43	0,061	0,930	0,510	vérifié
R40 - R8	37,72	2,350	0,002	74	300	0,02	0,42	0,11	31	0,53	0,084	1,280	0,700	vérifié
R41 - R42	31,88	1,270	0,001	65	300	0,02	0,37	0,09	25	0,35	0,062	0,940	0,520	vérifié
R42 - R43	31,62	0,550	0,002	97	300	0,05	0,52	0,15	44	0,32	0,041	0,620	0,340	vérifié
R43 - R44	24,95	0,950	0,003	101	300	0,06	0,56	0,17	50	0,46	0,053	0,810	0,450	vérifié
R44 - R45	32	0,550	0,003	112	300	0,07	0,59	0,19	55	0,37	0,041	0,620	0,340	vérifié
R45 - R12	30,39	0,550	0,003	112	300	0,07	0,59	0,19	55	0,37	0,041	0,620	0,340	vérifié
R46 - R47	31,94	1,440	0,001	63	300	0,02	0,36	0,09	25	0,36	0,066	1,000	0,550	vérifié
R47 - R48	31,43	0,550	0,002	97	300	0,05	0,52	0,15	44	0,32	0,041	0,620	0,340	vérifié
R48 - R49	31,68	0,750	0,003	106	300	0,06	0,58	0,18	52	0,42	0,048	0,720	0,400	vérifié
R49 - R50	21,88	0,850	0,004	115	300	0,08	0,6	0,19	56	0,46	0,051	0,770	0,420	vérifié
R50 - R51	34	0,650	0,004	121	300	0,09	0,62	0,2	59	0,42	0,044	0,670	0,370	vérifié
R51 - R52	33	0,550	0,004	124	300	0,1	0,64	0,21	61	0,39	0,041	0,620	0,340	vérifié
R52 - R53	32,2	0,550	0,005	135	300	0,12	0,68	0,24	68	0,42	0,041	0,620	0,340	vérifié
R53 - R54	29,04	0,550	0,006	144	300	0,15	0,71	0,26	75	0,44	0,041	0,620	0,340	vérifié
R54 - R55	37,84	0,550	0,007	152	300	0,17	0,75	0,28	81	0,46	0,041	0,620	0,340	vérifié
R55 - R56	28,56	0,550	0,008	160	300	0,2	0,78	0,3	87	0,48	0,041	0,620	0,340	vérifié
R56 - R57	31,85	0,550	0,009	167	300	0,22	0,8	0,32	92	0,5	0,041	0,620	0,340	vérifié
R57 - R17	24,19	0,550	0,01	174	300	0,25	0,83	0,34	98	0,51	0,041	0,620	0,340	vérifié
R58 - R59	28,45	0,550	0,001	75	300	0,02	0,42	0,11	31	0,26	0,041	0,620	0,340	vérifié
R59 - R60	32,12	0,550	0,002	97	300	0,05	0,52	0,15	44	0,32	0,041	0,620	0,340	vérifié
R60 - R13	21,22	0,550	0,003	112	300	0,07	0,59	0,19	55	0,37	0,041	0,620	0,340	vérifié
R61 - R14	45,7	1,430	0,003	94	300	0,05	0,51	0,15	42	0,51	0,066	1,000	0,550	vérifié
R62 - R63	29,06	0,550	0,001	75	300	0,02	0,42	0,11	31	0,26	0,041	0,620	0,340	vérifié
R63 - R64	31,88	0,550	0,002	97	300	0,05	0,52	0,15	44	0,32	0,041	0,620	0,340	vérifié
R64 - R65	22,32	0,550	0,003	112	300	0,07	0,59	0,19	55	0,37	0,041	0,620	0,340	vérifié
R65 - R66	46,15	0,550	0,004	124	300	0,1	0,64	0,21	61	0,39	0,041	0,620	0,340	vérifié
R66 - R67	34,28	0,550	0,005	135	300	0,12	0,68	0,24	68	0,42	0,041	0,620	0,340	vérifié
R67 - R68	32,68	0,550	0,006	144	300	0,15	0,71	0,26	75	0,44	0,041	0,620	0,340	vérifié
R68 - R18	34,3	0,550	0,011	180	300	0,27	0,85	0,36	103	0,53	0,041	0,620	0,340	vérifié
R69 - R70	31,6	1,060	0,001	67	300	0,02	0,38	0,09	27	0,33	0,056	0,860	0,470	vérifié
R70 - R71	33,3	1,050	0,002	86	300	0,04	0,47	0,13	37	0,4	0,056	0,860	0,470	vérifié

