## الجمهورية الجزائرية الديمقراطية الشعبية وزارة التعليم العالى و البحث العلمي

## NATIONAL HIGHER SCHOOL FOR HYDRAULICS

"The MujahidAbdellah ARBAOUI"



المدرسة الوطنية العليا للري "المجاهد عبد الله عرباوي" +۲۵۰۵۲ تا۲۱۵۳۲ ×۰۹۰۵۳۰ ۲۴۵۱۵۳۰ ×۰۹۰۵۳۰

## MEMOIRE DE FIN D'ETUDES

Pour l'obtention du diplôme d'Ingénieur d'Etat en Hydraulique

**Option:** CONCEPTION DES SYSTEMES D'ASSAINISSEMENT

#### **THEME:**

Conception du système d'assainissement de la ville de Safsafa (C.Grarem, W.Mila)

Présenté par :

**BOUSSAOUI Chahinaz** 

#### Devant les membres du jury

| Nom et Prénoms           | Grade | Qualité      |  |  |
|--------------------------|-------|--------------|--|--|
| M. BOUFEKANE Abdelmadjid | M.C.A | Président    |  |  |
| Mme. MOKRANE Wahiba      | M.A.A | Examinatrice |  |  |
| M. HACHEMI Abdelkader    | M.C.B | Examinateur  |  |  |
| M. TOUMI Samir           | M.C.B | Promoteur    |  |  |

Session Décembre 2020

## Remerciement:

Je remercie Dieu le tout puissant, pour m'avoir donné la santé, le courage et la volonté d'étudier, pour m'avoir permis de réaliser ce modeste travail et de me donner la patience dans mes difficiles conditions.

Ensuite je tiens à remercier mes chers parents, qui se sont donné cœurs et âmes pour que je réussisse, qui m'ont aidé moralement et financièrement, et qui m'ont toujours encouragé à donner le meilleur de moi-même. Ainsi que mes chers frères et sœurs qui ont toujours étaient là pour moi.

Toute ma gratitude et mes vifs remerciements à Mr TOUMI (mon promoteur) pour le soutien, l'aide et les conseils qu'il m'a dispensé pour l'élaboration de ce présent mémoire.

Je remercie le président et les membres du jury qui me feront l'honneur de juger mon travail.

Ainsi que toutes mes gratitudes à l'ensemble des enseignants de l'ENSH qui m'ont éclairé, orienté et aidé durant toute ma formation.

Un grand merci pour toutes les personnes qui ont contribuées de près ou de loin pour la réalisation de ce mémoire.

# Dédicace:

Je dédie ce modeste mémoire qui est l'accomplissement de longues années d'études, en premier lieu à :

Mes très chers parents, source de vie, d'amour, d'affection, d'espoir et de motivation.

A mes chers frères Ali, Imad et sa fiancée Rofayda, Walid et sa femme Afra et leur petit prince Assil.

A mes chères sœurs Amina, Majda et son mari samir et leurs enfants, Ziad, Salwa et Arij, source de joie et de bonheur.

A toute ma famille,

A tous mes amis, mes copines et mes camarades, tout particulièrement Khaoula, Aïcha, Bassma, Sara, Hana...

BOUSSADUI Chahinaz

يشير الصرف الصحي إلى جميع وسائل ومعدات جمع ونقل وتنقية مياه الصرف الصحي ومياه الأمطار قبل تصريفها في البيئة الطبيعية

الهدف من هذه الاستراتيجية هو تسبير هذه المياه، بهدف حماية الممتلكات والأشخاص (الصحة، ومكافحة الفيضانات، والبيئة). ولهذا الغرض تتكون هذه المذكرة المتعلقة بنهاية الدروس من دراسة وتصميم شبكة الصرف الصحي لتكتل "صفصافة" الواقع في بلدية جرارم بولاية ميلة. لتأمين إجلائهم خارج المدينة. يوفر هذا العمل توصيات التشغيل من أجل حسن سير النظام، والاستنتاجات.

الكلمات المفتاحية: الصرف الصحي، شبكة الوحدة، الأبعاد، الأعمال المساعدة، منطقة الصفصافة.

#### Résumé:

L'assainissement désigne l'ensemble des moyens et d'équipements de collecte, de transport, et d'épuration des eaux usées et pluviales avant leur rejet dans le milieu naturel.

Cette stratégie a pour objectif la gestion de ces eaux, en vue d'une protection des biens et des personnes (sanitaire, contre les inondations, et l'environnement). C'est dans cet objectif que ce mémoire de fin d'étude consiste à l'étude et la conception du réseau d'assainissement de l'agglomération "Safsafa" située dans la commune de Grarem wilaya de Mila. Pour assurer leur évacuation en dehors de l'agglomération et les diriger vers une station d'épuration avant leur réutilisation éventuelle.

Ce travail prévoit des recommandations d'exploitation pour le bon fonctionnement du système, et des conclusions.

<u>Mots clés</u>: assainissement, réseau unitaire, dimensionnement, ouvrages annexes, région safsafa.

#### **Abstract:**

Sanitation refers to all the means and equipment for collecting, transporting and purifying wastewater and rainwater before it is discharged into the natural environment. The aim of this strategy is to manage this water, with a view to protect property and people (sanitation, flood control and the environment). Consequently, this study attempts to design a sewerage network for the "Safsafa" agglomeration located in the Grarem region in the Wilaya of MILA. This would ensure their evacuation outside the built-up area and direct them to a wastewater treatment plant before possible reuse. This work provides operational recommendations for the proper functioning of the system and conclusions.

**Keywords:** sanitation, unit network, dimensioning, ancillary works, Safsafa region.

## **Sommaire**

Liste des tableaux Liste des figures Liste des planches Liste des annexes Introduction générale

## Chapitre I : Présentation de la zone d'étude

| I.1. Introduction.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| I.2. Présentation du site de Safsafa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                  |
| I.3. Situation géographique                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                |
| I.4.Les données naturelles du site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                  |
| I.4.1. Situation topographique                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3                                                |
| I.4.2. Situation géologique                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |
| I.4.3. sismicité                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                  |
| I.4.4. Situation climatique                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |
| a. Le climat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4                                                |
| b. La température                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5                                                |
| c. Pluviométrie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                                                |
| d. humidité                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5                                                |
| e. Vent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6                                                |
| I.4.5. Situation démographique                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6                                                |
| I.5. Situation hydraulique                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6                                                |
| I.5.1. Réseau Assainissement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6                                                |
| I.5.2. Réseau AEP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7                                                |
| Conclusion.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8                                                |
| Chapitre II : Etude hydrologique                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                  |
| II.1. Introduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                  |
| II.2. Généralité                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9                                                |
| II.2. Généralité                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9<br>9                                           |
| II.2. Généralité                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9<br>9<br>9                                      |
| II.2. Généralité                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9<br>9<br>9                                      |
| II.2. Généralité                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9<br>9<br>9<br>9                                 |
| II.2. Généralité. a. Bassin versant b. Les averses. c. Période de retour d. L'intensité moyenne de précipitation II.3. Etude des précipitations                                                                                                                                                                                                                                                                                                                                                                                                                           | 9<br>9<br>9<br>9<br>10                           |
| II.2. Généralité                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9<br>9<br>9<br>10<br>10                          |
| II.2. Généralité                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9<br>9<br>10<br>10<br>13                         |
| II.2. Généralité.  a. Bassin versant  b. Les averses.  c. Période de retour  d. L'intensité moyenne de précipitation  II.3. Etude des précipitations  II.4. Les précipitations maximales journalières  II.5. Vérification de l'homogénéité de la série  II.6. Ajustement de la série.                                                                                                                                                                                                                                                                                     | 9<br>9<br>10<br>10<br>13                         |
| II.2. Généralité                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9<br>9<br>10<br>12<br>13<br>13                   |
| II.2. Généralité                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9<br>9<br>10<br>12<br>13<br>13                   |
| II.2. Généralité                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9<br>9<br>10<br>12<br>13<br>13<br>14             |
| II.2. Généralité a. Bassin versant b. Les averses c. Période de retour d. L'intensité moyenne de précipitation II.3. Etude des précipitations II.4. Les précipitations maximales journalières II.5. Vérification de l'homogénéité de la série II.6. Ajustement de la série II.6.1 Ajustement de la série pluviométrique à la loi de Gumbel. II.6.2. Ajustement de la série pluviométrique à la loi de Galton (Log-normale) II.6.3 Ajustement de la série pluviométrique à la loi GEV II.6.4 Choix de la loi d'ajustement.                                                 | 9<br>9<br>10<br>12<br>13<br>13<br>14<br>16       |
| II.2. Généralité.  a. Bassin versant  b. Les averses.  c. Période de retour  d. L'intensité moyenne de précipitation  II.3. Etude des précipitations  II.4. Les précipitations maximales journalières.  II.5. Vérification de l'homogénéité de la série  II.6. Ajustement de la série.  II.6.1 Ajustement de la série pluviométrique à la loi de Gumbel.  II.6.2. Ajustement de la série pluviométrique à la loi de Galton (Log-normale).  II.6.3 Ajustement de la série pluviométrique à la loi GEV  II.6.4 Choix de la loi d'ajustement.  Test graphique                | 9<br>9<br>10<br>12<br>13<br>13<br>14<br>16<br>19 |
| II.2. Généralité a. Bassin versant b. Les averses c. Période de retour d. L'intensité moyenne de précipitation II.3. Etude des précipitations II.4. Les précipitations maximales journalières. II.5. Vérification de l'homogénéité de la série II.6. Ajustement de la série. II.6.1 Ajustement de la série pluviométrique à la loi de Gumbel. II.6.2. Ajustement de la série pluviométrique à la loi de Galton (Log-normale). II.6.3 Ajustement de la série pluviométrique à la loi GEV II.6.4 Choix de la loi d'ajustement. Test graphique Interprétation des graphiques | 9<br>9<br>10<br>13<br>13<br>14<br>16<br>19       |
| II.2. Généralité                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9<br>9<br>10<br>13<br>13<br>14<br>16<br>19<br>19 |
| II.2. Généralité a. Bassin versant b. Les averses c. Période de retour d. L'intensité moyenne de précipitation II.3. Etude des précipitations II.4. Les précipitations maximales journalières. II.5. Vérification de l'homogénéité de la série II.6. Ajustement de la série. II.6.1 Ajustement de la série pluviométrique à la loi de Gumbel. II.6.2. Ajustement de la série pluviométrique à la loi de Galton (Log-normale). II.6.3 Ajustement de la série pluviométrique à la loi GEV II.6.4 Choix de la loi d'ajustement. Test graphique Interprétation des graphiques | 9<br>9<br>10<br>13<br>13<br>14<br>19<br>19<br>19 |

| II.8.Intensité moyenne maximale                                                  | .21 |
|----------------------------------------------------------------------------------|-----|
| Conclusion                                                                       | 22  |
|                                                                                  |     |
| Chapitre III : Calcul de base                                                    |     |
| III.1 .Introduction.                                                             | .23 |
| III.2.Système d'évacuation du réseau d'assainissement                            | .23 |
| III.2.1.Réseau unitaire.                                                         |     |
| III.2 .2.Réseau séparatif                                                        | .24 |
| III.2 .3.Réseau pseudo séparatif                                                 |     |
| III.2. Le choix du système d'assainissement                                      |     |
| III.3.Schéma d'évacuation des eaux                                               |     |
| III.3.1. Schéma perpendiculaire                                                  |     |
| III.3.2. Schéma par déplacement latéral                                          |     |
| III.3.3. Schéma transversal ou oblique                                           |     |
| III.3.4. Schéma par zones étagées                                                |     |
| III.3.5. Schéma radial                                                           |     |
| III.4. Le choix du schéma d'évacuation.                                          |     |
| III.5. Découpage de l'aire d'étude en sous bassins élémentaires                  |     |
| III.6.Choix du coefficient de ruissellement                                      |     |
| III.6.1. Coefficient de ruissellement en fonction de la catégorie d'urbanisation |     |
| III.6.2.Coefficients de ruissellement en fonction de la densité de population    |     |
| III.6.3.Coefficient de ruissellement en fonction de surface drainée              |     |
| III.6.4.Coefficients de ruissellement en fonction de la zone d'influence         |     |
|                                                                                  |     |
| III.7. Calcul de la population pour chaque sous bassin                           |     |
| III.7.1. Calcul du coefficient de ruissellement pour chaque sous bassin          |     |
| III.7.2. Calcul du coefficient de ruissellement pondéré total                    |     |
| III.7.3. Calcul de la densité partielle                                          |     |
| III.7.4.Calcul du nombre d'habitant de chaque sous bassin                        |     |
| Conclusion.                                                                      | 33  |
| Chapitre IV : Estimation des débits à évacuer                                    |     |
|                                                                                  | _   |
| IV.1. Introduction                                                               |     |
| IV.2.Nature et origines des eaux usées                                           |     |
| IV.2.1.Les eaux usées domestiques                                                |     |
| IV.2.2.Les eaux usées des services publiques                                     |     |
| IV.2.3. Les eaux usées industrielles                                             |     |
| IV.2.4. Les eaux parasites                                                       |     |
| IV.3. Les eaux pluviales                                                         | 8   |
| IV.4. Estimation des débits des eaux usées                                       | 8   |
| IV.4.1. Débits des eaux usées domestiques                                        |     |
| IV.4.1.1.Débit moyen journalier                                                  | 8   |
| IV.4.1.2. Débit de pointe                                                        | 0   |
| IV.4.2.Débits des eaux usées des établissements publics                          |     |
| IV.4.2.1.Débit moyen journalier                                                  | 0   |
| IV.4.2.2.Débit de pointe4                                                        | 1   |
| IV.4.3. Débits totaux des eaux usées à évacuer4                                  | 1   |
| IV.5. Estimation des débits des eaux pluviales4                                  | 2   |
| IV.5.1.La méthode rationnelle                                                    | 3   |

| IV.5.1.1. Coefficient réducteur de l'intensité                    |    |
|-------------------------------------------------------------------|----|
| IV.5.1.2. Validité de la méthode rationnelle                      |    |
| IV.5.1.3. Hypothèses de la méthode rationnelle                    |    |
| IV.5.1.4.Temps de concentration                                   |    |
| IV.5.1.5. Critique de la méthode rationnelle                      |    |
| IV.6. La méthode superficielle (méthode de Caquot)                |    |
| IV.6.1. Evaluation des paramètres de Caquot                       |    |
| IV.6.2. Validité de la méthode superficielle                      |    |
| IV.6.3. Définition des variables de la formule de Caquot          |    |
| IV.6.3.1. Pente moyenne                                           |    |
| IV.6.3.2.Groupement des bassins versants en série ou en parallèle |    |
| IV.6.4.Critique de la méthode superficielle                       |    |
| IV.7.Choix de la méthode                                          |    |
| IV.8. Calcul des débits pluviaux                                  |    |
| IV.9.Calcule des débits totales pour chaque sous bassin           |    |
| Conclusion.                                                       | 51 |
|                                                                   |    |
| Chapitre V : Dimensionnement du réseau d'assainissement           |    |
| V.1. Introduction                                                 | 52 |
| V.1. Introduction.                                                |    |
| V.2. Principe de conception d'un système d'assainissement         |    |
| Les collecteurs.                                                  |    |
| Les regards                                                       |    |
| V.3. Dimensionnement du réseau d'assainissement                   |    |
| V.3.1. Conditions d'écoulement et de dimensionnement              |    |
| V.3.2.Base de calcul                                              |    |
| V.3.3. Formule de MANNING-STRICKLER                               |    |
| Conclusion                                                        | /3 |
| Chapitre VI : Les éléments constitutifs du réseau                 |    |
| VI.1. Introduction.                                               | 76 |
| VI.2. Les ouvrages principaux                                     |    |
| VI.2.1 canalisations                                              |    |
| VI.2.1. Canalisations VI.2.2.Formes et sections des conduites     |    |
|                                                                   |    |
| VI.2.3.Types de matériaux                                         |    |
| VI.2.3.1.Conduite en ionte  VI.2.3.2.Conduite en amiante ciment   |    |
| VI.2.3.2.Conduite en amante ciment.  VI.2.3.3.Conduite en grés    |    |
| VI.2.3.4. conduite en P.V.C.                                      |    |
| VI.2.3.4. Conduite en F. V.C                                      |    |
| VI.2.3.6. Conduites en béton non armé                             |    |
|                                                                   |    |
| 1. Joint type Rocla                                               | 70 |
| 2. Joint torique                                                  |    |
| 3. Joint à demi-emboitement                                       |    |
| 4. Joint à collet                                                 |    |
| 5. Joint plastique                                                |    |
| VI.2.4.Critères du choix de conduite                              |    |
| VI.2.5. Différentes actions supportées par la conduite            |    |
| VI.2.6. Protection des conduites                                  | ٥0 |

| VI.2.7. Essais des tuyaux préfabriqués                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| VI.2.7.1. Essai à l'écrasement81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| VI.2.7.2. Essai d'étanchéité81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| VI.2.7.3. Essai de corrosion81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| VI.3. Les ouvrages annexes82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 1. Ouvrages normaux82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 1.1. Les branchements82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| 1.2. Les caniveaux83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 1.3. Les bouches d'égout83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 1.4. Les fossés84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 1.5. Les regards84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 2. Les ouvrages spéciaux86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 2.1. Déversoirs d'orage86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 2.1.1. Composition des organes d'un déversoir d'orage87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| 2.1.2. Positionnement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 2.1.3. Les différents types des déversoirs d'orage88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 2.1.3.1. Les ouvrages à seuil déversant88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 2.1.3.2. Les ouvrages n'utilisant pas le seuil90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 2.1.3.3. Déversoir by-pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 2.1.4. Les ouvrages annexes du déversoir d'orage91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 2.1.4.1. Les grilles et les dégrailleurs91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 2.1.4.2. La chambre de tranquillisation et de dessablement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 2.1.5. Dimensionnement du déversoir d'orage91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| 2.1.5.1. Dimensionnement du déversoir d'orage latéral (DO N°1)91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| 2 1 5 2 Dimensionnement du déversoir d'orage latéral (DO N°2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| 2.1.5.2. Dimensionnement du déversoir d'orage latéral (DO N°2)93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 2.1.5.2. Dimensionnement du déversoir d'orage latéral (DO N°2)93  Conclusion95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Conclusion95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| Conclusion95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| Conclusion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Chapitre VII : Organisation de chantier et sécurité du travail  VII.1. Introduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Chapitre VII : Organisation de chantier et sécurité du travail  VII.1. Introduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Chapitre VII : Organisation de chantier et sécurité du travail  VII.1. Introduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Conclusion.         .95           Chapitre VII : Organisation de chantier et sécurité du travail           VII.1. Introduction.         .96           VII.2. Exécution des travaux.         .96           VII.2.1.Manutention et stockage des conduites         .96           VII.2.1.1.Chargement et transport         .96           VII.2.1.2. Déchargement         .97           VII.2.1.3. Stockage         .97           VII.2.2. Décapage de la couche de terre végétale         .97           VII.2.3. Exécution des tranchées et des fouilles pour les regards         .97           VII.2.4. Aménagement du lit de pose         .98           VII.2.5. Emplacement des jalons des piquets         .98           VII.2.6. Pose canalisations dans la tranchée         .98                                                                                                                                                                                                                                                                                                                                                                    |  |
| Conclusion.         95           Chapitre VII : Organisation de chantier et sécurité du travail           VII.1. Introduction.         96           VII.2. Exécution des travaux.         96           VII.2.1.Manutention et stockage des conduites         96           VII.2.1.Chargement et transport         96           VII.2.1.2. Déchargement         97           VII.2.1.3. Stockage         97           VII.2.2.Décapage de la couche de terre végétale         97           VII.2.3. Exécution des tranchées et des fouilles pour les regards         97           VII.2.4. Aménagement du lit de pose         98           VII.2.5. Emplacement des jalons des piquets         98           VII.2.6. Pose canalisations dans la tranchée         98           VII.2.7. Assemblage des conduites         99                                                                                                                                                                                                                                                                                                                            |  |
| Conclusion         .95           Chapitre VII : Organisation de chantier et sécurité du travail           VII.1. Introduction         96           VII.2. Exécution des travaux         96           VII.2.1.Manutention et stockage des conduites         96           VII.2.1.Chargement et transport         96           VII.2.1.2. Déchargement         97           VII.2.1.3. Stockage         97           VII.2.2.Décapage de la couche de terre végétale         97           VII.2.3. Exécution des tranchées et des fouilles pour les regards         97           VII.2.4. Aménagement du lit de pose         98           VII.2.5. Emplacement des jalons des piquets         98           VII.2.6. Pose canalisations dans la tranchée         98           VII.2.7. Assemblage des conduites         99           VII.2.8. Essais d'étanchéité         99                                                                                                                                                                                                                                                                            |  |
| Conclusion.         95           Chapitre VII : Organisation de chantier et sécurité du travail           VII.1. Introduction.         96           VII.2. Exécution des travaux.         96           VII.2.1.Manutention et stockage des conduites         96           VII.2.1.1.Chargement et transport         96           VII.2.1.2. Déchargement         97           VII.2.1.3. Stockage         97           VII.2.2. Décapage de la couche de terre végétale         97           VII.2.3. Exécution des tranchées et des fouilles pour les regards         97           VII.2.4. Aménagement du lit de pose         98           VII.2.5. Emplacement des jalons des piquets         98           VII.2.6. Pose canalisations dans la tranchée         98           VII.2.7. Assemblage des conduites         99           VII.2.8. Essais d'étanchéité         99           VII.2.9. Réalisation des regards         99                                                                                                                                                                                                                 |  |
| Chapitre VII : Organisation de chantier et sécurité du travail           VII.1. Introduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| Conclusion         .95           Chapitre VII : Organisation de chantier et sécurité du travail           VII.1. Introduction         .96           VII.2. Exécution des travaux         .96           VII.2.1. Manutention et stockage des conduites         .96           VII.2.1. Chargement et transport         .96           VII.2.1. Déchargement         .97           VII.2.1. Stockage         .97           VII.2. Décapage de la couche de terre végétale         .97           VII.2. Décapage de la couche de terre végétale         .97           VII. 2. Astécution des tranchées et des fouilles pour les regards         .97           VII. 2. Aménagement du lit de pose         .98           VII. 2. Décapage des conduites         .98           VII. 2. Assemblage des conduites         .98           VII. 2. Assemblage des conduites         .99           VII. 2. Réalisation des regards         .99           VII. 2. Remblaiement et compactage des tranchées         .99           VII. 2. 10. Remblaiement et compactage des tranchées         .99           VII. 2. 11. Choix des engins         .99                |  |
| Conclusion         .95           Chapitre VII : Organisation de chantier et sécurité du travail           VII.1. Introduction         .96           VII.2. Exécution des travaux         .96           VII.2.1. Manutention et stockage des conduites         .96           VII.2.1. Chargement et transport         .96           VII.2.1.2. Déchargement         .97           VII.2.1.3. Stockage         .97           VII.2.2. Décapage de la couche de terre végétale         .97           VII.2.3. Exécution des tranchées et des fouilles pour les regards         .97           VII.2.4. Aménagement du lit de pose         .98           VII.2.5. Emplacement des jalons des piquets         .98           VII.2.6. Pose canalisations dans la tranchée         .98           VII.2.7. Assemblage des conduites         .99           VII.2.8. Essais d'étanchéité         .99           VII.2.9. Réalisation des regards         .99           VII.2.10. Remblaiement et compactage des tranchées         .99           VII.2.11. Choix des engins         .99           Pour le décapage de la couche de la terre végétale         .100 |  |
| Conclusion         .95           Chapitre VII : Organisation de chantier et sécurité du travail           VII.1. Introduction         .96           VII.2. Exécution des travaux         .96           VII.2.1.Manutention et stockage des conduites         .96           VII.2.1.Chargement et transport         .96           VII.2.1.2. Déchargement         .97           VII.2.1.3. Stockage         .97           VII.2.2. Décapage de la couche de terre végétale         .97           VII.2.3. Exécution des tranchées et des fouilles pour les regards         .97           VII.2.4. Aménagement du lit de pose         .98           VII.2.5. Emplacement des jalons des piquets         .98           VII.2.6. Pose canalisations dans la tranchée         .98           VII.2.7. Assemblage des conduites         .99           VII.2.8. Essais d'étanchéité         .99           VII.2.10. Remblaiement et compactage des tranchées         .99           VII.2.11. Choix des engins         .99           Pour le décapage de la couche de la terre végétale         .100           Pour l'execavation des tranchées         .100  |  |
| Chapitre VII : Organisation de chantier et sécurité du travail           VII.1. Introduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| Conclusion         .95           Chapitre VII : Organisation de chantier et sécurité du travail           VII.1. Introduction         .96           VII.2. Exécution des travaux         .96           VII.2.1.Manutention et stockage des conduites         .96           VII.2.1.Chargement et transport         .96           VII.2.1.2. Déchargement         .97           VII.2.1.3. Stockage         .97           VII.2.2. Décapage de la couche de terre végétale         .97           VII.2.3. Exécution des tranchées et des fouilles pour les regards         .97           VII.2.4. Aménagement du lit de pose         .98           VII.2.5. Emplacement des jalons des piquets         .98           VII.2.6. Pose canalisations dans la tranchée         .98           VII.2.7. Assemblage des conduites         .99           VII.2.8. Essais d'étanchéité         .99           VII.2.10. Remblaiement et compactage des tranchées         .99           VII.2.11. Choix des engins         .99           Pour le décapage de la couche de la terre végétale         .100           Pour l'execavation des tranchées         .100  |  |

| VII.3.1. Volume du décapage de la couche végétale               | 102 |
|-----------------------------------------------------------------|-----|
| VII.3.2. Volume des déblais des tranchées                       | 102 |
| VII.3.3.Volume du lit du sable                                  | 103 |
| VII.3.4. Volume occupé par les conduites                        | 103 |
| VII.3.5.Volume de l'enrobage                                    |     |
| VII.3.6.Volume du remblai                                       | 103 |
| VII.3.7.Volume excédentaire                                     | 103 |
| VII.4. Devis quantitatif et estimatif                           | 104 |
| VII.5. Sécurité de travail                                      |     |
| VII.5.1. Introduction                                           | 105 |
| VII.5.2. Les Causes Des Accidents                               | 105 |
| VII.5.3. Les conditions dangereuses                             | 105 |
| VII.5.4. Les actions dangereuses                                |     |
| VII.5.4. Organisation de La prévention des accidents du travail | 106 |
| Conclusion                                                      | 107 |
|                                                                 |     |
| Conclusion générale                                             | 108 |
| Références bibliographiques                                     |     |
| Annexe                                                          |     |

## Liste des tableaux

## ChapitreI : Présentation de la zone d'étude

| Tableau I-1 : Répartition mensuelle de la température de la wilaya de Mila5                   |
|-----------------------------------------------------------------------------------------------|
| Tableau I-2 Précipitations moyennes mensuelles6                                               |
| Tableau I-3 : les valeurs de l'humidité mensuel6                                              |
| Tableau I-4 : les vitesses moyennes mensuelles des vents                                      |
| Chapitre II : Etude hydrologique                                                              |
| Tableau II-1 :Identification de la station de BOU MALEK9                                      |
| Tableau II-2 : La série pluviométrique (station BOU MALEK) 1974-201711                        |
| Tableau II-3 : Les caractéristiques de la série                                               |
| Tableau II-4 : Résultat de l'ajustement à la loi de Gumbel (Hyfran)13                         |
| Tableau II-5 : Résultat de l'ajustement à la loi de Galton (Log-normale) (Hyfran)15           |
| Tableau II-6 : Résultat de l'ajustement à la loi GEV (Hyfran)16                               |
| Tableau II-7: Résultat du test de Khi-deux « χ2 » pour les deux lois choisies18               |
| Tableau II-8 : Pluies de courte durée de différentes périodes de retour et leurs intensités19 |
| ChapitreIII : Calcul de base                                                                  |
| Tableau III-1 : Avantages et inconvénients des différents systèmes                            |
| ChapitreIV: Estimation des débits à évacuer                                                   |
| Tableau IV-1 : Débits des eaux usées domestiques pour chaque sous bassin39                    |
| Tableau IV-2 : Débits des eaux usées des équipements publics pour chaque sous bassin41        |
| Tableau IV-3 : Débits totaux des eaux usées pour chaque sous bassin                           |
| Tableau IV-4 : Détermination des paramètres équivalents dans le cas de l'assemblage des       |
| bassins versants en série ou en parallèle                                                     |
| Tableau IV-5 : évaluation des débits pluvieux pour chaque sous bassin                         |
| Tableau IV-6 : débits totaux pour chaque sous bassin                                          |
| ChapitreV : Dimensionnement du réseau d'assainissement                                        |
| Tableau V.1 : Collecteur principal N°0156                                                     |
| Tableau V.2 : Collecteur principal N°02                                                       |
| Tableau V.3 : Collecteur secondaire N°0160                                                    |
| Tableau V.4 : Collecteur secondaire N°0261                                                    |

