REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE

MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE

ECOLE NATIONALE SUPERIEURE D'HYDRAULIQUE -ARBAOUI Abdellah-

DEPARTEMENT D'IRRIGATION ET DRAINAGE

MEMOIRE DE FIN D'ETUDES

Pour l'obtention du diplôme d'Ingénieur d'Etat en Hydraulique

Option: IRRIGATION ET DRAINAGE

THEME DU PROJET:

L'IRRIGATION DU PERIMETRE DE ZIT-EMBA (ZONE NORD) A PARTIR DU BARRAGE DE ZIT-EMBA W.SKIKDA

PRESENTE PAR: Mr AGRED Ahmed

Devant les membres du jury

Noms et Prénoms	Grade	Qualité
M ^r MEDDI Mohamed	Professeur	Président
M ^{me} MEDJDOUB Sonia	M.A.A	Examinatrice
M ^{me} SAADOUNE Samra	M.A.A	Examinatrice
M ^r KOLAI Djafer	Assistant	Examinateur
M ^r CHABACA Mohamed Nacer	M.C.A	Promoteur

Remerciement

Avant tout propos, nous remercions « Dieu » le tout puissant qui nous a donné sagesse et santé pour faire ce modeste travail.

Je tiens à exprimer mes vifs remerciements :

- * À Mon promoteur Monsieur CHABACA Mohamed Nasser qui m'a accueilli dans son bureau (ENSA el Harrach) et a bien voulu m'encadrer durant ce mémoire de fin d'études.
- * Aux membres de Jury qui, malgré leurs occupations, ont bien voulu examiner et discuter mon travail; je les en Remercie vivement.
- * A Monsieur HEDDAM enseignaient dans l'université de 20 Août 1955 SKIKDA de m'avoir assisté, guidé et conseillé durant ce projet.
- * A Monsieur A.ADJERIOU Ingénier en hydraulique qui m'a accueilli dans son bureau d'étude et de m'avoir guidé.
 - * A Monsieur le professeur M^R. MESSAHEL de m'avoir enseigné.
- * A Monsieur le professeur M^R . MEDDI de m'avoir enseigné et d'avoir honoré ce jury.
 - ℜ A Monsieur D. KOLAÏ d'avoir honoré ce jury.
 - * A Madame EULMI d'avoir honoré ce jury.
- * A Madame S.SAADOUNE de m'avoir enseigné et d'avoir honoré ce jury.
 - * A Madame W.AZIEZ de m'avoir enseigné et pout son aide.
 - * Remercie Mr. D.Haddef Ingénier en Hydraulique de m'avoir aidé.
 - * Je Remercie également tout le personnel de DSA(W.SKIKDA), ONID(W.SKIKDA) et DRE(W.SKIKDA).
 - * L'ensemble du personnel et enseignants de l'Ecole Nationale Supérieure de l'Hydraulique (ENSH), qui ont veillé à ma formation.

MERCI

AGRED AHMED

ADédicaces **B**O

Je dédié ce modeste travail en signe de reconnaissances et de respect :

- A ma mère et mon père pour tous les sacrifices qu'ils ont consenti à mon égard;
- A mes frères. SOFIANE, MOHAMED ET BILLEL
- > A toute la famille.
- A mes meilleurs amis et mes coussin Youcef, Lotfi, Ilyas, Abd Elkader,
 Amine, Ayman, Ali, Abd elkadous, Krimo, Djamel, Hecine, Amire et
 Bilal.
- A mes amis de l'ENSH Imade, Abd ellah, Yacine, Ahmed et Hattem.

شروعنا هذا يهدف مساحة زراعية مروية مقدرة ب 3959 هكتار تمتد على كل من بلدية بن عين جندل سيدي مجهد (ولاية سكيكدة).

تحديد في ملكية الهيدرولوجية تحليل التربة والمياه محدد من شأنها أن تكون تحديد الاحتياجات المائية المنتجات الزراعية، في نهاية المطاف محدد من شأنها أن تكون الرئيسية في التصميم الهيدروليكي. الصيغ الهيدروليكية التوزيع (شبكة) وفي النهاية ختيار تصميم نظام بالتقطير.

Résumé

Notre projet consiste à créer un périmètre irrigué d'une superficie envisagée de 3959 ha qui s'étend sur les communes de Ben azzouz, Bekouch lakhdar, Ain cherchar et Djendal saadi mohamed, (W.SKIKDA).

Passant par une spécification de la région, nous effectueront une enquête foncière et une étude hydrologique puis une analyse des ressources en sol et en eau, afin de déterminer les besoins en eaux des différentes cultures, Ensuit nous calculerons le débit spécifique qui sera le paramètre essentiel dans le dimensionnement hydraulique. Connaissant les surfaces des différents îlots et grâce aux formules hydrauliques et au logiciel Epanet, on dimensionne le réseau de distribution (réseau ramifié) et à la fin on choisir un ilot pour faire les calculs de dimensionnement du réseau d'irrigation goutte à goutte. Aire

Abstract

Our project is to create an irrigated area of a proposed 3959 ha that area situated in the town of Ben azzouz, Bekouch lakhdar, Ain Cherchar and Djendal Saadi Mohammed, (W.SKIKDA).

Through a specification of the region, we will conduct a land survey and hydrological study and analysis of soil resources and water, in order to determine the water needs of different cultures; eventually we will calculate the specific discharge that will be the key parameter in the hydraulic design. Knowing the area of different surfaces through hydraulic formulas and Epanet software we sized distribution network (branched network) and at the end we choose a block to the design calculations of the drip irrigation system.

SOMMARE

I.1: Intoduction générale :	1
CHAPITRE I : PRESENTATION GENERALE DE LA ZONE D'ETU	J DE
I.1: Situation geographique :	2
I.2: La situation administrative :	3
I.3: L'infrastructure routiere :	3
I.4: Le reliief et la geomorphologie :	4
I.5: La geologie et la stratigraphie :	4
I.5.1: Les formations géologiques :	<i>6</i>
I.6: L'hydrographie:	<i>6</i>
I.7: L'hydrogeologie :	8
I.8: La climatologie:	9
I.9: La vegetatioin:	9
I.10: Conclusion:	10
CHAPITRE II : CLIMATOLOGIE	
II.1: Introduction:	11
II.2: Température de l'air :	11
II.3: L'Humidité relative :	12
II.4: Les vents:	13
II.4.1: Vitesse des vents :	13
II.5: Siroco:	13
II.6: Evaporation:	13
II.7: L'évapotranspiration :	14
II.8: Insolation:	15
II.9: Pluviométrie :	16
II.10: Les indices climatiques:	16
II.10.1: L'indice d'aridité de MARTON :	16
II.10.2: Quotient pluviométrique d'EMBERGER :	
II.10.3: Diagramme Ombrothermique de BAGNOULS ET GAUSSEN :	18
II.11: Conclusion:	19

CHAPITRE III: HYDROLOGIE

III.1: Introduction:	20
III.2: Le reseau pluviometrique :	20
III.3: Homogeneite de la serie pluviometrique :	21
III.4: Etude statistique des precipitations :	23
III.4.1: Traitement des données :	
III.4.2: Ajustement de la série pluviométrique :	24
III.4.2.1: Ajustement à la loi de Gauss (loi Normale):	24
III.4.2.2: Ajustement à la loi de Galton (loi log-Normale):	26
III.4.3: Test de validité d'un ajustement :	28
III.4.3.1: Test de validité de l'ajustement à la loi Normale	28
III.4.3.2: Test de validité d'ajustement à la loi log-Normale :	28
III.5: Determination de l'annee de calcul :	28
III.6: Conclusion:	29
CHAPITRE IV : ANALYSEDES RESSOURCES EN SOLE RESSOURCE EN SOL	I EN EAU
IV.1: Introduction	30
IV.2: La pedogenese et la typologie des sols :	30
IV.3: La classification des sols :	30
IV.3.1: Les sols peu évolues :	30
IV.3.2: Les vertisols:	
IV.3.3: Les sols calicimagnestiques :	31
IV.3.4: Les sols a sesquioxyde de fer et de manganèse :	31
IV.4: L'actualisation de l'etude hydrodynamique :	
IV.4.1: La perméabilité du sol :	
IV.4.2: La conductivité hydraulique	
IV.4.3: La densité apparente et la densité réelle	
IV.4.4: La porosité	
IV.4.5: La réserve facilement utilisable	
IV.5: L'APTITUDE CULTURALE :	
IV.5.1: Cultures arbustives	
IV.5.2: Culture industrielles	
IV.5.3: Cultures céréalières et fourragères	
IV.5.4: Cultures maraichères	39

IV.6: Conclusion:	40
RESSOURCE EN EAU	
IV.7: Introduction:	41
IV.8: Les eaux superficielles :	41
IV.8.1: Les bassins versants	41
IV.8.2: Le barrage de Zit-Emba	41
V.8.2.1: Caractéristiques principales du Barrage	42
V.8.2.2: Qualité de l'eau du barrage	42
IV.8.3: Les oueds	43
V.8.3.1: Situation actuelle l'oued Kebir et ses affluents	43
IV.8.4: Le lac de Fetzara et ses affluents	44
V.8.4.1: Situation actuelle	44
V.8.4.2: Situation future	44
V.8.4.3: Les affluents du lac et les petits bassins versants	45
IV.9: Les eaux souterraines :	45
IV.10: Conclusion:	46
CHAPITRE V: ETUDE AGRO SOCIO ECONOMIQUE SOCIO-ECONOMIQUE	
V.1: Introduction	47
V.2: La population	
V.3: Le niveau culturel et le vie de l'exploitant et de sa famille	
V.4: Le contexte general des productions vegetales	
V.5: Le contexte general des productions animales	
V.5: 1.Le gros elevage :	
V.6: Conclusion	
ETUDE FONCIERE	
V.7: Introduction	51
V.8: Le but de l'enquete fonciere	
V.9: La surface enquetee	
V.10: Les unites foncieres	
V.11: Les parcelles	
V.12: L'as sainis sement agricole et les brises vent	

V.12 .1: Ouvrages (chute et traversées de pistes):	53
V.12.2: Pistes et brises-vents :	53
V.13: Conclusion	54
CHAPITRE VI: ETUDE DES BESOINS EN EAUX DES CULTUI	RES
VI.1: Repartition des cultures	55
VI.2: Les besoins en eau du perimetre	55
VI.2.1: L'évapotranspiration potentielle ou de référence	55
VI.2.2: Détermination de Pluie efficace	56
VI.2.3: L'évapotranspiration réelle ou culture (ETR, ETC)	56
VI.2.4: Calcule des besoins en eau de chaque culture	57
VI.3: Besoin en eau pour le lessivage	66
VI.4: Conclusion	67
CHAPITRE VII : DIMENSIONNEMENT DU RESEAU D'IRRIGA	TION
VII.1: Introduction	68
VII.2: Description du schema d'adduction	68
VII.3: Les principes et les methodologies de dimensionnement	69
VII.4: Calcul des debits a transiter par le reseau collectif	69
VII.4.1: Débits spécifiques et module d'arrosage	69
VII.4.2: Calcul du débit spécifique	70
VII.5: La loi de debit	
VII.5.1: Calcul des débits des tronçons	
VII.5.1.1: Théorie de la méthode	
VII.5.1.2: Application de la méthode	
VII.6: Dimensionnement du reseau de distribution	
VII.7: Dimensionnement du reseau d'irrigation en goutte a goutte	
VII.7.1: Eléments de l'étude de dimensionnement nécessaires à la conduite de	
l'irrigation :	
VII.7.2: Données sur la source d'eau	76
VII.7.3: Caractéristique de matériel d'irrigation	76
VII.7.4: Exigences de la culture :	77
VII.7.5: Information sur le sol de l'exploitation	
VII.7.6: Besoins en eau d'irrigation	78
VII.7.7: La durée d'arrosage et le volume d'eau à apporter par secteur	78

VII.7.8: Calcul hydraulique79	
VII:.7.8.1: Débit	
VII.7.8.2: Débit de la porte rampe	
VII.7.8.3: Conditions hydrauliques	
VII.7.8.4: Calcul du diamètre de la rampe	
VII.7.8.5: Calcul le diamètre de la porte rampe	
VII.7.8.6: dimensionnement de la canalisation principale	
VII.8: Conclusion	
Conclusion générale	

LISTE DES TABLEAUX

Tableau I.1 : caractéristique des zones homogènes.	
Tableau II.1: Coordonnées de station météorologiques (SKIKDA)	
Tableau II.2 : Les variations moyennes mensuelles et annuelles de la température en °C	11
Tableau II.3: Moyennes mensuelles et annuelle de l'Humidités relative en (%)	12
Tableau II.4: Moyennes mensuelles et annuelle de la vitesse des vents	13
Tableau II.5 : Moyennes mensuelles et annuelle de l'Evaporation en mm	14
Tableau II.6: Moyenne mensuelles et annuelle de l'évapotranspiration en mm	14
Tableau II.7: moyenne mensuelle et annuelle de L'insolation en heure	15
Tableau II.8: Moyennes mensuelles et annuelle des précipitations en mm	16
Tableau II.9 : Limite des climats d'après l'indice climatique de MARTON	17
Tableau II.10 : Quotient pluviométrique	17
Tables III 1 . Com déidire de la dedire alorie déime	
Tableau III.1 : Caractéristiques de station pluviométrique	
Tableau III.2: Précipitations moyennes mensuelles en mm	20
Tableau III.3 : Détaille du procédé de Test d'homogénéité pour la station d' AZZABA PEPINIERE code (031106)	22
Tableau III.4: Ajustement à une loi de Gauss	24
Tableau.III.5: Ajustement à la loi de Galton (loi Log-normale)	26
Tableau III.6: Pluviométrie moyenne pour chaque mois en mm	29
Tableau III.7 :L'Année de calcul.	29
Tableau IV.1 : Résultats de mesures de perméabilité de surface	
Tableau IV.2 : Résultats de la conductivité hydraulique	
Tableau IV.3 : Variation de la porosité en fonction de la profondeur.	
Tableau IV.4 : Porosité des sols peu évolues	
Tableau IV.5 : Porosité des vertisols.	36
Tableau IV.6 : La qualité de l'eau du barrage	
Tableau V.1 : Répartition de la population des communes(1998)	
Tableau V.2 : Répartition de la population des communes(2008)	47
Tableau V.3: Répartition de la population résidente selon la commune et le sexe	48
Tableau V.4 : La répartition résidente totale	48
Tableau V.5 : l'occupation du sol dans les communes concernées	49
Tableau V.6: Les effectifs du cheptel bovin dans les communes concernées	49

Tableau V.7 : Répartition des superficies par commune selon le statut juridique	51
Tableau V.8 : Nombre d'unités foncières par commune selon la nature de la propriété	52
Tableau V.9 : Nombre et taille moyenne des parcelles de l'aire d'étude	52
Tableau VI.1 : Répartition des cultures	
Tableau VI.2 : Évapotranspiration en mm / jour	
Tableau VI.3 : Précipitation efficace dans la zone d'étude	56
Tableau VI.4: Le calendrier cultural	57
Tableau VI.5 : Le Blé	57
Tableau VI.6 : Mais grain	58
Tableau VI.7: Mais fourrager	58
Tableau VI.8 : Luzerne	59
Tableau VI.9 : Maraîchage été	59
Tableau VI.10 : Maraichage d'automne	60
Tableau VI.11 : Pastèque	60
Tableau VI.12 : Tomate industriel	61
Tableau VI.13 : Oignon hiver	61
Tableau VI.14 : Fève/pois vert	62
Tableau VI.15 : Agrumes	62
Tableau VI.16 : pêcher	63
Tableau VI.17 : Betterave	63
Tableau VI.18 : Tabac	64
Tableau VI.19: Les besoins en eaux des cultures	65
Tableau VI.20 : Tableau récapitulatif des surfaces et les besoins totaux en eau	
Tableau VI.21: Besoins en eau du moins de pointe	
Tableau VII.1 : débits spécifique moyens des cultures	
Tableau VII.2 : Diamètre de la rampe pour les la tomate industrielle	80
Tableau VII.3 : Diamètre de la porte rampe	
Tableau VII.4 : Dimensionnement du conduit d'amenée	

LISTE DES FIGURES

Figure I.1 : Image satellitaire de la zone d'étude	2
Figure I.2 : limites administratives de l'aire d'étude.	3
Figure I.3 : caractéristiques des zones homogènes .	5
Figure 1.4 : carte de réseau hydrographique.	7
Figure 1.4 : carte des forages	8
Figure II.1 : La variation moyenne mensuelle de la température.	12
Figure II.2 : moyennes mensuelles de l'humidité relative.	12
Figure II.3: moyennes mensuelles de la vitesse des vents.	13
Figure II.4: Moyennes mensuelles et de l'Evaporation.	14
Figure II.5 : Moyenne mensuelles de l'évapotranspiration.	15
Figure II.6: moyenne mensuelles de l'insolation.	15
Figure II.7: Moyennes mensuelles des précipitations	16
Figure II.8: Diagramme bioclimatique d'EMBERGER.	18
Figure II.9: Diagramme Ombrothermique	
Figure III.1 : Ajustement à une loi Normale	
Figure III.2: Ajustement à une loi Log Normale.	
Figure IV.1: Photographie satellitaire du barrage de Zit-Emba et ses environs	41
Figure V.1 : Variation des gros élevages par commune	50
Figure VII.1: Le réseau d'adduction du périmètre	
Figure VII.2: Représentation graphique de la loi de débit	71
Figure VII.3 : Distribution des pressions et des vitesses dans le réseau de distribustion	74
Figure VII.4 : Schéma d'un réseau d'irrigation localisée	76
Figure VII.5 : Plan parcellaire de l'exploitation de tomate industrielle	79
Figure VII.6 : Distribution des pressions et des vitesses dans le conduit d'amenée	82

LISTE DES PLANCHES

Planche 01: Plan de situation de la ville de Ben Azzouz W.SKIKDA.

Planche 02 : Plan de projection de réseau de distribution du périmètre de Zit-Emba W.SKIKDA.

Planche 03 : Plan de réseau d'irrigation par goutte à goutte de l'ilot S1 du périmètre de Zit-Emba W.SKIKDA.

Planche 04 : Profil en long du tronçon (p0-p26) de la conduite principale de distribution de périmètre de Zit-Emba W.SKIKDA.

Planche 05 : Profil en long du tronçon (p26-p57) de la conduite principale de distribution de périmètre de Zit-Emba W.SKIKDA.

Planche 06 : Profil en long du tronçon (p57-p84) de la conduite principale de distribution de périmètre de Zit-Emba W.SKIKDA.

INTRODUCTION GENERALE:

Tout le monde reconnaît que l'irrigation est un art ancien aussi vieux que la civilisation ; aujourd'hui elle a pris un essor pour devenir une science moderne et de survie pour le monde entier, car la concurrence des usagers de l'eau devient de plus en plus vive ; alors l'irrigation ne devrait plus se pratiquer à la manière traditionnelle. Elle doit être modernisée pour pouvoir contrôler cette fameuse source de vie. Cette idée est le point de départ de notre étude car nous visons le dimensionnement d'un réseau sous pression qui va alimenter la zone nord du périmètre de Zit-Emba qui s'étend sur une superficie de 3 959 ha. Il est situé à l'aval du barrage de Zit-Emba dont les aptitudes culturales diffèrent en fonction de leurs surfaces et leurs pédologies.

Dans le cadre des efforts de l'état pour le développement du secteur de l'agriculture et de la bonne exploitation des terres agricoles, et dans le contexte du développement économique, on a fait une étude d'adduction et de distribution des eaux de barrage de Zit-Emba vers le périmètre de Zit-Emba.

Le but de cette étude est de desservir les agriculteurs en eau pour augmenter la superficie des surfaces irriguées, et par conséquent l'augmentation du taux de production par hectare et l'encouragement des agriculteurs à travailler plus, et pourquoi pas atteindre l'autosatisfaction.

Passant par une spécification de la région, nous effectueront une enquête foncière et une étude hydrologique puis une analyse des ressources en sol et en eau, et ce dans le but de déterminer les besoins en eaux des différentes cultures, par la suite nous calculerons le débit spécifique qui sera le paramètre essentiel dans le dimensionnement hydraulique. Connaissant les surfaces des différents îlots et grâce aux formules hydrauliques et au logiciel Epanet, on dimensionne le réseau de distribution (réseau ramifié) et à la fin on choisit un ilot pour faire les calculs de dimensionnement du réseau d'irrigation goutte à goutte.

.

I.1. LA SITUATION GEOGRAPHIQUE

La zone d'étude couvre environ 3959 ha. Elle est située à l'Ouest du lac Fetzara, à une cinquantaine de kms à l'Est de la ville de Skikda et à 8 Km au nord du barrage de Zit Emba. Cette zone est aisément accessible par la RN44 qui traverse la zone d'Ouest en Est. Par ailleurs, plusieurs chemins de wilaya (CW) et séries de routes rurales bordent ou traversent la zone (**Figure I.1**).

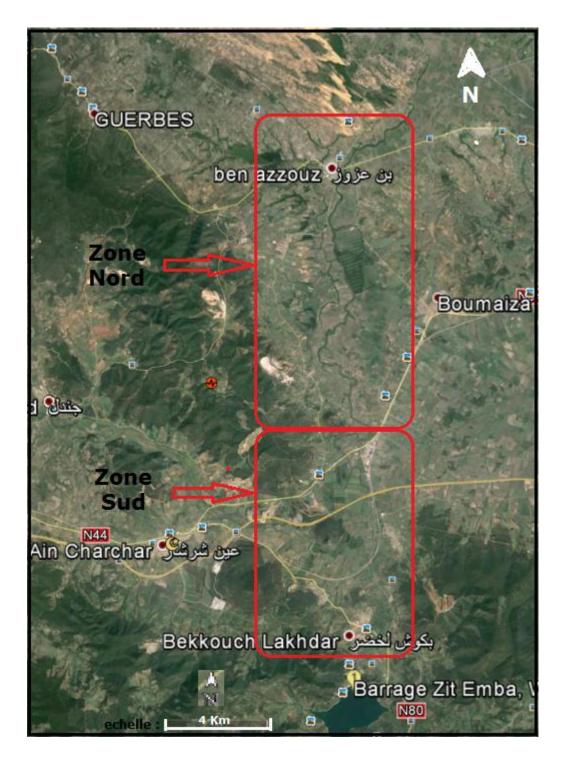


Figure I .1 : Image satellitaire de la zone d'étude

I.2. LA SITUATION ADMINSTRATIVE

La zone d'étude est située dans la wilaya de Skikda, daïra de Ben Azzouz, elle est localisée à l'Ouest du lac Fetzara et elle est limitée:

- ✓ Au Nord par le cordon dunaire de Guerbes.
- ✓ Au Nord-Ouest par le foret de Dem-El-Bagrat.
- ✓ A l'Est par la vile de Boumaiza et le rive occidentale du lac Fetzara.
- ✓ Au Sud par la ville de Bekkouche-Lakhdar.
- ✓ Au Sud-Ouest par la ville d'Ain-Charchar.
- ✓ A l'Ouest par le djebel safia et la commune Djendel Saadi Mohamed.

Les terres de cette aire d'étude chevauchent principalement, et par ordre d'importance décroissant les communes de Bekkouche-Lakhdar, Ain-Charchar et Djendel Saadi Mohamed (**Figure I .1** et **Figure I .2**)

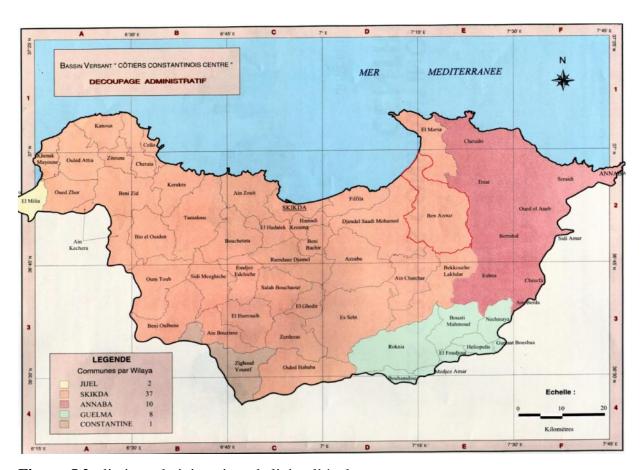


Figure I.2 : limites administratives de l'aire d'étude

I.3. L'INFRASTRUCTURE ROUTIERE

L'aire d'étude dispose également d'un réseau très correct en ce domaine. Il est constitué :

- ✓ D'une route nationale qui traverse en biais tout le périmètre (RN 44 : reliant Skikda à Annaba).
- ✓ D'une série de routes rurales établies sur les piémonts et encadrant relativement bien le périmètre.

Deux faiblesses cependant:

- La partie Est du périmètre (bordure du lac Fetzara) où la jonction Makassa, route d'El Eulma n'est toujours pas réalisée.
- Le caractère des chemins d'exploitation qui ne sont ni surélevés ni en caillasses et ne sont pas praticables une partie de l'hiver.

Le réseau ferroviaire longe le territoire de la zone d'étude qui est constituée par la voie ferrée reliant Constantine à Annaba, qui fait quelque peu barrière. Elle est destinée à être doublée dans l'avenir.

I.4. LE RELIEF ET LA GEOMORPHOLOGIE

L'aire d'étude correspond à la partie occidentale de la grande plaine d'Annaba qui s'organise en arc de cercle autour du massif de l'Edough, elle est encadrée:

- ✓ Au Sud par un ensemble de hauteurs gréseuses du tell.
- ✓ A l'Ouest par un ensemble de hauteurs allongées Nord-Ouest à Sud-Est, et dominées par le djebel Safia.
- ✓ A l'Est par le petit massif de Boumaiza, qui n'est qu'une avancée du massif de l'Edough à altitude basse.

Entre ces massifs, et en contraste brutal, la dépression Guerbes/Fetzara se présente comme une vaste plaine de remblaiement alluvial, très plate et très basse (altitude de 20 - 30 m au Sud, et 10-15 m au Nord). [1]

I.5. LA GEOLOGIE ET LA STRATIGRAPHIE

Sur le plan géologique, notre périmètre d'étude présente une structure plus ou moins homogène. Il représente cinq catégories et chaque catégorie comporte des caractéristiques différentes comme le présentent le **tableau I.1** et la **figure I.3**.

Tableau I.1 : caractéristique des zones homogènes

Catégorie						
	I	II	III	IV	\mathbf{V}	
Caractéristique						
Profondeur	profonds	Moyenne	peu	variable	insuffisants	
de sols						
texture	Moyenne à fine	Moyenne à fine	fin	grossière	Roques à faible profondeur	
drainage	Bon	mal	mal	mal	Très faible a nul	
topographie	Régulière	Faiblement ondulée	Moyennement ondulée	Régulière a ondulée	défavorable	
pente	Faible	fable	Jusqu'à 5%	Jusqu'à 10%	Relief accidenté	

Source : DSA Skikda (Direction du Service Agricole).

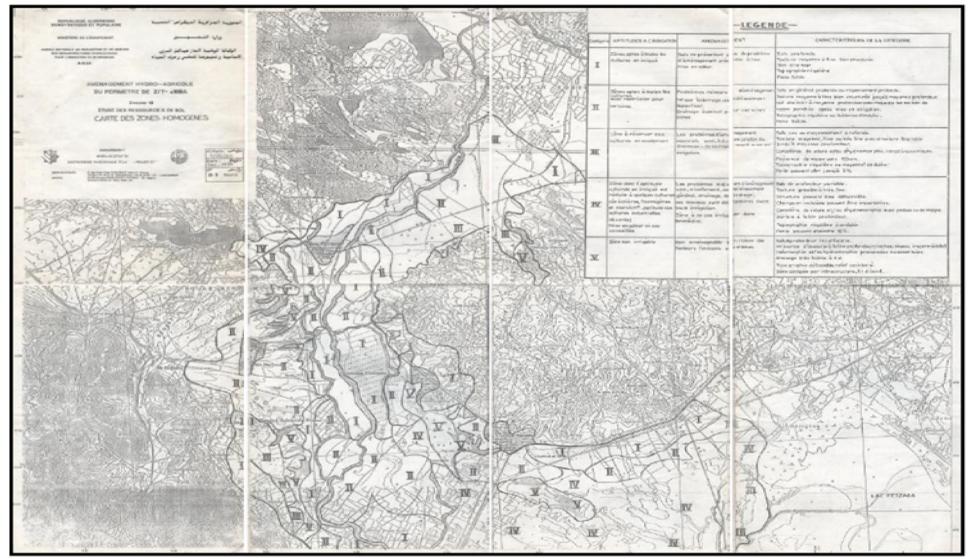


Figure I.3 : caractéristiques des zones homogènes

I.5.1. les formations géologiques

L'analyse des documents géologiques relatifs à la zone d'étude indique les formations géologiques suivantes :

- ✓ Des alluvions récentes du quaternaire constituées de limon, sable, gravier, et travertin qui occupent les plaines alluviales.
- ✓ Des affleurements de flush, de grès de Numidie (quartzite et rougeâtres), alternant avec des lits d'argile formant les reliefs des massifs du Nord-Ouest et Sud de la zone datant de l'Eocène supérieur, associés (surtout à l'Ouest de la zone) avec quelques rares affleurements de mimes et ammonites de pyrite du crétacé inferieur ainsi que du calcaire du trias.
- ✓ Des roches éruptives et métamorphiques (schistes cristallises et granites) du trias, formant les reliefs des massifs du Nord-Est de la zone.
- ✓ Quelques affleurements de calcaires de l'éocène moyen et inferieur constituant les massifs bordant la zone au Sud et au Sud-Ouest. [2]

I.6. L'HYDROGRAPHIE

L'aire d'étude est constituée par deux grands bassins ayant des caractéristiques très différentes.

- ✓ Le premier, intérieur, a la forme d'un trapèze, est limité au Sud par les monts constantinois, au Nord par le djebel Filfila ; à l'Ouest par le Djebel Arb Skikda et à l'Est par le djebel Menchema. Le réseau hydrographique formé par les deux oueds oued Emchekel et oued El-Hammam, deux importants cours d'eau qui affluent un peu en aval de Bekkouche-Lakhdar et formant l'oued El-Kebir Ouest ; sa superficie est d'environ 1120 km².
- ✓ Le second à proximité de la cote, embrasse le versant sud de l'Edough et le versant Nord de la basse chaine qui partage les eaux entre l'oued El-Aneb et le fetzara.

Dans ce bassin est comprise la plaine de l'oued El-Aneb d'une superficie de 6000 ha. le bassin est drainé principalement par le cours d'eau Oued El-Aneb qui afflue avec l'oued El- KebirOuest un peu en aval au Nord-Est de Ben-Azzouz avec l'apport des eaux de l'oued El- Aneb,le Kebir Ouest traverse la Garga Moussissi et la Garga Ben Mohamed, plaines marécageuses séparées par les gorges de Merabet Ali, et se jette dans la mer, son embouchure peu marquée est souvent obstruée par des dépôts sableux. En période de crue cet oued a un débit de 250 m³/s, il inonde les cultures des terres avoisinantes. [4]

La carte suivante représente le réseau hydrographique de la région de Ben Azzouz.

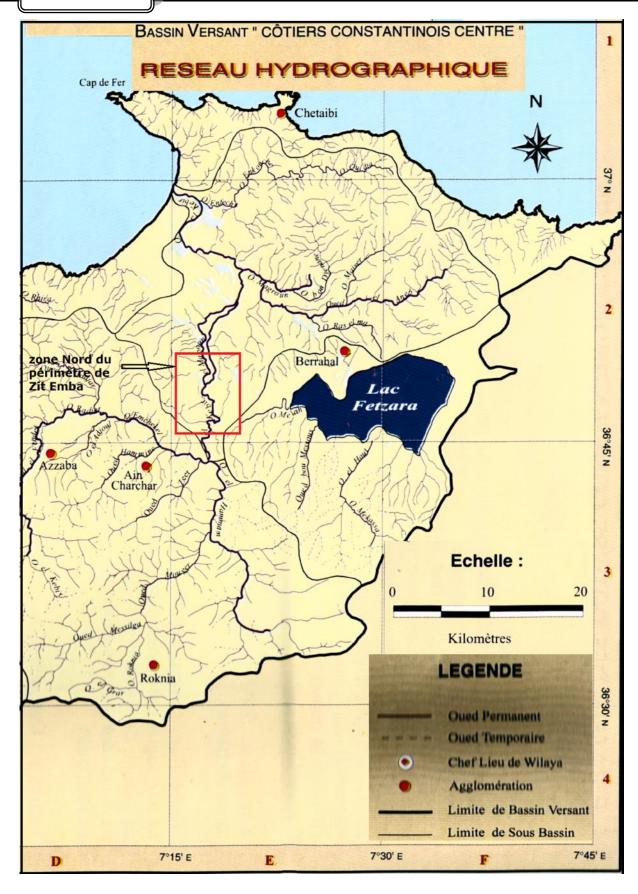
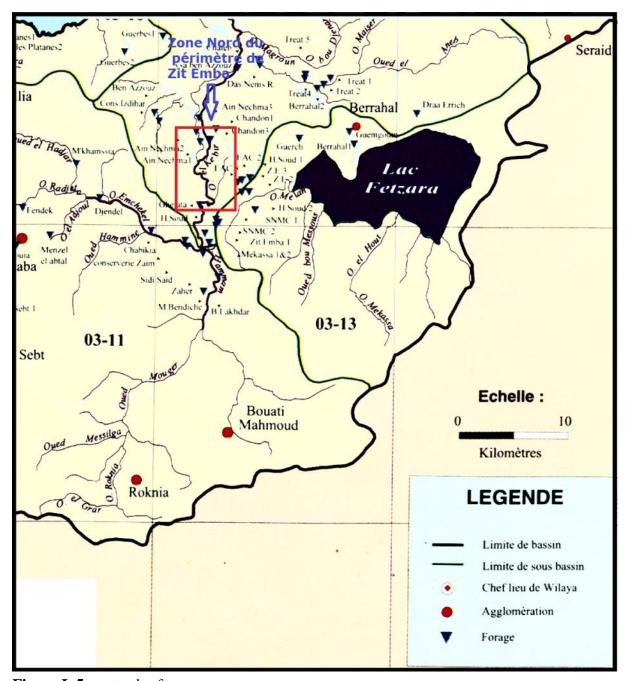



Figure I .4 : carte du réseau hydrographique

I.7. L'HYDROGEOLOGIE

Les diverses dépressions de la zone d'étude sont constituées par un remplissage alluvial hétérogène et devaient contenir de grands volumes d'eau, même si l'on ne peut pas parler de nappe unique. Beaucoup de puits creusés et des forages réalisés ces derniers temps sur l'ensemble de l'aire d'étude confirment cette hypothèse (**Figure I .5**).

Les cordons dunaires de Guerbes absorbent de grandes quantités d'eau qui sont en bonne partie rendues dans les zones de contact avec les formations alluviales des différentes dépressions des zones marécageuses. [4]

Figure I .5 : carte des forages

I.8. LA CLIMATOLOGIE

L'étude climatologique est basée sur l'analyse des principaux indices climatiques à savoir la température, l'humidité relative, les gelées, les vents et l'évaporation.

Le régime pluviométrique se caractérise par des pluies ayant souvent des averses en hiver qui diminuent presque régulièrement au printemps et atteignent finalement en été quelque millimètres par mois au total.

Les précipitations moyennes annuelles sont de l'ordre de 750.2 mm dont les valeurs maximales sont enregistrées aux mois de novembre (132.1 mm) et décembre (149.4 mm).

Le régime des températures est modéré. Il varie en fonction de l'éloignement par rapport à l'influence de la mer. Dans la zone d'étude les températures varient de 12°C à 26°C.

Les vitesses du vent sont relativement faibles et homogènes durant toute l'année. La moyenne annuelle est de 3.0 m/s, les vents secs et chauds du Sud soufflent en moyenne pendant 6 à 7 jours par an.

La quantité d'heures d'insolation est importante, avec une moyenne annuelle d'environ 2847 h/an. Soit une moyenne de 7,8 h/j

L'humidité moyenne de l'air est élevée toute l'année (plus de 66%) et les valeurs maximales sont atteintes durant les mois d'hiver (74 à 75)%.

L'évaporation est de l'ordre de 1629 mm par an. Elle atteint son maximum aux mois de Juillet et d'Aout, et son minimum aux mois de Décembre – Janvier et Février.

Les valeurs moyennes mensuelles minimales et maximales de l'évapotranspiration sont enregistrées respectivement pour les mois de Décembre (22,5 mm) et les mois de Juillet (173,9 mm).

I.9. LA VEGETATIOIN

La végétation naturelle dans notre aire d'étude reflète bien les conditions climatiques à savoir une région arrosée et humide a climat doux .On distingue :

- ✓ Les versants des montagnes et collines, la végétation est représentée par des groupements de l'étage bioclimatique du chêne liège, du chêne vert, du chêne zen et du pin maritime.
- ✓ Sur le cordon dunaire fixe de Guerbes, la végétation est composée de groupements végétaux de l'étage bioclimatique de 1'o1eolentisque (maquis).

Sur la plaine alluviale de l'oued Kebir Ouest et oued Mellah, la végétation est du type herbacée, cependant on rencontre par endroits (zone Mekkassa) des grandes plages de groupements d'o1eolentisque (maquis) et du peuplier et autres dans les berges de l'oued El-Kebir.

CHAPITRE I

I.10. CONCLUSION

A la suite de ces différentes études faites sur le périmètre dans ce chapitre nous sommes emmenés à constater que l'aménagement hydro-agricole du périmètre de Zit-Emba est, non seulement adapté à la région, mais aussi qu'il sera d'une grande utilité.

II.1. INTRODUCTION

L'étude est basée sur l'analyse des principaux paramètres climatiques tels que : la température, la pluviométrie, l'humidité relative, l'évaporation et les vents.

La connaissance des caractéristiques climatiques conditionne le développement des végétaux, et assure la bonne production.

Les données climatiques nécessaires à l'élaboration de la présente étude sont recueillies à partir de l'ANRH (Agence Nationale des Ressources Hydrauliques) sur une période de 41 ans et de l'ONM (Office National de la Météorologie) sur une période de 10 ans (1996-2005).

La localisation de la station considérée est donnée par le tableau suivant :

Tableau II.1: Coordonnées de station météorologiques (SKIKDA)

Station	Latitude (N)	Longitude (E)	Altitude (m)
SKIKDA	36°53	06°54E	2

Source: ONM Alger (office national de métrologie).

II.2. TEMPERATURE DE L'AIR

La température est un facteur du climat très important, car elle conditionne l'évapotranspiration. Dans la région de Skikda, la température est influencée par la mer qui se traduit par le mois le plus chaud qui est le mois d'août, alors que le mois le plus froid est le mois de janvier.

Les températures dans la zone d'étude sont données par le tableau ci-dessous.

Tableau II.2 : Les variations moyennes mensuelles et annuelles de la température en °C

Mois	Jan	Fév	Mars	Avril	Mai	Juin	Juil	Août	Sep	Oct	Nove	Déc	Année
T _{max}	16.8	16.2	18.9	20.4	23.0	26.8	28.8	30.0	27.5	25.6	20.6	17.8	23.0
$\mathbf{T}_{\mathbf{min}}$	9.0	8.5	10.8	12.4	15.8	19.5	22.0	23.0	20.4	17.3	13.0	10.2	15.5
T _{moy}	12.9	12.3	14.8	16.4	19.4	23.2	25.4	26.5	24.0	21.5	16.8	14.0	19.3

Source : ONM Alger (office national de métrologie).

Avec T_{min} : Température moyenne minimale observée pour chaque mois.

 T_{max} : Température moyenne maximale observée pour chaque mois.

 T_{mov} : moyenne mensuelle.

Analyse et interprétation :

D'après le tableau précédent, on distingue deux saisons typiques :

- Un été chaud avec une température moyenne maximale de 30.0°C en Août.
- Un hiver relativement doux avec une température moyenne minimale de 8.5 °C en Février.

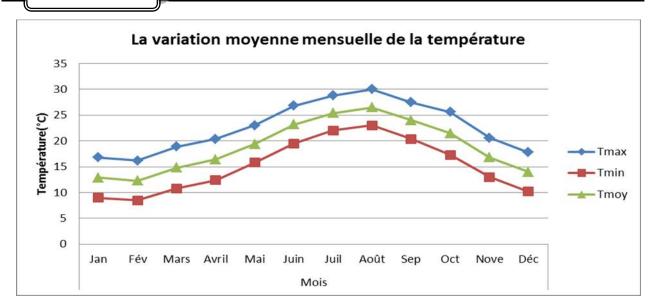


Figure II.1 : La variation moyenne mensuelle de la température.