R71 - R72 30 0.550 0.004 124 300 0.1 0.64 0.21 61 0.39 0.041 0.620 0.340 verificial R73 - R74 31.57 0.550 0.006 144 300 0.1 0.64 0.21 61 0.39 0.041 0.620 0.340 verificial R74 - R75 29.89 0.550 0.006 144 300 0.15 0.71 0.26 75 0.44 0.041 0.620 0.340 verificial R74 - R75 29.89 0.550 0.008 160 300 0.2 0.78 0.3 87 0.48 0.041 0.620 0.340 verificial R74 - R75 30.60 0.550 0.011 174 300 0.25 0.83 0.34 98 0.51 0.041 0.620 0.340 verificial R76 - R77 30.26 0.550 0.011 180 300 0.27 0.25 0.83 0.34 98 0.51 0.041 0.620 0.340 verificial R76 - R77 30.26 0.550 0.011 180 300 0.27 0.25 0.38 103 0.53 0.041 0.620 0.340 verificial R77 - R78 22.84 0.550 0.012 185 300 0.3 0.87 0.32 0.99 0.39 112 0.55 0.041 0.620 0.340 verificial R78 - R79 23.84 0.550 0.013 191 300 0.32 0.99 0.39 112 0.55 0.041 0.620 0.340 verificial R81 - R82 18.53 0.550 0.001 75 300 0.02 0.42 0.11 31 0.26 0.041 0.620 0.340 verificial R81 - R82 18.59 0.550 0.001 75 300 0.02 0.42 0.11 31 0.26 0.041 0.620 0.340 verificial R82 R83 29.29 0.550 0.003 112 300 0.07 0.59 0.19 55 0.37 0.041 0.620 0.340 verificial R81 - R82 18.59 0.550 0.003 112 300 0.07 0.59 0.19 55 0.37 0.041 0.620 0.340 verificial R81 - R82 18.59 0.550 0.003 112 300 0.07 0.59 0.19 55 0.37 0.041 0.620 0.340 verificial R81 - R83 19.74 0.550 0.007 152 300 0.07 0.59 0.19 55 0.37 0.041 0.620 0.340 verificial R81 - R82 18.79 0.550 0.003 112 300 0.07 0.59 0.19 55 0.37 0.041 0.620 0.340 verificial R81 - R82 18.79 0.550 0.003 112 300 0.07 0.59 0.19 55 0.37 0.041 0.620 0.340 verificial R81 - R82 18.79 0.55															
R73 R74	R71 - R72	30	0,550	0,004	124	300	0,1	0,64	0,21	61	0,39	0,041	0,620	0,340	vérifié
R74 - R75 29,88 0,550 0,008 160 300 0,2 0,78 0,3 87 0,48 0,041 0,620 0,340 vérifié R75 - R76 36,06 0,550 0,011 180 300 0,25 0,83 0,34 98 0,51 0,041 0,620 0,340 vérifié R77 - R78 27,49 0,550 0,012 185 300 0,3 0,87 0,37 108 0,54 0,041 0,620 0,340 vérifié R77 - R78 27,49 0,550 0,013 191 300 0,32 0,89 0,39 112 0,55 0,041 0,620 0,340 vérifié R79 - R79 23,84 0,550 0,013 191 300 0,32 0,89 0,39 112 0,55 0,041 0,620 0,340 vérifié R79 - R79 23,84 0,550 0,015 201 300 0,37 0,92 0,42 121 0,57 0,041 0,620 0,340 vérifié R80 - R81 47,53 0,550 0,001 75 300 0,02 0,42 0,11 31 0,26 0,041 0,620 0,340 vérifié R81 - R82 18,79 0,550 0,001 75 300 0,02 0,42 0,11 31 0,26 0,041 0,620 0,340 vérifié R82 - R83 29,29 0,550 0,003 112 300 0,07 0,59 0,19 55 0,37 0,041 0,620 0,340 vérifié R83 - R84 27,88 0,550 0,005 135 300 0,12 0,68 0,24 68 0,42 0,041 0,620 0,340 vérifié R84 - R85 19,74 0,550 0,007 152 300 0,17 0,75 0,28 81 0,46 0,041 0,620 0,340 vérifié R85 - R86 17,86 0,550 0,011 180 300 0,27 0,85 0,38 0,34 98 0,51 0,041 0,620 0,340 vérifié R86 - R87 29,68 0,550 0,011 180 300 0,27 0,85 0,38 0,34 98 0,51 0,041 0,620 0,340 vérifié R87 - R88 27,82 0,550 0,011 180 300 0,27 0,85 0,36 103 0,53 0,041 0,620 0,340 vérifié R87 - R88 27,82 0,550 0,011 180 300 0,27 0,85 0,36 103 0,53 0,041 0,620 0,340 vérifié R88 - R89 27,82 0,550 0,011 180 300 0,27 0,85 0,36 103 0,53 0,041 0,620 0,340 vérifié R88 - R89 27,82 0,550 0,011 180 300 0,37 0,92 0,42 121 0,57 0,041 0,620 0,340 vérifié R89 - R88 - R89 23,82 0,550 0,011 180 300 0,37 0,92 0,42 121 0,57 0,041 0,620 0,	R72 - R73	36,1	0,550	0,004	124	300	0,1	0,64	0,21	61	0,39	0,041	0,620	0,340	vérifié
R75-R76 36,06 0.550 0.01 174 300 0.25 0.83 0.34 98 0.51 0.041 0.620 0.340 vérifié R76-R77 30.26 0.550 0.011 188 300 0.27 0.85 0.36 103 0.541 0.620 0.340 vérifié R77-R78 27,49 0.550 0.013 191 300 0.32 0.89 0.39 112 0.55 0.041 0.620 0.340 vérifié R79-R21 47,62 0.550 0.015 201 300 0.37 0.92 0.42 11 0.57 0.041 0.620 0.340 vérifié R81-R82 18,79 0.550 0.001 75 300 0.02 0.42 0.11 31 0.26 0.041 0.620 0.340 vérifié R81-R82 18,79 0.550 0.003 112 300 0.07 0.59 0.19 55 0.37 0.041	R73 - R74	31,57	0,550	0,006	144	300	0,15	0,71	0,26	75	0,44	0,041	0,620	0,340	vérifié
R75 - R77 30,26 0,550 0,011 180 300 0,27 0,85 0,36 103 0,53 0,041 0,620 0,340 vérifié R75 - R79 23,84 0,550 0,013 191 300 0,32 0,89 0,39 112 0,55 0,041 0,620 0,340 vérifié R79 - R79 23,84 0,550 0,015 201 300 0,37 0,92 0,42 121 0,57 0,041 0,620 0,340 vérifié R80 - R81 47,63 0,550 0,001 75 300 0,02 0,42 0,11 31 0,26 0,041 0,620 0,340 vérifié R81 - R82 18,79 0,550 0,001 75 300 0,02 0,42 0,11 31 0,26 0,041 0,620 0,340 vérifié R82 - R83 29,29 0,550 0,003 112 300 0,07 0,59 0,19 55 0,37 0,041 0,620 0,340 vérifié R84 - R85 19,74 0,550 0,007 152 300 0,12 0,88 0,39 10,20 0,42 0,11 31 0,26 0,41 0,620 0,340 vérifié R84 - R85 19,74 0,550 0,007 152 300 0,17 0,75 0,28 81 0,46 0,041 0,620 0,340 vérifié R85 - R86 17,86 0,550 0,011 174 300 0,25 0,83 0,34 98 0,51 0,041 0,620 0,340 vérifié R85 - R86 17,86 0,550 0,011 180 300 0,27 0,85 0,83 0,34 98 0,51 0,041 0,620 0,340 vérifié R85 - R86 17,86 0,550 0,011 180 300 0,27 0,85 0,85 0,33 0,44 0,620 0,340 vérifié R85 - R86 17,86 0,550 0,011 180 300 0,27 0,85 0,83 0,34 98 0,51 0,041 0,620 0,340 vérifié R85 - R86 17,86 0,550 0,011 180 300 0,27 0,85 0,36 103 0,53 0,041 0,620 0,340 vérifié R85 - R86 17,86 0,550 0,015 201 185 300 0,33 0,87 0,37 108 0,54 0,041 0,620 0,340 vérifié R85 - R86 17,86 0,550 0,015 201 300 0,37 0,92 0,42 121 0,55 0,041 0,620 0,340 vérifié R85 - R86 17,86 0,550 0,001 175 300 0,02 0,42 0,11 31 0,26 0,041 0,620 0,340 vérifié R95 - R89 2,38 0,550 0,001 75 300 0,02 0,42 0,11 31 0,26 0,041 0,620 0,340 vérifié R95 - R89 3,50 0,550 0,002 97 300 0,05	R74 - R75	29,89	0,550	0,008	160	300	0,2	0,78	0,3	87	0,48	0,041	0,620	0,340	vérifié
R75 - R78 27,49 0,550 0,012 185 300 0,3 0,87 0,37 108 0,54 0,041 0,620 0,340 vérifié R78 - R79 23,84 0,550 0,015 201 300 0,32 0,89 0,39 112 0,55 0,041 0,620 0,340 vérifié R80 - R81 47,53 0,550 0,001 75 300 0,02 0,42 0,11 31 0,26 0,041 0,620 0,340 vérifié R81 - R82 18,79 0,550 0,001 75 300 0,02 0,42 0,11 31 0,26 0,041 0,620 0,340 vérifié R81 - R82 18,79 0,550 0,001 75 300 0,02 0,42 0,11 31 0,26 0,041 0,620 0,340 vérifié R82 - R83 29,29 0,550 0,003 112 300 0,07 0,59 0,19 55 0,37 0,041 0,620 0,340 vérifié R83 - R84 27,88 0,550 0,005 135 300 0,12 0,688 0,24 68 0,42 0,041 0,620 0,340 vérifié R84 - R85 19,74 0,550 0,007 152 300 0,17 0,75 0,28 81 0,46 0,041 0,620 0,340 vérifié R85 - R86 17,86 0,550 0,011 174 300 0,25 0,83 0,34 98 0,51 0,041 0,620 0,340 vérifié R87 - R88 23,82 0,550 0,011 180 300 0,27 0,65 0,36 103 0,53 0,041 0,620 0,340 vérifié R87 - R88 23,82 0,550 0,012 185 300 0,27 0,65 0,36 103 0,53 0,041 0,620 0,340 vérifié R89 - R81 47,03 0,550 0,013 191 300 0,37 0,92 0,42 121 0,55 0,041 0,620 0,340 vérifié R89 - R81 47,03 0,550 0,013 191 300 0,37 0,92 0,42 121 0,55 0,041 0,620 0,340 vérifié R89 - R81 47,03 0,550 0,013 191 300 0,37 0,92 0,42 121 0,55 0,041 0,620 0,340 vérifié R89 - R81 47,03 0,550 0,003 112 300 0,07 0,59 0,19 55 0,37 0,041 0,620 0,340 vérifié R89 - R81 47,03 0,550 0,003 112 300 0,07 0,59 0,19 55 0,37 0,041 0,620 0,340 vérifié R89 - R81 47,03 0,550 0,001 75 300 0,02 0,42 0,11 31 0,26 0,041 0,620 0,340 vérifié R89 - R81 47,03 0,550 0,001 75 300 0,05 0,52 0,15 44 0,32 0,041	R75 - R76	36,06	0,550	0,01	174	300	0,25	0,83	0,34	98	0,51	0,041	0,620	0,340	vérifié
R78 - R79 23,84 0,550 0,013 191 300 0,32 0,89 0,39 112 0,55 0,041 0,620 0,340 vérifié R79 - R21 47,62 0,550 0,015 201 300 0,37 0,92 0,42 111 31 0,26 0,041 0,620 0,340 vérifié R80 - R81 47,53 0,550 0,001 75 300 0,02 0,42 0,11 31 0,26 0,041 0,620 0,340 vérifié R81 - R82 18,79 0,550 0,001 75 300 0,02 0,42 0,11 31 0,26 0,041 0,620 0,340 vérifié R81 - R82 18,79 0,550 0,003 112 300 0,07 0,59 0,19 55 0,37 0,041 0,620 0,340 vérifié R82 - R83 29,29 0,550 0,005 135 300 0,12 0,68 0,24 68 0,42 0,041 0,620 0,340 vérifié R84 - R85 19,74 0,550 0,007 152 300 0,17 0,75 0,28 81 0,46 0,041 0,620 0,340 vérifié R85 - R86 17,86 0,550 0,011 174 300 0,25 0,83 0,34 98 0,51 0,041 0,620 0,340 vérifié R85 - R86 2,68 0,550 0,011 180 300 0,27 0,85 0,36 103 0,55 0,041 0,620 0,340 vérifié R85 - R87 29,68 0,550 0,011 180 300 0,27 0,85 0,36 103 0,55 0,041 0,620 0,340 vérifié R88 - R89 23,82 0,550 0,012 185 300 0,32 0,89 0,39 112 0,55 0,041 0,620 0,340 vérifié R88 - R89 23,82 0,550 0,013 191 300 0,32 0,89 0,39 112 0,55 0,041 0,620 0,340 vérifié R89 - R89 44,78 0,550 0,013 191 300 0,37 0,92 0,42 121 0,57 0,041 0,620 0,340 vérifié R90 - R85 44,78 0,550 0,001 75 300 0,07 0,59 0,19 55 0,37 0,041 0,620 0,340 vérifié R91 - R92 31,58 0,550 0,001 75 300 0,02 0,42 0,11 31 0,26 0,041 0,620 0,340 vérifié R92 - R89 34,02 0,550 0,002 97 300 0,05 0,52 0,15 44 0,32 0,041 0,620 0,340 vérifié R93 - R94 32,62 0,550 0,001 75 300 0,02 0,42 0,11 31 0,26 0,041 0,620 0,340 vérifié R93 - R94 32,62 0,550 0,001 75 300 0,05 0,52 0,15 44 0,32 0,04	R76 - R77	30,26	0,550	0,011	180	300	0,27	0,85	0,36	103	0,53	0,041	0,620	0,340	vérifié
R79 - R21	R77 - R78	27,49	0,550	0,012	185	300	0,3	0,87	0,37	108	0,54	0,041	0,620	0,340	vérifié
R80 - R81	R78 - R79	23,84	0,550	0,013	191	300	0,32	0,89	0,39	112	0,55	0,041	0,620	0,340	vérifié
R81 - R82 18,79 0,550 0,001 75 300 0,02 0,42 0,11 31 0,26 0,041 0,620 0,340 vérifié R82 - R83 29,29 0,550 0,003 112 300 0,07 0,59 0,19 55 0,37 0,041 0,620 0,340 vérifié R83 - R84 27,88 0,550 0,0007 152 300 0,17 0,75 0,28 81 0,46 0,041 0,620 0,340 vérifié R85 - R86 17,86 0,550 0,007 152 300 0,17 0,75 0,28 81 0,46 0,041 0,620 0,340 vérifié R85 - R86 17,86 0,550 0,011 180 300 0,27 0,85 0,38 0,33 0,041 0,620 0,340 vérifié R87 - R88 27,82 0,550 0,011 180 300 0,3 0,87 0,37 108 0,54 0,	R79 - R21	47,62	0,550	0,015	201	300	0,37	0,92	0,42	121	0,57	0,041	0,620	0,340	vérifié
R82 - R83 29,29 0,550 0,003 112 300 0,07 0,59 0,19 55 0,37 0,041 0,620 0,340 vérifié R83 - R84 27,88 0,550 0,005 135 300 0,17 0,75 0,28 81 0,46 0,041 0,620 0,340 vérifié R84 - R85 19,74 0,550 0,007 152 300 0,17 0,75 0,28 81 0,46 0,041 0,620 0,340 vérifié R85 - R86 17,86 0,550 0,011 174 300 0,25 0,83 0,34 98 0,51 0,041 0,620 0,340 vérifié R86 - R87 29,68 0,550 0,011 180 300 0,27 0,85 0,36 103 0,53 0,041 0,620 0,340 vérifié R87 - R88 27,82 0,550 0,013 191 300 0,32 0,88 0,39 112 0,	R80 - R81	47,53	0,550	0,001	75	300	0,02	0,42	0,11	31	0,26	0,041	0,620	0,340	vérifié
R83 - R84 27,88 0,550 0,005 135 300 0,12 0,68 0,24 68 0,42 0,041 0,620 0,340 vérifié R84 - R85 19,74 0,550 0,007 152 300 0,17 0,75 0,28 81 0,46 0,041 0,620 0,340 vérifié R85 - R86 17,86 0,550 0,011 174 300 0,25 0,83 0,34 98 0,51 0,041 0,620 0,340 vérifié R86 - R87 29,68 0,550 0,011 180 300 0,27 0,85 0,36 103 0,53 0,041 0,620 0,340 vérifié R87 - R88 27,82 0,550 0,013 191 300 0,32 0,89 0,39 112 0,55 0,041 0,620 0,340 vérifié R89 - R21 47,03 0,550 0,015 201 300 0,37 0,92 0,42 121 0	R81 - R82	18,79	0,550	0,001	75	300	0,02	0,42	0,11	31	0,26	0,041	0,620	0,340	vérifié
R84 - R85 19,74 0,550 0,007 152 300 0,17 0,75 0,28 81 0,46 0,041 0,620 0,340 vérifié R85 - R86 17,86 0,550 0,011 174 300 0,25 0,83 0,34 98 0,51 0,041 0,620 0,340 vérifié R86 - R87 29,68 0,550 0,011 180 300 0,27 0,85 0,36 103 0,53 0,041 0,620 0,340 vérifié R87 - R88 27,82 0,550 0,012 185 300 0,3 0,87 0,37 108 0,54 0,041 0,620 0,340 vérifié R88 - R89 23,82 0,550 0,013 191 300 0,32 0,89 0,39 112 0,55 0,041 0,620 0,340 vérifié R89 - R21 47,03 0,550 0,001 75 300 0,02 0,42 0,11 31 0,6	R82 - R83	29,29	0,550	0,003	112	300	0,07	0,59	0,19	55	0,37	0,041	0,620	0,340	vérifié
R85 - R86 17,86 0,550 0,01 174 300 0,25 0,83 0,34 98 0,51 0,041 0,620 0,340 vérifié R86 - R87 29,68 0,550 0,011 180 300 0,27 0,85 0,36 103 0,53 0,041 0,620 0,340 vérifié R87 - R88 27,82 0,550 0,012 185 300 0,3 0,87 0,37 108 0,54 0,041 0,620 0,340 vérifié R88 - R89 23,82 0,550 0,015 201 300 0,37 0,92 0,42 121 0,55 0,041 0,620 0,340 vérifié R89 - R81 47,03 0,550 0,003 112 300 0,07 0,59 0,19 55 0,37 0,041 0,620 0,340 vérifié R91 - R92 31,58 0,550 0,001 75 300 0,02 0,42 0,11 31 0,26	R83 - R84	27,88	0,550	0,005	135	300	0,12	0,68	0,24	68	0,42	0,041	0,620	0,340	vérifié
R86 - R87 29,68 0,550 0,011 180 300 0,27 0,85 0,36 103 0,53 0,041 0,620 0,340 vérifié R87 - R88 27,82 0,550 0,012 185 300 0,3 0,87 0,37 108 0,54 0,041 0,620 0,340 vérifié R88 - R89 23,82 0,550 0,013 191 300 0,32 0,89 0,39 112 0,55 0,041 0,620 0,340 vérifié R89 - R81 47,03 0,550 0,015 201 300 0,37 0,92 0,42 121 0,57 0,041 0,620 0,340 vérifié R90 - R85 44,78 0,550 0,001 75 300 0,02 0,42 0,11 31 0,26 0,041 0,620 0,340 vérifié R91 - R92 31,58 0,550 0,002 97 300 0,05 0,52 0,15 44 0,3	R84 - R85	19,74	0,550	0,007	152	300	0,17	0,75	0,28	81	0,46	0,041	0,620	0,340	vérifié
R87 - R88 27,82 0,550 0,012 185 300 0,3 0,87 0,37 108 0,54 0,041 0,620 0,340 vérifié R88 - R89 23,82 0,550 0,013 191 300 0,32 0,89 0,39 112 0,55 0,041 0,620 0,340 vérifié R89 - R21 47,03 0,550 0,015 201 300 0,37 0,92 0,42 121 0,57 0,041 0,620 0,340 vérifié R90 - R85 44,78 0,550 0,001 75 300 0,07 0,59 0,19 55 0,37 0,041 0,620 0,340 vérifié R91 - R92 31,58 0,550 0,001 75 300 0,02 0,42 0,11 31 0,26 0,041 0,620 0,340 vérifié R92 - R89 34,02 0,550 0,001 75 300 0,02 0,42 0,11 31 0,26<	R85 - R86	17,86	0,550	0,01	174	300	0,25	0,83	0,34	98	0,51	0,041	0,620	0,340	vérifié
R88 - R89 23,82 0,550 0,013 191 300 0,32 0,89 0,39 112 0,55 0,041 0,620 0,340 vérifié R89 - R21 47,03 0,550 0,015 201 300 0,37 0,92 0,42 121 0,57 0,041 0,620 0,340 vérifié R90 - R85 44,78 0,550 0,003 112 300 0,07 0,59 0,19 55 0,37 0,041 0,620 0,340 vérifié R91 - R92 31,58 0,550 0,001 75 300 0,02 0,42 0,11 31 0,26 0,041 0,620 0,340 vérifié R92 - R89 34,02 0,550 0,002 97 300 0,05 0,52 0,15 44 0,32 0,041 0,620 0,340 vérifié R94 - R79 33,4 0,550 0,002 97 300 0,05 0,52 0,15 44 0,32 </td <td>R86 - R87</td> <td>29,68</td> <td>0,550</td> <td>0,011</td> <td>180</td> <td>300</td> <td>0,27</td> <td>0,85</td> <td>0,36</td> <td>103</td> <td>0,53</td> <td>0,041</td> <td>0,620</td> <td>0,340</td> <td>vérifié</td>	R86 - R87	29,68	0,550	0,011	180	300	0,27	0,85	0,36	103	0,53	0,041	0,620	0,340	vérifié
R89 - R21 47,03 0,550 0,015 201 300 0,37 0,92 0,42 121 0,57 0,041 0,620 0,340 vérifié R90 - R85 44,78 0,550 0,003 112 300 0,07 0,59 0,19 55 0,37 0,041 0,620 0,340 vérifié R91 - R92 31,58 0,550 0,001 75 300 0,02 0,42 0,11 31 0,26 0,041 0,620 0,340 vérifié R92 - R89 34,02 0,550 0,002 97 300 0,05 0,52 0,15 44 0,32 0,041 0,620 0,340 vérifié R93 - R94 32,62 0,550 0,001 75 300 0,05 0,52 0,15 44 0,32 0,041 0,620 0,340 vérifié R94 - R79 33,4 0,550 0,001 75 300 0,02 0,42 0,11 31 0,26 <td>R87 - R88</td> <td>27,82</td> <td>0,550</td> <td>0,012</td> <td>185</td> <td>300</td> <td>0,3</td> <td>0,87</td> <td>0,37</td> <td>108</td> <td>0,54</td> <td>0,041</td> <td>0,620</td> <td>0,340</td> <td>vérifié</td>	R87 - R88	27,82	0,550	0,012	185	300	0,3	0,87	0,37	108	0,54	0,041	0,620	0,340	vérifié
R90 - R85 44,78 0,550 0,003 112 300 0,07 0,59 0,19 55 0,37 0,041 0,620 0,340 vérifié R91 - R92 31,58 0,550 0,001 75 300 0,02 0,42 0,11 31 0,26 0,041 0,620 0,340 vérifié R92 - R89 34,02 0,550 0,002 97 300 0,05 0,52 0,15 44 0,32 0,041 0,620 0,340 vérifié R93 - R94 32,62 0,550 0,001 75 300 0,02 0,42 0,11 31 0,26 0,041 0,620 0,340 vérifié R94 - R79 33,4 0,550 0,002 97 300 0,05 0,52 0,15 44 0,32 0,041 0,620 0,340 vérifié R95 - R96 29,45 0,550 0,002 97 300 0,05 0,52 0,15 44 0,32	R88 - R89	23,82	0,550	0,013	191	300	0,32	0,89	0,39	112	0,55	0,041	0,620	0,340	vérifié
R91 - R92 31,58 0,550 0,001 75 300 0,02 0,42 0,11 31 0,26 0,041 0,620 0,340 vérifié R92 - R89 34,02 0,550 0,002 97 300 0,05 0,52 0,15 44 0,32 0,041 0,620 0,340 vérifié R93 - R94 32,62 0,550 0,001 75 300 0,02 0,42 0,11 31 0,26 0,041 0,620 0,340 vérifié R94 - R79 33,4 0,550 0,002 97 300 0,05 0,52 0,15 44 0,32 0,041 0,620 0,340 vérifié R95 - R96 29,45 0,550 0,001 75 300 0,02 0,42 0,11 31 0,26 0,041 0,620 0,340 vérifié R96 - R71 24,16 0,550 0,002 97 300 0,05 0,52 0,15 44 0,32	R89 - R21	47,03	0,550	0,015	201	300	0,37	0,92	0,42	121	0,57	0,041	0,620	0,340	vérifié
R92 - R89 34,02 0,550 0,002 97 300 0,05 0,52 0,15 44 0,32 0,041 0,620 0,340 vérifié R93 - R94 32,62 0,550 0,001 75 300 0,02 0,42 0,11 31 0,26 0,041 0,620 0,340 vérifié R94 - R79 33,4 0,550 0,002 97 300 0,05 0,52 0,15 44 0,32 0,041 0,620 0,340 vérifié R95 - R96 29,45 0,550 0,001 75 300 0,02 0,42 0,11 31 0,26 0,041 0,620 0,340 vérifié R96 - R71 24,16 0,550 0,002 97 300 0,05 0,52 0,15 44 0,32 0,041 0,620 0,340 vérifié R97 - R98 20,24 1,580 0,002 80 300 0,03 0,44 0,12 34 0,46	R90 - R85	44,78	0,550	0,003	112	300	0,07	0,59	0,19	55	0,37	0,041	0,620	0,340	vérifié
R93 - R94 32,62 0,550 0,001 75 300 0,02 0,42 0,11 31 0,26 0,041 0,620 0,340 vérifié R94 - R79 33,4 0,550 0,002 97 300 0,05 0,52 0,15 44 0,32 0,041 0,620 0,340 vérifié R95 - R96 29,45 0,550 0,001 75 300 0,02 0,42 0,11 31 0,26 0,041 0,620 0,340 vérifié R96 - R71 24,16 0,550 0,002 97 300 0,05 0,52 0,15 44 0,32 0,041 0,620 0,340 vérifié R97 - R98 20,24 1,580 0,002 80 300 0,03 0,44 0,12 34 0,46 0,069 1,050 0,580 vérifié R98 - R99 35 0,550 0,004 124 300 0,1 0,64 0,21 61 0,39	R91 - R92	31,58	0,550	0,001	75	300	0,02	0,42	0,11	31	0,26	0,041	0,620	0,340	vérifié
R94 - R79 33,4 0,550 0,002 97 300 0,05 0,52 0,15 44 0,32 0,041 0,620 0,340 vérifié R95 - R96 29,45 0,550 0,001 75 300 0,02 0,42 0,11 31 0,26 0,041 0,620 0,340 vérifié R96 - R71 24,16 0,550 0,002 97 300 0,05 0,52 0,15 44 0,32 0,041 0,620 0,340 vérifié R97 - R98 20,24 1,580 0,002 80 300 0,03 0,44 0,12 34 0,46 0,069 1,050 0,580 vérifié R98 - R99 35 0,550 0,004 124 300 0,1 0,64 0,21 61 0,39 0,041 0,620 0,340 vérifié R99 - R100 33,01 0,550 0,006 144 300 0,1 0,64 0,21 61 0,39	R92 - R89	34,02	0,550	0,002	97	300	0,05	0,52	0,15	44	0,32	0,041	0,620	0,340	vérifié
R95 - R96 29,45 0,550 0,001 75 300 0,02 0,42 0,11 31 0,26 0,041 0,620 0,340 vérifié R96 - R71 24,16 0,550 0,002 97 300 0,05 0,52 0,15 44 0,32 0,041 0,620 0,340 vérifié R97 - R98 20,24 1,580 0,002 80 300 0,03 0,44 0,12 34 0,46 0,069 1,050 0,580 vérifié R98 - R99 35 0,550 0,004 124 300 0,1 0,64 0,21 61 0,39 0,041 0,620 0,340 vérifié R99 - R100 33,01 0,550 0,004 124 300 0,1 0,64 0,21 61 0,39 0,041 0,620 0,340 vérifié R100 - R101 32,45 0,550 0,006 144 300 0,15 0,71 0,26 75 0,44	R93 - R94	32,62	0,550	0,001	75	300	0,02	0,42	0,11	31	0,26	0,041	0,620	0,340	vérifié
R96 - R71 24,16 0,550 0,002 97 300 0,05 0,52 0,15 44 0,32 0,041 0,620 0,340 vérifié R97 - R98 20,24 1,580 0,002 80 300 0,03 0,44 0,12 34 0,46 0,069 1,050 0,580 vérifié R98 - R99 35 0,550 0,004 124 300 0,1 0,64 0,21 61 0,39 0,041 0,620 0,340 vérifié R99 - R100 33,01 0,550 0,004 124 300 0,1 0,64 0,21 61 0,39 0,041 0,620 0,340 vérifié R100 - R101 32,45 0,550 0,006 144 300 0,15 0,71 0,26 75 0,44 0,041 0,620 0,340 vérifié R101 - R102 26,84 0,550 0,008 160 300 0,2 0,78 0,3 87 0,48 <td>R94 - R79</td> <td>33,4</td> <td>0,550</td> <td>0,002</td> <td>97</td> <td>300</td> <td>0,05</td> <td>0,52</td> <td>0,15</td> <td>44</td> <td>0,32</td> <td>0,041</td> <td>0,620</td> <td>0,340</td> <td>vérifié</td>	R94 - R79	33,4	0,550	0,002	97	300	0,05	0,52	0,15	44	0,32	0,041	0,620	0,340	vérifié
R97 - R98 20,24 1,580 0,002 80 300 0,03 0,44 0,12 34 0,46 0,069 1,050 0,580 vérifié R98 - R99 35 0,550 0,004 124 300 0,1 0,64 0,21 61 0,39 0,041 0,620 0,340 vérifié R99 - R100 33,01 0,550 0,004 124 300 0,1 0,64 0,21 61 0,39 0,041 0,620 0,340 vérifié R100 - R101 32,45 0,550 0,006 144 300 0,15 0,71 0,26 75 0,44 0,041 0,620 0,340 vérifié R101 - R102 26,84 0,550 0,008 160 300 0,2 0,78 0,3 87 0,48 0,041 0,620 0,340 vérifié R102 - R103 23,43 0,550 0,012 185 300 0,3 0,87 0,37 108 0,54<	R95 - R96	29,45	0,550	0,001	75	300	0,02	0,42	0,11	31	0,26	0,041	0,620	0,340	vérifié
R98 - R99 35 0,550 0,004 124 300 0,1 0,64 0,21 61 0,39 0,041 0,620 0,340 vérifié R99 - R100 33,01 0,550 0,004 124 300 0,1 0,64 0,21 61 0,39 0,041 0,620 0,340 vérifié R100 - R101 32,45 0,550 0,006 144 300 0,15 0,71 0,26 75 0,44 0,041 0,620 0,340 vérifié R101 - R102 26,84 0,550 0,008 160 300 0,2 0,78 0,3 87 0,48 0,041 0,620 0,340 vérifié R102 - R103 23,43 0,550 0,012 185 300 0,3 0,87 0,37 108 0,54 0,041 0,620 0,340 vérifié R103 - R104 32,83 0,550 0,014 196 300 0,34 0,91 0,4 117 0,	R96 - R71	24,16	0,550	0,002	97	300	0,05	0,52	0,15	44	0,32	0,041	0,620	0,340	vérifié
R99 - R100 33,01 0,550 0,004 124 300 0,1 0,64 0,21 61 0,39 0,041 0,620 0,340 vérifié R100 - R101 32,45 0,550 0,006 144 300 0,15 0,71 0,26 75 0,44 0,041 0,620 0,340 vérifié R101 - R102 26,84 0,550 0,008 160 300 0,2 0,78 0,3 87 0,48 0,041 0,620 0,340 vérifié R102 - R103 23,43 0,550 0,012 185 300 0,3 0,87 0,37 108 0,54 0,041 0,620 0,340 vérifié R103 - R104 32,83 0,550 0,014 196 300 0,34 0,91 0,4 117 0,56 0,041 0,620 0,340 vérifié R104 - R105 45 0,550 0,016 206 300 0,39 0,94 0,44 126 <t< td=""><td>R97 - R98</td><td>20,24</td><td>1,580</td><td>0,002</td><td>80</td><td>300</td><td>0,03</td><td>0,44</td><td>0,12</td><td>34</td><td>0,46</td><td>0,069</td><td>1,050</td><td>0,580</td><td>vérifié</td></t<>	R97 - R98	20,24	1,580	0,002	80	300	0,03	0,44	0,12	34	0,46	0,069	1,050	0,580	vérifié
R100 - R101 32,45 0,550 0,006 144 300 0,15 0,71 0,26 75 0,44 0,041 0,620 0,340 vérifié R101 - R102 26,84 0,550 0,008 160 300 0,2 0,78 0,3 87 0,48 0,041 0,620 0,340 vérifié R102 - R103 23,43 0,550 0,012 185 300 0,3 0,87 0,37 108 0,54 0,041 0,620 0,340 vérifié R103 - R104 32,83 0,550 0,014 196 300 0,34 0,91 0,4 117 0,56 0,041 0,620 0,340 vérifié R104 - R105 45 0,550 0,016 206 300 0,39 0,94 0,44 126 0,58 0,041 0,620 0,340 vérifié R105 - R25 45 0,550 0,016 206 300 0,39 0,94 0,44 126 <td< td=""><td>R98 - R99</td><td>35</td><td>0,550</td><td>0,004</td><td>124</td><td>300</td><td>0,1</td><td>0,64</td><td>0,21</td><td>61</td><td>0,39</td><td>0,041</td><td>0,620</td><td>0,340</td><td>vérifié</td></td<>	R98 - R99	35	0,550	0,004	124	300	0,1	0,64	0,21	61	0,39	0,041	0,620	0,340	vérifié
R101 - R102 26,84 0,550 0,008 160 300 0,2 0,78 0,3 87 0,48 0,041 0,620 0,340 vérifié R102 - R103 23,43 0,550 0,012 185 300 0,3 0,87 0,37 108 0,54 0,041 0,620 0,340 vérifié R103 - R104 32,83 0,550 0,014 196 300 0,34 0,91 0,4 117 0,56 0,041 0,620 0,340 vérifié R104 - R105 45 0,550 0,016 206 300 0,39 0,94 0,44 126 0,58 0,041 0,620 0,340 vérifié R105 - R25 45 0,550 0,016 206 300 0,39 0,94 0,44 126 0,58 0,041 0,620 0,340 vérifié R106 - R98 20,54 0,550 0,002 97 300 0,05 0,52 0,15 44 0	R99 - R100	33,01	0,550	0,004	124	300	0,1	0,64	0,21	61	0,39	0,041	0,620	0,340	vérifié
R102 - R103 23,43 0,550 0,012 185 300 0,3 0,87 0,37 108 0,54 0,041 0,620 0,340 vérifié R103 - R104 32,83 0,550 0,014 196 300 0,34 0,91 0,4 117 0,56 0,041 0,620 0,340 vérifié R104 - R105 45 0,550 0,016 206 300 0,39 0,94 0,44 126 0,58 0,041 0,620 0,340 vérifié R105 - R25 45 0,550 0,016 206 300 0,39 0,94 0,44 126 0,58 0,041 0,620 0,340 vérifié R106 - R98 20,54 0,550 0,002 97 300 0,05 0,52 0,15 44 0,32 0,041 0,620 0,340 vérifié	R100 - R101	32,45	0,550	0,006	144	300	0,15	0,71	0,26	75	0,44	0,041	0,620	0,340	vérifié
R103 - R104 32,83 0,550 0,014 196 300 0,34 0,91 0,4 117 0,56 0,041 0,620 0,340 vérifié R104 - R105 45 0,550 0,016 206 300 0,39 0,94 0,44 126 0,58 0,041 0,620 0,340 vérifié R105 - R25 45 0,550 0,016 206 300 0,39 0,94 0,44 126 0,58 0,041 0,620 0,340 vérifié R106 - R98 20,54 0,550 0,002 97 300 0,05 0,52 0,15 44 0,32 0,041 0,620 0,340 vérifié	R101 - R102	26,84	0,550	0,008	160	300	0,2	0,78	0,3	87	0,48	0,041	0,620	0,340	vérifié
R104 - R105 45 0,550 0,016 206 300 0,39 0,94 0,44 126 0,58 0,041 0,620 0,340 vérifié R105 - R25 45 0,550 0,016 206 300 0,39 0,94 0,44 126 0,58 0,041 0,620 0,340 vérifié R106 - R98 20,54 0,550 0,002 97 300 0,05 0,52 0,15 44 0,32 0,041 0,620 0,340 vérifié	R102 - R103	23,43	0,550	0,012	185	300	0,3	0,87	0,37	108	0,54	0,041	0,620	0,340	vérifié
R105 - R25 45 0,550 0,016 206 300 0,39 0,94 0,44 126 0,58 0,041 0,620 0,340 vérifié R106 - R98 20,54 0,550 0,002 97 300 0,05 0,52 0,15 44 0,32 0,041 0,620 0,340 vérifié	R103 - R104	32,83	0,550	0,014	196	300	0,34	0,91	0,4	117	0,56	0,041	0,620	0,340	vérifié
R106 - R98 20,54 0,550 0,002 97 300 0,05 0,52 0,15 44 0,32 0,041 0,620 0,340 vérifié	R104 - R105	45	0,550	0,016	206	300	0,39	0,94	0,44	126	0,58	0,041	0,620	0,340	vérifié
	R105 - R25	45	0,550	0,016	206	300	0,39	0,94	0,44	126	0,58	0,041	0,620	0,340	vérifié
R107 - R100 20,07 0,550 0,001 75 300 0,02 0,42 0,11 31 0,26 0,041 0,620 0,340 vérifié	R106 - R98	20,54	0,550	0,002		300	0,05	0,52	0,15	44	0,32	0,041	0,620	0,340	vérifié
	R107 - R100	20,07	0,550	0,001	75	300	0,02	0,42	0,11	31	0,26	0,041	0,620	0,340	vérifié

R108 - R100	20,08	0,550	0,001	75	300	0,02	0,42	0,11	31	0,26	0,041	0,620	0,340	vérifié
R109 - R101	20,1	0,550	0,001	75	300	0,02	0,42	0,11	31	0,26	0,041	0,620	0,340	vérifié
R110 - R101	20,48	1,480	0,001	63	300	0,01	0,36	0,08	25	0,37	0,067	1,020	0,560	vérifié
R111 - R112	32,07	0,780	0,001	71	300	0,02	0,4	0,1	29	0,29	0,048	0,740	0,410	vérifié
R112 - R113	26,55	2,050	0,002	76	300	0,03	0,42	0,11	32	0,51	0,079	1,200	0,660	vérifié
R113 - R114	41	0,850	0,004	115	300	0,08	0,6	0,19	56	0,46	0,051	0,770	0,420	vérifié
R114 - R102	39,48	0,750	0,004	118	300	0,08	0,61	0,2	57	0,44	0,048	0,720	0,400	vérifié
R115 - R103	20,1	0,550	0,001	75	300	0,02	0,42	0,11	31	0,26	0,041	0,620	0,340	vérifié
R116 - R103	21	1,250	0,001	65	300	0,02	0,37	0,09	26	0,35	0,061	0,930	0,510	vérifié
R117 - R104	20,8	1,450	0,001	63	300	0,02	0,36	0,09	25	0,36	0,066	1,010	0,550	vérifié
R118 - R104	19,97	0,550	0,001	75	300	0,02	0,42	0,11	31	0,26	0,041	0,620	0,340	vérifié
R119 - R120	30,87	0,550	0,002	97	300	0,05	0,52	0,15	44	0,32	0,041	0,620	0,340	vérifié
R120 - R121	38,38	0,550	0,004	124	300	0,1	0,64	0,21	61	0,39	0,041	0,620	0,340	vérifié
R121 - R122	24,94	0,550	0,004	124	300	0,1	0,64	0,21	61	0,39	0,041	0,620	0,340	vérifié
R122 - R123	31,2	0,550	0,006	144	300	0,15	0,71	0,26	75	0,44	0,041	0,620	0,340	vérifié
R123 - R124	43,09	0,550	0,008	160	300	0,2	0,78	0,3	87	0,48	0,041	0,620	0,340	vérifié
R124 - R25	47,51	0,550	0,008	160	300	0,2	0,78	0,3	87	0,48	0,041	0,620	0,340	vérifié
R125 - R119	18,76	0,550	0,001	75	300	0,02	0,42	0,11	31	0,26	0,041	0,620	0,340	vérifié
R126 - R119	20,56	0,970	0,001	68	300	0,02	0,38	0,09	27	0,32	0,054	0,820	0,450	vérifié
R127 - R120	20,13	0,550	0,001	75	300	0,02	0,42	0,11	31	0,26	0,041	0,620	0,340	vérifié
R128 - R120	20,19	1,070	0,001	67	300	0,02	0,38	0,09	27	0,33	0,057	0,870	0,480	vérifié
R129 - R122	20,09	0,550	0,001	75	300	0,02	0,42	0,11	31	0,26	0,041	0,620	0,340	vérifié
R130 - R122	21,06	1,960	0,001	60	300	0,01	0,35	0,08	23	0,4	0,077	1,170	0,640	vérifié
R131 - R123	21,06	0,550	0,001	75	300	0,02	0,42	0,11	31	0,26	0,041	0,620	0,340	vérifié
R132 - R123	20,4	2,340	0,001	58	300	0,01	0,34	0,08	22	0,43	0,084	1,280	0,700	vérifié
R133 - R26	33,78	5,000	0,001	50	300	0,01	0,3	0,06	18	0,56	0,123	1,870	1,030	vérifié
R134 - R26	32,36	5,000	0,001	50	300	0,01	0,3	0,06	18	0,56	0,123	1,870	1,030	vérifié
R135 - R27	33,81	1,190	0,001	65	300	0,02	0,37	0,09	26	0,34	0,060	0,910	0,500	vérifié
R136 - R27	32,73	0,550	0,001	75	300	0,02	0,42	0,11	31	0,26	0,041	0,620	0,340	vérifié
R137 - R138	31,34	0,550	0,001	75	300	0,02	0,42	0,11	31	0,26	0,041	0,620	0,340	vérifié
R138 - R139	29,66	0,550	0,002	97	300	0,05	0,52	0,15	44	0,32	0,041	0,620	0,340	vérifié
R139 - R140	37,77	0,550	0,003	112	300	0,07	0,59	0,19	55	0,37	0,041	0,620	0,340	vérifié
R140 - R141	29,82	0,550	0,004	124	300	0,1	0,64	0,21	61	0,39	0,041	0,620	0,340	vérifié
R141 - R142	42,58	0,550	0,005	135	300	0,12	0,68	0,24	68	0,42	0,041	0,620	0,340	vérifié
R142 - R143	28,76	0,550	0,006	144	300	0,15	0,71	0,26	75	0,44	0,041	0,620	0,340	vérifié
R143 - R28	25,78	0,550	0,007	152	300	0,17	0,75	0,28	81	0,46	0,041	0,620	0,340	vérifié
R144 - R145	40,91	1,860	0,001	60	300	0,01	0,35	0,08	23	0,4	0,075	1,140	0,630	vérifié