| Tableau V.6 : Collecteur secondaire N°04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Tableau V.5 : Collecteur secondaire N°03                       | 62  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-----|
| Tableau V.8 : Collecteur secondaire N°06.       64         Tableau V.9 : Collecteur secondaire N°07.       64         Tableau V.10 : Collecteur secondaire N°08.       65         Tableau V.11 : Collecteur secondaire N°09.       65         Tableau V.12 : Collecteur secondaire N°10.       66         Tableau V.13 : Collecteur secondaire N°11.       67         Tableau V.14 : Collecteur secondaire N°12.       67         Tableau V.15 : Collecteur secondaire N°13.       68         Tableau V.16 : Collecteur secondaire N°14.       68         Tableau V.17 : Collecteur tertiaire N°1.       68         Tableau V.18 : Collecteur tertiaire N°2.       69         Tableau V.19 : Collecteur tertiaire N°2.       69         Tableau V.29 : Collecteur tertiaire N°4.       69         Tableau V.20 : Collecteur tertiaire N°5.       70         Tableau V.21 : Collecteur tertiaire N°6.       70         Tableau V.22 : Collecteur tertiaire N°6.       70         Tableau V.23 : Collecteur tertiaire N°9.       71         Tableau V.25 : Collecteur tertiaire N°9.       71         Tableau V.26 : Collecteur tertiaire N°10.       71         Tableau V.27 : Collecteur tertiaire N°11.       72         Tableau V.28 : Collecteur tertiaire N°13.       72         Tableau V.31 : Collecteur tertiaire N°14.<                                                | Tableau V.6 : Collecteur secondaire N°04                       | 63  |
| Tableau V.9 : Collecteur secondaire N°07.       64         Tableau V.11 : Collecteur secondaire N°08.       65         Tableau V.12 : Collecteur secondaire N°10.       65         Tableau V.13 : Collecteur secondaire N°10.       66         Tableau V.14 : Collecteur secondaire N°11.       67         Tableau V.15 : Collecteur secondaire N°12.       67         Tableau V.15 : Collecteur secondaire N°13.       68         Tableau V.16 : Collecteur secondaire N°14.       68         Tableau V.17 : Collecteur tertiaire N°2.       69         Tableau V.18 : Collecteur tertiaire N°2.       69         Tableau V.19 : Collecteur tertiaire N°3.       69         Tableau V.20 : Collecteur tertiaire N°4.       69         Tableau V.21 : Collecteur tertiaire N°5.       70         Tableau V.22 : Collecteur tertiaire N°6.       70         Tableau V.23 : Collecteur tertiaire N°7.       70         Tableau V.24 : Collecteur tertiaire N°9.       71         Tableau V.25 : Collecteur tertiaire N°10.       71         Tableau V.27 : Collecteur tertiaire N°11.       72         Tableau V.29 : Collecteur tertiaire N°12.       72         Tableau V.29 : Collecteur tertiaire N°13.       72         Tableau V.30 : Collecteur tertiaire N°14.       73         Tableau V.31 : Collecteur tertiaire N°15.                                                | Tableau V.7 : Collecteur secondaire $N^{\circ}05$              | 63  |
| Tableau V.10 : Collecteur secondaire N°08.       65         Tableau V.11 : Collecteur secondaire N°09.       65         Tableau V.12 : Collecteur secondaire N°10.       66         Tableau V.13 : Collecteur secondaire N°11.       67         Tableau V.14 : Collecteur secondaire N°12.       67         Tableau V.15 : Collecteur secondaire N°13.       68         Tableau V.16 : Collecteur secondaire N°14.       68         Tableau V.17 : Collecteur tertiaire N°1.       68         Tableau V.18 : Collecteur tertiaire N°2.       69         Tableau V.19 : Collecteur tertiaire N°3.       69         Tableau V.20 : Collecteur tertiaire N°4.       69         Tableau V.21 : Collecteur tertiaire N°5.       70         Tableau V.22 : Collecteur tertiaire N°6.       70         Tableau V.23 : Collecteur tertiaire N°7.       70         Tableau V.24 : Collecteur tertiaire N°8.       71         Tableau V.25 : Collecteur tertiaire N°10.       71         Tableau V.27 : Collecteur tertiaire N°11.       72         Tableau V.28 : Collecteur tertiaire N°11.       72         Tableau V.29 : Collecteur tertiaire N°13.       72         Tableau V.30 : Collecteur tertiaire N°15.       73         Chapitre VI : Les éléments constitutifs du réseau         Tableau VI.1 : dimensionnement des déve                                                   | Tableau V.8 : Collecteur secondaire $N^{\circ}06$              | 64  |
| Tableau V.11 : Collecteur secondaire N°09       65         Tableau V.12 : Collecteur secondaire N°10       66         Tableau V.13 : Collecteur secondaire N°11       67         Tableau V.14 : Collecteur secondaire N°12       67         Tableau V.15 : Collecteur secondaire N°13       68         Tableau V.16 : Collecteur secondaire N°14       68         Tableau V.17 : Collecteur tertiaire N°1       68         Tableau V.18 : Collecteur tertiaire N°2       69         Tableau V.19 : Collecteur tertiaire N°3       69         Tableau V.20 : Collecteur tertiaire N°4       69         Tableau V.21 : Collecteur tertiaire N°5       70         Tableau V.22 : Collecteur tertiaire N°6       70         Tableau V.23 : Collecteur tertiaire N°8       71         Tableau V.24 : Collecteur tertiaire N°8       71         Tableau V.25 : Collecteur tertiaire N°9       71         Tableau V.26 : Collecteur tertiaire N°10       71         Tableau V.27 : Collecteur tertiaire N°11       72         Tableau V.28 : Collecteur tertiaire N°13       72         Tableau V.29 : Collecteur tertiaire N°13       72         Tableau V.30 : Collecteur tertiaire N°14       73         Tableau V.31 : Collecteur tertiaire N°15       73         Chapitre VI : Les éléments constitutifs du réseau <td>Tableau V.9 : Collecteur secondaire N°07</td> <td>64</td> | Tableau V.9 : Collecteur secondaire N°07                       | 64  |
| Tableau V.12 : Collecteur secondaire N°10.       66         Tableau V.13 : Collecteur secondaire N°11.       67         Tableau V.14 : Collecteur secondaire N°12.       67         Tableau V.15 : Collecteur secondaire N°13.       68         Tableau V.16 : Collecteur secondaire N°14.       68         Tableau V.17 : Collecteur tertiaire N°1.       68         Tableau V.18 : Collecteur tertiaire N°2.       69         Tableau V.19 : Collecteur tertiaire N°3.       69         Tableau V.20 : Collecteur tertiaire N°4.       69         Tableau V.21 : Collecteur tertiaire N°5.       70         Tableau V.22 : Collecteur tertiaire N°5.       70         Tableau V.23 : Collecteur tertiaire N°6.       70         Tableau V.24 : Collecteur tertiaire N°8.       71         Tableau V.25 : Collecteur tertiaire N°9.       71         Tableau V.26 : Collecteur tertiaire N°10.       71         Tableau V.27 : Collecteur tertiaire N°11.       72         Tableau V.28 : Collecteur tertiaire N°12.       72         Tableau V.30 : Collecteur tertiaire N°13.       72         Tableau V.31 : Collecteur tertiaire N°14.       73         Tableau V.31 : Collecteur tertiaire N°15.       73         Chapitre VI : Les éléments constitutifs du réseau         Tableau VI.1 : dimensionnement des déverso                                                   | Tableau V.10 : Collecteur secondaire N°08                      | 65  |
| Tableau V.13 : Collecteur secondaire N°11       67         Tableau V.14 : Collecteur secondaire N°12       67         Tableau V.15 : Collecteur secondaire N°13       68         Tableau V.16 : Collecteur secondaire N°14       68         Tableau V.17 : Collecteur tertiaire N°1       68         Tableau V.18 : Collecteur tertiaire N°2       69         Tableau V.19 : Collecteur tertiaire N°3       69         Tableau V.20 : Collecteur tertiaire N°4       69         Tableau V.21 : Collecteur tertiaire N°5       70         Tableau V.22 : Collecteur tertiaire N°6       70         Tableau V.23 : Collecteur tertiaire N°6       70         Tableau V.24 : Collecteur tertiaire N°8       71         Tableau V.25 : Collecteur tertiaire N°9       71         Tableau V.26 : Collecteur tertiaire N°10       71         Tableau V.28 : Collecteur tertiaire N°11       72         Tableau V.29 : Collecteur tertiaire N°13       72         Tableau V.30 : Collecteur tertiaire N°13       72         Tableau V.31 : Collecteur tertiaire N°15       73         Chapitre VI : Les éléments constitutifs du réseau         Tableau VI.1 : dimensionnement des déversoirs d'orage projetés       95         Chapitre VII : Organisation de chantier et sécurité du travail                                                                                        | Tableau V.11 : Collecteur secondaire N°09                      | 65  |
| Tableau V.14 : Collecteur secondaire N°12       67         Tableau V.15 : Collecteur secondaire N°13       68         Tableau V.16 : Collecteur secondaire N°14       68         Tableau V.17 : Collecteur tertiaire N°1       68         Tableau V.18 : Collecteur tertiaire N°2       69         Tableau V.19 : Collecteur tertiaire N°3       69         Tableau V.20 : Collecteur tertiaire N°4       69         Tableau V.21 : Collecteur tertiaire N°5       70         Tableau V.22 : Collecteur tertiaire N°6       70         Tableau V.23 : Collecteur tertiaire N°7       70         Tableau V.24 : Collecteur tertiaire N°8       71         Tableau V.25 : Collecteur tertiaire N°8       71         Tableau V.26 : Collecteur tertiaire N°10       71         Tableau V.27 : Collecteur tertiaire N°10       71         Tableau V.28 : Collecteur tertiaire N°11       72         Tableau V.29 : Collecteur tertiaire N°12       72         Tableau V.30 : Collecteur tertiaire N°13       72         Tableau V.31 : Collecteur tertiaire N°15       73         Chapitre VI : Les éléments constitutifs du réseau         Tableau VI.1 : dimensionnement des déversoirs d'orage projetés       95         Chapitre VII : Organisation de chantier et sécurité du travail                                                                                         | Tableau V.12 : Collecteur secondaire N°10                      | 66  |
| Tableau V.15 : Collecteur secondaire N°13       68         Tableau V.16 : Collecteur secondaire N°14       68         Tableau V.17 : Collecteur tertiaire N°1       68         Tableau V.18 : Collecteur tertiaire N°2       69         Tableau V.19 : Collecteur tertiaire N°3       69         Tableau V.20 : Collecteur tertiaire N°4       69         Tableau V.21 : Collecteur tertiaire N°5       70         Tableau V.22 : Collecteur tertiaire N°6       70         Tableau V.23 : Collecteur tertiaire N°7       70         Tableau V.24 : Collecteur tertiaire N°8       71         Tableau V.25 : Collecteur tertiaire N°9       71         Tableau V.26 : Collecteur tertiaire N°10       71         Tableau V.27 : Collecteur tertiaire N°11       72         Tableau V.28 : Collecteur tertiaire N°12       72         Tableau V.29 : Collecteur tertiaire N°13       72         Tableau V.30 : Collecteur tertiaire N°14       73         Tableau V.31 : Collecteur tertiaire N°15       73         Chapitre VI : Les éléments constitutifs du réseau         Tableau VI.1 : dimensionnement des déversoirs d'orage projetés       95         Chapitre VII : Organisation de chantier et sécurité du travail                                                                                                                                                    | Tableau V.13 : Collecteur secondaire N°11                      | 67  |
| Tableau V.16 : Collecteur secondaire N°14       68         Tableau V.17 : Collecteur tertiaire N°1       68         Tableau V.18 : Collecteur tertiaire N°2       69         Tableau V.19 : Collecteur tertiaire N°3       69         Tableau V.20 : Collecteur tertiaire N°4       69         Tableau V.21 : Collecteur tertiaire N°5       70         Tableau V.22 : Collecteur tertiaire N°6       70         Tableau V.23 : Collecteur tertiaire N°7       70         Tableau V.24 : Collecteur tertiaire N°8       71         Tableau V.25 : Collecteur tertiaire N°9       71         Tableau V.26 : Collecteur tertiaire N°10       71         Tableau V.27 : Collecteur tertiaire N°11       72         Tableau V.28 : Collecteur tertiaire N°12       72         Tableau V.29 : Collecteur tertiaire N°13       72         Tableau V.30 : Collecteur tertiaire N°14       73         Tableau V.31 : Collecteur tertiaire N°15       73         Chapitre VII : Les éléments constitutifs du réseau         Tableau VI.1 : dimensionnement des déversoirs d'orage projetés       95         Chapitre VII : Organisation de chantier et sécurité du travail                                                                                                                                                                                                              | Tableau V.14 : Collecteur secondaire N°12                      | 67  |
| Tableau V.17 : Collecteur tertiaire N°1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Tableau V.15 : Collecteur secondaire N°13                      | 68  |
| Tableau V.18 : Collecteur tertiaire N°2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Tableau V.16 : Collecteur secondaire N°14                      | 68  |
| Tableau V.19 : Collecteur tertiaire N°3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Tableau V.17 : Collecteur tertiaire N°1                        | 68  |
| Tableau V.20 : Collecteur tertiaire $N^{\circ}4$ .69Tableau V.21 : Collecteur tertiaire $N^{\circ}5$ .70Tableau V.22 : Collecteur tertiaire $N^{\circ}6$ .70Tableau V.23 : Collecteur tertiaire $N^{\circ}6$ .70Tableau V.24 : Collecteur tertiaire $N^{\circ}8$ .71Tableau V.25 : Collecteur tertiaire $N^{\circ}9$ .71Tableau V.26 : Collecteur tertiaire $N^{\circ}10$ .71Tableau V.27 : Collecteur tertiaire $N^{\circ}11$ .72Tableau V.28 : Collecteur tertiaire $N^{\circ}12$ .72Tableau V.29 : Collecteur tertiaire $N^{\circ}13$ .72Tableau V.30 : Collecteur tertiaire $N^{\circ}14$ .73Tableau V.31 : Collecteur tertiaire $N^{\circ}14$ .73Chapitre VI : Les éléments constitutifs du réseauTableau VII.1 : dimensionnement des déversoirs d'orage projetés.95Chapitre VII : Organisation de chantier et sécurité du travailTableau VII.1 : Volumes des travaux.104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Tableau V.18 : Collecteur tertiaire N°2                        | 69  |
| Tableau V.21 : Collecteur tertiaire N°5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Tableau V.19 : Collecteur tertiaire N°3                        | 69  |
| Tableau V.22 : Collecteur tertiaire N°6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                |     |
| Tableau V.23 : Collecteur tertiaire N°7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Tableau V.21 : Collecteur tertiaire N°5                        | 70  |
| Tableau V.24 : Collecteur tertiaire N°8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                |     |
| Tableau V.25 : Collecteur tertiaire N°9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Tableau V.23 : Collecteur tertiaire N°7                        | 70  |
| Tableau V.26 : Collecteur tertiaire N°10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                |     |
| Tableau V.27 : Collecteur tertiaire N°11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Tableau V.25 : Collecteur tertiaire N°9                        | 71  |
| Tableau V.28 : Collecteur tertiaire N°12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                |     |
| Tableau V.29 : Collecteur tertiaire N°1372Tableau V.30 : Collecteur tertiaire N°1473Tableau V.31 : Collecteur tertiaire N°1573Chapitre VI : Les éléments constitutifs du réseauTableau VI.1 : dimensionnement des déversoirs d'orage projetés95Chapitre VII : Organisation de chantier et sécurité du travailTableau VII.1 : Volumes des travaux104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Tableau V.27 : Collecteur tertiaire N°11                       | 72  |
| Tableau V.30 : Collecteur tertiaire N°14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                |     |
| Tableau V.31 : Collecteur tertiaire N°15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Tableau V.29 : Collecteur tertiaire N°13                       | 72  |
| Chapitre VI : Les éléments constitutifs du réseau  Tableau VI.1 : dimensionnement des déversoirs d'orage projetés                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                |     |
| Tableau VI.1 : dimensionnement des déversoirs d'orage projetés                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Tableau V.31 : Collecteur tertiaire N°15                       | 73  |
| Tableau VI.1 : dimensionnement des déversoirs d'orage projetés                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Chanitra VI . Las áláments constitutifs du mássau              |     |
| Chapitre VII : Organisation de chantier et sécurité du travail  Tableau VII.1 : Volumes des travaux                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Chapitre VI: Les elements constitutus du reseau                |     |
| Tableau VII.1 : Volumes des travaux                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Tableau VI.1 : dimensionnement des déversoirs d'orage projetés | 95  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Chapitre VII : Organisation de chantier et sécurité du travail |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Tableau VII.1 : Volumes des travaux                            | 104 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                |     |

## Liste des figures

## Chapitre I : Présentation de la zone d'étude

| Figure I.1 : Localisation de la wilaya de MILA                                  |    |
|---------------------------------------------------------------------------------|----|
| Figure I.2: Localisation de la zone d'étude                                     |    |
| Figure I.3 : Carte Géologique Wilaya De Mila                                    | 4  |
| Chapitre II : Etude hydrologique                                                |    |
| Figure II-1 : Ajustement graphique à la loi de Gumbel                           | 14 |
| Figure II-2 : Ajustement graphique à la loi de Galton (Log-normale) (Hyfran)    | 15 |
| Figure II-3 : Ajustement graphique à la loi GEV (Hyfran)                        | 17 |
| Figure II-4 : Courbes Pluie-Durée-Fréquence (PDF)                               | 20 |
| Figure II-5 : Courbes Intensité-Durée-Fréquence (IDF)                           | 21 |
| Chapitre III : Calcul de base                                                   |    |
| Figure III.1 : système unitaire Source (Polycopies de l'assainissement)         | 24 |
| Figure III.2 : système séparatif Source (Polycopies de l'assainissement)        |    |
| Figure III.3 : système pseudo séparatif Source (Polycopies de l'assainissement) |    |
| Figure III.4 : schéma perpendiculaire                                           |    |
| Figure III.5 : Schéma par déplacement latéral                                   |    |
| Figure III.6 : Schéma transversal ou oblique                                    | 28 |
| Figure III.7 : Schéma par zones étagées                                         |    |
| Figure III.8 : (01) Schéma radial unique ; (02) Schéma radial par zone          | 29 |
| Chapitre VI : Les éléments constitutifs du réseau                               |    |
| Figure VI.1 : Joints sur tuyaux en amiante ciment                               | 77 |
| Figure VI.2 :Joints sur tuyau en grès                                           |    |
| Figure VI.3 : Joint type Rocla                                                  |    |
| Figure VI.4 : Joint torique                                                     | 79 |
| Figure VI.5 : Joint à demi-emboitement                                          | 79 |
| Figure VI.6 : Joint à collet                                                    | 79 |
| Figure VI.7 : Joint plastique                                                   | 80 |
| Figure VI.8 : Exemple d'un branchement simple                                   | 82 |
| Figure VI.9 : Exemple d'une bouche d'égout sans décantation                     | 83 |
| Figure VI.10 : Exemple d'un regard simple                                       | 84 |
| Figure VI.11 : Exemple d'un regard de jonction                                  |    |
| Figure VI.12 : Exemple d'un regard de chute                                     | 86 |
| Figure VI.13 : Schéma de principe du déversoir d'orage                          |    |
| Figure VI.14 : Déversoir à seuil latéral pur, vue de dessus                     |    |
| Figure VI.15 : déversoir à seuil frontal                                        |    |
| Figure VI.16 : Exemples de déversoir frontal                                    |    |
| Figure VI.17 : Schéma d'un déversoir à seuil double                             | 90 |

## Chapitre VII : Organisation de chantier et sécurité du travail

| Figure VII.1: chargement des canalisations    | 96  |
|-----------------------------------------------|-----|
| Figure VII.2 : déchargement des canalisations | 97  |
| Figure VII.3: lit de pose                     | 98  |
| Figure VII.4 : Niveleuse                      | 100 |
| Figure VII.5 : Bulldozer                      |     |
| Figure VII.6 : Pelle à chenille               | 101 |
| Figure VII.7 : Chargeuse                      |     |
| Figure VII.8 : Compacteur à rouleaux lisses   |     |

## Liste des planches :

Planche N°01 : Levé topographique.

Planche N°02 : Plan de masse avec réseau projeté.

Planche N°03 : Profil en long du collecteur principal 01.

Planche  $N^{\circ}04$ : Profil en long du collecteur principal 02.

Planche  $N^{\circ}05$ : Les ouvrages annexes.

## Liste des annexes :

Annexe [1] : table de  $\chi$  2.

Annexe [2]: Les variations des débits et des vitesses en fonction de la hauteur de remplissage.

Annexe [3]: dimensions des regards de chute.

Annexe [4]: le volume du terrassement.

# Introduction générale

## Introduction générale:

L'assainissement est devenu par une définition classique, une technique qui consiste à évacuer par voie hydraulique le plus rapidement possible et sans stagnation, les eaux de toutes natures ne doivent pas être laissées ruisseler naturellement, elles doivent être guidées, canalisées pour être dirigées vers des émissaires ou artificiels et parfois être épurées et traitées avant leur rejet définitif.

L'assainissement est l'ensemble des techniques qui permettent l'évacuation par vois hydraulique des eaux usées et pluviales. On distingue trois catégories d'eaux usées, les eaux de précipitation, les eaux usées d'origine domestique, les eaux industrielles.

Toutes ces eaux qui véhiculent des matières organiques ou minérales en suspension ainsi causer des problèmes au niveau du réseau d'assainissement (les regards, les collecteurs), comme des bouchages des fuites des casseurs, des problèmes des stagnations et l'affaissement du terrain ainsi le débordement des eaux usées dans les regards dues aux faibles pentes et colmatage des conduites.

Le rôle d'un réseau d'assainissement est triple, assurer la protection contre les Inondations et permettre la protection de la santé publique et la préserver l'environnement contre les rejets des eaux usées.

Notre étude est portée sur l'agglomération de SAFSAFA qui est une agglomération secondaire de chef-lieu de GRAREM GOUGA.

Dans notre travail, nous avons procédé en commençant par la présentation de la zone d'étude du point de vue (topographie, géologie, climatologie, ...) en premier lieu. En deuxième lieu, le calcul des différents débits à évacuer et le dimensionnement du réseau unitaire. Et en dernier lieu, le tracé du plan d'évacuation.

# **CHAPITRE I:**

# Présentation de la zone d'étude

#### I.1.Introduction:

Avant d'entamer n'importe quel projet d'assainissement, l'étude du site est nécessaire pour connaître les caractéristiques physiques du lieu et les facteurs qui influencent sur la conception de ce projet

En effet, chaque site présente des spécificités touchant en particulier l'assainissement que ce soit :

- les données naturelles du site ;
- les données relatives à l'agglomération ;
- les données relatives au développement futur de l'agglomération,
- les données propres à l'assainissement ;

Donc la présentation de l'agglomération est une phase importante pour procéder à l'élaboration de l'étude du diagnostic et de l'extension du réseau d'assainissement de la localité

#### I.2. Présentation du site de Safsafa :

Safsafa qui au recensement de 1987 était considérée comme une agglomération secondaire de la commune de Grarem, une partie intégrante du chef-lieu pour constituer un ensemble urbain homogène. Elle est située dans la partie nord-ouest de L'A.C.L de Grarem gouga, dont notre zone d'étude fait partie, elle se présente comme future zone d'extension.

-La zone Safsafa est distante d'environ 2Km du centre-ville de Grarem à laquelle elle est reliée par l'ancien tracé de la route national (RN 27) qui traverse la région menant vers Constantine.

La zone d'étude safsafa est de superficie de 32 ha, le cadre bâti occupe une superficie de 76% de la superficie globale du quartier.

#### I.3. Situation géographique :

La zone d'étude situe à la sortie Nord-Ouest du chef-lieu de commune, à une distance d'environ 2K, le long de l'ancien tracé de la RN 27 elle est délimitée :

\*Au Nord: Par des terrains vagues.

\*Au Sud: Par L'ancien tracé de la RN27 \*A l'Est: Par le POS N°3(safsafa).

\*A l'Ouest: Par des terrains agricoles.

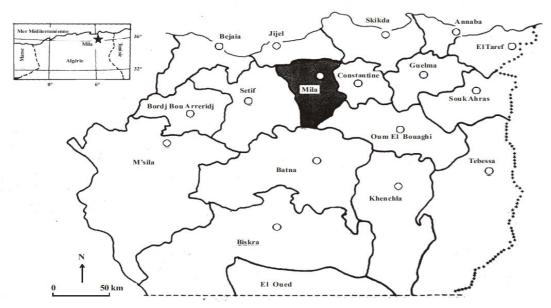



Figure I.1: Localisation de la wilaya de MILA. Source (ANRH Alger).



Figure I.2 : Localisation de la zone d'étude. Source (Google Earth)

#### I.4.Les données naturelles du site

#### I.4.1. Situation topographique:

L'étude topographique joue un rôle important dans la conception du réseau d'assainissement ; vu que l'évacuation des eaux s'effectue avec un écoulement gravitaire, sauf dans le cas de contre pente où le relief exige un relevage.

Le relief du terrain d'étude du Safsafa est marqué par des pentes douces, moyennes et fortes allant de 8% jusqu'à 25%.

#### I.4.2. Situation géologique :

La géologie du site nous permet de prendre les dispositions nécessaires pour la réalisation des tranchées et aussi pour le choix des engins de terrassement.

La géologie de la région et caractérisé au Nord par les montagnes de chaînes numidique s'étendant depuis les gorges de l'oued el kebir jusqu'au col de sferdiela àl'Est constitués en générale des roches calcaires (Djebel M'cide Aicha et Kef Sidi Driss).

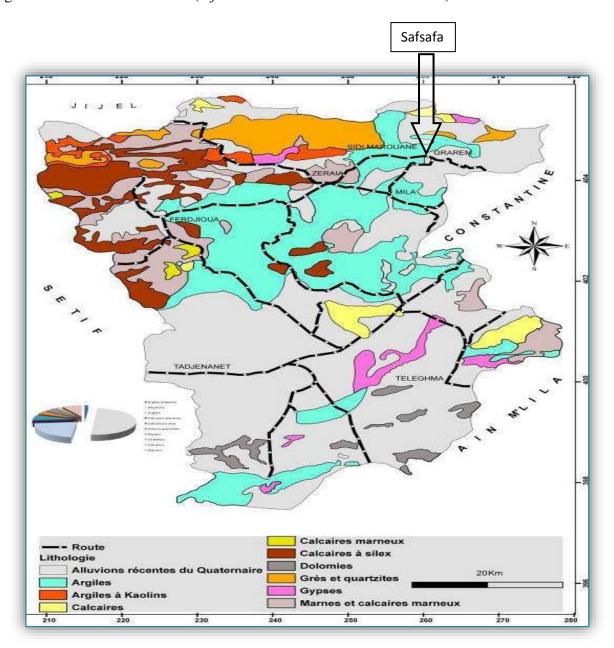



Figure I.3 : Carte Géologique Wilaya De Mila. Source (BET, MILA)

#### I.4.3. sismicité:

Selon le Règlement Parasismique Algérien (R.P.A.88), puis 99 modifié en 2003 suite au dernier séisme important survenu en Algérie à Boumerdes, en Mai 2003, le territoire Algérien serait divisé en cinq zones de sismicité croissante.

- zone 0 : de sismicité négligeable
- zone I : de sismicité faible
- zone IIa- IIb : de sismicité moyenne
- zone III : de sismicité élevée

La région de MILA est classée dans la zone (IIa) caractérisée par une sismicité modérée (voir Figure. I.4), pouvant causer des dégâts (humains et matériels) assez remarquables.

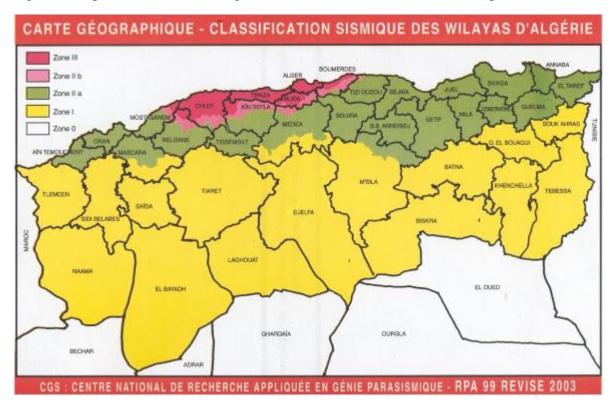



Figure I.4 : Carte géographique-classification sismique des wilayas d'Algérie (nord)

#### **I.4.4. Situation climatique:**

#### a. Le climat:

Le climat est celui dit : Méditerranéen, qui se caractérise par des étés chauds et des hivers rigoureux et humides.

#### b. La température :

La température est parmi les facteurs à prendre en considération, car elle a une influence importante sur la viscosité de l'eau.

En ce qui concerne les températures de la zone de safsafa, le minimum moyen est de 3°, le maximum moyen 30°.la douceur du climat vient du fait de la situation du bassin

intramontagnard dans une zone sabellienne ou l'influence de la mer n'est pas à exclure et ce malgré la barrière montagneuse du massif tellien.

La saison chaude et sèche s'étend d'avril à septembre, la saison froide et pluvieuse d'octobre à mars.

Tableau I-1: Répartition mensuelle de la température de la wilaya de Mila (2005-2015).

| Mois        | Sep. | Oct  | Nov   | Dec  | Jan  | Fév  | Mars | Avr  | Mai  | Juin  | Juil  | Août  | Moyenne interannu elle (°C) |
|-------------|------|------|-------|------|------|------|------|------|------|-------|-------|-------|-----------------------------|
| Min(<br>°C) | 16,4 | 11,3 | 6,9   | 3,4  | 2,9  | 3,8  | 5,4  | 7,3  | 10,5 | 15,1  | 17,9  | 18,1  | 9,92                        |
| Moy<br>(°C) | 22,8 | 17   | 11,95 | 7,75 | 7,1  | 8,55 | 10,6 | 13,1 | 16,8 | 21,55 | 25,35 | 25,45 | 15,67                       |
| Max<br>(°C) | 36,1 | 29,6 | 23,7  | 18,3 | 16,8 | 20,5 | 23,7 | 27,7 | 30,5 | 36,6  | 37,9  | 39,7  | 28,43                       |

Source: ANRH Alger

Selon le tableau au-dessus, on peut distinguer deux périodes :

- Une période froide qui s'étale de Novembre à Mai ; les mois les plus froids et pluvieux sont Décembre et Janvier.
- Une période chaude et sèche qui s'étale de Juin à Octobre ; les mois les plus chauds sont Juillet et Août.

#### c. Pluviométrie :

Les précipitations sont importantes mais irrégulièrement réparties à travers l'espace de la commune et le temps, il tombe plus de 900mm de pluie par an sur les reliefs montagneux, et moins de 500mm au niveau de la plaine.

**Tableau I-2 Précipitations moyennes mensuelles (1974-2017)** 

| Mois  | Sep  | Oct  | Nov  | Dec   | Jan   | Fév   | Mars  | Avr | Mai  | Juin | Juil | Août | Total |
|-------|------|------|------|-------|-------|-------|-------|-----|------|------|------|------|-------|
| P(mm) | 22   | 42   | 48   | 68    | 83    | 63    | 55    | 46  | 44   | 25   | 6    | 9    | 511   |
|       |      |      |      |       |       |       |       |     |      |      |      |      |       |
| P(%)  | 4,31 | 8,22 | 9,39 | 13,31 | 16,24 | 12,33 | 10,76 | 9   | 8,61 | 4,89 | 1,17 | 1,76 | 100   |

Source: ANRH Alger

#### d. humidité:

Le site objet de la présente étude fait partie de la commune de Grarem gouga qui fait partie des domaines bioclimatiques sub –humides.

Les valeurs de l'humidité mensuelle moyennent interannuel pour la période 2003-2013 sont mentionnées dans le tableau ci-dessous :

Tableau I-3 : les valeurs de l'humidité mensuel.

| Mois                   | Sep | Oct | Nov | Déc | Jan | Fév | Mar | Avr | Mai | Juin | Juil | Aout |
|------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| Humidité<br>moyenne(%) | 85  | 82  | 84  | 84  | 89  | 88  | 90  | 83  | 86  | 91   | 94   | 92   |

Source : ANRH de Constantine

#### e. Vent:

Le vent dominant est de secteur nord les vitesses moyennes sont de 2.8 (m/s), une grand variation d'un mois l'autre (les minimales à 2.5 m/s et les maximales à 3.2 m/s) d'après les mesures de la station météorologique de Constantine pour la période (1975-1985).

Tableau I-4: les vitesses moyennes mensuelles des vents.

| Mois                      | Sep  | Oct  | Nov | Déc  | Jan  | Fév  | Mar  | Avr  | Mai  | Juin | Juil | Aout |
|---------------------------|------|------|-----|------|------|------|------|------|------|------|------|------|
| Vitesses Du<br>Vent (m/s) | 1,74 | 2,07 | 2,9 | 2,71 | 2,41 | 2,71 | 2,59 | 2,32 | 2,18 | 2,03 | 2,12 | 2,08 |

Source : ANRH de Constantine

#### I.4.5. Situation démographique :

Dans toutes les études d'assainissement et de la planification, et afin de déterminer les perspectives à court, moyen, voir à long terme, on fixe un taux d'accroissement pour la région d'étude.

Pour celle-ci, d'après le RGPH 2008, le taux d'accroissement de la ville d'EL grarem est estimé à 1.6%.

Pour l'estimation du nombre d'habitants pour différents horizons, on se réfère à la loi des accroissements géométriques donnés par la relation suivante :

$$P_n = P_0 (1+\tau)^n$$

P<sub>n</sub>: population projetée à l'horizon donné.

P<sub>0</sub> : Population à l'année de référence.

 $\tau$ : taux d'accroissement ( $\tau = 1.6\%$ ).

n : nombre d'années séparant l'année de référence et l'année de l'horizon.

Les valeurs ainsi calculées sont consignées dans le tableau suivant :

| Année      | 2020 | τ   | 2050  |
|------------|------|-----|-------|
| Population | 6650 | 1,6 | 10706 |

Source (Apc Grarem)

#### I.5. Situation hydraulique:

#### I.5.1. Réseau Assainissement :

Les eaux pluviales et les eaux usées sont déversées comme suit :

#### La partie Est:

On propose un déversoir d'orage (DO N°01) où le diamètre d'entré est égal à 1200mm.

Les eaux pluviales sont déversées vers cha3ba et les eaux usées sont acheminée vers la station d'épuration de Sidi Merouane.

#### La partie Ouest:

On propose un deuxième déversoir d'orage (DO N°02) où le diamètre d'entré est égal à 600mm.

Les eaux pluviales sont déversées vers chaaba et les eaux usées sont acheminée vers la station d'épuration de Sidi Merouane.

#### I.5.2. Réseau AEP:

L'approvisionnement en eau potable, de la ville de Safsafa, se fait à partir des réservoirs de  $1000 \, m^3$  situé sur les hauteurs nord du la cité.

Les conduites Ø200 et Ø150 sont en acier enrobé et les conduites de diamètre inférieur à 150(Ø 80, Ø 60, Ø 40) sont en acier galvanisé.

La conduite d'adduction qui alimente le réseau et en Ø200situé au nord-est du la cité.

#### **Conclusion:**

Dans ce chapitre ; on a donné un aperçu général sur la zone d'étude, on a défini les caractéristiques nécessaires du site et on a déterminé les données de base pour entamer le projet qui est la conception du système d'assainissement de la ville de safsafa.

# **CHAPITRE II:**

Etude hydrologique

#### II.1. Introduction:

L'hydrologie peut être définie brièvement comme la science qui étudie le cycle de l'eau dans la nature et l'évolution de cette dernière à la surface de la terre et dans le sol. L'hydrologie fait appel à de nombreuse sciences, certaines rattachées à la physique du globe telles que : la météorologie, la climatologie ... etc. d'autres plus générales telles que la statique mathématique, l'hydraulique. L'hydrologie est devenue aujourd'hui une technique importante de l'art de l'ingénieur intéressé à l'exploitation ou au contrôle des eaux naturelles. Des études hydrologiques plus ou moins poussées sont indispensables pour le dimensionnement des réseaux d'assainissement. Celui-ci est lié à la probabilité de l'apparition de l'événement « pluie max journalière », soit donc la période de retour qui a pour symbole la lettre « T ». La connaissance de l'intensité moyenne maximale est très importante dans le dimensionnement. Nous dirons que la connaissance des précipitations, en particulier les pluies maximales journalières et les pluies de courte durée dites averses, est très importante.

#### II.2.Généralité:

#### a. Bassin versant:

On appelle bassin versant, ou bassin de drainage, d'une rivière considérée en un point donné de son cours, l'aire limitée par le contour à l'intérieur duquel l'eau précipitée se dirige vers ce point de la rivière. Si le sol est imperméable, il est bien évident quelles limites du bassin sont définies topographiquement par la ligne de crête le séparant d'un bassin voisin (bassin topographique). Pour les sols perméables, le bassin versant réel peut différer du bassin topographique sauf dans le cas d'une circulation particulièrement intense (terrain karstique, basaltes, couches sableuses très puissantes). Cet effet est surtout sensible pour de très petits bassins. En pratique, on admet la plupart du temps que le Bassin versant coïncide avec le bassin topographique.

#### b. Les averses :

Les averses sont des éléments de pluies associées à une même perturbation Météorologique. La durée du phénomène continu varie entre quelques minutes et plusieurs dizaines d'heures.

Les éléments averses considérés dans deux réseaux se caractérisent soit par :

- ➤ Un volume important.
- > Une forte intensité.
- Une érosion ou un apport de pollution liée au ruissellement.

Dans l'averse de Projet, nous retenions que « la pluie nette », définit comme la différence entre la lame précipitée total enregistrée et les pertes dans le bassin considéré (infiltration, saturation des sols, le stockage dans les dépressions évaporation).

#### c. Période de retour :

La période de retour, ou temps de retour, caractérise le temps statistique entre deux occurrences d'un événement naturel d'une intensité donnée. Ce terme est très utilisé pour caractériser les risques naturels comme les tremblements de terre, la crue ou l'inondation, la tempête, l'orage, etc...

#### **Choix de la période de retour :**

La période de retour représente le temps que met une averse d'une intensité donnée pour se re-manifester.

Dans le domaine d'assainissement le choix de la période de retour se fait à partir des situations générales ou particulières, de degrés de protection ou de compromis dont l'évaluation appartient aux responsables locaux. Il est en effet préférable d'obtenir sur l'ensemble d'un réseau un degré de protection, par exemple T= 5 ans, plutôt que de réaliser des extensions de fréquence décennale, sachant que les collecteurs en aval seront insuffisants. En Algérie nous optons généralement pour une période de retour décennale (T=10 ans).

#### d. L'intensité moyenne de précipitation :

Lors de l'étude d'une averse, il est convient de déterminer les intensités moyennes pour plusieurs valeurs échelonnées de l'intervalle de référence  $\Delta t$ .

L'intensité moyenne c'est la quantité de pluie ( $\Delta h$ ) tombée durant l'unité de temps ( $\Delta h$ ). Elle est exprimée comme ci-après :  $\mathbf{I_m} = \frac{\Delta h}{\Delta t}$  (II.1)

Avec :  $I_m$  : intensité moyenne en mm/h.

Δh : hauteur de pluie tombée pendant la durée t.

#### II.3. Etude des précipitations :

Pour l'étude de précipitations en assainissement on a besoin d'une série comportant les précipitations maximales journalières pour une période la plus longue possible fournie par l'A.N.R.H d'Alger (Tab N°II.1)

Comme base de données pluviométriques on se refaire aux informations recueillies par la station pluviométrique de BOU MALEK, Dont les coordonnées sont les suivantes :

 Code de la station
 Nom station
 Coordonnées

 X : 817,15
 X : 817,15

 BOU MALEK
 Y : 337

 Z : 830

Tableau II-1: Identification de la station de BOU MALEK

Source: ANRH d'Alger

La station fournit une série pluviométrique comportant les pluies maximales mensuelles et annuelles. Cette série s'étend sur une période d'observation de 43 ans allant de 1974/1975 jusqu'à 2016/2017.