II.3. L'HUMIDITE RELATIVE

C'est un élément important du cycle hydrologique contrôlant l'évaporation du sol et la couverture végétale et qui représente la quantité réelle de vapeur d'eau contenue dans l'air par rapport à celle que l'air pourrait contenir s'il était saturé à la même température.

Tableau II.3: Moyennes mensuelles et annuelles de l'Humidités relative en (%) :

Mois	Jan	Fév	Mars	Avril	Mai	Juin	Juil	Août	Sep	Oct	Nove	Déc	Année
HR	67	68	66	66	69	73	71	72	74	72	75	67	70
moy(%)													

Source : ONM Alger (office national de métrologie).

D'après le tableau ci-dessus, nous remarquons que l'humidité relative pour tous les mois est supérieure à 66%. La valeur moyenne annuelle d'humidité est de 70%.

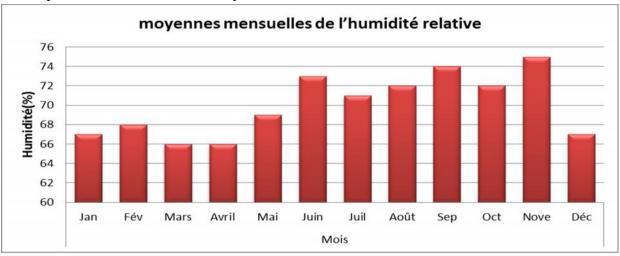


Figure II.2 : moyennes mensuelles de l'humidité relative

II.4. LES VENTS

II.4.1. Vitesse des vents

Le vent est un des éléments les plus caractéristiques du climat, car il favorise l'évapotranspiration. Son étude nous semble nécessaire pour l'orientation et l'implantation des brises vents.

Les moyennes mensuelles des vitesses du vent déterminées à la station de SKIKDA sont données par le tableau suivant :

Tableau II.4: Moyennes mensuelles et annuelle de la vitesse des vents

Mois	Jan	Fév	Mars	Avril	Mai	Juin	Juil	Août	Sep	Oct	Nove	Déc	Année
U m/s	3.6	3.6	3.1	3.1	2.5	2.5	2.6	2.5	2.7	2.8	3.5	3.8	3.0

Source : ONM Alger (office national de métrologie).

L'analyse de ce tableau montre une stabilité des vitesses tout le long de l'année. Les vitesses du vent sont relativement faibles et homogènes, avec une moyenne annuelle oscillant autour de 3.0 m/s.

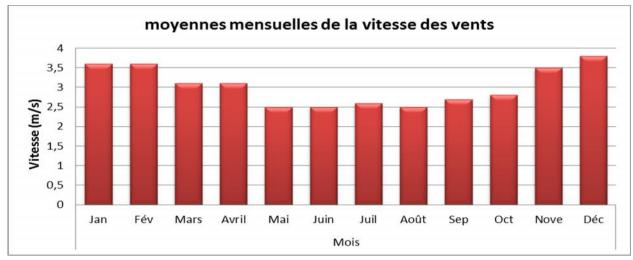


Figure II.3: moyennes mensuelles de la vitesse des vents

II.5. SIROCO

C'est un vent chaud et sec qui souffle du Sahara vers le littoral. Il est très néfaste pour les végétaux car il peut provoquer le flétrissement de la plante ainsi que les chutes de rendement, il augmente l'évapotranspiration des cultures à une fréquence annuelle assez faible, 4 à 5 jours par an, entre mai et septembre avec un maximum en août, donc sa connaissance est primordiale pour le choix des espèces à préconiser dans le périmètre.

II.6. EVAPORATION

Les références existantes sur la région sont celles du barrage de Zerdezas à partir des quelles la répartition annuelle de l'évaporation est comme suit :

Tableau II.5: Moyennes mensuelles et annuelle de l'Evaporation en mm

Mo	ois	Jan	Fév	Mar	Avril	Mai	Juin	Juil	Août	Sep	Oct	Nove	Déc	Année
E	mm	78.5	78.7	102.18	108.64	132.53	177.79	231.9	227.47	165.5	140.62	98.84	86.6	1629.27
	%	4.8	4.83	6.3	6.66	8.13	10.9	14.23	14	10.15	8.63	6.06	5.31	100

Source : ONM Alger (office national de métrologie).

On remarque que l'évaporation est importante en été, Elle atteint son maximum au mois de juillet avec une valeur de 231.9 mm .Le minimum est enregistré au mois de janvier avec une valeur de 78.5 mm, celle de la moyenne annuelle est de 1629.27mm.

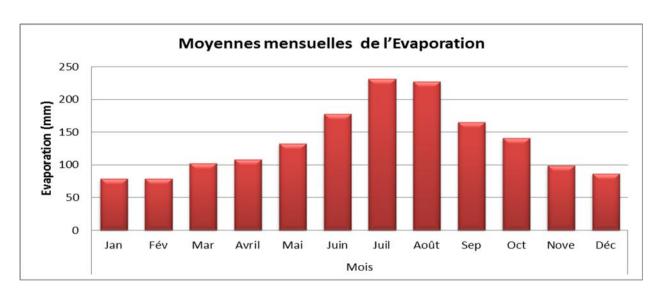


Figure II.4: Moyennes mensuelles de l'Evaporation

II.7. L'EVAPOTRANSPIRATION

C'est la somme des quantités d'eaux pouvant s'évaporer et être transpirées sur une surface donnée et pendant une période bien définir, elle est exprimée en **mm**.

Tableau II.6: Moyenne mensuelles et annuelle de l'évapotranspiration en mm

Mois	Jan	Fév	Mars	Avril	Mai	Juin	Juil	Août	Sep	Oct	Nove	Déc	Année
E(mm)	25.8	40.5	74	108.6	133	152.6	173.9	164	113.5	73.4	41.2	22.5	1123

Source : ONM Alger (office national de métrologie).

Sur les années d'observation (10 ans), l'évapotranspiration mesurée présente un maximum de **173.9 mm** en juillet et un minimum de **22.5 mm** enregistré en décembre. Le total annuel de l'évapotranspiration moyenne est de **1123 mm**.

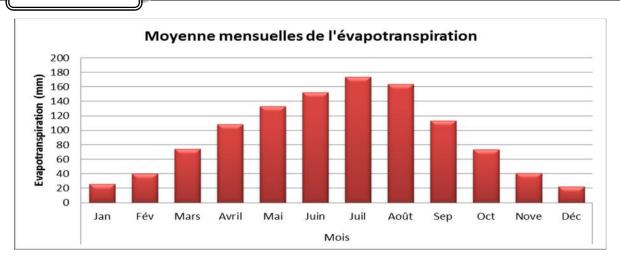


Figure II.5: Moyenne mensuelles de l'évapotranspiration

II.8. INSOLATION

L'insolation est la période durant laquelle le soleil brille sur le sol. Elle conditionne l'activité de la photosynthèse

Les valeurs mensuelles moyennes observées sont présentées au tableau suivant :

Tableau II.7: moyenne mensuelle et annuelle de L'insolation en heure

Mois	Jan	Fév	Mars	Avril	Mai	Juin	Juil	Août	Sep	Oct	Nove	Déc	Année
Moyenne	190	201	230	253	263	284	299	290	250	229	182	176	2847
(heure)													
Heure/jour	6.13	7.18	7.42	8.43	8.48	9.47	9.64	9.35	8.33	7.39	6.06	5.68	7.8

Source : Station météorologique de Skikda

D'après ce tableau on observe que la quantité d'aire d'ensoleillement dans la région est très élevée ; la moyenne annuelle est de 7.8 heures par jour. L'ensoleillement annuel total est de 2847heures réparties entre 1228 heures en hiver et 1619 heures en été.

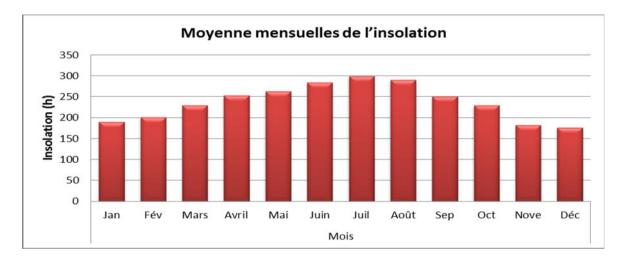


Figure II.6: Moyenne mensuelles de l'insolation

II.9. PLUVIOMETRIE:

Elle est caractérisée par un climat méditerranéen, l'irrégularité des précipitations annuelles et inter-saisonnière très importantes.

La répartition mensuelle des pluies est donnée par le tableau suivant.

Tableau II.8: Moyennes mensuelles et annuelle des précipitations en mm:

Mois	jan	fév	mars	avr	mai	Jui	juil	août	sep	oct	nov	déc	année
pluie	113.2	104.6	55.8	59.9	42.2	12.0	2.5	14.8	54.2	57.5	132.1	149.4	750.2
moy													

Source : ONM Alger (office national de métrologie).

D'après ce tableau, on remarque que la valeur maximale des précipitations est enregistrée au mois de Décembre (149.4 mm), tandis que le minimum est atteint au mois de juillet (2.5 mm). La précipitation moyenne annuelle pour cette région est de **750.2 mm**.

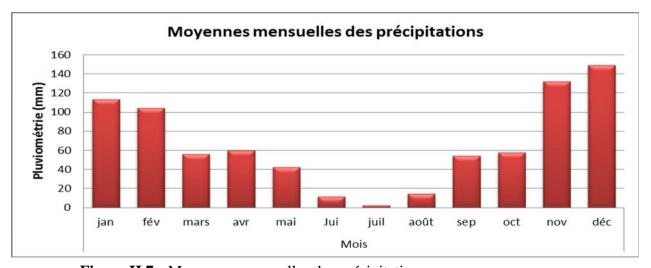


Figure II.7: Moyennes mensuelles des précipitations

II.10. LES INDICES CLIMATIQUES

L'indice est une codification du climat par des formules dans le but de voir l'interférence des différentes variables de ce climat et leur action sur les plantes, ces formules se basent principalement sur deux facteurs essentiels :

II.10.1. L'indice d'aridité de MARTON

Cet indice permet de préciser le degré de sécheresse de la région et par conséquent de renseigner sur l'indisponibilité de l'irrigation.

$$I_A = \frac{P}{T+10} \dots (II.1)$$

Avec : **P** : précipitation moyenne annuelles en (**mm**)

T: température moyenne annuelle en (°C)

I_A: indice d'aridité

Les limites des climats d'après l'indice climatique de MARTONNE sont donnée dons le tableau ci-dessous :

Tableau II.9 : Limite des climats d'après l'indice climatique de MARTON

VALEUR D'IA	TYPE DE CLIMAT	IRRIGATION
IA 5	Désertique	Indispensable
$5 < I_A $ 10	Très sec	Indispensable
$10 < I_A 20$	Sec	Souvent indispensable
$20 < I_A 30$	Relativement humide	Parfois utile
IA > 30	Humide	Inutile

Pour:
$$P = 750.2 \text{ mm}$$

 $T = 19.3 ^{\circ}C$

$$I_A = \frac{750.2}{19.3 + 10} = 25.6 \%$$

Selon l'indice d'aridité calculé, on constate d'après la classification ci-dessus, que la région est soumise à un climat relativement humide, et que l'irrigation est par fois utile.

II.10.2. Quotient pluviométrique d'EMBERGER

Le Quotient pluviométrique d'Emberger permet de déterminer l'étage bioclimatique et la valeur du coefficient pluviométrique en utilisant la formule et le diagramme bioclimatique d'Emberger.

$$Q = \frac{2000P}{(M+m)(M-m)}(II.2)$$

Où Q: coefficient pluviométrique d'EMBERGER

P: précipitation moyenne annuelle en (mm)

M: moyenne des maximas du mois le plus chaud (en °K)

m : moyenne des minimas du mois le plus froid (en °K)

Pour: P=750.2 mm; représente

M = 30.0°C; m = 8.5°C;

Le calcule du quotient pluviométrique donne les valeurs suivantes :

Tableau II.10: Quotient pluviométrique

Précipitations	m (k°)	M (k°)	Q (m /°K)	Etage bioclimatique
(mm)				
750.2	281.65	303.15	119.33	Sub-humid

D'après le diagramme bioclimatique d'EMBERGER, (**Figure II.8**), la valeur de $\mathbf{Q} = \mathbf{119.33} \ \mathbf{mm} \ / ^{\circ}\mathbf{K}$ pour une température du mois le plus froid, $\mathbf{T} = \mathbf{8.5} \ ^{\circ}\mathbf{C}$, nous donne un étage bioclimatique «Subhumide».

En portant la valeur de (Q) dans le diagramme bioclimatique et en fonction de la température moyenne minimale du mois le plus froid, on peut confirmer que notre région se situe dans :

L'étage bioclimatique : Sub-humide

➤ Sous étage : Hiver Chaud.

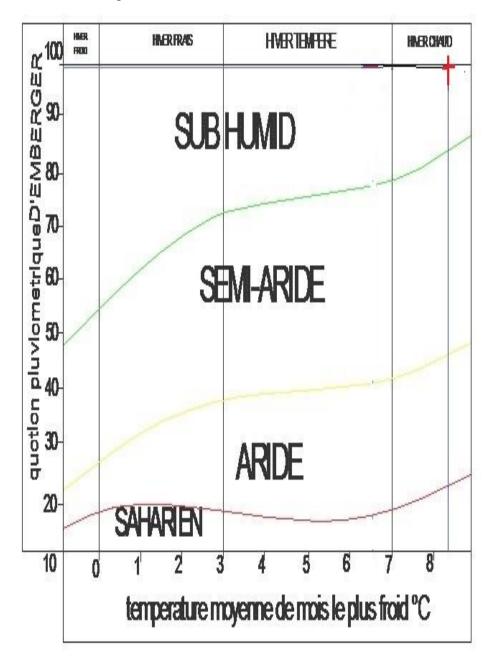


Figure II.8: Diagramme bioclimatique d'EMBERGER

II.10.3. Diagramme ombrothermique de « BAGNOULS ET GAUSSEN »

En appliquant la formule P = 2T, le diagramme permet de déterminer la période sèche, où le mois sec est celui où le total moyen des précipitations est inférieur ou égal au double de la température moyenne mensuelle exprimée en degrés centigrades.

Quand la courbe de température est au-dessus de celle des précipitations, la zone Délimitée représente la zone sèche.

Dans notre cas l'irrigation est indispensable à partir de la fin de Septembre jusqu'à Avril (**Figure II.9**).

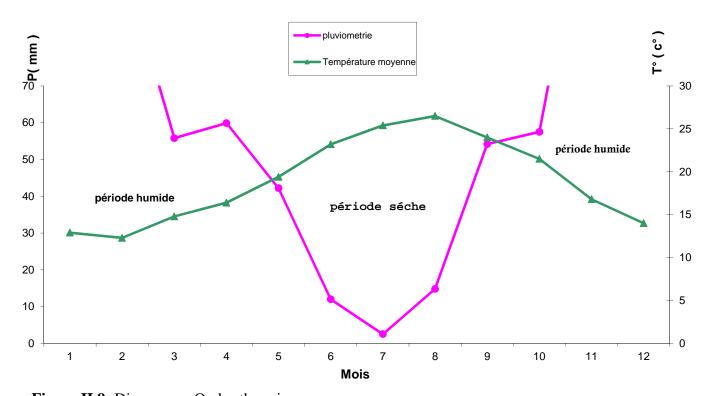


Figure II.9: Diagramme Ombrothermique

II.11. CONCLUSION

D'après les données climatologiques mesurées à partir de la station de SKIKDA, le calcul de l'indice d'aridité et suite à l'interprétation ci-dessus nous avons constatés ce qui suit :

- Le climat de la zone d'étude est de type SUB-HUMIDE CHAUD.
- L'écart entre les températures des mois de Juillet Août et celle du mois de Janvier atteint les **14**°C avec une moyenne annuelle de **19.30**°C.

On distingue deux saisons:

- ➤ Une saison caractérisée par des températures supérieures à 19°C (de Mai à Octobre);
 - ➤ Une saison où les températures ne dépassent pas les 16°C et ne descendent que rarement au-dessous de 12°C

La vitesse du vent dans la région montre une stabilité tout au long de l'année. En effet, le maximum est atteint au mois de décembre tandis que le minimum est atteint aux mois de juin et Juillet. La moyenne annuelle étant de 3.0 m/s.

Caractérisée par un climat sub-humide, la région reçoit en moyenne des pluies moyennes (750.2m).

III.1. INTRODUCTION

Le présent chapitre a pour but de déterminer les caractéristiques des pluies de fréquences données, qui conditionnent l'étude de notre projet pour une série d'observations requises de 41 ans, tels que :

- ✓ Le calcul des besoins des cultures à projeter dans le périmètre.
- ✓ Le dimensionnement du réseau de distribution.

III.2. LE RESEAU PLUVIOMETRIQUE

Pour l'étude des pluies nous avons utilisé la série pluviométrique de la station 03-11-06 qui dispose d'une série longue de 41 ans et représentative pour la zone d'étude, par l'Agence Nationale des Ressources en Hydrauliques (ANRH)

Le tableau N°III .1, ci-dessous, nous indique la position de cette station.

Tableau III .1. Caractéristiques de station pluviométrique

Nom	Code	Coordonnées	en Lambert	Altitude	Période d'observation	Nombre d'années
de la station		X(Km)	Y(Km)	(m)	u observation	observées
AZZABA PEPINIERE	031106	892,3	391,35	91	1968/1981 1983/2009	41

Source : ANRH (ALGER)

La série des précipitations moyennes mensuelles de la station pluviométrique AZZABA PEPINIERE est donnée dans le tableau ci-après :

Tableau III .2. Précipitations moyennes mensuelles en (mm)

Année	sept	oct	nov	dec	janv	fév	mars	avril	mai	juin	juil	aout	annuel
1968	2,6	5,4	46,2	130,1	105,5	48,8	54	17,5	7,2	2,7	0	5,7	425,7
1969	10,4	19,1	26	131,9	95	31,1	49	3,7	2	0	0	2	370,2
1970	0	106	1,8	53	78,8	77,4	105,4	44,6	22,7	3,6	0,4	0	493,7
1971	44,7	112,6	53,9	28,9	178,5	68,8	89,1	108,9	48,6	17,4	0,1	6,3	757,8
1972	38,6	67,9	2,4	138,3	211,6	119,5	142,4	23,2	0	28,9	0	3	775,8
1973	52,6	43,9	16,8	74,7	32,4	89,9	32,2	83,4	25,5	0	0,5	0	451,9
1974	39,6	90,6	102,6	45,1	22,4	75,9	82,9	2,6	74,8	1,6	0	19,4	557,5
1975	17,9	26	135,3	113,8	90,2	159,2	105,3	54,8	38,3	1,8	2,6	7,9	753,1
1976	45,2	207,1	193	9,1	57,2	10,1	5,6	40,3	45,9	16,8	0,4	3,3	634
1977	3,1	27,3	155,5	7,5	77,3	95,4	59,2	124	62,4	0	0	3,3	615
1978	1,9	49,1	84,9	60,1	29,3	174,6	75,1	184,8	12,4	15,5	1,1	1,2	690
1979	36,4	32,7	122,7	17,6	38	10,3	104	65,2	32,4	2,2	0	0,2	461,7
1980	32,2	40,1	75,5	108,1	67,4	65,2	21,4	16,9	12,4	11,5	0,3	2,2	453,2
1981	3,9	36,3	40,4	144,9	118,6	111,9	113,4	65,2	27,7	0	0,6	7,7	670,6

1983	23,3	24,3	213,1	64,2	174,7	226,8	35,2	38,1	16	5,7	0	0,4	821,8
1984	26,9	147,8	3,6	280,4	128,8	66,3	159,8	38,3	34,8	0	0	1,2	887,9
1985	44,7	14,9	40	35	146,6	56,8	90,3	33,5	1,3	7,4	1,3	0	471,8
1986	22,6	83,4	122,6	175,6	106,6	264,8	101,8	40,4	60,5	0	0	0	978,3
1987	26,9	38,7	85,7	24,3	75,7	76,3	65	7,8	18,8	29,3	0	0	448,5
1988	44,9	0	32,6	190,7	46,1	60,9	50	71,2	1,4	6,1	0,4	3,3	507,6
1989	9,9	74,6	52,9	53,1	143	0	30,8	49,3	26,1	27,9	0	26,2	493,8
1990	0	42,3	149	302,6	92,5	80,7	68,6	24,5	0	6,1	0,4	3,3	770
1991	44,1	139,9	43,9	1,3	87,6	73,1	62,6	156,3	19,6	8,4	1,3	0,3	638,4
1992	0	12,3	50,9	190,6	76,5	62,6	66,4	4,5	25,3	0	0	0	489,1
1993	19,2	61,1	14,6	117,3	94	105,3	65,3	52,4	26,6	0	0	0	555,8
1994	6,9	83,8	26,8	136,2	269,4	7,9	94,8	7,2	0	2,3	0	0,4	635,7
1995	39,4	2,2	78,8	78,1	70,7	226,1	85,4	31,4	11,5	0	0	1,7	625,3
1996	37,3	6,1	13,6	96,4	64,8	25,7	18,7	19,8	0,3	0	4,9	6,7	294,3
1997	15,7	95,3	200,1	149,2	72,3	119,7	94	57,2	100,4	5,3	0	2,1	911,3
1998	41,1	26,6	172,2	85,4	115,4	60,7	61,4	40,7	0	5,8	0	0,4	609,7
1999	2,7	22,5	79,3	124,5	68,3	16,9	8,4	6	86,9	3,1	0	2,3	420,9
2000	0	47,6	27,3	84,6	170,2	101,4	17,4	44,6	11,9	0	0	0	505
2001	41,4	9,8	48,5	45,3	32,5	80,9	6,3	28,2	1,6	0	2,9	16,9	314,3
2002	7	26,4	197,8	168,8	190,5	131,7	26,3	76,8	10,6	0	0	3,3	839,2
2003	65,2	21,4	27,4	170,8	111,2	12,9	39,9	57	35,3	40,5	0	0	581,6
2004	51,4	11,4	231,4	234,1	98,3	197,7	59,8	84,3	0	1,3	0	5,9	975,6

CHAPITRE III

2005

2006

2007

2008

2009

2,7

11,1

4,4

64,7

146

74,2

48,8

8,3

55,4

19,8

22

85,9

75,5

72,6

167,5 166,1

95

15,9

44,7

126,6

157,5

150,5

82

112,2

Source : ANRH (ALGER)

1,7

0

0

0

5,8

0

2,1

3,4

0

510

625,8

495,3

455,9

623,3

Hydrologie

L'analyse des pluies à la station 031106 montre que ces dernières sont bien réparties au cours de l'année (le maximum se situe entre décembre et janvier), sauf pour les mois de juin à août (période d'été) ou la pluie moyenne mensuelle est nettement insuffisante.

100,6

38

23

55,4

40,8

27,5

199,4

75,3

65,7

28,9

5,9

20,7

52,3

42,3

20,5

8,1

2,7

37,1

12,6

15,7

3,5

0

1,3

4,6

La répartition des pluies est caractérisée par deux saisons bien marquées :

- ✓ Une période humide allant de Novembre à Avril qui correspond à 80% du total annuel.
- ✓ Une saison sèche allant de Mai à Octobre avec des minima en juillet et août durant lesquels les précipitations sont pratiquement très faibles.

III.3. HOMOGENEITE DE LA SERIE PLUVIOMETRIQUE

La série à laquelle nous faisons allusion dans cette partie est la série enregistrée au niveau de la station pluviométrique d'AZZABA PEPINIERE: 031106, les valeurs de cette série sont représentées dans le tableau N° III.2.

Cette série est caractérisée par le fait qu'elle s'étend sur une durée d'observations de 41 ans ce qui nous permettra de bien apprécier les variations de la pluviométrie au niveau de la région. Monsieur

CHAPITRE III Hydrologie

Donc, nous allons dans cette partie tester l'homogénéité de cette série afin de détecter et de corriger les anomalies ou les valeurs erronées qui peuvent exister. Pour cela nous allons utiliser le test de Wilcoxon.

Test de Wilcoxon

Ce test consiste à diviser la série pluviométrique d'origine en deux sous séries X et Y de telle sorte que N1 et N2 représentent respectivement la taille des deux sous séries, (généralement on prend N2 > N1).

Nous allons par la suite classer les valeurs de la série pluviométrique d'origine par ordre croissant en prenant le soin d'attribuer pour chaque valeur son rang et le nom de la sous série à laquelle elle appartient.

Wilcoxon a montré que la série est homogène avec une probabilité de 95%, si la relation ci-dessous est vérifiée. [7]

Avec:

Wmin
$$<$$
Wx $<$ Wmax $\mathbf{W}\mathbf{x} = |Rang|$ $\mathbf{W}\mathbf{x}$: Somme des rangs de sous séries

$$W_{\min} = \left(\frac{(N_1 + N_2 + 1)N_1 - 1}{2}\right) - 1.96\left(\frac{N_1 N_2 (N_1 + N_2 + 1)}{12}\right)^{\frac{1}{2}} \dots \dots (III.1)$$

$$W_{\text{max}} = [(N_1 + N_2 + 1).N_1 - W_{\text{min}}]$$
 (III.2)

Le tableau suivant détaille le procédé de Test d'homogénéité pour la station de AZZABA PEPINIERE code (031106).

Tableau III.3 : Détaille du procédé de Test d'homogénéité pour la station d'AZZABA PEPINIERE code (031106)

Série	Série X	Séries-Y	Rang	TRI	XunionY
origine					
425,7	425,7	493,8	1	294,3	У
370,2	370,2	770	2	314,3	У
493,7	493,7	638,4	3	370,2	X
757,8	757,8	489,1	4	420,9	Υ
775,8	775,8	555,8	5	425,7	Х
451,9	451,9	635,7	6	448,5	Х
557,5	557,5	625,3	7	451,9	Х
753,1	753,1	294,3	8	453,2	Х
634	634	911,3	9	455,9	Υ
615	615	609,7	10	461,7	Х
690	690	420,9	11	471,8	Х
461,7	461,7	505	12	489,1	Υ
453,2	453,2	314,3	13	493,7	Х
670,6	670,6	839,2	14	493,8	Υ
821,8	821,8	581,6	15	495,3	Υ

887,9	887,9	975,6	16	505	Υ
471,8	471,8	510	17	507,6	Х
978,3	978,3	625,8	18	510	Υ
448,5	448,5	495,3	19	555,8	Υ
507,6	507,6	455,9	20	557,5	Х
493,8	-	623,3	21	581,6	Υ
770	-	-	22	609,7	Υ
638,4	-	-	23	615	Х
489,1	-	-	24	623,3	Υ
555,8	-	-	25	625,3	Υ
635,7	-	-	26	625,8	У
625,3	-	-	27	634	х
294,3	-	-	28	635,7	У
911,3	-	-	29	638,4	У
609,7	-	-	30	670,6	х
420,9	-	-	31	690	х
505	-	-	32	753,1	х
314,3	-	-	33	757,8	х
839,2	-	-	34	770	У
581,6	-	-	35	775,8	х
975,6	-	-	36	821,8	х
510	-	-	37	839,2	У
625,8	-	-	38	887,9	х
495,3	-	-	39	911,3	У
455,9	-	-	40	975,6	У
623,3	-	-	41	978,3	х

Wx = 426

Wmin = 344,35

Wmax =495,65

Wmin<Wx<Wmax 344,35<426<495,65

La condition de M^r Wilcoxon est vérifiée, donc la série des précipitations moyennes annuelles de la station d'AZZABA PEPINIERE code (031106) est homogène.

III.4. ETUDE STATISTIQUE DES PRECIPITATIONS

La pluviométrie est souvent ajustable à des lois statistiques très nombreuses ; on utilise pour notre projet, celles qui garantissent le meilleur ajustement possible. Les lois d'ajustement les plus communément employées sont les suivantes :

- ➤ Loi de Gauss ou loi Normale.
- ➤ Loi De Gibrat-Galton ou loi log-Normale.
- ➤ Loi De Gumbel.

III.4.1. Traitement des données

La simulation des apports annuels avec le logiciel HYFRAN nous donne les résultats suivants :

Station d'AZZABA PEPINIERE

- ✓ Nombre d'observations : 41
- ✓ Minimum: 294

CHAPITRE III Hydrologie

✓ Maximum: 978
 ✓ Moyenne: 599
 ✓ Ecart-type:172
 ✓ Médiane: 581

✓ Coefficient de variation (Cv): 0.287
 ✓ Coefficient d'asymétrie (Cs): 0.540
 ✓ Coefficient d'aplatissement (Ck): 2.46

III.4.2. Ajustement de la série pluviométrique

On soumet la série pluviométrique annuelle de la station retenue à l'ajustement à la loi Normale et à la loi log-Normale.

III.4.2.1. Ajustement à la loi de Gauss (loi Normale)

L'ajustement des séries par la loi normale ou loi de Gauss s'adapte bien avec les pluies moyennes annuelles. En effet sa fonction de répartition est de la forme [7]

$$F(u) = \frac{1}{\sqrt{2f}} \int_{-\infty}^{\infty} Exp\left(\frac{-1}{2x^{2}}\right) du \qquad (III.3)$$

Pour notre projet, il sera utile de connaître les variations annuelles des précipitations pour une période de retour de 5ans.

L'ajustement est fait au moyen du logiciel "Hyfran" qui est disponible au centre de calcul de l'ENSH.

Les résultats de l'ajustement de la série des pluies moyennes annuelles de la station d'AZZABA sont regroupés dans le tableau III.3 et la figure III.1 :

Tableau.III.4: Ajustement à la loi de Gauss (loi normale)

Taille n=41

Moyenne=599.439

Ecart-type=172.232

Niveau de confiance=95%

T	\mathbf{q}	XT	Ecart-type	Intervalle de confiance
5.0	0.800	744	31.4	683-806
2.0	0.500	599	26.9	547-652
1.25	0.200	455	31.4	393-516

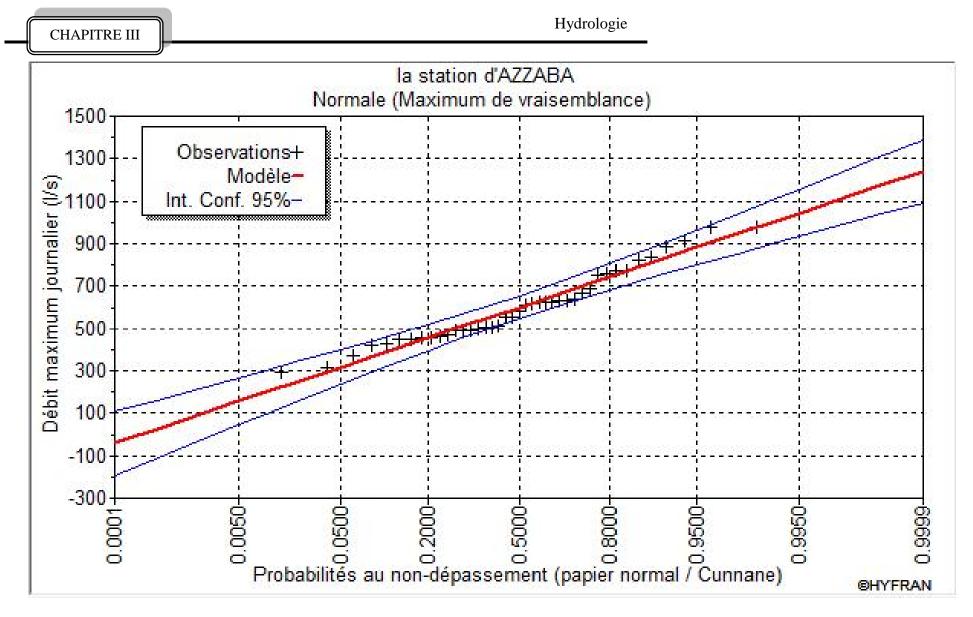


Figure III.1: Ajustement à une loi Normale.

Hydrologie

III.4.2.2. Ajustement à la loi de Galton (loi log-Normale)

Les résultats de l'ajustement de la série des pluies moyennes annuelles de la station d'AZZABA PEPINIERE sont regroupés dans le tableau III.4, et la figure III.2.

Tableau.III.5: Ajustement à la loi de Galton (loi Log-normale) :

Taille n=41

Moyenne=6.35582

Ecart-type=0.28876

Niveau de confiance=95%

T	q	XT	Ecart-type	Intervalle de confiance
5.0	0.800	734	38.7	658-810
2.0	0.500	576	26.0	525-627
1.25	0.200	452	23.8	405-498

CHAPITRE III Hydrologie

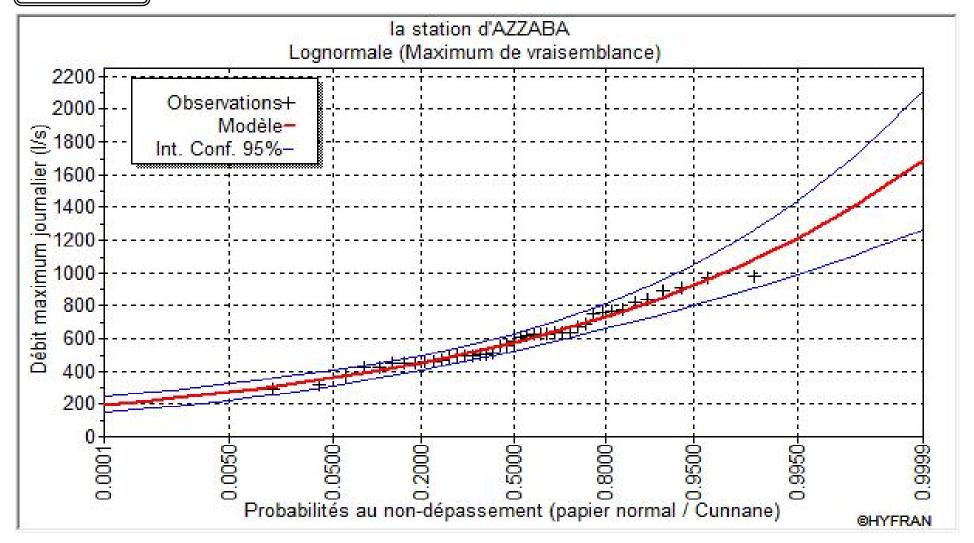


Figure III.2: Ajustement à une loi log-Normale.

CHAPITRE III Hydrologie

III.4.3. Test de validité d'un ajustement

La loi choisie pour ajuster la distribution statistique de l'échantillon, ne représente qu'approximativement l'échantillon étudié, l'erreur commise en adoptant une loi donnée est une erreur d'adéquation. Il convient par conséquent de comparer l'adéquation de ces lois afin d'adopter le meilleur ajustement. L'un des tests le plus employé, est le test du Khi carré « ² ». [7]

III.4.3.1. Test de validité de l'ajustement à la loi Normale

Le test de validité de Khi carrée pour l'ajustement à la loi Normale est fait par le logiciel **HYFRAN**

Station d'AZZABA

• Test d'adéquation : Loi Normale

Résultats

- ➤ Khi carré = 7.98
- \triangleright p-value = 0.1576
- Degrés de liberté : 5
- Nombre des classes : 8

La probabilité donnée montre l'adaptation de la loi normale pour représenter la distribution fréquentielle des pluies moyennes annuelles de la station d'AZZABA.

III.4.3.2. Test de validité d'ajustement à la loi log-Normale

Station d'AZZABA

• Test d'adéquation : Loi log-Normale

Résultats

- \rightarrow Khi carré = 5.63
- \rightarrow p-value p(2) = 0.3435
- Degrés de liberté : 5
- Nombre des classes : 8

Le test de Khi carré et les Figures N° (III.I); N° (III.2) montrent que la loi de Log-Normale présente une adéquation meilleure que la loi Normale.

III.5. DETERMINATION DE L'ANNEE DE CALCUL

La détermination de l'année de calcul a pour but de connaître la quantité de pluie qui peut être utilisée par la plante; elle est une fraction de la pluie efficace (pluie de probabilité 80%), (de l'année de calcul de P80%)

Pour trouver la pluviométrie moyenne mensuelle de probabilité 80% on utilise la loi suivante :

$$P_{moy\,80\%}$$
 de chaque mois = $P_{moy\,de\ chaque\ mois}$. $\frac{P_{th\'eorique\ (80\%)\ annuelle}}{P_{th\'eorique\ (50\%)\ annuelle}}$ (VII.3)

D'après le tableau III.4 : Ajustement à la loi de Galton (loi Log-normale) on a trouvé que :

$$P_{\it th\'eorique~80\,\%~annuelle}=452~mm$$
 .

$$P_{th\acute{e}orique\ 50\%\ annuelle} = 576\ mm$$
 .

 P_{moy} De chaque mois sont données par le tableau suivant:

Tableau III.6: Pluviométrie moyenne pour chaque mois en mm

													Année
P _{moy} (mm)	99,7	84,2	66,9	47,5	23,8	6,4	0,5	3,6	27,5	50	79,1	110,8	600

Nous avons:

$$P_{moy\ mensuelle\ de\ 80\,\%} = .rac{P_{th\'eorique}}{P_{moy\ annuelle}}.P_{moy\ mensuelle} = 0,785\ P_{moy\ mensuelle}$$

Les résultats de calcul donnés par le tableau suivant :

Tableau III.7: L'Année de calcul

Mois	Jan	Fev	Mars	Avril	Mai	Juin	Juil	Août	Sep	Oct.	Nov	Dec	Année
P _{moy} mens (mm)	78.3	66.1	52.5	37.3	18.7	5.0	0.4	2.8	21.6	39.3	62.1	87.0	471.1

III.6. CONCLUSION

D'après ce tableau on en déduit que la répartition des pluies est caractérisée par deux saisons bien marquées :

- ✓ Une période humide allant de Novembre à Avril qui correspond à 80% du total annuel.
- ✓ Une saison sèche allant de Mai à Octobre avec des minima en juillet et août durant lesquels les précipitations sont pratiquement très faibles.

RESSOURCE EN SOL

IV.1. INTRODUCTION

L'étude agro-pédologique a pour but de définir les sols destinés à l'irrigation ou de localiser les zones aptes à la mise en valeurs en irrigation ainsi que les caractéristiques hydrodynamiques de ces sols indispensables pour le calcul des doses d'arrosages et l'emplacement des réseaux d'irrigation et de drainage.

Les principales contraintes et critères pris en considération pour la classification des sols sont : la texture, le critère d'hydromorphie, la présence et la profondeur de la nappe, la porosité, la salinité et le calcaire actif, bien qu'ils sont localisés dans des zones précises.

Avant d'entamer notre étude, il faut d'abord localiser et quantifier l'eau nécessaire à l'irrigation. Pour cela et à travers ce chapitre on va présenter les ressources en eau qui peuvent alimenter notre zone d'étude.

IV.2. LA PEDOGENESE ET LA TYPOLOGIE DES SOLS

Les principaux traits pédologiques qui caractérisent notre zone d'étude sont les suivants :

- ✓ La Vertisolisation qui se caractérise par la présence de fortes teneurs en argile, généralement du type gonflant, et qui donne tendance vers une structuration fine en surface, celle-ci devient plus large en profondeur.
- ✓ L'halomorphie, qui donne naissance à des sols plus ou moins riches en sels, où dans certains cas, le complexe adsorbant est saturé en ions sodiums (Na ⁺).
- ✓ La fertilisation qui confère au sol une couleur très accusée rouge à brun rougeâtre.

IV.3. LA CLASSIFICATION DES SOLS

La prospection pédologique et l'analyse des échantillons au laboratoire, ont permis de reconnaître et différencier plusieurs types de sols répartis dans quatre (04) classes :

IV.3.1. Les sols peu évolués

Ces sols n'ont subi qu'une faible évolution et gardent l'essentiel des caractéristiques des roches mères environnantes. Leur profil pédologiques est assez profond, homogène, et à texture généralement fine a moyennement fine. Néanmoins, des processus secondaires de pédogenèse se manifestent par endroit tel que, la vertisolisation, la salinisation et l'hydromorphie des horizons de profondeur et parfois de surface. Ces trois aspects, pouvant agir conjointement ou individuellement ; mais ils restent fortement liés à la lithologie des terrasses et des plaines alluviales.