R145 R146 28.75 0.560 0.002 97 300 0.05 0.52 0.15 44 0.32 0.041 0.620 0.340 vérifié R145 R147 28.88 0.550 0.004 124 300 0.1 0.64 0.21 61 0.39 0.041 0.620 0.340 vérifié R147 R148 17.71 0.550 0.005 135 300 0.12 0.68 0.24 68 0.42 0.041 0.620 0.340 vérifié R148 R149 2.056 0.550 0.006 144 300 0.15 0.71 0.26 75 0.44 0.041 0.620 0.340 vérifié R148 R149 R150 28.84 0.550 0.007 152 300 0.17 0.75 0.28 61 0.46 0.041 0.620 0.340 vérifié R155 R151 42.14 0.550 0.008 160 300 0.2 0.78 0.38 87 0.48 0.041 0.620 0.340 vérifié R152 R28 30.51 0.550 0.009 167 300 0.22 0.8 0.32 92 0.5 0.041 0.620 0.340 vérifié R152 R28 25.31 0.550 0.009 167 300 0.25 0.83 0.34 98 0.51 0.041 0.620 0.340 vérifié R152 R28 25.31 0.550 0.001 77 300 0.25 0.83 0.34 98 0.51 0.041 0.620 0.340 vérifié R154 R155 29.33 0.830 0.001 70 300 0.02 0.4 0.1 28 0.3 0.050 0.760 0.420 vérifié R154 R155 29.33 0.830 0.001 70 300 0.02 0.4 0.1 28 0.3 0.050 0.760 0.420 vérifié R155 R156 3.33 0.550 0.003 112 300 0.07 0.59 0.19 55 0.37 0.041 0.620 0.340 vérifié R157 R158 28.25 0.750 0.004 118 300 0.07 0.59 0.19 55 0.37 0.041 0.620 0.340 vérifié R157 R158 28.25 0.750 0.004 118 300 0.07 0.59 0.19 55 0.37 0.041 0.620 0.340 vérifié R157 R158 28.25 0.750 0.004 118 300 0.07 0.59 0.19 55 0.37 0.041 0.620 0.340 vérifié R158 R159 28.57 0.750 0.005 127 300 0.11 0.660 0.22 57 0.44 0.048 0.720 0.340 vérifié R158 R159 28.57 0.750 0.005 127 300 0.11 0.660 0.22 57 0.44 0.048 0.720 0.340 vérifié R159 R160 50 0.550 0.003 167 300 0.02 0.80 0.950 0.950 0.040 vérifié R168 R1	emaprere ;														
R147 R148	R145 - R146	28,75	0,550	0,002	97	300	0,05	0,52	0,15	44	0,32	0,041	0,620	0,340	vérifié
R148	R146 - R147	28,88	0,550	0,004	124	300	0,1	0,64	0,21	61	0,39	0,041	0,620	0,340	vérifié
R149 R150 28,84 0,550 0,007 152 300 0,17 0,75 0,28 81 0,46 0,041 0,620 0,340 vérifié R150 R151 42,14 0,550 0,008 160 300 0,2 0,78 0,3 87 0,48 0,041 0,620 0,340 vérifié R151 R152 30,51 0,550 0,009 167 300 0,22 0,8 0,32 92 0,5 0,041 0,620 0,340 vérifié R152 R28 25,31 0,550 0,001 70 300 0,25 0,83 0,34 98 0,51 0,041 0,620 0,340 vérifié R152 R152 81,48 48,76 0,820 0,001 70 300 0,02 0,4 0,1 28 0,3 0,050 0,760 0,420 vérifié R155 R156 31,45 0,550 0,002 97 300 0,02 0,4 0,1 28 0,3 0,050 0,760 0,420 vérifié R155 R156 31,45 0,550 0,002 97 300 0,05 0,52 0,15 44 0,32 0,041 0,620 0,340 vérifié R155 R156 31,45 0,550 0,003 112 300 0,07 0,59 0,19 55 0,37 0,041 0,620 0,340 vérifié R157 R158 28,25 0,750 0,004 118 300 0,08 0,61 0,22 57 0,44 0,048 0,720 0,400 vérifié R158 R159 25,47 0,750 0,005 127 300 0,11 0,65 0,22 63 0,47 0,048 0,720 0,400 vérifié R160 R161 43,88 0,550 0,011 180 300 0,27 0,85 0,38 103 0,53 0,041 0,620 0,340 vérifié R161 R162 30,4 0,550 0,012 185 300 0,32 0,89 0,39 112 0,55 0,041 0,620 0,340 vérifié R162 R163 8,19 0,550 0,012 185 300 0,32 0,89 0,39 112 0,55 0,041 0,620 0,340 vérifié R164 R165 50 0,550 0,012 185 300 0,32 0,89 0,39 112 0,55 0,041 0,620 0,340 vérifié R164 R165 50 0,550 0,002 223 300 0,54 1,02 0,551 147 0,62 0,041 0,620 0,340 vérifié R164 R165 50 0,550 0,021 227 300 0,52 1,01 0,51 147 0,62 0,041 0,620 0,340 vérifié R164 R165 50 0,550 0,021 227 300 0,52 1,01 0,51 147 0,62 0,041 0,620 0,340 vérifié R164 R165 50 0,550 0,002 223 300 0,57 1,03 0,551 1,03 0,041 0,620 0,340 vérifié R164 R165 50 0,550 0,002	R147 - R148	17,71	0,550	0,005	135	300	0,12	0,68	0,24	68	0,42	0,041	0,620	0,340	vérifié
R150 R151 42,14 0.550 0.008 160 300 0.2 0.78 0.3 87 0.48 0.041 0.620 0.340 vérifié R151 R152 30,51 0.550 0.009 167 300 0.22 0.8 0.32 92 0.5 0.041 0.620 0.340 vérifié R152 R128 25,31 0.550 0.001 174 300 0.25 0.83 0.34 98 0.51 0.041 0.620 0.340 vérifié R153 R148 48,76 0.820 0.001 70 300 0.02 0.4 0.1 28 0.3 0.050 0.760 0.420 vérifié R154 R155 29,33 0.830 0.001 70 300 0.02 0.4 0.1 28 0.3 0.050 0.760 0.420 vérifié R156 R156 31,45 0.550 0.002 97 300 0.05 0.52 0.15 44 0.32 0.041 0.620 0.340 vérifié R156 R157 82,32 0.550 0.003 112 300 0.07 0.59 0.19 55 0.37 0.041 0.620 0.340 vérifié R156 R157 82,25 0.750 0.004 118 300 0.08 0.61 0.22 57 0.44 0.048 0.720 0.400 vérifié R158 R159 25,47 0.750 0.005 127 300 0.11 0.65 0.22 63 0.47 0.048 0.720 0.400 vérifié R159 R160 R161 43,88 0.550 0.011 180 300 0.27 0.85 0.32 92 0.5 0.041 0.620 0.340 vérifié R161 R162 30,4 0.550 0.011 180 300 0.27 0.85 0.35 0.30 0.041 0.620 0.340 vérifié R162 R163 43,88 0.550 0.011 180 300 0.27 0.85 0.36 103 0.53 0.041 0.620 0.340 vérifié R162 R163 81,9 0.550 0.012 185 300 0.32 0.89 0.39 112 0.55 0.041 0.620 0.340 vérifié R162 R163 81,9 0.550 0.021 227 300 0.52 0.550 0.393 112 0.55 0.041 0.620 0.340 vérifié R163 R164 30,27 0.550 0.022 23 300 0.52 0.551 1.43 0.62 0.041 0.620 0.340 vérifié R163 R164 30,27 0.550 0.021 227 300 0.52 1.01 0.51 147 0.62 0.041 0.620 0.340 vérifié R165 R166 39,12 0.550 0.021 227 300 0.52 1.01 0.51 147 0.62 0.041 0.620 0.340 vérifié R165 R168 39,12 0.550 0.002 231 300 0.55 0.055 0.550 0.002 231 300 0.55 0.550	R148 - R149	20,56	0,550	0,006	144	300	0,15	0,71	0,26	75	0,44	0,041	0,620	0,340	vérifié
R151 R152 30,51 0.550 0.009 167 300 0.22 0.8 0.32 92 0.5 0.041 0.620 0.340 vérifié R152 R148 48,76 0.820 0.001 70 300 0.02 0.4 0.1 28 0.3 0.050 0.760 0.420 vérifié R154 R155 29,33 0.830 0.001 70 300 0.02 0.4 0.1 28 0.3 0.050 0.760 0.420 vérifié R154 R155 29,33 0.830 0.001 70 300 0.02 0.4 0.1 28 0.3 0.050 0.760 0.420 vérifié R154 R155 29,33 0.830 0.001 70 300 0.02 0.4 0.1 28 0.3 0.050 0.760 0.420 vérifié R155 R156 31,45 0.550 0.002 97 300 0.05 0.52 0.15 44 0.32 0.041 0.620 0.340 vérifié R157 R158 28,25 0.750 0.003 112 300 0.07 0.59 0.19 55 0.37 0.041 0.620 0.340 vérifié R157 R158 28,25 0.750 0.005 127 300 0.11 0.65 0.22 63 0.47 0.048 0.720 0.400 vérifié R159 R160 50 0.550 0.050 167 300 0.22 0.8 0.32 92 0.5 0.041 0.620 0.340 vérifié R161 R162 30,4 0.550 0.012 185 300 0.27 0.85 0.36 103 0.53 0.041 0.620 0.340 vérifié R162 R163 81,9 0.550 0.012 185 300 0.32 0.97 0.39 112 0.555 0.041 0.620 0.340 vérifié R163 R164 30,27 0.550 0.012 185 300 0.32 0.89 0.39 112 0.55 0.041 0.620 0.340 vérifié R164 R165 50 0.550 0.022 223 300 0.49 1 0.5 147 0.62 0.041 0.620 0.340 vérifié R164 R165 50 0.550 0.022 223 300 0.52 1.01 0.51 147 0.62 0.041 0.620 0.340 vérifié R167 R168 31,35 0.550 0.021 227 300 0.52 1.01 0.51 147 0.62 0.041 0.620 0.340 vérifié R167 R168 31,35 0.550 0.022 223 300 0.54 1.02 0.550 0.550 0.021 0.500 0.52 0.550 0.022 0.550 0.022 0.550 0.023 0.550 0.050 0.550 0.050 0.550 0.050 0.550 0.000 0.550 0.550 0.000 0.550 0.550 0.000 0.550 0.000 0.550 0.550 0.000 0.550 0.000 0.550 0.050 0.550 0.000	R149 - R150	28,84	0,550	0,007	152	300	0,17	0,75	0,28	81	0,46	0,041	0,620	0,340	vérifié
R152 - R28	R150 - R151	42,14	0,550	0,008	160	300	0,2	0,78	0,3	87	0,48	0,041	0,620	0,340	vérifié
R153 - R148 48,76 0,820 0,001 70 300 0,02 0,4 0,1 28 0,3 0,050 0,760 0,420 vérifié R154 - R155 29,33 0,830 0,001 70 300 0,02 0,4 0,1 28 0,3 0,050 0,760 0,420 vérifié R155 - R156 31,45 0,550 0,002 97 300 0,05 0,52 0,15 44 0,32 0,041 0,620 0,340 vérifié R156 - R157 32,32 0,550 0,003 112 300 0,07 0,59 0,19 55 0,37 0,041 0,620 0,340 vérifié R157 - R158 28,25 0,750 0,004 118 300 0,08 0,61 0,2 57 0,44 0,048 0,720 0,400 vérifié R159 - R159 25,47 0,750 0,005 127 300 0,11 0,65 0,22 63 0,47 0,048 0,720 0,400 vérifié R159 - R160 50 0,550 0,009 167 300 0,22 0,8 0,32 92 0,5 0,041 0,620 0,340 vérifié R160 - R161 43,88 0,550 0,011 180 300 0,27 0,85 0,36 103 0,53 0,041 0,620 0,340 vérifié R162 - R163 18,19 0,550 0,012 185 300 0,32 0,89 0,39 112 0,55 0,041 0,620 0,340 vérifié R163 - R164 30,27 0,550 0,021 223 300 0,49 1 0,5 143 0,62 0,041 0,620 0,340 vérifié R165 - R166 39,12 0,550 0,021 227 300 0,54 1,01 143 0,62 0,041 0,620 0,340 vérifié R165 - R166 39,12 0,550 0,021 227 300 0,551 1,01 1,01 1,01 1,01 1,01 1,02 0,041 0,620 0,340 vérifié R165 - R166 39,12 0,550 0,021 227 300 0,54 1,02 0,550 0,041 0,620 0,340 vérifié R166 - R31 2,686 0,550 0,021 227 300 0,551 1,03 0,552 1,04 1,062 0,340 vérifié R168 - R168 3,935 0,550 0,002 231 300 0,54 1,02 0,552 151 0,63 0,041 0,620 0,340 vérifié R168 - R169 28,78 0,550 0,002 231 300 0,57 1,03 0,54 1,05 0,64 0,041 0,620 0,340 vérifié R168 - R169 28,78 0,550 0,002 97 300 0,550 0,552 0,15 44 0,32 0,041 0,620 0,340 vérifié R169 - R168 81,35 0,550 0,002 97 300 0,05 0,552 0,15 44 0,	R151 - R152	30,51	0,550	0,009	167	300	0,22	0,8	0,32	92	0,5	0,041	0,620	0,340	vérifié
R154 - R155 29,33 0,830 0,001 70 300 0,02 0,4 0,1 28 0,3 0,050 0,760 0,420 vérifié R155 - R156 31,45 0,550 0,002 97 300 0,05 0,52 0,15 44 0,32 0,041 0,620 0,340 vérifié R157 - R158 28,25 0,750 0,004 118 300 0,07 0,59 0,19 55 0,37 0,041 0,620 0,340 vérifié R157 - R158 28,25 0,750 0,004 118 300 0,08 0,61 0,2 57 0,44 0,048 0,720 0,400 vérifié R158 - R159 25,47 0,750 0,005 127 300 0,11 0,655 0,22 63 0,47 0,048 0,720 0,400 vérifié R159 - R160 50 0,550 0,009 167 300 0,22 0,8 0,32 92 0,5 0,041 0,620 0,340 vérifié R160 - R161 43,88 0,550 0,011 180 300 0,27 0,85 0,36 103 0,53 0,041 0,620 0,340 vérifié R161 - R162 30,4 0,550 0,012 185 300 0,3 0,87 0,37 108 0,54 0,041 0,620 0,340 vérifié R163 - R164 30,27 0,550 0,012 223 300 0,49 1 0,5 143 0,62 0,041 0,620 0,340 vérifié R164 - R165 50 0,550 0,021 227 300 0,52 1,01 0,51 143 0,62 0,041 0,620 0,340 vérifié R166 - R31 2,86 0,550 0,022 223 300 0,54 1,02 0,52 151 0,63 0,041 0,620 0,340 vérifié R166 - R31 2,86 0,550 0,022 231 300 0,57 1,03 0,54 156 0,64 0,041 0,620 0,340 vérifié R167 - R168 31,35 0,550 0,002 227 300 0,57 1,03 0,54 156 0,64 0,041 0,620 0,340 vérifié R169 - R170 1,889 0,550 0,002 273 300 0,05 0,52 0,15 44 0,32 0,041 0,620 0,340 vérifié R169 - R170 1,889 0,550 0,002 97 300 0,05 0,52 0,15 44 0,32 0,041 0,620 0,340 vérifié R169 - R170 1,889 0,550 0,002 97 300 0,05 0,52 0,15 44 0,32 0,041 0,620 0,340 vérifié R169 - R170 1,889 0,550 0,000 144 300 0,15 0,15 0,15 44 0,32 0,041 0,620 0,340 vérifié R169 - R170 1,899 0,550 0,000 1	R152 - R28	25,31	0,550	0,01	174	300	0,25	0,83	0,34	98	0,51	0,041	0,620	0,340	vérifié
R155 - R156 31,45 0,550 0,002 97 300 0,05 0,52 0,15 44 0,32 0,041 0,620 0,340 vérifié R156 - R157 83,232 0,550 0,003 112 300 0,07 0,59 0,19 55 0,37 0,041 0,620 0,340 vérifié R157 - R158 28,25 0,750 0,004 118 300 0,08 0,61 0,2 57 0,44 0,048 0,720 0,400 vérifié R158 - R159 25,47 0,750 0,005 127 300 0,11 0,65 0,22 63 0,47 0,048 0,720 0,400 vérifié R159 - R160 50 0,550 0,009 167 300 0,22 0,8 0,32 92 0,5 0,041 0,620 0,340 vérifié R160 - R161 43,88 0,550 0,011 180 300 0,27 0,85 0,36 103 0,53 0,041 0,620 0,340 vérifié R161 - R162 30,4 0,550 0,012 185 300 0,3 0,37 0,37 108 0,54 0,041 0,620 0,340 vérifié R162 - R163 18,19 0,550 0,013 191 300 0,32 0,88 0,39 112 0,55 0,041 0,620 0,340 vérifié R163 - R164 30,27 0,550 0,021 227 300 0,52 1,01 0,51 147 0,62 0,041 0,620 0,340 vérifié R164 - R165 50 0,550 0,021 227 300 0,52 1,01 0,51 147 0,62 0,041 0,620 0,340 vérifié R166 - R31 26,86 0,550 0,022 231 300 0,54 1,02 0,52 151 0,63 0,041 0,620 0,340 vérifié R168 - R168 31,35 0,550 0,002 231 300 0,57 1,03 0,54 150 0,64 0,041 0,620 0,340 vérifié R168 - R168 31,35 0,550 0,002 231 300 0,57 1,03 0,54 150 0,64 0,041 0,620 0,340 vérifié R168 - R168 31,35 0,550 0,002 231 300 0,57 1,03 0,52 151 0,63 0,041 0,620 0,340 vérifié R168 - R168 31,35 0,550 0,002 3235 300 0,57 1,03 0,52 151 0,63 0,041 0,620 0,340 vérifié R168 - R168 31,35 0,550 0,002 3235 300 0,57 1,03 0,52 1,01 0,53 0,041 0,620 0,340 vérifié R168 - R169 28,78 0,550 0,001 75 300 0,05 0,52 0,15 44 0,32 0,041 0,620 0,340 vérifié R168 - R169 31,350 0,550 0,000 312 300 0,0	R153 - R148	48,76	0,820	0,001	70	300	0,02	0,4	0,1	28	0,3	0,050	0,760	0,420	vérifié
R156 - R157 32,32 0,550 0,003 112 300 0,07 0,59 0,19 55 0,37 0,041 0,620 0,340 vérifié R157 - R158 28,25 0,750 0,004 118 300 0,08 0,61 0,2 57 0,44 0,048 0,720 0,400 vérifié R158 - R159 25,47 0,750 0,005 127 300 0,11 0,65 0,22 63 0,47 0,048 0,720 0,400 vérifié R158 - R150 50 0,550 0,009 167 300 0,22 0,8 0,32 92 0,5 0,041 0,620 0,340 vérifié R160 - R161 43,88 0,550 0,011 180 300 0,27 0,85 0,36 103 0,53 0,041 0,620 0,340 vérifié R161 - R162 30,4 0,550 0,012 185 300 0,32 0,88 0,39 112 0,55 0,041 0,620 0,340 vérifié R163 - R164 30,27 0,550 0,012 223 300 0,49 1 0,5 143 0,62 0,041 0,620 0,340 vérifié R164 - R165 50 0,550 0,021 227 300 0,52 1,01 0,51 147 0,62 0,041 0,620 0,340 vérifié R165 - R166 39,12 0,550 0,022 231 300 0,54 1,02 0,52 151 0,63 0,041 0,620 0,340 vérifié R167 - R168 31,35 0,550 0,022 231 300 0,54 1,02 0,52 151 0,63 0,041 0,620 0,340 vérifié R167 - R168 31,35 0,550 0,002 325 300 0,57 1,03 0,54 156 0,64 0,041 0,620 0,340 vérifié R167 - R168 31,35 0,550 0,002 325 300 0,57 1,03 0,54 156 0,64 0,041 0,620 0,340 vérifié R167 - R168 34,35 0,550 0,002 325 300 0,57 1,03 0,54 156 0,64 0,041 0,620 0,340 vérifié R167 - R168 34,35 0,550 0,002 325 300 0,57 1,03 0,54 156 0,64 0,041 0,620 0,340 vérifié R167 - R168 34,55 0,550 0,002 37 300 0,05 0,52 0,15 44 0,32 0,041 0,620 0,340 vérifié R167 - R168 34,55 0,550 0,002 37 300 0,05 0,52 0,15 44 0,32 0,041 0,620 0,340 vérifié R167 - R168 34,55 0,550 0,000 3112 300 0,07 0,59 0,19 55 0,37 0,041 0,620 0,340 vérifié R167 - R168 34,55 0,550 0,000 3112 300 0,07 0,	R154 - R155	29,33	0,830	0,001	70	300	0,02	0,4	0,1	28	0,3	0,050	0,760	0,420	vérifié
R157 - R158 28,25 0,750 0,004 118 300 0,08 0,61 0,2 57 0,44 0,048 0,720 0,400 vérifié R158 - R159 25,47 0,750 0,005 127 300 0,11 0,655 0,22 63 0,47 0,048 0,720 0,400 vérifié R159 - R160 50 0,550 0,009 167 300 0,22 0,8 0,32 92 0,5 0,041 0,620 0,340 vérifié R160 - R161 43,88 0,550 0,011 180 300 0,27 0,85 0,36 103 0,53 0,041 0,620 0,340 vérifié R161 - R162 30,4 0,550 0,012 185 300 0,3 0,87 0,37 108 0,54 0,041 0,620 0,340 vérifié R162 - R163 18,19 0,550 0,013 191 300 0,32 0,89 0,39 112 0,55 0,041 0,620 0,340 vérifié R163 - R164 30,27 0,550 0,021 227 300 0,49 1 0,5 143 0,62 0,041 0,620 0,340 vérifié R165 - R166 39,12 0,550 0,021 227 300 0,52 1,01 0,51 147 0,62 0,041 0,620 0,340 vérifié R165 - R166 39,12 0,550 0,022 231 300 0,54 1,02 0,55 151 0,63 0,041 0,620 0,340 vérifié R167 - R168 31,35 0,550 0,022 231 300 0,57 1,03 0,54 156 0,64 0,041 0,620 0,340 vérifié R167 - R168 31,35 0,550 0,002 97 300 0,05 0,02 0,42 0,11 31 0,26 0,041 0,620 0,340 vérifié R167 - R168 31,35 0,550 0,002 97 300 0,05 0,52 0,15 44 0,32 0,041 0,620 0,340 vérifié R168 - R19 8,79 0,550 0,003 112 300 0,07 0,59 0,19 55 0,44 0,041 0,620 0,340 vérifié R170 - R171 47,43 0,550 0,003 112 300 0,07 0,59 0,19 55 0,37 0,041 0,620 0,340 vérifié R171 - R163 46,62 0,050 0,003 112 300 0,07 0,59 0,19 55 0,37 0,041 0,620 0,340 vérifié R171 - R173 31,97 0,550 0,002 97 300 0,05 0,52 0,15 44 0,32 0,041 0,620 0,340 vérifié R172 - R173 31,97 0,550 0,006 144 300 0,15 0,71 0,26 75 0,44 0,041 0,620 0,340 vérifié R175 - R159 9,97 0,550 0,006 144 300 0,07 0	R155 - R156	31,45	0,550	0,002	97	300	0,05	0,52	0,15	44	0,32	0,041	0,620	0,340	vérifié
R158 - R159 25,47 0,750 0,005 127 300 0,11 0,65 0,22 63 0,47 0,048 0,720 0,400 vérifié R159 - R160 50 0,550 0,009 167 300 0,22 0,8 0,32 92 0,5 0,041 0,620 0,340 vérifié R160 - R161 43,88 0,550 0,011 180 300 0,27 0,85 0,36 103 0,53 0,041 0,620 0,340 vérifié R161 - R162 30,4 0,550 0,012 185 300 0,3 0,87 0,37 108 0,54 0,041 0,620 0,340 vérifié R162 - R163 18,19 0,550 0,013 191 300 0,32 0,89 0,39 112 0,55 0,041 0,620 0,340 vérifié R163 - R164 30,27 0,550 0,02 223 300 0,49 1 0,5 1 43 0,62 0,041 0,620 0,340 vérifié R165 - R166 39,12 0,550 0,021 227 300 0,52 1,01 0,51 147 0,62 0,041 0,620 0,340 vérifié R165 - R166 39,12 0,550 0,022 231 300 0,54 1,02 0,55 151 0,63 0,041 0,620 0,340 vérifié R167 - R168 31,35 0,550 0,023 235 300 0,57 1,03 0,54 156 0,64 0,041 0,620 0,340 vérifié R167 - R168 31,35 0,550 0,002 233 300 0,057 1,03 0,54 156 0,64 0,041 0,620 0,340 vérifié R169 - R170 18,89 0,550 0,002 97 300 0,05 0,52 0,15 44 0,32 0,041 0,620 0,340 vérifié R169 - R171 47,43 0,550 0,003 112 300 0,07 0,59 0,19 55 0,37 0,041 0,620 0,340 vérifié R170 - R171 47,43 0,550 0,006 144 300 0,15 0,71 0,26 75 0,44 0,041 0,620 0,340 vérifié R171 - R163 46,62 1,050 0,007 135 300 0,15 0,15 0,15 44 0,32 0,041 0,620 0,340 vérifié R173 - R174 31,75 0,550 0,001 75 300 0,02 0,42 0,11 31 0,26 0,041 0,620 0,340 vérifié R173 - R174 31,75 0,550 0,001 75 300 0,02 0,42 0,11 31 0,26 0,041 0,620 0,340 vérifié R175 - R159 19,97 0,550 0,006 114 300 0,07 0,59 0,19 55 0,37 0,041 0,620 0,340 vérifié R175 - R159 19,97 0,550 0,006 112 300 0,07 0,5	R156 - R157	32,32	0,550	0,003	112	300	0,07	0,59	0,19	55	0,37	0,041	0,620	0,340	vérifié
R159 - R160 50 0,550 0,009 167 300 0,22 0,8 0,32 92 0,5 0,041 0,620 0,340 vérifié R160 - R161 43,88 0,550 0,011 180 300 0,27 0,85 0,36 103 0,53 0,041 0,620 0,340 vérifié R161 - R162 30,4 0,550 0,012 185 300 0,3 0,87 0,37 108 0,54 0,041 0,620 0,340 vérifié R162 - R163 18,19 0,550 0,013 191 300 0,32 0,89 0,39 112 0,55 0,041 0,620 0,340 vérifié R163 - R164 30,27 0,550 0,02 223 300 0,49 1 0,5 143 0,62 0,041 0,620 0,340 vérifié R164 - R165 50 0,550 0,021 227 300 0,52 1,01 0,51 147 0,62 0,041 0,620 0,340 vérifié R165 - R166 39,12 0,550 0,022 231 300 0,54 1,02 0,52 151 0,63 0,041 0,620 0,340 vérifié R166 - R31 26,86 0,550 0,022 335 300 0,57 1,03 0,54 156 0,64 0,041 0,620 0,340 vérifié R167 - R168 31,35 0,550 0,002 325 300 0,057 1,03 0,54 156 0,64 0,041 0,620 0,340 vérifié R169 - R170 18,89 0,550 0,002 97 300 0,05 0,52 0,15 44 0,32 0,041 0,620 0,340 vérifié R169 - R170 18,89 0,550 0,003 112 300 0,07 0,59 0,19 55 0,37 0,041 0,620 0,340 vérifié R171 - R163 46,62 1,050 0,007 135 300 0,15 0,75 0,68 0,24 69 0,58 0,056 0,860 0,470 vérifié R172 - R173 31,97 0,550 0,001 75 300 0,05 0,52 0,15 44 0,32 0,041 0,620 0,340 vérifié R173 - R174 37,75 0,550 0,002 97 300 0,05 0,52 0,15 44 0,32 0,041 0,620 0,340 vérifié R173 - R174 37,75 0,550 0,001 75 300 0,05 0,52 0,15 44 0,32 0,041 0,620 0,340 vérifié R174 - R175 2,550 0,550 0,001 75 300 0,05 0,52 0,15 44 0,32 0,041 0,620 0,340 vérifié R174 - R175 2,550 0,002 97 300 0,05 0,52 0,15 44 0,32 0,041 0,620 0,340 vérifié R174 - R175 2,550 0,000 112 300 0,07 0,59 0,19 55 0	R157 - R158	28,25	0,750	0,004	118	300	0,08	0,61	0,2	57	0,44	0,048	0,720	0,400	vérifié
R160 - R161	R158 - R159	25,47	0,750	0,005	127	300	0,11	0,65	0,22	63	0,47	0,048	0,720	0,400	vérifié
R161 - R162 30,4 0,550 0,012 185 300 0,3 0,87 0,37 108 0,54 0,041 0,620 0,340 vérifié R162 - R163 18,19 0,550 0,013 191 300 0,32 0,89 0,39 112 0,55 0,041 0,620 0,340 vérifié R163 - R164 30,27 0,550 0,02 223 300 0,49 1 0,5 143 0,62 0,041 0,620 0,340 vérifié R164 - R165 50 0,550 0,021 227 300 0,52 1,01 0,51 147 0,62 0,041 0,620 0,340 vérifié R166 - R168 39,12 0,550 0,023 235 300 0,57 1,03 0,54 156 0,64 0,041 0,620 0,340 vérifié R166 - R31 26,86 0,550 0,001 75 300 0,02 0,42 0,11 31 <td< td=""><td>R159 - R160</td><td>50</td><td>0,550</td><td>0,009</td><td>167</td><td>300</td><td>0,22</td><td>0,8</td><td>0,32</td><td>92</td><td>0,5</td><td>0,041</td><td>0,620</td><td>0,340</td><td>vérifié</td></td<>	R159 - R160	50	0,550	0,009	167	300	0,22	0,8	0,32	92	0,5	0,041	0,620	0,340	vérifié
R162 - R163	R160 - R161	43,88	0,550	0,011	180	300	0,27	0,85	0,36	103	0,53	0,041	0,620	0,340	vérifié
R163 - R164 30,27 0,550 0,02 223 300 0,49 1 0,5 143 0,62 0,041 0,620 0,340 vérifié R164 - R165 50 0,550 0,021 227 300 0,52 1,01 0,51 147 0,62 0,041 0,620 0,340 vérifié R165 - R166 39,12 0,550 0,022 231 300 0,54 1,02 0,52 151 0,63 0,041 0,620 0,340 vérifié R166 - R31 26,86 0,550 0,023 235 300 0,57 1,03 0,54 156 0,64 0,041 0,620 0,340 vérifié R167 - R168 31,35 0,550 0,001 75 300 0,05 0,52 0,15 44 0,32 0,041 0,620 0,340 vérifié R168 - R169 28,78 0,550 0,002 97 300 0,05 0,52 0,15 44 <td< td=""><td>R161 - R162</td><td>30,4</td><td>0,550</td><td>0,012</td><td>185</td><td>300</td><td>0,3</td><td>0,87</td><td>0,37</td><td>108</td><td>0,54</td><td>0,041</td><td>0,620</td><td>0,340</td><td>vérifié</td></td<>	R161 - R162	30,4	0,550	0,012	185	300	0,3	0,87	0,37	108	0,54	0,041	0,620	0,340	vérifié
R164 - R165 50 0,550 0,021 227 300 0,52 1,01 0,51 147 0,62 0,041 0,620 0,340 vérifié R165 - R166 39,12 0,550 0,022 231 300 0,54 1,02 0,52 151 0,63 0,041 0,620 0,340 vérifié R166 - R31 26,86 0,550 0,023 235 300 0,57 1,03 0,54 156 0,64 0,041 0,620 0,340 vérifié R167 - R168 31,35 0,550 0,001 75 300 0,02 0,42 0,11 31 0,26 0,041 0,620 0,340 vérifié R168 - R169 28,78 0,550 0,002 97 300 0,05 0,52 0,15 44 0,32 0,041 0,620 0,340 vérifié R169 - R170 18,89 0,550 0,006 144 300 0,15 0,71 0,26 0,5	R162 - R163	18,19	0,550	0,013	191	300	0,32	0,89	0,39	112	0,55	0,041	0,620	0,340	vérifié
R165 - R166 39,12 0,550 0,022 231 300 0,54 1,02 0,52 151 0,63 0,041 0,620 0,340 vérifié R166 - R31 26,86 0,550 0,023 235 300 0,57 1,03 0,54 156 0,64 0,041 0,620 0,340 vérifié R167 - R168 31,35 0,550 0,001 75 300 0,02 0,42 0,11 31 0,26 0,041 0,620 0,340 vérifié R168 - R169 28,78 0,550 0,002 97 300 0,05 0,52 0,15 44 0,32 0,041 0,620 0,340 vérifié R169 - R170 18,89 0,550 0,002 97 300 0,07 0,59 0,19 55 0,37 0,041 0,620 0,340 vérifié R170 - R171 47,43 0,550 0,0003 112 300 0,15 0,71 0,26 75	R163 - R164	30,27	0,550	0,02	223	300	0,49	1	0,5	143	0,62	0,041	0,620	0,340	vérifié
R166 - R31 26,86 0,550 0,023 235 300 0,57 1,03 0,54 156 0,64 0,041 0,620 0,340 vérifié R167 - R168 31,35 0,550 0,001 75 300 0,02 0,42 0,11 31 0,26 0,041 0,620 0,340 vérifié R168 - R169 28,78 0,550 0,002 97 300 0,05 0,52 0,15 44 0,32 0,041 0,620 0,340 vérifié R169 - R170 18,89 0,550 0,003 112 300 0,07 0,59 0,19 55 0,37 0,041 0,620 0,340 vérifié R170 - R171 47,43 0,550 0,006 144 300 0,15 0,71 0,26 75 0,44 0,041 0,620 0,340 vérifié R171 - R163 46,62 1,050 0,007 135 300 0,12 0,68 0,24 69	R164 - R165	50	0,550	0,021	227	300	0,52	1,01	0,51	147	0,62	0,041	0,620	0,340	vérifié
R167 - R168 31,35 0,550 0,001 75 300 0,02 0,42 0,11 31 0,26 0,041 0,620 0,340 vérifié R168 - R169 28,78 0,550 0,002 97 300 0,05 0,52 0,15 44 0,32 0,041 0,620 0,340 vérifié R169 - R170 18,89 0,550 0,003 112 300 0,07 0,59 0,19 55 0,37 0,041 0,620 0,340 vérifié R170 - R171 47,43 0,550 0,006 144 300 0,15 0,71 0,26 75 0,44 0,041 0,620 0,340 vérifié R171 - R163 46,62 1,050 0,007 135 300 0,12 0,68 0,24 69 0,58 0,056 0,860 0,470 vérifié R172 - R173 31,97 0,550 0,001 75 300 0,02 0,42 0,11 31	R165 - R166	39,12	0,550	0,022	231	300	0,54	1,02	0,52	151	0,63	0,041	0,620	0,340	vérifié
R168 - R169 28,78 0,550 0,002 97 300 0,05 0,52 0,15 44 0,32 0,041 0,620 0,340 vérifié R169 - R170 18,89 0,550 0,003 112 300 0,07 0,59 0,19 55 0,37 0,041 0,620 0,340 vérifié R170 - R171 47,43 0,550 0,006 144 300 0,15 0,71 0,26 75 0,44 0,041 0,620 0,340 vérifié R171 - R163 46,62 1,050 0,007 135 300 0,12 0,68 0,24 69 0,58 0,056 0,860 0,470 vérifié R172 - R173 31,97 0,550 0,001 75 300 0,02 0,42 0,11 31 0,26 0,041 0,620 0,340 vérifié R173 - R174 31,75 0,550 0,002 97 300 0,05 0,52 0,15 44	R166 - R31	26,86	0,550	0,023	235	300	0,57	1,03	0,54	156	0,64	0,041	0,620	0,340	vérifié
R169 - R170 18,89 0,550 0,003 112 300 0,07 0,59 0,19 55 0,37 0,041 0,620 0,340 vérifié R170 - R171 47,43 0,550 0,006 144 300 0,15 0,71 0,26 75 0,44 0,041 0,620 0,340 vérifié R171 - R163 46,62 1,050 0,007 135 300 0,12 0,68 0,24 69 0,58 0,056 0,860 0,470 vérifié R172 - R173 31,97 0,550 0,001 75 300 0,02 0,42 0,11 31 0,26 0,041 0,620 0,340 vérifié R173 - R174 31,75 0,550 0,002 97 300 0,05 0,52 0,15 44 0,32 0,041 0,620 0,340 vérifié R174 - R175 28,5 0,550 0,003 112 300 0,07 0,59 0,19 55	R167 - R168	31,35	0,550	0,001	75	300	0,02	0,42	0,11	31	0,26	0,041	0,620	0,340	vérifié
R170 - R171 47,43 0,550 0,006 144 300 0,15 0,71 0,26 75 0,44 0,041 0,620 0,340 vérifié R171 - R163 46,62 1,050 0,007 135 300 0,12 0,68 0,24 69 0,58 0,056 0,860 0,470 vérifié R172 - R173 31,97 0,550 0,001 75 300 0,02 0,42 0,11 31 0,26 0,041 0,620 0,340 vérifié R173 - R174 31,75 0,550 0,002 97 300 0,05 0,52 0,15 44 0,32 0,041 0,620 0,340 vérifié R174 - R175 28,5 0,550 0,003 112 300 0,07 0,59 0,19 55 0,37 0,041 0,620 0,340 vérifié R175 - R159 19,97 0,550 0,004 124 300 0,1 0,64 0,21 61	R168 - R169	28,78	0,550	0,002	97	300	0,05	0,52	0,15	44	0,32	0,041	0,620	0,340	vérifié
R171 - R163 46,62 1,050 0,007 135 300 0,12 0,68 0,24 69 0,58 0,056 0,860 0,470 vérifié R172 - R173 31,97 0,550 0,001 75 300 0,02 0,42 0,11 31 0,26 0,041 0,620 0,340 vérifié R173 - R174 31,75 0,550 0,002 97 300 0,05 0,52 0,15 44 0,32 0,041 0,620 0,340 vérifié R174 - R175 28,5 0,550 0,003 112 300 0,07 0,59 0,19 55 0,37 0,041 0,620 0,340 vérifié R175 - R159 19,97 0,550 0,004 124 300 0,1 0,64 0,21 61 0,39 0,041 0,620 0,340 vérifié R176 - R177 37,61 1,180 0,005 117 300 0,08 0,61 0,2 57 <	R169 - R170	18,89	0,550	0,003	112	300	0,07	0,59	0,19	55	0,37	0,041	0,620	0,340	vérifié
R172 - R173 31,97 0,550 0,001 75 300 0,02 0,42 0,11 31 0,26 0,041 0,620 0,340 vérifié R173 - R174 31,75 0,550 0,002 97 300 0,05 0,52 0,15 44 0,32 0,041 0,620 0,340 vérifié R174 - R175 28,5 0,550 0,003 112 300 0,07 0,59 0,19 55 0,37 0,041 0,620 0,340 vérifié R175 - R159 19,97 0,550 0,004 124 300 0,1 0,64 0,21 61 0,39 0,041 0,620 0,340 vérifié R176 - R177 37,61 1,180 0,005 117 300 0,08 0,61 0,2 57 0,55 0,060 0,910 0,500 vérifié R177 - R178 47,02 2,450 0,006 110 300 0,07 0,59 0,19 54 <	R170 - R171	47,43	0,550	0,006	144	300	0,15	0,71	0,26	75	0,44	0,041	0,620	0,340	vérifié
R173 - R174 31,75 0,550 0,002 97 300 0,05 0,52 0,15 44 0,32 0,041 0,620 0,340 vérifié R174 - R175 28,5 0,550 0,003 112 300 0,07 0,59 0,19 55 0,37 0,041 0,620 0,340 vérifié R175 - R159 19,97 0,550 0,004 124 300 0,1 0,64 0,21 61 0,39 0,041 0,620 0,340 vérifié R176 - R177 37,61 1,180 0,005 117 300 0,08 0,61 0,2 57 0,55 0,060 0,910 0,500 vérifié R177 - R178 47,02 2,450 0,006 110 300 0,07 0,59 0,19 54 0,77 0,086 1,310 0,720 vérifié R178 - R179 46,89 0,550 0,006 144 300 0,15 0,71 0,26 75	R171 - R163	46,62	1,050	0,007		300	0,12	0,68	0,24	69	0,58	0,056	0,860	0,470	vérifié
R174 - R175 28,5 0,550 0,003 112 300 0,07 0,59 0,19 55 0,37 0,041 0,620 0,340 vérifié R175 - R159 19,97 0,550 0,004 124 300 0,1 0,64 0,21 61 0,39 0,041 0,620 0,340 vérifié R176 - R177 37,61 1,180 0,005 117 300 0,08 0,61 0,2 57 0,55 0,060 0,910 0,500 vérifié R177 - R178 47,02 2,450 0,006 110 300 0,07 0,59 0,19 54 0,77 0,086 1,310 0,720 vérifié R178 - R179 46,89 0,550 0,006 144 300 0,15 0,71 0,26 75 0,44 0,041 0,620 0,340 vérifié R179 - R180 25,7 0,550 0,008 160 300 0,2 0,78 0,3 87 <t< td=""><td>R172 - R173</td><td>31,97</td><td>0,550</td><td>0,001</td><td>75</td><td>300</td><td>0,02</td><td>0,42</td><td>0,11</td><td>31</td><td>0,26</td><td>0,041</td><td>0,620</td><td>0,340</td><td>vérifié</td></t<>	R172 - R173	31,97	0,550	0,001	75	300	0,02	0,42	0,11	31	0,26	0,041	0,620	0,340	vérifié
R175 - R159 19,97 0,550 0,004 124 300 0,1 0,64 0,21 61 0,39 0,041 0,620 0,340 vérifié R176 - R177 37,61 1,180 0,005 117 300 0,08 0,61 0,2 57 0,55 0,060 0,910 0,500 vérifié R177 - R178 47,02 2,450 0,006 110 300 0,07 0,59 0,19 54 0,77 0,086 1,310 0,720 vérifié R178 - R179 46,89 0,550 0,006 144 300 0,15 0,71 0,26 75 0,44 0,041 0,620 0,340 vérifié R179 - R180 25,7 0,550 0,007 152 300 0,17 0,75 0,28 81 0,46 0,041 0,620 0,340 vérifié R180 - R181 22,1 0,550 0,008 160 300 0,2 0,78 0,3 87 <t< td=""><td>R173 - R174</td><td>31,75</td><td>0,550</td><td>0,002</td><td>97</td><td>300</td><td>0,05</td><td>0,52</td><td>0,15</td><td>44</td><td>0,32</td><td>0,041</td><td>0,620</td><td>0,340</td><td>vérifié</td></t<>	R173 - R174	31,75	0,550	0,002	97	300	0,05	0,52	0,15	44	0,32	0,041	0,620	0,340	vérifié
R176 - R177 37,61 1,180 0,005 117 300 0,08 0,61 0,2 57 0,55 0,060 0,910 0,500 vérifié R177 - R178 47,02 2,450 0,006 110 300 0,07 0,59 0,19 54 0,77 0,086 1,310 0,720 vérifié R178 - R179 46,89 0,550 0,006 144 300 0,15 0,71 0,26 75 0,44 0,041 0,620 0,340 vérifié R179 - R180 25,7 0,550 0,007 152 300 0,17 0,75 0,28 81 0,46 0,041 0,620 0,340 vérifié R180 - R181 22,1 0,550 0,008 160 300 0,2 0,78 0,3 87 0,48 0,041 0,620 0,340 vérifié	R174 - R175	28,5	0,550	0,003	112	300	0,07	0,59	0,19	55	0,37	0,041	0,620	0,340	vérifié
R177 - R178 47,02 2,450 0,006 110 300 0,07 0,59 0,19 54 0,77 0,086 1,310 0,720 vérifié R178 - R179 46,89 0,550 0,006 144 300 0,15 0,71 0,26 75 0,44 0,041 0,620 0,340 vérifié R179 - R180 25,7 0,550 0,007 152 300 0,17 0,75 0,28 81 0,46 0,041 0,620 0,340 vérifié R180 - R181 22,1 0,550 0,008 160 300 0,2 0,78 0,3 87 0,48 0,041 0,620 0,340 vérifié	R175 - R159	19,97	0,550	0,004	124	300	0,1	0,64	0,21	61	0,39	0,041	0,620	0,340	vérifié
R178 - R179 46,89 0,550 0,006 144 300 0,15 0,71 0,26 75 0,44 0,041 0,620 0,340 vérifié R179 - R180 25,7 0,550 0,007 152 300 0,17 0,75 0,28 81 0,46 0,041 0,620 0,340 vérifié R180 - R181 22,1 0,550 0,008 160 300 0,2 0,78 0,3 87 0,48 0,041 0,620 0,340 vérifié	R176 - R177	37,61	1,180	0,005	117	300	0,08	0,61	0,2	57	0,55	0,060	0,910	0,500	vérifié
R179 - R180 25,7 0,550 0,007 152 300 0,17 0,75 0,28 81 0,46 0,041 0,620 0,340 vérifié R180 - R181 22,1 0,550 0,008 160 300 0,2 0,78 0,3 87 0,48 0,041 0,620 0,340 vérifié	R177 - R178	47,02	2,450	0,006	110	300	0,07	0,59	0,19	54	0,77	0,086	1,310	0,720	vérifié
R180 - R181 22,1 0,550 0,008 160 300 0,2 0,78 0,3 87 0,48 0,041 0,620 0,340 vérifié	R178 - R179	46,89	0,550	0,006	144	300	0,15	0,71	0,26	75	0,44	0,041	0,620	0,340	vérifié
	R179 - R180	25,7	0,550	0,007	152	300	0,17	0,75	0,28	81	0,46	0,041	0,620	0,340	vérifié
R181 - R182 23,01 0,550 0,012 185 300 0,3 0,87 0,37 108 0,54 0,041 0,620 0,340 vérifié	R180 - R181	22,1	0,550	0,008	160	300		0,78	0,3	87	0,48	0,041	0,620	0,340	vérifié
	R181 - R182	23,01	0,550	0,012	185	300	0,3	0,87	0,37	108	0,54	0,041	0,620	0,340	vérifié