Les données de la série sont présentées dans le tableau suivant (Tableau II-2) :

Chapitre II Etude hydrologique

Tableau II-2 : La série pluviométrique (station BOU MALEK) 1974-2017

| Année    | Précipitations maximales journalières (mm) |             |             |      |              |             |              |              |            |             |             |            |            |
|----------|--------------------------------------------|-------------|-------------|------|--------------|-------------|--------------|--------------|------------|-------------|-------------|------------|------------|
|          | Sept                                       | Oct         | Nov         | Déc  | Jan          | Fév         | Mar          | Avr          | Mai        | Juin        | Juill       | Août       | MAX        |
|          | 8,5                                        | 8,5         | 7,5         | 11,7 | 16           | 6,5         | 15,8         | 19,8         | 3,7        | 5,7         | 24,5        | 11,5       | 24,5       |
|          | 32,7                                       | 18,9        | 10,6        | 52,2 | 10           | 14,1        | 20           | 18,2         | 26,1       | 2,5         | 0           | 0          | 52,2       |
| <b>.</b> | 26,6                                       | 20,3        | 0           | 15,3 | 37,7         | 33          | 12,5         | 9,4          | 27,7       | 3,1         | 8,4         | 0,5        | 37,7       |
| 77-78    | 17                                         | 16,2        | 19,5        | 7,3  | 40           | 11,9        | 17,5         | 17,5         | 11,7       | 0           | 10,5        | 5          | 40         |
| 78-79    | 11,2                                       | 9,7         | 0           | 8,9  | 10           | 10,4        | 10,3         | 8,9          | 1,2        | 3,6         | 2,2         | 6,2        | 11,2       |
| 79-80    | 14                                         | 8,3         | 7,7         | 16,6 | 7,9          | 27          | 21,6         | 6,7          | 8,2        | 3,2         | 0,8         | 2,4        | 27         |
| 80-81    | 25,7                                       | 28,2        | 31,7        | 36,1 | 28,1         | 58,3        | 19,8         | 4,9          | 16,4       | 2,8         | 0           | 11,9       | 58,3       |
| 81-82    | 18,1                                       | 7,1         | 33,6        | 19,1 | 12,3         | 18,6        | 24,6         | 60,4         | 26,1       | 36,3        | 9,3         | 6,3        | 60,4       |
| 82-83    | 28,9                                       | 35,3        | 28,7        | 10,4 | 23,8         | 2,4         | 3,3          | 20,9         | 63,6       | 0           | 0           | 0          | 63,6       |
| 83-84    | 12,4                                       | 2,5         | 22,5        | 1,3  | 28,2         | 21,8        | 11,1         | 31,4         | 11,2       | 0           | 0           | 28,2       | 31,4       |
| 84-85    | 0                                          | 12,3        | 18,3        | 6,4  | 16           | 26,6        | 9,2          | 40,4         | 14,8       | 18,2        | 2,6         | 0          | 40,4       |
| 85-86    | 55,8                                       | 4,6         | 12          | 8,3  | 12           | 9,9         | 28,7         | 20,5         | 24,6       | 9,1         | 0           | 0          | 55,8       |
| 86-87    | 41                                         | 6,5         | 13,5        | 48,2 | 10,2         | 13,9        | 12,8         | 11,4         | 5,9        | 19,8        | 0           | 30,2       | 48,2       |
| 87-88    | 5,5                                        | 16,8        | 16,4        | 19,7 | 31,6         | 16,2        | 20           | 17,9         | 22,4       | 9,4         | 1,5         | 0          | 31,6       |
| 88-89    | 12,2                                       | 36          | 13,3        | 25,9 | 5,7          | 11,7        | 17           | 2,7          | 7,4        | 10,4        | 4,8         | 29,4       | 36         |
| 89-90    | 3,4                                        | 11,4        | 19,9        | 15,4 | 23,2         | 81,4        | 16,3         | 12,6         | 6,7        | 6,2         | 0           | 1,2        | 81,4       |
| 91-92    | 12,9                                       | 28,7        | 2,4         | 65,3 | 17,3         | 8,2         | 83,5         | 11,5         | 16,2       | 2,2         | 0           | 0          | 83,5       |
| 92-93    | 12,2                                       | 12,4        | 8,4         | 12,4 | 27,2         | 0           | 0            | 18,8         | 11,3       | 7,9         | 0           | 2          | 27,2       |
|          | 35,6                                       | 2,1         | 10,5        | 13,8 | 9,2          | 14,3        | 18,3         | 5,2          | 3,8        | 0           | 7,1         | 2,3        | 35,6       |
|          | 2,1                                        | 13,5        | 8,8         | 3,3  | 4,5          | 10,7        | 11,6         | 24,1         | 15,7       | 5,3         | 19,9        | 10,1       | 24,1       |
|          | 0                                          | 0           | 6,6         | 21,1 | 7,3          | 30,7        | 12,8         | 11,2         | 6,5        | 0           | 0           | 5,4        | 30,7       |
|          | 15,4                                       | 12,2        | 2,1         | 5,1  | 18,7         | 0           | 13,2         | 9            | 0          | 0           | 0           | 0          | 18,7       |
| <b>-</b> | 6,7                                        | 0           | 8,9         | 13,7 | 3,1          | 22,8        | 11,6         | 13,2         | 20,4       | 0           | 0           | 0          | 22,8       |
| 98-99    | 6,6                                        | 9,4         | 11,3        | 8,3  | 25,9         | 10,3        | 17,4         | 21           | 19,6       | 0           | 3,1         | 0          | 25,9       |
| -        | 5,2                                        | 3,2         | 10,4        | 13,6 | 19,7         | 13,7        | 9,7          | 4,9          | 5,2        | 2,3         | 0           | 3,8        | 19,7       |
| 00-01    | 2,5                                        | 5,3         | 3,4         | 6,7  | 13,3         | 17,7        | 4,4          | 14,9         | 2,7        | 0           | 0           | 5,7        | 17,7       |
|          | 7,8                                        | 11,6        | 2,3         | 11,3 | 23           | 8,5         | 14           | 7,1          | 1,9        | 17,1        | 0           | 5,6        | 23         |
| 02-03    | 12,2                                       | 13,9        | 17,4        | 12,5 | 11,7         | 22,8        | 16,5         | 19,2         | 24,4       | 16          | 2           | 11,6       | 24,4       |
|          | 3,5                                        | 11          | 8           | 13,1 | 47,9         | 5,7         | 5,3          | 13,7         | 7,4        | 8,6         | 4,6         | 11,5       | 47,9       |
|          | 28,9                                       | 17,6        | 23,7        | 18,7 | 6,1          | 31,1        | 12,7         | 38,7         | 21,3       | 4,5         | 0           | 5,4        | 38,7       |
|          | 21,5                                       | 16,6        | 48,7        | 7,5  | 20,1         | 14,6        | 13,4         | 13,6         | 5,3        | 15,3        | 4,6         | 11,9       | 48,7       |
|          | 21,7                                       | 10,7<br>8,3 | 18          | 19,8 | 15,8         | 4,5<br>30,5 | 7,6          | 12,6<br>19,8 | 19<br>19,2 | 13,5        | 0           | 5,2<br>6,6 | 21,7       |
|          | 4,1<br>31,9                                | 15,9        | 9,6<br>18,3 | 12,1 | 32,5<br>25,5 | 20,5        | 5,5          | 7,2          | 17,5       |             |             |            | 32,5       |
| 08-09    | 16,3                                       | 10,3        | 42,8        | 65   | 45,5         | 77          | 19,2<br>23,3 | 43,8         | 19,5       | 4,2<br>13,5 | 18,5<br>8,5 | 14,4       | 31,9<br>77 |
|          | 5,5                                        | 23,5        | 17,8        | 47,8 | 43,6         | 5           | 37,5         | 34,3         | 17,5       | 16,3        | 3,5         | 7,3        | 47,8       |
|          | 7,5                                        | 12,8        | 33,4        | 24,4 | 31,5         | 20,9        | 30,5         | 46,6         | 8          | 4           | 9,5         | 6,2        | 46,6       |
| 11-12    | 13                                         | 11,3        | 14,1        | 37,3 | 28,3         | 34,2        | 11,5         | 20,7         | 23,2       | 0           | 0           | 0,2        | 37,3       |
| +        | 24,1                                       | 7,7         | 3,9         | 27,2 | 7,3          | 10          | 0            | 17           | 16         | 0,4         | 0           | 1,8        | 27,2       |
| 13-14    | 16,2                                       | 0           | 7,4         | 18,5 | 6,5          | 8           | 27           | 10,1         | 20,1       | 11,1        | 6,3         | 5,8        | 27         |
|          | 36,5                                       | 18,9        | 33          | 7,1  | 30,5         | 12,2        | 23,5         | 17,6         | 0          | 0           | 0,3         | 0          | 36,5       |
| 15-16    | 19,5                                       | 0           | 5,5         | 0    | 11,9         | 15,1        | 16,2         | 21,6         | 35,2       | 12,3        | 0           | 4          | 35,2       |
|          | 6,6                                        | 13          | 26,2        | 18,2 | 3,5          | 66,7        | 25           | 23,1         | 11         | 7           | 1           | 6          | 66,7       |

Source : ANRH d'Alger

#### II.4. Les précipitations maximales journalières :

L'étude consiste à faire un ajustement pour la série de données des précipitations maximales journalières par une loi théorique afin de déterminer une intensité de pluie de durée et de période de retour donnée. Pour notre étude on passe par les étapes suivantes :

- -Vérification de l'homogénéité de la série.
- -Classer la série des P<sub>max,j</sub> ordre croissant.
- Calculer la fréquence expérimentale F(x) (au non dépassement).
- Calculer les caractéristiques empiriques de la série.
- Ajuster la série graphiquement.
- Déterminer les quantiles et leurs intervalles de confiance.
- Calculer les averses et les intensités de courte durée.

Tableau II-3 : Les caractéristiques de la série

| Caractéristiques                          | Formule                                                                                                       | valeurs |  |  |  |  |
|-------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------|--|--|--|--|
| La somme des P <sub>max,j</sub> (mm)      | $\sum_{i=1}^{N} X_i$                                                                                          | 1675,7  |  |  |  |  |
| La moyenne des P <sub>max,j</sub> (mm)    | $\bar{X} = \frac{\sum_{i=1}^{N} X_i}{N}$                                                                      | 38,97   |  |  |  |  |
| L'écart type «σ <sub>x</sub> »            | $\sigma_{\text{Pmax,j}} = \sqrt{\frac{\sum_{i=1}^{N} (P_{\text{max,j}} - \overline{P_{\text{max,j}}})^2}{N}}$ | 17,26   |  |  |  |  |
| Coefficient de variation«C <sub>v</sub> » | $C_{\rm v} = \frac{6_{Pmax,j}}{\bar{X}}$                                                                      | 0,44    |  |  |  |  |
| L'exposant climatique                     | b = 0.32                                                                                                      |         |  |  |  |  |
| Médiane                                   | 35,5                                                                                                          |         |  |  |  |  |
| Maximum                                   | 83,5                                                                                                          |         |  |  |  |  |
| Minimum                                   | 11,2                                                                                                          |         |  |  |  |  |

#### II.5. Vérification de l'homogénéité de la série :

La vérification de l'homogénéité de la série est indispensable avant de passer à l'ajustement. L'homogénéisation des données est une analyse statistique de l'information aidant à une prise de décision conséquente. Elle consiste en :

- La détection des anomalies dans la série hydrologique.
- La correction de ces anomalies par des méthodes appropriées.

Dans notre cas, nous avons une série de pluies journalière maximales c'est-à-dire des valeurs extrêmes, donc nous n'aurons pas besoin de vérifier l'homogénéité de la série.

#### II.6. Ajustement de la série :

L'efficacité d'une méthode d'estimation dépend de la loi de probabilité, de la taille de l'échantillon et de ses caractéristiques. Toutefois, de nombreuses études comparatives, autant empiriques que théoriques, ont été menées afin de déterminer dans quelles circonstances une loi donnée est efficace.

Pour faciliter le travail, l'ajustement sera traité par le logiciel « Hyfran » avec les trois lois suivantes : la loi de Gumbel, la loi de Galton (Log-normal) et la loi GEV.

#### II.6.1Ajustement de la série pluviométrique à la loi de Gumbel :

 $\checkmark$  La fonction de répartition de la loi de Gumbel F(x) est donnée par l'expression :

$$\mathbf{F}(\mathbf{X}) = e^{-e^{-u}} \tag{II.2}$$

#### Avec:

u : Variable réduite de GUMBEL s'écrit sous la forme :

$$\frac{X-X_0}{\alpha} \tag{II.3}$$

Où a et b sont les paramètres du modèle de Gumbel.

✓ La distribution s'écrit alors de la manière suivante :

$$\mathbf{u} = -\ln \left( -\ln \left( \mathbf{F}(\mathbf{x}) \right) \right) \tag{II.4}$$

✓ L'avantage d'utiliser la variable réduite est que l'expression d'un quantile est alors linéaire :

$$\mathbf{x} = \alpha \mathbf{u} + \mathbf{x_0} \tag{II.5}$$

✓ Les paramètres de la loi de Gumbel, par la méthode du maximum de vraisemblance

$$\alpha = 13,26$$
 ;  $x_0 = 30,61 \text{ mm}$ 

✓ Résultats de l'ajustement à la loi de Gumbel

Tableau II-4 : Résultat de l'ajustement à la loi de Gumbel (Hyfran)

| Période de retour | Fréquence au non | Valeur théorique                       | Ecart-type | Intervalle de |
|-------------------|------------------|----------------------------------------|------------|---------------|
| T (ans)           | dépassement q    | $\mathbf{X}_{\mathrm{T}}(\mathbf{mm})$ |            | confiance     |
| 100               | 0,99             | 91,6                                   | 7,28       | 75,4-108      |
| 50                | 0,98             | 82,3                                   | 7,20       | 68,2-96,5     |
| 20                | 0,95             | 70                                     | 5,78       | 58,7-81,3     |
| 10                | 0,90             | 60,4                                   | 4,71       | 51,2-69,7     |

Chapitre II Etude hydrologique

| 5 | 0,80 | 50,5 | 3,66 | 43,3-57,7 |
|---|------|------|------|-----------|
|   |      |      |      |           |

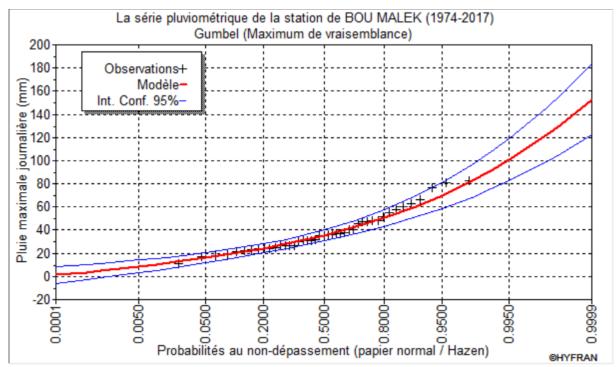



Figure II-1: Ajustement graphique à la loi de Gumbel(Hyfran)

#### II.6.2. Ajustement de la série pluviométrique à la loi de Galton (Log-normale) :

Le procédé d'ajustement est identique à celui établi pour la loi de Gumbel, seul la représentation graphique change ou elle est faite sur du papier log-normale.

 $\checkmark$  La fonction de répartition de la loi Log-normale F(x) est donnée par l'expression :

$$F(x) = \sqrt{2\pi} \int_{-\infty}^{u} e^{\frac{u^2}{2}} du$$
 (II.6)

Sachant que « u » est la variable centrée réduite de Gauss :

$$\mathbf{u} = \frac{\ln(\mathbf{x}) - \overline{\ln(\mathbf{x})}}{\sigma_{\ln(\mathbf{x})}} \tag{II.7}$$

#### Avec:

- $\triangleright$  x : variable étudiée  $p_{max,i}$ .
- $ightharpoonup \overline{\ln(x)}$ : la moyenne des logarithmes de la variable x.
- $\triangleright$   $\sigma_{\ln(x)}$ : l'écart-type des logarithmes de la variable x.
  - ✓ L'expression de quantile est alors :

$$Ln(x) = u \sigma_{ln(x)} + \overline{ln(x)}$$
 (II.8)

✓ Les paramètres de la loi par la méthode du maximum de vraisemblance :

$$\sigma_{\ln(x)} = 0.45$$
 ;  $\overline{\ln(x)} = 3.55$ 

✓ Résultats de l'ajustement à la loi de de Galton (Log-normale) :

TableauII-5 : Résultat de l'ajustement à la loi de Galton (Log-normale) (Hyfran)

| Période de     | Fréquence au non | Valeur théorique                       | Ecart-type | Intervalle de |
|----------------|------------------|----------------------------------------|------------|---------------|
| retour T (ans) | dépassement q    | $\mathbf{X}_{\mathbf{T}}(\mathbf{mm})$ |            | confiance     |
| 100            | 0,99             | 99,2                                   | 13,2       | 73,4–125      |
| 50             | 0,98             | 87,8                                   | 10,7       | 66,9 – 109    |
| 20             | 0,95             | 73,1                                   | 7,72       | 58 - 88,2     |
| 10             | 0,90             | 62,1                                   | 5,76       | 50,8 - 73,4   |
| 5              | 0,80             | 51                                     | 4,07       | 43 – 59       |

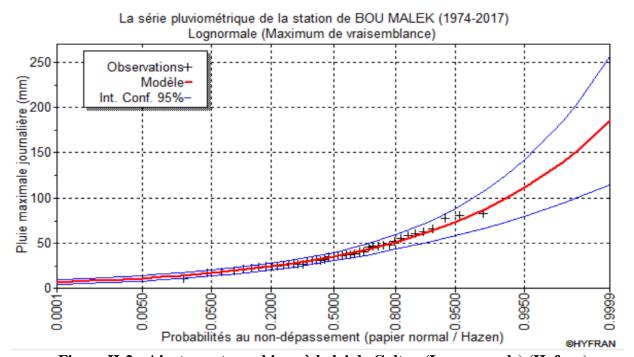



Figure II-2 : Ajustement graphique à la loi de Galton (Log-normale) (Hyfran)

#### II.6.3 Ajustement de la série pluviométrique à la loi GEV :

✓ La fonction de répartition de la loi d'extrémum généralisée :

$$\mathbf{F}(\mathbf{x}) = \mathbf{e}^{-\mathbf{e}^{-\mathbf{y}}} \tag{II.9}$$

✓ Sachant que « y » est la variable réduite :

$$y = -\frac{1}{\kappa} \ln \left[ 1 - \frac{k}{\alpha} (x - u) \right]$$
 (II.10)

Avec:

 $\succ$  x : variable étudiée ( $P_{\text{max,j}}$ ).

> u : paramètre de position.

 $\triangleright$   $\alpha$ : paramètre de dispersion ( $\alpha > 0$ ).

 $\triangleright$  k : paramètre de forme appelé indice des valeurs extrêmes.

✓ L'expression de quantile est alors :

$$x = u + \frac{\alpha}{k} (1 - e^{-ky})$$
 (II.11)

✓ Les paramètres de la loi par la méthode du maximum de vraisemblance :

u = 30,25 mm;  $\alpha = 12.67$ ; k = -0.069219

✓ Résultats de l'ajustement à la loi d'extrémum généralisé :

Tableau II-6 : Résultat de l'ajustement à la loi GEV (Hyfran)

| Période de     | Fréquence au non | Valeur théorique                       | Ecart-type | Intervalle de |
|----------------|------------------|----------------------------------------|------------|---------------|
| retour T (ans) | dépassement q    | $\mathbf{X}_{\mathrm{T}}(\mathbf{mm})$ |            | confiance     |
| 100            | 0,99             | 98,9                                   | 18,7       | 62,1-136      |
| 50             | 0,98             | 87                                     | 13,5       | 60,5-113      |
| 20             | 0,95             | 72                                     | 8,36       | 55,6-88,4     |
| 10             | 0,90             | 61,1                                   | 5,66       | 50 - 72,2     |
| 5              | 0,80             | 50,3                                   | 3,89       | 42,7 - 57,9   |

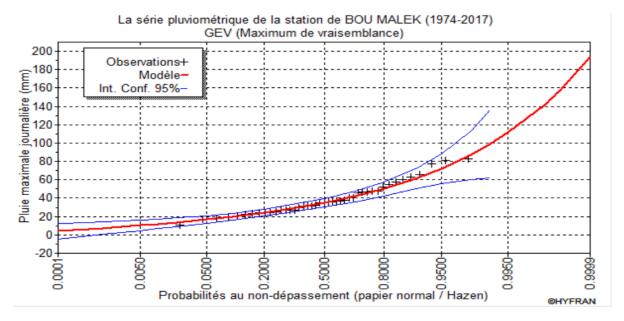



Figure II-3: Ajustement graphique à la loi GEV (Hyfran)

#### II.6.4Choix de la loi d'ajustement :

Lorsqu'on a procédé à un ajustement d'une loi de probabilité théorique, le problème qui se pose est de savoir si cette loi s'adapte ou non. Les critères de choix d'une loi sont liés à un ajustement graphique et un test de dispersion.

#### ✓ Test graphique :

Ce test est basé sur une observation visuelle des graphes d'ajustement ; il consiste à examiner l'allure des points sur le papier de probabilité, et vérifier s'il s'agit d'un bon alignement sans existence de mauvaises courbures.

#### Interprétation des graphiques :

D'après l'examen visuel des graphiques d'ajustement présentés dans les figures II-1, II-2 et II-3, on remarque que :

- La loi GEV donne un mauvais ajustement par rapport aux deux autres lois, vu que l'allure des intervalles de confiances compte des valeurs négatives et autres non définies donc la loi est inadéquate ; à rejeter.
- L'ajustement graphique à la loi de Gumbel et à celle de Galton est meilleur ; les points sont très proches de la droite théorique avec une bonne convergence.

#### ✓ Test d'adéquation de Khi-deux « x2 » :

Appelé aussi test de Khi-carré ou de Pearson. Ce test consiste à prendre une règle de décision concernant l'ajustement, en comparant entre les valeurs calculées et théoriques de χ2.

La variable  $\chi 2$  est utilisé pour un risque  $\alpha = 5\%$  et dépend du nombre de degré de liberté de la loi.

D'après le logiciel « Hyfran », les résultats du test sont donnés comme suit :

Tableau II-7 : Résultat du test de Khi-deux « x2 » pour les deux lois choisies

| Loi<br>d'ajustement | p-value | Degré de<br>liberté | χ2 <sub>calculé</sub> | χ2 <sub>théorique</sub> | Observation                                    |
|---------------------|---------|---------------------|-----------------------|-------------------------|------------------------------------------------|
| Gumbel              | 0,7761  | 6                   | 3,26                  | 12,59                   | χ2calculé <χ2théorique<br>→ Condition vérifiée |
| Log-normale         | 0,9539  | 6                   | 1,58                  | 12,59                   | χ2calculé <χ2théorique<br>→Condition vérifiée  |

#### Interprétation des résultats du test :

D'après le tableau au-dessus, la condition du test est vérifiée pour les deux lois. Donc, le test de Khi-deux montre que la série s'ajuste pour les deux lois, mais il faut choisir la loi la plus adéquate.

Selon les critères de choix de la loi et en comparant les deux courbes d'ajustement, on a opté pour la loi de Galton (Log-normal).

#### II.7. Calcul des pluies et des intensités de courte durée :

Dans cette partie, on va déterminer les valeurs des pluies de courte durée et leurs intensités. En se basant sur les résultats de l'ajustement à la loi Log-normale.

#### ✓ Pluies de courte durée :

La détermination des pluies de courte durée se fait à la base des pluies maximales journalières, par la relation suivante :

$$P_{t,(p\%)} = P_{max,j} (\frac{t}{24})^b$$
 (II.12)

#### Avec:

 $P_{t,(p\%)}$  : pluie (mm) de courte durée correspondante à une fréquence de dépassement donnée (p%).

P<sub>max,i</sub>: pluie maximale journalière (mm) correspondante à une fréquence de dépassement donnée (p%).

t: Durée de l'averse en heures, t = 15 min = 0.25h pour une période de retour de 10 ans.

**b** : Exposant climatique de la région (b = 0,32) qui est donné par l'ANRH (ALGER).

#### ✓ Intensités de courte durée :

D'après la formule de Montanari, l'intensité de pluie de durée t et de période de retour p% est donnée par la relation suivante :

$$I_{t,(p\%)} = \frac{P_{t,(p\%)}}{t}$$
 (II.13)

 $I_{t,(p\%)}$ : Intensité moyenne de précipitation pour une averse de durée t et de fréquence (p%).

Les calculs sont résumés dans le tableau et les graphes suivants :

Tableau II-8 : Pluies de courte durée de différentes périodes de retour et leurs intensités

| T     | 5                   |                       |                     | 10                    |                     | 20                    |                     | 50                    | 100                 |                       |  |
|-------|---------------------|-----------------------|---------------------|-----------------------|---------------------|-----------------------|---------------------|-----------------------|---------------------|-----------------------|--|
| $X_t$ |                     | 51                    | $\epsilon$          | 62,1                  |                     | 73,1                  |                     | 87,8                  |                     | 99,2                  |  |
| t (h) | P <sub>t</sub> (mm) | I <sub>t</sub> (mm/h) |  |
| 0,1   | 6,71                | 67,12                 | 8,17                | 81,74                 | 9,62                | 96,21                 | 11,56               | 115,56                | 13,06               | 130,57                |  |
| 0,2   | 8,67                | 43,37                 | 10,56               | 52,82                 | 12,43               | 62,17                 | 14,93               | 74,67                 | 16,87               | 84,37                 |  |
| 0,25  | 9,42                | 37,68                 | 11,47               | 45,89                 | 13,50               | 54,02                 | 16,22               | 64,88                 | 18,33               | 73,30                 |  |
| 0,5   | 12,17               | 24,35                 | 14,83               | 29,65                 | 17,45               | 34,91                 | 20,97               | 41,92                 | 23,68               | 47,37                 |  |
| 0,75  | 14,14               | 18,86                 | 17,23               | 22,97                 | 20,28               | 27,04                 | 24,36               | 32,47                 | 27,52               | 36,69                 |  |
| 1     | 15,73               | 15,73                 | 19,16               | 19,16                 | 22,55               | 22,55                 | 27,09               | 27,09                 | 30,61               | 30,61                 |  |
| 2     | 20,33               | 10,16                 | 24,76               | 12,38                 | 29,15               | 14,57                 | 35,01               | 17,51                 | 39,56               | 19,78                 |  |
| 3     | 23,62               | 7,87                  | 28,77               | 9,59                  | 33,87               | 11,29                 | 40,68               | 13,56                 | 45,96               | 15,32                 |  |
| 4     | 26,28               | 6,57                  | 32,00               | 8,00                  | 37,67               | 9,42                  | 45,25               | 11,31                 | 51,12               | 12,78                 |  |
| 5     | 28,54               | 5,71                  | 34,76               | 6,95                  | 40,91               | 8,18                  | 49,14               | 9,83                  | 55,52               | 11,10                 |  |
| 6     | 30,53               | 5,09                  | 37,18               | 6,20                  | 43,77               | 7,29                  | 52,57               | 8,76                  | 59,39               | 9,90                  |  |
| 7     | 32,32               | 4,62                  | 39,36               | 5,62                  | 46,34               | 6,62                  | 55,65               | 7,95                  | 62,88               | 8,98                  |  |

| 8  | 33,96 | 4,25  | 41,36 | 5,17   | 48,68 | 6,09 | 58,47 | 7,31 | 66,06 | 8,26 |
|----|-------|-------|-------|--------|-------|------|-------|------|-------|------|
| 9  | 35,47 | 3,94  | 43,20 | 4,80   | 50,85 | 5,65 | 61,08 | 6,79 | 69,01 | 7,67 |
| 10 | 36,88 | 3,69  | 44,92 | 4,49   | 52,88 | 5,29 | 63,51 | 6,35 | 71,75 | 7,18 |
| 11 | 38,21 | 3,47  | 46,53 | 4,23   | 54,77 | 4,98 | 65,79 | 5,98 | 74,33 | 6,76 |
| 12 | 39,46 | 3,29  | 48,05 | 4,00   | 56,56 | 4,71 | 67,94 | 5,66 | 76,76 | 6,40 |
| 13 | 40,64 | 3,13  | 49,50 | 3,81   | 58,26 | 4,48 | 69,98 | 5,38 | 79,07 | 6,08 |
| 14 | 41,77 | 2,98  | 50,87 | 3,63   | 59,88 | 4,28 | 71,93 | 5,14 | 81,26 | 5,80 |
| 15 | 42,85 | 2,86  | 52,19 | 3,48   | 61,43 | 4,09 | 73,79 | 4,92 | 83,37 | 5,56 |
| 16 | 43,89 | 2,74  | 53,45 | 3,34   | 62,92 | 3,93 | 75,57 | 4,72 | 85,38 | 5,34 |
| 17 | 44,89 | 2,64  | 54,66 | 3,22   | 64,34 | 3,78 | 77,29 | 4,55 | 87,32 | 5,14 |
| 18 | 45,85 | 2,55  | 55,83 | 3,10   | 65,72 | 3,65 | 78,93 | 4,39 | 89,18 | 4,95 |
| 19 | 46,77 | 2,46  | 56,95 | 2,99   | 67,05 | 3,53 | 80,53 | 4,24 | 90,98 | 4,79 |
| 20 | 47,67 | 2,38  | 58,05 | 2,90   | 68,33 | 3,42 | 82,07 | 4,10 | 92,73 | 4,64 |
| 21 | 48,54 | 2,31  | 59,11 | 2,81   | 69,58 | 3,31 | 83,57 | 3,98 | 94,42 | 4,50 |
| 22 | 49,38 | 2,24  | 60,13 | 2,73   | 70,78 | 3,22 | 85,02 | 3,86 | 96,06 | 4,37 |
| 23 | 50,20 | 2,18  | 61,13 | 2,66   | 71,96 | 3,13 | 86,43 | 3,76 | 97,65 | 4,25 |
| 24 | 51    | 2,125 | 62,1  | 2,5875 | 73,1  | 3,05 | 87,8  | 3,66 | 99,2  | 4,13 |

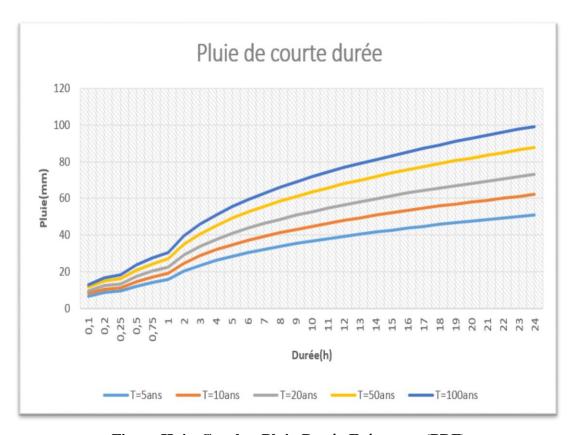



Figure II-4 : Courbes Pluie-Durée-Fréquence (PDF)

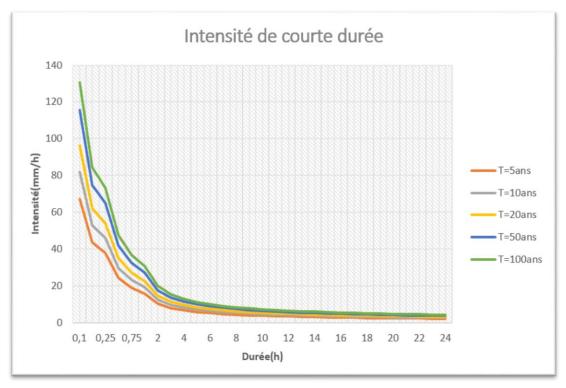



Figure II-5 : Courbes Intensité-Durée-Fréquence (IDF)

## II.8.Intensité moyenne maximale :

Pour l'estimation de l'intensité moyennemaximale de précipitation, nous admettons qu'une averse ayant lieu une fois tous les 10 ans ; durant 15min, peut être la valeur optimale. Nous aurons donc :

#### ✓ Pour la loi de Gumbel :

$$\begin{split} I_{0,25(10\%)} = & \frac{P_{24(10\%)}}{24} \big(\frac{t}{24}\big)^{b-1} \\ I_{0,25(10\%)} = & \frac{60,4}{24} \big(\frac{0,25}{24}\big)^{0,32-1} = 56,08 \text{ mm/h} \\ \\ I = & 56,08 \times \frac{10000}{3600} = 155,76 \frac{L}{s.ha} \end{split}$$

## ✓ Pour la loi de Galton :

$$I_{0,25(10\%)} = \frac{62,1}{24} (\frac{0,25}{24})^{0,32-1} = 57,65 \ mm/h$$
 
$$I = 57,65 \times \frac{10000}{3600} = 160,14 \frac{L}{s.ha}$$

Avec :  $\frac{10000}{3600}$  est le terme de conversion du (mm/h) en (L/s/ha)

## **Conclusion:**

Dans la présente étude, la partie hydrologique nous aidons à déterminer l'intensité moyenne de précipitation. D'après la loide Galton (Log-normale) qui est la meilleure loi d'ajustement de précipitation maximale journalier, il a été conclu la valeur  $I_{0,25(10\%)} = 57,65 \, \text{mm/h}$ 

d'où nous déterminerons la valeur de l'intensité pluviale qui est tout simplement un débit spécifique.

$$I = 160, 14 = 160 \frac{L}{s.ha}$$

# **CHAPITRE III:**

Calcul de base

#### **III.1** .Introduction:

L'étude d'assainissement a pour but de proposer un schéma directeur d'assainissement et de définir les solutions techniques les mieux adaptées à la gestion des eaux usées d'origines domestiques et pluviales. Ces solutions techniques devront répondre aux objectifs suivants :

- Garantir à la population présente et de futur des solutions durables pour l'évacuation et le traitement des eaux usées.
- Respecter le milieu naturel en préservant les ressources en eaux souterraines et superficielles.
- Assurer le meilleur compromis économique.

Dans ce chapitre ; on va s'intéresser au calcul de base du réseau d'évacuation d'eaux usées et pluviales ; le choix du système de réseau et du schéma ; le nombre de sous bassins adoptés et le coefficient de ruissellement correspondant.

#### III.2. Système d'évacuation du réseau d'assainissement :

Le système de canalisation, quel que soit sa nature, projeté au niveau d'une zone rurale, urbaine, industrielle, en assainissement permet d'évacuer :

- Les eaux pluviales en quantité importante, qui englobent toutes les eaux de ruissellement.
- Les eaux usées (eaux vannes, ménagères...) provenant des habitations, appelées également eaux d'origine domestique.
- Les eaux usées provenant des industries et des services publiques.

Habituellement, on considère trois catégories de systèmes d'évacuation, soit :

#### III.2.1.Réseau unitaire :

Un système dit unitaire, appelé aussi « tout à l'égout», est un système qui draine l'ensemble des eaux usées et pluviales vers l'extérieur de l'agglomération par un réseau unique. C'est un système compact qui convient mieux pour les milieux urbains de hautes densités, mais qui pose des problèmes d'auto-curage en période sèche.