IV.3.2. Les vertisols

Ces sols présentent un aspect de surface caractérisé par de grosses mottes et dont le profil est profond et de couleur foncée, les horizons sont peu différenciés et ne peuvent être distingués que par la structure arrondie en surface, polyédrique grossière élargie en profondeur. Les fentes de retrait sont perceptibles (quelques millimètres de diamètre) parfois ce sont les facettes lisses résultant des mouvements internes (rétraction et gonflement

des argiles) qui sont les plus observés. Ils sont rencontrés dans la partie centrale du périmètre et au niveau des différentes dépressions.

IV.3.3. Les sols calcimagnésiques

Cette classe est subdivisé en deux groupes les carbonatés et les saturés. Ces sols se caractérisent par un profil constitué d'un horizon A humifère et parfois caillouteux de texture moyenne à légère, d'un horizon intermédiaire riche en calcaire (amas, nodules) reposant sur une accumulation calcaire continue rarement dure.

IV.3.4. Les sols à sesquioxyde de fer et de manganèse

Ces sols ont des réserves calciques se prolongent là où la lithologie est dominée par le calcaire conglomératique, grès et grés calcaire, leur couleur tourne autour du rouge et du brun rougeâtre, ils ont été observé au Sud de Ben Azzouz.

IV.4. L'ACTUALISATION DE L'ETUDE HYDRODYNAMIQUE

La méthodologie suivie a pour objectif la vérification et l'actualisation des caractéristiques hydrodynamiques de la zone d'étude. On a des mesures de perméabilité verticale au double anneau (méthode de Muntz) et des mesures de conductivité hydrauliques (méthode de Porchet) ont été effectuées, et pour estimer la réserve facilement utilisable et la porosité, des échantillons de sol ont été prélevés sur des profils pédologiques.

IV.4.1. La perméabilité du sol

La méthode utilisée est celle du double anneau qui permet de déterminer la vitesse d'infiltration (perméabilité verticale).

On enfonce dans le sol deux cylindres de même axe, d'environ 25 et 50 cm de diamètre. L'on remplit d'eau au même niveau au début de l'opération et 1'on mesure dans la partie centrale à intervalles de temps déterminé les niveaux de l'eau qui s'abaisse.

Les résultats des mesures sont résumés dans le Tableau IV.1. L'analyse de ce tableau, montre que dans leur globalité les sols sont moyennement perméables à perméables même si nous avons enregistré une perméabilité faible. [1]

L'analyse des résultats

Tableau IV.1 : Résultats de mesures de perméabilité de surface

Type de sols	Zone homogènes	MUNTZ cm/h
	nomogenes	moyenne
1 alagas das sala man kushika		
1-classe des sols peu évolués		
1.1-Apport alluvial 1.1.1-modal	I	2.62
1.1.2-vertique	I	2,63 3,00
1.1.3-vertique-hydromorphe	III	0,55
1.1.4-hydromorphe	II	2,34
1.1.5-hydromorphe-halomorphe	III	3,85
1.2-Apport alluvial-colluvial	111	3,63
1.2.1-modal	I+II	3,10
1.2.2-hydromorphe	III	0,85
1.3-Apport colluvial	111	0,03
1.3.1-modal	I+II+III+V	2,42
1.3.2-vertique	III	1,94
1.3.3-hydromorphe	II+III	2,69
1.3.3-nydromorphe	117111	2,07
Moyenne	-	3,10
2- Classe des vertisols		
		2.00
2.1-A drainage externe possible 2.1.1-modal	II	2,09
2.1.2-hydromorphe	III	2,60 3,52
2.1.3-halomorphe	III	0,16
2.2-A drainage externe nul ou	111	1,6
réduit		1,0
2.2.1-modal	II	2,20
2.2.2-hydromorphe	IV	1,87
2.2.3-hydromorphe-halomorphe	IV	0,73
2.2.3 Hydromorphe haromorphe	1 4	
3-sols calcimagnéstique	II	1,38
4-sols rouges fersiallitique	I	2,56
5 and a bruduom ome bra		
5-sols hydromorphe	137 0-37	1.0
5.1-A pseudogley de surface	IV&V	1,9
5.2-halomorphe	V	2,82
Moyenne		2,36

Source: DSA Skikda (Direction du Service Agricole).

IV.4.2. La conductivité hydraulique

La nappe se situant presque partout à plus de 1,5 m de profondeur, souvent à plus de 2 m, seule la méthode PORCHET, a pu être utilisée. Elle consiste à remplir d'eau un trou de sonde et à mesurer la vitesse d'abaissement du niveau de l'eau due surtout à l'infiltration

horizontale. Les résultats de mesures d'actualisation (tableau IV-2) montrent une variation entre (9,06 et 32,14) m/j. Selon la classification FAO, la majorité de ces valeurs indiquent que les sols sont caractérisés par une conductivité très grande. Les zones en question sont des unités éparses et représentée sur le tableau suivant [1] :

Tableau IV.2 : Résultats de la conductivité hydraulique :

		PORCHET
Type de sols	Zone	m/j
	homogènes	moyenne
1-classe des sols peu évolués		
1.1-Apport alluvial		
1.1.1-modal	I	28,40
1.1.2-vertique	II	25,67
1.1.3-vertique-hydromorphe	III	16,57
1.1.4-hydromorphe	II	12,18
1.1.5-hydromorphe-halomorphe	III	24,74
1.2-Apport alluvial-colluvial		
1.2.1-modal	I+II	30,78
1.2.2-hydromorphe	III	37,00
1.3-Apport colluvial		
1.3.1-modal	I+II+III+V	27,55
1.3.2-vertique	III	20,53
1.3.3-hydromorphe	II+III	15,20
, ,		
Moyenne	-	23,86
2- Classe des vertisols		
2.1-A drainage externe possible		17,45
2.1.1-modal	II	14,50
2.1.2-hydromorphe	III	20,55
2.1.3-halomorphe	III	17,30
2.2-A drainage externe nul ou		13,88
réduit		
2.2.1-modal	II	21,87
2.2.2-hydromorphe	IV	9,06
2.2.3-hydromorphe-halomorphe	IV	10,73
3-sols calcimagnéstique	II	32,14
4-sols rouges fersiallitique	I	9,40
. 2222 20 20 20 20 20 20 20 20 20 20 20 2	1	-,
5-sols hydromorphe		
5.1-A pseudogley de surface	IV&V	12,14
5.2-halomorphe	V	18,85
c momorphe	,	10,00
Moyenne		15,49
1.10 j 011110		, .,

Source : DSA Skikda (Direction du Service Agricole).

IV.4.3. La densité apparente et la densité réelle

Deux méthodes ont été utilisées :

- ✓ Détermination au laboratoire sur motte de terre par la méthode au mercure, pour la majorité des échantillons.
- ✓ Mesure par la méthode du cylindre, pour une vingtaine d'échantillons. On enfonce dans le sol un cylindre d'un volume connu (100 cm³), puis l'on coupe la terre au ras de celui-ci avec la lame d'un couteau. Apres séchage a l'étuve à 105°C, la terre est pesée (P), et l'on a :

Densité apparente :
$$DA = \frac{P}{V}$$

Les densités réelle et apparente, servent à calculer la porosité des sols mais; également les doses d'irrigation et renseignent bien sur l'état structural des sols (une faible densité apparente correspondant à un bon état structural et une bonne porosité),

Les densités réelles varient de 2,2 à 2,9 et décroissent en fonction de la profondeur.

Les densités apparentes varient d'avantage de 1,4 à 2,1 et plus; ces variations sont liées à la texture et à la structure du sol. Les sols à texture très fine ont une forte densité apparente de l'ordre de plus de 2 (mauvais état structural). [1]

IV.4.4. La porosité

La porosité qui représente tous les vides du sol est exprimée en pourcentage du volume du sol non occupé par les substances solides. La porosité est dépendante de la densité apparente ainsi que la densité réelle. La porosité varie en fonction de la texture et de la structure du sol; mais en sens inverse : les sols à faible densité apparente ont une forte porosité, La porosité varie de 4,5% à 37,5%, l'écart entre ces deux extrêmes est important. [2]

A l'intérieur d'un même profil ; la porosité diminue en profondeur ; pour illustrer ceci nous présentons les exemples suivants :

Tableau IV.3. Variation de la porosité en fonction de la profondeur

N° du profil	Profondeur	texture	DR	DA	Porosite en %
	0 - 40	Moyenne	2.4	1.60	33,33
248	4 0 – 80	Moyenne	2.4	1,70	29,10
	0 - 40	Moyenne	2.3	1,85	19,50
164	4 0 – 80	Fine	2.2	2.0	9,10
	0 - 4 0	Très fine	2,37	1,92	19,00
594	4 0 – 80	Très fine	2,30	2.0	13,00
	0-40	Fine	2,34	2,02	13,40
574	40- 80	Très fine	2,27	2,09	8,30

Source : DSA Skikda (Direction du Service Agricole).

Pour la même raison, la porosité représente une variabilité notable entre les différentes classes de sols et au sein même d'une classe en fonction de la texture et de la structure.

CHAPITRE.IV

Ainsi les vertisols ont une porosité moyenne faible de l'ordre de 19%, alors les sols peu évolués ont des porosités moyennes élevées qui varient selon le groupe de 20 - 25,64%.

- Pour la classe des sols peu évolués, il ressort du (Tableau **IV.4**), les remarques suivantes : il existe des différences notables entre les différents groupes composant la classe des sols peu évolués :
- ➤ Sols d'apport colluvial: porosité =25,64%
- ➤ Sols d'apport alluvial: porosité = 21,80%
- Sols d'apport alluvial et colluvial: porosité = 20,36%

Et au sein même du groupe, les différences sont remarquables entre les sous-groupes à savoir les sols modaux ont une porosité élevée (25,40 - 27,72)% et les sols Vertiques et Hydromorphes ont une porosité faible (20 - 22)% ces différences sont généralement liées à la texture.

Tableau IV.4. Porosité des sols peu évolues

Groupe de sols	Profondeur	DR	DA	Porosité en %
D'apport alluvial				
-Modal'	0 – 80	2,37	1,74	25,40
-Vertique	0 – 80	2,28	1,82	19,98
-Vertique-hydromorphe	0 - 80	2,3	1,80	21,75
-Hydromorphe	0 - 80	2,42	1,83	20,15
Moyenne	0 – 80	2,34	1,80	21,80
D'apport alluvial et colluvial				
-Modal	0 – 80	2,28	1,9	17,52
-Hydromorphe	0 - 80	2,35	1,8	23,30
D'apport colluvial				
-Modal	0 - 80	2,43	1,78	27,72
-Vertique	0 – 80	2,32	1,86	22,20
-Hydromorphe	0 – 80	2,38	1,82	27,00
Moyenne	0 - 80	2,38	1,82	25,64
Moyenne de la classe	0 - 80	2,34	1,82	22,60

Source: DSA Skikda (Direction du Service Agricole).

• Pour la classe des vertisols (Tableau IV.5), Les valeurs de la porosité reflètent bien la texture lourde très fine a taux d'argile élevé et la structure construite prismatique, cubique ou en colonnes obliques traduisant bien un certain tassement du sol. Les vertisols présentés donnent les valeurs de porosité les

plus faibles (p=16,80 - 20,70%) de l'ensemble des sols délimités dans le périmètre de Zit-Emba.

Tableau IV.5. Porosité des vertisols

Groupe de sols	Profondeur	DR	DA	Porosité en %
Vertisols a drainage				
externe nul ou réduit				
-Modal'	0 – 80	2,29	1,90	16,80
-Hydromorphe	0 - 80	2,31	1,86	18,52
-Hydro-halomorphe	0 - 80	2,35	1,83	20,70
Moyenne	-	2,32	1,86	18,67
Vertisols a drainage externe possible				
-Modal'	0 - 80	2,33	1,86	19,32
-Hydromorphe	0 - 80	2,34	1,74	25,9
-Halomorphe	0 - 80	-	-	-
Moyenne	-	2,33	1,86	19,32
Moyenne de la classe	-	2,325	1,86	19,00

Source: DSA Skikda (Direction du Service Agricole).

- Pour la classe des sols calcimagnesiques, ces deniers ont une porosité très variable (8,3-33%) dont la moyenne s'élevé à 15,50%, c'est une valeur très faible et douteuse (mesures du laboratoire).
- Pour la classe des sols Hydromorphes, la moyenne de leur porosité est supérieure à celle des sols peu évolues (p=22,60); elle est de l'ordre de 23,50%. C'est un résultat ininterprétable.

IV.4.5. La réserve facilement utilisable

La RFU qui est la réserve en eau facilement utilisable, détermine le volume d'eau nécessaire pour amener le sol à sa capacité de rétention et permet d'estimer la quantité d'eau à apporter par arrosage.

Les valeurs de la RFU varient entre 125 et 500 m³/ha pour la profondeur 0-40cm et entre 250 et 600 m³/ha pour la profondeur 40-80 cm. Ces valeurs sont relativement assez élevées et s'expliquent par la texture fine abondante dans la zone étudiée.

IV.5. L'APTITUDE CULTURALE

La mise en valeur des sols du périmètre par des cultures irriguées doit répondre à l'adéquation entre les caractéristiques intrinsèques du sol et les exigences des cultures à mettre en place à savoir :

- ✓ L'identification, la quantification et le classement par importance des propriétés intrinsèques du sol, qui se manifestent par la profondeur, salinité, texture et structure, charge caillouteuse, richesse en calcaire, caractère hydromorphe et vertique.
- ✓ L'évaluation des exigences qualitatives des cultures (arboriculture, grandes cultures et cultures industrielles).
- ✓ Evaluation de la qualité de l'eau d'irrigation.

Dans le cas de notre périmètre d'étude, en se basant sur les trois niveaux d'investigations ci-dessus, on distingue 8 catégories et chaque catégorie contient des cultures différentes, Cultures arbustives (B), cultures maraichère (M), cultures Céréalières et Fourragères (C), cultures industrielles (I) . [5]

IV.5.1. Cultures arbustives

Catégorie B10

Sols qui conviennent bien à tous les arbres fruitiers. Ce sont des sols peu évolues modaux localises au sud, au centre et au nord du périmètre de Zit-Emba formes sur les terrasses alluviales de l'Oued El-Hammam, l'Oued Emchekel et l'Oued El-Kebir Ouest.

Du point de vue agrologique ce sont les meilleurs sols du périmètre

- Sols profonds.
- Texture movenne.
- Peu ou non calcaire.
- Hydromorphie nulle à très faible.

> Catégorie B11

Ce sol convient bien à l'ensemble des cultures arbustives avec aptitude moyenne pour les agrumes. Ce sont des sols peu évolue d'apport colluvial modal occupant la zone Est de Bekkouche-Lakhdar. Ce sont des sols profonds, à texture moyenne fine et peu fertile (sols pauvres en matière organique, en azote, et en phosphate) d'où la nécessite des apports d'amendements humiques et d'engrais minéraux.

> Catégorie B25

Sol covenant bien aux pécher, prunier myrobalan, pommier/douçain et figuier et moyennement aux agrumes, a l'abricotier, le cerisier, l'olivier, le pommier/franc, le pommier/paradier, le poirier/franc et le poirier/cognassier. Ce sont des sols peu évolues Vertique localises au Nord et l'Ouest de Bekkouche-Lakhdar et au Nord de Ben-Azzouz. Ce sont des sols profonds, a texture fine peu ou non calcaire, pas de trace d'hydromorphie.

> Catégorie B32

Sols convenant moyennement aux pêchers, abricotiers, cerisiers, oliviers, pommier/doucen, pommiers/paradier et figuiers. Ce sont des sols peu évolues d'apport alluvial hydromorphe situes à l'Est de Mekkassa. Cette zone nécessite un assainissement superficiel.

> Catégorie B34

Sols convenant moyennement aux pêchers, abricotiers, oliviers, pommiers et figuiers. Ce sont des sols peu évolues d'apport colluvial Vertique, Hydromorphes localises entre Ain-Charchar et Bekkouche-Lakhdar, des sols peu évolués d'apport alluvial Vertique et des vertisols modaux.

Les travaux de mise en valeur pour ces sols sont :

- Les labours profonds.
 - Les amendements humiques.
 - Les engrais minéraux.
 - L'assainissement superficiel.

IV.5.2. Cultures industrielles

Deux catégories d'aptitudes culturales ont été déterminées.

> Catégorie I 11

Sols convenants bien à toutes les cultures industrielles : betterave à sucre, tournesol, le lin, le coton et le soja. Ce sont des sols peu évolues d'apport alluvial modal, Vertique hydromorphe, des sols peu évolues d'apport modal, hydromorphe. Ce sont des sols à texture moyenne fine - profonds.

> Catégorie I 21 t

Sols convenant moyennement aux cultures industrielles suivantes : coton, lin et soja. Ce sont des sols peu évolues d'apport colluvial: Vertique, hydromorphe, peu évolue d'apport alluvial hydromorphe, des vertisols et des calcimagnesiques. Ce sont des sols profonds a texture fine et très fine, peu calcaire, avec faible hydromorphie.

IV.5.3. Cultures céréalières et fourragères :

Quatre catégories ont été déterminées, à savoir :

> Catégorie C10

Sols convenant à toutes les cultures céréalières et fourragères : luzerne, bersim, sorgho-mais, fétuque, vesce avoine, ray-grass, blé dur, blé tendre et orge. Ce sont des sols profonds à texture moyenne ou fine, hydromorphie très faible peu ou non calcaire. Ce sont des sols ne nécessitant aucun aménagement préalable à leur mise en valeur par l'irrigation.

> Catégorie C11

Sols convenant bien au bersim, sorgho, maïs, fétuque, ray-grass, vesce-avoine, blé dur, blé tendre orge et moyennement àla luzerne. Ce sont des sols profonds, à texture moyenne ou fine. Pas d'hydromorphie, peu de calcaire dans les sols.

Les travaux recommandent : labours profonds, les amendements humiques.

> Catégorie C22

Sols convenants moyennement à la fétuque, à la vesce-avoine, au ray-grass, au blé dur et à l'orge. Ce sont des sols peu évolues d'apport alluvial Vertique, hydromorphe et apport colluvial Vertique, hydromorphe et des vertisols modaux. Ce sont des sols à texture fine ou très fine, peu calcaire, profonds.

Les travaux recommandes sont les labours profonds, les amendements humiques et les engrais minéraux,

> Catégorie C23

Sols convenant moyennement aux cultures suivantes ; la fétuque, la vesce-avoine, le ray-grass, les blés dur et tendre, et l'orge. Ce sont des vertisols Hydromorphe, des sols peu évolues Hydromorphe et des Hydromorphe de surface. Ces sols ont :

- Une texture fine ou très fine.
- Une forte hydromorphie.

Pour leur mise en valeur, l'assainissement superficiel, les labours profonds, les amendements organiques sont nécessaires et obligatoires.

IV.5.4. Cultures maraichères

Huit catégories d'aptitudes aux cultures maraichères ont été déterminées, à savoir :

> Catégorie M 10

Sol convenant à toutes les cultures maraichères. Ce sont des sols peu évolues modaux, profonds à texture moyenne ne nécessitant aucun aménagement,

> Catégorie M 15

Sol convenant bien à l'artichaut, l'oignon, le navet, les choux, la laitue et la fraise et moyennement pour la tomate, l'aubergine, la pastèque, le melon, les piments et poivrons, le haricot, le concombre, le pois. C'est une catégorie à aptitude bonne en moyenne pour les cultures maraichères. Ce sont des sols peu évolues Vertique Hydromorphe profonds à texture moyenne, fine ou très fine, faible hydromorphie.

Les travaux de mise en valeur sont: l'assainissement superficiel, les labours, les amendements organiques et les engrais minéraux,

> Catégorie M 16

Sol covenant bien à l'oignon, le navet, les choux, l'épinard et moyennement pour l'artichaut, la tomate, la laitue, l'ail, l'aubergine, pastèque, melon, piment, poivron, haricot, concombre et le pois. Ce sont des vertisols à drainage externe possible modal et des

sols peu évolues colluvial hydromorphe. Ces sols ont une texture fine ou très fine, profonds à hydromorphie plus ou moins forte et non calcaires.

> Catégorie M 25

Sol convenant moyennement à la culture de l'artichaut, des choux pommes et à fleurs, l'épinard et le fraisier. Ce sont des sols peu evolues d'apport colluvial Vertique Hydromorphe des vertisols modaux et des calcimagnesiques.

> Catégorie M 25 s

Sol convenant moyennement à l'artichaut et aux choux à fleur et pommes. Les contraintes sont, la textures fine, l'hydromorphie et l'halomorphie, ce sont des vertisols à drainage externe nul ou réduit, Hydromorphe-halomorphes.

Les travaux d'assainissement et de drainage sont obligatoires.

> Catégorie M 31

Sol convenant moyennement à la majorité des cultures maraichères avec exclusion de l'artichaut, de la tomate et de l'asperge. Les principales contraintes de ces sols sont la texture fine ou très fine et l'hydromorphie forte: ce sont des sols peu évolues, Hydromorphe, et Hydromorphe de surface situes dans la zone de Mekkassa Est.

> Catégorie M 31 t

Sol convenant moyennement a la culture de l'oignon, du navet, des choux, de l'épinard, de la laitue, de la pastèque, du melon, du haricot, du concombre, du pois et de la fraise. Les principales contraintes sont la texture très fine et l'hydromorphie forte, ce sont des vertisols Hydromorphe. Les travaux d'assainissement sont obligatoires.

> Catégorie M 31 s

Sol convenant moyennement aux cultures suivantes : l'oignon, la pomme de terre, la carotte, le navet, les choux, I'épinard, la laitue, I'ail, la pastèque, le melon, le pois, et le fraisier. Ce sont des sols peu évolues Hydromorphe avec un niveau halomorphe. Les travaux d'assainissement et de drainage sont obligatoires.

IV.6. CONCLUSION

Apres énumération des informations relatives au sol de la région, nous sommes ainsi situes sur les cultures pouvant être pratiquées dans la région, et connaissant cela nous pouvons donc chercher à étudier les moyens de satisfaire les différents besoins de ces cultures, notamment ceux en eau.

RESSOURCES EN EAU

IV.7. INTRODUCTION

Le choix d'une source d'eau d'irrigation doit dépendre du type et de la concentration des substances qui y sont dissoutes ou en suspensions, il dépend aussi des caractéristiques physiques et chimiques du sol. Il existe des sources d'eau souvent pures, d'autres par contre, contiennent des taux élevés de sels, de microorganismes et d'autres résidus. Ces eaux peuvent causer la dégradation du sol en les rendant toxiques, ce qui va provoquer des blessures aux cultures et influencer les propriétés du sol.

IV.8. LES EAUX SUPERFICIELLES

IV.8.1. Les bassins versants

Le bassin versant s'étage entre 920 m et 10 m, 40% de la surface est à une altitude supérieure à 200 m. (Altitude moyenne 120 m, altitude maximale 920 m). Les parties hautes ou à forte pente sont assez boisées ou couvertes de maquis.

La pluviométrie moyenne annuelle récente sur le bassin est de 600 mm environ, correspond à la situation calculée sur la base des relevés effectués à AZZABA PEPINIERE (station ANRH 031106), pour la période 1968- 2009.

IV.8.2. Le barrage de Zit-Emba

Notre projet d'irrigation est intégralement dépendant du volume régularisé par le barrage de Zit-Emba. La simulation du fonctionnement de ce barrage d'une capacité de 120 Mm³ montre qu'une consommation annuelle de 43 Mm³ peut être assurée avec une qualité de fonctionnement de 80% environ en moyenne interannuelle.



Figure IV.I. Photographie satellitaire du barrage de Zit-Emba et ses environs

IV.8.2.1. Caractéristiques principales du Barrage

-Type: terre hétérogène avec noyau d'argile.

-Capacité de la retenue : 120 Mm³ -Volume régularise : 43,4 Mm³

-Hauteur de la digue : 47 m
-Longueur en crête : 598,5 m
- Cote N.R.N : 86 m
-Cote P.H.E : 91 m
-Superficie plan d'eau au N.R.N : 810 ha
-Superficie du bassin versant : 485 km²
-Pluviométrie : 600 mm

-Apport interannuel moyen y compris prélèvement amont : 65 Mm³ [4]

IV.8.2.2. Qualité de l'eau du barrage

Le tableau IV.6 ci-après en présente les valeurs extrêmes: quatre analyses faites aux plus hautes eaux et quatre faites aux plus basses eaux sont ainsi comparées aux principaux ratios définissant une qualité d'eau qui ne cause pas de problème en cas d'utilisation pour l'irrigation.

Cette comparaison montre que les eaux de crue seraient satisfaisantes pour l'usage en irrigation, avec une réserve en cas d'aspersion, pour la teneur HCO₃ qui est peu forte (120 à 200 mg/l pour une limite souhaitable à 90 ml/l).

Les eaux de la période d'étiage ont par contre tous leurs dosages en ions sensibles audessus des valeurs limite à partir desquelles des problèmes apparaissent en cas d'usage prolonge en irrigation.

Cependant lors de l'exploitation de la retenue, ces qualités d'eaux seront mélangées. A titre indicatif sur trois années : l'une de faible apport, l'autre presque moyenne et la troisième avec des apports très importants, la proportion de l'eau des principales crues est suffisante pour que l'eau de qualité moyenne réponde aux critères de bonne qualité (sauf la tendance à une minéralisation et une teneur en HCO₃ trop élevées : environ 1,5 fois les normes conseillées dans les bulletin FAO : "qualité de l'eau en agriculture"). Pour certaines cultures sensibles, cet aspect particulier devra être examiné. Des informations détaillées sont mentionnées dans le tableau suivant (tableau IV.6)

Tableau IV.6. La qualité de l'eau du barrage

					Teneur	en ion	s en mg	/1				
		Débet				Na ⁺				Minira-	CE	
période	année	M^3/s	ph	Ca ²⁺	Mg^{2+}	K^{+}	Hco ₃	So ₄ ²⁻	Cl	lisation	mmho	SAR
										mg/l	/cm	
			6.5						<106			
Valeur	rs souhai	tables	a	-	_	<69	<90	_	<141	<480	< 0.75	<3
			8.4									
	1972	43/315	7.1	50	23	29	165	95	43	395	-	1.74
	1978	36/150	8.4	68	14	13	201	24	25	357	-	0.84
Crues												
	1984	-	7.7	38	11	15	129	38	23	255	-	1.22
	1991	Fin	8.2	24	17	17	116	44	25	122	0.2	0.97
		crue										
	1971	2	8.7	200	55	115	183	346	298	1197	-	4.42
Etiage	1972	2	8.3	178	50	93	201	410	153	1075	-	3.80
	1973	29	8.1	122	52	100	165	362	173	1001	-	4.54
	1973	19	7.5	160	53	95	96	470	168	1047	-	3.48

Source: DSA Skikda (Direction du Service Agricole).

IV.8.3. Les oueds

IV.8.3.1. Situation actuelle de l'oued Kebir et ses affluents

La saison pluvieuse, de Novembre à Avril essentiellement, transforme le paysage de la vallée du Kebir entre Ain Charchar et Ben-Azzouz. Les crues survenant dans cette période peuvent entrainer des débordements malgré le lit mineur très profond de l'oued Kebir dans son parcourt entre Bekkouche-Lakhdar et Ben-Azzouz, car le lit est très encombre par la végétation.

Le relief irrégulier et la forte teneur en argile de la plupart des sols crée par ailleurs des zones d'inondations même sans débordement par suite de la stagnation des eaux pluviales.

Ainsi, "les cuvettes" ou Garret se remplissent très rapidement et restent visibles jusqu'au printemps. Sans correspondre à une nappe phréatique très haute, comme le montre la plus part des premiers relevés de la nappe; le paysage devient presque "lacustre" et la mise en culture est très tardives dans certaines zones.

Un assainissement général est donc à définir, au moins dans la partie Sud et centrale du périmètre.

Dans la partie Nord, en aval du pont de Ben-Azzouz et au-delà des limites du périmètre d'étude, le lit de l'oued Kebir est moins marque, et les plans d'eau sont influences par la mer et par la crue de l'oued Aneb (et de l'oued Emkouche

probablement) et par la présence ou non d'une barre sableuse au débouche en mer de l'oued Kebir. De vastes "Garrets" à faible altitude bordent l'oued dans son dernier tronçon avant la mer et les inondations y sont fréquentes. L'étude de régularisation de l'oued Kebir Ouest a pris en compte ces phénomènes et a proposé un ensemble de solution comprenant :

- Des barrages supplémentaires à celui de Zit -Emba avec une tranche réservée pour amortir les crues (sur oued fendek, Meksen, bou El hadjar).
- Un endiguement partiel : dans les zones avales, avec la création de station de pompage pour l'assainissement.
- Le maintien d'une zone d'inondation près de l'embouchure.
- La création d'un seuil surtout en vue d'interdire les remontées d'eau salée et pour protéger les zones avales dont la mise en valeur est proposée y compris les "Garrets".
- Le biseau sale a été observé par des analyses chimiques avant la période d'étiage à 10 km en aval du pont de Ben-Azzouz, A noter qu'à moins de 2 km en aval de ce pont, le fond de l'oued est en dessous du niveau de la mer jusqu'à l'embouchure.

IV.8.4. Le lac de Fetzara et ses affluents

IV.8.4.1. Situation actuelle

La zone Sud-Est du périmètre entre Mekkassa et la route RN 84 au Sud du lac Fetzara en direction de Cheurfa est traversée par plusieurs oueds. Ces oueds correspondent à des bassins versants de 2,5 à 20 km² environ.

En dehors de la zone d'étude, le lac reçoit d'autres oueds assez importants (Oued Zyed au Nord-Est) son bassin versant total est de $500\,\mathrm{km}^2$ environ.

Les niveaux du lac Fetzara pendant la période pluvieuse sont contrôles par un pont avec six vannes situées à l'extrémité Est de l'émissaire creuse dans l'axe du lac depuis 1945.

Cependant, ni les services d'hydraulique de la wilaya d'Annaba, ni ceux de l'agriculture ne peuvent communiquer de relevés des cotes observées car il n'y a pas d'échelle depuis de nombreuses années. La manœuvre des vannes par un agent dépendant de la subdivision de l'hydraulique semble se faire en fonction des réclamations des riverains du lac quand le niveau monte trop haut (ouverture des vannes), où en fonction des crues du système oued Seybouse, oued Meboudja pour aider à la protection d'El- hadjar. [4]

IV.8.4.2. Situation future

La zone du lac semble avoir fait l'objet de plusieurs études. La dernière a été proposée par JICA en 1985. Son objectif, résumé par la direction d'agriculture de la wilaya d'Annaba, est de limiter la surface des zones inondées en hiver par le lac à environ 8000 ha (cote 12 m) pour récupérer les terres cultivables (environ3000 ha).

Les moyens seraient :

- ✓ La création de plusieurs retenues pour retarder l'arrivée des crues dans le lac,
- ✓ L'élargissement de l'oued Meboudja, exutoire du lac capacité portée de 25 m³/s a 50 m³/s.
- ✓ L'amélioration du débouché en mer.

Actuellement aucun projet n'est arrête. Pour ce qui concerne les conditions d'assainissement dans la zone Est du périmètre d'étude, l'on peut donc faire l'hypothèse (conservatrice) que la situation actuelle se poursuivra.

Un suivi du plan d'eau du lac et celui de l'exutoire serait cependant très utile pour concrétiser les variations du niveau d'eau dans le lac et dans son émissaire pour que les projets futurs bénéficient de ces données.

IV.8.4.3. Les affluents du lac et les petits bassins versants

Ces oueds qui rejoignent le lac où l'oued Kebir a déjà, pour les plus importants, attire l'attention des aménagistes. La qualité de l'eau d'après l'analyse, fait en étiage, était médiocre.

Ces oueds joignent le lac Fetzara ; il traverse la zone étudiée ainsi la future trace de l'automne en projet entre Azzaba et le Sud d'Annaba. Compte tenu des débits de pointes attendus, des ouvrages de laminage des crues devraient être intéressant pour limiter l'importance des ouvrages de franchissement de l'autoroute et celle des ouvrages d'assainissement dans l'éventuel périmètre.

Au Nord : les petits bassins versants rejoignent finalement le lac Fetzara après avoir grossit l'oued Mellah. Les grands bassins alimentent plus ou moins directement l'oued Kebir.

IV.9. LES EAUX SOUTERRAINES

L'analyse des ressources en eau souterraines de la région de Zit-Emba a montré que les prélèvements d'eau à usages urbains ou industriels par forage ont déjà atteint les potentialités reconnues du sous-sol de la région.

Pour les forages à usage non agricole recensés en 1991 et ceux en cours en 1992 (destinés notamment à la wilaya de Annaba), le débit d'équipement est de 517 l/s environ, alors que le débit d'exploitation conseillé après l'étude hydrogéologique de l'oued Kebir Ouest est de 450 l/s, en incluant la zone des dunes de Guerbes.

Au-delà des réalisations recensées en 1991-1992, le programme de creusement de forges s'est poursuivi ; ainsi sept forages sont réalisés au profit de la zone Ouest de Annaba au lieu de six déjà pris en compte dans le bilan présenté (1991-1992) (un huitième improductif a été abandonné).

Sur le plan de la qualité de ces eaux, les analyses anciennes et récentes montrent que toutes les eaux sont complètement en dehors des normes acceptables pour l'irrigation (d'après la classification de Riverside), leur salinité est trop élevée (conductivité souvent mesurée entre 1 à 5 mmho/cm pour une limite à 0.75).

Les eaux souterraines ne peuvent donc pas être envisagées pour l'irrigation dans le projet de Zit-Emba tant du fait de leur utilisation déjà engagée par les communautés urbaines que de leur mauvaise qualité.

IV.10. CONCLUSION

Vue la qualité d'eau du barrage, on peut dire que cette eau est une bonne source d'approvisionnement pour l'irrigation, ce qui permet donc d'avoir des bonnes conditions de gestion du sol et de l'eau.

Son utilisation ne cause pas donc de problèmes pédologiques et agronomiques et ne cause pas de problèmes de toxicités.

Cependant il reste à discuter la capacité du barrage à assurer l'eau d'irrigation pour la totalité du périmètre, surtout après avoir réservé une partie d'eau pour l'alimentation en eau potable de la région de Skikda.

ETUDE SOCIO-ECONOMIQUE

V.1. INTRODUCTION

L'objectif de faire une étude agro-socio-économique représente la nécessité de connaissance générale sur la population de notre zone d'étude (Zit-Emba) la répartition de la population, le niveau culturel de l'exploitant, la production végétale et animale, le type de commercialisation,... pour la facilité de définir les facteurs qui influencent sur la production agricole, depuis la mise en place de la culture, et même avant, jusqu'à la récolte et l'écoulement du produit sur le marché, et de proposer les orientations de développement agricole pour la mise en valeur du périmètre.

V.2. LA POPULATION

L'analyse des données RGPH (Recensement Général de la Population et de l'Habitat) de l'année 1998 et 2008 des communes impliquées dans le projet fait ressortir les commentaires suivants :

Pour les années 1998 et 2008 : la population totale résidente est respectivement de 60415 habitants et 68718 habitants.

Tableau V.1 : Répartition de la population des communes(1998)

Wilaya			Skikda				
Commune	Ain	Bekkouche	Ben	Djendel Saadi	TOTAL		
	Charchar	Lakhdar	Azzouz	Mohamed			
Population résidentielle	13684	14014	24882	7835	60415		
Nombre de ménage	2073	2123	3770	1187	9154		
Taille de ménage	6.6	6.6	6.6	6.6	6.6		
Population rurale	1513	2049	9669	1243	14474		

Source: ONS (Office Nationale des Statistiques).

Tableau V.2 : Répartition de la population des communes (2008)

Wilaya		Skikda										
Commune	Ain	Bekkouche	Ben	Djendel Saadi	TOTAL							
	Charchar	Lakhdar	Azzouz	Mohamed								
Population résidentielle	15725	15176	29162	8655	68718							
Nombre de ménage	2665	2572	4943	1467	11647							
Taille de ménage	5.9	5.9	5.9	5.9	5.9							
Population rurale	1739	2219	11332	1373	16663							

Source: ONS (Office Nationale des Statistiques).

Le tableau V.3 suivant représente la répartition des quatre communes selon le sexe, en remarquant que les hommes et les femmes représentent presque le même pourcentage avoisinant les 50%.

Tableau V.3: Répartition de la population résidente selon la commune et le sexe

	Sexe								
Commune	Masculin	Féminin	Total						
Ain Charchar	8041	7684	15725						
%	51.14	48.86	100.00						
Bekkouche Lakhdar	7527	7648	15176						
%	49.60	50.40	100.00						
Ben Azzouz	14747	14415	29162						
%	50.60	49.40	100.00						
Djendel Saadi Mohamed	4390	4265	8655						
%	50.72	49.29	100						

Source: ONS (Office Nationale des Statistiques).

Tableau V.4: La répartition résidente totale

Commune	population 1998	population 2008
Ain Charchar	13684	15725
Bekkouche Lakhdar	14014	15176
Ben Azzouz	24882	29162
Djendel Saadi Mohamed	7835	8655

Source: ONS (Office Nationale des Statistiques).

V.3. LE NIVEAU CULTUREL ET LA VIE DE L'EXPLOITANT ET DE SA FAMILLE

Les résultats font ressortir un net recul de l'analphabétisme, en effet, le taux d'analphabétisme de la population âgée de 10 ans et plus a atteint 21.4% (14.6% chez les hommes contre 28.3% chez les femmes), enregistrant une baisse de 8.4 points par rapport à 1998.

Le taux brut de scolarisation de la population âgée de 6 à 15 ans, est passé de 82.6% à 94.2% entre 1998 et 2008. L'écart observé entre la scolarisation des garçons et des filles, estimé à 4.2 points en 1998, en faveur des garçons est réduit à 0.1 points en 2008.

Les données font ressortir également une évolution notable en matière de raccordement au réseau d'électrification, d'alimentation en eau potable (AEP), d'assainissement ainsi que celui du gaz naturel ; 93.5% de logements habités sont raccordés au réseau électrique, 71.8% au réseau d'assainissement, 70.6% au réseau d'alimentation en eau potable et 34.6% sont raccordés au réseau du gaz naturel.

On enregistre également une nette amélioration en matière de commodités et du confort des logements ; 90.8% des logements habités sont pourvues de toilettes, 83.6% de cuisines et 68.1% de salles de bain.

V.4. LE CONTEXTE GENERAL DES PRODUCTIONS VEGETALES

Les données collectées au niveau des services agricoles de Skikda indiquent que la S.A.U des communes impliquées dans le projet d'étude du périmètre de Zit-Emba est d'environ 3959 ha (DSA de Skikda).

L'occupation du sol dans l'aire d'étude est peu diversifiée, elle comprend des superficies importantes de cultures céréalières associées parfois à l'élevage. Ces terres sont cultivées principalement par les cultures en sec, les cultures maraichages et les cultures industrielles qui couvrent une surface d'importance similaire dans les quatre communes concernées par le projet d'étude, elles représentent plus de 62% de la superficie agricole cultivée. [5]

Tableau V.5: l'occupation du sol dans les communes concernées

	Communes: (SAU en ha)									
Occupation du sol (ha)	Ain charchar	Bekkouche lakhdar	Ben Azzouz	DjendelSaadi Mohamed	Total					
Blé dur	57	63	98	32	250					
Blé tendre	23	38	47	14	122					
Légumes secs	73	93	133	65	364					
Tomate industrielle	195	240	346	133	914					
Maraichage	320	465	546	189	1520					
Agrumes	104	147	172	72	495					
Arbres à pépins et noyaux	48	62	98	18	226					
Tabac		68			68					
Total	820	1176	1440	523	3959					

Source : DSA Skikda (Direction du Service Agricole).

V.5. LE CONTEXTE GENERAL DES PRODUCTIONS ANIMALES

V.5.1. LE GROS ELEVAGE

Le gros élevage représente les effectifs de l'élevage ovin, bovin et caprin Nous donnons dans le tableau V.6 qui suivra les effectifs du cheptel ovin, bovin et caprin des communes d'Ain Charchar, Bekkouche Lakhdar, Ben Azzouz et Djendel Saadi Mohamed.