R182 - R183	27,55	0,550	0,013	191	300	0,32	0,89	0,39	112	0,55	0,041	0,620	0,340	vérifié
R183 - R184	41,9	0,550	0,014	196	300	0,34	0,91	0,4	117	0,56	0,041	0,620	0,340	vérifié
R184 - R185	28,78	0,550	0,015	201	300	0,37	0,92	0,42	121	0,57	0,041	0,620	0,340	vérifié
R185 - R31	26,85	0,550	0,016	206	300	0,39	0,94	0,44	126	0,58	0,041	0,620	0,340	vérifié
R186 - R181	46,95	0,890	0,004	114	300	0,08	0,6	0,19	55	0,47	0,052	0,790	0,430	vérifié
R187 - R188	40	0,550	0,004	124	300	0,1	0,64	0,21	61	0,39	0,041	0,620	0,340	vérifié
R188 - R189	45,04	0,550	0,004	124	300	0,1	0,64	0,21	61	0,39	0,041	0,620	0,340	vérifié
R189 - R190	42	0,550	0,014	196	300	0,34	0,91	0,4	117	0,56	0,041	0,620	0,340	vérifié
R190 - R191	40	0,550	0,021	227	300	0,52	1,01	0,51	147	0,62	0,041	0,620	0,340	vérifié
R191 - R192	35,65	0,550	0,022	231	300	0,54	1,02	0,52	151	0,63	0,041	0,620	0,340	vérifié
R192 - R193	42,7	0,550	0,024	239	300	0,59	1,04	0,55	160	0,64	0,041	0,620	0,340	vérifié
R193 - R194	51	0,550	0,028	252	300	0,69	1,08	0,61	176	0,67	0,041	0,620	0,340	vérifié
R194 - R34	43,96	0,550	0,032	265	300	0,79	1,11	0,67	193	0,69	0,041	0,620	0,340	vérifié
R204 - R205	29,62	0,550	0,001	75	300	0,02	0,42	0,11	31	0,26	0,041	0,620	0,340	vérifié
R205 - R206	31,34	0,550	0,002	97	300	0,05	0,52	0,15	44	0,32	0,041	0,620	0,340	vérifié
R206 - R207	33,05	0,550	0,003	112	300	0,07	0,59	0,19	55	0,37	0,041	0,620	0,340	vérifié
R207 - R187	47,1	0,550	0,004	124	300	0,1	0,64	0,21	61	0,39	0,041	0,620	0,340	vérifié
R208 - R209	31,38	0,950	0,001	68	300	0,02	0,39	0,09	27	0,31	0,053	0,810	0,450	vérifié
R209 - R210	52,73	0,550	0,002	97	300	0,05	0,52	0,15	44	0,32	0,041	0,620	0,340	vérifié
R210 - R211	23,19	0,550	0,002	97	300	0,05	0,52	0,15	44	0,32	0,041	0,620	0,340	vérifié
R211 - R212	28,05	0,550	0,004	124	300	0,1	0,64	0,21	61	0,39	0,041	0,620	0,340	vérifié
R212 - R213	30,91	0,550	0,006	144	300	0,15	0,71	0,26	75	0,44	0,041	0,620	0,340	vérifié
R213 - R214	32,82	0,550	0,008	160	300	0,2	0,78	0,3	87	0,48	0,041	0,620	0,340	vérifié
R214 - R189	36,69	0,550	0,01	174	300	0,25	0,83	0,34	98	0,51	0,041	0,620	0,340	vérifié
R215 - R216	31,32	0,550	0,001	75	300	0,02	0,42	0,11	31	0,26	0,041	0,620	0,340	vérifié
R216 - R217	30,14	0,550	0,002	97	300	0,05	0,52	0,15	44	0,32	0,041	0,620	0,340	vérifié
R217 - R193	24,66	0,550	0,003	112	300	0,07	0,59	0,19	55	0,37	0,041	0,620	0,340	vérifié
R218 - R219	26,03	0,550	0,002	97	300	0,05	0,52	0,15	44	0,32	0,041	0,620	0,340	vérifié
R219 - R194	32,23	0,550	0,004	124	300	0,1	0,64	0,21	61	0,39	0,041	0,620	0,340	vérifié
R220 - R221	21,64	0,550	0,002	97	300	0,05	0,52	0,15	44	0,32	0,041	0,620	0,340	vérifié
R221 - R195	20,68	0,550	0,004	124	300	0,1	0,64	0,21	61	0,39	0,041	0,620	0,340	vérifié
R222 - R223	28,33	0,820	0,001	70	300	0,02	0,4	0,1	28	0,3	0,050	0,760	0,420	vérifié
R223 - R224	37,12	0,550	0,002	97	300	0,05	0,52	0,15	44	0,32	0,041	0,620	0,340	vérifié
R224 - R225	30,87	2,050	0,003	88	300	0,04	0,48	0,13	38	0,58	0,079	1,200	0,660	vérifié
R225 - R196	27,81	1,750	0,004	101	300	0,06	0,56	0,17	49	0,62	0,073	1,110	0,610	vérifié
R226 - R196	16,44	0,550	0,002	97	300	0,05	0,52	0,15	44	0,32	0,041	0,620	0,340	vérifié
R227 - R228	46,94	1,430	0,002	81	300	0,03	0,45	0,12	34	0,45	0,066	1,000	0,550	vérifié