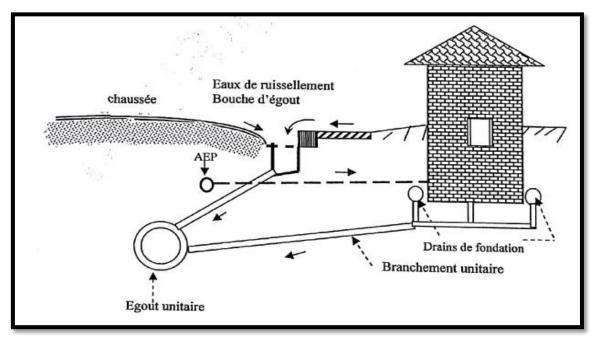



Figure III.1: système unitaire Source (Polycopies de l'assainissement)

## III.2.2.Réseau séparatif:

Un système dit séparatif qui collecte séparément les eaux usées et les eaux pluviales dans deux réseaux distincts. Il est adopté dans les petites et moyennes agglomérations et dans les extensions des grandes villes.

Ce système est la seule solution efficace lorsque la population est dispersée, et lorsque les eaux de ruissellement peuvent être évacuées par voie superficielle.

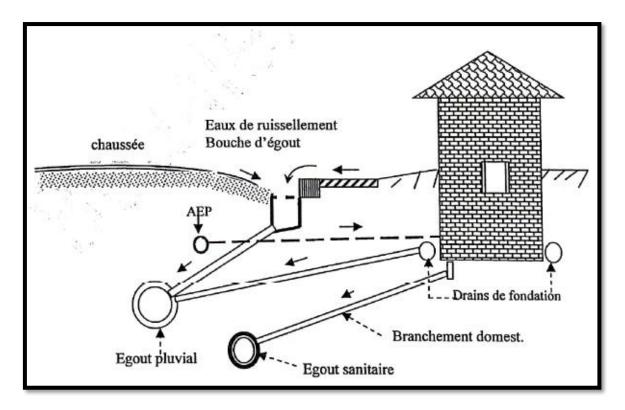



Figure III.2 : système séparatif Source (Polycopies de l'assainissement)

## III.2.3. Réseau pseudo séparatif :

Ce système repose sur une collecte des eaux usées avec une fraction des eaux pluviales provenant généralement des toitures et des espaces privés, dans un réseau commun. L'autre fraction des eaux pluviales est transitée à travers les caniveaux et les ouvrages pluviaux, dans un autre réseau.

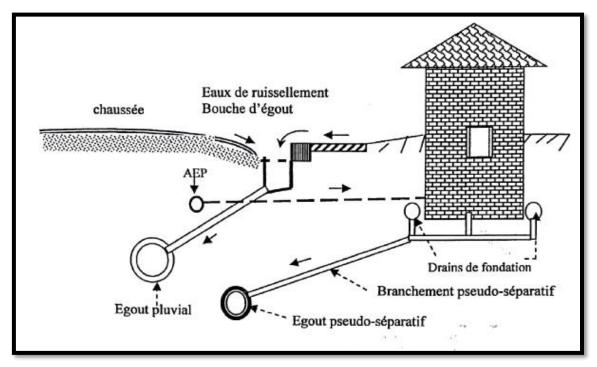



Figure III.3 : système pseudo séparatif .Source (Polycopies de l'assainissement)

Tableau III-1:Avantages et inconvénients des différents systèmes

| Système   | Domaine<br>d'utilisation                                                                                                                                                                                   | Avantages                                                                                                                                                                                                       | Inconvénients                                                                                                                                                                                                                                                                                                                                           | Contraintes<br>d'exploitation                                                                                                                                                                                                                                                                                                                    |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unitaire  | - milieu récepteur éloigné des points de collecte - topographie à faible relief - débit d'étiage du cours d'eau récepteur important Imperméabilisatio n importante et topographie accentuée de la commune. | - conception simple - encombrement réduit du sous-sol - à priori économique - pas de risque d'inversion de branchementAspect traditionnel, dans l'évolution historique des cités.                               | - débit à la STEP très variable - la dilution des eaux usées est variable - apport de sable important à la station d'épuration; - rejet direct vers le milieu récepteur du mélange " eaux usées eaux pluviales " au droit des déversoirs d'orage Acheminement d'un flot de pollution assez important lors des premières pluies après une période sèche. | - entretien régulier des déversoirs d'orage et des bassins de stockage - difficulté d'évaluation des rejets directs vers le milieu récepteur.                                                                                                                                                                                                    |
| Séparatif | - Petites et moyennes agglomérations Extension des villes Faible débit d'étiage du cours d'eau récepteur.                                                                                                  | - diminution des sections des collecteurs exploitation plus facile de la STEP Meilleure préservation de l'environnement des flux polluants Certains coûts d'exploitation sont limités (relevage des effluents,) | - encombrement important du sous sol - coût d'investissement élevé - risque important d'erreur de branchement                                                                                                                                                                                                                                           | - Surveillanceaccrue des branchements entretien d'unlinéaire important de collecteurs (eaux usées et pluviales) Détection et localisation des anomalies (inversion de branchement, arrivée d'eaux parasites) Entretien des ouvrages particuliers (siphons, chasses d'eau, avaloirs) Entretien des postes de relèvement et des chambres à sables. |

|           | - petits et      | - Le problème des      | - le fonctionnement       | - Entretien          |
|-----------|------------------|------------------------|---------------------------|----------------------|
| f         | moyennes         | faux branchements      | de la station d'épuration | régulier             |
| ıti       | agglomération.   | est éliminé.           | est perturbée, la charge  | des déversoirs       |
| séparatif | - présence d'un  | - Le plus gros deseaux | polluante est variable    | d'orage et des       |
| ba        | milieu récepteur | pluviales étant        | en qualité et en quantité | bassins de stockage. |
| sé        | proche.          | acheminées en d'hors   | _                         | - Surveillance       |
| 0         | _                | de la ville.           |                           | accrue des           |
| Pseudo    |                  |                        |                           | branchements.        |
| şe.       |                  |                        |                           |                      |
| P         |                  |                        |                           |                      |

#### III.2. Le choix du système d'assainissement :

Le choix du système d'assainissement est conditionné par plusieurs facteurs (situation, profil, débit, cout ...) et notamment par :

- ✓ L'aspect économique prenant en compte les dépenses d'investissement et les frais d'entretien, d'exploitation et de gestion de l'ensemble des installations et de pompage des eaux usées.
- ✓ S'il s'agit d'une extension du réseau, il faut tenir compte du système existant.
- ✓ La topographie du terrain naturel.
- ✓ L'urbanisation joue un rôle primordial dans le choix car si on a une forte densitéd'habitants il vaut mieux favoriser un système séparatif.
- ✓ Les ouvrages existants, encore utiles pour le projet.
- ✓ Prendre en considération les conditions de rejet car la station d'épuration ou le milieu naturel influence beaucoup sur le choix.

Pour notre cas, le réseau à projeter est de type unitaire, car nous cherchons toujours l'économie d'un faible encombrement de la chaussée, alors pour cette raison le système unitaire est le plus convenable.

#### III.3. Schéma d'évacuation des eaux :

Les réseaux d'assainissement fonctionnent essentiellement en écoulement gravitaire et peuvent avoir des dispositions très diverses selon le système choisi ; leur schéma se rapproche le plus souvent de l'un des types suivants :

#### III.3.1. Schéma perpendiculaire :

L'écoulement se fait directement dans le cours d'eau. Ce type de schéma ne permet pas la concentration des eaux vers un point unique d'épuration et rend celle-ci difficile.

Il n'est guère utilisable que pour les réseaux d'eaux pluviales dans les systèmes séparatifs, avec un rejet dans un cours d'eau. Il permet par contre un tracé très économique, ne nécessitant pas de grosses sections.

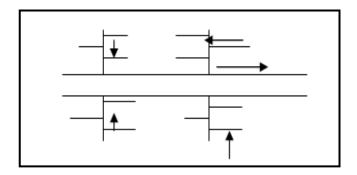



Figure III.4 : schéma perpendiculaire

#### III.3.2.Schéma par déplacement latéral :

Le schéma par déplacement latéral est le plus simple de ceux permettant de transporter l'effluent à l'aval de l'agglomération en vue de son traitement. Les eaux sont recueillies dans un collecteur parallèle au cours d'eau.

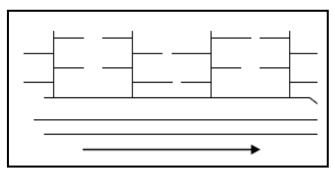



Figure III.5 : Schéma par déplacement latéral

## III.3.3.Schéma transversal ou oblique :

Ce schéma comporte des ramifications de collecteurs qui permettent de rapporter l'effluent à l'aval de l'agglomération. Ce type de schéma est adopté lorsque la pente du terrain est faible.

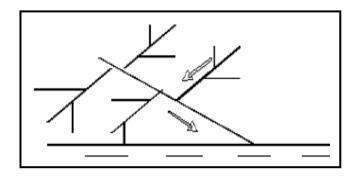



Figure III.6 : Schéma transversal ou oblique

## III.3.4.Schéma par zones étagées :

Ce schéma est une transposition du schéma à déplacement latéral, mais avec multiplication des collecteurs longitudinaux .Il permet de décharger le collecteur bas des apports en provenance du haut de l'agglomération.

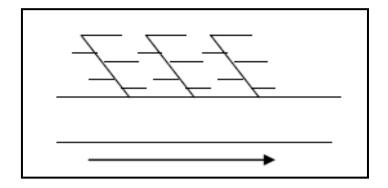



Figure III.7 : Schéma par zones étagées

#### III.3.5.Schéma radial:

Le schéma radial convient pour les régions plates, il permet de concentrer l'effluent en un ou plusieurs points où il sera relevé pour être évacué en un point éloigné de l'agglomération.

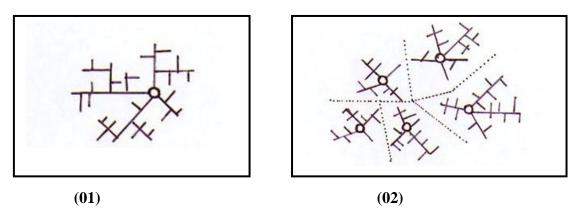



Figure III.8 : (01) Schéma radial unique ; (02) Schéma radial par zone.

#### III.4. Le choix du schéma d'évacuation :

Le choix du schéma du réseau d'évacuation à adopter, dépend de divers paramètres :

- ✓ Les conditions techniques et locales du lieu : système existant, la topographie du terrain et la répartition géographique des habitants à desservir.
- ✓ Les conditions économiques : le coût et les frais d'investissement et d'entretien.
- ✓ les conditions d'environnement : nature de rejet et le milieu récepteur.
- ✓ L'implantation des canalisations dans le domaine public.

Pour notre projet, on va adopter un schéma par déplacement latérale, car ce schéma permet de ne pas charger le collecteur et de ne pas avoir des diamètres importants au centre de l'agglomération.

## III.5. Découpage de l'aire d'étude en sous bassins élémentaires :

En général, le bassin versant est un secteur géographique qui est limité par les lignes de crête ou par les lignes de partage des eaux.

Toutes les eaux qui ruissellent en surface sont recueillies par une seule ligne d'écoulement. Donc, le découpage du site en sous bassins élémentaires doit être fait selon :

- ✓ La nature des sols
- ✓ La densité des habitations
- ✓ Les courbes de niveaux
- ✓ Les routes et voiries existantes
- ✓ Les pentes et les contre pentes
- ✓ Les limites naturelles (oueds, talwegs....)

## Pour notre projet, on va découper le site en 33 sous-bassins.

#### III.6.Choix du coefficient de ruissellement:

Le coefficient de ruissellement, se définit comme le rapport du volume d'eau qui ruisselle au volume d'eau tombée sur le bassin considéré.

Il permet de tenir compte globalement des pertes au ruissellement qui se composent :

- ✓ De l'évaporation qui varie selon le climat et la saison (elle est très faible dans les régions tempérées).
- ✓ De l'humidification et de l'infiltration qui varie avec la nature du sol.
- ✓ Du stockage dépressionnaire, qui prend en compte l'eau retenue dans les petites cavités du sol ou qui remplit les filets, rigoles, caniveaux et fossés, et permet d'obtenir la pression nécessaire à l'écoulement superficiel.

La valeur du coefficient de ruissellement varie de 0,05 à 1, elle dépend de plusieurs facteurs :

- ✓ La nature du sol.
- ✓ La pente du terrain.
- ✓ Le mode d'occupation du sol.
- ✓ La densité de la population.
- ✓ La durée de pluie.
- ✓ L'humidité de l'air.

## III.6.1. Coefficient de ruissellement en fonction de la catégorie d'urbanisation :

Tableau III-2: Coefficients de ruissellement en fonction de la catégorie d'urbanisation

| Catégorie d'urbanisation       | Coefficient de ruissellement (Cr) |
|--------------------------------|-----------------------------------|
| Habitations très denses        | 0.90                              |
| Habitations denses             | 0.60 - 0.70                       |
| Habitations moyennement denses | 0.40 - 0.50                       |
| Quartiers résidentiels         | 0.20 - 0.30                       |
| Square – jardin – prairie      | 0.05 - 0.20                       |

Source (Polycopiée des eaux usées et pluviale, B.SALAH, 2014)

## III.6.2. Coefficients de ruissellement en fonction de la densité de population :

Tableau III-3: Coefficients de ruissellement en fonction de la densité de population

| Densité de la population (habitant/ha) | Coefficient de ruissellement (Cr) |
|----------------------------------------|-----------------------------------|
| 20                                     | 0.23                              |
| 30 – 80                                | 0.20 - 0.27                       |
| 60 – 150                               | 0.25 - 0.34                       |
| 150 – 200                              | 0.30 - 0.45                       |
| 200 – 300                              | 0.60 - 0.62                       |
| 300 – 400                              | 0.60 - 0.80                       |
| 400 – 600                              | 0.70 - 0.90                       |

Source (Polycopiée des eaux usées et pluviale, B.SALAH, 2014)

## III.6.3.Coefficient de ruissellement en fonction de surface drainée :

Tableau III-4 : Coefficient de ruissellement en fonction de la nature des surfaces :

| Surface                                                  | Coefficient de ruissellement (Cr) |
|----------------------------------------------------------|-----------------------------------|
| Toits en métal, tuile, ardoise                           | 0.9                               |
| Chaussée avec peu de joints                              | 0.85 - 0.9                        |
| Pavés en pierres naturelles, brique avec joints cimentés | 0.75 - 0.85                       |
| Pavage en blocages                                       | 0.40 - 0.50                       |
| Surfaces goudronnées                                     | 0.25 - 0.60                       |
| Chemin en gravier                                        | 0.25 - 0.30                       |
| Gare, terrain de sport                                   | 0.10 - 0.30                       |
| Parcs, jardins, gazons                                   | 0.05 - 0.25                       |
| Forêts                                                   | 0.01 - 0.20                       |

Source (Polycopiée des eaux usées et pluviale, B.SALAH, 2014)

#### III.6.4.Coefficients de ruissellement en fonction de la zone d'influence :

Tableau III-5 : Coefficients de ruissellement en fonction de la zone d'influence

| Zones d'influence      | Coefficient de ruissellement (Cr) |
|------------------------|-----------------------------------|
| Surface imperméable    | 0.90                              |
| Pavage à larges joints | 0.60                              |
| Voirie non goudronnées | 0.35                              |
| Allées en gravier      | 0.20                              |
| Surfaces boisées       | 0.05                              |

Source (Polycopiée des eaux usées et pluviale, B.SALAH, 2014)

## III.7. Calcul de la population pour chaque sous bassin :

On suit les étapes suivantes afin de pouvoir estimer le nombre exact du nombre d'habitant :

- ✓ On calcule le coefficient de ruissellement pondéré de chaque sous bassin.
- ✓ On calcule le coefficient de ruissellement pondéré total.
- ✓ On calcule la densité partielle de chaque sous bassin.
- ✓ On déduit le nombre d'habitant de chaque sous bassin.

## III.7.1.Calcul du coefficient de ruissellement pour chaque sous bassin :

On va calculer le coefficient de ruissellement pondéré pour chaque sous bassin

Les résultats sont dans le tableau suivant :

Tableau III-6 : Valeurs de coefficients de ruissellement pour chaque sous bassin.

| / /hal |                                                                                                                                   |
|--------|-----------------------------------------------------------------------------------------------------------------------------------|
| A (ha) | $C_r$                                                                                                                             |
| 1,46   | 0,6                                                                                                                               |
| 1,88   | 0,78                                                                                                                              |
| 1,83   | 0,8                                                                                                                               |
| 1,60   | 0,8                                                                                                                               |
| 1,71   | 0,59                                                                                                                              |
| 0,48   | 0,67                                                                                                                              |
| 1,52   | 0,78                                                                                                                              |
| 0,69   | 0,59                                                                                                                              |
| 1,99   | 0,79                                                                                                                              |
| 0,51   | 0,8                                                                                                                               |
| 0,65   | 0,59                                                                                                                              |
| 1,01   | 0,8                                                                                                                               |
| 0,63   | 0,68                                                                                                                              |
| 0,33   | 0,67                                                                                                                              |
| 0,96   | 0,68                                                                                                                              |
| 0,77   | 0,64                                                                                                                              |
| 0,75   | 0,78                                                                                                                              |
| 0,65   | 0,67                                                                                                                              |
| 0,78   | 0,76                                                                                                                              |
| 1,12   | 0,58                                                                                                                              |
| 0,63   | 0,59                                                                                                                              |
| 0,42   | 0,68                                                                                                                              |
| 0,67   | 0,68                                                                                                                              |
| 1,15   | 0,79                                                                                                                              |
| 1,20   | 0,78                                                                                                                              |
| 1,02   | 0,76                                                                                                                              |
| 0,61   | 0,67                                                                                                                              |
|        | 1,46 1,88 1,83 1,60 1,71 0,48 1,52 0,69 1,99 0,51 0,65 1,01 0,63 0,33 0,96 0,77 0,75 0,65 0,78 1,12 0,63 0,42 0,67 1,15 1,20 1,02 |

| 28 | 0,99 | 0,65 |
|----|------|------|
| 29 | 1,03 | 0,67 |
| 30 | 1,34 | 0,59 |
| 31 | 0,45 | 0,64 |
| 32 | 0,91 | 0,78 |
| 33 | 0,34 | 0,68 |

## III.7.2. Calcul du coefficient de ruissellement pondéré total :

Le coefficient de ruissellement pondéré totale est donné par la relation suivante :

$$C_{rp} = \frac{\sum C_{ri} \times A_i}{\Delta}$$
 (III.1)

Avec:

✓ C<sub>rp</sub> : Coefficient de ruissellement pondéré.

 $\checkmark$  C<sub>ri</sub>: Coefficient de ruissellement partiel.

✓ A<sub>i</sub>: Surface du sous bassin en (ha).

✓ A : Surface totale en (ha).

Application numérique :  $C_{rp} = \frac{22,7337}{32} = 0,71$ 

## III.7.3. Calcul de la densité partielle :

La densité partielle de chaque sous bassin est exprimée par la relation :

$$\mathbf{D_{i}} = \frac{\mathbf{C_{ri}} \times \mathbf{P}}{\mathbf{C_{rn}} \times \mathbf{A}} \tag{III.2}$$

Avec:

✓ D<sub>i</sub>: Densité partielle du sou bassin considéré en (hab/ha).

 $\checkmark$   $C_{ri}$ : Coefficient de ruissellement de chaque sous bassin.

✓ C<sub>rp</sub>: Coefficient de ruissellement pondéré total.

✓ **P**: Population globale à l'horizon de calcul.

✓ A : Surface totale de la zone urbanisée en (ha).

#### III.7.4. Calcul du nombre d'habitant de chaque sous bassin :

Le nombre d'habitant de chaque sous bassin est donné par l'expression :

$$P_{i} = D_{i} \times A_{i} \tag{III.3}$$

Avec:

✓ P<sub>i</sub>: Population partielle du sou bassin considéré.

✓ A<sub>i</sub>: Surface partielle du sou bassin considéré (ha).

Les résultats de calcul du coefficient de ruissellement et nombre d'habitants de chaque sous bassins sont portés dans le tableau suivant :

Tableau III-7: Nombre d'habitants pour chaque sous bassin

|       | Tableau III-7:Nombre d'habitants pour chaque sous bassin |                 |                     |                         |             |  |  |  |  |
|-------|----------------------------------------------------------|-----------------|---------------------|-------------------------|-------------|--|--|--|--|
| N° SB | A (ha)                                                   | $\mathcal{C}_r$ | $A_i \times C_{ri}$ | D <sub>i</sub> (hab/ha) | Nombre      |  |  |  |  |
|       |                                                          |                 |                     |                         | d'habitants |  |  |  |  |
| 01    | 1,46                                                     | 0,6             | 0,876               | 283                     | 413         |  |  |  |  |
| 02    | 1,88                                                     | 0,78            | 1,4664              | 367                     | 691         |  |  |  |  |
| 03    | 1,83                                                     | 0,8             | 1,464               | 377                     | 689         |  |  |  |  |
| 04    | 1,60                                                     | 0,8             | 1,28                | 377                     | 603         |  |  |  |  |
| 05    | 1,71                                                     | 0,59            | 1,0089              | 278                     | 475         |  |  |  |  |
| 06    | 0,48                                                     | 0,67            | 0,3216              | 316                     | 151         |  |  |  |  |
| 07    | 1,52                                                     | 0,78            | 1,1856              | 367                     | 558         |  |  |  |  |
| 08    | 0,69                                                     | 0,59            | 0,4071              | 278                     | 192         |  |  |  |  |
| 09    | 1,99                                                     | 0,79            | 1,5721              | 372                     | 740         |  |  |  |  |
| 10    | 0,51                                                     | 0,8             | 0,408               | 377                     | 192         |  |  |  |  |
| 11    | 0,65                                                     | 0,59            | 0,3835              | 279                     | 181         |  |  |  |  |
| 12    | 1,01                                                     | 0,8             | 0,808               | 377                     | 381         |  |  |  |  |
| 13    | 0,63                                                     | 0,68            | 0,4284              | 320                     | 202         |  |  |  |  |
| 14    | 0,33                                                     | 0,67            | 0,2211              | 316                     | 104         |  |  |  |  |
| 15    | 0,96                                                     | 0,68            | 0,6528              | 320                     | 307         |  |  |  |  |
| 16    | 0,77                                                     | 0,64            | 0,4928              | 301                     | 232         |  |  |  |  |
| 17    | 0,75                                                     | 0,78            | 0,585               | 367                     | 275         |  |  |  |  |
| 18    | 0,65                                                     | 0,67            | 0,4355              | 316                     | 205         |  |  |  |  |
| 19    | 0,78                                                     | 0,76            | 0,5928              | 358                     | 279         |  |  |  |  |
| 20    | 1,12                                                     | 0,58            | 0,6496              | 273                     | 306         |  |  |  |  |
| 21    | 0,63                                                     | 0,59            | 0,3717              | 278                     | 175         |  |  |  |  |
| 22    | 0,42                                                     | 0,68            | 0,2856              | 320                     | 135         |  |  |  |  |
| 23    | 0,67                                                     | 0,68            | 0,4556              | 320                     | 214         |  |  |  |  |
| 24    | 1,15                                                     | 0,79            | 0,9085              | 372                     | 428         |  |  |  |  |
| 25    | 1,20                                                     | 0,78            | 0,936               | 367                     | 441         |  |  |  |  |
| 26    | 1,02                                                     | 0,76            | 0,7752              | 358                     | 365         |  |  |  |  |
| 27    | 0,61                                                     | 0,67            | 0,4087              | 316                     | 193         |  |  |  |  |
| 28    | 0,99                                                     | 0,65            | 0,6435              | 306                     | 303         |  |  |  |  |
|       | 1                                                        | l               | 1                   | 1                       | ı           |  |  |  |  |

| 29     | 1,03  | 0,67 | 0,6901  | 316 | 325   |
|--------|-------|------|---------|-----|-------|
| 30     | 1,34  | 0,59 | 0,7906  | 278 | 372   |
| 31     | 0,45  | 0,64 | 0,288   | 301 | 136   |
| 32     | 0,91  | 0,78 | 0,7098  | 367 | 334   |
| 33     | 0,34  | 0,68 | 0,2312  | 320 | 109   |
| Totale | 32,08 |      | 22,7337 |     | 10706 |

## **Conclusion:**

Pour notre agglomération on a fixé les choix suivants :

- ✓ L'horizon de calcul sera 2050, soit une population future de 10706 habitants.
- ✓ Le système d'assainissement adopté étant du type unitaire.
- ✓ Il a été déduit 33 bassins à la suite du découpage de la zone urbaine.
- ✓ Nous avons opté pour Schéma par déplacement latéral.

## **CHAPITRE IV:**

Estimation des débits à évacuer

#### **IV.1.Introduction:**

Le réseau d'assainissement est appelé à assurer la collecte et l'évacuation des eaux de ruissellement et des eaux usées d'origine diverse. Avant de consacrer la partie dimensionnement des collecteurs, une évaluation des débits d'eaux usées et pluviales est indispensable.

Le but principal de l'évaluation des débits des eaux est de savoir d'une part la quantité à évacuer dans le réseau d'évacuation des eaux usées ou celui de drainage des eaux pluviales et d'autre part de la qualité des rejets à traiter (liquides provenant des habitations ou des industries). Car les eaux usées sont constituées par des effluents pollués et nocifs pour le milieu naturel et qui peuvent être une source de plusieurs maladies à transmission hydrique. Donc il faut évacuer ces eaux hors limite de l'agglomération.

L'évaluation des débits d'eaux usées porte essentiellement sur l'estimation des quantités et de la qualité des rejets provenant des habitations et lieux d'activité.

L'évaluation quantitative des rejets peut donc se caractériser en fonction de type d'agglomération et des diverses catégories de sol.

## IV.2. Nature et origines des eaux usées :

La nature des matières polluantes contenues dans l'effluant dépend de l'origine de ces eaux usées, on distingue :

- Les eaux usées d'origine domestique.
- Les eaux usées des services publics.
- Les eaux usées d'origine industrielle.
- Les eaux parasites.

#### IV.2.1.Les eaux usées domestiques :

Ce sont des eaux qui trouvent leur origine à partir des habitations de l'agglomération, elles sont constituées essentiellement d'eaux ménagères et d'eaux vannes.

- ✓ Eaux ménagères : les eaux de cuisine, de vaisselle, de lavage, de bains et de douches ; elles sont évacuées par les éviers des lavabos et des baignoires.
- ✓ Eaux vannes : les eaux provenant des sanitaires.

#### IV.2.2.Les eaux usées des services publiques :

Les eaux usées du service public proviennent essentiellement du lavage des espaces publics et pour éteindre les incendies. Ces eaux sont généralement chargées de matières grasses. Les autres besoins publics seront pris en compte avec les besoins domestiques.

#### IV.2.3. Les eaux usées industrielles :

Ce sont les eaux provenant des usines, elles sont caractérisées par une grande diversité, suivant l'utilisation de l'eau. Tous les produits ou sous-produits de l'activité industrielle se retrouvent concentrés dans l'eau :

- ✓ Matières organiques et graisses (industrie agroalimentaires).
- ✓ Sels métalliques (traitement de sulfure, métallurgie).
- ✓ Acides, bases, produits chimiques divers (industrie chimique).
- ✓ Matières radioactives (centrale nucléaires, traitement des déchets radioactive).

Les eaux industrielles doivent recevoir un prétraitement à l'usine même pour éviter d'endommager et diminuer la durée de vie du réseau car son amortissement dépend de plusieurs paramètres, nous citons que la nature des eaux industrielles sont comprises dans ce dernier car lorsqu'elles ne sont pas traiter elles attaquent les conduites chimiquement et les détériorent.

**Remarque**: notre agglomération ne comporte aucune industrie donc ces eaux usées ne sont pas prises en compte.

#### **IV.2.4.** Les eaux parasites :

Ce sont des eaux d'infiltration inévitables dans le collecteur qui changent parfois les propriétés hydrauliques de l'écoulement. Elles peuvent constituer un pourcentage non négligeable par rapport aux eaux usées. Néanmoins leur évaluation est assez difficile et ne peut être faite que sur terrain. En absence de moyens et de données, on estime que le débit d'intrusion représente 0,05 à 0,15 l/s/ha.

Toutes ces eaux sont collectées et acheminées par un réseau d'égout aussi appelé réseau d'assainissement, soit dans une station d'épuration soit sur un site autonome de traitement.

Les causes d'intrusion des eaux parasites dans un collecteur sont principalement comme suit :

- ✓ Mauvaise pose de canalisation.
- ✓ Mauvais raccordement entre les conduites concernant les joints.
- ✓ L'écoulement hypodermique qui donne un déplacement vertical au collecteur au niveau des emboitements en influençant sur son étanchéité => intrusion des eaux parasites.
- ✓ Fissuration du collecteur qui est dû au tassement créer par les véhicules circulant sur les routes surtout si la conduite est enterrée dans la zone de la couche dynamique car les efforts sont transmis directement à cette dernière.
- ✓ Les racines des arbres cherchant l'humidité (phénomène d'hydrotropisme) ces dernières soulèvent les collecteurs en le fissurant au niveau des lèvres pour absorber.
- ✓ Absence de bouche d'égout sélectives près des stations de lavage, en période de temps sec lorsque le débit est minimal les huiles forment une couche dans les parois de la conduite et c'est les conditions de vie favorables pour les bactéries fermentescibles en milieu (anaérobie) donc elles attaquent le béton en le dégradant et l'intrusion des eaux parasites est assurée.
- ✓ La remonté de la nappe donne des variations de côtes de la génératrices inferieures du collecteur ce qui induit au déboitement niveau des emboitements=>intrusion des eaux parasites.

#### **IV.3.Les eaux pluviales :**

Elles peuvent constituer la cause de pollutions importantes des cours d'eau, notamment pendant les périodes orageuses. L'eau de pluie se charge d'impuretés au contact de l'air (fumées industrielles), puis, en ruisselant, des résidus déposés sur les toits et les chaussées des villes (huiles de vidange, carburants, résidus de pneus et métaux lourds...).En cas de fortes précipitations, les contraintes de préservation des installations d'épuration peuvent imposer un déversement ("délestage") de ce "mélange" très pollué dans le milieu naturel.

Dans les premières minutes d'une chute de pluie, la teneur en matières organiques est plus importante surtout pour des agglomérations à dominance industrielle ; du fait du balayage des surfaces par les eaux de ruissellement et de lavage.

#### IV.4. Estimation des débits des eaux usées :

L'évaluation de la quantité journalière des eaux usées à évacuer s'effectue à partir de la consommation d'eau potable. L'évacuation quantitative des rejets est en fonction du type et de la nature de l'agglomération et les diverses catégories d'urbanisation (établissements publics et privés, industries, usines ...). Plus l'agglomération est urbanisée, plus la quantité d'eau rejetée est élevée.

#### > Consommation en eau potable :

La quantité d'eau nécessaire à l'alimentation d'une agglomération dépend de certains paramètres :

- ✓ La disponibilité de la ressource.
- ✓ Le nombre des habitants.
- ✓ Le développement urbain de la ville.
- ✓ Le niveau de vie de la population.

#### IV.4.1. Débits des eaux usées domestiques :

Pour calculer le débit des eaux usées à évacuer, nous prendrons comme base une dotation d'eau potable de 150 l/j hab (source APC Grarem).

L'eau utilisée par le consommateur n'est pas rejetée en totalité dans le réseau, il est admis que l'eau évacuée n'est que 70% à 80% de l'eau consommée.

#### IV.4.1.1.Débit moyen journalier :

Le débit moyen journalier rejeté est calculé par la relation suivante :

$$Q_{moy,j}^{dom} = \frac{N_{hab} \times K_r \times D}{86400}$$
 (IV.1)

Avec:

- ✓  $Q_{mov,i}^{dom}$ : Débit moyen journalier des eaux usées domestiques en (L/s).
- ✓  $N_{hab}$ : Nombre d'habitants à l'horizon d'étude (habitant).
- $\checkmark$   $K_r$ : Coefficient de rejet pris égal à 80% de la quantité d'eau potable consommée.
- ✓ **D**: Dotation journalière estimée à 150 L/hab/j.

## IV.4.1.2. Débit de pointe :

Comme la consommation, le rejet des eaux usées est aussi variable dans la journée, d'où on est appelé à déterminer le débit de pointe qu'il est donné par la formule suivante :

$$Q_{pt}^{dom} = K_p \times Q_{moy,j}^{dom}$$
 (IV.2)

Avec:

- $\checkmark$   $Q_{pt}^{dom}$ : Débit de pointe des eaux usées domestiques (L/s).
- $\checkmark$   $Q_{moy,j}^{dom}$ : Débit moyen journalier des eaux usées domestiques en (L/s).
- $\checkmark$   $K_p$ : Le coefficient de pointe est estimé à partir de débit moyen.