Tableau V.6 : Les effectifs du cheptel ovin, bovin et caprin dans les communes concernées

Désignation	Ain	Bekkouche	Ben	Djendel Saadi	Total
	Charchar	Lakhdar	Azzouz	Mohamed	
Bovin	1660	2040	10020	3726	17446
Ovin	3510	7000	13250	5500	29260
caprin	950	2000	870	300	4120

Source: DSA Skikda (Direction du Service Agricole).

D'après le tableau ci-dessus on remarque que :

- L'élevage ovin est largement dominant dans les quatre communes.
- -L'élevage bovin occupe la deuxième place suivi de près par l'élevage caprin comme la représenté dans la figure V.1.

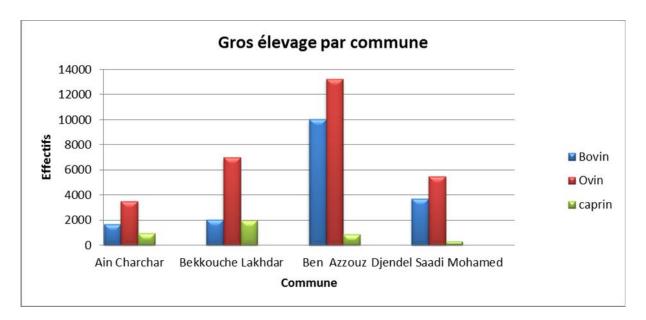


Figure V.1 : Variation des gros élevages par commune

V.6. CONCLUSION

Le développement agricole de la zone d'étude par le biais de l'irrigation est une condition nécessaire du passage d'une agriculture traditionnelle et aléatoire à une agriculture moderne et sécurisée qui insufflera avec certitude un développement économique à toute la région.

- En se basant sur les aptitudes culturales des sols.
- En se basant sur les facteurs et paramètres conditionnant la mise en valeur irriguée (les conditions climatiques, le caractère socio-économique de l'aire d'étude).

On peut conclure que pour le périmètre de Zit-Emba, les cultures maraichères dominent avec en particulier la tomate industrielle.

ETUDE FONCIERE

V.7. INTRODUCTION

L'étude de l'enquête foncière est un chapitre essentiel pour définir le secteur public réorganisé par des Exploitations Agricoles Collectives et Individuelles (EAC-EAI), et le secteur privé, et ferme pilote. Ainsi, l'occupation du sol et la répartition des superficies irriguées.

V.8. LE BUT DE L'ENQUETE FONCIERE

L'objectif de cette étude est de définir les éléments qui définissent l'exploitation ou la propriété agricole d'une façon générale.

Ce travail d'enquête sera l'assise principale de l'aménagiste pour la projection d'un réseau de distribution lié à la réalité du terrain.

V.9. LA SURFACE ENQUETEE

La surface enquêtée dans le cadre du projet d'Etude d'Aménagement Hydro- agricole du périmètre de Zit-Emba est de 3959 ha.

Cette surface représente les superficies des exploitations publiques et des propriétés privées de la zone d'étude, Elle est répartie selon le tableau suivant:

Tableau V.7: Répartition des superficies par commune selon le statut juridique

Exploitations					
	Ain charchar	Bekkouche Lakhdar	Ben Azzouz	Djendel Saadi Mohamed	%
Terres privées	130	146	537	175	25
Terre des EAC	341	323	398	162	31
Terres AI et EAI	218	189	117	63	15
Terres OST	0	364	248	79	17
Terres public	131	154	140	44	12
Total	820	1176	1440	523	100

Source: DSA Skikda (Direction du Service Agricole).

EAC: Exploitation agricole collective.

AI: Attribution individuelle.

EAI: Exploitation agricole individuelle.

OST: Occupant sans titre.

CHAPITRE V

L'on voit que les statuts se répartissent en surface en trois grands ensembles relativement équilibrés :

Statut privé = 25% Statut EAC = 31 % Autres statuts = 44% [6]

V.10. LES UNITES FONCIERES

Le nombre total d'unités foncières dans la zone d'étude est de 628 unités réparties suivant le tableau ci-dessous.

Tableau V.8: Nombre d'unités foncières par commune selon la nature de la propriété

	4 . 4		Commune										
Explo	oitations	Ain charchar	Bekkouche Lakhdar	Ben Azzouz	Djendel Saadi Mohamed	Total							
Exploitation	Nombre	10	7	13	8	39							
collective	Superficie	262	502	595	289	1649							
	Taille moyenne	26,6	67,2	45,8	35,0	175							
Exploitation	Nombre	9	97	406	78	590							
individuelle	Superficie	53	559	1452	246	2310							
	Taille moyenne	5,6	5,8	3,6	3,2	18							
Ensemble des	Nombre	19	104	419	86	628							
exploitations	Superficie	315	1062	2047	535	3959							

Source: DSA Skikda (Direction du Service Agricole).

Le tableau ci-dessus nous montre que le périmètre d'étude comporte donc 628 exploitations, dont 39 en unités collectives et 590 en unités individuelles.

V.11. LES PARCELLES

Il recense les 1307 parcelles de l'aire d'étude, classées par section, et à l'intérieur de celles-ci, par numéros d'identification.

Le tableau V.9 ci-dessous donne le nombre des parcelles de l'aire d'étude :

Tableau V.9: Nombre et taille moyenne des parcelles de l'aire d'étude

		Ain charchar Bekkouche Lakhdar Azzouz Mohamed 315 1062 2047 535							
			_	•	Total				
Superficie inventoriée (ha)	315	1062	2047	535	3959				
Nombre de parcelles	127	344	620	216	1307				
Superf.Moy.Parc elle (ha)	2,5	3,1	3,3	2,5	3,0				

Source : DSA Skikda (Direction du Service Agricole).

La taille moyenne des parcelles dans l'aire d'étude est de **3 ha**. Mais dans la section Ben-Azzouz, constituée entièrement de terres privées, la taille moyenne est de **3.3 ha**.

V.12. L'ASSAINISSEMENT AGRICOLE ET LES BRISES VENT

Les sols constituant le périmètre à équiper ne nécessitent pas de drainage, il ne s'agit donc que d'un assainissement pour éliminer les eaux stagnantes et les eaux de surface. En fonction des résultats de l'étude des ressources en sols un système d'assainissement a été proposé. Ce système est établi soit à partir des thalwegs des ouvrages existants qui sont en général à ré calibrer, soit par la création de nouveaux fossés d'assainissement non alimentés par les bassins versants extérieurs. Dans le cadre de ces travaux, l'exutoire des "garet "enclavées dans les zones équipées est amélioré pour y limiter la montée du plan d'eau en période pluvieuse.

L'élimination des pluies reçues dans le périmètre, pendant la période hivernale période a sol saturé, doit être améliorée. La pluie de fréquence quinquennale et d'une durée de 2 jours est d'environ 85 mm. Son élimination en trois jours favorable beaucoup plus aux céréales et aux cultures fourragères donne un module d'assainissement de 3.3 l/s/ha. Une submersion de 3 jours provoque des chutes de rendement qui atteignent les 40% aux mois d'Avril Mai et Juin pour les cultures maraichères et 20% pour les grandes cultures.

L'élimination en deux jours des précipitations de 85 mm donne un module d'assainissement de 4.92 l/s/ha. Une submersion maximale de deux jours assure une protection totale aux grandes cultures et engendre des pertes relativement limitées et acceptables ne dépassant pas 20% sur cinq ans pour les cultures maraichères et en particulier la tomate.

V.12.1. OUVRAGES (chute et traversées de pistes)

- Chute: Prévues sur les draines à forte pente longitudinale elles sont destinées à adoucir les pentes de façon à obtenir des vitesses d'écoulement répondant aux normes exigées entre 0.50 et 2 m/s. elles sont protégées par des ouvrages en béton armé pour éviter leur érosion.
- Traversées de pistes: Le franchissement des canaux d'assainissement se fera par un passage busé avec une ou plusieurs buses d'un diamètre de 1200 mm pour permettre les travaux d'entretien ultérieures (dévasement). Pour les ouvrages les plus importants ce sera un dalot en béton armé. [3]

V.12.2. PISTES ET BRISES-VENTS

Piste: Le réseau des principales pistes du périmètre sera amélioré (revêtement graveleux et fossés latéraux) et complété par de nouveaux tracés. Dans le souci d'une homogénéisation de la largeur des pistes, cette dernière est fixée à 4 m avec 0.5 m de bordure de chaque côté et des fossés de colature de part et d'autre

Brise-vents : À certaines pistes pourra être adjoint un rideau de brise-vent. L'orientation préférentielle de ces brise-vent étant Est Ouest, éventuellement S.E – N.O, les vents importants de Juin à septembre étant du secteur Nord avec des vitesses de 6 à 10 m/s pour près de 20% des observations. Les brise-vents seront disposé en deux rangées distantes de 1 m. La distance entre les arbres sur le rang sera de 2 m. Le réseau tout en restant aéré sera assez dense pour être efficace.

V.13. CONCLUSION

Les terres de ce périmètre d'étude couvrent quatre (04) communes de la wilaya de Skikda. Elles appartiennent au secteur public et privé, avec une dominance du secteur public de 75%.

La superficie occupée par chaque secteur est de 2969 ha pour le public 990 ha pour le privé. Le nombre d'unités foncières de l'aire d'étude est de 628 unités et la taille moyenne des parcelles est de 3 ha,

Les sols constituant le périmètre à équiper nécessitent un assainissement pour éliminer les eaux stagnantes et les eaux de surface.

Plusieurs ouvrages sont implantés dans le périmètre tel que les chutes pour obtenir des vitesses d'écoulement répondant aux normes exigées et des brise-vents pour briser les vents importants.

VI.1. REPARTITION DES CULTURES

La répartition des cultures est représenté dans le tableau VI.1 suivant.

Tableau VI.1: Répartition des cultures

	Cultures	Occupation du sol (ha)			
Arboriculture	Les agrumes :				
	La Clémentine, Mandarine, l'Orange	494.88			
	Arbre à noyau et à pépins	225.66	720.54		
Industrielles	Tomate, Tabac, Betterave	1152.07			
Culture Maraîchage	Maraîchage été, Maraîchage d'automne,	1199.58			
	Pastèque, Oignon hiver, Fève/pois vert				
Céréaliculture	Blé	372.15	558.22		
	Maïs grain	188.07			
Fourragères	Luzerne, maïs fourragère	328.6			

Source : DSA Skikda (Direction du Service Agricole)

VI.2. LES BESOINS EN EAU DU PERIMETRE

Les besoins théoriques mensuels sont déterminés par le bilan hydrique :

B=ETP-(Peff+RFU)

Avec:

B: Besoins en eau d'irrigation (mm);

ETP: évapotranspiration (mm/j);

RFU: Réserve facilement utilisable;

RFU= (Hcc-Hpf) Y.da.z;

Y: degré de tarissement, Y= 1/3 sable et 2/3 argile;

da: densité apparente;

Z: profondeur d'enracinement;

Hcc: humidité à la capacité au champ;

Hpf : humidité au point de flétrissement ;

Peff: pluie efficace;

Peff= A. Pluie; A = 0.8 à 0.9 (pour notre cas on va prendre A = 0.8).

VI.2.1. L'évapotranspiration potentielle ou de référence

C'est l'évapotranspiration d'une culture bien fournie en eau où le sol est à sa capacité de retentions, autrement dit c'est la limite maximale de l'évapotranspiration concerne notre projet, le calcul des besoins en eau des cultures est effectué à l'aide du logiciel appelé ; CROPWAT version 8, qui permet au passage, l'évaluation de l'évapotranspiration de référence, selon la méthode empirique la plus appropriée de Mr Penman et Monteith. [11]

VI.2.2. Détermination de la Pluie efficace

Pluie efficace=0,8*pluie moyenne mensuelle

L'entrée des données relatives à chaque culture et la date de semis.

Les résultats sortis ont été transférés (tableaux des besoins en eau et de calendrier d'irrigation) de Cropwat vers le Logiciel Excel, pour permettre le calcul du bilan.

Tableau VI.2: Évapotranspiration en mm / jour

Mois	Temp	Temp	Humidité	Vent	Ensoleillement	Radiation	ET_0
	Min	max					
	°C	°C	%	m/s	heurs	MJ/m²/j	mm/j
Jan	9.0	16.8	67	3.6	6.1	9.8	2.17
Fév.	8.5	16.2	68	3.6	7.2	13.1	2.40
Mars	10.8	18.9	66	3.1	7.4	16.4	3.09
Avr	12.4	20.4	66	3.1	8.4	20.4	3.82
Mais	15.8	23.0	69	2.5	8.5	22.1	4.22
Juin	19.5	26.8	73	2.5	9.5	24.1	4.86
Juillet	22.0	28.8	71	2.6	9.6	23.9	5.26
Août	23.0	30.0	72	2.5	9.3	22.1	5.07
Sep	20.4	27.5	74	2.7	8.3	18.3	4.06
Oct	17.3	25.6	72	2.8	7.4	14.1	3.23
Nov	13.0	20.6	75	3.5	6.1	10.2	2.26
Déc.	10.2	17.0	67	3.8	5.7	8.7	2.23
Moy	15.2	22.7	70	3.0	7.8	16.9	3.56

Tableau VI.3: Précipitation efficace dans la zone d'étude

Mois	Jan.	Fév.	Mars.	Avril.	Mai.	Juin.	juil.	Août.	Sep.	Oct.	Nov.	Déc.	Total
													annuel
P (mm)	78.3	66.1	52.5	37.3	18.7	5.0	0.4	2.8	21.6	39.3	62.1	87.0	471.10
P _{eff} (mm)	62,6	52,9	42.0	29,8	15,0	4,0	0,3	2,2	17,3	31,4	49.7	69,6	376,9

VI.2.3. L'évapotranspiration réelle ou culture (ETR, ETC)

C'est la valeur réelle de l'évapotranspiration. Le plus souvent, elle est inférieure à l'évapotranspiration potentielle, puisque le sol n'est pas en permanence à sa capacité de rétention. En plus, elle est considérée variable pendant la période de végétation.

$$ETc = Kc \times ETo$$

Avec:

Kc : Représente le coefficient cultural, dépendant du type de la culture et de son stade de développement et des conditions climatiques qui y règnent. [11]

Tableau VI.4: Le calendrier cultural

Cultures	% culture	S	o	N	D	J	F	M	A	M	J	Jl	o
Blé	9,4			***	***	***	***	***	***	***			
Mais grain	4,7							***	***	***	***	***	
Mais fourrager	2,9								***	***	***	***	***
Luzerne	5,4	***	***	***				***	***	***	***	***	***
Maraîchage été	7,3	***						***	***	***	***	***	***
Maraîch. Automne	3,4	***	***	***	***	***	***						***
Pastèque	12,9							***	***	***	***	***	
Tomate	23,1					***	***	***	***	***	***	***	
Oignon hiver	3,6					***	***	***	***	***	***		
Fève/pois vert	3,1	***	***	***	***	***	***						
Agrumes	12,5	***	***	***	***	***	***	***	***	***	***	***	***
Pêcher	5,7	***	***	***	***	***	***	***	***	***	***	***	***
Betterave	4,3						***	***	***	***	***	***	***
Tabac	1,7							***	***	***	***	***	
Total	100	***	***	***	***	***	***	***	***	***	***	***	***

VI.2.4. Calcule des besoins en eau de chaque culture

Le calcul des besoins de chaque culture est récapitulé dans les tableaux suivants :

Tableau VI.5: Le Blé

Mois	Pluie eff	ЕТО	Kc	ET0*kc	RFu	Besoin	Eff	B _{brut}
	[mm]	[mm]				[mm]		[mm]
Septembre	17,30	121,8	-	-	-	-	-	-
Octobre	31,40	100,13	-	-	-	-	-	-
Novembre	49,70	67,8	0.3	20,34	8	-37,34	0,75	-49,79
Décembre	69,60	69,13	0.7	48,39	20	-41,16	0,75	-54,88
Janvier	62,60	67,27	0.7	47,09	21	-36,60	0,75	-48,80
Février	52,90	69,6	1.05	73,08	11	9,35	0,75	12,47
Mars	42,00	95,79	1.05	100,58	12	46,61	0,75	62,15
Avril	29,80	114,6	1.05	120,33	13	77,42	0,75	103,23
Mai	15,00	130,82	0.65	85,03	14	56,35	0,75	75,14
Juin	4,00	145,8	-	-	-	-	-	-
Juillet	0,30	163,06	-	-	-	-	-	-
Août	2,20	157,17	-	_	_	-	_	_
Total						189,73		252,98

Tableau VI.6: Mais grain

Mois	Pluie eff	ET0	Kc	ET0*kc	RFu	Besoin	Eff	$\mathbf{B}_{\mathrm{brut}}$
	[mm]	[mm]				[mm]		[mm]
Septembre	17,30	121,8	-	-	-	-	-	-
Octobre	31,40	100,13	-	-	-	-	-	-
Novembre	49,70	67,8	-	-	-	-	-	-
Décembre	69,60	69,13	-	-	-	-	-	-
Janvier	62,60	67,27	-	-	-	-	-	-
Février	52,90	69,6	-	-	-	-	-	-
Mars	42,00	95,79	0,30	28,737	11	-24,66	0,75	-32,88
Avril	29,80	114,6	0,70	80,22	13	37,88	0,75	50,51
Mai	15,00	130,82	1,05	137,361	16	106,40	0,75	141,87
Juin	4,00	145,8	0,80	116,64	18	94,40	0,75	125,87
Juillet	0,30	163,06	0.55	89,683	19	70,00	0,75	93,34
Août	2,20	157,17		-	-	-	-	-
Total						308,68		411,58

Tableau VI.7: Mais fourrager

Mois	Pluie eff	ET0	Kc	ET0*kc	RFu	Besoin	Eff	B _{brut}
	[mm]	[mm]				[mm]		[mm]
Septembre	17,30	121,8	-	-	1	-	-	-
Octobre	31,40	100,13	-	-	-	-	-	-
Novembre	49,70	67,8	-	-	1	-	-	-
Décembre	69,60	69,13	-	-	-	-	-	-
Janvier	62,60	67,27	-	-	-	-	-	-
Février	52,90	69,6	-	-	-	-	-	-
Mars	42,00	95,79	-	-	-	-	-	-
Avril	29,80	114,6	0,30	34,38	11	-6,82	0,75	-9,45
Mai	15,00	130,82	0,70	91,57	13	64,03	0,75	92,92
Juin	4,00	145,8	1,05	153,09	16	133,13	0,75	202,29
Juillet	0,30	163,06	0,80	130,45	18	111,91	0,75	161,52
Août	2,20	157,17	0.55	86,44	19	64,86	0,75	99,93
Total						373,94		498,58

Tableau VI.8: Luzerne

Mois	Pluie eff	ET0	Kc	ET0*kc	RFu	Besoin	Eff	Bbrut
	[mm]	[mm]				[mm]		[mm]
Septembre	17,30	121,8	1,15	140,07	23	99,97	0,75	133,29
Octobre	31,40	100,13	0,4	40,052	11	-2,75	0,75	-3,66
Novembre	49,70	67,8	0,4	27,12	11	-33,98	0,75	-45,31
Décembre	69,60	69,13	0,45	31,11	13	-51,03	0,75	-68,04
Janvier	62,60	67,27	0,58	39,02	14	-37,26	0,75	-49,68
Février	52,90	69,6	0,68	47,33	15	-20,39	0,75	-27,19
Mars	42,00	95,79	0,8	76,63	16	18,67	0,75	24,90
Avril	29,80	114,6	0,95	108,87	17	61,97	0,75	82,63
Mai	15,00	130,82	0,95	124,28	18	91,04	0,75	121,39
Juin	4,00	145,8	0,95	138,51	21	113,99	0,75	151,99
Juillet	0,30	163,06	0,95	154,907	22	132,95	0,75	177,26
Août	2,20	157,17	1,02	160,3134	23	135,31	0,75	180,42
Total						653,90		871,87

Tableau VI.9 : Maraîchage d'été

Mois	Pluie eff	ET0	Kc	ET0*kc	RFu	Besoin	Eff	Bbrut
	[mm]	[mm]				[mm]		[mm]
Septembre	17,30	121,8	0.80	97,44	7	73,30	0,75	97,73
Octobre	31,40	100,13						
Novembre	49,70	67,8						
Décembre	69,60	69,13						
Janvier	62,60	67,27						
Février	52,90	69,6						
Mars	42,00	95,79	0.30	28,74	3	-16,68	0,75	-22,24
Avril	29,80	114,6	0.60	68,76	4	34,97	0,75	46,63
Mai	15,00	130,82	0.95	124,28	5	104,72	0,75	139,63
Juin	4,00	145,8	0.95	138,51	6	128,81	0,75	171,75
Juillet	0,30	163,06	0.95	154,907	6	148,34	0,75	197,78
Août	2,20	157,17	0.85	133,5945	7	124,55	0,75	166,07
Total						614,69		819,59

Tableau VI.10: Maraichage d'automne

Mois	Pluie eff	ET0	Kc	ET0*kc	RFu	Besoin	Eff	Bbrut
	[mm]	[mm]				[mm]		[mm]
Septembre	17,30	121,8	0,6	73,08	3	52,36	0,75	69,81
Octobre	31,40	100,13	0,95	95,12	4	59,73	0,75	79,64
Novembre	49,70	67,8	0,95	64,41	5	10,15	0,75	13,53
Décembre	69,60	69,13	0,95	65,67	6	-9,63	0,75	-12,84
Janvier	62,60	67,27	0,85	57,18	6	-11,69	0,75	-15,59
Février	52,90	69,6	0,8	55,68	7	-4,06	0,75	-5,41
Mars	42,00	95,79	-	0,00	-	-	-	-
Avril	29,80	114,6	-	0,00	-	-	-	-
Mai	15,00	130,82	-	0,00	-	-	-	-
Juin	4,00	145,8	-	0,00	-	-	-	-
Juillet	0,30	163,06	-	0,00	-	-	-	-
Août	2,20	157,17	0,3	47,15	8	36,59	0,75	48,79
Total						158,83		211,78

Tableau VI.11: Pastèque

Mois	Pluie eff	ЕТО	Kc	ET0*kc	RFu	Besoin	Eff	Bbrut
	[mm]	[mm]				[mm]		[mm]
Septembre	17,30	121,8	-	-	-	•	-	-
Octobre	31,40	100,13	-	-	-	•	-	-
Novembre	49,70	67,8	-	-	-	-	-	-
Décembre	69,60	69,13	-	-	-	-	-	-
Janvier	62,60	67,27	-	-	-	-	-	-
Février	52,90	69,6	-	_	-	-	-	-
Mars	42,00	95,79	0,45	43,11	11	-8,01	0,75	-10,7
Avril	29,80	114,6	0,75	85,95	12	45,89	0,75	61,2
Mai	15,00	130,82	0,95	124,28	15	98,45	0,75	131,3
Juin	4,00	145,8	0,85	123,93	17	108,53	0,75	144,7
Juillet	0,30	163,06	0,75	122,30	17	110,60	0,75	147,5
Août	2,20	157,17	-	-	-	-	-	-
Total						363,46		484,6

Tableau VI.12: Tomate industriel

Mois	Pluie eff	ET0	Kc	ET0*kc	RFu	Besoin	Eff	Bbrut
	[mm]	[mm]				[mm]		[mm]
Septembre	17,30	121,8	-	-	-	-	-	-
Octobre	31,40	100,13	-	-	-	-	-	-
Novembre	49,70	67,8	-	-	-	-	-	-
Décembre	69,60	69,13	-	-	-	-	-	-
Janvier	62,60	67,27	0,45	30,27	8	-38,03	0,75	-50,70
Février	52,90	69,6	0,6	41,76	9	-17,98	0,75	-23,97
Mars	42,00	95,79	0,85	81,42	11	31,44	0,75	41,92
Avril	29,80	114,6	1	114,60	14	75,68	0,75	100,91
Mai	15,00	130,82	1,02	133,44	15	108,18	0,75	144,24
Juin	4,00	145,8	0,95	138,51	16	123,68	0,75	164,91
Juillet	0,30	163,06	0,75	122,30	42	94,13	0,75	125,50
Août	2,20	157,17	-	-	-	-	-	-
Total						433,11		577,47

Tableau VI.13: Oignon hiver

Mois	Pluie eff	ET0	Kc	ET0*kc	RFu	Besoin	Eff	Bbrut
	[mm]	[mm]				[mm]		[mm]
Septembre	17,30	121,8	-	-	-	-	-	-
Octobre	31,40	100,13	-	-	-	-	-	-
Novembre	49,70	67,8	-	-	-	-	-	-
Décembre	69,60	69,13	-	-	-	-	-	-
Janvier	62,60	67,27	0,45	30,27	3	-38,03	0,75	-50,70
Février	52,90	69,6	0,5	34,80	3	-24,94	0,75	-33,25
Mars	42,00	95,79	0,6	57,47	4	7,49	0,75	9,99
Avril	29,80	114,6	0,85	97,41	5	57,92	0,75	77,23
Mai	15,00	130,82	0,75	98,12	6	72,86	0,75	97,14
Juin	4,00	145,8	0,5	72,90	6	57,50	0,75	76,67
Juillet	0,30	163,06	-	-	-	-	-	-
Août	2,20	157,17	-	-	-	-	-	_
Total						195,77		261,03

Tableau VI.14: Fève/pois vert

Mois	Pluie eff	ET0	Kc	ET0*kc	RFu	Besoin	Eff	Bbrut
	[mm]	[mm]				[mm]		[mm]
Septembre	17,30	121,8	0.40	48,72	7	24,58	0,75	32,77
Octobre	31,40	100,13	0.70	70,09	7	31,28	0,75	41,71
Novembre	49,70	67,8	1.05	71,19	9	12,94	0,75	17,25
Décembre	69,60	69,13	1.00	69,13	10	-10,73	0,75	-14,31
Janvier	62,60	67,27	1.00	67,27	11	-6,16	0,75	-8,21
Février	52,90	69,6	0.95	66,12	11	1,82	0,75	2,43
Mars	42,00	95,79	-	-	i	-	-	-
Avril	29,80	114,6	-	-	-	-	-	-
Mai	15,00	130,82	-	-	-	-	-	-
Juin	4,00	145,8	-	-	1	-	-	-
Juillet	0,30	163,06	-	-	-	-	-	-
Août	2,20	157,17	-	-	-	-	-	-
Total						70,62	·	94,16

Tableau VI.15: Agrumes

Mois	Pluie eff	ET0	Kc	ET0*kc	RFu	Besoin	Eff	Bbrut
	[mm]	[mm]				[mm]		[mm]
Septembre	17,30	121,8	0.95	115,71	23	75,61	0,75	100,81
Octobre	31,40	100,13	0.80	80,104	11	37,30	0,75	49,74
Novembre	49,70	67,8	0.80	54,24	13	-8,00	0,75	-10,67
Décembre	69,60	69,13	0.80	55,30	14	-27,98	0,75	-37,30
Janvier	62,60	67,27	0.80	53,82	16	-24,74	0,75	-32,99
Février	52,90	69,6	0.80	55,68	17	-14,32	0,75	-19,09
Mars	42,00	95,79	0.80	76,63	18	16,39	0,75	21,86
Avril	29,80	114,6	0.85	97,41	21	47,09	0,75	62,79
Mai	15,00	130,82	0.85	111,20	22	74,54	0,75	99,38
Juin	4,00	145,8	0.90	131,22	21	106,70	0,75	142,27
Juillet	0,30	163,06	1.00	163,06	23	139,96	0,75	186,61
Août	2,20	157,17	1.00	157,17	23	132,17	0,75	176,23
Total						629,76		839,68

Tableau VI.16: pêcher

Mois	Pluie eff	ET0	Kc	ET0*kc	RFu	Besoin	Eff	Bbrut
	[mm]	[mm]				[mm]		[mm]
Septembre	17,30	121,8	0.95	85,26	23	45,16	0,75	60,21
Octobre	31,40	100,13	0.80	60,08	11	17,28	0,75	23,04
Novembre	49,70	67,8	0.80	33,90	13	-28,34	0,75	-37,79
Décembre	69,60	69,13	0.80	34,57	14	-48,72	0,75	-64,95
Janvier	62,60	67,27	0.80	33,64	16	-44,93	0,75	-59,90
Février	52,90	69,6	0.80	38,28	17	-31,72	0,75	-42,29
Mars	42,00	95,79	0.80	52,68	18	-7,56	0,75	-10,07
Avril	29,80	114,6	0.85	80,22	21	29,90	0,75	39,87
Mai	15,00	130,82	0.85	98,12	22	61,46	0,75	81,94
Juin	4,00	145,8	0.90	116,64	21	92,12	0,75	122,83
Juillet	0,30	163,06	1.00	133,71	23	110,61	0,75	147,48
Août	2,20	157,17	1.00	125,74	23	100,74	0,75	134,31
Total						457,26		609,68

Tableau VI.17: Betterave

Mois	Pluie eff	ET0	Kc	ET0*kc	RFu	Besoin	Eff	Bbrut
	[mm]	[mm]				[mm]		[mm]
Septembre	17,30	121,8	-	-	-	-	-	-
Octobre	31,40	100,13	-	-	-	-	-	-
Novembre	49,70	67,8	-	-	-	-	-	-
Décembre	69,60	69,13	-	-	-	-	-	-
Janvier	62,60	67,27	-	-	-	-	-	-
Février	52,90	69,6	0.40	27,84	7	-31,90	0,75	-42,53
Mars	42,00	95,79	0.72	68,97	7	19,56	0,75	26,08
Avril	29,80	114,6	0.72	82,51	8	44,73	0,75	59,64
Mai	15,00	130,82	1.00	130,82	9	106,70	0,75	142,27
Juin	4,00	145,8	1.00	145,80	10	131,54	0,75	175,39
Juillet	0,30	163,06	0.90	146,75	11	135,62	0,75	180,83
Août	2,20	157,17	0.90	141,45	11	127,85	0,75	170,47
Total						566,01		754,68

Tableau VI.18: Tabac

Mois	Pluie eff	ET0	Kc	ET0*kc	RFu	Besoin	Eff	Bbrut
	[mm]	[mm]				[mm]		[mm]
Septembre	17,30	121,8	-	-		-	-	-
Octobre	31,40	100,13	-	-		-	-	-
Novembre	49,70	67,8	-	-		-	-	-
Décembre	69,60	69,13	-	-		-	-	-
Janvier	62,60	67,27	-	-		-	-	-
Février	52,90	69,6	-	-		-	-	-
Mars	42,00	95,79	0.30	28,74	6	-18,96	0,75	-25,28
Avril	29,80	114,6	0.70	80,22	7	43,58	0,75	58,11
Mai	15,00	130,82	1.00	130,82	9	107,27	0,75	143,03
Juin	4,00	145,8	0.90	131,22	10	116,96	0,75	155,95
Juillet	0,30	163,06	0.75	122,30	11	110,60	0,75	147,46
Août	2,20	157,17		-	-			
Total						378,41	·	504,54

Tableau VI.19: Les besoins en eaux des cultures

Désignation						Bes	soins mens	suels (mm/ı	nois)				Années
Cultures	Sep	Oct.	Nov	Déc	Jan	Fév	Mars	Avr	Mai	Juin	Juillet	Août	
Blé	_	-	0	0	0	9,35	46,61	77,42	56,35	-	_	-	189,73
Mais grain	-	-	-	-	-	_	0	37,88	106,40	94,40	70,00	-	308,68
Mais fourrager	-	-	-	-	-	_	-	0	64,03	133,13	111,91	64,86	373,94
Luzerne	99,97	0	0	0	0	0	18,67	61,97	91,04	113,99	132,95	135,31	653,90
Maraîchage été	73,30	-	-	-	_	-	0	34,97	104,72	128,81	148,34	124,55	614,69
Maraîch.automne	52,36	59,73	10,15	0	0	0	ı	-	-	-	-	36,59	158,83
Pastèque	-	-	-	-	_	-	0	45,89	98,45	108,53	110,60	-	363,46
Tomate industriel	-	-	-	-	0	0	31,44	75,68	108,18	123,68	94,13	-	433,11
Oignon hiver	-	-	-	-	0	0	7,49	57,92	72,86	57,50	-	-	195,77
Fève/pois vert	24,58	31,28	12,94	0	0	1,82	-	-	-	-	-	-	70,62
Agrumes	75,61	37,30	0	0	0	0	16,39	47,09	74,54	106,70	139,96	132,17	629,76
Pêcher	45,16	17,28	0	0	0	0	0	29,90	61,46	92,12	110,61	100,74	457,26
Betterave	_	-	_	-	-	0	19,56	44,73	106,70	131,54	135,62	127,85	566,01
Tabac	_	-	-	-	_		0	43,58	107,27	116,96	110,60	-	378,41
Totale (mm)	370,98	145,59	23,09	0	0	11,17	140,16	557,03	1052	1207,36	1164,72	722,07	5394,17
Totale (m3/ha)	3709,8	1455,9	230,9	0	0	111,7	1401,6	5570,3	10520	12073,6	11647,2	7220,7	53941,7

Tableau VI.20: Tableau récapitulatif des surfaces et les besoins totaux en eau

Plan de culture	Surface (ha)	Besoins unitaires	Besoins nets (m ³)	Efficienc	Besoins bruts (m ³)
	(IIa)	(mm)	nets (m)	e	Di uts (III)
Céréales	14,10%	(====)			
Blé	372,15	189,73	706080,20	0,75	941440,26
Mais grain	186,07	308,68	574360,88	0,75	765814,50
Culture Maraîchage	30,30%				
Maraîchage été	289,01	614,69	1776515,57	0,75	2368687,43
Maraîch. Automne	134,61	158,83	213801,06	0,75	285068,08
Pastèque	510,71	363,46	1856226,57	0,75	2474968,75
Oignon hiver	142,52	195,77	279011,40	0,75	372015,21
Fève/pois vert	122,73	70,62	86671,93	0,75	115562,57
Cultures	29,10%				
industrielles					
Tomate industriel	914,53	433,11	3960920,88	0,75	5281227,84
Tabac	67,3	378,41	254669,93	0,75	339559,91
Betterave	170,24	566,01	963575,42	0,75	1284767,23
Arboricultures	18,20%				
Agrumes	494,88	629,76	3116556,29	0,75	4155408,38
pêcher	225,66	457,26	1031852,92	0,75	1375803,89
Cultures fourragères	8,30%				
Mais fourrager	114,81	373,94	429320,51	0,75	572427,35
Luzerne	213,79	653,9	1397972,81	0,75	1863963,75
Besoins en	eaux totaux	(\mathbf{m}^3)	16647536,3	0,75	22196715,15
			6		

D'après le tableau ci-après les besoins bruts en eau pour l'irrigation du périmètre sont estimés à environ 22.20 Mm³.

VI.3. BESOIN EN EAU POUR LE LESSIVAGE

Dans les sols salés, il faut non seulement couvrir les besoins d'évapotranspiration de la culture et les besoins d'humectation et d'évaporation du sol avec une quantité d'eau, mais il faut ajouter une quantité supplémentaire pour dissoudre les sels solubles, et qui seront évacués en dehors de la zone racinaire par un réseau de drainage, on appelle la quantité supplémentaire **la dose de lessivage**.

Cette méthode de lutte contre la salinité a pour but de limiter l'extension des terres salées, de récupérer les sols, aussi d'améliorer les rendements des cultures.

Les besoins en eau pour le lessivage seront évalués à 20% des besoins bruts d'irrigation.

Le lessivage est envisagé lorsque:

- ✓ L'eau d'irrigation est salée (C_{ew} > 1,5 ds/cm)
- ✓ Le sol est à tendance saline ($C_{es} > 4 \text{ ds/cm}$)

On distingue deux types de lessivage:

- ✓ Lessivage capital (ou initial): il consiste à ramener une grande quantité d'eau pour lessiver le sol.
- ✓ Lessivage continue (ou lessivage d'entretien): contrairement à celui capital, ce type de lessivage consiste à ramener de l'eau sous forme de doses supplémentaires avec ceux d'irrigation. [8]

Remarque:

Pour le périmètre de Zit-Emba et après la consultation des analyses faites sur l'eau du barrage de Zit-Emba et sur le sol du périmètre la conductivité électrique de l'eau est inferieure a 1.5 ds/cm et celle du sol est inferieure a 4 ds/cm, cela implique que le périmètre de Zit Emba n'a pas besoin de dose de lessivage.

Pour le mois de pointe

Tableau VI.21: Besoins en eau du moins de pointe

Superficie en	Besoins en eau du mois de pointe (m3/ha)	Efficien	Besoins en eau du mois de pointe
(ha)		ce	(m3/ha)
3959	12073,6	0,75	16098,13

VI.4. CONCLUSION

Le barrage de Zit-Emba assurera seul l'alimentation en eau du périmètre d'irrigation projeté, L'étude de simulation de son fonctionnement a montré qu'il permettra de régulariser un volume de 43 millions de m³ d'eau, Les besoins de pointe estimés des eaux en irrigation pour les terres agricoles de la zone Nord du périmètre Zit-Emba sont 22.20 Mm³ donc le barrage de Zit-Emba est capable d'irriguer ce périmètre avec une superficie de 3959 ha. Les 20.80 Mm³ qui restent seront utilisés pour irriguer la zone Sud du périmètre de Zit-Emba avec une superficie de 2516 ha.

VII.1. INTRODUCTION

Le réseau collectif de distribution d'eau est essentiellement constitué par des canalisations enterrées, livrant l'eau sous pression aux différentes exploitations agricoles par l'intermédiaire des bornes (prises) d'arrosages.

Le développement de ces réseaux de desserte par les conduites sous pression est lié principalement, à la rationalisation de la ressource en eau et particulièrement la généralisation des méthodes d'irrigation modernes.

C'est dans ce contexte que notre attention dans ce chapitre s'est accentuée sur l'optimisation du réseau de desserte d'irrigation sous pression.

VII.2. DESCRIPTION DU SCHEMA D'ADDUCTION

Une conduite gravitaire d'adduction DN 1500 de 9,7 km environ relie le barrage à la station de pompage du réseau Nord (**Figure VII.1**). Elle franchira l'oued Kebir soit en amont du vieux pont près de la ferme Boucetta, soit plus au Sud sur le pont de l'autoroute, l'oued étant très profond dans cette zone.

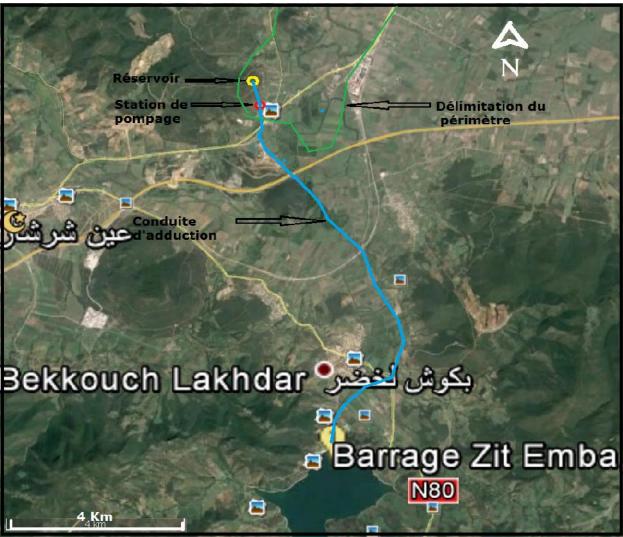


Figure VII.1. Le réseau d'adduction du périmètre

Cette conduite se termine par un obturateur à disque. (DN 630 mm – 5 bars) une réserve tampon de 8000 m³ se trouve entre cet appareil et la station équipée pour un débit de 2590 l/s – avec 5 pompes de 1870 m³/h à 88 m environ. Il y a une sixième pompe en secours. Les conduites de refoulement vers le réservoir de tête en DN 1500.

La réserve stockera le volume nécessaire pour permettre l'arrêt de 2 h des pompes pendant la pointe tarifaire (17.000 m³) ainsi que celui nécessaire à l'écrêtement d'une pointe de demande estimée à 6 h (28.000 m³) soit 45.000 m³ au total, le réservoir se trouve à une altitude de 100 m. Le tracé du réseau d'adduction a été effectué en plusieurs étapes:

- ✓ Afin de minimiser les problèmes fonciers qui peuvent découler des tracés, nous avons essayé, dans la mesure du possible, d'emprunter les emprises publiques (routes, pistes, réseaux publics existants...).
- ✓ Les joints reliant les éléments de conduites permettent une certaine déviation angulaire qui nous permet d'éviter les coudes par l'utilisation d'un rayonnement de conduites.