Chapitre V

R228 - R229	34,15	0,850	0,006	133	300	0,12	0,67	0,23	67	0,52	0,051	0,770	0,420	vérifié
R229 - R199	35,91	0,850	0,006	133	300	0,12	0,67	0,23	67	0,52	0,051	0,770	0,420	vérifié
R230 - R231	28,36	0,550	0,001	75	300	0,02	0,42	0,11	31	0,26	0,041	0,620	0,340	vérifié
R231 - R228	25,06	0,550	0,002	97	300	0,05	0,52	0,15	44	0,32	0,041	0,620	0,340	vérifié
R232 - R233	29,13	0,550	0,001	75	300	0,02	0,42	0,11	31	0,26	0,041	0,620	0,340	vérifié
R233 - R228	26,29	0,550	0,002	97	300	0,05	0,52	0,15	44	0,32	0,041	0,620	0,340	vérifié
R34 - R195	23,32	0,550	0,21	525	600	0,73	1,09	0,63	373	1,15	0,290	1,060	0,580	vérifié
R195 - R196	49	0,550	0,214	529	600	0,74	1,09	0,64	378	1,16	0,290	1,060	0,580	vérifié
R196 - R197	42,91	0,550	0,22	534	600	0,76	1,1	0,65	385	1,17	0,290	1,060	0,580	vérifié
R197 - R198	32,19	0,550	0,221	535	600	0,76	1,1	0,65	386	1,17	0,290	1,060	0,580	vérifié
R198 - R199	38,5	0,550	0,224	537	600	0,77	1,1	0,66	390	1,17	0,290	1,060	0,580	vérifié
R199 - R200	23,05	0,550	0,23	543	600	0,79	1,11	0,67	397	1,17	0,290	1,060	0,580	vérifié
R200 - R201	30,76	0,550	0,231	543	600	0,8	1,11	0,68	399	1,18	0,290	1,060	0,580	vérifié
R201 - R202	31,07	0,550	0,232	544	600	0,8	1,11	0,68	400	1,18	0,290	1,060	0,580	vérifié
R202 - R203	23,27	0,550	0,233	545	600	0,8	1,11	0,68	401	1,18	0,290	1,060	0,580	vérifié

Tableau V-2 : Calculs du réseau projeté des eaux pluviales

Tronçon	L (m)	Pente (%)	Q (m³/s)	D _{cal} (mm)	D _N (mm)	R_{q}	R _v	R _h	H (mm)	V (m/s)	Q _{ps} (m³/s)	V _{ps} (m/s)	V _{min} (m/s)	Autocurage
							Réseau EP1	<u></u>						
R1 - R2	19,84	2,00	0,023	300	300	0,27	0,85	0,35	106	1,03	0,086	1,22	0,67	vérifié
R2 - R3	24,05	1,00	0,045	269	300	0,74	1,09	0,64	192	0,94	0,061	0,86	0,47	vérifié
R3 - R4	24,5	1,00	0,056	291	300	0,92	1,13	0,76	227	0,97	0,061	0,86	0,47	vérifié
R4 - R5	19,4	1,00	0,076	400	400	0,57	1,03	0,54	216	1,1	0,134	1,07	0,59	vérifié
R5 - R6	18,6	1,00	0,099	400	400	0,74	1,09	0,64	256	1,17	0,134	1,07	0,59	vérifié
R6 - R7	18,51	2,00	0,108	400	400	0,57	1,03	0,54	216	1,56	0,19	1,51	0,83	vérifié
R7 - R8	29,79	1,1	0,117	400	400	0,83	1,12	0,7	279	1,25	0,141	1,12	0,62	vérifié
R8 - R9	30,53	1,6	0,135	400	400	0,8	1,11	0,67	270	1,5	0,17	1,35	0,74	vérifié
R9 - R10	28,19	2,00	0,153	400	400	0,81	1,11	0,68	273	1,68	0,19	1,51	0,83	vérifié
R10 - R11	17,66	2,61	0,17	388	400	0,78	1,11	0,67	267	1,91	0,217	1,72	0,95	vérifié
R11 - R12	20,34	1,00	0,237	492	500	0,96	1,14	0,78	392	1,44	0,248	1,26	0,69	vérifié
R13 - R2	20,83	1,00	0,022	300	300	0,36	0,92	0,42	125	0,79	0,061	0,86	0,47	vérifié
R14 - R3	20,4	1,00	0,011	300	300	0,18	0,76	0,29	86	0,65	0,061	0,86	0,47	vérifié
R15 - R4	20,14	1,00	0,02	300	300	0,33	0,9	0,4	119	0,77	0,061	0,86	0,47	vérifié
R16 - R5	20,03	1,00	0,023	300	300	0,38	0,93	0,43	128	0,8	0,061	0,86	0,47	vérifié
R17 - R18	29,56	1,16	0,026	300	300	0,4	0,94	0,44	131	0,87	0,066	0,93	0,51	vérifié
R18 - R19	32,02	1,4	0,043	300	300	0,6	1,04	0,56	167	1,06	0,072	1,02	0,56	vérifié
R19 - R11	36,7	2,59	0,06	266	300	0,61	1,05	0,57	170	1,45	0,098	1,38	0,76	vérifié
R12 - R20	46,45	1,00	0,238	493	500	0,96	1,14	0,79	394	1,44	0,248	1,26	0,69	vérifié
R20 - R21	28,64	1,00	0,261	510	600	0,64	1,06	0,58	348	1,53	0,409	1,45	0,8	vérifié
R21 - R22	31,12	1,00	0,276	520	600	0,67	1,07	0,6	361	1,55	0,409	1,45	0,8	vérifié
R22 - R23	18,13	1,00	0,344	563	600	0,84	1,12	0,7	421	1,62	0,409	1,45	0,8	vérifié
R24 - R25	27,07	1,00	0,023	300	300	0,38	0,93	0,43	128	0,8	0,061	0,86	0,47	vérifié
R25 - R26	30,8	1,00	0,038	253	300	0,63	1,05	0,57	172	0,91	0,061	0,86	0,47	vérifié
R26 - R22	35,68	1,00	0,053	285	300	0,87	1,13	0,72	217	0,97	0,061	0,86	0,47	vérifié
R23 - R27	23,46	1,00	0,349	566	600	0,85	1,12	0,71	426	1,62	0,409	1,45	0,8	vérifié
R27 - R28	21,96	1,00	0,355	570	600	0,87	1,13	0,72	433	1,63	0,409	1,45	0,8	vérifié
R28 - R29	27,4	1,00	0,379	584	600	0,93	1,13	0,76	457	1,64	0,409	1,45	0,8	vérifié
R29 - R30	31,55	1,00	0,403	597	600	0,99	1,14	0,81	485	1,65	0,409	1,45	0,8	vérifié

R30 - R31	31,29	1,00	0,427	610	650	0,84	1,12	0,7	455	1,72	0,51	1,54	0,84	vérifié
R31 - R32	50	1,00	0,507	649	650	0,99	1,14	0,82	531	1,75	0,51	1,54	0,84	vérifié
R32 - R33	50	1,00	0,547	667	800	0,61	1,05	0,56	450	1,88	0,902	1,79	0,99	vérifié
R33 - R34	50	1,00	0,594	687	800	0,66	1,07	0,59	474	1,91	0,902	1,79	0,99	vérifié
R34 - R35	50	1,00	0,795	764	800	0,88	1,13	0,73	584	2,02	0,902	1,79	0,99	vérifié
R35 - R36	41,63	1,00	0,912	803	1000	0,55	1,02	0,53	528	2,17	1,666	2,12	1,17	vérifié
R36 - R37	45,51	1,00	0,935	811	1000	0,56	1,03	0,54	536	2,18	1,666	2,12	1,17	vérifié
R37 - R38	50	1,00	1,279	908	1000	0,77	1,1	0,66	658	2,34	1,666	2,12	1,17	vérifié
R38 - R39	50	1,00	1,299	913	1000	0,78	1,11	0,66	665	2,35	1,666	2,12	1,17	vérifié
R39 - R40	48	1,00	1,321	919	1000	0,79	1,11	0,67	673	2,35	1,666	2,12	1,17	vérifié
R40 - R41	47,08	1,00	1,524	968	1000	0,91	1,13	0,75	753	2,4	1,666	2,12	1,17	vérifié
R43 - R44	44,15	1,93	0,04	300	300	0,47	0,99	0,48	145	1,18	0,084	1,19	0,66	vérifié
R44 - R45	41,01	1,00	0,06	299	300	0,99	1,14	0,81	243	0,98	0,061	0,86	0,47	vérifié
R45 - R46	28,23	1,00	0,08	400	400	0,6	1,04	0,56	223	1,11	0,134	1,07	0,59	vérifié
R46 - R31	32,14	1,00	0,08	400	400	0,6	1,04	0,56	223	1,11	0,134	1,07	0,59	vérifié
R47 - R48	46,34	1,44	0,05	264	300	0,69	1,08	0,61	182	1,11	0,073	1,03	0,57	vérifié
R48 - R49	50	1,00	0,099	400	400	0,74	1,09	0,64	256	1,17	0,134	1,07	0,59	vérifié
R49 - R50	50	1,00	0,148	415	450	0,8	1,11	0,68	304	1,29	0,185	1,17	0,64	vérifié
R50 - R34	48,27	1,00	0,198	461	500	0,8	1,11	0,68	338	1,4	0,248	1,26	0,69	vérifié
R51 - R35	31,67	1,84	0,02	300	300	0,24	0,82	0,34	101	0,96	0,082	1,17	0,64	vérifié
R52 - R53	46,68	1,15	0,04	300	300	0,61	1,05	0,57	170	0,97	0,065	0,92	0,51	vérifié
R53 - R54	35	1,00	0,054	287	300	0,89	1,13	0,74	221	0,97	0,061	0,86	0,47	vérifié
R54 - R55	50	1,00	0,067	400	400	0,5	1	0,5	200	1,07	0,134	1,07	0,59	vérifié
R55 - R56	27,16	1,00	0,094	400	400	0,7	1,08	0,62	247	1,15	0,134	1,07	0,59	vérifié
R56 - R57	34	1,00	0,12	384	400	0,89	1,13	0,74	296	1,2	0,134	1,07	0,59	vérifié
R57 - R58	38	1,00	0,284	526	600	0,69	1,08	0,61	368	1,56	0,409	1,45	0,8	vérifié
R58 - R59	38	1,00	0,306	540	600	0,75	1,1	0,65	388	1,59	0,409	1,45	0,8	vérifié
R59 - R60	29,99	1,00	0,328	554	600	0,8	1,11	0,68	407	1,61	0,409	1,45	0,8	vérifié
R60 - R37	40,62	1,00	0,339	560	600	0,83	1,12	0,69	417	1,62	0,409	1,45	0,8	vérifié
R61 - R62	45	1,00	0,027	300	300	0,44	0,97	0,47	140	0,83	0,061	0,86	0,47	vérifié
R62 - R63	47,36	1,00	0,043	265	300	0,71	1,08	0,62	186	0,93	0,061	0,86	0,47	vérifié
R63 - R57	52,31	1,00	0,162	428	450	0,87	1,13	0,72	326	1,31	0,185	1,17	0,64	vérifié
R64 - R65	45	1,00	0,069	400	400	0,51	1,01	0,51	203	1,07	0,134	1,07	0,59	vérifié
R65 - R63	40,96	1,00	0,088	400	400	0,66	1,07	0,59	237	1,14	0,134	1,07	0,59	vérifié

R66 - R63	22,59	1,62	0,029	300	300	0,37	0,93	0,42	127	1,02	0,077	1,09	0,6	vérifié
R67 - R68	37,03	1,00	0.03	300	300	0,49	1	0,5	149	0,86	0,061	0,86	0,47	vérifié
R68 - R69	36,82	1,00	0,053	285	300	0,87	1,13	0,72	217	0,97	0,061	0,86	0,47	vérifié
R69 - R40	52,74	1,00	0,181	446	450	0,98	1,14	0,8	360	1,33	0,185	1,17	0,64	vérifié
R70 - R71	45,37	1,00	0,076	400	400	0,57	1,03	0,54	216	1,1	0,134	1,07	0,59	vérifié
R71 - R69	40,86	1,00	0,096	400	400	0,72	1,09	0,63	251	1,16	0,134	1,07	0,59	vérifié
R72 - R69	23,3	1,53	0,029	300	300	0,39	0,93	0,43	129	0,99	0,075	1,06	0,58	vérifié
R73 - R74	23,41	1,00	0,031	300	300	0,51	1	0,51	152	0,86	0,061	0,86	0,47	vérifié
R74 - R70	26,78	1,00	0,056	291	300	0,92	1,13	0,76	227	0,97	0,061	0,86	0,47	vérifié
R75 - R76	22,96	1,00	0,028	300	300	0,46	0,98	0,48	143	0,84	0,061	0,86	0,47	vérifié
R76 - R64	25,7	1,00	0,05	279	300	0,82	1,12	0,69	207	0,96	0,061	0,86	0,47	vérifié
R77 - R78	48,48	1,00	0,036	300	300	0,59	1,04	0,55	166	0,89	0,061	0,86	0,47	vérifié
R78 - R79	50	1,00	0,04	300	300	0,66	1,07	0,59	178	0,92	0,061	0,86	0,47	vérifié
R79 - R80	50	1,00	0,078	400	400	0,58	1,04	0,55	219	1,11	0,134	1,07	0,59	vérifié
R80 - R35	49,91	1,00	0,095	400	400	0,71	1,08	0,62	249	1,16	0,134	1,07	0,59	vérifié
R41 - R42	49,35	1,00	1,549	974	1000	0,93	1,14	0,76	764	2,41	1,666	2,12	1,17	vérifié
							Réseau EP2	2						
R81 - R82	30,35	1,26	0,044	300	300	0,64	1,06	0,58	175	1,02	0,068	0,97	0,53	vérifié
R82 - R83	36,77	1,5	0,067	289	300	0,9	1,13	0,74	223	1,19	0,074	1,05	0,58	vérifié
R83 - R84	48,71	1,55	0,085	400	400	0,51	1	0,51	202	1,33	0,167	1,33	0,73	vérifié
R84 - R85	51,49	0,6	0,108	406	450	0,75	1,1	0,65	292	0,99	0,144	0,9	0,5	vérifié
R85 - R86	50,6	1,54	0,191	434	450	0,83	1,12	0,7	313	1,62	0,23	1,45	0,79	vérifié
R86 - R87	44,03	0,5	0,221	544	600	0,76	1,1	0,66	393	1,13	0,289	1,02	0,56	vérifié
R87 - R88	22,71	0,5	0,321	623	650	0,89	1,13	0,74	479	1,23	0,36	1,09	0,6	vérifié
R88 - R89	33,91	0,5	0,327	627	650	0,91	1,13	0,75	486	1,23	0,36	1,09	0,6	vérifié
R89 - R90	41,35	0,5	0,337	634	650	0,94	1,14	0,77	499	1,23	0,36	1,09	0,6	vérifié
R90 - R91	44,24	0,5	0,413	683	800	0,65	1,06	0,59	469	1,35	0,638	1,27	0,7	vérifié
R91 - R92	47,47	0,5	0,523	744	800	0,82	1,12	0,69	551	1,42	0,638	1,27	0,7	vérifié
R92 - R93	44,33	0,5	0,599	782	800	0,94	1,14	0,77	616	1,44	0,638	1,27	0,7	vérifié
R93 - R94	33,51	0,5	0,61	787	800	0,96	1,14	0,78	627	1,45	0,638	1,27	0,7	vérifié
R94 - R95	23,97	0,5	0,63	796	800	0,99	1,14	0,81	649	1,45	0,638	1,27	0,7	vérifié
R95 - R96	44,71	0,5	0,803	870	1000	0,68	1,07	0,61	606	1,61	1,178	1,5	0,83	vérifié
R98 - R99	50	1,21	0,044	300	300	0,66	1,07	0,59	178	1,01	0,067	0,95	0,52	vérifié
R99 - R85	43,65	2,00	0,065	274	300	0,76	1,1	0,65	195	1,34	0,086	1,22	0,67	vérifié