Où:

$$K_p = 1,5 + \frac{2,5}{\sqrt{Q_{moy,j}^{dom}}} \text{Si}Q_{moy,j}^{dom} > 2,8 \text{ l/s}$$
 (IV.3)

$$K_p = 3\text{Si } Q_{moy,j}^{dom} \le 2.8 \text{ l/s}$$
 (IV.4)

Les débits des eaux usées domestiques à évacuer sont illustrés dans le tableau suivant :

Tableau IV-1 : Débits des eaux usées domestiques pour chaque sous bassin.

| N° SB | N <sub>hab</sub> | $K_r$ | D<br>(L/j/hab) | Q <sup>dom</sup> <sub>moy,j</sub><br>(L/s) | $K_p$ | Q <sub>pt</sub> <sup>dom</sup> (L/s) | <i>Q<sub>pt</sub><sup>dom</sup></i> (m3 /s) |
|-------|------------------|-------|----------------|--------------------------------------------|-------|--------------------------------------|---------------------------------------------|
| 01    | 413              | 0,8   | 150            | 0,574                                      | 3     | 1,721                                | 0,0017                                      |
| 02    | 691              | 0,8   | 150            | 0,96                                       | 3     | 2,879                                | 0,0029                                      |
| 03    | 689              | 0,8   | 150            | 0,957                                      | 3     | 2,871                                | 0,0029                                      |
| 04    | 603              | 0,8   | 150            | 0,838                                      | 3     | 2,513                                | 0,0025                                      |
| 05    | 475              | 0,8   | 150            | 0,66                                       | 3     | 1,979                                | 0,002                                       |
| 06    | 151              | 0,8   | 150            | 0,21                                       | 3     | 0,629                                | 0,0006                                      |
| 07    | 558              | 0,8   | 150            | 0,775                                      | 3     | 2,325                                | 0,0023                                      |
| 08    | 192              | 0,8   | 150            | 0,267                                      | 3     | 0,8                                  | 0,0008                                      |
| 09    | 740              | 0,8   | 150            | 1,028                                      | 3     | 3,083                                | 0,0031                                      |
| 10    | 192              | 0,8   | 150            | 0,267                                      | 3     | 0,8                                  | 0,0008                                      |
| 11    | 181              | 0,8   | 150            | 0,251                                      | 3     | 0,754                                | 0,0008                                      |
| 12    | 381              | 0,8   | 150            | 0,529                                      | 3     | 1,588                                | 0,0016                                      |
| 13    | 202              | 0,8   | 150            | 0,281                                      | 3     | 0,842                                | 0,0008                                      |
| 14    | 104              | 0,8   | 150            | 0,144                                      | 3     | 0,433                                | 0,0004                                      |
| 15    | 307              | 0,8   | 150            | 0,426                                      | 3     | 1,279                                | 0,0013                                      |

| 16 | 232 | 0,8 | 150 | 0,322 | 3 | 0,967 | 0,001  |
|----|-----|-----|-----|-------|---|-------|--------|
| 17 | 275 | 0,8 | 150 | 0,382 | 3 | 1,146 | 0,0011 |
| 18 | 205 | 0,8 | 150 | 0,285 | 3 | 0,854 | 0,0009 |
| 19 | 279 | 0,8 | 150 | 0,388 | 3 | 1,163 | 0,0012 |
| 20 | 306 | 0,8 | 150 | 0,425 | 3 | 1,275 | 0,0013 |
| 21 | 175 | 0,8 | 150 | 0,243 | 3 | 0,73  | 0,0007 |
| 22 | 135 | 0,8 | 150 | 0,188 | 3 | 0,563 | 0,0006 |
| 23 | 214 | 0,8 | 150 | 0,297 | 3 | 0,892 | 0,0009 |
| 24 | 428 | 0,8 | 150 | 0,594 | 3 | 1,783 | 0,0018 |
| 25 | 441 | 0,8 | 150 | 0,613 | 3 | 1,838 | 0,0018 |
| 26 | 365 | 0,8 | 150 | 0,507 | 3 | 1,521 | 0,0015 |
| 27 | 193 | 0,8 | 150 | 0,268 | 3 | 0,804 | 0,0008 |
| 28 | 303 | 0,8 | 150 | 0,421 | 3 | 1,263 | 0,0013 |
| 29 | 325 | 0,8 | 150 | 0,451 | 3 | 1,354 | 0,0014 |
| 30 | 372 | 0,8 | 150 | 0,517 | 3 | 1,55  | 0,0016 |
| 31 | 136 | 0,8 | 150 | 0,189 | 3 | 0,567 | 0,0006 |
| 32 | 334 | 0,8 | 150 | 0,464 | 3 | 1,392 | 0,0014 |
| 33 | 109 | 0,8 | 150 | 0,151 | 3 | 0,454 | 0,0005 |

## IV.4.2.Débits des eaux usées des établissements publics :

L'évaluation de ces débits se fait de la même manière que les eaux domestiques, en se basant sur la consommation d'eau potable pour chaque type d'usager.

#### IV.4.2.1.Débit moyen journalier:

Le débit moyen journalier des eaux usées des services publics est donné par la relation suivante :

$$Q_{moy,j}^{\acute{e}q} = \frac{N_u \times K_r \times D_{\acute{e}q}}{86400}$$
 (IV.5)

Avec:

- $\checkmark$   $Q_{mov,j}^{\acute{e}q}$ : Débit moyen journalier des eaux usées publiques en (L/s)
- $\checkmark$   $N_u$ : Nombre des usagers (des unités) concernés par chaque service.
- $\checkmark$   $K_r$ : Coefficient de rejet pris égal à 80% de la quantité d'eau potable consommée.
- $\checkmark$   $D_{\acute{e}q}$ : Dotation de la consommation journalière d'eau potable (L/j/unité) ; une donnée qui diffère d'un type d'usager à un autre.

## IV.4.2.2.Débit de pointe :

On est appelé à déterminer le débit de pointe des eaux usées des équipements publics. Il est donné par la formule suivante:

$$Q_{pt}^{\acute{e}q} = K_p \times Q_{moy,j}^{\acute{e}q} \tag{IV.6}$$

Avec:

- $\checkmark$   $Q_{pt}^{\acute{e}q}$ : Débit de pointe des eaux usées publiques (L/s).
- $\checkmark Q_{moy,j}^{\acute{e}q}$ : Débit moyen journalier rejeté (L/s).
- $\checkmark$   $K_p$ : Coefficient de pointe.
- ➤ Les débits des eaux usées des équipements publics à évacuer sont illustrés dans le tableau suivant :

Tableau IV-2 : Débits des eaux usées des équipements publics pour chaque sous bassin.

| N°     | Equipemen     | Unité de           | $N_u$ | $oldsymbol{D}_{\mathrm{\acute{e}}oldsymbol{q}}$ | $K_r$   | $Q_{moy,j}^{\acute{e}q}(\mathrm{L/s})$ | $K_p$ | $oldsymbol{Q}_{pt}^{\mathrm{cute{e}q}}$ | $oldsymbol{Q}_{pt}^{\mathrm{\acute{e}q}}$ |
|--------|---------------|--------------------|-------|-------------------------------------------------|---------|----------------------------------------|-------|-----------------------------------------|-------------------------------------------|
| S<br>B | t             | mesure             |       | (L/j/unité                                      |         | )                                      | _     | (L/s)                                   | (m3/s)                                    |
| 10     | Salle de soin | fonctionnaire<br>+ | 30    | 20                                              | 0,<br>8 | 0,006                                  | 3     | 0,01                                    | 0,0000                                    |
|        |               | vestiaires         |       |                                                 |         |                                        |       |                                         |                                           |
| 11     | Mosquée       | Fidèle             | 50    | 30                                              | 0,      | 0,139                                  | 3     | 0,41                                    | 0,0004                                    |
|        |               |                    | 0     |                                                 | 8       |                                        |       | 7                                       | 2                                         |
| 25     | Ecole         | Élève              | 54    | 20                                              | 0,      | 0,1                                    | 3     | 0,3                                     | 0,0003                                    |
|        | primaire      |                    | 0     |                                                 | 8       |                                        |       |                                         |                                           |
| 09     | Salle de      | Vestiaire          | 15    | 50                                              | 0,      | 0,069                                  | 3     | 0,20                                    | 0,0002                                    |
|        | sport         |                    | 0     |                                                 | 8       |                                        |       | 7                                       | 1                                         |

#### IV.4.3. Débits totaux des eaux usées à évacuer :

Les débits totaux des eaux à évacuer sont illustrés dans le tableau suivant :

Tableau IV-3 : Débits totaux des eaux usées pour chaque sous bassin.

| N° SB | A (ha) | $Q_{pt}^{dom} (L/s)$ | $Q_{pt}^{\acute{e}q}(L/s)$ | $Q_t^{eu}(L/s)$ | $Q_t^{eu} (m^3/s)$ |
|-------|--------|----------------------|----------------------------|-----------------|--------------------|
| 01    | 1,46   | 1,721                | -                          | 1,721           | 0,0017             |
| 02    | 1,88   | 2,879                | -                          | 2,879           | 0,0029             |
| 03    | 1,83   | 2,871                | -                          | 2,871           | 0,0029             |
| 04    | 1,60   | 2,513                | -                          | 2,513           | 0,0025             |
| 05    | 1,71   | 1,979                | -                          | 1,979           | 0,002              |
| 06    | 0,48   | 0,629                | -                          | 0,629           | 0,0006             |

| 07 | 1,52 | 2,325 | -     | 2,325 | 0,0023  |
|----|------|-------|-------|-------|---------|
| 08 | 0,69 | 0,8   | -     | 0,8   | 0,0008  |
| 09 | 1,99 | 3,083 | 0,207 | 3,29  | 0,0033  |
| 10 | 0,51 | 0,8   | 0,018 | 0,818 | 0,0008  |
| 11 | 0,65 | 0,754 | 0,417 | 1,171 | 0,0012  |
| 12 | 1,01 | 1,588 | -     | 1,588 | 0,0016  |
| 13 | 0,63 | 0,842 | -     | 0,842 | 0,0008  |
| 14 | 0,33 | 0,433 | -     | 0,433 | 0,0004  |
| 15 | 0,96 | 1,279 | -     | 1,279 | 0,0013  |
| 16 | 0,77 | 0,967 | -     | 0,967 | 0,00097 |
| 17 | 0,75 | 1,146 | -     | 1,146 | 0,0011  |
| 18 | 0,65 | 0,854 | -     | 0,854 | 0,0009  |
| 19 | 0,78 | 1,163 | -     | 1,163 | 0,0012  |
| 20 | 1,12 | 1,275 | -     | 1,275 | 0,0013  |
| 21 | 0,63 | 0,73  | -     | 0,73  | 0,0008  |
| 22 | 0,42 | 0,563 | -     | 0,563 | 0,0006  |
| 23 | 0,67 | 0,892 | -     | 0,892 | 0,0009  |
| 24 | 1,15 | 1,783 | -     | 1,783 | 0,0018  |
| 25 | 1,20 | 1,838 | 0,1   | 1,938 | 0,0019  |
| 26 | 1,02 | 1,521 | -     | 1,521 | 0,0015  |
| 27 | 0,61 | 0,804 | -     | 0,804 | 0,0008  |
| 28 | 0,99 | 1,263 | -     | 1,263 | 0,0013  |
| 29 | 1,03 | 1,354 | -     | 1,354 | 0,0014  |
| 30 | 1,34 | 1,55  | -     | 1,55  | 0,0016  |
| 31 | 0,45 | 0,567 | -     | 0,567 | 0,0006  |
| 32 | 0,91 | 1,392 | -     | 1,392 | 0,0014  |
| 33 | 0,34 | 0,454 | -     | 0,454 | 0,0005  |

## IV.5. Estimation des débits des eaux pluviales :

Les eaux pluviales sont en général les eaux de ruissellement qui doivent être collectées et conduites vers la canalisation d'évacuation afin d'éviter les risques d'inondations et leurs conséquences sur le réseau et la population. C'est pour cela que le choix des débits des eaux pluviales est très important lors du dimensionnement du réseau, vu qu'il influe directement sur le diamètre des conduites et sur les ouvrages à prévoir.

Ces ouvrages seront calculés pour une précipitation de fréquence décennale et d'une durée de 15 min.

Plusieurs méthodes se présentent pour l'estimation des débits pluviaux, mais les deux méthodes les plus utilisées du fait de leur simplicité sont la méthode rationnelle et celle dite superficielle.

#### IV.5.1.La méthode rationnelle:

Cette méthode fut découverte en 1889, mais ce n'est qu'en 1906 qu'elle a été généralisée, elle consiste à évaluer, à mesure de l'avancement du calcul, les temps de concentration aux divers points caractéristiques du parcours d'un réseau.

Elle est utilisée pour des surfaces limitées (généralement inférieure à dix hectares). Le résultat est meilleur pour des aires encore plus faibles, du fait de la bonne estimation du coefficient de ruissellement.

Si on considère une averse d'intensité constante i sur un secteur de superficie S ayant un coefficient de ruissellement pondéré C, le débit résultant du ruissellement s'exprime par la relation :

$$Q = C_r \times i \times A \tag{IV.7}$$

Cependant, on tient compte que l'intensité n'est pas uniforme (ça veut dire que l'averse a un épicentre et se diffuse dans l'espace). Pour cela, il convient d'appliquer un coefficient «  $\alpha$  » de répartition de la pluie.

La méthode rationnelle s'exprime par la formule suivante :

$$Q = \alpha \times C_r \times i \times A \tag{IV.8}$$

Avec:

- ✓ **Q**: débit d'eau de ruissellement (L/s)
- $\checkmark$  a :Coefficient correcteur de l'intensité tenant compte de la distribution de la pluie dans l'espace, dont la détermination est en fonction de la forme du bassin.
- $\checkmark$   $C_r$ :Coefficient de ruissellement.
- ✓ i: Intensité movenne de précipitation (L/s/ha)
- ✓ A :Surface d'apport (ha)

#### IV.5.1.1.Coefficient réducteur de l'intensité :

En réalité, la répartition d'une pluie au niveau d'un bassin est irrégulière surtout pour les pluies de courte durée et de forte intensité. Pour en tenir compte, on doit ajouter un paramètre de correction pour chaque surface élémentaire ; c'est un coefficient réducteur de l'intensité :  $\alpha \le 1$ .

- Ce coefficient peut être déterminé d'après une loi de répartition de pluie :
- ✓ Pour des bassins longs (rectangles étroits, ...) ; ce coefficient sera égal à :

$$\alpha = 1 - 0.006 \times \sqrt{d/2}$$
 (IV.9)

✓ Pour des bassins ramassés (carrés, cercles, ...):

$$\alpha = 1 - 0,005 \times \sqrt{d/2} \tag{IV.10}$$

Avec:

✓ d : longueur du milieu de l'aire élémentaire (m).

#### IV.5.1.2. Validité de la méthode rationnelle :

Cette méthode est efficace pour des aires relativement limitées (généralement inférieures à 10ha)le résultat est meilleur pour des aires plus faibles du fait de la bonne estimation du coefficient de ruissellement, aussi, elle est applicable pour des surfaces où le temps de concentration ne dépasse pas 30 minutes.

#### IV.5.1.3. Hypothèses de la méthode rationnelle :

La méthode rationnelle est fondée sur trois (03) hypothèses de base :

- ✓ Le débit de pointe " $Q_p$ "est observé à l'exutoire seulement si la durée de l'averse est supérieure au temps de concentration" $t_c$ " du bassin-versant.
- ✓ Le débit de pointe est proportionnel à l'intensité moyenne maximale " i " sur une durée égale au temps de concentration du bassin-versant.
- ✓ Le débit de pointe a la même période de retour que l'intensité i qui le provoque, ceci suppose que le coefficient de ruissellement " $C_r$ " du bassin-versant est constant.

## IV.5.1.4. Temps de concentration :

C'est une caractéristique du bassin, définie comme étant le temps mis par la pluie tombée au point le plus éloigné, en durée d'écoulement, pour atteindre l'entrée du collecteur qui doit évacuer l'apport de la surface considérée.

Le temps de concentration " $T_c$ "se compose de :

 $\succ$   $t_1$ : Temps mis par l'eau pour s'écouler dans les canalisations.

$$t_1 = \frac{L_s}{60 \times V} \text{ (min)} \tag{IV.11}$$

Avec:

- ✓ **L** : longueur de canalisation (m).
- ✓ v : vitesse d'écoulement (m/s).
- ✓ Le terme $\frac{1}{60}$ pour la conversion de secondes (s) en minutes (min).
- $\succ$   $t_2$ : Temps mis par l'eau pour atteindre le premier ouvrage d'engouffrement, il est varié de 2 à 20 minutes.
- $\succ$   $t_3$ : Temps de ruissellement dans un bassin de pente I, ne comportant pas une canalisation autrement dit le parcours superficiel du bassin de longueur  $L_s$ .

$$t_3 = \frac{L_s}{11 \times \sqrt{I}}(\min) \tag{IV.12}$$

Avec:

✓  $L_s$ : parcours superficiel de l'eau dans le bassin (km).

✓ **I** : pente moyenne du parcours (%).

On a trois aspects à considérer :

✓ Le bassin ne comporte pas de canalisation :  $t_c = t_3$ .

✓ Le bassin comporte un parcourt superficiel, puis une canalisation : $t_c = t_1 + t_3$ .

 $\checkmark$  Le bassin est urbanisé et comporte une canalisation : $t_c = t_1 + t_2$ .

Dans le cas général, pour les zones peu allongées caractérisées par un plus long parcours L de l'eau, le temps de concentration donné par la relation suivante :

$$\mathbf{t_c} = 3,98 \times \left[\frac{L}{\sqrt{I}}\right]^{0,77} \tag{IV.13}$$

Avec:

✓ L : cheminement hydraulique le plus long (km).

✓ **I**: pente moyenne du chemin parcouru (%).

#### IV.5.1.5. Critique de la méthode rationnelle :

La décomposition du bassin en aires élémentaires est toujours assez grossièrement approchée en raison de la difficulté de déterminer avec une précision suffisante la durée du ruissèlement entre ces diverses zones et l'exutoire.

On suppose généralement que le coefficient de ruissèlement "Cr"est constant sur tout le bassin et pendant toute la durée de l'averse ce qui est souvent loin de la réalité.

La critique principale que l'on peut faire à cette méthode est qu'elle ne tient pas compte du stockage de l'eau de ruissellement sur le bassin.

Il a été montré qu'en règle générale, cette méthode sous-estime les débits de pointes observés, probablement parce qu'on sous-estime le coefficient de ruissellement en négligent le rôle des surfaces non revêtues et sans végétation.

#### IV.6.La méthode superficielle (méthode de Caquot) :

Cette méthode proposée par M.CAQUOT en 1949, c'est une forme globale de la méthode rationnelle, elle tient compte de l'ensemble des paramètres qui influent sur le ruissellement. Cette méthode est applicable sur toute la surface considérée, mais elle ne s'applique qu'au Surface urbaines par les réseaux, elle s'écrit sous la forme :

$$Q_p = K^{\frac{1}{u}} \times C_r^{\frac{1}{u}} \times I^{\frac{v}{u}} \times A^{\frac{w}{u}}$$
 (IV.14)

Avec:

 $\checkmark$   $Q_p$ : le débit pluvial de pointe de fréquence de dépassement « F » ; en (m3/s).

 $\checkmark$   $C_r$ : est le coefficient de ruissellement du sous bassin considéré.

✓ I : la pente moyenne calculée selon le plus long cheminement hydraulique (m/m).

- ✓ A : la superficie drainée du sous bassin (ha).
- ✓ **K**, **u**, **v**, **w** : coefficients d'expression, donnés en fonction des paramètres de Caquot par les formules suivantes :

$$\mathbf{K} = \frac{a \times \mu^b}{6 \times (\beta + \delta)} \tag{IV.15}$$

$$\mathbf{u} = \mathbf{1} - \mathbf{b} \times \mathbf{f} \tag{IV.16}$$

$$\mathbf{v} = \mathbf{c} \times \mathbf{b} \tag{IV.17}$$

$$\mathbf{w} = \mathbf{1} - \boldsymbol{\varepsilon} + \boldsymbol{d} \times \boldsymbol{b} \tag{IV.18}$$

#### IV.6.1. Evaluation des paramètres de Caquot :

- Paramètres liés à la pluviométrie :
- ✓ a et b : sont les coefficients de la formule de Montana (courbes IDF). Les valeurs qu'ils prennent sont issues d'un calcul purement hydrologique selon les régions, les périodes de retour et les fréquences, ils sont donnés par la relation suivante :

$$\mathbf{I}(\mathbf{t}) = \mathbf{a} \times \mathbf{t}^b \tag{IV.19}$$

Avec:

I (t): intensité de pluie de durée t et de période retour de 10 ans.

 $\checkmark$   $\epsilon$ : abattement spatial en fonction du temps de concentration sur le bassin versant.

$$\epsilon = 0.5 \qquad pour \qquad A < 100 ha.$$
 
$$\epsilon = 0.03 \ plus \ adopt\'e.$$

- > Paramètres caractérisant la transformation de la pluie en débit :
- $\checkmark$  (β+δ) = 1.1 : représente l'effet de stockage et d'écrêtement, cette valeur devrait augmenter avec la taille du bassin.
- > Paramètres concernant le bassin versant :

$$c = -0.41$$
;  $d = 0.51$ ;  $f = -0.29$ 

 $\mu$ : Coefficient d'ajustement de la forme du bassin, donnée par :

Où:

$$\mu = 0.28 \times M^{0.84} \tag{IV.20}$$

Avec:

$$\mathbf{M} = \frac{L}{\sqrt{s_c}} \tag{IV.21}$$

- ✓ M : coefficient d'allongement qui caractérise la forme du bassin-versant.
- ✓ L: le plus long chemin hydraulique (m).
- ✓  $S_c$ : étant la surface du carré équivalent qui est égale à celle du bassin (m2).

## Remarque:

La valeur de "M" doit être supérieure à 0.8 (une valeur qui correspond à un bassinversant en forme de demi-cercle). La formule de Caquot est donnée pour M=2. Et pour des valeurs de "M" différentes de 2, le débit de pointe " $Q_p$ "donnée par la formule doit être corrigé par le coefficient d'influence :

$$\mathbf{m} = \left(\frac{M}{2}\right)^{0.7 \times b} \tag{IV.22}$$

### > Temps de concentration :

D'après DESBORDES, Le temps de concentration (valable pour les deux méthodes) est donné par l'expression suivante :

$$t_c = 0.28 \times M^{0.84} \times I^{-0.41} \times A^{0.51} \times Q_p^{-0.29}$$
 (IV.23)

Avec:

$$t_c(min)$$
 ; I (m/m) ; A (ha) ; Q<sub>p</sub> (m3/s)

## IV.6.2. Validité de la méthode superficielle :

Cette méthode possède certaines limites d'utilisation ainsi :

Une superficie totale < 200 ha.

- ✓ La pente doit être comprise entre (0,2<I<5)%.
- ✓ Le coefficient de ruissellement (0,2<Cr<1).
- ✓ Le coefficient d'allongement (0,8<M).

## IV.6.3. Définition des variables de la formule de Caquot :

#### **IV.6.3.1. Pente moyenne:**

Cette hypothèse étant passée, pour un bassin versant urbanisé dont le plus long cheminement hydraulique "L "constitué des tronçons successifs " $L_j$ " et de pente sensiblement constante " $I_j$ ", l'expression de la pente moyenne exprime le temps d'écoulement le long de ce cheminement le plus hydrauliquement explicite sous la forme :

$$I_{eq} = \left(\frac{\sum_{i=1}^{n} L_j}{\sum_{i=1}^{n} \frac{L_j}{\sqrt{I_j}}}\right)^2$$
 (IV.24)

#### IV.6.3.2. Groupement des bassins versants en série ou en parallèle :

Il est en effet nécessaire de rechercher les caractéristiques du bassin versant équivalent, le tableau suivant fourni les règles d'assemblage à utiliser, sachant que dans certains cas des anomalies peuvent apparaître.

Tableau IV-4 : Détermination des paramètres équivalents dans le cas de l'assemblage des bassins versants en série ou en parallèle.

| Paramètres<br>équivalents | $S_{ m \acute{e}q}$ | $C_{ m eq}$                            | $I_{ m \acute{e}q}$                                        | $m{M}_{\mathrm{\acute{e}q}}$                      |
|---------------------------|---------------------|----------------------------------------|------------------------------------------------------------|---------------------------------------------------|
| Bassins en série          | $\sum S_i$          | $\frac{\sum C_i \times S_i}{\sum S_i}$ | $\left[rac{\sum L_i}{\sum rac{L_i}{\sqrt{I_i}}} ight]^2$ | $\frac{\sum L_i}{\sqrt{\sum S_i}}$                |
| Bassins en<br>parallèle   | $\sum S_i$          | $\frac{\sum C_i \times S_i}{\sum S_i}$ | $\frac{\sum I_i \times Q_{pi}}{\sum Q_{pi}}$               | $\frac{L\left(t_{c,max}\right)}{\sqrt{\sum S_i}}$ |

#### Avec:

- $\checkmark$   $S_{\acute{e}q}$ ,  $C_{\acute{e}q}$ ,  $I_{\acute{e}q}$ ,  $M_{\acute{e}q}$ : sont les paramètres du bassin équivalent.
- $\checkmark$   $S_i$  ,  $C_i$  ,  $L_i$  ,  $I_i$  ,  $Q_{pi}$ : sont les paramètres individuels du sous bassin (i) considéré seul.
- ✓  $L(t_{c,max})$ : cheminement hydraulique le plus long du sous bassin ayant le temps de concentration le plus long.

#### IV.6.4. Critique de la méthode superficielle :

- Les débits livrés par la méthode de Caquot sont sensiblement supérieurs (surestimation) en comparaison avec ceux de la méthode rationnelle. Ce surplus des débits donné par la méthode superficielle est dû essentiellement aux conditions de calcul, notamment les tronçons disposés en parallèle, ainsi que l'effet implicite du temps de concentration et qui ne relève pas le comportement plus au moins réel du réseau.
- Le modèle de groupement des bassins, peut conduire à des anomalies :
- Y Pour les bassins en série, il peut arriver que le débit de pointe du bassin équivalent soit inférieur au maximum des débits de pointe des sous bassins. Donc on prend :  $Q_p = Max(Q_i)$ .
- V Pour les bassins en parallèle, il peut arriver que le débit de pointe du bassin équivalent soit supérieur à la somme des débits de pointe des sous bassins, ce qui est impossible. Donc on prend  $:Q_p = \sum Q_i$ .

#### IV.7. Choix de la méthode :

Selon les limitations et les critiques de chacune de ces méthodes ; on opte pour la méthode rationnelle pour l'évaluation des débits pluviaux, car les conditions de validité de celle-ci sont respectées sur tous les sous bassins ; des superficies inférieures à 10 ha.

## IV.8. Calcul des débits pluviaux :

Vu que les surfaces des sous bassins sont petites, les valeurs du coefficient «  $\alpha$  » s'approchent de l'unité, par conséquent il sera pris égal à 1. Les résultats de calcul des débits pluviaux pour chaque surface élémentaire sont reportés respectivement dans le tableau suivant :

Tableau IV-5 : évaluation des débits pluvieux pour chaque sous bassin.

|       | Tableau 14-5: Evaluation des debits pluvieux pour enaque sous bassin. |       |   |             |         |            |  |  |
|-------|-----------------------------------------------------------------------|-------|---|-------------|---------|------------|--|--|
| N° SB | A (ha)                                                                | $C_r$ | α | i (L /s/ha) | Q(L/s)  | $Q(m^3/s)$ |  |  |
| 01    | 1,46                                                                  | 0,6   | 1 | 160         | 140,16  | 0,14       |  |  |
| 02    | 1,88                                                                  | 0,78  | 1 | 160         | 234,624 | 0,235      |  |  |
| 03    | 1,83                                                                  | 0,8   | 1 | 160         | 234,24  | 0,234      |  |  |
| 04    | 1,60                                                                  | 0,8   | 1 | 160         | 204,8   | 0,205      |  |  |
| 05    | 1,71                                                                  | 0,59  | 1 | 160         | 161,424 | 0,161      |  |  |
| 06    | 0,48                                                                  | 0,67  | 1 | 160         | 51,456  | 0,051      |  |  |
| 07    | 1,52                                                                  | 0,78  | 1 | 160         | 189,696 | 0,19       |  |  |
| 08    | 0,69                                                                  | 0,59  | 1 | 160         | 65,136  | 0,065      |  |  |
| 09    | 1,99                                                                  | 0,79  | 1 | 160         | 251,536 | 0,252      |  |  |
| 10    | 0,51                                                                  | 0,8   | 1 | 160         | 65,28   | 0,065      |  |  |
| 11    | 0,65                                                                  | 0,59  | 1 | 160         | 61,36   | 0,061      |  |  |
| 12    | 1,01                                                                  | 0,8   | 1 | 160         | 129,28  | 0,129      |  |  |
| 13    | 0,63                                                                  | 0,68  | 1 | 160         | 68,544  | 0,069      |  |  |
| 14    | 0,33                                                                  | 0,67  | 1 | 160         | 35,376  | 0,035      |  |  |
| 15    | 0,96                                                                  | 0,68  | 1 | 160         | 104,448 | 0,104      |  |  |
| 16    | 0,77                                                                  | 0,64  | 1 | 160         | 78,848  | 0,079      |  |  |
| 17    | 0,75                                                                  | 0,78  | 1 | 160         | 93,6    | 0,094      |  |  |
| 18    | 0,65                                                                  | 0,67  | 1 | 160         | 69,68   | 0,07       |  |  |
| 19    | 0,78                                                                  | 0,76  | 1 | 160         | 94,848  | 0,095      |  |  |
| 20    | 1,12                                                                  | 0,58  | 1 | 160         | 103,936 | 0,104      |  |  |
| 21    | 0,63                                                                  | 0,59  | 1 | 160         | 59,472  | 0,059      |  |  |

| 22 | 0,42 | 0,68 | 1 | 160 | 45,696  | 0,046 |
|----|------|------|---|-----|---------|-------|
| 23 | 0,67 | 0,68 | 1 | 160 | 72,896  | 0,073 |
| 24 | 1,15 | 0,79 | 1 | 160 | 145,36  | 0,145 |
| 25 | 1,20 | 0,78 | 1 | 160 | 149,76  | 0,15  |
| 26 | 1,02 | 0,76 | 1 | 160 | 124,032 | 0,124 |
| 27 | 0,61 | 0,67 | 1 | 160 | 65,392  | 0,065 |
| 28 | 0,99 | 0,65 | 1 | 160 | 102,96  | 0,103 |
| 29 | 1,03 | 0,67 | 1 | 160 | 110,416 | 0,11  |
| 30 | 1,34 | 0,59 | 1 | 160 | 126,496 | 0,126 |
| 31 | 0,45 | 0,64 | 1 | 160 | 46,08   | 0,046 |
| 32 | 0,91 | 0,78 | 1 | 160 | 113,568 | 0,114 |
| 33 | 0,34 | 0,68 | 1 | 160 | 36,992  | 0,037 |

## IV.9. Calcule des débits totales pour chaque sous bassin :

Tableau IV-6: débits totaux pour chaque sous bassin.

| N° SB | A (ha) | $Q_i$ pluvial | $Q_t^{eu}(L/s)$ | $Q_i$ Total | $Q_i$ Total |
|-------|--------|---------------|-----------------|-------------|-------------|
|       |        | (L/s)         |                 | (L/s)       | $(m^3/s)$   |
| 01    | 1,46   | 140,16        | 1,721           | 141,881     | 0,142       |
| 02    | 1,88   | 234,624       | 2,879           | 237,503     | 0,238       |
| 03    | 1,83   | 234,24        | 2,871           | 237,111     | 0,237       |
| 04    | 1,60   | 204,8         | 2,513           | 207,313     | 0,207       |
| 05    | 1,71   | 161,424       | 1,979           | 163,403     | 0,163       |
| 06    | 0,48   | 51,456        | 0,629           | 52,085      | 0,052       |
| 07    | 1,52   | 189,696       | 2,325           | 192,021     | 0,192       |
| 08    | 0,69   | 65,136        | 0,8             | 65,936      | 0,066       |
| 09    | 1,99   | 251,536       | 3,29            | 254,826     | 0,255       |
| 10    | 0,51   | 65,28         | 0,818           | 66,098      | 0,066       |
| 11    | 0,65   | 61,36         | 1,171           | 62,531      | 0,063       |
| 12    | 1,01   | 129,28        | 1,588           | 130,868     | 0,131       |
| 13    | 0,63   | 68,544        | 0,842           | 69,386      | 0,069       |
| 14    | 0,33   | 35,376        | 0,433           | 35,809      | 0,036       |
| 15    | 0,96   | 104,448       | 1,279           | 105,727     | 0,106       |
| 16    | 0,77   | 78,848        | 0,967           | 79,815      | 0,08        |

| 17 | 0,75 | 93,6    | 1,146 | 94,746  | 0,095 |
|----|------|---------|-------|---------|-------|
| 18 | 0,65 | 69,68   | 0,854 | 70,534  | 0,071 |
| 19 | 0,78 | 94,848  | 1,163 | 96,011  | 0,096 |
| 20 | 1,12 | 103,936 | 1,275 | 105,211 | 0,105 |
| 21 | 0,63 | 59,472  | 0,73  | 60,202  | 0,06  |
| 22 | 0,42 | 45,696  | 0,563 | 46,259  | 0,046 |
| 23 | 0,67 | 72,896  | 0,892 | 73,788  | 0,074 |
| 24 | 1,15 | 145,36  | 1,783 | 147,143 | 0,147 |
| 25 | 1,20 | 149,76  | 1,938 | 151,698 | 0,152 |
| 26 | 1,02 | 124,032 | 1,521 | 125,553 | 0,126 |
| 27 | 0,61 | 65,392  | 0,804 | 66,196  | 0,066 |
| 28 | 0,99 | 102,96  | 1,263 | 104,223 | 0,104 |
| 29 | 1,03 | 110,416 | 1,354 | 111,77  | 0,112 |
| 30 | 1,34 | 126,496 | 1,55  | 128,046 | 0,128 |
| 31 | 0,45 | 46,08   | 0,567 | 46,647  | 0,047 |
| 32 | 0,91 | 113,568 | 1,392 | 114,96  | 0,115 |
| 33 | 0,34 | 36,992  | 0,454 | 37,446  | 0,037 |

## **Conclusion:**

La présente phase (évaluation des débits) a eu pour résultat la quantification des débits à évacuer pour chaque sous bassin, Ces débits incluent les débits d'eaux usées et d'eaux pluviales. Nous avons conclu notre travail par une évaluation des débits afin de pouvoir procéder au calcul hydraulique.

## **CHAPITRE V:**

Dimensionnement du réseau d'assainissement

#### V.1. Introduction:

Le calcul hydraulique du réseau d'assainissement c'est la phase qui vient après avoir évaluer les différents débits à évacuer dans le réseau.

La conception d'un réseau d'assainissement de type unitaire doit répondre à certaines normes d'écoulement :

- ✓ L'évacuation rapide des matières fécales hors de l'habitation.
- ✓ Le transport des eaux usées dans des conditions d'hygiène satisfaisantes.
- ✓ Les ouvrages d'évacuation (collecteurs et regards), doivent respecter certaines normes d'écoulement. L'implantation en profondeur se fait d'une manière à satisfaire aux conditions de résistance mécanique due aux charges extérieures et avec un meilleur choix du tracé des collecteurs.
- ✓ Lorsqu'il s'agit de réseau d'évacuation des eaux pluviales et des eaux usées dans une même conduite, les conditions d'auto curage doivent être satisfaites.

#### V.2. Principe de conception d'un système d'assainissement :

La conception d'un réseau d'assainissement est la concrétisation de tous les éléments constituant les branches du réseau sur un schéma :

- Les collecteurs : doivent pouvoir transporter en tout temps la totalité des débits apportés par les conduites qu'ils desservent. Ils sont définis par leurs :
  - ✓ Emplacements.
  - ✓ Profondeurs.
  - ✓ Dimensions (diamètres intérieur et extérieur, ...).
  - ✓ Pentes.
  - ✓ Leur joints et confection.
- Les regards : de différents types (de visite, de jonction, ...). Ils sont également définis par leurs :
  - ✓ Emplacements.
  - ✓ Profondeurs.
  - ✓ Côtes.

#### V.3. Dimensionnement du réseau d'assainissement :

#### V.3.1. Conditions d'écoulement et de dimensionnement :

Le dimensionnement du réseau d'assainissement du type unitaire doit dans la mesure du possible permettre l'entraînement des sables par les débits pluviaux pour empêcher leur décantation et éviter les dépôts, sans provoquer l'érosion de la paroi de la conduite. Lorsqu'il s'agit de réseau d'évacuation des eaux pluviales et des eaux usées dans une même conduite, les conditions d'auto curage doivent être satisfaites.