VII.3. LES PRINCIPES ET LES METHODOLOGIES DE DIMENSIONNEMENT

Le dimensionnement du réseau d'adduction est directement lié à celui du réseau de distribution. Pour cette raison, nous présenterons les détails de calcul de la totalité du réseau.

- ✓ Description des réseaux d'adduction et de distribution (nœuds, longueurs des tronçons, cotes des nœuds, types des nœuds, surfaces dominées par les bornes);
- ✓ Détermination des débits transités par chaque tronçon du réseau de distribution ;
- ✓ Détermination des débits à la sortie des départs de quartier;
- ✓ Détermination des débits transités par chaque tronçon du réseau d'adduction ;
- ✓ Dimensionnement et optimisation des réseaux d'adduction ;
- ✓ Détermination des cotes piézométriques en tête de quartier ;
- ✓ Dimensionnement et optimisation des réseaux de distribution en tenant compte des vitesses, des pertes de charges et des pressions résiduelles aux bornes.

VII.4. CALCUL DES DEBITS A TRANSITER PAR LE RESEAU COLLECTIF

Les conditions de la desserte envisagées préalablement fixées : plan de bornage, pression à délivrer, modalité d'utilisation des prises et le tracé du réseau, les débits à transiter par chaque tronçon doivent être définis ensuite.

VII.4.1. débits spécifiques et module d'arrosage

Le but est de définir les débits nécessaires que le système d'irrigation doit véhiculer pour répondre à la demande en eau des cultures.

Les débits spécifiques sont définis d'après les besoins en eau de chaque culture, évalués précédemment à partir de la répartition culturale.

La dose d'arrosage de la consommation de pointe est donnée sous forme de débit permanent fourni 20 heures sur 24 heures, afin d'assurer les besoins de consommation mensuelle.

Ces débits spécifiques sont calculés par la formule (VII.1) et permettront de déterminer les débits à la parcelle et à l'entête de l'entité d'étude.

$$q_s = \frac{B_{net}}{3.6 \times K \times T \times t} \quad \text{(l/s/ha)}$$
 (VII.1)

Tels que B_{net} : Besoins mensuels maximum net en m^3/ha .

K: l'efficience moyenne d'irrigation (75%).

T : nombre d'heures d'irrigation=20 heures

t : nombre de jours de mois de pointe =30 Jours

VII.4.2. calcul du débit spécifique

- le mois de pointe est Juin.
- Les besoins de pointe sont de 1207,36 mm

$$q_s = \ \frac{12073.6 \cdot 10^3}{3600 \times 0.75 \times 20 \times 30} = 7.45 \ \text{l/s/ha}.$$

• Le débit spécifique q_S de l'assolement est trop important 7,45 l/s/ha, et supérieur à 1,5 l/s/ha, donc on choisira le débit spécifique moyen du mois de pointe

 q_s des cultures / nombre de cultures = 0,719 l/s/ha

Le débit spécifique $q_s = 0.719$ l/s/ha est inferieur a 1,5 l/s/ha donc le choix reste valable. Les débits spécifiques moyens des cultures sont donnés au tableau IIV-1.

Tableau VII-1: débits spécifiques moyens des cultures

Désignation		Débits spécifiques moyens des cultures (l/s/ha)											
Culture	Sep	Oct.	Nov	Déc	J	Fév	Mars	Avr	Mai	Juin	Juil	Août	Année
Blé	-	-	0	0	0	0,058	0,288	0,478	0,348	-	-	-	1,171
Mais grain	-	-	-	-	-	-	0	0,234	0,657	0,583	0,432	-	1,905
Mais fourrager	-	-	-	-	-	-	-	0	0,395	0,822	0,691	0,400	2,308
Luzerne	0,617	0	0	0	0	0	0,115	0,383	0,562	0,704	0,821	0,835	4,036
Maraîchage été	0,452	-	-	-	-	-	0	0,216	0,646	0,795	0,916	0,769	3,794
Maraîch.automme	0,323	0,369	0,063	0	0	0	-	-	-	-	-	0,226	0,980
Pastèque	-	-	-	-	-	-	0	0,283	0,608	0,670	0,683	-	2,244
Tomate	-	-	-	-	0	0	0,194	0,467	0,668	0,763	0,581	-	2,674
Oignon hiver	-	-	-	-	0	0	0,046	0,358	0,450	0,355		-	1,208
Fève/pois vert	0,152	0,193	0,080	0	0	0,011	-	-	-	-	-	-	0,436
Agrumes	0,467	0,230	0	0	0	0	0,101	0,291	0,460	0,659	0,864	0,816	3,887
Pêcher	0,279	0,107	0	0	0	0	0	0,185	0,379	0,569	0,683	0,622	2,823
Betterave	-	-	-	-	-	0	0,121	0,276	0,659	0,812	0,837	0,789	3,494
Tabac	-	-	-	-	-		0	0,269	0,662	0,722	0,683	-	2,336
q moyenne l/s/h	0,382	0,225	0,071	0	0	0,034	0,144	0,313	0,541	0,678	0,719	0,637	-

VII.5. LA LOI DE DEBIT

Dans le cadre d'une irrigation à la demande, le débit affecté à chaque prise, sera fonction des caractéristiques de la parcelle à desservir, dont l'importance a été déterminée par l'étude préalable des besoins, de façon à laisser une liberté à l'irrigant, quant à l'organisation de ses arrosages. Les paramètres de la loi de débit sont définis, ci-après :

- la conception des modèles.
- l'évaluation des besoins en eau du périmètre.
- l'analyse de la trame technique et hydraulique.
- la définition des tailles des îlots d'irrigation.

Conformément à la figure VII.1, la loi des débits est donnée sous la forme suivante :

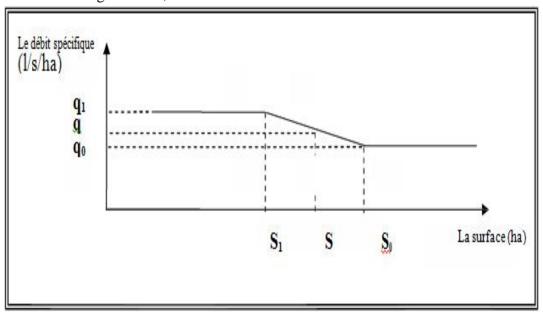


Figure VII.2. Représentation graphique de la loi de débit

✓ **Pour S** S₁ on a
$$q = q_1$$
✓ **Pour S**₁ S S₀ $\frac{(q_1 - q_0)}{(q - q_0)} = \frac{(S_0 - S_1)}{(S_0 - S_1)}$
D'où $q = q_0 + (q_1 - q_0) * \frac{(S_0 - S_1)}{(S_0 - S_1)}$
✓ **Pour S** > **So** on a $q = q_0$

Dans lesquelles:

q₁ : Débit caractéristique du modèle le plus exigeant.

q₀: Débit caractéristique moyen des modèles (débit du mois de pointe).

S₁ Surface occupée par le modèle le plus exigeant sur la plus longue branche.

 \mathbf{S}_0 : Surface occupée par les modèles dont le débit caractéristique est supérieur au débit moyen des modèles. [8]

VII.5.1. Calcul des débits des tronçons :

VII.5.1.1. Théorie de la méthode :

Dans le cas de la distribution à la demande le débit affecté à chaque prise est supérieur au débit fictif continu qui lui est nécessaire. Ce qui va engendrer des débits énormes si on procède par sommation pour le calcul des débits à transiter par les différents tronçons du réseau de distribution. Et comme la probabilité pour que les prises soient toutes ouvertes en même temps est infime, M. R.Clement a proposé deux modèles basées sur un raisonnement probabiliste dont on va voir et utiliser le plus répandu d'entre eux.

Soit R le nombre de prises situées à l'aval du tronçon à étudier.

d_i : le débit de chaque prise.

T : la durée de la période de pointe (mois ou décade).

T': le temps d'utilisation du réseau pendant la période de pointe.

r : rendement d'utilisation en temps du réseau. $r = \frac{T}{T}$

D: le débit fictif continu du réseau.

t': le temps moyen d'utilisation de chaque prise.

$$t' = \frac{volumed'eauàfounir}{d\acute{e}bit} = \frac{D.T/R}{d} = \frac{D.T}{R.d}$$
.....(VII. 2)

L'hypothèse de base du modèle consiste à admettre que les différentes prises du réseau sont indépendantes et qu'elles fonctionnent d'une manière aléatoire pendant la période de pointe T'. D'où la fréquence ou probabilité de fonctionnement de chaque prise.

$$p = \frac{t}{T} = \frac{t}{rT} = \frac{D}{r.R.d}$$
 (VII.3)

Nous sommes devant une population de R prises homogènes dont chacune est, soit ouverte soit fermée avec les probabilités respectives p et q=1-p. Le nombre de prises « n » ouvertes est donc une variable aléatoire suivant une loi binomiale de moyenne R.p. et de variance R.p.q.

La probabilité Pq pour que sur les R prises qui constituent le réseau il y ait au plus N prises en fonctionnement simultané est :

Où C_R^i est le nombre de combinaisons de R objets combinés i à i.

Pour R suffisamment grand et p pas trop petit il a été démontré que le nombre de prises N ouvertes pour lequel le tronçon étudié sera calibré est :

$$N = Rp + U(Pq).\sqrt{R.p.q}$$
 (VII.5)

D'où

$$Q = R.p.d + U(Pq)\sqrt{R.p.q.d^2}$$
 (VII.6)

Tel que

U : correspondant à la valeur choisie pour la qualité de fonctionnement Pq.

La formule se généralise pour le cas de Ri prises hétérogènes en répartissant les R prises en plusieurs sous-ensembles homogènes relatifs à une classe donnée de débit de prises. On obtiendra la première formule de la demande [8] :

$$Q = \sum_{i=1}^{N} R_i p_i d_i + U(Pq) \sqrt{\sum_{i=1}^{n} R_i . p_i q_i d_i^2} (VII.7)$$

VII.5.1.2. Application de la méthode :

La qualité de fonctionnement à adapter est couramment prise égale à 95%, ce qui correspond à U=1.645.

Du fait que l'irrigation à la demande entraîne une forte majoration du débit transité par rapport au débit fictif continu lorsque le nombre desservi de prises est faible. Il est prudent d'adapter un raisonnement déterministe en bout de réseau en cumulant les débits de prises tant que leur nombre est inférieur à une certaine valeur n. Dans notre cas on va prendre n=5.

On va adapter une irrigation de 20 h/24. Ce qui nous donne r=0.83.

Le débit fictif continu égal à D=0,719 l/s/ha.

Le débit total installé:

$$\sum_{i=1}^{n} N_i d_i \qquad (VII.8)$$

La probabilité moyenne de fonctionnement d'une prise :

$$p = \frac{D.s_i}{0.83.\sum_{i=1}^{n} N_i d_i}$$
 (VII.9)

(Voir l'Annexe 2 à 4 pour les tableaux des débits des tronçons à chaque borne d'irrigation).

VII.6. DIMENSIONNEMENT DU RESEAU DE DISTRIBUTION

L'acheminement des eaux vers les différents îlots s'effectue par gravité à l'aide des conduites en acier, le périmètre se compose de 1307 parcelles réparties sur 439 ilots avec des surfaces variables (voir planche N°2).

Le dimensionnement du réseau de distribution a était fait à l'aide du logiciel Epanet, la **Figure VII.3** représente la distribution des pressions et des vitesses dans le réseau et les tableaux dans l'**Annexe 5 à 23** représente le dimensionnement de réseau de distribution.

Figure VII.3 : Distribution des pressions et des vitesses dans le réseau de distribution

VII.7. DIMENSIONNEMENT DU RESEAU D'IRRIGATION EN GOUTTE A GOUTTE

L'irrigation localisée est caractérisée par un apport d'eau localisé, fréquent et continu utilisant des débits réduits à faible pression. Seule la fraction du sol exploitée par les racines est continuellement humectée. Le réseau d'irrigation localisé (**Figure VII.4**) est composé d'une station de tête qui comprend les systèmes de filtration et d'injection ainsi que des accessoires relatifs à la régulation de sa pression et à la protection du système, et d'un réseau de distribution. Celui-ci est composé de conduites d'amenée et de secteurs d'irrigation. Chaque secteur est contrôlé par une vanne et comprend des gaines ou des rampes portant des distributeurs. Les rampes sont branchées sur un porte rampe (ou antenne).

Le goutte à goutte permet une économie de l'eau (50 a70% par rapport au gravitaire et 30% par rapport à l'aspersion) et une utilisation de la fertigation. Il contribue à une augmentation des rendements, de l'ordre de 20 à 40%, et a l'amélioration de la qualité des productions maraîchères. Ce système de ferti-irrigation localisée assure une meilleure efficience de l'utilisation de l'eau et des engrais entrainant ainsi une réduction des pertes de solutions nutritives par lessivage et par conséquent une diminution de la pollution des nappes phréatiques par les engrais. Par rapport aux autres systèmes d'irrigation, le goutte à goutte permet une baisse des dépenses en énergie utilisée dans le pompage, une réduction du cout de la main d'œuvre impliquée dans les opérations de l'irrigation et de la fertilisation, et une baisse de quantités d'eau et d'engrais utilisées.

Cet apport d'eau continu et localisé en bande, obtenue par le goutte à goutte en maraichage, permet une réduction de l'évaporation, une diminution de la percolation de l'eau, une atténuation des effets du vent sur la culture, une meilleure conservation de la structure du sol, un accès facile aux parcelles pour la réalisation des différentes opérations culturales, et une réduction des mauvaises herbes. Ce système permet aussi d'exploiter des champs à topographie et configuration irrégulières, des sols lourds qui se fissurent en été, et des sols légers filtrant a forte percolation. La fréquence élevée des arrosages permet une dilution des sels présents dans la solution du sol sous le distributeur et un maintien des sels à la périphérie du bulbe humecté.

Pour une utilisation efficiente de l'irrigation goutte à goutte, on doit maitriser la technique de conduite d'un réseau d'irrigation bien conçu et correctement installé. Ce mode de conduite doit tenir compte du risque potentiel posé à ce système, à savoir le problème de colmatage ou de bouchage des distributeurs. En effet, le colmatage entraine une mauvaise répartition de l'eau dans le sol ce qui affecte la croissance et le développement des plantes. [10]

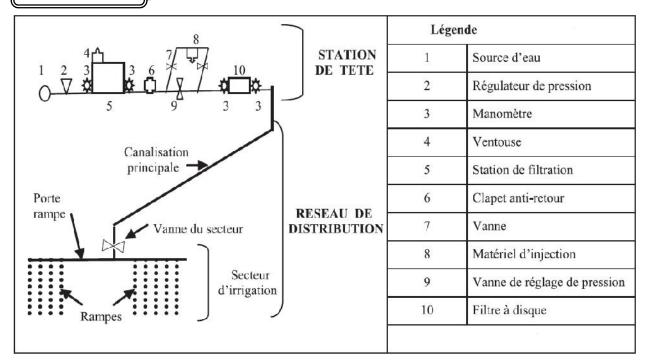


Figure VII.4: Schéma d'un réseau d'irrigation localisée

VII.7.1. Eléments de l'étude de dimensionnement nécessaires à la conduite de l'irrigation

Les éléments issus de l'étude du dimensionnement du réseau d'irrigation localisée de l'exploitation choisie portent sur les caractéristiques de la source d'eau, de la culture, du sol, du matériel d'irrigation. Ces informations doivent être disponibles à tout moment pour les utiliser en cas de contrôle ou de problèmes de conduite de l'irrigation. La superficie de l'exploitation de tomate (**Figure VII.5**) prise comme exemple est de **S1=10.6** ha. Sa longueur est de **595** m et sa largeur est de **175** m. L'étude a défini un nombre de secteurs d'arrosage **Ns=8** secteurs. Chaque secteur a une superficie de **Ss=1.2** ha dont la longueur **Ls=145m** et sa largeur **ls=83** m.

VII.7.2. Données sur la source d'eau

La source d'eau est constituée par un borne située en tête de l'exploitation (Figure VII.5), dont :

- Le débit d'eau Qs= $13.66 \text{ l/s} = 49.18 \text{ m}^3/\text{h}$.
- Le fonctionnement de cette borne à partir du réservoir est de 20 heure/jour.
- Le volume d'eau disponible pendant une journée est $V = Qs \times d = 49.18 \times 20 = 983.6$ m³/jour.

VII.7.3. Caractéristiques du matériel d'irrigation

Chaque ligne de tomate est irriguée à partir d'une rampe d'une longueur Lr=36 m (Figure VII.5) portant des goutteurs espacés de 0.25 m (Eg) et ayant un débit Qg=1.5 l/h a une pression d'un bar.

- Le nombre de goutteurs par rampe : $Ng = \frac{Lr}{Eg} = \frac{36}{0.25} = 144$.
- Le débit de la rampe : $Qr = Ng \times Qg = 144 \times 1.5 = 216 \text{ l/h}.$
- L'écartement entre rampes : Er = 1.5 m.

Les rampes sont placées de part et d'autre de chaque porte rampe.

- La largeur du secteur : ls = 83 m.
- Le nombre de paires de rampes par porte rampe : $Nprpr = \frac{ls}{Er} = \frac{83}{1.5} = 55$
- Le nombre de rampes par porte rampe : Nrpr = Nprpr \times 2 = 55 \times 2 = 110.
- Le nombre de porte rampe par secteur : Npr = 2.
- Le nombre total de rampes par secteur : Ntr = Nrpr \times Npr = $110\times2 = 220$.
- La longueur totale des rampes par secteur : d'arrosage est Ltr = Ntr × 36 = 220 × 36 = 7920 m.
- Le nombre total de goutteurs par secteur : Ntg = Ntr \times Ng = 220 \times 144 = 31680.
- Le débit horaire d'un secteur d'irrigation : Qs= Ntg \times Qg = 31680 \times 1.5 = 47520 l/h.
- La pluviométrie horaire d'un secteur :

$$Ps = \frac{Qs}{Ss} \qquad (VII.10)$$

$$Ps = \frac{47520}{12000} = 3,96 \text{ mm/h}$$

VII.7.4. Exigences de la culture :

Dans le cas de notre exemple, la tomate industrielle a été plantée en lignes simples, a une densité de l'ordre de 26000 plants à l'hectare. Les lignes de tomates sont espacées de 1,50 m et l'écartement entre les plantes sur la ligne est de 0,25 m. on compte un goutteur par plante.

Les besoins bruts en eau d'irrigation en période de pointe (Bbp) sont estimés à 123,68 mm/mois ou 4,12 mm/jour.

VII.7.5. Information sur le sol de l'exploitation :

Le sol est argilo-limoneux, sa porosité est de 27%, sa perméabilité est de 8 mm/heure, et sa densité apparente est de 1,9. Son humidité à la capacité au champ (Hcc) en % du volume est de 22 soit 220 mm par mètre de profondeur ; son humidité au point de flétrissement (Hpf) en % du volume est de 13 soit 130 mm/m de profondeur.

• La réserve utile est RU = Hcc-Hpf = 220-130 = 90 mm/m de profondeur.

Dans le cas du goutte à goutte, seul un pourcentage de la surface et du volume du sol est effectivement mouillé en continu.

Dans le cas de notre exemple, on cherchera à humecter 0.50 m de part et d'autre de la rampe, soit une bande humectée bh = 1 m.

- La surface réellement humectée par secteur est $Srh = Ltr \times bh = 7920 \times 1 = 7920 \text{ m}^2$.
- La proportion réellement humectée par rapport au secteur d'arrosage est égale a :

$$Prh = \frac{Srh}{Ss}$$
 (VII.11)

$$Prh = \frac{7920}{12000} = 0.66 = 66\%.$$

La dose nette maximale D_{net} (en mm) d'arrosage est égale à :

Bnet =
$$RU \times f \times Z \times Prh$$
. (VII.12)

• RU : réserve utile = 90 mm/m de profondeur.

- f: fraction pratique de la RU = 0.66.
- Z : profondeur des racines active de la tomate industrielle à arroser Z= 0.4 m.
- $D_{net} = 90 \times 0.66 \times 0.4 \times 0.66 = 15.7 \text{ mm}.$

Puisque la valeur des besoins en eau de pointe (Bbp = 4.12 mm/j) est inferieure a la D_{net} , l'irrigation de pointe pourra être réalisée en un apport journalier.

VII.7.6. Besoins en eau d'irrigation :

Dans le cas de notre exemple, pour le stade de fructification considéré, Kc = 0,90 et ET0 = 145,8 mm/mois = 4,86 mm/jour.

ETculture =
$$ET0 \times Kc$$
 (VII.13)

 $ET_{culture} = 4.86 \times 0.9 = 4.37 \text{ mm/jour}$

L'efficience de l'irrigation localisée est Ei = 0,90 et le coefficient d'uniformité du réseau Cu = 0.95.

Les besoins en eau d'irrigation est :

$$Bb = \frac{ETc}{(Ei \times Cu)}$$
 (VII.14)

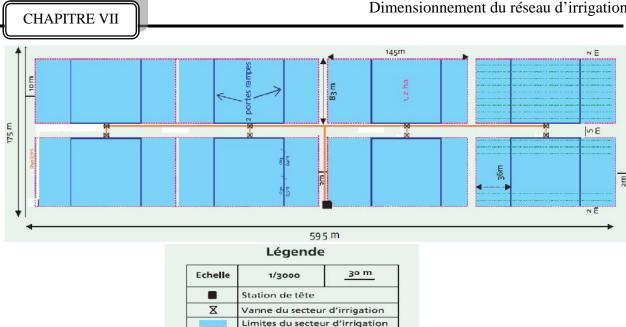
Bb =
$$\frac{4,37}{(0.9 \times 0.95)}$$
 = 5,11 mm/jour = 51,1 m³/ha.

VII.7.7. La durée d'arrosage et le volume d'eau à apporter par secteur :

Le temps d'arrosage (T) d'un secteur d'irrigation (en heure par jour) durant la première décade du mois de juin est de :

$$T = \frac{Bb}{P_S} \qquad (VII.15)$$

$$T = \frac{5,11}{3.96} = 1.29 = 1 \text{ h}18 \text{ min /jour.}$$


Ce temps d'arrosage permet d'apporter au secteur d'irrigation le volume d'eau :

 $V = Bb[m^3/ha/j] \times Ss[ha] = 51,1 \times 1,2 = 61,32 \text{ m}^3/\text{jour.}$

La fréquence d'arrosage s'obtient comme:

$$i = \frac{Dnet}{Bb}.$$
 (VII.16)

$$i = \frac{15,7}{5,11} = 3$$
 jour.

Limites de l'exploitation Canalisation principale

Porte rampe Rampes

Figure VII.5 : Plan parcellaire de l'exploitation de tomate industrielle

VII.7.8. Calcul hydraulique:

VII.7.8.1. Débit :

Le débit de la rampe :

$$Qr = Ng \times Qg$$
(VII.17)

 $Qr = 144 \times 1.5 = 216 \text{ l/h}$

Qr : débit de rampe.

Ng: nombre de goutteur par rampe.

Qg : débit de goutteur.

VII.7.8.2. Débit de la porte rampe :

Pour un seul secteur

$$Qpr = Qr \times Nr$$
; (VII.18)

 $Qpr = 216 \times 110$

Qpr = 23760 l/h

VII.7.8.3. Conditions hydrauliques:

Variation maximale de débits entre goutteurs : $\Delta q / q = 10\%$;

Variation maximale de la pression : $q = K \times H^x$

$$\frac{\Delta q}{q_g} = x \times \frac{\Delta H}{H_n}$$
 (VII.19)

Avec qg: débit d'un goutteur.;

H_n: Pression nominale;

$$0.1 = 0.5 * \frac{\Delta H}{10}$$
 $\Delta H = 2 \text{ mce}$;

La valeur des pertes des charges singulières est estimée à 10% de la variation maximale de pression

Pdc (sing) =
$$2*0.1 = 0.2$$
 mce

$$Pdc (sing) = 0.2 mce$$

Pdc (linéaire) =
$$2-0.2 = 1.8$$
 mce

La répartition de la perte de charge est :

1/3 sur la porte rampe = 0.6 mce;

2/3 sur les rampes = 1.2 mce.

VII.7.8.4. Calcul du diamètre de la rampe :

Le diamètre est calculé d'après la formule suivant :

$$\emptyset = \left[\frac{p.d.c(r) \times 2.75}{0.478 \times Q(r)^{1.75} \times L(r)} \right]^{-1/4.75} \dots (VII.20)$$

Avec:

P. d.c (r): La perte de charge dans la rampe;

Q(r): Le débit de la rampe en 1/h; L(r): La longueur de la rampe en m.

$$\emptyset(\text{cal}) = \left[\frac{1.2 \times 2.75}{0.478 \times 216^{1.75} \times 36}\right]^{-1/4.75} = 10.26 mm$$

Ø (normalisé)= 16 mm

Tableau VII.2: Diamètre de la rampe pour la tomate industrielle

Paramètres	Lr(m)	Qr (l/h)	h1(m)	Dcal	Dn (mm)
calculées				(mm)	
Résultats	36	216	1,20	10,26	16

VII.7.8.5. Calcul du diamètre de la porte rampe :

$$\emptyset(\text{cal}) = \left[\frac{0.6 \times 2.75}{0.478 \times 23760^{1.75} \times 119} \right]^{-1/4.75} = 86.27 mm$$

Ø (normalisé)=110 mm

Tableau VII.3: Diamètre de la porte rampe

Paramètres	Lr(m)	Qpr (l/h)	h1(m)	Dcal	Dn (mm)
calculées				(mm)	
Résultats	119	23760	0,60	86.27	110

VII.7.8.6. dimensionnement de la canalisation principale :

L'acheminement des eaux vers les différents secteurs d'irrigation s'effectue par gravité à l'aide de conduites en PEHD PN10.

Le dimensionnement des conduites d'amenée a était fait à l'aide du logiciel Epanet, la figure suivante représente la distribution des pressions et des vitesses dans le réseau et les tableaux suivant présentent le dimensionnement de la conduite d'amenée.

Tableau VII.4: Dimensionnement du conduit d'amenée :

Nœud -	Tro	nçon	Long	Débit Q	DN	Vitesse	PDC	CTN	(m)	CF	(m)	Charge	pression
TYCEUG		100	(m)	(1/s)	(mm)	(m/s)	(m)	Amont	Aval	Amont	Aval	(m)	(m)
NI -	В	N1	82	105.6	400	1.08	0.23	8	8	84.00	83.77	83.77	75.77
10000	N1	N2	74	79.2	250	1.38	0.59	8	8.2	83.77	83.18	83.18	1000000000
N2 -	N2	N3	145	52.8	200	1.08	0.95	8.2	8.3	83.18	82.22	82.22	75.38
N3	N1	N4	74	26.4	250	1.38	0.59	8	7.2	82.22	81.63	81.63	74.62
N4 -	N4	N5	145	13.2	200	1.08	0.95	7.2	7	83.77	82.82	82.82	75.98
N5	N2	N6	1.15	13.2	160	0.85	0.01	8.2	8.1	83.77	83.76	83.76	75.22
N6 -	N2	N7	3.85	13.2	160	0.85	0.01	8.2	8	83.18	83.16	83.16	75.37
N7 -	2000000	2001-0120	50/37/22/2	10000000000	CENTANDE	804(80000)	V.2.590240029	0.0000000	- 20	Assessments	to the same and th	1244404.424.000.00	75.56
N8 -	N3	N8	1.15	13.2	160	0.85	0.01	8.3	8	83.18	83.17	83.17	74.32
N9 -	N3	N9	3.85	13.2	160	0.85	0.02	8.3	8.1	82.22	82.20	82.20	74.7
-	N4	N10	1.15	13.2	160	0.85	0.01	7.2	7	82.22	82.22	82.22	TO STATE OF THE STATE OF T
N10 -	N4	N11	3.85	13.2	160	0.85	0.02	7.2	7.4	81.63	81.61	81.61	76.17
Nll -	N5	N12	1.15	13.2	160	0.85	0.01	7	7.2	81.63	81.63	81.63	75.76
N12 -	N5	N13	3.85	14.2	161	1.85	0.02	7	7.1	82.82	82.79	82.79	75.02
N13 -													75.1

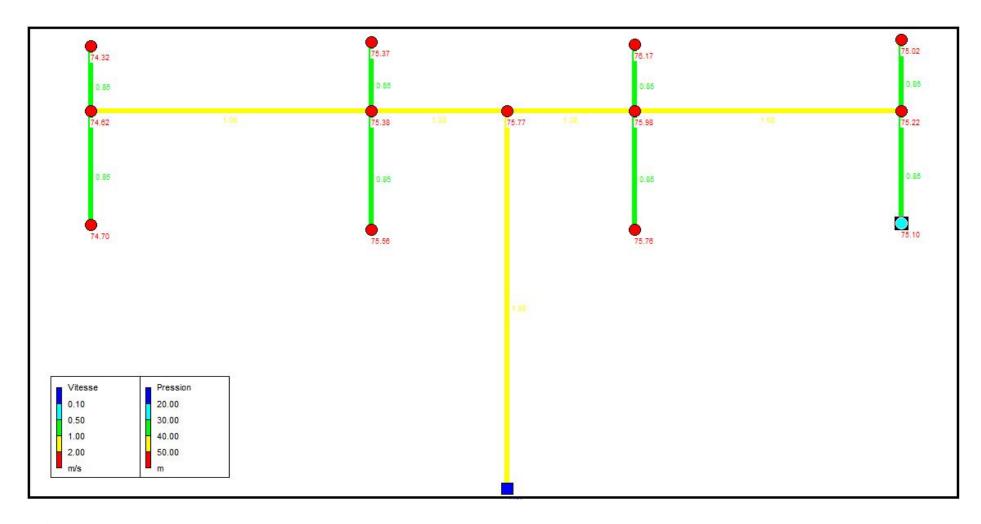


Figure VII.5 : distribution des pressions et des vitesses dans la conduite d'amenée

VII.8. CONCLUSION:

Dans le cadre de ce projet le périmètre est découpé en 439 îlots d'irrigation avec une taille moyenne de 9 ha pour équiper 3959 ha.

Le réseau de distribution est sous pression, et la desserte est à la demande, d'où l'évaluation des débits à transiter par les différents tronçons du réseau s'avère très complexe.

Le modèle que nous avons proposé pour schématiser le phénomène d'appel des débits dans une telle desserte est basé sur la loi de Clément, dans laquelle, les débits affectés à chaque prise sont fonction de la probabilité d'ouverture des prises.

Le système d'irrigation choisi pour irriguer l'ilot N°1 cultivé avec la tomate industrielle est la goutte à goutte qui donne un apport d'eau continu et localisé en bande qui permet une réduction de l'évaporation, une diminution de la percolation de l'eau, une atténuation des effets du vent sur la culture, une meilleure conservation de la structure du sol, un accès facile aux parcelles pour la réalisation des différentes opérations culturales, et une réduction des mauvaises herbes.

CONCLUSION GÉNÉRALE:

Le périmètre de Zit-Emba est situé à l'Est de la wilaya de SKIKDA. Il est caractérisé par un climat sub-humide que la répartition des pluies est caractérisée par deux saisons bien marquées, une période humide allant de Novembre à Avril qui correspond à 80% du total annuel et une saison sèche allant de Mai à Octobre avec des minima en juillet et août durant lesquels les précipitations sont pratiquement très faibles.

Pour l'irrigation du périmètre, la seule ressource en eau utilisée c'est le barrage de Zit-Emba qui se trouve à 8 km au Sud du périmètre actuel. Ce barrage est suffisant pour compenser les besoins en eau des cultures.

Concernant les besoins en eaux du périmètre, ils ont été déterminés à l'aide du logiciel **Cropwat.** Ce dernier a permis le calcul de l'évapotranspiration de référence **ET0**, les précipitations efficaces **Peff**, ainsi que les besoins en eau à apporter par l'irrigation pour satisfaire la demande en eau des cultures durant la saison sèche.

L'acheminement en eaux vers les différents ilots s'effectue par gravité à l'aide des conduites en acier et pour l'acheminement des eaux vers les différents secteurs d'irrigation s'effectue aussi par gravité à l'aide de conduites en PEHD PN10, le dimensionnement du réseau a était fait à l'aide du logiciel Epanet.

A la fin le périmètre de Zit-Emba se caractérise par l'étendue de ses terres et la diversité de ses cultures ce qui le place en premier rang dans les préoccupations de l'état pour le développement agro-socioéconomique de la région d'Est d'Algérie.

ANNEXE 1

$Valeurs\ minimales\ et\ maximales\ de\ Z\ pour\ diverses\ cultures$

Culture	Profondeur			Reserve facilement utilisable (p. Sa)				
	d'enracinement	reserve utile facilement	Texture	Texture	Texture			
	(D)	utilisable ¹⁾	fine	movenne	grossiere			
Ananas	0.3 - 0.6	0.50	100	65	30			
Arachides	0.5 - 1.0	0.40	30	55	25			
Arbres fruitiers	1.0 - 2.0	0.50	100	70	30			
Bananes	0.5 - 0.9	0.35	70	50	20			
Betteraves	0.6 - 1.0	0.50	100	70	35			
Sucrières	1 2002 2001	0.50	100	70	30			
Blé	0.7 - 1.2	0.55	105	70	35			
(maturation)	1.0 - 1.5	0.90	180	130	55			
Cacao		0.20	40	30	15			
Carottes	0.5 - 1.0	0.35	70	50	20			
Celeri	0.3 - 0.5	0.20	40	25	10			
Citrons	1.2 - 1.5	0.50	100	70	30			
Choux	0.4 - 0.5	0.45	90	65	30			
Concombres	0.7 - 1.2	0.50	100	70	30			
Coton	1.0 - 1.7	0.65	130	90	40			
Dattes	1.5 - 2.5	0.50	100	70	30			
Fraises	0.2 - 0.3	0.15	30	20	10			
Épinards	0.3 - 0.5	0.20	40	30	15			
Grains (petits) 27	0.9 - 1.5	0.60	120	80	40			
Grains (hiver) 2)	1.5 - 2.0	0.60	120	80	40			
Haricots	0.5 - 0.7	0.45	90	65	30			
Laitue	0.3 - 0.5	0.30	60	40	20			
Légumes	0.3 - 0.6	0.20	40	30	15			
Lin ²⁾	1.0 - 1.5	0.50	100	70	30			
Luzeme	1.0 - 2.0	0.55	110	75	35			
Mais*)	1.0 - 1.7	0.60	120	80	40			
?	1.0 - 1.7	0.50	100	70	30			
Melons	1.0 - 1.5	0.35	70	50	25			
Oignons	0.3 - 0.5	0.25	50	35	15			
Olives	1.2 - 1.7	0.65	130	95	45			
Orge ²⁾	1.0 - 1.5	0.55	110	75	35			
Paturages	0.5 - 1.5	0.50	100	70	30			
Palmiers	0.7 - 1.1	0.65	130	90	40			
Pois	0.6 - 1.0	0.35	70	50	25			
Poivre	0.5 - 1.0	0.25	50	35	15			
Patates	0.4 - 0.6	0.25	50	30	15			
Patates sucrees	1.0 - 1.5	0.65	130	90	40			
Raisin	1.0 - 2.0	0.35	70	50	20			
Sisal	0.5 - 1.0	0.80	155	110	50			
Sova	0.6 - 1.3	0.50	100	75	35			
Sorgho ²⁾	1.0 - 2.0	0.55	110	75	35			
Tabac (hatif)	0.5 - 1.0	0.35	70	50	25			
Tabac (tardif)	0.5 - 1.0	0.65	130	90	40			
Tomates	0.7 - 1.5	0.40	180	60	25			
Tournesol ²⁾	0.8 - 1.5	0.45	90	60	30			
Trefle	0.6 - 0.9	0.35	70	50	20			
	Réserve utile total		200	140	60			

ANNEXE 2 DEBITS DES TRONÇONS

	surface (ha)	Q[l/s]
S1	10.67	13.66
\$2	6.56	6.94
\$3	8.12	11.69
\$4	7.57	11.10
\$5	10.07	13.31
\$6	6.41	6.73
\$7	7.43	10.94
SS	6.05	6.24
\$9	7.98	11.54
\$10	6.88	7.38
S11	8.64	12.19
\$12	4.34	4.03
\$13	5.87	6.00
\$14	4.42	4.13
\$15	7.81	11.36
\$16	8.12	11.69
\$17	8.09	11.65
\$18	9.1	12.59
\$19	9.47	12.89
\$20	14.22	20.29
\$21	9.81	13.14
\$22	7.82	11.37
\$23	13.62	19.12
\$24	12.5	17.66
\$25	12.74	17.71
\$26	11.84	17.47
\$27	9.72	13.07
\$28	9.95	13.23
\$29	10.25	13.42
\$30	9.75	13.09
\$31	10.85	13.75
\$32	6.75	7.20
\$33	8.35	
\$34	7.5	11.92 11.02
\$35 \$36	9.42	12.85 13.09
	9.75	
\$37	11.45	17.31
\$38	11.32	17.24
\$39	12.95	17.74
\$40	11.22	17.19
\$41	13.09	18.11
\$42	12.15	17.57
\$43	15.74	23.32
\$44	10.84	13.75
\$45	13.21	18.34
\$46	15.08	21.99
\$47	12.27	17.61
\$48	9.71	13.07
\$49	11.69	17.41
\$50	15.78	23.40
\$51	13.12	18.17

RL12	DES T	KONÇC
	surface (ha)	Q[l/s]
\$52	11.17	17.17
\$53	11.59	17.37
\$54	9.57	12.96
\$55	11.85	17.47
\$56	15.85	23.54
\$57	10.45	13.54
\$58	9.75	13.09
859	12.28	17.61
\$60	7.69	11.23
\$61	7.67	11.21
\$62	7.92	11.48
\$63	7.87	11.42
\$64	9.56	12.96
\$65	9.14	12.63
\$66	10.75	13.70
\$67	9.89	13.19
\$68	9.66	13.03
\$69	8.47	12.03
\$70	11.35	17.26
\$71	10.12	13.34
\$72	10.34	13.48
\$73	7.53	11.05
\$74	8.62	12.17
\$75	7.53	11.05
\$76	7.67	11.21
\$77	6.96	7.49
\$78	7.78	11.33
\$79	6.48	6.83
\$80	7.59	11.12
\$81	7.67	11.21
\$82	8.78	12.32
\$83	9.36	12.80
\$84	7.96	11.52
\$85	10.12	13.34
\$86	6.64	7.05
\$87	6.41	6.73
\$88	7.21	10.50
\$89	6.75	7.20
\$90	7.71	11.25
\$91	7.02	10.13
\$92	7.47	10.98
\$93	6.71	7.14
\$94	9.32	12.77
\$95	9.91	13.21
\$96	12.45	17.65
\$97	12.08	17.55
\$98	8.27	11.84
899	6.83	7.31
\$100	8.71	12.25
\$100	8.96	12.48
\$102	5.81	7.85
0102	2.01	7100

5		
	surface (ha)	Q[l/s]
\$103	7.52	11.04
\$104	8.97	12.48
\$105	7.45	10.96
\$106	14.29	20.43
\$107	16.54	24.96
\$108	15.34	22.51
\$109	15.62	23.07
\$110	13.86	19.59
\$111	6.48	6.83
\$112	6.78	7.24
\$113	10.39	13.51
\$114	10.29	13.45
\$115	9.79	13.12
\$116	8.48	12.04
\$117	7.81	11.36
\$118	7.34	10.76
\$119	8.45	12.01
\$120	7.92	11.48
\$121	8.75	12.29
\$122	6.42	6.74
\$123	10.55	13.60
\$124	8.19	11.76
\$125	8.49	12.05
\$126	7.52	11.04
\$127	7.95	11.51
\$128	6.39	6.70
\$129	7.17	10.63
\$130	8.46	12.02
\$131	7.91	11.47
\$132	7.21	10.68
\$133	7.06	10.21
\$134	8.43	11.99
\$135	9.02	12.53
\$136	8.31	11.88
\$137	9.45	12.87
\$138	8.67	12.22
\$139	11.27	17.22
\$140	9.64	13.02
\$141	9.61	12.99
\$142	8.21	11.78
\$143	9.07	12.57
\$144	9.28	12.74
\$145	8.57	12.13
\$146	10.29	13.45
\$147	6.27	6.54
\$148	6.41	6.73
\$149	6.92	7.44
\$150	10.72	13.69
\$151	10.95	13.80
\$152	7.87	11.42
\$153	8.34	11.91