R100 - R101	30	1,82	0,055	259	300	0,67	1,07	0,6	180	1,24	0,082	1,16	0,64	vérifié
R101 - R102	45	1,2	0,073	400	400	0,5	1	0,5	199	1,17	0,147	1,17	0,64	vérifié
R102 - R87	34,11	0,7	0,094	375	400	0,84	1,12	0,7	280	1	0,112	0,89	0,49	vérifié
R103 - R104	50	1,93	0,049	300	300	0,58	1,04	0,55	164	1,24	0,084	1,19	0,66	vérifié
R104 - R90	49,22	1,1	0,071	400	400	0,5	1	0,5	201	1,12	0,141	1,12	0,62	vérifié
R105 - R106	49,81	1,65	0,057	268	300	0,73	1,09	0,64	191	1,2	0,078	1,1	0,61	vérifié
R106 - R91	50,73	1,1	0,099	400	400	0,7	1,08	0,62	248	1,21	0,141	1,12	0,62	vérifié
R107 - R108	50	1,2	0,049	268	300	0,73	1,09	0,64	191	1,03	0,067	0,94	0,52	vérifié
R108 - R92	45,58	1,4	0,071	299	300	0,99	1,14	0,81	243	1,16	0,072	1,02	0,56	vérifié
R109 - R110	60,11	1,33	0,05	265	300	0,71	1,08	0,62	187	1,08	0,07	0,99	0,55	vérifié
R110 - R95	41,47	0,8	0,163	447	450	0,98	1,14	0,81	363	1,19	0,166	1,04	0,57	vérifié
R111 - R112	37,58	1,31	0,05	273	300	0,72	1,09	0,63	188	1,07	0,07	0,99	0,54	vérifié
R112 - R110	47,73	0,5	0,085	384	400	0,9	1,13	0,74	296	0,85	0,095	0,75	0,41	vérifié
R96 - R97	42	0,5	0,836	883	1000	0,71	1,08	0,62	623	1,63	1,178	1,5	0,83	vérifié
							Réseau EP3	<u> </u>						
R113 - R114	39,37	1,00	0,031	300	300	0,51	1	0,51	152	0,86	0,061	0,86	0,47	vérifié
R114 - R115	47	1,00	0,037	300	300	0,61	1,05	0,56	169	0,9	0,061	0,86	0,47	vérifié
R115 - R116	47	1,00	0,051	400	400	0,38	0,93	0,43	171	0,99	0,134	1,07	0,59	vérifié
R116 - R117	41	1,00	0,284	526	600	0,69	1,08	0,61	368	1,56	0,409	1,45	0,8	vérifié
R117 - R118	41	1,00	0,31	543	600	0,76	1,1	0,65	391	1,59	0,409	1,45	0,8	vérifié
R118 - R119	29	1,00	0,31	543	600	0,76	1,1	0,65	391	1,59	0,409	1,45	0,8	vérifié
R119 - R120	34,5	1,00	0,315	546	600	0,77	1,1	0,66	396	1,6	0,409	1,45	0,8	vérifié
R120 - R121	47	1,00	0,466	629	650	0,91	1,13	0,75	490	1,74	0,51	1,54	0,84	vérifié
R121 - R122	35	1,00	0,471	632	650	0,92	1,13	0,76	494	1,74	0,51	1,54	0,84	vérifié
R122 - R123	35	1,00	0,475	634	650	0,93	1,14	0,77	497	1,74	0,51	1,54	0,84	vérifié
R123 - R124	30	1,00	0,479	636	650	0,94	1,14	0,77	501	1,75	0,51	1,54	0,84	vérifié
R124 - R125	45	1,00	0,748	747	800	0,83	1,12	0,69	556	2,01	0,902	1,79	0,99	vérifié
R127 - R128	28	1,00	0,031	300	300	0,51	1	0,51	152	0,86	0,061	0,86	0,47	vérifié
R128 - R129	40	1,6	0,038	300	300	0,49	1	0,5	149	1,08	0,077	1,09	0,6	vérifié
R129 - R130	37,93	1,00	0,045	300	300	0,74	1,09	0,64	192	0,94	0,061	0,86	0,47	vérifié
R131 - R132	45,09	1,00	0,031	300	300	0,51	1	0,51	152	0,86	0,061	0,86	0,47	vérifié
R132 - R133	49,25	1,00	0,034	300	300	0,56	1,03	0,53	160	0,88	0,061	0,86	0,47	vérifié
R134 - R135	50	2,07	0,055	260	300	0,63	1,05	0,58	173	1,3	0,087	1,24	0,68	vérifié
R135 - R120	48,4	1,00	0,141	407	450	0,76	1,1	0,65	294	1,28	0,185	1,17	0,64	vérifié

R136 - R134	30,39	1,00	0,023	300	300	0,38	0,93	0,43	128	0,8	0,061	0,86	0,47	vérifié
R137 - R135	32,32	2,49	0,038	300	300	0,4	0,94	0,44	131	1,28	0,096	1,36	0,75	vérifié
R138 - R135	30,58	2,52	0,038	300	300	0,39	0,94	0,44	131	1,28	0,096	1,36	0,75	vérifié
R139 - R140	43	1,00	0,041	300	300	0,67	1,07	0,6	181	0,92	0,061	0,86	0,47	vérifié
R140 - R141	44,51	1,00	0,065	400	400	0,48	0,99	0,49	196	1,06	0,134	1,07	0,59	vérifié
R141 - R142	35	1,00	0,129	394	400	0,96	1,14	0,79	315	1,22	0,134	1,07	0,59	vérifié
R142 - R143	37,11	1,00	0,131	397	400	0,98	1,14	0,8	321	1,22	0,134	1,07	0,59	vérifié
R143 - R124	32,47	1,00	0,265	512	600	0,65	1,06	0,59	352	1,54	0,409	1,45	0,8	vérifié
R144 - R145	35	1,00	0,04	258	300	0,66	1,07	0,59	178	0,92	0,061	0,86	0,47	vérifié
R145 - R141	40,78	1,00	0,064	400	400	0,48	0,99	0,49	195	1,05	0,134	1,07	0,59	vérifié
R146 - R147	22,2	1,00	0,045	300	300	0,74	1,09	0,64	192	0,94	0,061	0,86	0,47	vérifié
R147 - R143	45,13	1,00	0,063	400	400	0,47	0,98	0,48	193	1,05	0,134	1,07	0,59	vérifié
R148 - R149	21,58	1,00	0,018	300	300	0,3	0,87	0,37	112	0,75	0,061	0,86	0,47	vérifié
R149 - R143	43,16	1,00	0,071	400	400	0,53	1,01	0,52	207	1,08	0,134	1,07	0,59	vérifié
R150 - R149	33,71	1,00	0,04	300	300	0,66	1,07	0,59	178	0,92	0,061	0,86	0,47	vérifié
R151 - R134	32,29	1,00	0,022	300	300	0,36	0,92	0,42	125	0,79	0,061	0,86	0,47	vérifié
R152 - R130	38	1,00	0,133	399	400	0,99	1,14	0,81	326	1,22	0,134	1,07	0,59	vérifié
R130 - R133	26,37	1,00	0,183	448	450	0,99	1,14	0,81	365	1,33	0,185	1,17	0,64	vérifié
R133 - R116	31,42	1,00	0,227	484	500	0,92	1,13	0,75	377	1,43	0,248	1,26	0,69	vérifié
R153 - R154	44,93	1,00	0,031	300	300	0,51	1	0,51	152	0,86	0,061	0,86	0,47	vérifié
R154 - R155	25,89	1,00	0,068	400	400	0,51	1	0,5	202	1,07	0,134	1,07	0,59	vérifié
R155 - R152	20,16	1,00	0,102	362	400	0,76	1,1	0,65	261	1,17	0,134	1,07	0,59	vérifié
R156 - R152	50,42	2,00	0,031	300	300	0,36	0,92	0,42	125	1,12	0,086	1,22	0,67	vérifié
R157 - R155	31,39	1,00	0,031	300	300	0,51	1	0,51	152	0,86	0,061	0,86	0,47	vérifié
R158 - R154	29,14	1,00	0,031	300	300	0,51	1	0,51	152	0,86	0,061	0,86	0,47	vérifié
R125 - R126	38,59	1,00	0,752	749	800	0,83	1,12	0,7	558	2,01	0,902	1,79	0,99	vérifié
							Réseau EP4	<u> </u>						
N163 - N164	30,56	1,59	0,035	226	300	0,46	0,98	0,47	142	1,06	0,077	1,08	0,6	vérifié
N164 - N165	36,88	1,55	0,062	279	300	0,82	1,12	0,69	207	1,19	0,076	1,07	0,59	vérifié
N165 - N166	37,5	0,75	0,143	500	500	0,67	1,07	0,6	299	1,17	0,214	1,09	0,6	vérifié
N166 - N167	28,52	0,55	0,211	526	600	0,7	1,08	0,61	369	1,16	0,303	1,07	0,59	vérifié
N167 - N168	37	0,55	0,225	538	600	0,74	1,09	0,64	385	1,17	0,303	1,07	0,59	vérifié
N168 - N169	37	0,55	0,239	550	600	0,79	1,11	0,67	402	1,19	0,303	1,07	0,59	vérifié
N169 - N170	35,5	0,55	0,253	562	600	0,83	1,12	0,7	419	1,2	0,303	1,07	0,59	vérifié

N170 - N171	35	0,5	0,346	800	800	0,54	1,02	0,52	420	1,29	0,638	1,27	0,7	vérifié
N171 - N172	29,47	0,5	0,353	645	800	0,55	1,02	0,53	425	1,3	0,638	1,27	0,7	vérifié
N172 - N173	42	0,5	0,418	686	800	0,66	1,06	0,59	473	1,35	0,638	1,27	0,7	vérifié
N173 - N174	40,1	0,5	0,438	698	800	0,69	1,08	0,61	487	1,37	0,638	1,27	0,7	vérifié
N174 - N175	42	0,5	0,548	757	800	0,86	1,12	0,71	572	1,43	0,638	1,27	0,7	vérifié
N175 - N176	41,54	0,5	0,568	767	800	0,89	1,13	0,74	589	1,43	0,638	1,27	0,7	vérifié
N176 - N177	34	0,5	0,633	798	800	0,99	1,14	0,81	652	1,45	0,638	1,27	0,7	vérifié
N177 - N178	30	0,5	0,634	798	800	0,99	1,14	0,82	653	1,45	0,638	1,27	0,7	vérifié
N178 - N179	45	0,5	0,839	884	1000	0,71	1,08	0,62	624	1,63	1,178	1,5	0,83	vérifié
N179 - N180	32,14	0,5	0,862	893	1000	0,73	1,09	0,64	636	1,64	1,178	1,5	0,83	vérifié
N180 - N181	20,18	0,5	0,875	897	1000	0,74	1,09	0,64	643	1,64	1,178	1,5	0,83	vérifié
N181 - N182	41,96	0,5	1,032	953	1000	0,88	1,13	0,73	726	1,69	1,178	1,5	0,83	vérifié
N182 - N183	47,33	0,5	1,047	958	1000	0,89	1,13	0,74	735	1,69	1,178	1,5	0,83	vérifié
N185 - N186	32,56	1,54	0,04	238	300	0,53	1,01	0,52	155	1,08	0,075	1,07	0,59	vérifié
N186 - N165	46,77	1,00	0,054	400	400	0,4	0,95	0,44	176	1,01	0,134	1,07	0,59	vérifié
N187 - N188	33,26	1,54	0,04	238	300	0,53	1,01	0,52	155	1,08	0,075	1,07	0,59	vérifié
N188 - N166	46,46	1,00	0,054	400	400	0,4	0,95	0,44	176	1,01	0,134	1,07	0,59	vérifié
N189 - N190	46	1,00	0,056	400	400	0,42	0,96	0,45	180	1,02	0,134	1,07	0,59	vérifié
N190 - N170	45,89	1,00	0,086	400	400	0,64	1,06	0,58	233	1,13	0,134	1,07	0,59	vérifié
N191 - N192	42,42	1,51	0,04	239	300	0,54	1,02	0,52	156	1,07	0,075	1,06	0,58	vérifié
N192 - N193	41,49	1,54	0,07	292	300	0,93	1,14	0,76	229	1,21	0,075	1,07	0,59	vérifié
N193 - N174	38,74	0,73	0,1	500	500	0,47	0,99	0,48	242	1,06	0,212	1,08	0,59	vérifié
N194 - N195	32,95	1,48	0,04	240	300	0,54	1,02	0,52	157	1,07	0,074	1,05	0,58	vérifié
N195 - N196	45,28	1,54	0,05	258	300	0,66	1,07	0,6	179	1,14	0,075	1,07	0,59	vérifié
N196 - N172	35,62	1,54	0,06	276	300	0,8	1,11	0,67	202	1,18	0,075	1,07	0,59	vérifié
N197 - N198	31,12	1,54	0,04	238	300	0,53	1,01	0,52	155	1,08	0,075	1,07	0,59	vérifié
N198 - N199	46,22	1,00	0,05	400	400	0,37	0,93	0,42	169	0,99	0,134	1,07	0,59	vérifié
N199 - N176	36,06	1,00	0,06	400	400	0,45	0,97	0,47	187	1,04	0,134	1,07	0,59	vérifié
N200 - N201	24,18	1,00	0,122	400	400	0,91	1,13	0,75	300	1,21	0,134	1,07	0,59	vérifié
N201 - N202	35,24	0,55	0,192	508	600	0,63	1,06	0,58	347	1,13	0,303	1,07	0,59	vérifié
N202 - N178	33,73	0,55	0,192	508	600	0,63	1,06	0,58	347	1,13	0,303	1,07	0,59	vérifié
N203 - N204	28,18	1,00	0,054	400	400	0,4	0,95	0,44	176	1,01	0,134	1,07	0,59	vérifié
N204 - N201	46,94	1,00	0,067	400	400	0,5	1	0,5	200	1,07	0,134	1,07	0,59	vérifié
N205 - N200	30,03	1,56	0,072	294	300	0,95	1,14	0,78	233	1,22	0,076	1,07	0,59	vérifié

N206 - N207	40,01	1,00	0,072	400	400	0,54	1,02	0,52	209	1,08	0,134	1,07	0,59	vérifié
N207 - N208	37	1,00	0,122	400	400	0,91	1,13	0,75	300	1,21	0,134	1,07	0,59	vérifié
N208 - N181	35,94	1,37	0,154	397	400	0,98	1,14	0,81	322	1,42	0,157	1,25	0,69	vérifié
N183 - N184	46,06	0,5	1,053	960	1000	0,89	1,13	0,74	739	1,69	1,178	1,5	0,83	vérifié
Réseau EP5														
R205 - R206	37,43	1,09	0,049	277	300	0,77	1,1	0,66	198	0,99	0,063	0,9	0,49	vérifié
R206 - R207	38,4	1,00	0,067	400	400	0,5	1	0,5	200	1,07	0,134	1,07	0,59	vérifié
R207 - R208	41	1,00	0,13	396	400	0,97	1,14	0,8	318	1,22	0,134	1,07	0,59	vérifié
R208 - R209	40	1,00	0,141	407	450	0,76	1,1	0,65	294	1,28	0,185	1,17	0,64	vérifié
R209 - R210	40	1,00	0,256	506	600	0,63	1,05	0,57	344	1,52	0,409	1,45	0,8	vérifié
R210 - R211	36	1,00	0,261	510	600	0,64	1,06	0,58	348	1,53	0,409	1,45	0,8	vérifié
R211 - R212	38	1,00	0,384	586	600	0,94	1,14	0,77	462	1,64	0,409	1,45	0,8	vérifié
R212 - R213	32,75	1,00	0,389	589	600	0,95	1,14	0,78	468	1,65	0,409	1,45	0,8	vérifié
R213 - R214	38,43	1,00	0,548	667	800	0,61	1,05	0,56	450	1,88	0,902	1,79	0,99	vérifié
R214 - R215	39	1,00	0,558	672	800	0,62	1,05	0,57	456	1,89	0,902	1,79	0,99	vérifié
R215 - R216	37,71	1,00	0,568	676	800	0,63	1,06	0,58	461	1,89	0,902	1,79	0,99	vérifié
R216 - R217	35	1,00	0,937	811	1000	0,56	1,03	0,54	537	2,18	1,666	2,12	1,17	vérifié
R217 - R218	35	1,00	0,947	814	1000	0,57	1,03	0,54	540	2,19	1,666	2,12	1,17	vérifié
R218 - R219	37	1,00	0,952	816	1000	0,57	1,03	0,54	542	2,19	1,666	2,12	1,17	vérifié
R219 - R220	47,72	1,00	0,957	817	1000	0,57	1,03	0,54	544	2,19	1,666	2,12	1,17	vérifié
R220 - R221	45,42	1,00	0,96	818	1000	0,58	1,03	0,54	545	2,19	1,666	2,12	1,17	vérifié
R221 - R222	42,94	1,00	0,967	821	1000	0,58	1,04	0,55	547	2,2	1,666	2,12	1,17	vérifié
R222 - R223	29,4	1,00	0,974	823	1000	0,58	1,04	0,55	550	2,2	1,666	2,12	1,17	vérifié
R223 - R224	34,35	1,00	0,981	825	1000	0,59	1,04	0,55	552	2,2	1,666	2,12	1,17	vérifié
R224 - R225	35,09	1,00	1,04	843	1000	0,62	1,05	0,57	573	2,23	1,666	2,12	1,17	vérifié
R225 - R226	48,98	1,00	1,079	854	1000	0,65	1,06	0,59	586	2,25	1,666	2,12	1,17	vérifié
R226 - R227	48,5	1,00	1,111	863	1000	0,67	1,07	0,6	597	2,27	1,666	2,12	1,17	vérifié
R227 - R228	48,5	1,00	1,124	867	1000	0,67	1,07	0,6	602	2,27	1,666	2,12	1,17	vérifié
R228 - R229	34,58	1,00	1,243	899	1000	0,75	1,1	0,64	645	2,32	1,666	2,12	1,17	vérifié
R229 - R230	41	1,00	1,408	941	1000	0,85	1,12	0,7	705	2,38	1,666	2,12	1,17	vérifié
R230 - R231	41	1,00	1,419	943	1000	0,85	1,12	0,71	710	2,38	1,666	2,12	1,17	vérifié
R231 - R232	36,5	1,00	1,43	946	1000	0,86	1,12	0,71	714	2,38	1,666	2,12	1,17	vérifié
R232 - R233	39,96	1,00	1,518	967	1000	0,91	1,13	0,75	751	2,4	1,666	2,12	1,17	vérifié
R233 - R234	44,1	1,00	1,617	989	1000	0,97	1,14	0,8	796	2,42	1,666	2,12	1,17	vérifié

R236 - R207	62,54	1,84	0,058	264	300	0,7	1,08	0,62	186	1,26	0,082	1,17	0,64	vérifié
R237 - R238	44,22	1,00	0,059	297	300	0,97	1,14	0,8	239	0,98	0,061	0,86	0,47	vérifié
R238 - R239	32,77	2,1	0,09	400	400	0,46	0,98	0,48	191	1,52	0,194	1,55	0,85	vérifié
R239 - R209	28,04	1,00	0,11	400	400	0,82	1,12	0,69	276	1,19	0,134	1,07	0,59	vérifié
R240 - R241	35	1,46	0,056	272	300	0,76	1,1	0,66	197	1,14	0,073	1,04	0,57	vérifié
R241 - R242	40	2	0,096	400	400	0,51	1	0,5	202	1,51	0,19	1,51	0,83	vérifié
R242 - R211	33,08	1,00	0,118	382	400	0,88	1,13	0,73	292	1,2	0,134	1,07	0,59	vérifié
R243 - R244	49,28	1,00	0,054	287	300	0,89	1,13	0,74	221	0,97	0,061	0,86	0,47	vérifié
R244 - R245	37,67	1,00	0,128	393	400	0,95	1,14	0,78	313	1,22	0,134	1,07	0,59	vérifié
R245 - R213	35,69	1,00	0,149	416	450	0,8	1,11	0,68	306	1,3	0,185	1,17	0,64	vérifié
R246 - R247	31,61	1,00	0,054	287	300	0,89	1,13	0,74	221	0,97	0,061	0,86	0,47	vérifié
R247 - R244	33,42	1,00	0,064	400	400	0,48	0,99	0,49	195	1,05	0,134	1,07	0,59	vérifié
R248 - R249	45,91	1,00	0,033	300	300	0,54	1,02	0,53	158	0,88	0,061	0,86	0,47	vérifié
R249 - R250	36,56	1,00	0,043	300	300	0,71	1,08	0,62	186	0,93	0,061	0,86	0,47	vérifié
R250 - R251	27,76	1,00	0,275	519	600	0,67	1,07	0,6	360	1,55	0,409	1,45	0,8	vérifié
R251 - R216	33,53	1,00	0,359	572	600	0,88	1,13	0,73	437	1,63	0,409	1,45	0,8	vérifié
R252 - R253	37,42	1,00	0,032	300	300	0,53	1,01	0,52	155	0,87	0,061	0,86	0,47	vérifié
R253 - R254	36	1,00	0,074	400	400	0,55	1,02	0,53	212	1,09	0,134	1,07	0,59	vérifié
R254 - R250	41,36	1,00	0,084	400	400	0,63	1,05	0,57	230	1,12	0,134	1,07	0,59	vérifié
R255 - R253	37,84	1,00	0,032	300	300	0,53	1,01	0,52	155	0,87	0,061	0,86	0,47	vérifié
R256 - R257	33,05	1,00	0,054	287	300	0,89	1,13	0,74	221	0,97	0,061	0,86	0,47	vérifié
R257 - R258	38,61	1,00	0,118	382	400	0,88	1,13	0,73	292	1,2	0,134	1,07	0,59	vérifié
R258 - R259	36	1,00	0,128	393	400	0,95	1,14	0,78	313	1,22	0,134	1,07	0,59	vérifié
R259 - R250	42,59	1,00	0,138	404	450	0,74	1,1	0,64	290	1,28	0,185	1,17	0,64	vérifié
R260 - R257	44,14	1,00	0,054	287	300	0,89	1,13	0,74	221	0,97	0,061	0,86	0,47	vérifié
R261 - R262	35,95	1,00	0,054	287	300	0,89	1,13	0,74	221	0,97	0,061	0,86	0,47	vérifié
R262 - R263	34,54	1,00	0,064	400	400	0,48	0,99	0,49	195	1,05	0,134	1,07	0,59	vérifié
R263 - R251	39,81	1,00	0,074	400	400	0,55	1,02	0,53	212	1,09	0,134	1,07	0,59	vérifié
R264 - R224	41,14	1,00	0,052	283	300	0,86	1,12	0,71	214	0,97	0,061	0,86	0,47	vérifié
R265 - R266	39,43	1,88	0,025	194	300	0,3	0,87	0,38	113	1,03	0,083	1,18	0,65	vérifié
R266 - R225	44,42	1,00	0,032	238	300	0,53	1,01	0,52	155	0,87	0,061	0,86	0,47	vérifié
R267 - R226	22,47	1,00	0,025	217	300	0,41	0,95	0,45	134	0,82	0,061	0,86	0,47	vérifié
R268 - R269	32,75	1,00	0,03	232	300	0,49	1	0,5	149	0,86	0,061	0,86	0,47	vérifié
R269 - R270	33,83	1,00	0,037	250	300	0,61	1,05	0,56	169	0,9	0,061	0,86	0,47	vérifié