Il faut assurer une vitesse minimale de 0.6 m/s pour le (1/10) du débit de pleine section, et une vitesse de 0.3 m/s pour le (1/100) de ce même débit avec un diamètre minimal de 300 mm.

Si ces vitesses ne sont pas respectées, il faut prévoir des chasses automatiques ou des curages périodiques.

A l'opposé des considérations relatives à l'auto curage, le souci de prévenir la dégradation des joints sur les canalisations circulaires et leur revêtement intérieur, nous conduit à poser des limites supérieures aux pentes admissibles.

Donc, il est déconseillé de dépasser des vitesses de l'ordre de (4 à 5) m/s à pleine section.

#### V.3.2.Base de calcul:

L'écoulement dans les collecteurs est un écoulement à surface libre ; dont le débit est donné par la formule de la continuité :

$$Q = v \times S_m \tag{V.1}$$

Avec:

✓ **Q** : le débit capable de l'ouvrage  $(m^3/s)$ .

✓  $S_m$ : section mouillée (m²).

✓ v : vitesse d'écoulement (m/s).

Les ouvrages sont calculés suivant une formule d'écoulement résultant de celle de CHEZY ; où la vitesse d'écoulement se calcule par l'expression suivante :

$$\mathbf{v} = \mathbf{C} \times \sqrt{\mathbf{R}_h \times \mathbf{I}} \tag{V.2}$$

Avec:

✓ v : vitesse d'écoulement (m/s).

✓ C : coefficient de Chézy, qui dépend des paramètres hydrauliques et géométriques de l'écoulement.

✓ **I** : pente motrice de l'écoulement (m/m).

 $\checkmark$   $R_h$ : rayon hydraulique (m), donné par :

$$R_h = \frac{S_m}{P_m} \tag{V.3}$$

Où:

 $\checkmark$   $S_m$ : la surface de la section transversale mouillée de la conduite (m²).

✓  $P_m$ : le périmètre mouillé (m).

#### V.3.3. Formule de MANNING-STRICKLER:

Le coefficient de Chézy est exprimé comme suit :

$$C = K \times R_h^{1/6} \tag{V.4}$$

Avec:

✓ **K** : coefficient de rugosité (de Manning-Strickler) ; sa valeur dépend du type de l'ouvrage utilisé, son matériau et son état.

La vitesse d'écoulement se calcule par l'expression suivante :

$$V = k \times R_h^{2/3} \times I^{1/2} \tag{V.5}$$

Et le débit capable de l'ouvrage :

$$Q = K \times R_h^{2/3} \times I^{1/2} \times S_m \tag{V.6}$$

#### Procédé de calcul :

- 1. Déterminer le débit et la pente pour chaque point.
- 2. Le diamètre calculé est exprimé par :

$$\mathbf{D_{cal}} = \left[\frac{3.2 \times Q}{K \times \sqrt{I}}\right]^{3/8} \tag{V.7}$$

Avec:

$$D_{cal}$$
 (m) ;  $Q(m^3/s)$  ;  $I(m/m)$ 

- **3.** Fixer le diamètre normalisé de la conduite  $D_n$ .
- **4.** La vitesse à pleine section est calculée à partir de la relation (V.5) Pour un rayon hydraulique : $R_h = D_n/4$ ; on a :

$$V_{ps} = K \times \left(\frac{D_n}{4}\right)^{2/3} \times I^{1/2} \tag{V.8}$$

**5.** Le débit à pleine section :

$$Q_{ps} = V_{ps} \times \frac{\pi \times D_n^2}{4} \tag{V.9}$$

Avec:

$$Q_{ps}$$
 (m3/s);  $V_{ps}$  (m/s);  $D_n$ (m)

6. Le rapport des débits :

$$r_Q = \frac{Q}{Q_{ps}} \tag{V.10}$$

7. Déterminer les vitesses réelles par :

$$V = r_v \times V_{ns} \tag{V.11}$$

Avec:

 $\checkmark$   $r_v$ : rapport des vitesses, données comme suit :

**8.** La hauteur de remplissage :

$$\mathbf{H} = r_H \times D_n \tag{V.12}$$

Avec:

 $\checkmark$   $r_H$ : rapport des hauteurs, données comme suit :

Les relations entre  $r_Q$  et  $r_v$ , ainsi entre  $r_Q$  et  $r_H$  sont les suivantes :

$$r_{v} = -25.63 \times r_{Q}6 + 93.647 \times r_{Q}5 - 134.25 \times r_{Q}4 + 95.24 \times r_{Q}^{3} - 35.151 \times r_{Q}^{2} + 7.0395$$
 
$$\times r_{Q} + 0.2263 \qquad (V.13)$$
 
$$r_{H} = -11.423 \times r_{Q}^{6} + 40.641 \times r_{Q}^{5} - 55.497 \times r_{Q}^{4} + 37.115 \times r_{Q}^{3} - 12.857 \times r_{Q}^{2} + 2.8373 \times r_{Q} + 0.0359 \qquad (V.14)$$

Les résultats obtenus concernant le dimensionnement du réseau d'évacuation d'eaux usées et pluviales sont mentionnés dans les tableaux suivants :

Tableau V.1 : Collecteur principal  $N^{\circ}01$ 

| Tronçon | L   | P   | Q     | $D_{cal}$ | $D_{nor}$ | $Q_{ps}$  | $R_q$ | $R_v$ | $R_h$ | Н       | $V_{ps}$ (m/s) | V              | Vauto | Autocurage |
|---------|-----|-----|-------|-----------|-----------|-----------|-------|-------|-------|---------|----------------|----------------|-------|------------|
|         | (m) | (%) |       | (mm)      | (mm)      | $(m^3/s)$ | •     |       |       | (mm)    | •              | ( <b>m/s</b> ) | (m/s) |            |
| R1-R2   | 11  | 4   | 0,008 | 92,788    | 300       | 0,189     | 0,044 | 0,475 | 0,138 | 41,501  | 2,668          | 1,266          | 0,639 | vérifié    |
| R2-R3   | 11  | 4   | 0,017 | 120,331   | 300       | 0,189     | 0,088 | 0,630 | 0,208 | 62,264  | 2,668          | 1,679          | 0,639 | vérifié    |
| R3-R4   | 12  | 4   | 0,026 | 141,669   | 300       | 0,189     | 0,135 | 0,730 | 0,259 | 77,840  | 2,668          | 1,948          | 0,639 | vérifié    |
| R4-R5   | 11  | 4   | 0,034 | 157,371   | 300       | 0,189     | 0,179 | 0,785 | 0,295 | 88,440  | 2,668          | 2,094          | 0,639 | vérifié    |
| R5-R6   | 11  | 4   | 0,042 | 170,821   | 300       | 0,189     | 0,223 | 0,821 | 0,324 | 97,331  | 2,668          | 2,189          | 0,639 | vérifié    |
| R6-R7   | 10  | 4   | 0,048 | 179,592   | 300       | 0,189     | 0,255 | 0,841 | 0,345 | 103,364 | 2,668          | 2,243          | 0,639 | vérifié    |
| R7-R8   | 10  | 4   | 0,050 | 181,677   | 300       | 0,189     | 0,263 | 0,846 | 0,350 | 104,854 | 2,668          | 2,256          | 0,639 | vérifié    |
| R8-R9   | 10  | 4   | 0,057 | 191,547   | 300       | 0,189     | 0,302 | 0,869 | 0,374 | 112,323 | 2,668          | 2,318          | 0,639 | Vérifié    |
| R9-R10  | 11  | 4   | 0,065 | 201,507   | 300       | 0,189     | 0,346 | 0,895 | 0,402 | 120,709 | 2,668          | 2,388          | 0,639 | Vérifié    |
| R10-R11 | 11  | 4   | 0,074 | 210,707   | 300       | 0,189     | 0,390 | 0,924 | 0,431 | 129,293 | 2,668          | 2,464          | 0,639 | Vérifié    |
| R11-R12 | 10  | 4   | 0,081 | 218,526   | 300       | 0,189     | 0,430 | 0,951 | 0,457 | 137,163 | 2,668          | 2,536          | 0,639 | Vérifié    |
| R12-R13 | 10  | 4   | 0,089 | 225,905   | 300       | 0,189     | 0,469 | 0,978 | 0,483 | 144,947 | 2,668          | 2,609          | 0,639 | Vérifié    |
| R13-R14 | 11  | 4   | 0,097 | 233,583   | 300       | 0,189     | 0,513 | 1,007 | 0,511 | 153,240 | 2,668          | 2,687          | 0,639 | Vérifié    |
| R14-R15 | 11  | 4   | 0,105 | 240,862   | 300       | 0,189     | 0,557 | 1,033 | 0,537 | 161,119 | 2,668          | 2,756          | 0,639 | Vérifié    |
| R15-R16 | 11  | 4   | 0,113 | 247,792   | 300       | 0,189     | 0,601 | 1,055 | 0,562 | 168,542 | 2,668          | 2,815          | 0,639 | vérifié    |
| R16-R17 | 10  | 4   | 0,121 | 253,822   | 300       | 0,189     | 0,640 | 1,071 | 0,583 | 174,951 | 2,668          | 2,857          | 0,639 | vérifié    |
| R17-R18 | 10  | 4   | 0,128 | 259,623   | 300       | 0,189     | 0,680 | 1,083 | 0,604 | 181,184 | 2,668          | 2,889          | 0,639 | vérifié    |
| R18-R19 | 9   | 4   | 0,135 | 264,665   | 300       | 0,189     | 0,716 | 1,091 | 0,623 | 186,824 | 2,668          | 2,910          | 0,639 | vérifié    |
| R19-R20 | 12  | 4   | 0,138 | 266,677   | 300       | 0,189     | 0,731 | 1,094 | 0,631 | 189,179 | 2,668          | 2,917          | 0,639 | vérifié    |
| R20-R21 | 11  | 4   | 0,140 | 268,499   | 300       | 0,189     | 0,744 | 1,096 | 0,638 | 191,386 | 2,668          | 2,923          | 0,639 | vérifié    |
| R21-R22 | 12  | 4   | 0,143 | 270,463   | 300       | 0,189     | 0,759 | 1,098 | 0,646 | 193,860 | 2,668          | 2,929          | 0,639 | vérifié    |
| R22-R23 | 12  | 4   | 0,146 | 272,404   | 300       | 0,189     | 0,773 | 1,100 | 0,655 | 196,418 | 2,668          | 2,934          | 0,639 | vérifié    |
| R23-R24 | 11  | 4   | 0,148 | 274,163   | 300       | 0,189     | 0,787 | 1,101 | 0,663 | 198,851 | 2,668          | 2,938          | 0,639 | vérifié    |
| R24-R25 | 10  | 4   | 0,151 | 275,745   | 300       | 0,189     | 0,799 | 1,103 | 0,670 | 201,147 | 2,668          | 2,942          | 0,639 | vérifié    |
| R25-R26 | 10  | 4   | 0,153 | 277,313   | 300       | 0,189     | 0,811 | 1,104 | 0,678 | 203,531 | 2,668          | 2,945          | 0,639 | vérifié    |

| R26-R27   | 10   | 4    | 0,155 | 278,867 | 300 | 0,189 | 0,823 | 1,105 | 0,687 | 206,012 | 2,668 | 2,949 | 0,639 | vérifié |
|-----------|------|------|-------|---------|-----|-------|-------|-------|-------|---------|-------|-------|-------|---------|
| R27-R28   | 11   | 3    | 0,158 | 296,108 | 300 | 0,163 | 0,966 | 1,122 | 0,814 | 244,157 | 2,310 | 2,592 | 0,549 | vérifié |
| R28-R29   | 11   | 3    | 0,160 | 297,876 | 300 | 0,163 | 0,981 | 1,123 | 0,831 | 249,275 | 2,310 | 2,593 | 0,549 | vérifié |
| R29-R30   | 30   | 3    | 0,167 | 302,611 | 400 | 0,352 | 0,475 | 0,982 | 0,487 | 194,769 | 2,799 | 2,749 | 0,701 | vérifié |
| R30-R31   | 10   | 4    | 0,169 | 288,190 | 400 | 0,406 | 0,417 | 0,942 | 0,449 | 179,620 | 3,232 | 3,045 | 0,822 | vérifié |
| R31-RB32  | 10   | 4    | 0,172 | 289,648 | 400 | 0,406 | 0,423 | 0,946 | 0,453 | 181,110 | 3,232 | 3,057 | 0,822 | vérifié |
| RB32-R33  | 10   | 4    | 0,303 | 358,398 | 400 | 0,406 | 0,746 | 1,096 | 0,639 | 255,675 | 3,232 | 3,542 | 0,822 | vérifié |
| R33-R34   | 10   | 4    | 0,305 | 359,413 | 400 | 0,406 | 0,752 | 1,097 | 0,642 | 256,945 | 3,232 | 3,545 | 0,822 | vérifié |
| R34-R35   | 10   | 4    | 0,308 | 360,424 | 400 | 0,406 | 0,757 | 1,098 | 0,646 | 258,231 | 3,232 | 3,547 | 0,822 | vérifié |
| R35-R36   | 10   | 4    | 0,310 | 361,429 | 400 | 0,406 | 0,763 | 1,098 | 0,649 | 259,533 | 3,232 | 3,550 | 0,822 | vérifié |
| R36-R37   | 9,72 | 4    | 0,312 | 362,403 | 400 | 0,406 | 0,769 | 1,099 | 0,652 | 260,815 | 3,232 | 3,552 | 0,822 | vérifié |
| R37-R38   | 8,28 | 4    | 0,314 | 363,228 | 400 | 0,406 | 0,773 | 1,100 | 0,655 | 261,922 | 3,232 | 3,554 | 0,822 | vérifié |
| R38-R39   | 13   | 4    | 0,317 | 364,518 | 400 | 0,406 | 0,781 | 1,101 | 0,659 | 263,688 | 3,232 | 3,557 | 0,822 | vérifié |
| R39-RB40  | 13   | 4    | 0,321 | 366,188 | 400 | 0,406 | 0,790 | 1,102 | 0,665 | 266,045 | 3,232 | 3,560 | 0,822 | vérifié |
| RB40-R41  | 14   | 4    | 0,346 | 376,683 | 400 | 0,406 | 0,852 | 1,109 | 0,708 | 283,151 | 3,232 | 3,583 | 0,822 | vérifié |
| R41-R42   | 14   | 4    | 0,349 | 377,779 | 400 | 0,406 | 0,859 | 1,110 | 0,713 | 285,211 | 3,232 | 3,586 | 0,822 | vérifié |
| R42-R43   | 15   | 4    | 0,352 | 378,947 | 400 | 0,406 | 0,866 | 1,110 | 0,719 | 287,472 | 3,232 | 3,589 | 0,722 | vérifié |
| R43-RB44  | 15   | 4    | 0,354 | 380,110 | 400 | 0,406 | 0,873 | 1,111 | 0,724 | 289,790 | 3,232 | 3,591 | 0,884 | vérifié |
| RB44-R45  | 30   | 2,14 | 0,450 | 467,423 | 500 | 0,539 | 0,836 | 1,107 | 0,696 | 347,803 | 2,743 | 3,036 | 0,705 | vérifié |
| R45-R46   | 30   | 2,14 | 0,458 | 470,585 | 600 | 0,876 | 0,523 | 1,013 | 0,517 | 310,187 | 3,097 | 3,139 | 0,705 | vérifié |
| R46-R47   | 30   | 1,46 | 0,466 | 508,920 | 600 | 0,723 | 0,645 | 1,073 | 0,585 | 351,260 | 2,558 | 2,744 | 0,705 | vérifié |
| R47-R48   | 30   | 1,46 | 0,474 | 512,243 | 600 | 0,723 | 0,656 | 1,076 | 0,591 | 354,807 | 2,558 | 2,753 | 0,705 | vérifié |
| R48-R49   | 25   | 1,46 | 0,481 | 514,984 | 600 | 0,723 | 0,665 | 1,079 | 0,596 | 357,750 | 2,558 | 2,761 | 0,719 | vérifié |
| R49-R50   | 21   | 1,46 | 0,487 | 517,268 | 600 | 0,723 | 0,673 | 1,081 | 0,600 | 360,217 | 2,558 | 2,766 | 0,719 | vérifié |
| RB50-RB51 | 21   | 1,51 | 0,494 | 516,960 | 600 | 0,736 | 0,672 | 1,081 | 0,600 | 359,883 | 2,602 | 2,812 | 0,719 | vérifié |
| RB51-R52  | 24   | 1,51 | 0,689 | 585,382 | 600 | 0,736 | 0,936 | 1,119 | 0,783 | 469,746 | 2,602 | 2,913 | 0,874 | vérifié |
| R52-RB53  | 30   | 1,51 | 0,700 | 588,772 | 600 | 0,736 | 0,951 | 1,121 | 0,798 | 478,747 | 2,602 | 2,916 | 0,639 | vérifié |
| RB53-R54  | 30   | 2,1  | 0,729 | 562,173 | 600 | 0,868 | 0,841 | 1,107 | 0,699 | 419,572 | 3,068 | 3,398 | 0,639 | vérifié |
| R54-R55   | 30   | 2,63 | 0,831 | 566,051 | 600 | 0,971 | 0,856 | 1,109 | 0,711 | 426,646 | 3,434 | 3,809 | 0,639 | vérifié |

| R55-DO2 | 30 | 2,63 | 0,831 | 566,051 | 600 | 0,971 | 0,856 | 1,109 | 0,711 | 426,646 | 3,434 | 3,809 | 0,639 | vérifié |
|---------|----|------|-------|---------|-----|-------|-------|-------|-------|---------|-------|-------|-------|---------|

Tableau V.2 : Collecteur principal  $N^{\circ}02$ 

| Tronçon    | L            | P    | Q     | $D_{cal}$ | $D_{nor}$ | $Q_{ps}$  | $R_q$ | $R_v$ | $R_h$ | Н       | $V_{ps}$ (m/s) | V     | V <sub>auto</sub> | Autocurage |
|------------|--------------|------|-------|-----------|-----------|-----------|-------|-------|-------|---------|----------------|-------|-------------------|------------|
|            | ( <b>m</b> ) | (%)  |       | (mm)      | (mm)      | $(m^3/s)$ | •     |       |       | (mm)    | •              | (m/s) | (m/s)             |            |
| R124-R125  | 30           | 4    | 0,138 | 266,594   | 300       | 0,189     | 0,730 | 1,093 | 0,630 | 189,081 | 2,668          | 2,917 | 0,639             | vérifié    |
| R125-R126  | 30           | 4    | 0,144 | 271,379   | 300       | 0,189     | 0,765 | 1,099 | 0,650 | 195,052 | 2,668          | 2,931 | 0,639             | vérifié    |
| R126-R127  | 30           | 4    | 0,151 | 276,027   | 300       | 0,189     | 0,801 | 1,103 | 0,672 | 201,566 | 2,668          | 2,942 | 0,639             | vérifié    |
| R127-R128  | 30           | 4    | 0,158 | 280,548   | 300       | 0,189     | 0,836 | 1,107 | 0,696 | 208,845 | 2,668          | 2,953 | 0,639             | vérifié    |
| R128-R129  | 25           | 4    | 0,163 | 284,225   | 300       | 0,189     | 0,866 | 1,110 | 0,719 | 215,632 | 2,668          | 2,962 | 0,639             | vérifié    |
| R129-R130  | 25           | 4    | 0,169 | 287,824   | 300       | 0,189     | 0,895 | 1,114 | 0,744 | 223,161 | 2,668          | 2,972 | 0,639             | vérifié    |
| R130-RB131 | 18,45        | 4    | 0,173 | 290,433   | 300       | 0,189     | 0,917 | 1,117 | 0,764 | 229,216 | 2,668          | 2,980 | 0,639             | vérifié    |
| RB131-R132 | 10           | 4    | 0,479 | 425,579   | 500       | 0,736     | 0,651 | 1,075 | 0,589 | 294,294 | 3,750          | 4,029 | 1,036             | vérifié    |
| R132-R133  | 10           | 4    | 0,481 | 426,229   | 500       | 0,736     | 0,653 | 1,075 | 0,590 | 294,989 | 3,750          | 4,033 | 1,036             | vérifié    |
| R133-R134  | 10           | 4    | 0,483 | 426,878   | 500       | 0,736     | 0,656 | 1,076 | 0,591 | 295,683 | 3,750          | 4,036 | 1,036             | vérifié    |
| R134-R135  | 10           | 4    | 0,485 | 427,526   | 500       | 0,736     | 0,659 | 1,077 | 0,593 | 296,377 | 3,750          | 4,039 | 1,036             | vérifié    |
| R135-R136  | 20           | 4    | 0,489 | 428,815   | 500       | 0,736     | 0,664 | 1,079 | 0,596 | 297,761 | 3,750          | 4,045 | 1,036             | vérifié    |
| R136-R137  | 10           | 4    | 0,491 | 429,458   | 500       | 0,736     | 0,667 | 1,079 | 0,597 | 298,453 | 3,750          | 4,048 | 1,036             | vérifié    |
| R137-R138  | 10           | 4    | 0,493 | 430,098   | 500       | 0,736     | 0,669 | 1,080 | 0,598 | 299,144 | 3,750          | 4,050 | 1,036             | vérifié    |
| R138-R139  | 10           | 4    | 0,495 | 430,738   | 500       | 0,736     | 0,672 | 1,081 | 0,600 | 299,836 | 3,750          | 4,053 | 1,036             | vérifié    |
| R139-R140  | 10           | 4    | 0,497 | 431,375   | 500       | 0,736     | 0,675 | 1,082 | 0,601 | 300,527 | 3,750          | 4,056 | 1,036             | vérifié    |
| R140-R141  | 10           | 4    | 0,499 | 432,011   | 500       | 0,736     | 0,677 | 1,082 | 0,602 | 301,218 | 3,750          | 4,059 | 1,036             | vérifié    |
| R141-R142  | 10           | 4    | 0,501 | 432,646   | 500       | 0,736     | 0,680 | 1,083 | 0,604 | 301,909 | 3,750          | 4,061 | 1,036             | vérifié    |
| R142-R143  | 25           | 4    | 0,505 | 434,225   | 500       | 0,736     | 0,687 | 1,085 | 0,607 | 303,638 | 3,750          | 4,067 | 1,036             | vérifié    |
| R143-RB144 | 17,94        | 3,97 | 0,509 | 435,968   | 500       | 0,734     | 0,694 | 1,086 | 0,611 | 305,563 | 3,736          | 4,059 | 1,031             | vérifié    |
| RB144-R145 | 18           | 3,97 | 0,635 | 473,664   | 600       | 1,193     | 0,532 | 1,019 | 0,523 | 313,526 | 4,219          | 4,299 | 1,289             | vérifié    |
| R145-R146  | 10           | 4,27 | 1,221 | 597,013   | 600       | 1,237     | 0,987 | 1,122 | 0,837 | 502,293 | 4,375          | 4,911 | 1,348             | vérifié    |
| R146-R147  | 10           | 4,27 | 1,225 | 597,747   | 600       | 1,237     | 0,990 | 1,122 | 0,841 | 504,490 | 4,375          | 4,911 | 1,348             | vérifié    |
| R147-R148  | 10           | 4,42 | 1,229 | 594,665   | 600       | 1,259     | 0,976 | 1,122 | 0,826 | 495,361 | 4,451          | 4,997 | 1,378             | vérifié    |
| R148-R149  | 10           | 4,59 | 1,233 | 591,240   | 600       | 1,283     | 0,962 | 1,122 | 0,809 | 485,560 | 4,536          | 5,089 | 1,411             | vérifié    |

| R149-R150  | 10    | 4,59 | 1,238 | 592,006  | 600  | 1,283 | 0,965 | 1,122 | 0,813 | 487,719 | 4,536 | 5,090 | 1,411 | vérifié |
|------------|-------|------|-------|----------|------|-------|-------|-------|-------|---------|-------|-------|-------|---------|
| R150-R151  | 10    | 4,59 | 1,242 | 592,770  | 600  | 1,283 | 0,968 | 1,122 | 0,816 | 489,893 | 4,536 | 5,090 | 1,411 | vérifié |
| R151-R152  | 10    | 4,59 | 1,246 | 593,533  | 600  | 1,283 | 0,972 | 1,122 | 0,820 | 492,081 | 4,536 | 5,091 | 1,411 | vérifié |
| R152-R153  | 10    | 4,59 | 1,250 | 594,295  | 600  | 1,283 | 0,975 | 1,122 | 0,824 | 494,284 | 4,536 | 5,092 | 1,411 | vérifié |
| R153-R154  | 10    | 4,59 | 1,255 | 595,054  | 600  | 1,283 | 0,978 | 1,122 | 0,828 | 496,500 | 4,536 | 5,092 | 1,411 | vérifié |
| R154-RB155 | 42    | 1,58 | 1,273 | 730,648  | 800  | 1,621 | 0,785 | 1,101 | 0,662 | 529,629 | 3,224 | 3,550 | 1,069 | vérifié |
| RB155-R156 | 23    | 1,58 | 1,281 | 732,488  | 800  | 1,621 | 0,790 | 1,102 | 0,665 | 532,250 | 3,224 | 3,552 | 1,069 | vérifié |
| R156-RB157 | 21    | 1,58 | 1,289 | 734,161  | 800  | 1,621 | 0,795 | 1,102 | 0,668 | 534,679 | 3,224 | 3,554 | 1,069 | vérifié |
| RB157-R158 | 25    | 1,58 | 1,403 | 757,935  | 800  | 1,621 | 0,866 | 1,110 | 0,719 | 575,021 | 3,224 | 3,580 | 1,069 | vérifié |
| R158-RB159 | 17,02 | 1,28 | 1,410 | 789,791  | 800  | 1,459 | 0,966 | 1,122 | 0,814 | 651,566 | 2,902 | 3,256 | 0,934 | vérifié |
| RB159-R160 | 25    | 1,28 | 1,458 | 799,854  | 800  | 1,459 | 1,000 | 1,122 | 0,852 | 681,317 | 2,902 | 3,255 | 0,934 | vérifié |
| R160-R161  | 22,98 | 3,31 | 1,467 | 670,807  | 800  | 2,346 | 0,625 | 1,065 | 0,575 | 460,103 | 4,667 | 4,972 | 1,742 | vérifié |
| R161-R162  | 20    | 3,31 | 1,476 | 672,479  | 800  | 2,346 | 0,629 | 1,067 | 0,577 | 461,879 | 4,667 | 4,979 | 1,742 | vérifié |
| R162-R163  | 15    | 3,31 | 1,484 | 673,728  | 800  | 2,346 | 0,632 | 1,068 | 0,579 | 463,207 | 4,667 | 4,985 | 1,742 | vérifié |
| R163-R164  | 25    | 3,31 | 1,496 | 675,802  | 800  | 2,346 | 0,638 | 1,070 | 0,582 | 465,411 | 4,667 | 4,994 | 1,742 | vérifié |
| R164-R165  | 12    | 3,31 | 1,502 | 676,794  | 800  | 2,346 | 0,640 | 1,071 | 0,583 | 466,466 | 4,667 | 4,998 | 1,742 | vérifié |
| R165-R166  | 20    | 2,9  | 1,511 | 695,473  | 800  | 2,196 | 0,688 | 1,085 | 0,608 | 486,605 | 4,368 | 4,740 | 1,594 | vérifié |
| R166-R167  | 20    | 2,9  | 1,521 | 697,155  | 800  | 2,196 | 0,693 | 1,086 | 0,611 | 488,464 | 4,368 | 4,744 | 1,594 | vérifié |
| R167-R168  | 30    | 0,81 | 1,536 | 888,688  | 1000 | 2,104 | 0,730 | 1,094 | 0,630 | 630,317 | 2,679 | 2,929 | 0,964 | vérifié |
| R168-R169  | 30    | 0,81 | 1,551 | 891,857  | 1000 | 2,104 | 0,737 | 1,095 | 0,634 | 634,119 | 2,679 | 2,932 | 0,964 | vérifié |
| R169-R170  | 30    | 0,81 | 1,556 | 893,015  | 1000 | 2,104 | 0,740 | 1,095 | 0,636 | 635,525 | 2,679 | 2,933 | 0,964 | vérifié |
| R170-R171  | 30    | 1,5  | 1,561 | 796,607  | 1000 | 2,863 | 0,545 | 1,027 | 0,530 | 530,299 | 3,645 | 3,742 | 1,462 | vérifié |
| R171-R172  | 30    | 2,7  | 1,567 | 714,398  | 1000 | 3,841 | 0,408 | 0,936 | 0,443 | 442,898 | 4,891 | 4,577 | 2,201 | vérifié |
| R172-R173  | 30    | 2,7  | 1,572 | 715,316  | 1000 | 3,841 | 0,409 | 0,937 | 0,444 | 443,822 | 4,891 | 4,581 | 2,201 | vérifié |
| R173-R174  | 38    | 0,44 | 1,579 | 1006,780 | 1200 | 2,521 | 0,626 | 1,066 | 0,576 | 690,760 | 2,229 | 2,376 | 0,854 | vérifié |
| R174-R175  | 30    | 0,44 | 2,073 | 1115,014 | 1200 | 2,521 | 0,822 | 1,105 | 0,686 | 823,306 | 2,229 | 2,464 | 0,854 | vérifié |
| R175-R176  | 30    | 0,44 | 2,073 | 1115,014 | 1200 | 2,521 | 0,822 | 1,105 | 0,686 | 823,306 | 2,229 | 2,464 | 0,854 | vérifié |
| R176-R177  | 30    | 0,44 | 2,073 | 1115,014 | 1200 | 2,521 | 0,822 | 1,105 | 0,686 | 823,306 | 2,229 | 2,464 | 0,854 | vérifié |
| R177-R178  | 30    | 0,44 | 2,073 | 1115,014 | 1200 | 2,521 | 0,822 | 1,105 | 0,686 | 823,306 | 2,229 | 2,464 | 0,854 | vérifié |
| R178-R179  | 30    | 0,44 | 2,073 | 1115,014 | 1200 | 2,521 | 0,822 | 1,105 | 0,686 | 823,306 | 2,229 | 2,464 | 0,854 | vérifié |
| R179-R180  | 30    | 0,44 | 2,073 | 1115,014 | 1200 | 2,521 | 0,822 | 1,105 | 0,686 | 823,306 | 2,229 | 2,464 | 0,854 | vérifié |

| R180-R181 | 30 | 0,44 | 2,073 | 1115,014 | 1200 | 2,521 | 0,822 | 1,105 | 0,686 | 823,306 | 2,229 | 2,464 | 0,854 | vérifié |
|-----------|----|------|-------|----------|------|-------|-------|-------|-------|---------|-------|-------|-------|---------|
| R181-R182 | 30 | 0,44 | 2,073 | 1115,014 | 1200 | 2,521 | 0,822 | 1,105 | 0,686 | 823,306 | 2,229 | 2,464 | 0,854 | vérifié |
| R182-R183 | 30 | 0,44 | 2,073 | 1115,014 | 1200 | 2,521 | 0,822 | 1,105 | 0,686 | 823,306 | 2,229 | 2,464 | 0,854 | vérifié |
| R183-R184 | 30 | 0,44 | 2,073 | 1115,014 | 1200 | 2,521 | 0,822 | 1,105 | 0,686 | 823,306 | 2,229 | 2,464 | 0,854 | vérifié |
| R184-DO1  | 30 | 0,44 | 2,073 | 1115,014 | 1200 | 2,521 | 0,822 | 1,105 | 0,686 | 823,306 | 2,229 | 2,464 | 0,854 | vérifié |