ANNEXE 3 DEBITS DES TRONÇONS surface (ha) Q[1/s]

	surface (ha)	Q[l/s]
\$154	5.91	8.03
\$155	9.81	13.14
\$156	9.57	12.96
\$157	7.99	11.55
\$158	6.49	6.84
\$159	7.37	10.87
\$160	9.38	12.82
\$161	9.25	12.72
\$162	9.19	12.67
\$163	10.49	13.56
\$164	8.32	11.89
\$165	10.34	13.48
\$166	11.81	14.14
\$167	13.84	19.55
\$168	4.84	4.65
\$169	9.07	12.57
\$170	12.87	17.73
\$171	11.31	17.24
\$172	11.69	17.41
\$173	10.13	13.35
\$174	10.24	13.42
\$175	14.57	20.98
\$176	9.47	12.89
\$177	9.82	13.14
\$178	8.94	12.46
\$179	9.59	12.98
\$180	8.52	12.08
\$181	4.34	4.03
\$182	6.64	7.05
\$183	6.12	6.33
\$184	9.07	12.57
\$185	7.12	10.33
\$186	11.31	17.24
\$187	8.6	12.15
\$188	8.82	12.35
\$189	8.13	11.70
\$190	10.93	13.79
\$191	7.95	11.51
\$192	10.01	13.27
\$193	7.56	11.08
\$193	11.04	17.09
\$195	12.78	17.72
\$196	10.28	13.44
\$196	11.16	17.16
	10.15	13.36
\$198	10.15	
\$199		13.43
\$200	6.64	7.05
\$201	6.45	6.78
\$202	10.59	13.62
\$203	8.13	11.70
\$204	5.66	5.72

BITS	S DES T	RONÇO
	surface (ha)	
\$205	5.56	5.58
\$206	8.16	11.73
\$207	9.16	12.64
\$208	7.47	10.98
\$209	7.91	11.47
\$210	5.72	5.80
\$211	5.63	5.68
\$212	5.95	8.10
\$213	6.34	6.63
\$214	7.82	11.37
\$215	5.87	6.00
\$216	7.74	11.28
\$217	9.96	13.24
\$218	6.91	7.42
\$219	6.32	6.61
\$220	6.81	7.28
\$221	7.62	11.32
\$222	4.97	4.82
\$223	10.21	13.40
\$224	7.01	10.11
\$225 \$226	6.42	6.74
	5.64	5.69
\$227 \$228	5.07	4.95 12.34
\$229	8.81 6.67	7.09
\$230	12.71	17.70
\$231	7.87	11.42
\$232	8.37	11.93
\$233	9.81	13.14
\$234	10.13	13.35
\$235	10.64	13.65
\$236	9.62	13.00
\$237	9.85	13.16
\$238	9.51	12.92
\$239	10.26	13.43
\$240	8.79	12.33
\$241	7.02	10.45
\$242	4.91	4.74
\$243	7.97	11.53
\$244	11.18	17.17
\$245	8.37	11.93
\$246	8.13	11.70
\$247	6.19	6.43
\$248	7.98	11.54
\$249	6.17	6.40
\$250	6.74	7.19
\$251	6.82	7.30
\$252	13.45	18.80
\$253	10.42	13.52
\$254	7.67	11.21
\$255	6.76	7.21

S		
	surface (ha)	Q[l/s]
\$256	6.42	6.74
\$257	7.42	10.93
\$258	10.49	13.56
\$259	8.18	11.75
\$260	10.35	13.48
\$261	8.55	12.11
\$262	6.21	6.46
\$263	10.81	13.73
\$264	9.39	12.83
\$265	8.92	12.44
\$266	7.27	10.75
\$267	8.96	12.48
\$268	10.13	13.35
\$269	8.54	12.10
\$270	11.82	17.46
\$271	9.71	13.07
\$272	8.43	11.99
\$273	6.75	7.20
\$274	6.12	6.33
\$275	7.31	10.70
\$276	6.11	6.32
\$277	10.73	13.69
\$278	8.64	12.19
\$279	8.87	12.40
\$280	7.04	10.17
\$281	11.21	17.19
\$282	6.23	6.48
\$283	7.12	10.33
\$284	6.61	7.00
\$285	13.01	17.96
\$286	12.09	17.56
\$287	11.59	14.06
\$288	9.75	13.09
\$289	10.02	13.28
\$290	7.72	11.26
\$291	14.77	21.37
\$292	13.31	18.53
\$293	11.68	17.41
\$294	14.27	20.39
\$295	8.28	11.85
\$296	8.61	12.16
\$297	10.34	13.48
		7.63
\$298	6.82	
\$299	6.94	7.47
\$300	6.01	6.18
\$301	5.83	5.94
\$302	5.04	4.91
\$303	6.43	6.76
\$304	5.47	5.47
\$305	6.18	6.41
\$306	5.32	5.27

ANNEXE 4
DEBITS DES TRONÇONS

	surface (ha)	Q[l/s]
\$307	7.39	10.86
\$308	6.24	6.50
\$309	5.97	6.13
\$310	7.79	11.34
\$311	6.52	6.88
\$312	8.57	12.13
\$313	7.66	11.20
\$314	6.37	6.67
\$315	7.79	11.34
\$316	6.92	7.44
\$317	5.48	5.48
\$318	8.65	12.20
\$319	10.06	13.30
\$320	8.64	12.19
\$321	8.31	11.88
\$322	9.05	12.55
\$323	10.86	13.76
\$324	9.09	12.59
\$325	10.72	13.69
\$326	14.97	21.77
\$327	6.74	7.19
\$328	9.83	13.15
\$329	11.77	17.44
\$330	10.02	13.28
\$331	10.41	13.52
\$332	9.28	12.74
\$333	7.85	11.40
\$334	9.46	12.88
\$335	8.47	12.03
\$336	8.09	11.65
\$337	11.48	17.32
\$338	10.64	13.65
\$339	11.53	17.34
\$340	11.74	17.43
\$341	10.68	13.67
\$342	11.56	17.36
\$343	10.72	13.69
\$344	7.89	11.45
\$345	9.43	12.86
\$346	8.92	12.44
\$347	8.94	12.46
\$348	6.79	7.26
\$349	8.75	12.29
\$350	6.38	6.69

RI13	DES I	KUNÇU
	surface (ha)	Q[1/s]
\$351	10.03	13.29
\$352	6.91	9.92
\$353	8.68	12.23
\$354	7.75	11.29
\$355	9.25	12.72
\$356	7.92	11.48
\$357	9.08	12.58
\$358	11.54	17.35
\$359	6.97	7.51
\$360	9.57	12.96
\$361	7.93	11.49
\$362	7.94	11.50
\$363	8.62	12.17
\$364	7.68	11.22
\$365	8.12	11.69
\$366	7.75	11.29
\$367	7.67	11.21
\$368	7.94	11.50
\$369	7.97	11.53
\$370	8.06	11.62
\$371	8.09	11.65
\$372	10.12	13.34
\$373	9.54	12.94
\$374	11.03	17.09
\$375	10.63	13.64
\$376	15.85	23.54
\$377	13.92	19.70
\$378	9.34	12.79
\$379	10.41	13.52
\$380	10.47	13.55
\$381	9.23	12.70
\$382	10.56	13.60
\$383	7.89	11.45
\$384	5.81	5.92
\$385	7.66	11.20
\$386	8.73	12.27
\$387	8.67	12.22
\$388	8.61	12.16
\$389	10.78	13.72
\$390	8.51	12.07
\$391	7.82	11.37
\$392	8.04	11.60
\$393	7.74	11.28

S		
	surface (ha)	Q[l/s]
\$394	7.23	10.70
\$395	6.12	6.33
\$396	6.49	6.84
\$397	7.19	10.66
\$398	5.15	5.05
\$399	11.26	13.94
\$400	8.04	14.29
\$401	9.14	12.63
\$402	9.62	13.00
\$403	11.25	17.21
\$404	10.58	13.61
\$405	7.53	11.05
\$406	10.42	13.52
\$407	8.43	11.99
\$408	10.62	13.64
\$409	10.15	13.36
\$410	12.19	17.59
\$411	5.04	4.91
\$412	6.45	6.78
\$413	7.05	10.19
\$414	11.63	17.39
\$415	9.61	12.99
\$416	7.31	10.80
\$417	5.11	5.00
\$418	14.92	21.67
\$419	9.12	12.61
\$420	6.95	7.48
\$421	8.97	12.48
\$422	9.94	13.23
\$423	8.54	12.10
\$424	9.48	12.90
\$425	9.55	12.95
\$426	10.25	13.42
\$427	11.46	17.31
\$428	12.31	16.64
\$429	9.89	13.19
\$430	15.42	22.67
\$431	10.25	13.42
\$432	9.32	12.77
\$433	9.83	13.15
\$434	9.66	13.03
\$435	12.89	17.73
\$436	12.48	17.66
\$437	8.85	12.38
\$438	12.54	17.67
\$439	8.23	11.80

ANNEXE 5
DIMENSIONNEMENT DU RESEAU DE DISTRIBUTION COTEE
WEST ``N``

						WES							
Nœud	Iro	nçon	Long	Débit Q	DN	Vitesse	PDC	CTN			(m)	Charge	pression
	R	N1	(m) 886,1	(l/s) 5351,72	(mm) 2000	(m/s) 1,7	(m) 0,75	Amont 100	Aval 30	Amont 102	Aval 101,25	(m) 101,25	(m)
N1	N1	N2	134,1	3020,17	1600	1,5	0,12	30	27	101,25	101,23	101,23	71,25
N2	N2	N3	243,5	3002,44	1600	1,49	0,12	27	22	101,23	100,92	100,92	74,13
N3										_			78,93
N4	N3	N4	265,7	2989,41	1600	1,49	0,23	22	27	100,92	100,70	100,70	73,7
N5	N4	N5	417,4	2976,26	1600	1,48	0,35	27	32	100,70	100,35	100,35	68,35
N6	N5	N6	650	2963,49	1600	1,47	0,47	32	24	100,35	99,87	99,87	75,88
N7	N6	N7	261,2	295,07	1600	1,47	0,22	24	25	99,87	99,66	99,66	74,66
N8	N7	N8	160,4	2933,43	1600	1,46	0,13	25	24	99,66	99,53	99,53	75,53
N9	N8	N9	238	2828,89	1600	1,41	0,18	24	24	99,53	99,34	99,34	75,35
N10	N9	N10	272,8	2815,66	1600	1,4	0,20	24	24	99,34	99,14	99,14	75,15
	N10	N11	156	2732,42	1600	1,36	0,11	24	24	99,14	99,03	99,03	
N11	N11	N12	824	2710,75	1600	1,35	0,58	24	25	99,03	98,45	98,45	75,04
N12	N12	N13	227,2	2680,53	1600	1,33	0,16	25	24	98,45	98,30	98,30	73,46
N13	N13	N14	291,7	2666,89	1600	1,33	0,20	24	24	98,30	98,10	98,10	74,3
N14	N14	N15	192,4	2639,08	1600	1,31	0,13	24	23	98,10	97,97	97,97	74,1
N15	N15	N16	164,7	2625,14	1600	1,31	0,11	23	23	97,97	97,86	97,86	74,98
N16	N16	N17	155,8	2067,18	1500	1,17	0,09	23	23	97,86	97,77	97,77	74,89
N17	N17	N18	172,5	2062,13	1500	1,17	0,10	23	23	97,77	97,67	97,67	74,78
N18	N18	N19	151,2	2051,47	1500	1,16	0,09	23	24	97,67	97,58	97,58	74,68
N19	N19	N20	90,23	2045,14	1500	1,16	0,05	24	24	97,58	97,53	97,53	73,59
N20	N20	N21	60,96	2003,53	1400	1,3	0,05	24	24	97,53	97,49	97,49	73,54
N21	N21	N22	157,4	1993,25	1400	1,29	0,12	24	25	97,49	97,37	97,37	73,5
N22	N22	N23	112	1980,88	1400	1,29	0,08	25	25	97,37	97,28	97,28	72,38
N23	N23	N24	95,92	1969,43	1400	1,28	0,07	25	25	97,28	97,21	97,21	72,29
N24	N24	N25	92,19	1955,71	1400	1,27	0,07	25	25	97,21	97,15	97,15	72,22
N25	N25	N26	222,3	1942,11	1400	1,26	0,16	25	26	97,15	96,99	96,99	72,15
N26	N26	N27	113,6	1915,89	1400	1,24	0,08	26	26	96,99	96,91	96,91	70,99
N27	N27	N28	126,5	1879,56	1400	1,22	0,09	26	26	96,91	96,82	96,82	70,91
N28	N28	N29	390,8	1846,31	1400	1,2	0,26	26	27	96,82	96,56	96,56	70,83
N29	N29	N30	206,5	1832,67	1400	1,19	0,13	27	28	96,56	96,43	96,43	69,57
N30 N31	N30	N31	130	1819,73	1400	1,18	0,08	28	28	96,43	96,34	96,34	68,44
N32	N31	N32	165,8	1802,64		1,17	0,10	28	30	96,34		96,24	66,25
N33	N32	N33	278,4	1170,64		1,04	0,16	30	36	96,24	96,08	96,08	60,09
N34	N33	N34	599,7	1163,45	_	1,03	0,35	36	36	96,08	95,72	95,72	59,74
N35	N34	N35	523,7	1127,99		1	0,29	36	36	95,72	95,43	95,43	59,45
N36	N35	N36	241,7	1115,44		0,99	0,11	36	36	95,43	95,32	95,32	59,45
N37	N36	N37	160,3	1103,25		0,98	0,08	36	36	95,32	95,24	95,24	59,23
N38	N37 N38	N38 N39	232,5 485,2	1091,05 1073,09		0,96 0,95	0,12	36 36	36 36	95,24 95,12	95,12 94,88	95,12 94,88	59,11
N39	N39	N40	134,6	1075,09		0,93	0,24	36	36	94,88	94,88	94,88	58,87
N40	N40	N40 N41	166,1	1036,28		0,93	0,08	36	36	94,81	94,73	94,73	58,8
N41	N41	N42	68,29	1025,63	1200	0,92	0,03	36	36	94,73	94,70	94,70	58,72
N42	N42	N43	122,8	1019,3	1200	0,9	0,05	36	36	94,70	94,65	94,65	58,69
N43	N43	N44	173	584,19	900	0,92	0,11	36	36	94,65	94,53	94,53	58,64
N44	N44	N45	122,8	576,8	900	0,91	0,08	36	35	94,53	94,45	94,45	58,52
N45													59,44

ANNEXE 6
DIMENSIONNEMENT DU RESEAU DE DISTRIBUTION COTEE
WEST ``N``

Nœud	Tro	nçon	Long	Débit Q	DN	Vitesse	PDC	CTN	(m)	CP	(m)	Charge	pression
11000			(m)	(1/s)	(mm)	(m/s)	(m)	Amont	Aval	Amont	Aval	(m)	(m)
N46	N45	N46	270,7	570,25	900	0,9	0,17	35	29	94,45	94,28	94,28	65,27
N47	N46	N47	141,7	560,14	900	0,88	0,09	29	32	94,28	94,19	94,19	62,18
N48	N47	N48	259	544	900	0,86	0,15	32	27	94,19	94,04	94,04	67,03
N49	N48	N49	278,7	523,32	900	0,82	0,15	27	25	94,04	93,89	93,89	68,88
N50	N49	N50	366,1	516,71	900	0,81	0,19	25	28	93,89	93,70	93,70	65,69
N51	N50	N51	117,6	509,29	900	0,8	0,06	28	28	93,70	93,64	93,64	65,63
N52	N51	N52	173,5	483,72	800	0,96	0,15	28	28	93,64	93,49	93,49	65,49
N53	N52	N53	146,9	459,01	800	0,91	0,11	28	27	93,49	93,38	93,38	66,37
1	N53	N54	76,26	453,01	800	0,9	0,06	27	24	93,38	93,32	93,32	_
N54	N54	N55	57,79	440,09	800	0,88	0,04	24	24	93,32	93,28	93,28	69,32
N55	N55	N56	142,2	428,72	800	0,85	0,09	24	23	93,28	93,19	93,19	69,28
N56	N56	N57	138,8	415	800	0,83	0,09	23	22	93,19	93,10	93,10	70,18
N57	N57	N58	_	406,9	800	-	-	22	18	_			71,1
N58			178,6			0,81	0,11		15.75	93,10	93,00	93,00	74,99
N59	N58	N59	130,5	401,22	800	0,8	0,08	18	12	93,00	92,92	92,92	80,91
N60	N59	N60	165,4	395,42	800	0,79	0,09	12	9	92,92	92,83	92,83	83,82
N61	N60	N61	158,2	383,95	800	0,76	0,09	9	9	92,83	92,74	92,74	83,73
N62	N61	N62	176,6	360,63	800	0,72	0,08	9	15	92,74	92,66	92,66	77,65
N63	N62	N63	184,6	348,9	700	0,91	0,16	15	15	92,66	92,49	92,49	77,49
N64	N63	N64	164,9	331,62	700	0,86	0,13	15	11	92,49	92,36	92,36	81,36
N65	N64	N65	146,3	317,79	700	0,83	0,11	11	9	92,36	92,26	92,26	83,25
N66	N65	N66	196	298,45	700	0,78	0,13	9	10	92,26	92,13	92,13	82,12
N67	N66	N67	313,2	281,36	600	1	0,39	10	10	92,13	91,73	91,73	81,73
N68	N67	N68	1059	257,01	600	0,91	1,12	10	9	91,73	90,61	90,61	81,61
N69	N68	N69	181,4	245,5	600	0,87	0,18	9	9	90,61	90,44	90,44	81,43
N70	N69	N70	177,8	231,71	600	0,82	0,15	9	9	90,44	90,28	90,28	81,28
N71	N70	N71	159,9	220,01	600	0,78	0,13	9	9	90,28	90,15	90,15	81,15
N72	N71	N72	403,8	207,66	600	0,73	0,29	9	10	90,15	89,87	89,87	79,86
	N72	N73	180,9	195,51	500	1	0,28	10	10	89,87	89,58	89,58	$\overline{}$
N73	N73	N74	363,2	178,27	500	0,91	0,48	10	10	89,58	89,10	89,10	79,58
N74	N74	N75	329,1	160,89	500	0,82	0,36	10	10	89,10	88,75	88,75	79,1
N75	N75	N76	276,6	144,29	450	0,91	0,41	10	10	88,75	88,34	88,34	78,75
N76 N77	N76	N77	643,3	125,88	400	1	1,34	10	8	88,34	87,00	87,00	78,34
	N77	N78	265,1	101,47	400	0,81	0,37	8	8	87,00	86,63	86,63	
N78	N78	N79	65,71	84,61	350	0,88	0,13	8	8	86,63	86,51	86,51	78,63
N79	N79	N80	160,3	80,58	350	0,84	0,28	8	8	86,51	86,23	86,23	78,51
N80	N80	N81	181,2	56,7	300	0,8	0,35	8	8	86,23	85,88	85,88	78,23
N81	N81	N82	197,7	42,38	250	0,86	0,55	8	8	85,88	85,33	85,33	77,88
N82	N82	N83	206,8	30,84	200	0,98	0,96	8	8	85,33	84,37	84,37	77,33
N83	N83	N84	380,2	10,94	125	0,89	2,25	8	8	84,37	82,12	82,12	76,36
N84	N2	N85	313,6	17,73	150	1	2,17	27	25	101,13	98,96	98,96	74,12
N85	N3	N86	234	13,03	150	0,74	0,90	22	26	100,92	100,02	100,02	73,96
N86	N4	N87	158.8	13,15	150	0,74	0,62	27	27	100,70	100,08	100,08	74,02
N87	N5	N88	187	12,77	150	0,72	0,70	32	33	100,75	99,65	99,65	73,08
N88	N6	N89	126,8	13,42	150	0,76	0,52	24	24	99,87	99,35	99,35	66,66
N89 N90	N7	N90	244,3	16,64	150	0,94	1,50	25	23	99,66	98,16	98,16	75,26
NY													75,16

ANNEXE 7
DIMENSIONNEMENT DU RESEAU DE DISTRIBUTION COTEE
WEST ``N``

Nœud	Tro	nçon	Long	Débit Q	DN	Vitesse	PDC	CTN	(m)	CP	(m)	Charge	pression
Neud			(m)	(1/s)	(mm)	(m/s)	(m)	Amont	Aval	Amont	Aval	(m)	(m)
N91	N8	N91	170	104,54	400	0,83	0,25	24	23	99,53	99,28	99,28	76,28
N92	N91	N92	92	92,44	350	0,96	0,21	23	22	99,28	99,07	99,07	77,08
N93	N92	N93	217,6	79,54	350	0,83	0,37	22	22	99,07	98,70	98,70	76,71
N94	N93	N94	183,6	66,59	300	0,94	0,48	22	22	98,70	98,22	98,22	76,23
N95	N94	N95	325,3	39,98	250	0,81	0,81	22	21	98,22	97,41	97,41	76,42
N96	N95	N96	220,6	17,31	150	0,98	1,46	21	20	97,41	95,95	95,95	75,96
N97	N91	N97	291,6	12,1	125	0,99	2,45	23	20	99,28	96,83	96,83	78,83
N98	N92	N98	268,2	12,9	150	0,73	1,02	22	21	99,07	98,05	98,05	
N99	N93	N99	246,6	12,95	150	0,73	0,94	22	21	98,70	97,76	97,76	77,06
	N94	N100	205,2	13,42	150	0,76	0,84	22	21	98,22	97,38	97,38	76,77
N100	N94	N101	227	13,19	150	0,75	0,90	22	22	98,22	97,32	97,32	76,39
N101	N95	N102	179,4	22,67	200	0,72	0,47	21	21	97,41	96,94	96,94	75,33
N102	N9	N103	87,42	13,23	150	0,75	0,35	24	22	99,34	98,99	98,99	75,95
N103	N10	N104	383,1	83,24	350	0,87	0,71	24	22	99,14	98,43	98,43	77
N104	N104	N105	409,5	70,63	300	1	1,20	22	20	98,43	97,23	97,23	76,44
N105	N105	N106	183,8	57,64	300	0,82	0,37	20	20	97,23	96,86	96,86	77,23
N106	N106	N107	250,1	45,95	250	0,94	0,81	20	20	96,86	96,05	96,05	76,87
N107	N107	N108	144,5	35,76	250	0,73	0,29	20	20	96,05	95,76	95,76	76,06
N108	N108	N109	222,6	24,96	200	0,79	0,69	20	21	95,76	95,07	95,07	75,77
N109	N109	N110	368,9	17,48	150	0,99	2,49	21	21	95,07	92,58	92,58	74,07
N110	N110	N111	91,85	5	100	0,64	0,45	21	21	92,58	92,13	92,13	71,58
N111	N104	N112	203,3	12,61	150	0,71	0,74	22	21	98,43	97,69	97,69	71,14
N112	N105	N113	202,1	12,99	150	0,74	0,78	20	20	97,23	96,45	96,45	76,7
N113	N106	N114	295,9	4,91	100	0,63	1,39	20	21	96,86	95,47	95,47	76,46
N114	N106	N115	143,2	6,87	100	0,86	1,23	20	21	96,86	95,63	95,63	74,48
N115	N107	N116	166,4	10,19	125	0,83	1,01	20	21	96,05	95,04	95,04	74,63
N116	N108	N117	189,1	10,8	125	0,88	1,28	20	20	95,76	94,48	94,48	74,05
N117	N109	N118	73,64	7,48	100	0,95	0,77	21	21	95,07	94,30	94,30	74,49
N118	N110	N119	154,8	12,48	150	0,71	0,55	21	21	92,58	92,03	92,03	73,31
N119	N11	N120	174,9	21,67	200	0,69	0,42	24	22	99,03	98,61	98,61	71,03
N120	N12	N121	195,6	17,59	150	1	1,34	25	24	98,45	97,11	97,11	76,62
N121 N122	N12	N122	141,3	12,63	150	0,71	0,51	25	26	98,45	97,94	97,94	73,12
N123	N13	N123	178,7	13,64	150	0,77	0,75	24	23	98,30	97,55	97,55	74,55
N124	N14	N124	183,8	13,52	150	0,77	0,76	24	22	98,10	97,34	97,34	75,34
N125	N14	N125	152,4	14,29	150	0,81	0,70	24	25	98,10	97,40	97,40	72,4
N126	N15	N126	175,9	13,94	150	0,79	0,77	23	24	97,97	97,20	97,20	73,2
N127	N16	N127	294,9	557,96	900	0,88	0,18	23	21	97,86	97,68	97,68	73,08
N128	N127	N128	334,4	540,75	900	0,85	0,19	21	21	97,68	97,49	97,49	76,5
N129	N128	N129	233,8	520,91	900	0,82	0,12	21	21	97,49	97,37	97,37	76,37
N130	N129	N130	204,8	507,57	800	1,01	0,19	21	21	97,37	97,18 97,10	97,18 97,10	76,18
N131	N130 N131	N131 N132	89,88 98,6	485,22 473,6	800 800	0,97	0,08	21	21	97,18 97,10	97,10	97,10	76,1
N132	N131 N132	N132 N133	600,4	426,27	800	0,94	0,08	21	21	97,10	96,63	96,63	76,02
N133	N132	N134	118,6	418,8	800	0,83	0,08	21	20	96,63	96,55	96,55	75,63
N134	N134	N135	107,2	399,64	700	_		20	20	96,55	96,43	96,43	76,55
N135	11134	14150	107,2	399,04	/00	1,04	0,12	20	20	90,33	90,43	90,43	76,43

ANNEXE 8
DIMENSIONNEMENT DU RESEAU DE DISTRIBUTION COTEE
WEST ``N``

N7 1	Tro	nçon	Long	Débit Q	DN	Vitesse	PDC	CTN	(m)	CP	(m)	Charge	pression
Nœud			(m)	(1/s)	(mm)	(m/s)	(m)	Amont	Aval	Amont	Aval	(m)	(m)
N136	N135	N136	92,27	388,43	700	1,01	0,10	20	20	96,43	96,33	96,33	76,33
	N136	N137	155	363,66	700	0,94	0,15	20	20	96,33	96,18	96,18	
N137	N137	N138	153,7	351,97	700	0,91	0,14	20	19	96,18	96,05	96,05	76,18
N138	N138	N139	287,4	328,59	700	0,85	0,22	19	19	96,05	95,82	95,82	77,05
N139	N139	N140	209,7	316,74	700	0,82	0,15	19	18	95,82	95,67	95,67	76,82
N140	N140	N141	271,3	278,92	600	0,99	0,34	18	18	95,67	95,33	95,33	77,67
N141	N141	N142	170,9	244,17	600	0,86	0,16	18	18	95,33	95,17	95,17	77,33
N142	N142	N143	138,9	230,52	600	0,82	0,12	18	18	95,17	95,05	95,05	77,17
N143	N143	N144	230,4	194,67	500	0,99	0,36	18	17	95,05	94,69	94,69	77,05
N144	N144	N145	164,7	182,64	500	0,93	0,23	17	17	94,69	94,46	94,46	77,69
N145	N145	N146	235,7	149,87	450	0,94	0,38	17	17	94,46	94,08	94,08	77,46
N146	N146	N147	385,9	125,09	400	1	0,79	17	16	94,08	93,29	93,29	77,09
N147	N147	N148	121,9	106,33	400	0,85	0,18	16	16	93,29	93,10	93,10	77,29
N148	N148	N148 N149	86,89	89,89	350		0,18	16	16	93,29	92,88	92,88	77,11
N149	N148 N149	N149 N150	102		350	1,03	_	16	16				76,89
N150				87,69		0,91	0,21		1000	92,88	92,67	92,67	76,68
N151	N150	N151	136,3	67,72	300	0,96	0,37	16	16	92,67	92,30	92,30	76,31
N152	N151	N152	98,84	61,59	300	0,87	0,22	16	16	92,30	92,08	92,08	76,08
N153	N152	N153	110,8	50,73	250	1,03	0,43	16	16	92,08	91,65	91,65	75,65
N154	N153 N154	N154 N155	165,7 84,84	30,26 23,5	200	0,96	0,75	16 16	16 16	91,65 90,90	90,90	90,90	74,91
N155	-		_					_	17	_			74,67
N156	N155	N156	264,1	17,56	150	0,99	1,80	16		90,67	88,87	88,87	71,87
N157	N127 N128	N157 N158	78,62 239	17,21	150 150	0,97	0,51	21	21	97,68 97,49	97,17 96,57	97,17 96,57	76,17
N158	N128	N159	98,55	6,84	100	0,74	0,92	21	21	97,49	96,63	96,63	75,58
N159	N129	N160	246,6	13,34	150	0,75	1,00	21	21	97,37	96,37	96,37	75,63
N160	N130	N161	271,2	11,65	125	0,95	2,12	21	20	97,18	95,06	95,06	75,38
N161	N130	N162	272,1	10,7	125	0,87	1,81	21	21	97,18	95,37	95,37	75,06
N162	N131	N163	258,7	11,62	125	0,95	2,01	21	20	97,10	95,09	95,09	74,34
N163	N132	N164	290,9	11,6	125	0,95	2,26	21	21	97,02	94,76	94,76	75,09
N164	N132	N165	127	35,73	250	0,73	0,26	21	21	97,02	96,76	96,76	73,76
N165	N165	N166	195,1	11,5	125	0,94	1,49	21	20	96,76	95,27	95,27	75,77
N166	N165	N167	321	12,07	125	0,98	2,69	21	21	96.76	94.07	94,07	75,28
N167	N165	N168	448,2	12,16	125	0,99	3,81	21	21	96,76	92,95	92,95	73,08
N168	N133	N169	278,7	7,47	100	0,95	2,89	21	21	96,63	93,74	93,74	71,96
N169	N134	N170	221,6	7,63	100	0,97	2,39	20	19	96,55	94,16	94,16	72,74
N170 N171	N134	N171	212,6	11,53	125	0,94	1,63	20	21	96,55	94,92	94,92	75,16 73,92
N172	N135	N172	273,5	11,21	125	0,91	1,99	20	20	96,43	94,44	94,44	-
N172	N136	N173	232,4	13,48	150	0,76	0,96	20	19	96,33	95,37	95,37	74,44
N174	N136	N174	270,9	11,29	125	0,92	2,00	20	20	96,33	94,33	94,33	74,33
	N137	N175	246	11,69	125	0,95	1,94	20	20	96,18	94,24	94,24	$\overline{}$
N175	N138	N176	134,4	12,16	125	0,99	1,14	19	19	96,05	94,91	94,91	74,25
N176	N138	N177	223,8	11,22	125	0,91	1,63	19	19	96,05	94,42	94,42	75,91
N177	N139	N178	177	11,85	125	0,97	1,43	19	19	95,82	94,39	94,39	75,42
N178	N140	N179	255,5	20,39	200	0,65	0,54	18	18	95,67	95,13	95,13	75,39
N179	N140	N180	209,6	17,43	150	0,99	1,41	18	18	95,67	94,26	94,26	77,13
N180							-1					-	76,26

ANNEXE 9
DIMENSIONNEMENT DU RESEAU DE DISTRIBUTION COTEE
WEST ``N``

N. 1	Tro	nçon	Long	Débit Q	DN	Vitesse	PDC	CTN	(m)	CF	(m)	Charge	pression
Nœud			(m)	(1/s)	(mm)	(m/s)	(m)	Amont	Aval	Amont	Aval	(m)	(m)
N181	N141	N181	260,2	17,41	150	0,99	1,74	18	18	95,33	93,59	93,59	75,59
	N141	N182	373,4	17,34	150	0,98	2,48	18	18	95,33	92,85	92,85	
N182	N142	N183	361	13,65	150	0,77	1,52	18	18	95,17	93,65	93,65	74,85
N183	N143	N184	213,3	18,53	150	1,05	1,61	18	18	95,05	93,44	93,44	75,65
N184	N143	N185	367,7	17,32	150	0,98	2,44	18	18	95,05	92,61	92,61	75,44
N185	N144	N186	333,1	12,03	125	0,98	2,77	17	17	94,69	91,92	91,92	74,61
N186	N145	N187	316,5	21,37	200	0,68	0,73	17	17	94,46	93,73	93,73	74,92
N187	N145	N188	287,8	11,4	125	0,93	2,16	17	17	94,46	92,30	92,30	76,73
N188	N146	N189	125	11,26	125	0,92	0,92	17	17	94,08	93,16	93,16	75,3
N189	N146	N190	340,3	13,52	150	0,77	1,41	17	17	94,08	92,67	92,67	75,96
N190	N147	N191	190,8	13,28	150	0,75	0,76	16	16	93,29	92,53	92,53	75,68
N191	N147	N192	221	5,48	100	0,73	1,28	16	16	93,29	92,01	92,01	76,53
N192	N148	N193	424		100	_	_	16	16	_			76,02
N193				7,44	3 3 3 3	0,95	4,36			93,10	88,74	88,74	72,75
N194	N149 N150	N194 N195	401,3 204,9	11,2 13,09	125 150	0,91	2,91 0,80	16 16	16 16	92,88 92,67	89,97 91,87	89,97	73,19
N195	N150	N195	393,7	6,88	100	0,74	3,49	16	16	92,67	89,18	91,87 89,18	75,88
N196	N151	N190	399,9	6,13	100	0,78	2,85	16	17	92,30	89,45	89,45	73,19
N197	N151	N198	339,5	10.86	125	0,78	2,32	16	17	92,30	89,76	89,76	72,46
N198	N152	N198	229,2	14,06	150	0,88	1,02	16	16	91,65	90,63	90,63	72,76
N199	N153	N200	376,5	6,41	100	0,82	2,92	16	17	91,65	88,73	88,73	74,63
N200	N154	N201	362,6	6,76	100	0,86	3,11	16	17	90,90	87,79	87,79	71,73
N201	N155	N202	329,1	5,94	100	0,76	2,21	16	17	90,67	88,46	88,46	70,8
N202	N17	N203	177,5	5,05	80	1	2,70	23	22	97,77	95.07	95,07	71,46
N203	N18	N204	240,5	10,66	125	0,87	1,59	23	22	97,67	96,08	96,08	73,08
N204	N19	N205	226,1	6,33	100	0,81	1,71	24	22	97,58	95,87	95,87	74,09
N205	N20	N206	153,9	41,61	250	0,85	0,41	24	25	97,53	97,12	97,12	73,88
N206	N206	N207	78,11	30,41	200	0,97	0,35	25	26	97,12	96,76	96,76	72,13
N207	N207	N208	104,2	24,49	200	0,78	0,31	26	28	96,76	96,45	96,45	70,78
N208	N208	N209	172,9	12,22	125	1	1,48	28	31	96,45	94,97	94,97	68,46
N209	N206	N210	211,7	11,2	125	0,91	1,54	25	24	97,12	95,58	95,58	63,98
N210	N207	N211	111,4	5,92	100	0,75	0,74	26	26	96,76	96,02	96,02	71,59
N211	N208	N212	208,5	12,27	125	1	1,80	28	30	96,45	94,65	94,65	70,03
N212 N213	N21	N213	249,9	11,28	125	0,92	1,84	24	23	97,49	95,65	95,65	72,66
N213	N22		277,4	11,37	125	0,93	2,07	25	23	97,37	95,30	95,30	
N214 N215	N23	N215	256,5	11,45	125	0,93	1,94	25	26	97,28	95,34	95,34	72,3 69,35
N215	N24	N216	307,1	13,72	150	0,78	1,31	25	23	97,21	95,90	95,90	72,91
N217	N25	N217	226,3	13,6	150	0,77	0,95	25	27	97,15	96,20	96,20	69,21
N218	N26	N218	238,9	13,52	150	0,77	0,99	26	24	96,99	96,00	96,00	72
	N26	N219	226,7	12,7	150	0,72	0,83	26	27	96,99	96,16	96,16	
N219	N27	N220	589,8	36,33	250	0,74	1,22	26	22	96,91	95,69	95,69	69,16
N220	N220	N221	119,1	12,79	150	0,72	0,44	22	22	95,69	95,24	95,24	73,69
N221	N220	N222	182,7	23,54	200	0,75	0,51	22	22	95,69	95,18	95,18	73,25
N222	N28	N223	241	19,7	150	1,11	2,04	26	24	96,82	94,78	94,78	73,18
N223 N224	N28	N224	230,4	13,55	150	0,77	0,96	26	29	96,82	95,86	95,86	66,87
N225	N29	N225	204,4	13,64	150	0,77	0,86	27	25	96,56	95,70	95,70	70,7
11223													/V,/

ANNEXE 10
DIMENSIONNEMENT DU RESEAU DE DISTRIBUTION COTEE
WEST ``N``

					▼ '	V L S I	1.4						
Nœud	Tro	nçon	Long	Débit Q	DN	Vitesse	PDC	CTN	(m)	CF	(m)	Charge	pression
Ivæud			(m)	(1/s)	(mm)	(m/s)	(m)	Amont	Aval	Amont	Aval	(m)	(m)
N226	N30	N226	137,3	12,94	125	1,05	1,31	28	29	96,43	95,12	95,12	66,13
	N31	N227	363,7	17,09	150	0,97	2,35	28	23	96,34	93,99	93,99	_
N227	N32	N228	213,6	632	900	0,99	0,16	30	27	96,24	96,08	96,08	71
N228	N228	N229	96,88	620,55	900	0,98	0,07	27	26	96,08	96,00	96,00	69,09
N229	N229	N230	351,1	369,01	700	0,96	0,34	26	27	96,00	95,66	95,66	70,02
N230	N230	N231	211,9	342,75	700	0,89	0,18	27	26	95,66	95,48	95,48	68,67
N231	N231	N232	175,2	328,99	700	0,85	0,14	26	26	95,48	95,35	95,35	69,49
N232	N232	N233	87	278,44	600	0,98	0,11	26	26	95,35	95,24	95,24	69,37
N233	N233	N234	144,3	249,12	600	0,88	0,14	26	26	95,24	95,09	95,09	69,26
N234	N234	N235	96,89	222,67	600	0,79	0,08	26	26	95,09	95,02	95,02	69,12
N235	N235	N236	87,02	209	500	1,06	0,15	26	26	95,02	94,86	94,86	69,04
N236	N236	N237	129,7	196,87	500	1	0,21	26	26	94,86	94,65	94,65	68,89
N237			_			_	_	_	26				68,68
N238	N237	N238	129,2	185,53	500	0,94	0,18	26		94,65	94,47	94,47	68,5
N239	N238	N239	112,8	179,03	500	0,91	0,15	26	25	94,47	94,32	94,32	69,35
N240	N239	N240	196,6	173,76	500	0,88	0,25	25	24	94,32	94,08	94,08	70,1
N241	N240	N241	106,1	168,29	450	1,06	0,21	24	23	94,08	93,86	93,86	70,89
N242	N241	N242	114,1	163,38	450	1,03	0,22	23	23	93,86	93,65	93,65	70,67
N242 N243	N242	N243	348,6	157,2	450	0,99	0,61	23	22	93,65	93,03	93,03	71,06
N244	N243	N244	117,6	150,74	450	0,95	0,19	22	22	93,03	92,84	92,84	70,87
N245	N244	N245	187,5	131,42	400	1,05	0,42	22	21	92,84	92,42	92,42	71,44
N246	N245	N246	221,8	106,73	400	0,85	0,34	21	15	92,42	92,08	92,08	77,11
N247	N246	N247	342,3	82,46	350	0,86	0,62	15	14	92,08	91,46	91,46	77,49
N248	N247	N248	317,7	50,1	250	1,02	1,21	14	15	91,46	90,25	90,25	75,27
N249	N248	N249	98,37	31,87	200	1,01	0,49	15	16	90,25	89,76	89,76	73,78
N250	N249	N250	487,1	17,94	150	1,02	3,45	16	13	89,76	86,30	86,30	73,33
N251	N250	N251	169,4	6,4	100	0,81	1,31	13	14	86,30	84,99	84,99	71,02
N252	N230	N252	166,1	13,67	150	0,77	0,70	27	24	95,66	94,96	94,96	70,97
N253	N230	N253	335,6	12,59	150	0,71	1,21	27	31	95,66	94,45	94,45	63,48
N254	N231	N254	256,9	13,76	150	0,78	1,10	26	27	95,48	94,38	94,38	67,39
N255	N232	N255	682	50,55	250	1,03	2,65	26	22	95,35	92,70	92,70	70,72
N256	N255	N256	102,5	38,9	250	0,79	0,24	22	21	92,70	92,46	92,46	71,48
N257	N256 N257	N257 N258	127,2 372,5	26,02 13,28	200 150	0,83	0,43 1,49	21 21	21	92,46 92,03	92,03 90,54	92,03 90,54	71,05
N258	N255	N259	524,4	11,65	150	0,66	1,64	22	19	92,70	91,06	91,06	69,56
N259		N260	303,2					21					72,08
N260	N256 N257	N261	307,6	12,88 12,74	150 150	0,73	1,15	21	19	92,46 92,03	91,31 90,89	91,31	72,33
N261	N237	N262	302,1	17,44	150	0,72	2,03	26	24	95,24	93,21	93,21	71,91
N262													69,23
N263	N233	N263	286,5	11,88	150	0,67	0,93	26	29	95,24	94,31	94,31	65,33
N264	N234	N264	342	13,15	150	0,74	1,34	26	24	95,09	93,75	93,75	69,78
N265	N234	N265	359,7	13,3	150	0,75	1,45	26	28	95,09	93,64	93,64	65,33
N266	N235	N266	395	6,67	100	0,85	3,30	26	23	95,02	91,72	91,72	68,78
N267	N235	N267	432,7	7	100	0,89	3,96	26	31	95,02	91,06	91,06	60,08
N268	N236	N268	375,9	12,13	125	0,99	3,18	26	23	94,86	91,68	91,68	68,71
N269	N237	N269	327,8	11,34	125	0,92	2,44	26	23	94,65	92,21	92,21	69,24
N270	N238	N270	303,9	6,5	100	0,83	2,42	26	23	94,47	92,05	92,05	69,08
112/0		0	10					0					05,00