R270 - R271	32,67	1,00	0,052	283	300	0,86	1,12	0,71	214	0,97	0,061	0,86	0,47	vérifié
R271 - R272	43,76	1,00	0,084	400	400	0,63	1,05	0,57	230	1,12	0,134	1,07	0,59	vérifié
R272 - R228	26,75	1,00	0,116	379	400	0,87	1,12	0,72	288	1,2	0,134	1,07	0,59	vérifié
R273 - R272	32,19	1,00	0,025	217	300	0,41	0,95	0,45	134	0,82	0,061	0,86	0,47	vérifié
R274 - R271	25,41	1,25	0,025	209	300	0,37	0,92	0,42	126	0,89	0,068	0,96	0,53	vérifié
R275 - R276	50	1,00	0,044	267	300	0,72	1,09	0,63	189	0,94	0,061	0,86	0,47	vérifié
R276 - R277	43	1,1	0,066	400	400	0,47	0,98	0,48	193	1,1	0,141	1,12	0,62	vérifié
R277 - R232	40,9	1,4	0,077	400	400	0,49	0,99	0,49	197	1,25	0,159	1,26	0,69	vérifié
R278 - R279	45	1,00	0,055	289	300	0,9	1,13	0,75	224	0,97	0,061	0,86	0,47	vérifié
R279 - R280	29,18	1,00	0,066	400	400	0,49	1	0,5	198	1,06	0,134	1,07	0,59	vérifié
R280 - R281	20,99	1,4	0,088	400	400	0,55	1,02	0,53	213	1,29	0,159	1,26	0,69	vérifié
R281 - R229	46,9	1,00	0,154	421	450	0,83	1,12	0,7	313	1,3	0,185	1,17	0,64	vérifié
R282 - R283	31,82	1,00	0,044	267	300	0,72	1,09	0,63	189	0,94	0,061	0,86	0,47	vérifié
R283 - R281	48,46	1,00	0,055	289	300	0,9	1,13	0,75	224	0,97	0,061	0,86	0,47	vérifié
R284 - R285	34,88	1,00	0,044	267	300	0,72	1,09	0,63	189	0,94	0,061	0,86	0,47	vérifié
R285 - R286	11,57	1,00	0,055	289	300	0,9	1,13	0,75	224	0,97	0,061	0,86	0,47	vérifié
R286 - R287	47,33	1,00	0,066	400	400	0,49	1	0,5	198	1,06	0,134	1,07	0,59	vérifié
R287 - R288	29,47	1,00	0,077	400	400	0,57	1,03	0,54	217	1,1	0,134	1,07	0,59	vérifié
R288 - R233	23,76	1,00	0,088	400	400	0,66	1,07	0,59	237	1,14	0,134	1,07	0,59	vérifié
R289 - R290	47,52	1,00	0,044	267	300	0,72	1,09	0,63	189	0,94	0,061	0,86	0,47	vérifié
R290 - R291	43,58	2,08	0,055	255	300	0,63	1,05	0,57	172	1,31	0,088	1,24	0,68	vérifié
R291 - R234	46,07	1,00	0,066	400	400	0,49	1	0,5	198	1,06	0,134	1,07	0,59	vérifié
R234 - R235	26	1,00	1,684	1004	1200	0,61	1,05	0,57	679	2,55	2,751	2,43	1,34	vérifié

Conclusion:

Dans ce chapitre, nous avons abordé le coté hydraulique à savoir le dimensionnement du réseau d'évacuation d'eaux usées et d'eaux pluviales.

Après le dimensionnement des collecteurs principaux et secondaires et la détermination de leurs paramètres hydrauliques, on constate que les vitesses d'autocurage sont admissibles.

Pour les eaux usées, elles sont toutes acheminées vers l'intercepteur qui les transporte vers la station d'épuration. Concernant les eaux pluviales, le réseau comporte cinq (05) points de rejets vers un système de collecte qui va les transporter vers le cours d'eau.

CHAPITRE VI:

Les éléments constitutifs du réseau

Introduction:

Le réseau d'assainissement a pour but la collecte des eaux usées et pluviales, et par conséquent la protection du milieu naturel.

Afin d'accomplir au mieux ses objectifs, le réseau d'assainissement se compose de plusieurs ouvrages dont on distingue :

- Les ouvrages principaux : constituant l'ensemble du réseau depuis l'entrée de l'effluent jusqu'à sa sortie vers la station d'épuration.
- Les ouvrages annexes : qui comprennent toutes les installations menant à une exploitation rationnelle du réseau tels : les regards, les bouches d'égout, les déversoirs d'orages, ...etc.

I. Les ouvrages principaux :

Les ouvrages principaux représentent tous les éléments nécessaires à l'évacuation de l'effluent hors du réseau d'assainissement, entre autres les canalisations et les joints.

I.1. Les canalisations :

Ce sont les éléments principaux du système d'évacuation, présentés sous diverses formes :

- Les conduites circulaires : définies par leurs diamètres nominaux en mm.
- Les conduites ovoïdes : désignées par leurs hauteurs intérieures en cm.

I.2. Formes et sections de conduites :

- Conduites circulaires : Les conduites circulaires sont utilisées pour les faibles sections par rapport aux autres formes.
- Conduites ovoïdes: Ces conduites sont utilisées pour remplacer les conduites circulaires de diamètre supérieur à 800 mm généralement, et cela afin d'éviter le problème d'auto curage.

I.3. Critères du choix de conduite :

Pour faire le choix des différents types de conduite, on doit tenir compte :

- Des pentes du terrain.

- Des diamètres utilisés.
- De la nature du sol traversé.
- De la nature chimique des eaux usées.
- Des efforts extérieurs dus au remblai.

I.4. Types de matériaux :

I.4.1. Conduite en fonte :

La particularité de ce type de conduite, réside dans leur composition à base de fonte, ce qui les rends inoxydables et solides, et par conséquent s'imposent à titre de sécurité. Elles sont utilisées généralement au niveau des raffineries de pétrole pour évacuer les eaux usées industrielles.

I.4.2. Conduite en amiante ciment :

Ce sont des conduites munies d'un revêtement intérieur de la paroi à base d'enduit antiacide. Les diamètres couramment utilisés varient de 80 à 500 mm et Les longueurs utiles varient de 0.5 à 5 m.

❖ Joints:

Pour assembler ces types de conduites, on utilise les joints sans emboitement. On distingue :

- Le joint « Everitube »
- Le joint « Eternit », fabriqué pour l'assemblage des conduites à bout lisses.

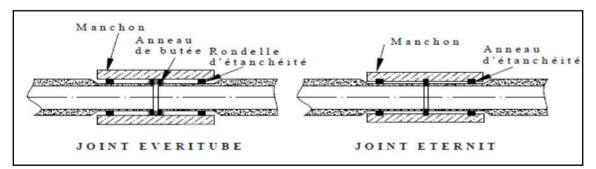


Figure VI-1: Joints sur tuyaux en amiante ciment

I.4.3. Conduite en grés :

Les conduites en grés sont caractérisées par une très grande dureté, et une excellente résistance aux agressions chimiques ou climatiques. Cette résistance est obtenue grâce à une cuisson à une température supérieure à 1 200 °C. Ces conduites sont livrables en longueur utiles de 1.0m, 1.5m et 2.0m.

❖ Joints:

L'assemblage de ces conduites s'effectue par trois sortes de joints :

- Joints au mortier de ciment.
- Joints avec corde goudronnée et mortier de ciment
- Joints à double anneaux.

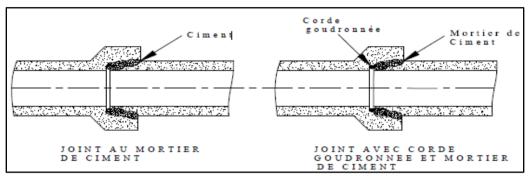


Figure VI-2: Joints sur tuyau en grès

I.4.4. Conduite en matière plastique :

Les conduites en plastique sont résistantes à la corrosion, inertes et stables vis-à-vis de nombreux réactifs chimiques. On peut distinguer :

- Les conduites en matières thermodurcissables.
- Les conduites en matières thermoplastiques.
- ❖ Joints : Ces conduites peuvent être assemblées soit par collage, soit par bagues d'étanchéité.
- → Pour notre projet, nous avons choisi des conduites en PVC pour le réseau des eaux usées, vu ses avantages cités au-dessus.

I.4.5. Conduite en béton armé :

❖ Nature du matériau :

L'armature formant la conduite en béton armé se compose de :

- Génératrices disposées en parallèle le long de la canalisation.

- Cercles disposés de telle façon à former les grilles avec les génératrices.

***** Fabrication:

On dispose de trois procédés de fabrication :

- La vibration : les conduites vibrées sont fabriquées à l'aide de trois dispositifs :
 - Vibrateurs fixe ou mobiles.
 - Table vibrante.
 - Noyau vibrant.
- La centrifugation : permet le coulage du béton en présence d'armatures, dans un moule animé d'une vitesse de rotation variable.
- Le compactage : les conduites compactées ne sont généralement pas armées, pour un diamètre de 100 à 1200 mm.

***** Joints:

Afin d'assembler les conduites en béton armé ou non armé, on a cinq types de joints :

- Joint type Rocla.
- Joint torique.
- Joint à 1/2 emboitement.
- Joint à coller.
- Joint plastique.

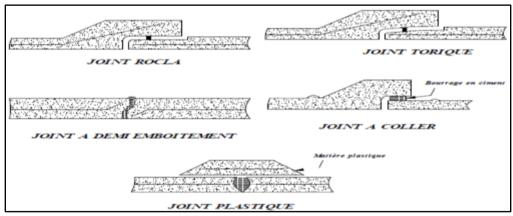


Figure VI-3: Joints sur tuyaux en béton

→ Pour notre projet, nous avons choisi ce type pour les conduites des réseaux pluviaux, vu les avantages qu'elles présentent :

- Bonne étanchéité.
- Bonne résistance mécanique.
- Bonne stabilité dans les tranchées.
- Pose et assemblage facile.
- Disponibilité sur le marché national.

I.5. Les essais de conduites préfabriqués :

Pour assurer le bon fonctionnement des conduites préfabriquées, de nombreux essais s'imposent notamment les essais à l'écrasement, à l'étanchéité, et à la corrosion.

I.5.1. Essai à l'écrasement :

L'essai à l'écrasement se fait par presse automatique avec enregistrement des efforts, ils doivent être répartis uniformément sur la génératrice supérieure de la conduite.

I.5.2. Essai d'étanchéité:

L'essai d'étanchéité est obligatoire à l'usine et sur chantier.

- A l'usine : La conduite est maintenue debout (béton) remplie d'eau, la diminution du niveau de ce dernier, ne doit pas dépasser 2 cm en 24 heures.
- Sur chantier : Un des trois essais peut être envisagé :
- L'essai à l'eau.
- L'essai à la fumée.
- L'essai à l'air sous pression.

I.5.3. Essai de corrosion (chimique) :

Les conduites en béton ou en amiante ciment, sont les plus gravement corrodées par l'hydrogène sulfuré (H₂S) produit par les fermentations anaérobies. Le développement de bactéries, qui amorcent la formation d'acide sulfurique, entraine une baisse du pH superficiel du béton suite au lessivage de la chaux en excès et à la carbonatation de la surface par le gaz carbonique. Celle-ci permet le développement rapide de bactéries acidophiles et s'accompagnent de la progression du processus de corrosion vers l'intérieur du béton.

L'épreuve de corrosion se fait par l'addition de différents acides (acide chlorhydrique, acide nitrique, acide sulfurique ...). Après un lavage à l'eau douce et un séchage à l'étuve, on pèse l'échantillon. Les surfaces de la paroi interne ne doivent pas être altérées.

I.6. Les remèdes :

Les remèdes qu'il est possible de proposer pour lutter contre l'action des sulfures sont de deux natures :

- Remèdes hydrauliques.
- Remèdes Chimiques.

I.7. Pose de canalisation :

I.7.1. Les conditions de pose :

Les principales conditions exigées lors de la pose des canalisations, sont les suivantes :

- La canalisation doit être enterrée sous une couverture d'au moins 80 cm au départ.
- Il ne faut pas en effet que la conduite soit déformée par la surcharge de terre ou le passage de charges.
- Les canalisations d'eau usée et pluviale sont souvent posées en parallèles dans la même tranchée, mais elles sont décalées de 30 à 40 cm.
- Il est conseillé de placer le réseau d'eau pluviale au-dessus du réseau d'eaux vannes dans le cas où ils sont voisins.

I.7.2. Les modes de pose :

Le mode de pose des canalisations diffère selon la nature du terrain.

***** Terrain ordinaire:

Dans ce type de terrain, la canalisation doit être posée sur un lit de sable réalisé sur un fond exempt de massifs durs, avec des joints confectionnés avec soins conformément aux prescriptions des Fabricants de conduites.

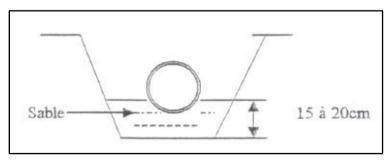


Figure VI-4 : Pose de canalisation sur un terrain ordinaire

***** Mauvais terrain :

Dans les terrains peu consistants, la canalisation doit reposer sur deux briques posées au fond et le vide sera rempli de sable.

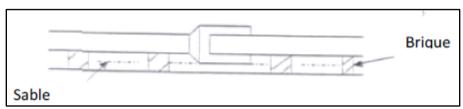


Figure VI-5: Pose de canalisation sur un mauvais terrain

***** Terrain très mauvais :

Dans ce type de terrain une dalle en béton préfabriqué doit être envisagé au fond de la tranchée.

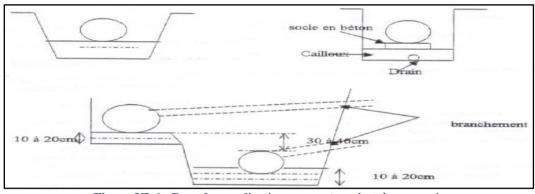


Figure VI-6 : Pose de canalisation sur un terrain très mauvais

II. Les ouvrages annexes :

Les ouvrages annexes participent au réseau au même titre que les canalisations et notamment dans l'exploitation. Les ouvrages Annexes sont à considérés selon deux types distincts :

- Les ouvrages normaux.
- Les ouvrages spéciaux.

II.1. Les ouvrages normaux :

Les ouvrages normaux, sont les ouvrages courants, qui sont indispensable en amont ou au cours des réseaux, ils assurent généralement la fonction recette des effluents.

On les divise en trois catégories :

II.1.1. Les branchements particuliers :

Ce sont des ouvrages qui doivent assurer une meilleure hygiène pour l'habitation. Ces branchements doivent être équipés de dispositifs étanches et de canalisation capable de résister à la pression, résultant de la dénivellation mesurée depuis le niveau de la voie publique.

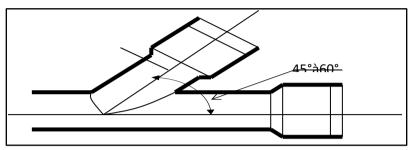


Figure VI-7: Exemple d'un branchement simple

II.1.2. Les bouches d'égout :

Les bouches d'égout, appelés aussi regard de chaussée, sont des ouvrages à vocation prioritairement utilitaire et sécuritaire ; il s'agit de limiter et d'absorber les eaux de surfaces (Les eaux pluviales et les eaux de lavages).

Elles sont utilisées aux points bas des caniveaux, soit dans le trottoir (absorption par le bas), soit dans la chaussée (absorption par le haut).

On peut classer les bouches d'égout selon le recueille des eaux, en cinq types :

- Les bouches d'égout avec grille et couronnement métallique : Ce type de bouche d'égout, permet l'entrée des eaux dans le réseau, soit au moyen d'un siphon, soit directement par sur verse au-dessus du seuil du puisard de décantation.
- Les bouches d'égout avec bavette en pierre ou en béton et couronnement métallique : Afin d'évacuer l'eau, un entonnoir est prolongé par une jupe dont la base doit plonger au moins à 0,05 m au-dessous du niveau permanent du puisard de décantation.
- Les bouches d'égout avec bavette et couronnement en pierres ou en béton : Ce type est une variante applicable aux deux types précédents.
- Les bouches d'égout à avaloir métallique grille et couronnement combiné : Elles sont comme les précédentes, la seule particularité repose dans le fait que le dispositif métallique supérieur s'emboîte directement sur l'arase supérieure de la cheminée.

- La bouche d'égout à grille seule : Les bouches d'égout à grille seule, s'emboîtent directement sur l'arase supérieure de la cheminée.

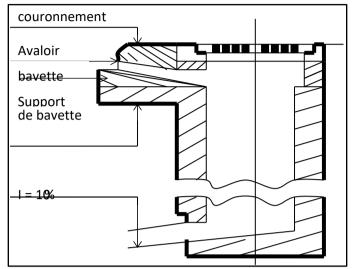


Figure VI-8: Exemple d'une bouche d'égout sans décantation

II.1.3. Les regards :

Les regards sont des dispositifs donnants accès à l'ensemble du système d'assainissement, et à cet effet, permettent de contrôler et d'entretenir ce dernier plus facilement.

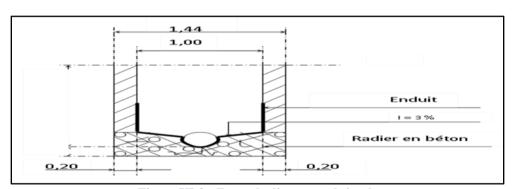


Figure VI-9: Exemple d'un regard simple

***** Fonctions :

Dans le système d'assainissement le regard a quatre fonctions principales, il permet de :

- Réaliser des coudes de 90 degrés (au niveau de la canalisation).
- Insérer des accessoires de nettoyage à tout moment.
- Contrôler toutes les parties composantes du dispositif d'assainissement.

- Surveiller et entretenir l'ensemble du système d'assainissement.

***** Emplacement :

Un regard doit être installé sur les canalisations :

- A tous les points de jonctions.
- Au changement de direction.
- Au changement de pente de canaux.
- Aux points de chute.

***** Types de regads :

Les types de regards varient en fonction de l'encombrement et de la pente du terrain, ainsi que du système d'évacuation, donc on distingue :

- **Regard de visite :** Ces regards sont destinés à l'entretien courant, et le curage régulier des canalisations, tout en assurant une bonne ventilation de ces dernières. L'intervalle d'espacement est de 35 à 80m.
- **Regard de ventilation :** La présence d'air dans les égouts, est la meilleure garantie contre la fermentation et la production du sulfure d'hydrogène.
- **Regard de jonction :** Ils servent à unir deux collecteurs de même ou de différentes sections, ils sont construits de telle manière à avoir :
- Une bonne aération des collecteurs en jonction (regard).
- Les dénivelées entre les radiers des collecteurs.
- Une absence de reflux d'eau par temps sec.
- Les niveaux d'eau des conduites doivent être à la même hauteur.
- Regard de chute: C'est l'ouvrage le plus répondu en assainissement, il permet d'obtenir une dissipation d'énergie en partie localisée, il est très utilisé dans le cas où le terrain d'une agglomération est trop accidenté. Ils sont généralement utilisés pour la chute verticale et la chute toboggan.

II.2. Les ouvrages spéciaux :

Ces ouvrages ne sont pas systématiquement obligatoires dans le concept général du réseau. Mais dans certains cas, leur présence s'avère indispensable tel le déversoir d'orage.

Conclusion:

Afin d'assurer un bon fonctionnement du système d'évacuation des eaux usées et pluviales, il est nécessaire de faire un bon choix en matière de canalisation et de joint.

Concernant notre projet, on a opté pour des conduites en béton armé pour les réseaux des eaux pluviales et en PVC pour les canalisations des eaux usées.

De plus, pour une exploitation rationnelle de ce réseau d'assainissement, pour faciliter les opérations de curage et enfin pour éviter quelques problèmes techniques tels l'obscuration, on doit projeter des ouvrages annexes qui seront convenablement dimensionnés. Cependant, la présence de ces ouvrages s'avère inutile dans notre projet, car le système que nous avons choisi est un système séparatif.

CHAPITRE VII:

Organisation de chantier

Introduction:

Dans le but de rechercher la rapidité, la qualité, et l'économie dans la réalisation de notre projet, on s'est principalement basé sur l'organisation de chantier qui ordonne le déroulement de nos travaux et nous dirige dans l'exécution ; en imposant un bon rythme de travail, et en précisant le temps nécessaire de réalisation, la main d'œuvre nécessaire et les moyens matériels (matériaux de constructions, engins, ...).

I. Les étapes de réalisation du projet :

Pour la pose de canalisation, on doit exécuter dans un ordre précis certaines opérations.

I.1. Manutention et stockage des conduites :

I.1.1. Manutention:

Afin de préserver les conduites pendant le transport, il faut éviter les chocs en particulier sur les extrémités, et éviter le déchargement brutal sur le sol.

I.1.2. Stockage:

Pour le stockage du matériel, il faut absolument respecter ces consignes :

- L'aire de stockage doit être plane et nivelée.
- Les accessoires et les conduites doivent être à l'abri du soleil.
- Préserver les conduites des produits chimiques, des solvants et des huiles.

I.2. Décapage de la terre végétale :

C'est une opération préliminaire, qui consiste à éliminer la couche superficielle du sol (les dix (10) premiers centimètres de la surface) constituée principalement de matière végétale.