Tableau V.3: Collecteur secondaire N°01

| Tronçon    | L            | P    | Q     | $D_{cal}$ | $D_{nor}$ | $Q_{ps}$  | $R_q$ | $R_v$ | $R_h$ | Н       | $V_{ps}$ (m/s) | V     | V <sub>auto</sub> | Autocurage |
|------------|--------------|------|-------|-----------|-----------|-----------|-------|-------|-------|---------|----------------|-------|-------------------|------------|
|            | ( <b>m</b> ) | (%)  |       | (mm)      | (mm)      | $(m^3/s)$ | •     |       |       | (mm)    | •              | (m/s) | (m/s)             |            |
| R299-R300  | 30           | 0,72 | 0,035 | 219,051   | 400       | 0,172     | 0,201 | 0,804 | 0,310 | 123,991 | 1,371          | 1,103 | 0,327             | vérifié    |
| R300-R301  | 30           | 0,72 | 0,090 | 313,439   | 400       | 0,172     | 0,522 | 1,013 | 0,516 | 206,483 | 1,371          | 1,388 | 0,327             | vérifié    |
| R301-R302  | 10           | 0,72 | 0,108 | 336,155   | 400       | 0,172     | 0,629 | 1,067 | 0,577 | 230,850 | 1,371          | 1,463 | 0,327             | vérifié    |
| R302-R303  | 10           | 0,72 | 0,127 | 356,565   | 400       | 0,172     | 0,736 | 1,094 | 0,634 | 253,433 | 1,371          | 1,501 | 0,327             | vérifié    |
| R303-R304  | 10           | 0,72 | 0,145 | 375,193   | 500       | 0,312     | 0,465 | 0,975 | 0,480 | 240,170 | 1,591          | 1,551 | 0,394             | vérifié    |
| R304-R305  | 10           | 0,72 | 0,164 | 392,395   | 500       | 0,312     | 0,524 | 1,014 | 0,518 | 258,751 | 1,591          | 1,613 | 0,394             | vérifié    |
| R305-R306  | 10           | 0,72 | 0,182 | 408,424   | 500       | 0,312     | 0,583 | 1,047 | 0,552 | 276,035 | 1,591          | 1,666 | 0,394             | vérifié    |
| R306-R307  | 10           | 0,72 | 0,201 | 423,468   | 500       | 0,312     | 0,642 | 1,072 | 0,584 | 292,044 | 1,591          | 1,705 | 0,394             | vérifié    |
| R307-R308  | 10           | 0,72 | 0,219 | 437,671   | 500       | 0,312     | 0,701 | 1,088 | 0,615 | 307,463 | 1,591          | 1,731 | 0,394             | vérifié    |
| R308-RB309 | 13,99        | 0,72 | 0,245 | 456,337   | 500       | 0,312     | 0,784 | 1,101 | 0,661 | 330,571 | 1,591          | 1,752 | 0,394             | vérifié    |
| RB309-R310 | 10,01        | 4    | 0,253 | 334,794   | 500       | 0,736     | 0,343 | 0,893 | 0,400 | 200,250 | 3,750          | 3,350 | 1,036             | vérifié    |
| R310-R311  | 10           | 4    | 0,255 | 335,767   | 500       | 0,736     | 0,346 | 0,895 | 0,402 | 201,112 | 3,750          | 3,356 | 1,036             | vérifié    |
| R311-R312  | 9,99         | 4    | 0,257 | 336,735   | 500       | 0,736     | 0,348 | 0,897 | 0,404 | 201,975 | 3,750          | 3,363 | 1,036             | vérifié    |
| R312-R313  | 10,01        | 4    | 0,259 | 337,701   | 500       | 0,736     | 0,351 | 0,898 | 0,406 | 202,841 | 3,750          | 3,369 | 1,036             | vérifié    |
| R313-R314  | 10           | 4    | 0,261 | 338,660   | 500       | 0,736     | 0,354 | 0,900 | 0,407 | 203,708 | 3,750          | 3,375 | 1,036             | vérifié    |
| R314-R315  | 9,99         | 4    | 0,262 | 339,615   | 500       | 0,736     | 0,356 | 0,902 | 0,409 | 204,575 | 3,750          | 3,382 | 1,036             | vérifié    |
| R315-R316  | 10,01        | 4    | 0,264 | 340,566   | 500       | 0,736     | 0,359 | 0,904 | 0,411 | 205,444 | 3,750          | 3,388 | 1,036             | vérifié    |
| R316-R317  | 10           | 4    | 0,266 | 341,513   | 500       | 0,736     | 0,362 | 0,905 | 0,413 | 206,314 | 3,750          | 3,395 | 1,036             | vérifié    |
| R317-R318  | 9,99         | 4    | 0,268 | 342,454   | 500       | 0,736     | 0,364 | 0,907 | 0,414 | 207,185 | 3,750          | 3,401 | 1,036             | vérifié    |
| R318-R319  | 36,98        | 2,04 | 0,276 | 392,447   | 500       | 0,526     | 0,524 | 1,014 | 0,518 | 258,808 | 2,678          | 2,716 | 0,703             | vérifié    |
| R319-R320  | 30           | 2,04 | 0,282 | 395,572   | 500       | 0,526     | 0,535 | 1,021 | 0,524 | 262,195 | 2,678          | 2,734 | 0,703             | vérifié    |

| R320-R321  | 30    | 2,04 | 0,287 | 398,657 | 500 | 0,526 | 0,547 | 1,027 | 0,531 | 265,532 | 2,678 | 2,751 | 0,703 | vérifié |
|------------|-------|------|-------|---------|-----|-------|-------|-------|-------|---------|-------|-------|-------|---------|
| R321-R322  | 18    | 2,04 | 0,291 | 400,489 | 500 | 0,526 | 0,553 | 1,031 | 0,535 | 267,510 | 2,678 | 2,762 | 0,703 | vérifié |
| R322-R323  | 35    | 2,79 | 0,298 | 380,976 | 500 | 0,615 | 0,484 | 0,988 | 0,493 | 246,382 | 3,132 | 3,095 | 0,840 | vérifié |
| R323-R324  | 40    | 2,79 | 0,316 | 389,628 | 500 | 0,615 | 0,514 | 1,008 | 0,511 | 255,749 | 3,132 | 3,156 | 0,840 | vérifié |
| R324-R325  | 35    | 2,79 | 0,332 | 396,943 | 500 | 0,615 | 0,540 | 1,024 | 0,527 | 263,679 | 3,132 | 3,206 | 0,840 | vérifié |
| R325-R326  | 40    | 2,79 | 0,351 | 405,038 | 500 | 0,615 | 0,570 | 1,040 | 0,545 | 272,406 | 3,132 | 3,258 | 0,840 | vérifié |
| R326-R327  | 11,03 | 4    | 0,356 | 380,624 | 500 | 0,736 | 0,483 | 0,988 | 0,492 | 246,002 | 3,750 | 3,703 | 1,036 | vérifié |
| R327-R328  | 13,97 | 4    | 0,415 | 403,179 | 500 | 0,736 | 0,563 | 1,037 | 0,541 | 270,409 | 3,750 | 3,888 | 1,036 | vérifié |
| R328-R329  | 11,03 | 4    | 0,420 | 405,020 | 500 | 0,736 | 0,570 | 1,040 | 0,545 | 272,386 | 3,750 | 3,901 | 1,036 | vérifié |
| R329-R330  | 13,97 | 4    | 0,425 | 407,019 | 500 | 0,736 | 0,578 | 1,044 | 0,549 | 274,530 | 3,750 | 3,916 | 1,036 | vérifié |
| R330-R331  | 10    | 4    | 0,429 | 408,439 | 500 | 0,736 | 0,583 | 1,047 | 0,552 | 276,051 | 3,750 | 3,926 | 1,036 | vérifié |
| R331-R332  | 10    | 4    | 0,433 | 409,852 | 500 | 0,736 | 0,589 | 1,050 | 0,555 | 277,561 | 3,750 | 3,936 | 1,036 | vérifié |
| R332-R333  | 9,03  | 4    | 0,437 | 411,121 | 500 | 0,736 | 0,593 | 1,052 | 0,558 | 278,914 | 3,750 | 3,944 | 1,036 | vérifié |
| R333-R334  | 10    | 4    | 0,441 | 412,518 | 500 | 0,736 | 0,599 | 1,054 | 0,561 | 280,404 | 3,750 | 3,954 | 1,036 | vérifié |
| R334-R335  | 10    | 4    | 0,445 | 413,907 | 500 | 0,736 | 0,604 | 1,057 | 0,564 | 281,883 | 3,750 | 3,963 | 1,036 | vérifié |
| R335-R336  | 8,97  | 4    | 0,448 | 415,147 | 500 | 0,736 | 0,609 | 1,059 | 0,566 | 283,202 | 3,750 | 3,971 | 1,036 | vérifié |
| R336-R337  | 10,03 | 4    | 0,452 | 416,526 | 500 | 0,736 | 0,614 | 1,061 | 0,569 | 284,667 | 3,750 | 3,979 | 1,036 | vérifié |
| R337-R338  | 10    | 4    | 0,456 | 417,894 | 500 | 0,736 | 0,620 | 1,063 | 0,572 | 286,120 | 3,750 | 3,987 | 1,036 | vérifié |
| R338-R339  | 11,97 | 4    | 0,464 | 420,456 | 500 | 0,736 | 0,630 | 1,067 | 0,578 | 288,841 | 3,750 | 4,002 | 1,036 | vérifié |
| R339-R340  | 10,03 | 4    | 0,470 | 422,583 | 500 | 0,736 | 0,639 | 1,070 | 0,582 | 291,102 | 3,750 | 4,014 | 1,036 | vérifié |
| R340-R341  | 9,97  | 4    | 0,476 | 424,680 | 500 | 0,736 | 0,647 | 1,073 | 0,587 | 293,334 | 3,750 | 4,025 | 1,036 | vérifié |
| R341-R342  | 9,03  | 4    | 0,482 | 426,564 | 500 | 0,736 | 0,655 | 1,076 | 0,591 | 295,347 | 3,750 | 4,034 | 1,036 | vérifié |
| R342-R343  | 7,29  | 4    | 0,487 | 428,075 | 500 | 0,736 | 0,661 | 1,078 | 0,594 | 296,966 | 3,750 | 4,041 | 1,036 | vérifié |
| R343-R344  | 9,25  | 4    | 0,492 | 429,980 | 500 | 0,736 | 0,669 | 1,080 | 0,598 | 299,016 | 3,750 | 4,050 | 1,036 | vérifié |
| R344-RB174 | 9,5   | 0,81 | 0,494 | 580,838 | 600 | 0,539 | 0,917 | 1,117 | 0,764 | 458,363 | 1,906 | 2,129 | 0,502 | vérifié |

# Tableau V.4 : Collecteur secondaire $N^{\circ}02$

| Tronçon   | L<br>(m) | P<br>(%) | Q     | D <sub>cal</sub> (mm) | <b>D</b> <sub>nor</sub> (mm) | $Q_{ps}$ $(m^3/s)$ | $R_q$ | $R_v$ | $R_h$ | H<br>(mm) | $V_{ps}$ (m/s) | <i>V</i> (m/s) | V <sub>auto</sub> (m/s) | Autocurage |
|-----------|----------|----------|-------|-----------------------|------------------------------|--------------------|-------|-------|-------|-----------|----------------|----------------|-------------------------|------------|
| R188-R189 | 10       | 4        | 0,004 | 71,230                | 300                          | 0,189              | 0,022 | 0,363 | 0,092 | 27,476    | 2,668          | 0,968          | 0,639                   | vérifié    |

| R189-R190  | 10 | 4 | 0,008 | 92,374  | 300 | 0,189 | 0,043   0,472 | 0,137 | 41,204  | 2,668 | 1,260 | 0,639 | vérifié |
|------------|----|---|-------|---------|-----|-------|---------------|-------|---------|-------|-------|-------|---------|
| R190-R191  | 10 | 4 | 0,012 | 107,544 | 300 | 0,189 | 0,065 0,559   | 0,175 | 52,504  | 2,668 | 1,490 | 0,639 | vérifié |
| R191-R192  | 10 | 4 | 0,016 | 119,795 | 300 | 0,189 | 0,086 0,627   | 0,206 | 61,857  | 2,668 | 1,672 | 0,639 | vérifié |
| R192-R193  | 10 | 4 | 0,128 | 259,430 | 300 | 0,189 | 0,679 1,083   | 0,603 | 180,973 | 2,668 | 2,888 | 0,639 | vérifié |
| R193-R194  | 10 | 4 | 0,132 | 262,498 | 300 | 0,189 | 0,700 1,088   | 0,615 | 184,361 | 2,668 | 2,902 | 0,639 | vérifié |
| R194-R195  | 10 | 4 | 0,136 | 265,507 | 300 | 0,189 | 0,722 1,092   | 0,626 | 187,800 | 2,668 | 2,913 | 0,639 | vérifié |
| R195-R196  | 10 | 4 | 0,140 | 268,460 | 300 | 0,189 | 0,744 1,096   | 0,638 | 191,339 | 2,668 | 2,923 | 0,639 | vérifié |
| R196-R197  | 10 | 4 | 0,144 | 271,360 | 300 | 0,189 | 0,765 1,099   | 0,650 | 195,028 | 2,668 | 2,931 | 0,639 | vérifié |
| R197-R198  | 10 | 4 | 0,148 | 274,210 | 300 | 0,189 | 0,787   1,101 | 0,663 | 198,918 | 2,668 | 2,938 | 0,639 | vérifié |
| R198-R199  | 10 | 4 | 0,152 | 277,011 | 300 | 0,189 | 0,808 1,104   | 0,677 | 203,062 | 2,668 | 2,945 | 0,639 | vérifié |
| R199-R200  | 10 | 4 | 0,157 | 279,766 | 300 | 0,189 | 0,830 1,106   | 0,692 | 207,507 | 2,668 | 2,951 | 0,639 | vérifié |
| R200-R201  | 10 | 4 | 0,161 | 282,476 | 300 | 0,189 | 0,852 1,109   | 0,708 | 212,296 | 2,668 | 2,958 | 0,639 | vérifié |
| R201-R202  | 10 | 4 | 0,300 | 357,110 | 400 | 0,406 | 0,739 1,095   | 0,635 | 254,094 | 3,232 | 3,539 | 0,822 | vérifié |
| R202-RB131 | 10 | 4 | 0,304 | 358,921 | 400 | 0,406 | 0,749 1,096   | 0,641 | 256,328 | 3,232 | 3,543 | 0,822 | vérifié |

Tableau V.5 : Collecteur secondaire N°03

| Tronçon    | L            | P    | Q     | D <sub>cal</sub> | $D_{nor}$ | $Q_{ps}$  | $R_q$ | $R_v$ | $R_h$ | Н       | $V_{ps}$ (m/s) | V              | V <sub>auto</sub> | Autocurage |
|------------|--------------|------|-------|------------------|-----------|-----------|-------|-------|-------|---------|----------------|----------------|-------------------|------------|
|            | ( <b>m</b> ) | (%)  |       | (mm)             | (mm)      | $(m^3/s)$ |       |       |       | (mm)    |                | ( <b>m/s</b> ) | (m/s)             |            |
| R235-R236  | 30           | 3,05 | 0,015 | 121,133          | 300       | 0,165     | 0,089 | 0,634 | 0,210 | 62,871  | 2,329          | 1,476          | 0,554             | vérifié    |
| R236-R237  | 30           | 3,05 | 0,029 | 157,091          | 300       | 0,165     | 0,178 | 0,784 | 0,294 | 88,255  | 2,329          | 1,826          | 0,554             | vérifié    |
| R237-R238  | 30,04        | 3,05 | 0,044 | 182,918          | 300       | 0,165     | 0,267 | 0,848 | 0,353 | 105,754 | 2,329          | 1,976          | 0,554             | vérifié    |
| R238-R239  | 26,83        | 3,05 | 0,057 | 201,712          | 300       | 0,165     | 0,347 | 0,896 | 0,403 | 120,891 | 2,329          | 2,087          | 0,554             | vérifié    |
| R239-R240  | 30           | 3,05 | 0,072 | 219,757          | 300       | 0,165     | 0,436 | 0,955 | 0,461 | 138,441 | 2,329          | 2,225          | 0,554             | vérifié    |
| R240-R241  | 30           | 3,05 | 0,086 | 235,621          | 300       | 0,165     | 0,525 | 1,015 | 0,518 | 155,450 | 2,329          | 2,363          | 0,554             | vérifié    |
| R241-R242  | 30           | 4    | 0,101 | 237,493          | 300       | 0,189     | 0,536 | 1,021 | 0,525 | 157,479 | 2,668          | 2,725          | 0,639             | vérifié    |
| R242-R243  | 17           | 4    | 0,109 | 244,631          | 300       | 0,189     | 0,580 | 1,046 | 0,551 | 165,168 | 2,668          | 2,789          | 0,639             | vérifié    |
| R243-R244  | 10,13        | 4    | 0,114 | 248,725          | 300       | 0,189     | 0,607 | 1,058 | 0,565 | 169,535 | 2,668          | 2,822          | 0,639             | vérifié    |
| R244-R245  | 10           | 4    | 0,116 | 250,311          | 300       | 0,189     | 0,617 | 1,062 | 0,571 | 171,221 | 2,668          | 2,834          | 0,639             | vérifié    |
| R245-RB144 | 12,41        | 4    | 0,119 | 252,256          | 300       | 0,189     | 0,630 | 1,067 | 0,578 | 173,286 | 2,668          | 2,847          | 0,639             | vérifié    |

Tableau V.6 : Collecteur secondaire  $N^{\circ}04$ 

| Tronçon    | L            | P    | Q     | $D_{cal}$ | $D_{nor}$ | $Q_{ps}$  | $R_q$ | $R_v$ | $R_h$ | Н       | $V_{ps}$ (m/s) | V              | V <sub>auto</sub> | Autocurage |
|------------|--------------|------|-------|-----------|-----------|-----------|-------|-------|-------|---------|----------------|----------------|-------------------|------------|
|            | ( <b>m</b> ) | (%)  |       | (mm)      | (mm)      | $(m^3/s)$ |       |       |       | (mm)    | -              | ( <b>m</b> /s) | (m/s)             |            |
| R246-R247  | 30           | 4    | 0,523 | 439,753   | 500       | 0,736     | 0,710 | 1,090 | 0,620 | 309,817 | 3,750          | 4,087          | 1,036             | vérifié    |
| R247-R248  | 30           | 4    | 0,537 | 444,080   | 500       | 0,736     | 0,729 | 1,093 | 0,630 | 314,845 | 3,750          | 4,100          | 1,036             | vérifié    |
| R248-R249  | 10           | 4    | 0,541 | 445,507   | 500       | 0,736     | 0,735 | 1,094 | 0,633 | 316,551 | 3,750          | 4,104          | 1,036             | vérifié    |
| R249-R250  | 10           | 4    | 0,546 | 446,926   | 500       | 0,736     | 0,741 | 1,095 | 0,637 | 318,274 | 3,750          | 4,107          | 1,036             | vérifié    |
| R250-R251  | 10           | 4    | 0,550 | 448,338   | 500       | 0,736     | 0,748 | 1,096 | 0,640 | 320,018 | 3,750          | 4,111          | 1,036             | vérifié    |
| R251-R252  | 8            | 4    | 0,554 | 449,462   | 500       | 0,736     | 0,753 | 1,097 | 0,643 | 321,429 | 3,750          | 4,114          | 1,036             | vérifié    |
| R252-R253  | 10,44        | 4    | 0,559 | 450,922   | 500       | 0,736     | 0,759 | 1,098 | 0,647 | 323,294 | 3,750          | 4,117          | 1,036             | vérifié    |
| R253-RB254 | 8,58         | 3    | 0,562 | 476,952   | 500       | 0,638     | 0,882 | 1,112 | 0,732 | 365,981 | 3,248          | 3,613          | 0,876             | vérifié    |
| RB254-R255 | 29           | 1,77 | 0,573 | 530,397   | 600       | 0,796     | 0,720 | 1,092 | 0,625 | 374,881 | 2,817          | 3,075          | 0,789             | vérifié    |
| R255-RB145 | 27,78        | 1,77 | 0,584 | 534,038   | 600       | 0,796     | 0,733 | 1,094 | 0,632 | 379,176 | 2,817          | 3,082          | 0,789             | vérifié    |
| R246-R247  | 30           | 4    | 0,523 | 439,753   | 500       | 0,736     | 0,710 | 1,090 | 0,620 | 309,817 | 3,750          | 4,087          | 1,036             | vérifié    |

Tableau V.7: Collecteur secondaire N°05

| Tronçon   | L            | P    | Q     | D <sub>cal</sub> | $D_{nor}$ | $Q_{ps}$  | $R_q$ | $R_v$ | $R_h$ | Н       | $V_{ps}$ (m/s) | V              | V <sub>auto</sub> | Autocurage |
|-----------|--------------|------|-------|------------------|-----------|-----------|-------|-------|-------|---------|----------------|----------------|-------------------|------------|
|           | ( <b>m</b> ) | (%)  |       | (mm)             | (mm)      | $(m^3/s)$ |       |       |       | (mm)    |                | ( <b>m/s</b> ) | (m/s)             |            |
| R285-R286 | 25           | 0,76 | 0,01  | 141,65           | 400       | 0,177     | 0,063 | 0,551 | 0,172 | 68,678  | 1,409          | 0,776          | 0,336             | vérifié    |
| R286-R287 | 23           | 0,76 | 0,02  | 180,91           | 400       | 0,177     | 0,121 | 0,705 | 0,245 | 98,145  | 1,409          | 0,993          | 0,336             | vérifié    |
| R287-R288 | 25           | 0,76 | 0,03  | 211,71           | 400       | 0,177     | 0,183 | 0,789 | 0,298 | 119,157 | 1,409          | 1,111          | 0,336             | vérifié    |
| R288-R289 | 29           | 0,76 | 0,05  | 240,00           | 400       | 0,177     | 0,256 | 0,842 | 0,346 | 138,205 | 1,409          | 1,186          | 0,336             | vérifié    |
| R289-R290 | 25           | 0,76 | 0,076 | 291,314          | 400       | 0,177     | 0,429 | 0,951 | 0,457 | 182,827 | 1,409          | 1,339          | 0,336             | vérifié    |
| R290-R291 | 25           | 4,06 | 0,085 | 222,193          | 300       | 0,190     | 0,449 | 0,964 | 0,470 | 140,997 | 2,688          | 2,591          | 0,644             | vérifié    |
| R291-R292 | 25           | 4    | 0,095 | 231,638          | 300       | 0,189     | 0,502 | 1,000 | 0,504 | 151,130 | 2,668          | 2,667          | 0,639             | vérifié    |

| R292-RB157 | 27,93 | 2,47 | 0,105 | 263,662 | 300 | 0,148 | 0,709 | 1,090 | 0,619 | 185,675 | 2,096 | 2,284 | 0,496 | vérifié |
|------------|-------|------|-------|---------|-----|-------|-------|-------|-------|---------|-------|-------|-------|---------|

# Tableau V.8 : Collecteur secondaire N°06

| Tronçon    | L            | P    | Q     | $D_{cal}$ | $D_{nor}$ | $Q_{ps}$  | $R_q$ | $R_v$ | $R_h$ | H       | $V_{ps}$ (m/s) | V              | $V_{auto}$ | Autocurage |
|------------|--------------|------|-------|-----------|-----------|-----------|-------|-------|-------|---------|----------------|----------------|------------|------------|
|            | ( <b>m</b> ) | (%)  |       | (mm)      | (mm)      | $(m^3/s)$ |       |       |       | (mm)    |                | ( <b>m</b> /s) | (m/s)      |            |
| R295-R296  | 30           | 3,82 | 0,011 | 104,854   | 300       | 0,184     | 0,061 | 0,543 | 0,168 | 50,458  | 2,607          | 1,416          | 0,623      | vérifié    |
| R296-R297  | 30           | 2,93 | 0,022 | 142,913   | 300       | 0,161     | 0,138 | 0,735 | 0,262 | 78,704  | 2,283          | 1,678          | 0,542      | vérifié    |
| R297-R298  | 30           | 2,3  | 0,034 | 174,108   | 300       | 0,143     | 0,234 | 0,828 | 0,332 | 99,555  | 2,023          | 1,676          | 0,478      | vérifié    |
| R298-RB159 | 15           | 1,07 | 0,039 | 212,931   | 400       | 0,210     | 0,186 | 0,792 | 0,300 | 119,964 | 1,671          | 1,323          | 0,403      | vérifié    |

# Tableau V.9 : Collecteur secondaire $N^{\circ}07$

| Tronçon    | L<br>(m) | P<br>(%) | Q     | $D_{cal}$ | $D_{nor}$ | $Q_{ps}$  | $R_q$ | $R_v$ | $R_h$ | H<br>(mm) | $V_{ps}$ (m/s) | <i>V</i> (m/s) | V <sub>auto</sub> | Autocurage |
|------------|----------|----------|-------|-----------|-----------|-----------|-------|-------|-------|-----------|----------------|----------------|-------------------|------------|
|            | ( )      | ` ′      |       | (mm)      | (mm)      | $(m^3/s)$ |       |       |       | (mm)      |                | (m/s)          | (m/s)             |            |
| R258-R259  | 29       | 3,86     | 0,031 | 152,969   | 300       | 0,185     | 0,166 | 0,771 | 0,285 | 85,524    | 2,621          | 2,021          | 0,627             | vérifié    |
| R259-RB260 | 17,9     | 3,86     | 0,050 | 183,187   | 300       | 0,185     | 0,268 | 0,849 | 0,353 | 105,951   | 2,621          | 2,225          | 0,627             | vérifié    |
| RB260-R261 | 28,32    | 3,46     | 0,104 | 246,871   | 300       | 0,175     | 0,595 | 1,052 | 0,559 | 167,561   | 2,481          | 2,611          | 0,592             | vérifié    |
| R261-R262  | 19       | 3,46     | 0,113 | 254,732   | 300       | 0,175     | 0,647 | 1,073 | 0,586 | 175,920   | 2,481          | 2,662          | 0,592             | vérifié    |
| R262-RB263 | 18,92    | 3,46     | 0,122 | 262,178   | 300       | 0,175     | 0,698 | 1,087 | 0,613 | 184,002   | 2,481          | 2,698          | 0,592             | vérifié    |
| RB263-R264 | 25       | 1,56     | 0,183 | 354,254   | 400       | 0,254     | 0,723 | 1,092 | 0,627 | 250,686   | 2,018          | 2,205          | 0,492             | vérifié    |
| R264-R265  | 22       | 1,56     | 0,194 | 361,745   | 400       | 0,254     | 0,765 | 1,099 | 0,650 | 259,946   | 2,018          | 2,217          | 0,492             | vérifié    |
| R265-R266  | 12       | 1,56     | 0,200 | 365,724   | 400       | 0,254     | 0,788 | 1,101 | 0,663 | 265,382   | 2,018          | 2,223          | 0,492             | vérifié    |
| R266-R267  | 20       | 4,65     | 0,209 | 303,278   | 400       | 0,438     | 0,478 | 0,984 | 0,489 | 195,486   | 3,484          | 3,429          | 0,894             | vérifié    |
| R267-RB268 | 20       | 4,65     | 0,219 | 308,367   | 500       | 0,794     | 0,276 | 0,853 | 0,358 | 178,837   | 4,043          | 3,450          | 1,132             | vérifié    |
| RB268-R269 | 35       | 2,17     | 0,294 | 397,569   | 500       | 0,542     | 0,543 | 1,025 | 0,529 | 264,355   | 2,762          | 2,831          | 0,728             | vérifié    |
| R269-R270  | 25       | 2,17     | 0,306 | 403,407   | 500       | 0,542     | 0,564 | 1,037 | 0,541 | 270,653   | 2,762          | 2,865          | 0,728             | vérifié    |
| R270-R271  | 20       | 2,17     | 0,362 | 429,653   | 500       | 0,542     | 0,667 | 1,080 | 0,597 | 298,664   | 2,762          | 2,982          | 0,728             | vérifié    |
| RB271-R272 | 20       | 0,69     | 0,418 | 562,145   | 600       | 0,497     | 0,840 | 1,107 | 0,699 | 419,523   | 1,759          | 1,948          | 0,458             | vérifié    |

| Chap | itre | V |
|------|------|---|
| Chap | uic  | • |

# Dimensionnement de réseau d'assainissement

| R272-RB155 | 21,59 | 0,69 | 0,427 | 566,760 | 600 | 0,497 | 0,859 | 1,110 | 0,713 | 427,990 | 1,759 | 1,952 | 0,458 | vérifié |
|------------|-------|------|-------|---------|-----|-------|-------|-------|-------|---------|-------|-------|-------|---------|

#### Tableau V.10: Collecteur secondaire N°08

| Tronçon  | L            | P    | Q     | D <sub>cal</sub> | $D_{nor}$ | $Q_{ps}$  | $R_q$ | $R_v$ | $R_h$ | Н       | $V_{ps}$ (m/s) | V              | V <sub>auto</sub> | Autocurage |
|----------|--------------|------|-------|------------------|-----------|-----------|-------|-------|-------|---------|----------------|----------------|-------------------|------------|
|          | ( <b>m</b> ) | (%)  |       | (mm)             | (mm)      | $(m^3/s)$ |       |       |       | (mm)    |                | ( <b>m/s</b> ) | (m/s)             |            |
| R56-R57  | 12           | 4    | 0,012 | 106,792          | 300       | 0,189     | 0,064 | 0,554 | 0,173 | 51,932  | 2,668          | 1,479          | 0,639             | vérifié    |
| R57-R58  | 11           | 4    | 0,023 | 136,300          | 300       | 0,189     | 0,122 | 0,708 | 0,247 | 74,052  | 2,668          | 1,888          | 0,639             | vérifié    |
| R58-R59  | 10           | 4    | 0,033 | 156,059          | 300       | 0,189     | 0,175 | 0,781 | 0,292 | 87,573  | 2,668          | 2,083          | 0,639             | vérifié    |
| R59-R60  | 10           | 4    | 0,043 | 172,345          | 300       | 0,189     | 0,228 | 0,824 | 0,328 | 98,357  | 2,668          | 2,199          | 0,639             | vérifié    |
| R60-R61  | 10           | 4    | 0,053 | 186,402          | 300       | 0,189     | 0,281 | 0,857 | 0,361 | 108,337 | 2,668          | 2,285          | 0,639             | vérifié    |
| R61-R62  | 11           | 4    | 0,064 | 200,062          | 300       | 0,189     | 0,339 | 0,891 | 0,398 | 119,434 | 2,668          | 2,377          | 0,639             | vérifié    |
| R62-R63  | 11           | 4    | 0,075 | 212,322          | 300       | 0,189     | 0,398 | 0,929 | 0,436 | 130,879 | 2,668          | 2,478          | 0,639             | vérifié    |
| R63-R64  | 10           | 4    | 0,085 | 222,525          | 300       | 0,189     | 0,451 | 0,965 | 0,471 | 141,348 | 2,668          | 2,576          | 0,639             | vérifié    |
| R64-R65  | 10           | 4    | 0,095 | 232,003          | 300       | 0,189     | 0,504 | 1,001 | 0,505 | 151,526 | 2,668          | 2,671          | 0,639             | vérifié    |
| R65-R66  | 11           | 4    | 0,106 | 241,733          | 300       | 0,189     | 0,562 | 1,036 | 0,540 | 162,058 | 2,668          | 2,764          | 0,639             | vérifié    |
| R66-R67  | 11           | 4    | 0,117 | 250,852          | 300       | 0,189     | 0,621 | 1,064 | 0,573 | 171,795 | 2,668          | 2,837          | 0,639             | vérifié    |
| R67-RB32 | 11,98        | 4,77 | 0,129 | 251,743          | 300       | 0,206     | 0,626 | 1,066 | 0,576 | 172,741 | 2,913          | 3,105          | 0,701             | vérifié    |

# Tableau V.11 : Collecteur secondaire N°09

| Tronçon   | L<br>(m) | P<br>(%) | Q     | D <sub>cal</sub> (mm) | D <sub>nor</sub> (mm) | $Q_{ps}$ $(m^3/s)$ | $R_q$ | $R_v$ | $R_h$ | H<br>(mm) | <i>V<sub>ps</sub></i> (m/s) | <i>V</i> (m/s) | V <sub>auto</sub><br>(m/s) | Autocurage |
|-----------|----------|----------|-------|-----------------------|-----------------------|--------------------|-------|-------|-------|-----------|-----------------------------|----------------|----------------------------|------------|
| R68-R69'  | 35       | 2,07     | 0,010 | 114,776               | 300                   | 0,136              | 0,077 | 0,599 | 0,193 | 58,033    | 1,919                       | 1,150          | 0,452                      | vérifié    |
| R69'-RB40 | 35       | 2,07     | 0,021 | 148,845               | 300                   | 0,136              | 0,154 | 0,757 | 0,276 | 82,759    | 1,919                       | 1,453          | 0,452                      | vérifié    |

Tableau V.12 : Collecteur secondaire N°10

| Tronçon  | L            | P   | Q     | $D_{cal}$ | $D_{nor}$ | $Q_{ps}$  | $R_q$ | $R_v$ | $R_h$ | Н       | $V_{ps}$ (m/s) | V                       | $V_{auto}$ | Autocurage |
|----------|--------------|-----|-------|-----------|-----------|-----------|-------|-------|-------|---------|----------------|-------------------------|------------|------------|
|          | ( <b>m</b> ) | (%) |       | (mm)      | (mm)      | $(m^3/s)$ |       |       |       | (mm)    |                | ( <b>m</b> / <b>s</b> ) | (m/s)      |            |
| R69-R70  | 10           | 4   | 0,005 | 77,423    | 300       | 0,189     | 0,027 | 0,393 | 0,104 | 31,150  | 2,668          | 1,047                   | 0,639      | vérifié    |
| R70-R71  | 10           | 4   | 0,010 | 100,405   | 300       | 0,189     | 0,054 | 0,518 | 0,157 | 47,102  | 2,668          | 1,381                   | 0,639      | vérifié    |
| R71-R72  | 10           | 4   | 0,015 | 116,894   | 300       | 0,189     | 0,081 | 0,611 | 0,199 | 59,650  | 2,668          | 1,630                   | 0,639      | vérifié    |
| R72-R73  | 10           | 4   | 0,020 | 130,210   | 300       | 0,189     | 0,108 | 0,680 | 0,232 | 69,642  | 2,668          | 1,813                   | 0,639      | vérifié    |
| R73-R74  | 10           | 4   | 0,025 | 141,574   | 300       | 0,189     | 0,135 | 0,730 | 0,259 | 77,774  | 2,668          | 1,947                   | 0,639      | vérifié    |
| R74-R75  | 10           | 4   | 0,031 | 151,592   | 300       | 0,189     | 0,162 | 0,767 | 0,282 | 84,605  | 2,668          | 2,045                   | 0,639      | vérifié    |
| R75-R76  | 10           | 4   | 0,036 | 160,614   | 300       | 0,189     | 0,189 | 0,794 | 0,302 | 90,575  | 2,668          | 2,119                   | 0,639      | vérifié    |
| R76-R77  | 10           | 4   | 0,041 | 168,861   | 300       | 0,189     | 0,216 | 0,816 | 0,320 | 96,021  | 2,668          | 2,176                   | 0,639      | vérifié    |
| R77-R78  | 10           | 4   | 0,046 | 176,486   | 300       | 0,189     | 0,243 | 0,834 | 0,337 | 101,189 | 2,668          | 2,224                   | 0,639      | vérifié    |
| R78-R79  | 10           | 4   | 0,051 | 183,599   | 300       | 0,189     | 0,270 | 0,850 | 0,354 | 106,253 | 2,668          | 2,268                   | 0,639      | vérifié    |
| R79-R80  | 10           | 4   | 0,056 | 190,280   | 300       | 0,189     | 0,297 | 0,866 | 0,371 | 111,321 | 2,668          | 2,309                   | 0,639      | vérifié    |
| R80-R81  | 10           | 4   | 0,058 | 192,704   | 300       | 0,189     | 0,307 | 0,872 | 0,377 | 113,249 | 2,668          | 2,325                   | 0,639      | vérifié    |
| R81-R82  | 11           | 4   | 0,060 | 195,313   | 300       | 0,189     | 0,318 | 0,878 | 0,385 | 115,384 | 2,668          | 2,343                   | 0,639      | vérifié    |
| R82-R83  | 11           | 4   | 0,062 | 197,865   | 300       | 0,189     | 0,330 | 0,885 | 0,392 | 117,533 | 2,668          | 2,361                   | 0,639      | vérifié    |
| R83-R84  | 11,28        | 4   | 0,064 | 200,426   | 300       | 0,189     | 0,341 | 0,892 | 0,399 | 119,753 | 2,668          | 2,380                   | 0,639      | vérifié    |
| R84-R85  | 10           | 4   | 0,066 | 202,652   | 300       | 0,189     | 0,351 | 0,899 | 0,406 | 121,733 | 2,668          | 2,397                   | 0,639      | vérifié    |
| R85-R86  | 10           | 4   | 0,068 | 204,838   | 300       | 0,189     | 0,361 | 0,905 | 0,412 | 123,724 | 2,668          | 2,414                   | 0,639      | vérifié    |
| R86-R87  | 10           | 4   | 0,070 | 206,985   | 300       | 0,189     | 0,372 | 0,912 | 0,419 | 125,725 | 2,668          | 2,432                   | 0,639      | vérifié    |
| R87-R88  | 30           | 2   | 0,076 | 242,807   | 300       | 0,133     | 0,569 | 1,040 | 0,544 | 163,212 | 1,886          | 1,961                   | 0,444      | vérifié    |
| R88-R89  | 30           | 2   | 0,082 | 249,572   | 300       | 0,133     | 0,612 | 1,060 | 0,568 | 170,436 | 1,886          | 2,000                   | 0,444      | vérifié    |
| R89-R90  | 20           | 4   | 0,085 | 222,972   | 300       | 0,189     | 0,453 | 0,967 | 0,473 | 141,820 | 2,668          | 2,580                   | 0,639      | vérifié    |
| R90-R91  | 11           | 4   | 0,088 | 225,025   | 300       | 0,189     | 0,464 | 0,975 | 0,480 | 144,005 | 2,668          | 2,601                   | 0,639      | vérifié    |
| R91-RB44 | 11,39        | 4   | 0,090 | 227,118   | 300       | 0,189     | 0,476 | 0,983 | 0,487 | 146,249 | 2,668          | 2,622                   | 0,639      | vérifié    |