ANNEXE 11
DIMENSIONNEMENT DU RESEAU DE DISTRIBUTION COTEE
WEST ``N``

						AESI	IN						
Nœud	Tro	nçon	Long	Débit Q	DN	Vitesse	PDC	CTN	(m)	CF	(m)	Charge	pression
11000			(m)	(1/s)	(mm)	(m/s)	(m)	Amont	Aval	Amont	Aval	(m)	(m)
N271	N239	N271	342,5	5,27	100	0,67	1,84	25	22	94,32	92,48	92,48	70,51
	N240	N272	248,5	5,47	100	0,7	1,43	24	21	94,08	92,65	92,65	_
N272	N241	N273	245,1	4,91	100	0,63	1,15	23	21	93,86	92,71	92,71	71,67
N273	N242	N274	237,4	6,18	100	0,79	1,72	23	21	93,65	91,93	91,93	71,74
N274	N243	N275	86,17	6,46	100	0,82	0,68	22	22	93,03	92,35	92,35	70,95
N275	N244	N276	180,6	12,11	125	0,99	1,52	22	15	92,84	91,32	91,32	70,38
N276	N244	N277	150,7	7,21	100	0,92	1,46	22	23	92,84	91,38	91,38	76,35
N277	N245	N278	267,2	13,48	150	0,76	1,10	21	14	92,42	91,32	91,32	68,41
N278	N245	N279	195,2	11,21	125	0,91		21	23	92,42	91,00	91,00	77,34
N279							1,42					_	68,03
N280	N246	N280	225,6	11,75	150	0,66	0,72	15	13	92,08	91,36	91,36	78,39
N281	N246	N281	181,8	12,52	150	0,71	0,65	15	21	92,08	91,43	91,43	70,46
	N247	N282	209,6	13,56	150	0,77	0,87	14	15	91,46	90,59	90,59	_
N282	N247	N283	170	18,8	150	1,06	1,32	14	14	91,46	90,14	90,14	75,61
N283	N248	N284	185,4	10,93	125	0,89	1,28	15	14	90,25	88,97	88,97	76,17
N284	N248	N285	115,3	7,3	100	0,93	1,14	15	14	90,25	89,11	89,11	74,99
N285	N249	N286	160,2	13,93	150	0,79	0,70	16	16	89,76	89,06	89,06	75,13
N286	N286				100		_	16	16	_		_	73,08
N287		N287	114	6,74		0,96	0,97		-	89,06	88,09	88,09	72,11
N288	N286	N288	86,04	7,19	100	0,92	0,83	16	16	89,06	88,23	88,23	72,25
N289	N250	N289	49,49	11,54	125	0,94	0,38	13	13	86,30	85,92	85,92	72,95
N290	N228	N290	147,6	11,45	125	0,93	1,12	27	23	96,08	94,96	94,96	71,97
N291	N229	N291	221,3	251,54	600	0,89	0,23	26	24	96,00	95,77	95,77	71,79
N292	N291	N292	194,5	234,18	600	0,83	0,17	24	23	95,77	95,60	95,60	72,62
N293	N292	N293	175,2	220,49	600	0,78	0,14	23	21	95,60	95,46	95,46	74,488
N294	N293	N294	191,7	195,19	500	0,99	0,30	21	21	95,46	95,16	95,16	74,18
N295	N294	N295	167,2	175,47	500	0,89	0,21	21	21	95,16	94,95	94,95	73,97
	N295	N296	183,8	156,49	450	0,98	0,32	21	21	94,95	94,63	94,63	$\overline{}$
N296	N296	N297	166,6	133,28	400	1,06	0,39	21	21	94,63	94,24	94,24	73,65
N297	N297	N298	172,9	109,76	400	0,87	0,28	21	19	94.24	93,96	93,96	73,26
N298	N298	N299	169,5	85,56	350	0.89	0,33	19	19	93,96	93,63	93,63	74,98
N299	N299	N300	158.9	55,63	300	0,79	0,30	19	20	93,63	93,34	93,34	74,65
N300	N300	N301	163	35,16	250	0,72	0,32	20	21	93,34	93,02	93,02	73,36
N301 N302	N301	N302	350,8	11,5	125	0,94	2,68	21	20	93,02	90,34	90,34	72,04
	N291	N303	251,7	17,36	150	0,98	1,68	24	24	95,77	94,09	94,09	
N303	N292	N304	280,6	13,69	150	0,77	1,19	23	23	95,60	94,41	94,41	70,11
N304	N293	N305	296,5	12,44	125	1,01	2,63	21	22	95,46	92,83	92,83	71,43
N305	N293	N306	254,7	12,86	150	0,73	0,96	21	21	95,46	94,50	94,50	70,85
N306	N294	N307	249,6	7,26	100	0,92	2,45	21	22	95,16	92,71	92,71	73,52
N307	N294	N308	284	12,46	150	0,71	1,01	21	21	95,16	94,15	94,15	70,73
N308	N295	N309	227,8	6,69	100	0,85	1,92	21	22	94,95	93,03	93,03	73,3
N309	N295	N310	238,2	12,29	125	1	2,06	21	20	94,95	92,89	92,89	71,05
N310	N296	N311	205,7		125	0,81	1,18	21	22	94,63	93,45	93,45	72,9
N311	N296	N311 N312	230,3	9,92	150		-						71,46
N312	N296 N297			12,2		0,75	0,92	21	20	94,63	93,71	93,71	73,72
N313		N313	212,1	11,29	125	0,92	1,56	21	21	94,24	92,68	92,68	71,7
N314	N297	N314	223,7	12,23	125	1	1,92	21	19	94,24	92,32	92,32	73,34
N315	N298	N315	74,24	11,48	125	0,94	0,56	19	18	93,96	93,40	93,40	74,24

ANNEXE 12
DIMENSIONNEMENT DU RESEAU DE DISTRIBUTION COTEE
WEST ``N``

Nœud	Tron	nçon	Long	Débit Q	DN	Vitesse	PDC	CTN	(m)	CF	(m)	Charge	pression
Ivædd			(m)	(1/s)	(mm)	(m/s)	(m)	Amont	Aval	Amont	Aval	(m)	(m)
N316	N298	N316	250,1	12,72	150	0,72	0,92	19	19	93,96	93,04	93,04	74,06
	N299	N317	311,9	17,35	150	0,98	2,07	19	21	93,63	91,56	91,56	_
N317 N318	N299	N318	237,8	12,58	150	0,71	0,86	19	19	93,63	92,77	92,77	70,58
N319	N300	N319	319,2	12,96	150	0,73	1,22	20	21	93,34	92,12	92,12	-
N320	N300	N320	264,6	7,51	100	0,96	2,77	20	19	93,34	90,57	90,57	71,14
N321	N301	N321	112,4	12,17	125	0,99	0,96	21	21	93,02	92,06	92,06	71,58 71,08
N322	N301	N322	286	11,49	125	0,94	2,18	21	19	93,02	90,84	90,84	$\overline{}$
	N33	N323	62,83	7,19	100	0,92	0,61	36	33	96,08	95,47	95,47	71,86
N323	N34	N324	105,3	13,69	150	0,77	0,45	36	36	95,72	95,27	95,27	60,62
N324	N34	N325	131,5	21,77	200	0,69	0,32	36	36	95,72	95,40	95,40	59,29
N325	N35	N326	310,3	12,55	125	1,02	2,80	36	34	95,43	92,63	92,63	59,42
N326	N36	N327	358,4	12,19	125	0,99	3,06	36	36	95,32	92,26	92,26	58,65
N327	N37	N328	360,8	12,13	125	0,99	3,08	36	36	95,24	92,16	92,16	56,26
N328	N38	N329	399,5	17,96	150	1,02	2,84	36	36	95,12	92,28	92,10	56,26
N329	N39	N330	125	16,81	150	0,95	0,78	36	36	94,88	94,10	94,10	56,27
N330	N330	N331	300	6,48	100	0,93	2,38	36	36	94,10	91,72	91,72	58,08
N331	N330	N331	140	10,33	125	0,83	0,87	36	36	94,10	93,23	93,23	55,71
N332						_		36		-		-	57,21
N333	N40 N40	N333	84,43	6,32	100	0,8	0,64		36 36	94,81	94,17	94,17	58,16
N334	N40 N41	N334 N335	225,6 331,5	13,69 10,64	150 125	0,77	0,96	36 36	36	94,81	93,85 92,55	93,85 92,55	57,54
N335	N335	N336	225,7	5,69	100	0,87	1,40	36	35	92,55	91,15	91,15	56,54
N336	N336	N337	151,6	5,69	100	0,72	0,94	35	36	91,15	90,21	90,21	56,14
N337	N335	N338	117,3	4,95	80	0,72	1,72	36	36	92,55	90,83	90,83	54,21
N338	N42	N339	132,2	6,33	100	0,98	1,00	36	36	94,70	93,70	93,70	54,82
N339	N43	N340	315,9	347,4	700	0,9	0,27	36	34	94,65	94,38	94,38	57,69
N340	N340	N341	260,6	317,84	700	0,83	0,19	34	32	94,38	94,18	94,18	60,36
N341	N341	N342	243	268,82	600	0,95	0,28	32	29	94,18	93,91	93,91	62,17
N342	N342	N343	271,6	255,99	600	0,91	0,29	29	26	93,91	93,62	93,62	64,89
N343	N343	N344	330,1	242,26	600	0,86	0,31	26	20	93,62	93,31	93,31	67,61
N344	N344	N345	181	217,4	600	0,77	0,14	20	20	93,31	93,17	93,17	73,29
N345	N345	N346	196,3	192,47	500	0,98	0,30	20	17	93,17	92,87	92,87	73,15
N346 N347	N346	N347	166	161,65	500	0,82	0,18	17	14	92,87	92,69	92,69	75,85 78,67
N348	N347	N348	145,5	148,3	450	0,93	0,23	14	16	92,69	92,46	92,46	76,44
N349	N348	N349	140,5	123,63	400	0,98	0,28	16	13	92,46	92,18	92,18	79,16
N350	N349	N350	203,7	111,7	400	0,89	0,34	13	16	92,18	91,84	91,84	75,82
N351	N350	N351 N352	92,21	100,28	400 300	0,8	0,12	16 15	15 14	91,84 91,71	91,71 90,82	91,71 90,82	76,7
N352	N351 N352	N353	404,7 159	60,96 48,32	250	0,86	0,90	14	13	90,82	90,82	90,82	76,8
N353	N353	N354	189.7	30,6	200	0,98	0,37	13	12	90,82	89,38	89,38	77,24
N354	N354	N355	293	17,16	150	0,97	1,91	12	12	89,38	87,47	87,47	77,36
N355	N43	N356	100	87,71	350	0,91	0,20	35	35	94,65	94,45	94,45	75,45
N356	N356	N357	450	77,01	350	0,8	0,72	35	35	94,45	93,73	93,73	59,43
N357	N357	N358	200	47,83	250	0,97	0,72	35	32	93,73	93,73	93,03	58,71
N358	N358	N359	150	37,66	250	0,77	0,70	32	27	93,03	92,69	92,69	61,01
N359	N359	N360	300	12,19	125	0,99	2,56	27	26	92,69	90,13	90,13	65,68
N360	14373	11300	300	12,19	123	V,33	2,00	21	20	72,09	50,13	90,13	64,12

ANNEXE 13
DIMENSIONNEMENT DU RESEAU DE DISTRIBUTION COTEE
WEST ``N``

3.	Tron	icon	Long	Débit Q	DN	Vitesse	PDC	CTN	(m)	CF	(m)	Charge	pression
Nœud			(m)	(1/s)	(mm)	(m/s)	(m)	Amont	Aval	Amont	Aval	(m)	(m)
N361	N356	N361	125	10,7	125	0,87	0,83	35	35	94,45	93,62	93,62	58,6
	N357	N362	130	17,19	150	0,97	0,85	35	37	93,73	92,88	92,88	
N362	N357	N363	100	11,99	125	0,98	0,83	35	32	93,73	92,90	92,90	55,86
N363	N358	N364	130	10,17	125	0,83	0,79	32	30	93,03	92,24	92,24	60,89
N364	N359	N365	140	12,4	150	0,7	0,49	27	30	92,69	92,20	92,20	62,23
N365	N359	N366	100	13,07	150	0,74	0,39	27	30	92,69	92,30	92,30	62,19
N366	N340	N367	206,3	17,46	150	0,99	1,39	34	30	94,38	92,99	92,99	62,29
N367	N340	N368	157,7	12,1	125	0,99	1,33	34	30	94,38	93,05	93,05	62,97
N368	N341	N369	222,8	12,48	150	0,71	0,79	32	31	94,18	93,39	93,39	63,04
N369	N341	N370	152,4	10,75	125	0,88	1,02	32	27	94,18	93,16	93,16	62,38
N370	N341	N371	614	25,79	200	0,82	2,04	32	25	94,18	92,14	92,14	66,15
N371	N371	N372	140	13,35	150	0,76	0,57	25	26	92,14	91,58	91,58	67,13
N372	N371	N373	135	12,44	150	0,7	0,48	25	25	92,14	91,66	91,66	65,57
N373	N342	N374	168,9	12,83	150	0,73	0,63	29	27	93,91	93,28	93,28	66,66
N374	N343	N375	202,2	13,73	150	0,78	0,86	26	24	93,62	92,76	92,76	66,26
N375	N344	N376	166,5	11,7	150	0,78	0,52	20	20	93,02	92,79	92,70	68,74
N376	N344	N377	272,1	13,16	150	0,74	1,07	20	19	93,31	92,79	92,79	72,77
N377	N345	N378	212,2	11,93	150	0,68	0,69	20	20	93,31	92,48	92,48	73,22
N378	N345	N379	277,9	13	150	0,08	1,07	20	19	93,17	92,48	92,48	72,46
N379	N346	N380	361,2	17,17	150	0,74	2,36	17	20	92,87	90,51	90,51	73,08
N380	N346	N381	261,5	13,65	150	0,77	1,10	17	16	92,87	91,77	91,77	71,15
N381	N347	N382	220,7	13,35	150	0,76	0,89	14	16	92,69	91,80	91,80	75,75
N382	N348	N383	115,7	11,53	125	0,70	0,89	16	13	92,46	91,57	91,57	75,78
N383	N348	N384	227,1	13,14	150	0,74	0,89	16	13	92,46	91,57	91,57	78,56
N384	N349	N385	179,6	11,93	125	0,97	1,47	13	12	92,18	90,71	90,71	78,55
N385	N350	N386	168,1	11,42	125	0,93	1,27	16	10	91,84	90,57	90,57	78,69
N386	N351	N387	59,16	4,74	100	0,6	0,26	15	16	91,71	91,45	91,45	80,56
N387	N351	N388	257,1	34,58	200	1,1	1,49	15	14	91,71	90,22	90,22	75,44
N388	N388	N389	83,53	16,88	150	0,96	0,53	14	13	90,22	89,69	89,69	76,21
N389 N390	N389	N390	369,6	6,43	100	0,82	2,88	13	12	89,69	86,81	86,81	76,68 74,8
N391	N388	N391	172,4	17,7	150	1	1,19	14	11	90,22	89,03	89,03	78.02
N392	N389	N392	194	10,45	125	0,85	1,23	13	12	89,69	88,46	88,46	76,45
N393	N352 N353	N393 N394	299 205,6	12,64	150 150	0,72	1,09	14 13	14	90,82	89,73 88,83	89,73 88,83	75,71
N394	N354	N394 N395		17,72	150	0,76	1,42	12	12	90,25			76,81
N395	N44	N395 N396	184,6 131,8	13,44 7,2	100	0,76	0,76	36	35	89,38 94,53	88,62 93,26	88,62 93,26	76,61
N396	N45	N397	160,6	6,74	100	0,92	1,37	35	34	94,35	93,28	93,28	58,25
N397	N46	N398	119,9	10,11	125	0,82	0,72	29	30	94,28	93,56	93,56	59,07
N398	N47	N399	482,3	4,82	100	0,61	2,18	32	31	94,19	92,01	92,01	63,55
N399	N47	N400	188,5	11,32	125	0,92	1,40	32	30	94,19	92,79	92,79	61
N400	N48	N400	198	13,4	125	1,09	2,02	27	26	94,19	92,79	92,79	62,79
N401	N48	N401 N402	172,7	7,28	100	0,93	1,70	27	27	94,04	92,02	92,02	66,01
N402	N49	N402 N403	163,5	6,61	100	0,93	1,70	25	26	93,89	92,55	92,55	65,33
N403	N50	N404	289,1	7,42	100	0,94	2,96	28	25	93,70	90,74	90,74	66,54
N404	N51	N405	211,6	12,33	125	1	1,85	28	21	93,64	91,79	91,79	65,73
N405	1171	11405	211,0	12,33	123		1,00	20	21	75,04	71,17	71,/7	70,79

ANNEXE 14
DIMENSIONNEMENT DU RESEAU DE DISTRIBUTION COTEE
WEST ``N``

						WES.							
None	Tro	nçon	Long	Débit Q	DN	Vitesse	PDC	CTN	(m)	CP	(m)	Charge	pression
Nœud			(m)	(1/s)	(mm)	(m/s)	(m)	Amont	Aval	Amont	Aval	(m)	(m)
27406	N51	N406	303,6	13,24	125	1.08	3,03	28	19	93,64	90,61	90,61	
N406	N52	N407	300	13,43	125	1,09	3,08	28	20	93,49	90,41	90,41	71,6
N407	N52	N408	281,4	11,28	125	0,92	2,07	28	20	93,49	91,42	91,42	70,41
N408	N53	N409	300	6	100	0,76	2,05	27	18	93,38	91,33	91,33	71,42
N409	N54	N410	345,6		125		3,29	24	17				73,32
N410				12,92		1,05	_			93,32	90,03	90,03	73,03
N411	N55	N411	287,8	11,37	125	0,93	2,15	24	17	93,28	91,13	91,13	74
N412	N56 N56	N412	188,1	7,09	100	0,9	1,77	23	15	93,19 93,19	91,42	91,42	76,42
N413	N57	N413 N414	229,1 200,4	6,63 8,1	100	0,84 1,03	1,89 2,42	23 22	15 15	93,19	91,30 90,68	91,30 90,68	76,29
N414													75,67
N415	N58	N415	221,1	5,68	100	0,72	1,36	18	9	93,00	91,64	91,64	82,63
N416	N59	N416	236	5,8	100	0,74	1,52	12	8	92,92	91,40	91,40	83,4
	N60	N417	232,5	11,47	125	0,93	1,76	9	8	92,83	91,07	91,07	1000
N417	N61	N418	83,44	12,34	125	1,01	0,73	9	11	92,74	92,01	92,01	83,05
N418	N61	N419	186,9	10,98	125	0,89	1,31	9	8	92,74	91,43	91,43	81,01
N419	N62	N420	516,9	11,73	125	0,96	4,10	15	15	92,66	88,56	88,56	83,43
N420	N63	N421	107,3	5,58	100	0,71	0,64	15	15	92,49	91,85	91,85	73,55
N421	N63	N422	137,7	11,7	125	0,95	1,09	15	9	92,49	91,40	91,40	76,85
N422	N64	N423	339,5	13,83	150	0,78	_	11	8	92,36	90,89	90,89	82,4
N423	N423	N424	170,9	6,78	100	0,78	1,47		8	90,89			82,89
N424	N423	N424 N425	167,6	7,05	100	0,80	1,47 1,56	8	8	90,89	89,42 89,34	89,42 89,34	81,42
N425										_			81,33
N426	N65	N426	109,7	5,72	100	0,73	0,69	9	8	92,26	91,57	91,57	83,56
N427	N65	N427	133,7	13,62	150	0,77	0,56	9	8	92,26	91,70	91,70	83,69
N428	N66	N428	438,7	17,09	150	0,97	2,83	10	9	92,13	89,30	89,30	80,29
N429	N67	N429	121,6	11,08	125	0,9	0,86	10	10	91,73	90,87	90,87	80,86
N430	N67	N430	125,8	13,27	125	1,08	1,26	10	10	91,73	90,47	90,47	80,47
N431	N68	N431	225,7	11,51	125	0,94	1,72	9	8	90,61	88,89	88,89	80,88
N432	N69	N432	271	13,79	150	0,78	1,17	9	8	90,44	89,27	89,27	81,26
N432	N70	N433	225,2	11,7	125	0,95	1,78	9	8	90,28	88,50	88,50	
	N71	N434	110,9	12,35	125	1,01	0,97	9	8	90,15	89,18	89,18	80,5
N434 N435	N72	N435	328,7	12,15	125	0,99	2,78	10	8	89,87	87,09	87,09	81,18 79,08
N435 N436	N73	N436	160,4	17,24	150	0,98	1,05	10	10	89,58	88,53	88,53	78,53
N437	N74	N437	140,4	10,33	125	0,84	0,87	10	10	89,10	88,23	88,23	78,23
N438	N74	N438	106,6	7,05	100	0,9	0,99	10	10	89,10	88,11	88,11	78,11
N439	N75	N439	163,6	12,57	125	1,02	1,48	10	10	88,75	87,27	87,27	77,27
	N75	N440	71,25	4,03	80	0,8	0,71	10	10	88,75	88,04	88,04	
N440	N76	N441	124,3	6,33	100	0,81	0,94	10	8	88,34	87,40	87,40	78,04
N441	N76	N442	141,1	12,08	125	0,98	1,18	10	9	88,34	87,16	87,16	79,39
N442	N77	N443		13,31	150	0,75	0,47	8	8	87,00	86,53	86,53	78,15
N443	N77	N444						8	8	$\overline{}$			78,52
N444			71,2	11,1	125	0,9	0,51			87,00	86,49	86,49	78,49
N445	N78	N445	96,22	16,86	150	0,95	0,61	8	8	86,63	86,02	86,02	78,03
N446	N445	N446	195,2	10,86	125	0,88	1,34	8	8	86,02	84,69	84,69	76,69
N447	N446	N447	175	6,73	100	0,86	1,49	8	8	84,69	83,20	83,20	75,2
N448	N445	N448	153,6	6	100	0,76	1,05	8	8	86,02	84,97	84,97	76,97
N449	N446	N449	110,5	4,13	80	0,82	1,15	8	8	84,69	83,54	83,54	75,54
N450	N79	N450	210,8	4,03	80	0,8	2,09	8	8	86,51	84,42	84,42	76,42
	N80	N451	219,6	12,19	125	0,99	1,87	8	8	86,23	84,36	84,36	
N451	N80	N452	214,5	11,69	125	0,95	1,69	8	8	86,23	84,54	84,54	76,35
N452	N81	N453	270,6	7,38	100	0,94	2,74	8	8	85,88	83,14	83,14	76,54
N453	N81	N454	184,9	6,94	100	0,88	1,67	8	8	85,88	84,21	84,21	75,14
N454	N82	N455	296,5	11,54	125	0,94	2,28	8	8	85,33	83,05	83,05	76,21
N455	N83	N456	227,7	6,24	100	0,79	1,68	8	8	84,37	82,69	82,69	75,05
N456	N83	N457	86,81	13,66	150	0,77	0,37	8	8	84,37	84,00	84,00	74,69
N457	1100	11407	00,01	15,00	150	V,//	V, J /	-	-	0 1,0 /	04,00	0.1,00	76

ANNEXE 15
DIMENSIONNEMENT DU RESEAU DE DISTRIBUTION COTEE
EST ``B``

Nœud	Tro	nçon	Long	Débit Q	DN	Vitesse	PDC	CTN	(m)	CP	(m)	Charge	pression
Neud			(m)	(1/s)	(mm)	(m/s)	(m)	Amont	Aval	Amont	Aval	(m)	(m)
B1	N1	B1	343,5	2331,55	1400	1,51	0,35	30	31	101,25	100,90	100,90	69,9
	B1	B2	254,6	2302,08	1400	1,5	0,25	31	29	100,90	100,64	100,64	1160170
B2	B2	B3	629	2272,04	1400	1,48	0,53	29	24	100,64	100,11	100,11	71,64
B3	B3	B4	311,2	2237,39	1400	1,45	0,30	24	23	100,11	99,81	99,81	76,11
B4	B4	B5	392,3	2207,09	1400	1,43	0,36	23	23	99,81	99,45	99,45	76,81
B5	B5	B6	228,8	2156,27	1400	1,4	0,20	23	22	99,45	99,25	99,25	76,45
B6	B6	B7	199,8	2143,59	1400	1,39	0,17	22	22	99,25	99,08	99,08	77,25
B7	B7	B8	449,3	2124,04	1400	1,38	0,39	22	22	99,08	98,69	98,69	77,07
B8	B8	B9	191,5	2102,46	1400	1,37	0,16	22	23	98,69	98,53	98,53	76,69
B9	B9	B10	395,5	1805,57	1200	1,6	0,10	23	23	98,53	97,99	97,99	75,53
B10			_	_				_		_			74,99
B11	B10	B11	85,8	1798,84	1200	1,59	0,12	23	23	97,99	97,87	97,87	74,87
B12	B11	B12	77,52	1792,3	1200	1,58	0,10	23	23	97,87	97,76	97,76	
	B12	B13	238,1	1766,72	1200	1,56	0,31	23	23	97,76	97,45	97,45	74,76
B13	B13	B14	205,8	1741,41	1200	1,54	0,26	23	23	97,45	97,19	97,19	74,4
B14	B14	B15	202,2	1716,64	1200	1,52	0,25	23	23	97,19	96,94	96,94	74,19
B15	B15	B16	240,9	1686,4	1200	1,49	0,29	23	23	96,94	96,65	96,65	73,94
B16	B16	B17	104,2	1661,31	1200	1,47	0,12	23	23	96,65	96,53	96,53	73,65
B17	B17	B18	471	1649,43	1200	1,46	0,54	23	22	96,53	95,99	95,99	73,53
B18	B18	B19	500,3	1604,59	1100	1,69	0,85	22	22	95,99	95,14	95,14	73,99
B19	B19	B20	130,1	1575,21	1100	1,66	0,21	22	22	95,14	94,93	94,93	73,15
B20	B20	B21	160,4	1564,53	1100	1,65	0,26	22	22	94,93	94,67	94,67	72,93
B21	B21	B22	356,3	1180,14	1100	1,24	0,20	22	21	94,67	94,34	94,34	72,68
B22	B22	B23	545,1	1156,37	1100	1,24	0,33	21	19	94,07	93,85	93,85	73,34
B23	B23	B24	179,9	1136,04	1100	1,22	0,16	19	18	93,85	93,69	93,69	74,85
B24	B24	B25	147	1062,51	1100	1,12	0,10	18	18	93,69	93,58	93,58	75,7
B25	B25	B26	223,8	1050,48	1100	1,11	0,17	18	18	93,58	93,42	93,42	75,59
B26			_	_		_				_			75,42
B27	B26 B27	B27	254,2	1025,2	1100	1,08	0,18	18	18	93,42	93,23	93,23	75,24
B28		B28	121,2	1000,17	1100	1,05	0,07	18	18	93,23	93,16	93,16	75,16
B29	B28	B29	174,4	944,83	1000	1,2	0,17	18	17	93,16	92,99	92,99	75,98
B30	B29	B30	276,2	913,48	1000	1,16	0,25	17	17	92,99	92,74	92,74	75,73
B31	B30	B31	145,5	888,13	1000	1,13	0,13	17	17	92,74	92,61	92,61	75,6
B32	B31	B32	146,6	877,15	1000	1,12	0,12	17	17	92,61	92,49	92,49	75,48
B33	B32	B33	117,9	865,9	1000	1,1	0,10	17	17	92,49	92,39	92,39	75,38
B34	B33	B34	137,4	842,44	1000	1,07	0,11	17	17	92,39	92,28	92,28	75,27
B35	B34	B35	113,8	835,39	1000	1,06	0,09	17	17	92,28	92,19	92,19	75,18
B36	B35 B36	B36 B37	110,9	812,45	1000	1,03	0,08	17 17	17 17	92,19	92,11	92,11	75,1
B37	B37	B38	138,7 158,3	800,97 778,55	1000	1,02 0,99	0,10	17	17	92,11 92,01	92,01 91,90	92,01 91,90	75
B38	B38	B39	167,5	760,49	1000	0,99	0,11	17	16	91,90	91,79	91,79	74,9
B39	B39	B40	161,2	735,39	1000	0,94	0,11	16	16	91,79	91,70	91,79	75,79
B40	B40	B41	168,8	711,25	900	1,12	0,16	16	16	91,70	91,53	91,53	75,69
B41	B41	B42	496,6	700.2	900	1,12	0,10	16	16	91,70	91,07	91,07	75,53
B42	B42	B43	364,9	663,12	900	1,04	0,47	16	16	91,07	90,76	90,76	75,06
B43	B43	B44	171,2	645,65	900	1,01	0,14	16	16	90,76	90,62	90,62	74,75
B44	B44	B45	218	609,29	900	0,96	0,14	16	17	90,62	90,46	90,46	74,61
B45	211	247	2.10	VV7,27	200	0,70	0,10		•	70,02	20,70	20,10	73,46