I.3. Exécution des tranchées et des fouilles des regards :

Le fond de fouille doit être arasé à la pente du projet, en évitant le remaniement, et en respectant les largeurs minimales des tranchées par mesure de sécurité.

I.4. Aménagement du lit de sable :

Les conduites doivent être posées sur un lit de sable, qui sera bien nivelée suivant les côtes du profil en long comme le montre la figure ci-dessous :

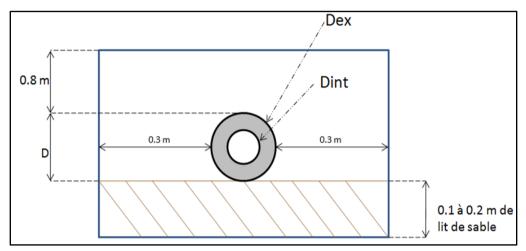


Figure VII-1: Pose du lit de sable

I.5. Emplacement des piquets :

Dans chaque point d'emplacement d'un regard, on doit placer un jalon de piquet.

I.6. Pose des canalisations :

Durant la pose de canalisation, il faut vérifier que :

- La décente du tuyau se fait dans une fouille blindée.
- Les surfaces des abouts doivent être débarrassés.
- Les joints doivent être vérifiés et nettoyés.

I.7. Assemblage des canalisations :

Suivant la section, la forme et la nature du matériau de la conduite, on effectue la jointure de ces dernières.

I.8. Essai d'étanchéité :

Une fois les conduites posées au fond des tranchées, un essai d'étanchéité est effectué en utilisant de l'eau, de l'air ou de la fumée.

I.9. Réalisation des regards :

Pour l'exécution d'un regard, on doit suivre les étapes suivantes :

- Réglage du fond du regard.
- Exécution de la couche du béton de propreté.
- Ferraillage du radier de regard.
- Bétonnage du radier.
- Ferraillage des parois.
- Coffrage des parois.
- Bétonnage des parois.
- Décoffrage des parois.
- Ferraillage de la dalle.
- Coffrage de la dalle.
- Bétonnage de la dalle.
- Décoffrage de la dalle.

Les regards ont généralement une forme cubique, leurs dimensions varient en fonction des profondeurs des tranchées. La réalisation de ces regards s'effectue sur place avec le béton armé comme on peut avoir aussi des regards préfabriqués.

I.10. Réalisation des branchements :

Les branchements comprennent de l'aval vers l'amont :

- Le raccordement de la canalisation de branchement vers la canalisation principal (généralement un regard)
- La canalisation de branchement proprement dite avec une pente au moins égale à
 3%;
- Eventuellement un regard collecteur de branchement.
- Sur chaque branchement individuel, la boite de branchement à la limite du domaine public.

I.11. Remblayage et compactage :

Pour assurer la protection de la canalisation, et la transmission des charges, on doit effectuer un remblayage avec un matériau similaire à celui mis en œuvre pour le remblayage latéral.

II. Choix des engins :

Pour réaliser ces travaux, on doit utiliser différents types d'engins, car chaque opération nécessite un engin précis. Ces engins sont répartis en trois grandes familles :

• Les engins de chargement :

- Les chargeuses.
- Les pelles hydrauliques.
- Les pelles mécaniques.

• Les engins de transport :

- Les brouettes.
- Les camions bennes.
- Les dumpers.
- Les motos basculeurs.
- Les véhicules utilitaires.

• Les engins de mise en place des matériaux :

- Les niveleuses.
- Les compacteurs.
- Les finisseurs.

Concernant notre projet, on a utilisé les engins suivants :

❖ Pour le décapage :

Pour le décapage de la terre végétale on utilise la « niveleuse » sur les terrains facile à décapé, elle est constituée d'un tracteur à quatre roues dans deux prolongé vers l'avant, une lame montée sur une couronne et par rapport à laquelle elle peut tourner ou se déplacer dans son prolongement dans toutes directions.

Figure VII-2: Niveleuse

Dans les terrains difficiles on utilise le « Bulldozer » :

Figure VII-3 : Bulldozer

Pour l'excavation des tranchées :

On utilise une pelle équipée en rétro. Les Pelles sont des engins de terrassement qui conviennent à tous les types de terrains. Ce sont des engins dont le rôle est l'exécution des déblais et leur chargement. Dans les terrains difficiles on doit utiliser une pelle à chenille.

Figure VII-4 : Pelle à chenille

Pour le remblaiement des tranchées :

Le remblayage a été fait en utilisant une chargeuse, qui comporte un corps automoteur articulé, et une benne de grande taille à l'avant.

Figure VII-5: Chargeuse

❖ Pour le compactage :

Le compactage de la terre après remblayage a été fait avec un compacteur a rouleaux lisses, qui est un engin lourd, qui tasse la terre sous lui grâce à un ou plusieurs rouleaux en fonte.

Figure VII-6: Compacteur à rouleaux lisses

III. Détermination des différents volumes des travaux :

III.1. Volume du décapage de la couche végétale :

$$V_{d\acute{e}c} = H_{vc} \times L \times B_{cv}$$
 (VII.1)

Tel que:

- V_{déc}: volume de la couche végétale décapée (m³).
- H_{cv}: profondeur de la couche végétale (m)
- L : longeur totale de la tranchée (m).
- B_{cv}: largeur de la couche végétale (m).

III.2. Volume du déblai des tranchées :

$$V_{d} = B \times L \times H \tag{VII.2}$$

Tel que:

- V_d: volume du déblai des tranchées (m³).
- B : largeur de la tranchée (m).
- H : profondeur de la tranchée (m).
- L: longueur totale de la tranchée (m).

III.3. Volume occupé par le lit de sable :

$$V_{ls} = e \times L \times B$$
 (VII.3)

Avec:

- V_{ls} : volume du lit de sable (m³).
- e : épaisseur de la couche de sable (m).
- B : largeur de la tranchée (m).
- L : longueur totale de la tranchée (m).

III.4. Volume occupé par les conduites :

$$V_{\text{cond}} = (\pi \times D_{\text{ext}}/4) \times L$$
 (VII.4)

Avec:

- V_{cond} : volume occupé par les conduites (m³).
- D_{ext} : diamètre extérieur de la conduite (m).
- L : longueur totale de la tranchée (m).

III.5. Volume de l'enrobage :

$$V_{e} = H_{e} \times L \times B \tag{VII.5}$$

Avec:

- H_e: hauteur d'enrobage
- B : Largeur de la tranchée (m).
- L : longueur totale de la tranchée (m).

III.6. Volume du remblai de protection :

$$V_{\text{rem}} = V_{\text{d}} - (V_{\text{cond}} + V_{\text{déc}} + V_{\text{ls}})$$
 (VII.6)

Avec:

- V_{rem}: volume du remblai (m³).
- V_d : volume du déblai (m³).
- V_{ls} : volume du lit de sable (m³).
- V_{déc}: volume de la couche végétale décapée (m³).

III.7. Volume excédentaire :

$$V_{exc} = V_f - V_{rem} (VII.7)$$

Tel que:

- V_{exc} : Volume du sol excédentaire (m^3) .

- V_f: Volume du sol foisonné (m³).

- V_{rem}: Volume du remblai (m³).

Sachant que:

$$V_f = V_d \times K_f \tag{VII.8}$$

Avec:

- K_f : Coefficient de foisonnement dépend de la nature de sol.

IV. Devis quantitatif et estimatif:

IV.1. Réseau des eaux usées :

Tableau VII-1 : Devis quantitatif et estimatif du réseau des eaux usées

N°	Désignation des travaux	Unité	Quantité	Prix unitaire (DA)	Montant (DA)		
A	Travaux de terrassement						
1	Déblai	m^3	16410,456	1000	16410456		
2	Lit de pose	m^3	694,087	1500	1041130,5		
3	Enrobage	m^3	2912,918	200	582583,6		
4	Remblai de la tranchée	m^3	12143,616	700	8500531,2		
В	Canalisation						
1	CR8-0300	ml	6626,573	2400	15903775,2		
2	CR8-0400	ml	266,751	3850	1026991,35		
3	CR8-0500	ml	203,004	7200	1461628,8		
4	CR8-0600	ml	418,170	8500	3554445		
C	Construction						
1	Regard	u	233	30000	6990000		
		52272541,65					
	TV	9931782,914					
		62204324,56					

IV.2. Réseau des eaux pluviales :

Tableau VII-2 : Devis quantitatif et estimatif du réseau des eaux pluviales

N°	Désignation des travaux	Unité	Quantité	Prix unitaire (DA)	Montant (DA)			
A	Travaux de terrassement							
1	Déblai	m^3	61645,36	1000	61645360			
2	Lit de pose	m^3	1659,64	1500	2489460			
3	Enrobage	m^3	8053,62	200	1610724			
4	Remblai de la tranchée	m^3	48608,53	700	34025971			
В	Canalisation							
1	135A-0300	ml	4531,05	2390	10829209,5			
2	135A-0400	ml	2156,81	3060	6599838,6			
3	135A-0500	ml	764,74	4244	3245556,56			
4	135A-0600	ml	1027,38	5572	5724561,36			
	135A-0800	ml	1432,92	9113	13058199,96			
	135A-1000	ml	823,91	13318	10972833,38			
С	Construction							
1	Regard	u	291	30000	8730000			
		160542437,4						
	TV	30503063,1						
		191045500,5						

Conclusion:

Pour conclure, on peut dire que l'organisation de chantier est nécessaire pour la réalisation d'un système d'assainissement, et cela afin d'économiser le cout, l'énergie et le temps sans oublier l'amélioration du rendement de travail.

Cette discipline nous permet aussi d'établir un devis quantitatif et estimatif qui nous aide à évaluer le coût total de notre projet estimé à 253249825,10 DA

Conclusion générale

En conclusion, nous pouvons dire que dans ce mémoire, nous avons conçus un système d'évacuation des eaux usée et pluviales de la zone (Quartier B&D de la nouvelle ville de Bouinan) vers un exutoire afin de protéger la santé publique et l'environnement.

Nous avons commencé par la présentation de la zone d'étude et ses caractéristiques. Après, on fait l'étude hydrologique pour déterminer l'intensité moyenne maximale qui est de 178 L/s/ha, en utilisant les résultats obtenus par l'ajustement de la série pluviométrique à la loi Log-normale.

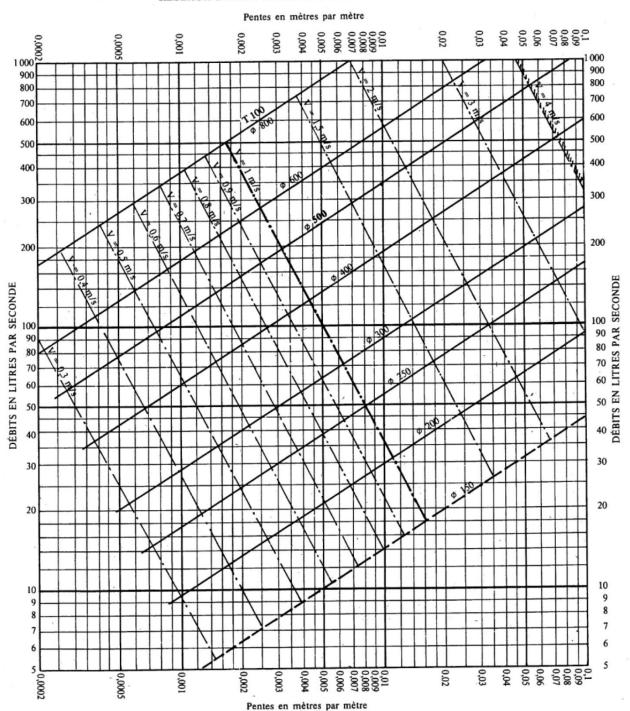
Le réseau que nous avons établi, est un réseau séparatif en raison de la topographie du site, avec un schéma d'évacuation par déplacement latéral, acheminant les eaux usées évacuées vers la station d'épuration et les eaux pluviales vers le cours d'eau.

Pour l'évaluation des débits des eaux usées, nous avons pris en considération les débits domestiques et publiques vu qu'il n'y a pas des industries au niveau de la zone. Pour l'estimation des débits pluviaux, nous avons découpé la zone en 21 sous-bassins, choisi le coefficient de ruissellement selon la nature de la surface drainée et opté pour la méthode rationnelle.

Nous avons choisi des conduites en PVC pour le réseau des eaux usées vu ses avantages (résistantes à la corrosion et inertes vis-à-vis des produits chimiques qui composent ces eaux). Pour le réseau pluvial, nous avons choisi des canalisations en béton armé.

Concernant les ouvrages annexes, le choix du système séparatif et le manque d'espace, nous ont épargné la conception d'un déversoir d'orage et d'un bassin de rétention pour les eaux pluviales.

Du coté économique, nous avons élaboré un devis quantitatif et estimatif afin d'évaluer le coût de projet qui est de 253249825,10 DA.


Références bibliographiques

- 1- C.E.R.T.U, 2003. « La ville et son assainissement ». CERTU, France.
- 2- Gomella C. et Guerree H., 1967. « Les eaux usées dans les agglomérations urbaines ». Eyrolles, Paris.
- 3- Gomella C. et Guerree H., 1986. « Guide d'assainissement dans les agglomérations urbaines et rurales (tome 1) ». Eyrolles, Paris.
- 4- Instruction Technique, 1977. « Instruction technique relative aux réseaux d'assainissement des agglomérations ». Imprimerie nationale, Paris.
- 5- Kerloc'h B. et Maelstaf D., 1983. « Le dimensionnement des réseaux d'assainissement des agglomérations ». C.E.T.E, nord Picardie.
- 6- Satin M. *et al.*, 2006. « Guide technique de l'assainissement (3^e édition) ». Le Moniteur, Paris.
- 7- Salah B., 2014. « Assainissement des eaux usées et pluviales des agglomérations : A l'usage des étudiants de l'option Assainissement ». ENSH, Blida.
- 8- Touaibia B., 2004. « Manuel pratique d'hydrologie ». Madani Frères, Blida.
- 9- Water Pollution Control Federation, 1970. « Design and construction of sanitary and storm sewers ». WPCF Manual of practice N° 9. Washington, D.C.
- 10-Boukoftane A., 2010. « Diagnostic du système d'assainissement de la ville de Bouinan ». Mémoire de fin d'étude. ENSH, Blida.
- 11- Yahia A., 2018. « Conception du réseau d'alimentation en eau potable de la nouvelle ville de Bouinan : 5000 logements ». Mémoire de fin d'étude. ENSH, Blida.

Annexe

ABAQUE 1

RÉSEAUX D'EAUX USÉES EN SYSTÈME SÉPARATIF

Nota. - La valeur du coefficient de Bazin a été prise égale à 0,25. Lorsque la pose des canalisations aura été particulièrement soignée, et surtout si le réseau est bien entretenu, les débits pourront être majorés de 20 % (γ = 0,16). A débit égal, les pentes pourront être réduites d'un tiers.

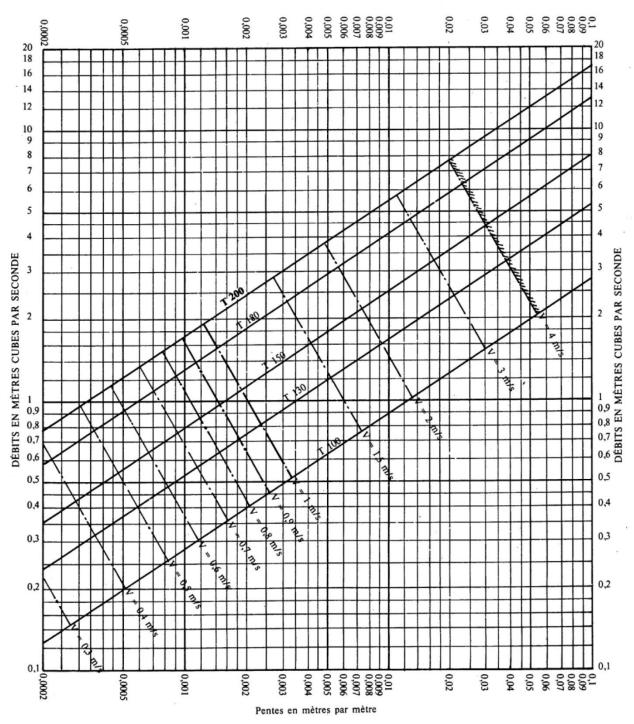
Source: Instruction Technique 1977

ABAQUE 2-a

RÉSEAUX PLUVIAUX EN SYSTÈME UNITAIRE OU SÉPARATIF

(Canalisations circulaires) 0,0002 0,0005 0,001 0,009 0,008 0,007 0,006 0,02 0,1 0,09 0,08 0,07 0,06 0,05 0,001 14 12 10 9 8 8 7 6 5 4 3 DÉBITS EN MÈTRES CUBES PAR SECONDE DÉBITS EN MÈTRES CUBES PAR SECONDE 2 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,3 0,2 0,2 0,1 0,09 0,09 0,08 0,08 0,07 0,07 0,06 0,06 0,05 0,05 0,0002 0,001 0,02 0,003 0,03

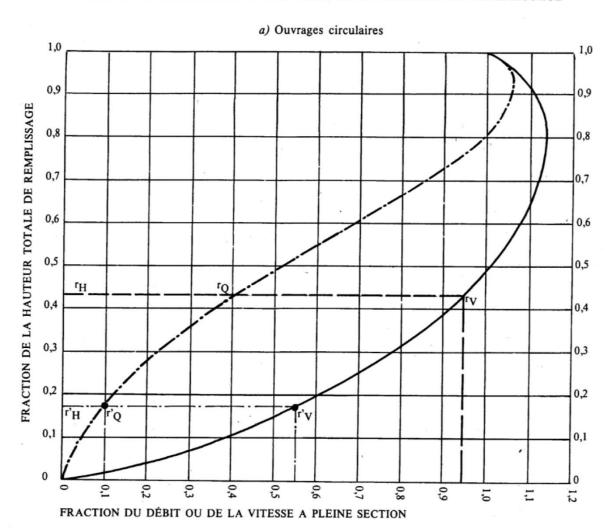
Nota. – La valeur du coefficient de Bazin a été prise égale à 0,46. Lorsque la pose des canalisations aura été particulièrement soignée, et surtout si le réseau est bien entretenu, les débits pourront être majorés de 20 % ($\mathcal{V} = 0,30$). A débit égal, les pentes pourront être réduites d'un tiers.


Pentes en mètres par mètre

Source: Instruction Technique 1977

ABAQUE 2-b

RÉSEAUX PLUVIAUX EN SYSTÈME UNITAIRE OU SÉPARATIF


(Canalisations ovoïdes)

Nota. - La valeur du coefficient de Bazin à été prise égale à 0,46. Lorsque la pose des canalisations aura été particulièrement soignée, et surtout si le réseau est bien entretenu, les débits pourront être majorés de 20 % ()? = 0,30). A débit égal, les pentes pourront être réduites d'un tiers.

Source : Instruction Technique 1977

VARIATIONS DES DÉBITS ET DES VITESSES EN FONCTION DU REMPLISSAGE

MODE D'EMPLOI.

Les abaques Ab. 3 et Ab. 4 (a et b) utilisés pour le choix des sections d'ouvrages, compte tenu de la pente et du débit, permettent d'évaluer la vitesse d'écoulement à pleine section.

Pour l'évaluation des caractéristiques capacitaires des conduites, ou pour apprécier les possibilités d'autocurage, le nomogramme ci-dessus permet de connaître la vitesse atteinte en régime uniforme pour un débit inférieur à celui déterminé à pleine section.

Les correspondances s'établissent, soit en fonction de la fraction du débit à pleine section, soit en fonction de la hauteur de remplissage de l'ouvrage.

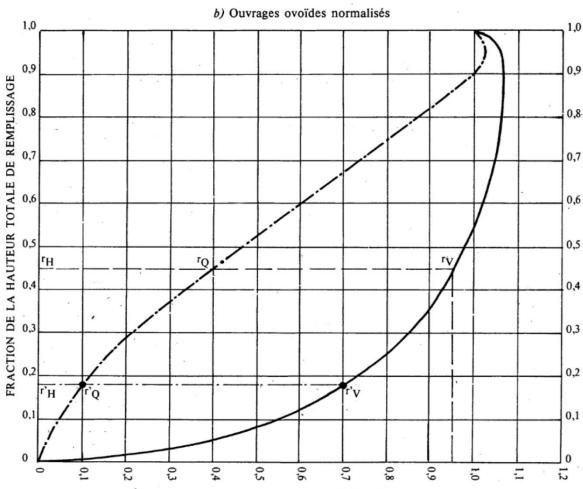
Exemples .

Pour $r_Q = 0,40$, on obtient $r_V = 0,95$ et $r_H = 0,43$.

Pour Q_{PS}/10, on obtient $r'_V = 0.55$ et $r'_H = 0.17$ (autocurage).

Nota. – Pour un débit égal au débit à pleine section, la valeur du rapport $r_Q = 1,00$ est obtenue avec $r_H = 0,80$.

Le débit maximum ($r_0 = 1,07$) est obtenu avec $r_H = 0,95$.


La vitesse maximum ($r_V = 1,14$) est obtenue avec $r_H = 0,80$.

Ces dernières conditions d'écoulement à caractère assez théorique ne peuvent être obtenues que dans des conditions très particulières d'expérimentation.

Source: Instruction Technique 1977

ABAQUE 3-b

VARIATIONS DES DÉBITS ET DES VITESSES EN FONCTION DU REMPLISSAGE

FRACTION DU DÉBIT OU DE LA VITESSE A PLEINE SECTION

MODE D'EMPLOI.

Les abaques Ab. 3 et Ab. 4 (a et b) utilisés pour le choix des sections d'ouvrages, compte tenu de la pente et du débit, permettent d'évaluer la vitesse d'écoulement à pleine section.

Pour l'évaluation des caractéristiques capacitaires des conduites, ou pour apprécier les possibilités d'autocurage, le nomogramme ci-dessus permet de connaître la vitesse atteinte en régime uniforme pour un débit inférieur à celui déterminé à pleine section.

Les correspondances s'établissent, soit en fonction de la fraction du débit à pleine section, soit en fonction de la hauteur de remplissage de l'ouvrage.

Exemples:

Pour r_Q = 0.40, on obtient r_V = 0.95 et r_H = 0.45.

Pour $Q_{PS}/10$, on obtient $r'_V = 0.70$ et $r'_H = 0.18$ (autocurage).

Nota. – Pour un débit égal au débit à pleine section, la valeur du rapport $r_Q = 1,00$ est obtenue avec $r_H = 0,90$.

Le débit maximum ($r_Q = 1,03$) est obtenu avec $r_H = 0.95$.

La vitesse maximum ($r_V = 1.07$) est obtenue avec $r_H = 0.90$.

Ces dernières conditions d'écoulement à caractère assez théorique ne peuvent être obtenues que dans des conditions très particulières d'expérimentation.

Source: Instruction technique 1977