ANNEXE 16
DIMENSIONNEMENT DU RESEAU DE DISTRIBUTION COTEE
EST ``B`

Noeud														
March March March Amount Awal Amount Awal Amount Awal Amount Awal Amount Awal A	Nœnd	Tro	nçon	Long		DN	Vitesse	PDC	CTN	(m)	CP		Charge	pression
B46 B47 172,2 557,34 900 0,88 0,11 17 17 90,37 90,26 90,26 73,26 B48 B48 B49 323,4 486,94 800 0,97 0,27 18 18 89,91 89,91 89,91 89,91 89,91 89,91 89,91 71,9 B49 B49 B50 259 454,85 800 0,9 0,19 18 15 89,63 89,44 89,44 71,43 B51 B51 268,1 143,96 800 0,9 0,19 18 15 89,63 89,44 89,42 74,47 B52 B32 B33 313,28 700 0,98 0,20 14 14 88,60 88,60 88,60 74,27 B53 B53 B54 318 313,28 700 0,91 14 14 88,60 8,60 8,60 74,41 B55 B56 B67 B53														(m)
B46 B47 172,2 557,34 900 0,88 0,11 17 17 90,37 90,26 99,26 99,26 89,91 73,26 84,84 848 848 848 849 323,4 486,94 800 0,97 0,27 18 18 89,91 89,63 89,63 71,63 85,06 85	B46			_				_						73.36
B48			B47		557,34		0,88	0,11		17	90,37	90,26	_	
B49		B47	B48	361,6	526,1	800	1,05	0,35	17	18	90,26	89,91	89,91	_
B49		B48	B49	323,4	486,94	800	0,97	0,27	18	18	89,91	89,63	89,63	$\overline{}$
B501 B50 B51 268,1 413,96 800 0,82 0,17 15 15 89,44 89,28 89,28 74,27 B52 B51 B52 244,3 378,66 700 0,98 0,25 15 14 89,03 89,03 75,92 B53 B52 B53 241,1 343,68 700 0,98 0,20 14 14 89,03 88,60 76,82 B54 B53 B54 318 313,28 700 0,98 0,20 14 14 88,60 88,60 74,82 B54 B55 B56 164,2 270,29 600 0,96 0,11 14 14 88,41 88,22 88,21 74,21 B55 B56 B57 323,7 234,45 600 0,96 0,11 1,19 13 13 87,91 87,72 87,72 B58 B59 B59 B60 B60 B61 126,21		B49	B50		454,85	800			18	15	89.63	89,44	89,44	
B51 B52 244,3 378,66 700 0,98 0,25 15 14 89,28 89,03 89,03 73,52 73,52 73,52 74,52 7	B50							_						
B523 B52 B53 B53 A41,1 343,68 700 0,89 0,20 14 14 89,03 88,82 88,82 73,82 B54 B53 B54 318 313,28 700 0,81 0,23 14 14 88,82 88,60 88,61 74,41 B55 B55 B56 164,2 270,29 600 0,96 0,19 14 14 88,60 88,41 78,41 B56 B56 B57 323,7 243,45 600 0,96 0,19 14 14 88,41 88,41 74,41 B57 B58 B58 B59 28,21 216,8 500 1,1 0,19 13 13 87,91 87,72 74,21 74,21 B59 B59 B60 B61 262,1 159,47 450 1 0,47 13 11 87,72 87,72 74,21 B61 B61 B62 B63 B64 144,41 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								_						
B54 B53 B54 318 313,28 700 0,81 0,23 14 14 88,82 86,60 88,60 74,82 B55 B56 B55 137,7 289,41 600 1,02 0,18 14 14 88,60 88,41 88,21 74,41 B56 B56 B57 323,7 243,45 600 0,96 0,19 14 14 88,41 88,22 87,91 74,21 B57 B58 98,21 216,8 500 1,1 0,19 13 13 87,91 87,72 87,72 74,91 B58 B59 B59 B60 198,4 190,3 500 0,97 0,30 11 10 86,98 86,98 86,98 75,98 B60 B61 B62,1 159,47 450 1 0,47 10 10 86,69 86,21 86,21 76,88 B61 B62 B63 317,9 124,1								_			_			75,82
B55	B53				-					-			_	74,82
B56 B56 B56 B56 B67 222,729 600 0,96 0,19 14 14 88,41 88,22 88,22 74,21 B57 B56 B57 323,7 243,45 600 0,86 0,31 14 13 88,22 87,91 87,72 74,21 B58 B58 B59 434,5 203,73 500 1,04 0,74 13 11 87,72 86,98 86,98 B59 B60 198,4 190,3 500 0,97 0,30 11 10 86,98 86,98 86,98 B60 B61 262,1 159,47 450 1 0,47 10 10 86,69 86,21 86,21 B61 B60 B61 262,1 159,47 450 1 0,47 10 10 86,69 86,21 86,21 B61 B62 B63 B64 395,5 104,98 400 0,94 0,58	B54				_		-	_			-			74,41
B56	B55			_				_			-			74.41
B57				164,2			0,96	0,19			88,41	88,22	-	
B58	11/2/	B56	B57	323,7	243,45	600	0,86	0,31	14	13	88,22	87,91	87,91	
B58 B58 B59 434,5 203,73 500 1,04 0,74 13 11 87,72 86,98 86,98 75,98 B60 B60 198,4 190,3 500 0,97 0,30 11 10 86,98 86,69 86,69 75,98 B61 B61 B62 248,6 141,76 450 0,89 0,36 10 10 86,69 86,21 86,21 75,85 B62 B63 B64 141,76 450 0,89 0,36 10 10 85,21 85,86 75,85 B63 B63 B64 395,5 104,98 400 0,84 0,58 10 10 85,21 85,21 75,85 B64 B64 B65 551,7 93,61 350 0,97 1,27 10 10 83,36 83,36 73,35 73,35 B65 B66 B67 260,6 60,18 300 0,84 0,53 <td></td> <td>B57</td> <td>B58</td> <td>98,21</td> <td>216,8</td> <td>500</td> <td>1,1</td> <td>0,19</td> <td>13</td> <td>13</td> <td>87,91</td> <td>87,72</td> <td>87,72</td> <td></td>		B57	B58	98,21	216,8	500	1,1	0,19	13	13	87,91	87,72	87,72	
B59 B60 198,4 190,3 500 0,97 0,30 11 10 86,98 86,69 86,69 76,98 B61 B60 B61 262,1 159,47 450 1 0,47 10 10 86,69 86,21 86,21 76,58 B62 B63 B61 B62 248,6 141,76 450 0,89 0,36 10 10 86,21 85,21 75,85 B63 B63 B64 395,5 104,98 400 0,99 0,64 10 10 85,86 85,21 75,21 B64 B65 551,7 93,61 350 0,97 1,27 10 10 84,63 83,36 73,35 B65 B66 B67 260,6 60,18 300 0,85 0,56 10 10 83,36 82,83 72,25 B67 B68 B69 B67 260,6 60,18 300 0,85 0,56		B58	B59	434.5	203.73	500	1.04	0.74	13	11	87.72	86.98		_
B60 B61 262,1 159,47 450 1 0,47 10 10 86,69 86,21 86,21 76,28 B61 B61 B62 248,6 141,76 450 0,89 0,36 10 10 86,21 85,86 35,86 76,21 B63 B64 395,5 104,98 400 0,99 0,64 10 10 85,21 85,21 75,21 B64 B65 551,7 93,61 350 0,97 1,27 10 10 84,63 83,36 83,36 73,35 74,63 B65 B66 B65 566 305,5 80,47 350 0,84 0,53 10 10 84,63 83,36 83,36 73,35 73,25 866 B67 260,6 60,18 300 0,85 0,56 10 10 84,63 83,36 82,83 72,23 72,25 867 867 867 867,69 87,72 20,0				_	-		-	-			_		-	_
B61 B62 248,6 141,76 450 0,89 0,36 10 10 86,21 85,86 85,86 76,21 B62 B63 317,9 124,1 400 0,99 0,64 10 10 85,86 85,21 85,21 75,85 B64 B63 B64 395,5 104,98 400 0,84 0,58 10 10 85,21 84,63 84,63 75,21 B65 B65 B65 B65 B65 305,5 104,98 400 0,84 0,53 10 10 84,63 83,36 83,36 74,63 B65 B66 B65 551,7 93,61 350 0,97 1,27 10 10 84,63 83,36 83,36 72,35 B66 B66 B67 260,6 60,18 300 0,85 0,56 10 10 82,23 82,23 72,27 72,25 B67 B68 B69 205,6 </td <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>				_				_						
B62 B63 317,9 124,1 400 0,99 0,64 10 10 85,86 85,21 85,21 75,81 B63 B63 B64 395,5 104,98 400 0,84 0,58 10 10 85,21 84,63 84,63 75,21 B65 B66 B65 551,7 93,61 350 0,97 1,27 10 10 84,63 83,36 83,36 73,35 B66 B65 B66 305,5 80,47 350 0,84 0,53 10 10 83,36 82,83 32,27 32,27 72,25 72,26 866 B66 B67 260,6 60,18 300 0,85 0,56 10 10 82,83 82,27 82,27 72,27 72,25 72,26 868 B69 205,6 34,7 250 0,71 0,39 9 9 81,62 81,22 81,22 72,26 72,26 B69 B69 <t< td=""><td>B61</td><td></td><td></td><td></td><td></td><td></td><td>•</td><td></td><td></td><td></td><td></td><td></td><td></td><td>76,21</td></t<>	B61						•							76,21
B63 B64 395,5 104,98 400 0,84 0,58 10 10 85,21 84,63 84,63 75,21 B65 B64 B65 551,7 93,61 350 0,97 1,27 10 10 84,63 83,36 83,36 73,35 73,35 B66 B65 B66 B67 260,6 60,18 300 0,84 0,53 10 10 83,36 82,83 82,27 72,27 72,22 72,25 72,25 72,25 72,25 72,25 72,25 72,25 72,25 72,25 72,25 72,25 72,25 72,25 72,25 72,26 72,25 72,26 72,26 72,26 72,26 72,26 72,21 72,25 72,26 72,26 72,26 72,26 72,26 72,21 72,27 72,22 72,22 72,22 72,25 72,26 72,26 72,26 72,26 72,26 72,26 72,26 72,26 72,21 72,21 72,21 <td>B62</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>75,85</td>	B62				-			_						75,85
B64 B65 B65,7 93,61 350 0,97 1,27 10 10 84,63 83,36 83,36 74,63 B65 B66 B66 305,5 80,47 350 0,84 0,53 10 10 83,36 82,83 82,83 72,82 72,82 B67 B66 B67 260,6 60,18 300 0,85 0,56 10 10 82,83 82,27 72,25 72,82 B68 B67 B68 190,6 47,29 250 0,96 0,65 10 9 82,27 81,62 81,22 72,27 72,55 72,62 72,61 72,61 72,61 72,61 72,73 73,82 88 81,22 81,62 81,22 81,62 72,21 72,21 72,21 72,21 72,21 72,21 72,73 73,82 88 80,74 77,82 78,22 72,21 72,73 73,81 88 80,74 77,82 78,24 72,73	B63				The second secon									75,21
B66 B65 B66 305,5 80,47 350 0,84 0,53 10 10 83,36 82,83 82,83 73,32 72,82 72,25 72,62 72,21 72,21 82 83 81,22 80,74 80,74 72,21 72,21 72,21 72,21 72,21 72,21 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>														
B66 B67 260,6 60,18 300 0,85 0,56 10 10 82,83 82,27 82,27 72,25 B68 B67 B68 190,6 47,29 250 0,96 0,65 10 9 82,27 81,62 81,62 72,25 B69 B68 B69 205,6 34,7 250 0,71 0,39 9 9 81,62 81,22 81,22 72,21 B70 B70 B71 39,3 11,36 125 0,93 2,93 8 8 80,74 77,82 77,82 B71 B1 B74 318,28 29,47 200 0,94 1,36 31 30 100,99 99,54 95,55 95,55 66,55 B74 B74 B75 B74 B76 307,6 17,67 150 1 2,12 30 27 99,54 95,55 95,55 66,55 B76 B2 B77 <td< td=""><td>B65</td><td>$\overline{}$</td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td>_</td><td></td><td></td><td></td><td>-</td></td<>	B65	$\overline{}$					_			_				-
B68 B67 B68 190,6 47,29 250 0,96 0,65 10 9 82,27 81,62 81,62 72,26 B69 B68 B69 205,6 34,7 250 0,71 0,39 9 9 81,62 81,22 81,22 72,26 B70 B70 B71 392,3 11,36 125 0,93 2,93 8 8 80,74 77,82 77,82 B71 B1 B74 318,28 29,47 200 0,94 1,36 31 30 100,90 99,54 99,74 90,74 66,55 66,55 70,42 72,45 72,45 72,45				_	_		-	_			-			
B69 B68 B69 205,6 34,7 250 0,71 0,39 9 9 81,62 81,22 81,22 72,21 B70 B70 B71 392,3 11,36 125 0,93 2,93 8 8 8,074 77,82 77,82 B71 B1 B74 318,28 29,47 200 0,94 1,36 31 30 100,90 99,54 99,54 B74 B74 B75 497,2 11,8 125 0,96 3,99 30 29 99,54 99,54 99,54 B75 B74 B76 307,6 17,67 150 1 2,12 30 27 99,54 95,55 95,55 66,55 B76 B2 B77 54,21 12,38 150 0,7 0,19 29 28 100,64 100,45 100,45 70,42 B77 B2 B78 109,7 17,66 150 1 0														
Bro Bro Bro 179,3 23,05 200 0,73 0,48 9 8 81,22 80,74 80,74 72,21														
B70 B71 392,3 11,36 125 0,93 2,93 8 8 80,74 77,82 77,82 72,73 B71 B1 B74 318,28 29,47 200 0,94 1,36 31 30 100,90 99,54 99,54 69,8 B74 B74 B75 497,2 11,8 125 0,96 3,99 30 29 99,54 95,55 95,55 66,55 B76 B2 B77 54,21 12,38 150 0,7 0,19 29 28 100,64 100,45 100,45 70,42 B77 B2 B78 109,7 17,66 150 1 0,75 29 28 100,64 99,89 99,89 72,45 B78 B3 B79 137,2 17,41 150 0,99 0,92 24 23 100,11 99,19 99,19 76,19 B80 B4 B81 136,2 17,73														
B71 B1 B74 318,28 29,47 200 0,94 1,36 31 30 100,90 99,54 99,54 B75 B74 B75 497,2 11,8 125 0,96 3,99 30 29 99,54 95,55 95,55 B76 B74 B76 307,6 17,67 150 1 2,12 30 27 99,54 97,42 97,42 B77 B82 B78 109,7 17,66 150 1 0,75 29 28 100,64 100,45 100,45 B78 B8 B78 109,7 17,66 150 1 0,75 29 28 100,64 99,89 99,89 99,89 99,89 99,89 99,89 99,89 99,89 99,89 99,89 99,99 99,99 99,22 24 23 100,11 99,19 97,12 76,19 80 80 13,12 17,41 150 0,99 0,92 2	B70							_						72,73
B74 B74 B74 B75 497,2 11,8 125 0,96 3,99 30 29 99,54 95,55 95,55 66,54 B75 B74 B76 307,6 17,67 150 1 2,12 30 27 99,54 97,42 97,42 66,55 B76 B2 B77 54,21 12,38 150 0,7 0,19 29 28 100,64 100,45 100,45 70,42 72,45 70,42 72,45 70,42 72,45 70,42	B71			-	_		-				-			69,8
B75 B74 B76 307,6 17,67 150 1 2,12 30 27 99,54 97,42 97,42 70,42	B74										_			
B76 B74 B76 S0,0 17,07 130 1 2,12 30 27 99,34 97,42 97,42 70,42 B77 B2 B77 54,21 12,38 150 0,7 0,19 29 28 100,64 100,45 100,45 72,45 B78 B2 B78 109,7 17,66 150 1 0,75 29 28 100,64 99,89 99,89 72,45 B79 B3 B79 137,2 17,41 150 0,99 0,92 24 23 100,11 99,19 76,19 B80 B4 B81 136,2 17,73 150 1 0,94 23 23 99,81 98,87 98,87 76,19 B81 B4 B82 122,1 12,57 150 0,71 0,44 23 23 99,81 98,87 98,87 75,87 B82 B5 B83 522,5 50,82 <td< td=""><td>B75</td><td></td><td></td><td></td><td></td><td></td><td>0,96</td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td></td<>	B75						0,96				_			
B77 B2 B78 109,7 17,66 150 1 0,75 29 28 100,64 99,89 99,89 71,89 71,89 76,19							1					-		
B78 B2 B78 109,7 17,60 130 1 0,73 29 28 100,64 99,89 99,89 71,89 B79 B3 B79 137,2 17,41 150 0,99 0,92 24 23 100,11 99,19 99,19 76,19 B80 B4 B81 136,2 17,73 150 1 0,94 23 23 99,81 98,87 98,87 76,19 B81 B4 B82 122,1 12,57 150 0,71 0,44 23 23 99,81 99,87 99,37 75,87 B82 B5 B83 522,5 50,82 300 0,72 0,82 23 23 99,45 98,63 98,63 76,37 B83 B84 403,5 27,49 200 0,88 1,51 23 21 98,63 97,12 97,12 76,12 B85 B84 B85 227,9 13,69														
B79 B3 B80 140,2 17,41 150 0,99 0,92 24 23 100,11 99,19 99,19 76,19 B80 B4 B81 136,2 17,73 150 1 0,94 23 23 99,81 98,87 98,87 76,19 B81 B4 B82 122,1 12,57 150 0,71 0,44 23 23 99,81 99,37 99,37 75,87 B82 B5 B83 522,5 50,82 300 0,72 0,82 23 23 99,81 99,37 99,37 75,87 B83 B84 403,5 27,49 200 0,88 1,51 23 21 98,63 98,63 75,63 B85 B83 B84 403,5 27,49 200 0,88 1,51 23 21 98,63 97,12 76,12 B85 B83 B86 100,3 11,91 125 0,97														
B80 B4 B81 136,2 17,73 150 1 0,94 23 23 99,81 98,87 98,87 76,19 B81 B4 B82 122,1 12,57 150 0,71 0,44 23 23 99,81 99,37 99,37 75,87 B83 B5 B83 522,5 50,82 300 0,72 0,82 23 23 99,45 98,63 98,63 76,37 B84 B83 B84 403,5 27,49 200 0,88 1,51 23 21 98,63 97,12 97,12 75,63 B85 B84 B85 227,9 13,69 150 0,77 0,97 21 21 97,12 96,15 96,15 76,12 B85 B83 B86 100,3 11,91 125 0,97 0,82 23 22 98,63 97,81 97,81 75,81 B87 B88 B83 B87										23				
B81 B4 B81 130,2 17,3 130 1 0,94 23 23 99,81 98,87 98,87 75,87 B82 B4 B82 122,1 12,57 150 0,71 0,44 23 23 99,81 99,37 99,37 76,37 B83 B83 522,5 50,82 300 0,72 0,82 23 23 99,45 98,63 98,63 76,37 B84 B83 B84 403,5 27,49 200 0,88 1,51 23 21 98,63 97,12 97,12 75,63 B85 B84 B85 227,9 13,69 150 0,77 0,97 21 21 97,12 96,15 96,15 76,12 B85 B83 B86 100,3 11,91 125 0,97 0,82 23 22 98,63 97,81 97,81 75,81 B87 B88 B83 B87 98,91	B80							_				-	_	76,19
B82 B4 B82 122,1 12,37 130 0,71 0,44 23 23 99,81 99,37 99,37 76,37 B83 B83 522,5 50,82 300 0,72 0,82 23 23 99,45 98,63 98,63 75,63 B84 B83 B84 403,5 27,49 200 0,88 1,51 23 21 98,63 97,12 97,12 75,63 B85 B84 B85 227,9 13,69 150 0,77 0,97 21 21 97,12 96,15 96,15 76,12 B85 B83 B86 100,3 11,91 125 0,97 0,82 23 22 98,63 97,81 97,81 75,15 B87 B83 B87 98,91 11,42 125 0,93 0,74 23 25 98,63 97,88 97,88 72,88 B88 B84 B88 283,5 13,8								_				_		
B83 B83 B84 403,5 27,49 200 0,88 1,51 23 21 98,63 97,12 97,12 75,63 B84 B84 B85 227,9 13,69 150 0,77 0,97 21 21 97,12 96,15 96,15 76,12 B85 B83 B86 100,3 11,91 125 0,97 0,82 23 22 98,63 97,81 97,81 75,15 B86 B83 B87 98,91 11,42 125 0,93 0,74 23 25 98,63 97,88 97,88 72,88 B87 B84 B88 283,5 13,8 150 0,78 1,22 21 21 97,12 95,89 95,89 74,9 B88 B6 B89 77,24 4,65 80 0,93 1,00 22 21 99,25 98,25 98,25 74,9 B90 B6 B90 80,99														
B84 B85 B84 403,3 27,49 200 0,88 1,31 23 21 98,63 97,12 97,12 76,12 B85 B84 B85 227,9 13,69 150 0,77 0,97 21 21 97,12 96,15 96,15 75,15 B86 B83 B86 100,3 11,91 125 0,97 0,82 23 22 98,63 97,81 97,81 75,15 B87 B83 B87 98,91 11,42 125 0,93 0,74 23 25 98,63 97,88 97,88 75,81 B88 B84 B88 283,5 13,8 150 0,78 1,22 21 21 97,12 95,89 95,89 72,88 B89 B6 B89 77,24 4,65 80 0,93 1,00 22 21 99,25 98,25 98,25 77,24 B90 B6 B90 80,99														
B85 B84 B85 221,9 13,09 130 0,77 0,97 21 21 91,12 90,13 90,13 90,13 75,15 B86 B83 B86 100,3 11,91 125 0,97 0,82 23 22 98,63 97,81 97,81 75,81 B87 B88 B87 98,91 11,42 125 0,93 0,74 23 25 98,63 97,88 97,88 75,81 B88 B84 B88 283,5 13,8 150 0,78 1,22 21 21 97,12 95,89 95,89 72,88 B89 B6 B89 77,24 4,65 80 0,93 1,00 22 21 99,25 98,25 98,25 98,25 B90 B6 B90 80,99 8,03 100 1,02 0,96 22 22 99,25 98,29 76,28 B91 B9 B91 140,4	B84										-			76,12
B80 B83 B87 98,91 11,42 125 0,93 0,74 23 25 98,63 97,88 97,88 72,88 B87 B84 B88 283,5 13,8 150 0,78 1,22 21 21 97,12 95,89 95,89 72,88 B89 B6 B89 77,24 4,65 80 0,93 1,00 22 21 99,25 98,25 98,25 74,9 B90 B6 B90 80,99 8,03 100 1,02 0,96 22 22 99,25 98,29 98,29 76,28 B91 B9 B91 140,4 19,55 200 0,62 0,28 22 22 99,08 98,80 98,80 76,8	B85													75,15
B87 B84 B88 283,5 13,8 150 0,78 1,22 21 21 97,12 95,89 95,89 72,88 B89 B6 B89 77,24 4,65 80 0,93 1,00 22 21 99,25 98,25 98,25 77,24 B90 B6 B90 80,99 8,03 100 1,02 0,96 22 22 99,25 98,29 98,29 77,24 B90 B7 B91 140,4 19,55 200 0,62 0,28 22 22 99,08 98,80 98,80 B91 B9 B93 161,7 14,14 150 0.8 0.72 23 23 0.960 0.73,06 0.73,06 76,8														75,81
B88 B6 B89 77,24 4,65 80 0,93 1,00 22 21 99,25 98,25 98,25 77,24 B89 B6 B90 80,99 8,03 100 1,02 0,96 22 22 99,25 98,29 98,29 77,24 B90 B7 B91 140,4 19,55 200 0,62 0,28 22 22 99,08 98,80 98,80 76,28 B91 B91 B91 B91 140,4 150 0,62 0,28 22 22 99,08 98,80 98,80 76,28	B87													72,88
B89 B6 B90 80,99 8,03 100 1,02 0,96 22 22 99,25 98,29 98,29 77,24 B90 B7 B91 140,4 19,55 200 0,62 0,28 22 22 99,08 98,80 98,80 76,28 B91 B91 B91 B91 B91 B91 B91 B91 B91 B91	B88													74,9
B90 B7 B91 140,4 19,55 200 0,62 0,28 22 22 99,08 98,80 98,80 76,28 B91 B9 B92 161,7 141,4 150 0,8 0,72 22 22 99,08 98,00 97,06 07,06 07,06 07,06														
B91 B9 B92 1617 1414 150 0.0 0.72 22 22 99,00 90,00 90,00 76,8	B90													76,28
B92 B92 101,7 14,14 130 0,6 0,73 22 22 96,09 97,90 97,90 75,96														76,8
	B92	Do	D72	101,7	14,14	130	0,0	V,73	44	22	70,07	37,30	97,90	75,96

ANNEXE 17
DIMENSIONNEMENT DU RESEAU DE DISTRIBUTION COTEE
EST ``B`

						ESI	D						
Nœud	Tro	nçon	Long	Débit Q	DN	Vitesse	PDC	CTN		CP	(m)	Charge	pression
			(m)	(1/s)	(mm)	(m/s)	(m)	Amont	Aval	Amont	Aval	(m)	(m)
B93	B8	B93	144	7,44	100	0,95	1,48	22	21	98,69	97,21	97,21	76,21
B94	B9	B94	109,2	13,48	150	0,76	0,45	23	23	98,53	98,08	98,08	75,08
B95	B9	B95	707,5	283,41	600	1	0,91	23	21	98,53	97,62	97,62	
	B95	B96	286,7	258,54	600	0,91	0,31	21	21	97,62	97,32	97,32	76,62
B96	B96	B97	186,2	246,08	600	0,87	0,18	21	21	97,32	97,14	97,14	76,32
B97 B98	B97	B98	237,4	219,38	600	0,78	0,19	21	21	97,14	96,95	96,95	76,13
	B98	B99	269,8	206,49	500	1,05	0,47	21	21	96,95	96,48	96,48	75,95
B99	B99	B100	354,1	172,84	450	1,09	0,75	21	19	96,48	95,74	95,74	75,48
B100	B100	B101	232,8	146,7	450	1,54	0,36	19	19	95,74	95,38	95,38	76,73
B101	B101	B102	199,8	133,88	400	1,07	0,47	19	19	95,38	94,91	94,91	76,37
B102			_			-		_		-			75,9
B103	B102	B103	170,6	109,66	400	0,87	0,27	19	19	94,91	94,64	94,64	75,63
B104	B103	B104	135,4	102,82	350	1,07	0,38	19	19	94,64	94,26	94,26	75,26
B104	B104	B105	599,6	91,27	350	0,95	1,33	19	18	94,26	92,94	92,94	
	B105	B106	277,4	78,31	300	1,11	0,99	18	18	92,94	91,94	91,94	74,93
B106	B106	B107	192,3	45,58	250	0,93	0,61	18	18	91,94	91,33	91,33	73,94
B107	B107	B108	535,7	22,51	200	0,72	1,37	18	18	91,33	89,96	89,96	73,33
B108	B95	B109	137,3	12,98	150	0,73	0,53	21	21	97,62	97,09	97,09	71,95
B109	B95	B110	114,8	11,89	150	0,67	0,37	21	21	97,62	97,25	97,25	76,1
B110	B96	B111	184,7	12,46	150	0,71	0,66	21	21	97,32	96.66	96,66	76,25
B111	B97	B112	268,8	13,14	150	0,74	1,05	21	22	97,14	96,09	96,09	75,66
B112	B97	B113	110	13,56	150	0,77	0,46	21	21	97,14	96,68	96,68	74,08
B113	B98	B114	169	12,89	125	1,05	1,60	21	22	96,95	95,35	95,35	75,68
B114	B99	B115	316.8	20,98	200	0,67	0,71	21	21	96,48	95,77	95,77	73,34
B115	B99	B116	144,4	12,67	125	1,03	1,33	21	21	96,48	95,15	95,15	74,77
B116	B100	B117	83,16	13,42	150	0,76	0,34	19	19	95,74	95,40	95,40	74,15
B117	B100	B118	211,6	12,72	150	0,72	0,78	19	19	95,74	94,96	94,96	76,39
B118	B101	B119	242,7	12,82	150	0,72	0,91	19	20	95,38	94,47	94,47	75,95
B119	B102	B120	247,1	13,35	150	0,75	1,00	19	19	94,91	93,91	93,91	74,46
B120	B102	B121	311,3	10,87	125	0,89	2,14	19	19	94,91	92,77	92,77	74,9
B121	B102	B122	241,3	6,84	100	0,89	2,12	19	19	94,91	92,52	92,77	73,77
B122	B103	B123	234,4	11,55	125	0,87	1,80	19	19	94,04		92,32	73,52
B123			_		_	_	_			-	92,46	_	73,45
B124	B105 B106	B124 B125	78,52 217,1	12,9 19,59	150 150	0,73 1,11	0,30 1,82	18 18	19	92,94 91,94	92,64	92,64	73,63
B125	B106	B126	141,6	13,14	150	0,74	0,56	18	18	91,94	91,38	91,38	72,12
B126	B107	B127	278,2	_	200	0,74	0,75	18	18	91,33	90,58	90,58	73,39
B127	B107	B128	105	21,07 6,73	100	0,75	0,75	23	22	97,99	97,10	97,10	72,58
B128	B11	B129	258,9	6,54	100	0,80	2,08	23	22	97,99	95,79	95,79	75,09
B129	B12	B130	170,9	13,45	150	0,83	0,70	23	23	97,76	97,06	97,06	73,78
B130	B12	B131	192,9	12,13	125	0,76	1,63	23	22	97,76	96,13	96,13	74,06
B131	B13	B132	194,7	12,13	125	1,04	1,81	23	23	97,45	95,64	95,64	74,14
B132	B13	B133	205,3	12,57	125	1,04	1,86	23	22	97,45	95,59	95,59	72,65
B133	B14	B134	204,7	11,78	125	0,96	1,64	23	23	97,19	95,55	95,55	73,6
B134	B14	B135	257,6	12,99	150	0,74	0,99	23	22	97,19	96,20	96,20	72,56
B135	B15	B136	189,1	13,02	150	0,74	0,73	23	23	96,94	96,21	96,21	74,2
B136	B15	B137	197,1	17,22	150	0,97	1,29	23	23	96,94	95,65	95,65	73,21
B137	D10	D.37	17/,1	1,44	130	V,37	1,27	23	23	70,74	75,05	75,05	72,65

ANNEXE 18
DIMENSIONNEMENT DU RESEAU DE DISTRIBUTION COTEE
EST ``B`

Nœud	Tron	nçon	Long	Débit Q	DN	Vitesse	PDC	CTN	(m)	CP	(m)	Charge	pression
Ivædd			(m)	(1/s)	(mm)	(m/s)	(m)	Amont	Aval	Amont	Aval	(m)	(m)
B138	B16	B138	201,9	12,22	125	1	1,73	23	23	96,65	94,92	94,92	71,92
	B16	B139	176,1	12,87	150	0,73	0,66	23	24	96,65	95,99	95,99	
B139	B17	B140	47,55	11,88	125	0,97	0,39	23	23	96,53	96,14	96,14	71,89
B140	B18	B141	384,9	44,84	250	0,91	1,19	22	22	95,99	94,80	94,80	73,14
B141	B141	B142	205,5	22,1	200	0,7	0,51	22	21	94,80	94,29	94,29	72,8
B142	B142	B143	414,5	10,63	125	0,87	2,72	21	21	94,29	91,57	91,57	73,29
B143	B141	B144	233,1	22,74	200	0,72	0,61	22	22	94,80	94,19	94,19	70,57
B144	B144	B145	69,82	12,53	125	1,02	0,63	22	22	94,19	93,56	93,56	72,19
B145	B144	B146	71,87	10,21	125	0,83	0,44	22	21	94,19	93,75	93,75	71,56
B146	B142	B147	222	11,47	125	0,93	1,68	21	21	94,29	92,61	92,61	72,75
B147								_		_			71,61
B148	B19	B148	251,3	11,99	125	0,98	2,08	22	22	95,14	93,06	93,06	71,07
B149	B19	B149	167,9	17,39	150	0,98	1,12	22	21	95,14	94,02	94,02	73,02
B150	B20	B150	244,7	10,68	125	0,87	1,62	22	22	94,93	93,31	93,31	71,31
	B21	B151	290,9	12,02	125	0,98	2,41	22	22	94,67	92,26	92,26	
B151	B21	B152	149,6	372,37	700	0,97	0,15	22	22	94,67	94,52	94,52	70,26
B152	B152	B153	116,9	360,36	700	0,94	0,11	22	21	94,52	94,41	94,41	72,53
B153	B153	B154	123,1	342,9	700	0,89	0,10	21	21	94,41	94,31	94,31	73,42
B154	B154	B155	126,5	320,03	600	1,13	0,20	21	21	94,31	94,10	94,10	73,31
B155	B155	B156	132	296,95	600	1,05	0,18	21	20	94,10	93,92	93,92	73,11
B156	B156	B157	206,3	271,78	600	0,96	0,24	20	19	93,92	93,68	93,68	73,93
B157	B157	B158	254,8	246,57	600	0,87	0,25	19	19	93,68	93,43	93,43	74,68
B158	B158	B159	238,9	219,46	500	1,12	0,47	19	19	93,43	92,96	92,96	74,43
B159 B160	B159	B160	210,9	205,48	500	1,05	0,36	19	18	92,96	92,59	92,59	73,97
B161	B160	B161	326,5	198,65	500	1,01	0,53	18	18	92,59	92,06	92,06	74,07
B162	B161	B162	107,1	191,45	500	0,98	0,16	18	18	92,06	91,90	91,90	
	B162	B163	138,1	184,72	500	0,94	0,19	18	18	91,90	91,71	91,71	73,91
B163	B163	B164	484,4	146,42	500	0,75	0,44	18	17	91,71	91,27	91,27	73,72
B164	B164	B165	333	78,42	350	0,82	0,55	17	16	91,27	90,72	90,72	74,28
B165	B165	B166	150,7	67,21	300	0,95	0,40	16	16	90,72	90,32	90,32	74,73
B166	B166	B167	185,4	44,08	250	0,9	0,55	16	16	90,32	89,76	89,76	74,33
B167	B167	B168	674,9	30,6	200	0,97	3,10	16	16	89,76	86,66	86,66	73,77
B168 B169	B168	B169	122,4	17,26	150	0,98	0,81	16	16	86,66	85,85	85,85	70,67 69,86
B170	B152	B170	299,6	12,01	125	0,98	2,48	22	21	94,52	92,04	92,04	71,04
B171	B153	B171	182,8	6,7	100	0,85	1,54	21	21	94,41	92,87	92,87	71,88
B172	B153	B172	305	10,76	125	0,88	2,05	21	21	94,41	92,36	92,36	71,37
B173	B154	B173	351,2	11,51	125	0,94	2,68	21	20	94,31	91,63	91,63	71,63
B174	B154	B174	336,5	11,6	125	0,93	2,51	21	21	94,31	91,80	91,80	70,81
B175	B155	B175	343,1	11,04	125	0,9	2,42	21	20	94,10	91,68	91,68	71,69
B176	B155	B176	320,2	12,04	125	0,98	2,67	21	21	94,10	91,43	91,43	70,44
B177	B156	B177 B178	284,6	12,05	125 150	0,98	2,37	20	19	93,92	91,55	91,55	72,55
B178	B156 B157	B178	272,4 213,5	13,12 11,76	125	0,74	1,07	19	19	93,92 93,68	92,85 91,98	92,85 91,98	72,86
B179	B157	B180	238,8	13,45	150	0,76	0,98	19	19	93,68	92,70	92,70	72,98
B180	B158	B181	129,5	13,43	150	0,70	0,54	19	19	93,43	92,70	92,70	73,7
B181	B158	B182	220,5	13,51	150	0,76	0,91	19	19	93,43	92,52	92,52	74,89
B182	2.50	2.02	220,5	,		V,/ V	V,/ .	.,		**, 10	72,72	72,72	73,52

ANNEXE 19
DIMENSIONNEMENT DU RESEAU DE DISTRIBUTION COTEE
EST ``B`

Nœud	Tro	nçon	Long	Débit Q	DN	Vitesse	PDC	CTN	(m)	CF	(m)	Charge	pression
11000			(m)	(1/s)	(mm)	(m/s)	(m)	Amont	Aval	Amont	Aval	(m)	(m)
B183	B159	B183	77,8	6,74	100	0,86	0,66	19	18	92,96	92,30	92,30	74,3
	B159	B184	194,5	7,24	100	0,92	1,90	19	19	92,96	91,06	91,06	_
B184	B160	B185	97,21	6,83	100	0,87	0,85	18	18	92,59	91,74	91,74	72,07
B185	B161	B186	246,2	7,2	100	9,67	2,38	18	18	92,06	89,68	89,68	73,75
B186	B162	B187	252,4	6,73	100	6,73	2,15	18	18	91,90	89,75	89,75	71,69
B187	B163	B188	233,9	13,34	150	0,75	0,94	18	18	91,71	90,77	90,77	71,76
B188	B163	B189	358	24,96	200	0,79	1,12	18	18	91,71	90,59	90,59	72,77
B189	B164	B190	189,9	20,43	150	1,16	1,73	17	17	91,27	89,54	89,54	72,6
B190	B164	B191	178,6	12,8	150	0,72	0,67	17	17	91,27	90,60	90,60	72,55
B191	B164	B192	200	34,77	250	0,71	0,38	17	17	91,27	90,89	90,89	73,61
B192	B192	B193	250	11,33	125	0,92	1,86	17	16	90,89	89,03	89,03	73,9
B193	B192	B194	220	11,12	125	0,91	1,58	17	16	90,89	89,31	89,31	73,04
B194	B192	B195	300	12,32	125	1	2,61	17	16	90,89	88,28	88,28	73,32
B195													72,29
B196	B165	B196	250,1	11,21	125	0,91	1,82	16	16	90,72	88,90	88,90	72,91
B197	B166	B197	104,7	10,96	125	0,89	0,73	16	16	90,32	89,59	89,59	73,6
B198	B166	B198	248,7	12,17	125	0,99	2,11	16	16	90,32	88,21	88,21	72,21
B199	B167	B199	210,8	13,48	150	0,76	0,87	16	16	89,76	88,89	88,89	72,9
B200	B168	B200	119,2	13,34	150	0,75	0,48	16	16	96,66	96,18	96,18	70,19
B201	B22	B201	72,98	12,29	125	1	0,63	21	21	94,34	93,71	93,71	72,71
B202	B22	B202	64,55	11,48	125	0,94	0,06	21	21	94,34	94,28	94,28	72,85
B203	B23	B203	107,5	7,85	100	1	1,22	19	19	93,85	92,63	92,63	73,63
B204	B23	B204	101,9	12,48	125	1,02	0,91	19	19	93,85	92,94	92,94	73,95
B205	B24	B205	226,6	73,53	300	1,04	0,72	18	18	93,69	92,97	92,97	74,98
B206	B205	B206	193,6	62,49	300	0,88	0,45	18	19	92,97	92,52	92,52	73,53
B207	B206	B207	134,3	50,01	250	1,02	0,51	19	20	92,52	92,01	92,01	72,02
B208	B207	B208	382,2	24,66	200	0,78	1,17	20	21	92,01	90,84	90,84	69,85
B209	B208	B209	162,8	13,61	150	0,77	0,68	21	21	90,84	90,16	90,16	69,17
B210	B205	B210	197,1	11,04	125	0,9	1,39	18	18	92,97	91,58	91,58	73,59
B211	B206	B211	244,4	12,48	125	1,02	2,18	19	18	92,52	90,34	90,34	72,35
B212	B207	B212	96,71	25,35	200	0,81	0,31	20	21	92,01	91,70	91,70	70,71
B213	B212	B213	188,7	11,99	125	0,98	1,56	21	21	91,70	90,14	90,14	69,15
B214	B212	B214	251	13,36	150	0,76	1,02	21	21 20	91,70	90,68	90,68	69,69
B215	B208 B25	B215 B216	116,7 144,1	11,05 12,03	125 125	0,9	0,83 1,20	21 18	18	90,84	90,02 92,38	90,02 92,38	70,02
B216	B26	B217	201,5	12,03	125	1	1,73	18	18	93,42	91,69	91,69	74,39
B217	B26	B218	181,5	13,03	150	0,74	0,70	18	18	93,42	92,72	92,72	73,69
B218	B27	B219	180,8	11,84	125	0,96	1,46	18	18	93,23	91,77	91,77	74,72
B219	B27	B220	198,8	13,19	150	0,75	0,79	18	17	93,23	92,44	92,44	73,78
B220	B28	B221	321,4	55,34	300	0,78	0,59	18	18	93,16	92,57	92,57	75,45
B221	B221	B222	217	48,03	250	0,98	0,77	18	18	92,57	91,80	91,80	74,59
B222	B222	B223	287,3	30,48	200	0,97	1,31	18	18	91,80	90,49	90,49	73,8
B223	B223	B224	193,8	17,27	150	0,98	1,28	18	18	90,49	89,21	89,21	72,49
B224 B225	B224	B225	341,9	10,13	125	0,83	2,05	18	18	89,21	87,16	87,16	71,21
B225	B221	B226	253,1	7,31	100	0,93	2,52	18	19	92,57	90,05	90,05	69,16 71,04
B227	B222	B227	147,4	17,55	150	0,99	1,00	18	19	91,80	90,80	90,80	71,8
								U U					,0

ANNEXE 20
DIMENSIONNEMENT DU RESEAU DE DISTRIBUTION COTEE
EST ``B`

Nœud	Tro	nçon	Long	Débit Q	DN	Vitesse	PDC	CTN	(m)	CP	(m)	Charge	pression
11000			(m)	(1/s)	(mm)	(m/s)	(m)	Amont	Aval	Amont	Aval	(m)	(m)
B228	B223	B228	166,3	13,21	150	0,75	0,66	18	18	90,49	89,83	89,83	71,83
	B224	B229	171,8	7,14	100	0,91	1,63	18	18	89,21	87,58	87,58	
B229	B29	B230	202,6	17,65	150	1	1,39	17	17	92,99	91,60	91,60	69,58
B230	B29	B231	169,2	13,7	150	0,78	0,72	17	17	92,99	92,27	92,27	74,59
B231	B30	B232	187,3	12,72	150	0,72	0,69	17	17	92,74	92,05	92,05	75,27
B232	B30	B233	152,9	13,63	150	0.71	0,56	17	17	92,74	92,18	92,18	75,04
B233	B31	B234	221,9	10,98	125	0,89	1,55	17	18	92,61	91,06	91,06	75,17
B234	B32	B235	234,6	11,25	125	0,92	1,72	17	18	92,49	90,77	90,77	73,05
B235	B33	B236	231,6	10,5	125	0,86	1,49	17	17	92,39	90,90	90,90	72,76
B236	B33	B237	152	12,96	125	1,06	1,46	17	17	92,39	90,93	90,93	73,89
B237										_			73,92
B238	B34	B238	253,2	7,05	100	0,9	2,35	17	17	92,28	89,93	89,93	72,92
B239	B35	B239	260,6	11,52	125	0,94	2,00	17	17	92,19	90,19	90,19	73,19
B240	B35	B240	231,9	11,42	125	0,93	1,75	17	17	92,19	90,44	90,44	_
	B36	B241	236,7	11,48	125	0,94	1,80	17	17	92,11	90,31	90,31	73,44
B241	B37	B242	219,6	11,21	125	0,91	1,60	17	16	92,01	90,41	90,41	73,3
B242	B37	B243	273,1	11,21	125	0,91	1,99	17	17	92,01	90,02	90,02	74,41
B243	B38	B244	203,6	6,83	100	0,87	1,78	17	16	91,90	90,12	90,12	73,02
B244	B38	B245	265	11,23	125	0,92	1,93	17	17	91,90	89,97	89,97	74,12
B245	B39	B246	237,9	7,49	100	0,95	2,48	16	16	91,79	89,31	89,31	72,96
B246	B39	B247	299,1	17,61	150	1	2,05	16	16	91,79	89,74	89,74	73,31
B247	B40	B248	232,6	11,05	125	0,9	1,64	16	16	91,70	90,06	90,06	73,74
B248	B40	B249	269,7	13,09	150	0.74	1,05	16	16	91,70	90,65	90,65	74,04
B249	B41	B250	221,9	11,05	125	0.9	1,57	16	16	91,53	89,96	89,96	74,64
B250 B251	B42	B251	162,4	23,54	200	0,75	0,45	16	16	91,07	90,62	90,62	
	B42	B252	112,3	13,54	150	0,77	0,47	16	16	91,07	90,60	90,60	74,61
B252	B43	B253	219,1	17,47	150	0,99	1,48	16	17	90,76	89,28	89,28	74,59
B253	B44	B254	241,9	23,4	200	0.74	0,67	16	16	90,62	89,95	89,95	72,27
B254	B44	B255	198,1	12,96	150	0,73	0,76	16	17	90,62	89,86	89,86	73,94
B255	B45	B256	239,8	17,41	150	0,99	1,61	17	17	90,46	88,85	88,85	72,27
B256	B45	B257	262,1	17,37	150	0,98	1,75	17	17	90,46	88,71	88,71	71,85
B257	B46	B258	308,6	17,17	150	0,97	2,01	17	17	90,37	88,36	88,36	71,71
B258 B259	B47	B259	170,3	13,07	150	0,74	0,66	17	17	90,26	89,60	89,60	71,35
	B47	B260		18,17	150	1,03	2,30	17	17	90,26	87,96	87,96	
B260 B261	B48	B261	210,6	21,99	200	0,7	0,52	18	18	89,91	89,39	89,39	70,96
B262	B48	B262	188,3	17,17	150	0,97	1,23	18	18	89,91	88,68	88,68	70,66
B263	B49	B263	167,1	13,75	150	0,78	0,72	18	18	89,63	88,91	88,91	70,92
B264	B49	B264	212,2	18,24	150	1,04	1,57	18	15	89,63	88,06	88,06	73,06
B265	B50	B265	214,2	17,57	150	0,99	1,46	15	16	89,44	87,98	87,98	71,98
B266	B50	B266	240,3	23,32	200	0,74	0,66	15	14	89,44	88,78	88,78	74,78
B267	B51	B267	212,4	17,19	150	0,97	1,39	15	16	89,28	87,89	87,89	71,88
B268	B51	B268	244,6	18,11	150	1,02	1,77	15	14	89,28	87,51	87,51	73,51
B269	B52	B269	217,1	17,24	150	0,98	1,43	14	15	89,03	87,60	87,60	72,59
B270	B52 B53	B270	235,8	17,74	150	0.74	1,64	14	14	89,03	87,39	87,39	73,38
B271	B53	B271 B272	159,2 221,1	13,09 17,31	150 150	0,74	0,62	14	15 14	88,82 88,82	88,20 87,36	88,20	73,2
B272	ננם	DZIZ	221,1	17,51	130	0,98	1,46	14	14	00,02	37,30	87,36	73,35

ANNEXE 21
DIMENSIONNEMENT DU RESEAU DE DISTRIBUTION COTEE
EST ``B ``

Nœud	Tro	nçon	Long	Débit Q	DN	Vitesse	PDC	CTN	(m)	CP	(m)	Charge	pression
Nœud			(m)	(1/s)	(mm)	(m/s)	(m)	Amont	Aval	Amont	Aval	(m)	(m)
B273	B54	B273	210	11,02	125	0,9	1,48	14	16	88,60	87,12	87,12	71,11
	B54	B274	264,8	12,85	125	1,05	2,50	14	13	88,60	86,10	86,10	
B274	B55	B275	189,5	7,2	100	0,92	1,83	14	16	88,41	86,58	86,58	73,09
B275	B55	B276	276,1	11,92	125	0,97	2,26	14	13	88,41	86,15	86,15	70,57
B276	B56	B277	191	13,09	150	0,74	0,74	14	16	88,22	87,48	87,48	73,15
B277 B278	B56	B278	227,5	13,75	150	0,78	0,97	14	13	88,22	87,25	87,25	71,47
B279	B57	B279	180,7	13,23	150	0,75	0,72	13	14	87,91	87,19	87,19	73,19
B280	B57	B280	217,1	13,42	150	0,76	0,89	13	13	87,91	87,02	87,02	_
B281	B58	B281	60,8	13,07	150	0,74	0,24	13	13	87,72	87,48	87,48	74,02
	B59	B282	194,8	13,43	150	0,76	0,80	11	11	86,98	86,18	86,18	74,48
B282	B60	B283	276,6	17,47	150	0,99	1,86	10	11	86,69	84,83	84,83	75,18
B283	B60	B284	242,8	13,36	150	0,76	0,98	10	11	86,69	85,71	85,71	73,82
B284 B285	B61	B285	276,8	17,71	150	1	1,92	10	11	86,21	84,29	84,29	74,7
	B62	B286	324,8	17,66	150	1	2,23	10	11	85,86	83,63	83,63	73,29
B286	B63	B287	175,8	19,2	150	1,08	1,41	10	11	85,21	83,80	83,80	72,62
B287	B64	B288	118,3	11,37	125	0,93	0,88	10	10	84,63	83,75	83,75	72,8
B288	B65	B289	120,4	13,14	150	0,74	0,47	10	10	83,36	82,89	82,89	73,74
B289	B66	B290	194,7	20,29	200	0,65	0,41	10	10	82,83	82,42	82,42	72,88
B290	B67	B291	231,1	12,89	150	0,73	0,87	10	10	82,27	81,40	81,40	72,41
B291	B68	B292	212,2	12,59	150	0,71	0,77	9	9	81,62	80,85	80,85	71,38
	B69	B293	178,6	11,65	125	0,95	1,40	9	8	81,22	79,82	79,82	_
_	B70	B294	166,7	11,69	125	0,95	1,31	8	8	80,74	79,43	79,43	71,81
B292 B293 B294	B69	B293	178,6	11,65	125	0,95	1,40	9	8	81,22	79,82	79,82	7