Tableau V.13 : Collecteur secondaire N°11

| Tronçon    | L            | P    | Q        | $D_{cal}$ | $D_{nor}$ | $Q_{ps}$  | $R_q$ | $R_v$ | $R_h$ | Н       | $V_{ps}$ (m/s) | V     | V <sub>auto</sub> | Autocurage |
|------------|--------------|------|----------|-----------|-----------|-----------|-------|-------|-------|---------|----------------|-------|-------------------|------------|
|            | ( <b>m</b> ) | (%)  | $(m^3s)$ | (mm)      | (mm)      | $(m^3/s)$ |       |       |       | (mm)    |                | (m/s) | ( <b>m</b> /s)    |            |
| R92-R93    | 10           | 4    | 0,003    | 66,032    | 300       | 0,189     | 0,018 | 0,340 | 0,082 | 24,660  | 2,668          | 0,907 | 0,639             | vérifié    |
| R93-R94    | 10           | 4    | 0,007    | 85,633    | 300       | 0,189     | 0,035 | 0,435 | 0,122 | 36,489  | 2,668          | 1,161 | 0,639             | vérifié    |
| R94-R95    | 10           | 4    | 0,010    | 99,695    | 300       | 0,189     | 0,053 | 0,514 | 0,155 | 46,571  | 2,668          | 1,370 | 0,639             | vérifié    |
| R95-R96    | 11           | 4    | 0,014    | 112,085   | 300       | 0,189     | 0,072 | 0,584 | 0,187 | 55,975  | 2,668          | 1,559 | 0,639             | vérifié    |
| R96-R97    | 11           | 4    | 0,017    | 122,533   | 300       | 0,189     | 0,092 | 0,641 | 0,213 | 63,928  | 2,668          | 1,710 | 0,639             | vérifié    |
| R69-RB98   | 13           | 4    | 0,022    | 133,228   | 300       | 0,189     | 0,115 | 0,694 | 0,239 | 71,843  | 2,668          | 1,851 | 0,639             | vérifié    |
| RB98-R99   | 10           | 3    | 0,042    | 179,737   | 300       | 0,163     | 0,255 | 0,841 | 0,345 | 103,467 | 2,310          | 1,943 | 0,549             | vérifié    |
| R99-R100   | 10           | 3    | 0,045    | 184,996   | 300       | 0,163     | 0,275 | 0,853 | 0,358 | 107,285 | 2,310          | 1,971 | 0,549             | vérifié    |
| R100-R101  | 10           | 2,93 | 0,048    | 190,860   | 300       | 0,161     | 0,299 | 0,867 | 0,373 | 111,778 | 2,283          | 1,980 | 0,542             | vérifié    |
| R101-R102  | 10           | 2,93 | 0,052    | 195,691   | 300       | 0,161     | 0,320 | 0,879 | 0,386 | 115,699 | 2,283          | 2,008 | 0,542             | vérifié    |
| R102-R103  | 10           | 2,93 | 0,055    | 200,330   | 300       | 0,161     | 0,341 | 0,892 | 0,399 | 119,669 | 2,283          | 2,036 | 0,542             | vérifié    |
| R103-RB104 | 10           | 2,93 | 0,058    | 204,798   | 300       | 0,161     | 0,361 | 0,905 | 0,412 | 123,687 | 2,283          | 2,066 | 0,542             | vérifié    |
| RB104-R105 | 20           | 2,3  | 0,091    | 252,991   | 300       | 0,143     | 0,635 | 1,069 | 0,580 | 174,067 | 2,023          | 2,162 | 0,478             | vérifié    |
| R105-RB106 | 21           | 2,3  | 0,098    | 260,241   | 300       | 0,143     | 0,684 | 1,084 | 0,606 | 181,860 | 2,023          | 2,193 | 0,478             | vérifié    |
| RB106-R107 | 29           | 2,7  | 0,143    | 291,124   | 300       | 0,155     | 0,923 | 1,118 | 0,770 | 230,907 | 2,192          | 2,450 | 0,520             | vérifié    |
| R107-RB51  | 27,51        | 2,7  | 0,153    | 298,454   | 300       | 0,155     | 0,986 | 1,122 | 0,837 | 250,989 | 2,192          | 2,460 | 0,520             | vérifié    |

Tableau V.14 : Collecteur secondaire N°12

| Tronçon   | L<br>(m) | P<br>(%) | $Q \ (m^3/s)$ | <i>D<sub>cal</sub></i> (mm) | D <sub>nor</sub> (mm) | $Q_{ps}$ $(m^3/s)$ | $R_q$ | $R_v$ | $R_h$ | H<br>(mm) | <i>V<sub>ps</sub></i> (m/s) | V<br>(m/s) | V <sub>auto</sub><br>(m/s) | Autocurage |
|-----------|----------|----------|---------------|-----------------------------|-----------------------|--------------------|-------|-------|-------|-----------|-----------------------------|------------|----------------------------|------------|
| R117-R118 | 30       | 2,57     | 0,011         | 111,100                     | 300                   | 0,151              | 0,071 | 0,579 | 0,184 | 55,222    | 2,138                       | 1,238      | 0,506                      | vérifié    |
| R118-R119 | 30       | 2,57     | 0,021         | 144,079                     | 300                   | 0,151              | 0,141 | 0,740 | 0,265 | 79,509    | 2,138                       | 1,582      | 0,506                      | vérifié    |

| R119-R120 | 30    | 2,57 | 0,032 | 167,739 | 300 | 0,151 | 0,212 | 0,813 | 0,318 | 95,275  | 2,138 | 1,738 | 0,506 | vérifié |
|-----------|-------|------|-------|---------|-----|-------|-------|-------|-------|---------|-------|-------|-------|---------|
| R120-RB51 | 30,06 | 2,57 | 0,043 | 186,882 | 300 | 0,151 | 0,283 | 0,858 | 0,362 | 108,700 | 2,138 | 1,834 | 0,506 | vérifié |

# Tableau V.15 : Collecteur secondaire N°13

| Tronçon    | L            | P    | Q         | D <sub>cal</sub> | D <sub>nor</sub> | $Q_{ps}$  | $R_q$ | $R_v$ | $R_h$ | H      | $V_{ps}$ (m/s) | V     | V <sub>auto</sub> | Autocurage |
|------------|--------------|------|-----------|------------------|------------------|-----------|-------|-------|-------|--------|----------------|-------|-------------------|------------|
|            | ( <b>m</b> ) | (%)  | $(m^3/s)$ | (mm)             | (mm)             | $(m^3/s)$ |       |       |       | (mm)   |                | (m/s) | (m/s)             |            |
| R121-R122  | 30           | 2,37 | 0,009     | 107,169          | 300              | 0,145     | 0,064 | 0,557 | 0,174 | 52,218 | 2,053          | 1,143 | 0,486             | vérifié    |
| R122-R123  | 30           | 2,22 | 0,013     | 121,459          | 300              | 0,140     | 0,090 | 0,636 | 0,210 | 63,117 | 1,987          | 1,263 | 0,469             | vérifié    |
| R123-R123' | 30           | 2,22 | 0,016     | 132,455          | 300              | 0,140     | 0,113 | 0,690 | 0,238 | 71,282 | 1,987          | 1,372 | 0,469             | vérifié    |
| R123'-RB53 | 29,03        | 2,44 | 0,019     | 139,323          | 300              | 0,147     | 0,129 | 0,721 | 0,254 | 76,197 | 2,083          | 1,501 | 0,493             | vérifié    |

# Tableau V.16: Collecteur secondaire N°14

| Tronçon   | L            | P    | Q         | $D_{cal}$ | $D_{nor}$ | $Q_{ps}$  | $R_q$ | $R_v$ | $R_h$ | H       | $V_{ps}$ (m/s) | V              | V <sub>auto</sub> | Autocurage |
|-----------|--------------|------|-----------|-----------|-----------|-----------|-------|-------|-------|---------|----------------|----------------|-------------------|------------|
|           | ( <b>m</b> ) | (%)  | $(m^3/s)$ | (mm)      | (mm)      | $(m^3/s)$ |       |       |       | (mm)    |                | ( <b>m/s</b> ) | (m/s)             |            |
| R361-R362 | 30           | 1,34 | 0,020     | 157,875   | 300       | 0,109     | 0,181 | 0,786 | 0,296 | 88,772  | 1,544          | 1,214          | 0,361             | vérifié    |
| R362-R363 | 19,5         | 1,34 | 0,032     | 190,135   | 300       | 0,109     | 0,296 | 0,865 | 0,371 | 111,207 | 1,544          | 1,336          | 0,361             | vérifié    |
| R363-R364 | 30           | 1,34 | 0,052     | 226,856   | 300       | 0,109     | 0,475 | 0,982 | 0,487 | 145,966 | 1,544          | 1,516          | 0,361             | vérifié    |
| R364-R365 | 20           | 1,34 | 0,065     | 246,683   | 300       | 0,109     | 0,593 | 1,052 | 0,558 | 167,360 | 1,544          | 1,624          | 0,361             | vérifié    |
| R365-R366 | 20,45        | 1,78 | 0,078     | 250,814   | 300       | 0,126     | 0,620 | 1,064 | 0,573 | 171,755 | 1,780          | 1,893          | 0,418             | vérifié    |
| R366-R367 | 20           | 1,78 | 0,091     | 265,701   | 300       | 0,126     | 0,723 | 1,092 | 0,627 | 188,027 | 1,780          | 1,944          | 0,418             | vérifié    |
| R367-RB54 | 16,89        | 1,78 | 0,102     | 277,269   | 300       | 0,126     | 0,810 | 1,104 | 0,678 | 203,462 | 1,780          | 1,965          | 0,418             | vérifié    |

# Tableau V.17 : Collecteur tertiaire N°1

| Tronçon   | L (m) | P<br>(%) | $Q (m^3/s)$ | D <sub>cal</sub> (mm) | D <sub>nor</sub> (mm) | $Q_{ps}$ $(m^3/s)$ | $R_q$ | $R_v$ | $R_h$ | H<br>(mm) | $V_{ps}$ (m/s) | <i>V</i> (m/s) | V <sub>auto</sub><br>(m/s) | Autocurage |
|-----------|-------|----------|-------------|-----------------------|-----------------------|--------------------|-------|-------|-------|-----------|----------------|----------------|----------------------------|------------|
| R350-R351 | 30    | 1,22     | 0,006       | 104                   | 300                   | 0,104              | 0,060 | 0,539 | 0,166 | 49,942    | 1,473          | 0,795          | 0,344                      | vérifié    |

| R351-R352  | 30    | 1,22 | 0,033 | 194 | 300 | 0,104 | 0,314 | 0,876 | 0,382 | 114,554 | 1,473 | 1,290 | 0,344 | vérifié |
|------------|-------|------|-------|-----|-----|-------|-------|-------|-------|---------|-------|-------|-------|---------|
| R352-R353  | 30    | 1,22 | 0,045 | 218 | 300 | 0,104 | 0,428 | 0,950 | 0,456 | 136,942 | 1,473 | 1,400 | 0,344 | vérifié |
| R353-R354  | 30    | 1,22 | 0,057 | 239 | 300 | 0,104 | 0,543 | 1,025 | 0,529 | 158,649 | 1,473 | 1,510 | 0,344 | vérifié |
| R354-R355  | 30    | 0,95 | 0,068 | 269 | 300 | 0,092 | 0,745 | 1,096 | 0,638 | 191,535 | 1,300 | 1,425 | 0,303 | vérifié |
| R355-RB356 | 11,73 | 0,95 | 0,073 | 275 | 300 | 0,092 | 0,796 | 1,102 | 0,668 | 200,540 | 1,300 | 1,433 | 0,303 | vérifié |
| RB356-R357 | 30    | 0,95 | 0,085 | 291 | 400 | 0,198 | 0,430 | 0,951 | 0,457 | 182,888 | 1,575 | 1,497 | 0,378 | vérifié |
| R357-RB338 | 30,6  | 0,95 | 0,097 | 306 | 400 | 0,198 | 0,491 | 0,993 | 0,497 | 198,792 | 1,575 | 1,563 | 0,378 | vérifié |

# Tableau V.18 : Collecteur tertiaire N°2

| Tronçon    | L            | P    | Q         | $D_{cal}$ | $D_{nor}$ | $Q_{ps}$  | $R_q$ | $R_v$ | $R_h$ | Н       | $V_{ps}$ (m/s) | V              | V <sub>auto</sub> | Autocurage |
|------------|--------------|------|-----------|-----------|-----------|-----------|-------|-------|-------|---------|----------------|----------------|-------------------|------------|
|            | ( <b>m</b> ) | (%)  | $(m^3/s)$ | (mm)      | (mm)      | $(m^3/s)$ |       |       |       | (mm)    |                | ( <b>m</b> /s) | (m/s)             |            |
| R358-R359  | 30           | 1,57 | 0,116     | 297,920   | 300       | 0,118     | 0,982 | 1,123 | 0,831 | 249,404 | 1,671          | 1,876          | 0,392             | vérifié    |
| R359-R360  | 30           | 1,57 | 0,135     | 315,183   | 300       | 0,118     | 1,141 | 0,979 | 0,995 | 298,431 | 1,671          | 1,636          | 0,392             | vérifié    |
| R360-RB356 | 29,3         | 1,57 | 0,153     | 330,645   | 400       | 0,254     | 0,602 | 1,056 | 0,562 | 224,995 | 2,025          | 2,137          | 0,494             | vérifié    |

# Tableau V.19 : Collecteur tertiaire N°3

| Tronçon    | L<br>(m) | P<br>(%) | $Q \ (m^3/s)$ | <b>D</b> <sub>cal</sub> (mm) | D <sub>nor</sub> (mm) | $Q_{ps}$ $(m^3/s)$ | $R_q$ | $R_v$ | $R_h$ | H<br>(mm) | <i>V<sub>ps</sub></i> (m/s) | V<br>(m/s) | V <sub>auto</sub><br>(m/s) | Autocurage |
|------------|----------|----------|---------------|------------------------------|-----------------------|--------------------|-------|-------|-------|-----------|-----------------------------|------------|----------------------------|------------|
| R256-R257  | 30       | 3,2      | 0,012         | 111,388                      | 300                   | 0,169              | 0,071 | 0,580 | 0,185 | 55,442    | 2,386                       | 1,385      | 0,568                      | vérifié    |
| R257-RB254 | 35,07    | 1,68     | 0,026         | 168,037                      | 300                   | 0,122              | 0,213 | 0,814 | 0,318 | 95,473    | 1,729                       | 1,407      | 0,406                      | vérifié    |

# Tableau V.20 : Collecteur tertiaire N°4

| Tronçon    | L<br>(m) | P<br>(%) | $Q \ (m^3/s)$ | <i>D<sub>cal</sub></i> (mm) | D <sub>nor</sub> (mm) | $Q_{ps}$ $(m^3/s)$ | $R_q$ | $R_v$ | $R_h$ | H<br>(mm) | $V_{ps}$ (m/s) | <i>V</i> (m/s) | V <sub>auto</sub> (m/s) | Autocurage |
|------------|----------|----------|---------------|-----------------------------|-----------------------|--------------------|-------|-------|-------|-----------|----------------|----------------|-------------------------|------------|
| R293-R294  | 22       | 1,57     | 0,010         | 117,847                     | 300                   | 0,118              | 0,083 | 0,616 | 0,201 | 60,376    | 1,671          | 1,030          | 0,392                   | vérifié    |
| R294-RB289 | 22       | 1,57     | 0,020         | 152,828                     | 300                   | 0,118              | 0,166 | 0,771 | 0,285 | 85,430    | 1,671          | 1,288          | 0,392                   | vérifié    |

Tableau V.21 : Collecteur tertiaire N°5

| Tronçon    | L            | P   | Q         | $D_{cal}$ | $D_{nor}$ | $Q_{ps}$  | $R_q$ | $R_v$ | $R_h$ | H       | $V_{ps}$ (m/s) | V              | $V_{auto}$ | Autocurage |
|------------|--------------|-----|-----------|-----------|-----------|-----------|-------|-------|-------|---------|----------------|----------------|------------|------------|
|            | ( <b>m</b> ) | (%) | $(m^3/s)$ | (mm)      | (mm)      | $(m^3/s)$ |       |       |       | (mm)    |                | ( <b>m/s</b> ) | (m/s)      |            |
| R345-R346  | 30           | 4   | 0,014     | 112,482   | 300       | 0,189     | 0,073 | 0,587 | 0,188 | 56,279  | 2,668          | 1,565          | 0,639      | vérifié    |
| R346-R347  | 20           | 4   | 0,023     | 136,232   | 300       | 0,189     | 0,122 | 0,707 | 0,247 | 74,004  | 2,668          | 1,887          | 0,639      | vérifié    |
| R347-R348  | 21,03        | 4   | 0,033     | 155,401   | 300       | 0,189     | 0,173 | 0,779 | 0,290 | 87,138  | 2,668          | 2,078          | 0,639      | vérifié    |
| R348-R349  | 25           | 4   | 0,044     | 174,007   | 300       | 0,189     | 0,234 | 0,828 | 0,332 | 99,486  | 2,668          | 2,209          | 0,639      | vérifié    |
| R349-RB328 | 18,47        | 4   | 0,053     | 185,873   | 300       | 0,189     | 0,279 | 0,855 | 0,360 | 107,939 | 2,668          | 2,282          | 0,639      | vérifié    |

#### Tableau V.22 : Collecteur tertiaire N°6

| Tronçon    | L<br>(m) | P<br>(%) | $Q \ (m^3/s)$ | <b>D</b> <sub>cal</sub> (mm) | D <sub>nor</sub> (mm) | $Q_{ps} (m^3/s)$ | $R_q$ | $R_v$ | $R_h$ | H<br>(mm) | $V_{ps}$ (m/s) | <i>V</i> (m/s) | V <sub>auto</sub> (m/s) | Autocurage |
|------------|----------|----------|---------------|------------------------------|-----------------------|------------------|-------|-------|-------|-----------|----------------|----------------|-------------------------|------------|
| R273-R274  | 35       | 3,2      | 0,037         | 170,020                      | 300                   | 0,169            | 0,220 | 0,819 | 0,323 | 96,794    | 2,386          | 1,953          | 0,568                   | vérifié    |
| R274-RB260 | 35,07    | 1,68     | 0,074         | 248,897                      | 300                   | 0,122            | 0,608 | 1,058 | 0,566 | 169,718   | 1,729          | 1,830          | 0,406                   | vérifié    |

# Tableau V.23 : Collecteur tertiaire N°7

| Tronçon    | L<br>(m) | P<br>(%) | $Q \ (m^3/s)$ | <b>D</b> <sub>cal</sub> (mm) | D <sub>nor</sub> (mm) | $Q_{ps}$ $(m^3/s)$ | $R_q$ | $R_v$ | $R_h$ | H<br>(mm) | <i>V<sub>ps</sub></i> (m/s) | <i>V</i> (m/s) | V <sub>auto</sub><br>(m/s) | Autocurage |
|------------|----------|----------|---------------|------------------------------|-----------------------|--------------------|-------|-------|-------|-----------|-----------------------------|----------------|----------------------------|------------|
| R368-RB309 | 29,87    | 4,12     | 0,006         | 81,201                       | 300                   | 0,191              | 0,031 | 0,412 | 0,112 | 33,545    | 2,707                       | 1,115          | 0,649                      | vérifié    |

Tableau V.24 : Collecteur tertiaire N°8

| Tronçon    | L            | P    | Q         | $D_{cal}$ | $D_{nor}$ | $Q_{ps}$  | $R_q$ | $R_v$ | $R_h$ | H       | $V_{ps}$ (m/s) | V              | V <sub>auto</sub> | Autocurage |
|------------|--------------|------|-----------|-----------|-----------|-----------|-------|-------|-------|---------|----------------|----------------|-------------------|------------|
|            | ( <b>m</b> ) | (%)  | $(m^3/s)$ | (mm)      | (mm)      | $(m^3/s)$ |       |       |       | (mm)    |                | ( <b>m/s</b> ) | (m/s)             |            |
| R275-R276  | 31,75        | 3,05 | 0,015     | 122,751   | 300       | 0,165     | 0,092 | 0,642 | 0,214 | 64,092  | 2,329          | 1,496          | 0,554             | vérifié    |
| R276-R277  | 35           | 1,71 | 0,032     | 180,783   | 300       | 0,123     | 0,259 | 0,844 | 0,347 | 104,212 | 1,744          | 1,471          | 0,410             | vérifié    |
| R277-RB263 | 35,75        | 1,71 | 0,049     | 212,330   | 300       | 0,123     | 0,398 | 0,929 | 0,436 | 130,886 | 1,744          | 1,620          | 0,410             | vérifié    |

# Tableau V.25 : Collecteur tertiaire N°9

| Tronçon    | L            | P    | Q         | $D_{cal}$ | $D_{nor}$ | $Q_{ps}$  | $R_q$ | $R_v$ | $R_h$ | Н       | $V_{ps}$ (m/s) | V              | $V_{auto}$ | Autocurage |
|------------|--------------|------|-----------|-----------|-----------|-----------|-------|-------|-------|---------|----------------|----------------|------------|------------|
|            | ( <b>m</b> ) | (%)  | $(m^3/s)$ | (mm)      | (mm)      | $(m^3/s)$ |       |       |       | (mm)    |                | ( <b>m/s</b> ) | (m/s)      |            |
| R278-R279  | 32           | 0,96 | 0,015     | 152,467   | 300       | 0,092     | 0,164 | 0,770 | 0,284 | 85,189  | 1,307          | 1,006          | 0,304      | vérifié    |
| R279-R280  | 30           | 0,96 | 0,029     | 195,385   | 300       | 0,092     | 0,319 | 0,879 | 0,385 | 115,444 | 1,307          | 1,148          | 0,304      | vérifié    |
| R280-R281  | 30           | 0,96 | 0,044     | 226,551   | 300       | 0,092     | 0,473 | 0,981 | 0,485 | 145,639 | 1,307          | 1,282          | 0,304      | vérifié    |
| R281-RB268 | 32           | 0,96 | 0,059     | 253,383   | 300       | 0,092     | 0,637 | 1,070 | 0,582 | 174,484 | 1,307          | 1,398          | 0,304      | vérifié    |

# Tableau V.26 : Collecteur tertiaire N°10

| Tronçon    | L<br>(m) | P (%) | $Q (m^3/s)$ | D <sub>cal</sub> (mm) | D <sub>nor</sub> (mm) | $Q_{ps}$ $(m^3/s)$ | $R_q$ | $R_v$ | $R_h$ | H<br>(mm) | $V_{ps}$ (m/s) | <i>V</i> (m/s) | V <sub>auto</sub> (m/s) | Autocurage |
|------------|----------|-------|-------------|-----------------------|-----------------------|--------------------|-------|-------|-------|-----------|----------------|----------------|-------------------------|------------|
| R282-R283  | 32       | 1,06  | 0,015       | 148,683               | 300                   | 0,097              | 0,154 | 0,757 | 0,275 | 82,649    | 1,373          | 1,039          | 0,320                   | vérifié    |
| R283-R284  | 32       | 1,06  | 0,030       | 192,819               | 300                   | 0,097              | 0,308 | 0,872 | 0,378 | 113,342   | 1,373          | 1,197          | 0,320                   | vérifié    |
| R284-RB271 | 36,01    | 2,67  | 0,047       | 191,700               | 300                   | 0,154              | 0,303 | 0,869 | 0,375 | 112,444   | 2,179          | 1,894          | 0,517                   | vérifié    |

Tableau V.27 : Collecteur tertiaire N°11

| Tronçon   | L (m) | P<br>(%) | $Q \ (m^3/s)$ | (mm)    | D <sub>nor</sub> (mm) | $Q_{ps}$ $(m^3/s)$ | $R_q$ | $R_v$ | $R_h$ | H<br>(mm) | <i>V<sub>ps</sub></i> (m/s) | <i>V</i> (m/s) | V <sub>auto</sub> (m/s) | Autocurage |
|-----------|-------|----------|---------------|---------|-----------------------|--------------------|-------|-------|-------|-----------|-----------------------------|----------------|-------------------------|------------|
| R108-R109 | 25    | 2,35     | 0,008         | 102,871 | 300                   | 0,145              | 0,058 | 0,532 | 0,163 | 48,956    | 2,045                       | 1,088          | 0,483                   | vérifié    |
| R109-RB98 | 25,09 | 2,35     | 0,017         | 133,497 | 300                   | 0,145              | 0,115 | 0,695 | 0,240 | 72,037    | 2,045                       | 1,421          | 0,483                   | vérifié    |

# Tableau V.28 : Collecteur tertiaire N°12

| Tronçon    | L            | P    | Q         | $D_{cal}$ | $D_{nor}$ | $Q_{ps}$  | $R_q$ | $R_v$ | $R_h$ | Н      | $V_{ps}$ (m/s) | V              | $V_{auto}$ | Autocurage |
|------------|--------------|------|-----------|-----------|-----------|-----------|-------|-------|-------|--------|----------------|----------------|------------|------------|
|            | ( <b>m</b> ) | (%)  | $(m^3/s)$ | (mm)      | (mm)      | $(m^3/s)$ |       |       |       | (mm)   |                | ( <b>m</b> /s) | (m/s)      |            |
| R110-R111  | 28           | 3,66 | 0,009     | 98,780    | 300       | 0,180     | 0,052 | 0,509 | 0,153 | 45,890 | 2,552          | 1,298          | 0,610      | vérifié    |
| R111-R112  | 28           | 3,66 | 0,019     | 128,102   | 300       | 0,180     | 0,103 | 0,669 | 0,227 | 68,089 | 2,552          | 1,708          | 0,610      | vérifié    |
| R112-RB104 | 21,14        | 2,68 | 0,026     | 153,142   | 300       | 0,154     | 0,166 | 0,772 | 0,285 | 85,638 | 2,184          | 1,685          | 0,518      | vérifié    |

# Tableau V.29 : Collecteur tertiaire N°13

| Tronçon    | L            | P    | Q         | $D_{cal}$ | D <sub>nor</sub> | $Q_{ps}$  | $R_q$ | $R_v$ | $R_h$ | H       | $V_{ps}$ (m/s) |       | V <sub>auto</sub> | Autocurage |
|------------|--------------|------|-----------|-----------|------------------|-----------|-------|-------|-------|---------|----------------|-------|-------------------|------------|
|            | ( <b>m</b> ) | (%)  | $(m^3/s)$ | (mm)      | (mm)             | $(m^3/s)$ |       |       |       | (mm)    |                | (m/s) | ( <b>m</b> /s)    |            |
| R113-R114  | 30           | 1,51 | 0,010     | 120,376   | 300              | 0,116     | 0,088 | 0,630 | 0,208 | 62,298  | 1,639          | 1,032 | 0,384             | vérifié    |
| R114-R115  | 30           | 1,51 | 0,020     | 156,109   | 300              | 0,116     | 0,175 | 0,781 | 0,292 | 87,606  | 1,639          | 1,280 | 0,384             | vérifié    |
| R115-R116  | 25           | 1,51 | 0,029     | 177,891   | 300              | 0,116     | 0,248 | 0,837 | 0,341 | 102,166 | 1,639          | 1,372 | 0,384             | vérifié    |
| R116-RB106 | 19,42        | 1,13 | 0,035     | 202,895   | 300              | 0,100     | 0,352 | 0,899 | 0,407 | 121,952 | 1,418          | 1,275 | 0,331             | vérifié    |

Tableau V.30 : Collecteur tertiaire N°14

| Tronçon    | L            | P   | Q         | $D_{cal}$ | $D_{nor}$ | $Q_{ps}$  | $R_q$ | $R_v$ | $R_h$ | Н       | $V_{ps}$ (m/s) | V              | V <sub>auto</sub> | Autocurage |
|------------|--------------|-----|-----------|-----------|-----------|-----------|-------|-------|-------|---------|----------------|----------------|-------------------|------------|
|            | ( <b>m</b> ) | (%) | $(m^3/s)$ | (mm)      | (mm)      | $(m^3/s)$ |       |       |       | (mm)    |                | ( <b>m/s</b> ) | (m/s)             |            |
| R219-R220  | 10           | 4   | 0,012     | 105,355   | 300       | 0,189     | 0,061 | 0,546 | 0,169 | 50,838  | 2,668          | 1,457          | 0,639             | vérifié    |
| R220-R221  | 10           | 4   | 0,023     | 136,628   | 300       | 0,189     | 0,123 | 0,709 | 0,248 | 74,287  | 2,668          | 1,891          | 0,639             | vérifié    |
| R221-R222  | 10           | 4   | 0,035     | 159,065   | 300       | 0,189     | 0,184 | 0,790 | 0,299 | 89,556  | 2,668          | 2,107          | 0,639             | vérifié    |
| R222-R223  | 10           | 4   | 0,046     | 177,184   | 300       | 0,189     | 0,246 | 0,835 | 0,339 | 101,674 | 2,668          | 2,229          | 0,639             | vérifié    |
| R223-R224  | 10           | 4   | 0,058     | 192,649   | 300       | 0,189     | 0,307 | 0,872 | 0,377 | 113,205 | 2,668          | 2,325          | 0,639             | vérifié    |
| R224-R225  | 10           | 4   | 0,069     | 206,281   | 300       | 0,189     | 0,368 | 0,909 | 0,417 | 125,064 | 2,668          | 2,426          | 0,639             | vérifié    |
| R225-R226  | 10           | 4   | 0,081     | 218,557   | 300       | 0,189     | 0,430 | 0,951 | 0,457 | 137,194 | 2,668          | 2,537          | 0,639             | vérifié    |
| R226-R227  | 10           | 4   | 0,093     | 229,780   | 300       | 0,189     | 0,491 | 0,993 | 0,497 | 149,119 | 2,668          | 2,649          | 0,639             | vérifié    |
| R227-R228  | 12           | 4   | 0,106     | 242,144   | 300       | 0,189     | 0,565 | 1,037 | 0,542 | 162,499 | 2,668          | 2,768          | 0,639             | vérifié    |
| R228-R229  | 10           | 4   | 0,111     | 245,579   | 300       | 0,189     | 0,586 | 1,049 | 0,554 | 166,181 | 2,668          | 2,797          | 0,639             | vérifié    |
| R229-R230  | 10           | 4   | 0,115     | 248,935   | 300       | 0,189     | 0,608 | 1,058 | 0,566 | 169,758 | 2,668          | 2,823          | 0,639             | vérifié    |
| R230-R231  | 10           | 4   | 0,119     | 252,218   | 300       | 0,189     | 0,630 | 1,067 | 0,577 | 173,246 | 2,668          | 2,847          | 0,639             | vérifié    |
| R231-R232  | 10           | 4   | 0,123     | 255,431   | 300       | 0,189     | 0,651 | 1,075 | 0,589 | 176,666 | 2,668          | 2,867          | 0,639             | vérifié    |
| R232-R233  | 10           | 4   | 0,127     | 258,578   | 300       | 0,189     | 0,673 | 1,081 | 0,600 | 180,048 | 2,668          | 2,884          | 0,639             | vérifié    |
| R233-R234  | 10           | 4   | 0,131     | 261,662   | 300       | 0,189     | 0,694 | 1,087 | 0,611 | 183,429 | 2,668          | 2,898          | 0,639             | vérifié    |
| R234-RB201 | 10,98        | 4   | 0,135     | 264,981   | 300       | 0,189     | 0,718 | 1,091 | 0,624 | 187,188 | 2,668          | 2,912          | 0,639             | vérifié    |

Tableau V.31 : Collecteur tertiaire N°15

| Tronçon   | L            | P   | Q         | $D_{cal}$ | $D_{nor}$ | $Q_{ps}$  | $R_q$ | $R_v$ | $R_h$ | Н       | $V_{ps}$ (m/s) | V     | $V_{auto}$ | Autocurage |
|-----------|--------------|-----|-----------|-----------|-----------|-----------|-------|-------|-------|---------|----------------|-------|------------|------------|
|           | ( <b>m</b> ) | (%) | $(m^3/s)$ | (mm)      | (mm)      | $(m^3/s)$ |       |       |       | (mm)    |                | (m/s) | (m/s)      |            |
| R203-R204 | 10           | 4   | 0,012     | 105,355   | 300       | 0,189     | 0,061 | 0,546 | 0,169 | 50,838  | 2,668          | 1,457 | 0,639      | vérifié    |
| R204-R205 | 10           | 4   | 0,023     | 136,628   | 300       | 0,189     | 0,123 | 0,709 | 0,248 | 74,287  | 2,668          | 1,891 | 0,639      | vérifié    |
| R205-R206 | 10           | 4   | 0,035     | 159,065   | 300       | 0,189     | 0,184 | 0,790 | 0,299 | 89,556  | 2,668          | 2,107 | 0,639      | vérifié    |
| R206-R207 | 10           | 4   | 0,046     | 177,184   | 300       | 0,189     | 0,246 | 0,835 | 0,339 | 101,674 | 2,668          | 2,229 | 0,639      | vérifié    |
| R207-R208 | 10           | 4   | 0,058     | 192,649   | 300       | 0,189     | 0,307 | 0,872 | 0,377 | 113,205 | 2,668          | 2,325 | 0,639      | vérifié    |

| R208-R209  | 13,07 | 4 | 0,073 | 210,178 | 300 | 0,189 | 0,387 | 0,922 | 0,429 | 128,778 | 2,668 | 2,459 | 0,639 | vérifié |
|------------|-------|---|-------|---------|-----|-------|-------|-------|-------|---------|-------|-------|-------|---------|
| R209-R210  | 9,93  | 4 | 0,085 | 222,024 | 300 | 0,189 | 0,448 | 0,964 | 0,469 | 140,818 | 2,668 | 2,571 | 0,639 | vérifié |
| R210-R211  | 9     | 4 | 0,088 | 225,590 | 300 | 0,189 | 0,468 | 0,977 | 0,482 | 144,609 | 2,668 | 2,606 | 0,639 | vérifié |
| R211-R112  | 8,07  | 4 | 0,091 | 228,710 | 300 | 0,189 | 0,485 | 0,989 | 0,493 | 147,964 | 2,668 | 2,638 | 0,639 | vérifié |
| R212-R213  | 7,93  | 4 | 0,095 | 231,708 | 300 | 0,189 | 0,502 | 1,000 | 0,504 | 151,207 | 2,668 | 2,668 | 0,639 | vérifié |
| R213-R214  | 10    | 4 | 0,099 | 235,400 | 300 | 0,189 | 0,524 | 1,014 | 0,517 | 155,210 | 2,668 | 2,704 | 0,639 | vérifié |
| R214-R215  | 6,7   | 4 | 0,102 | 237,820 | 300 | 0,189 | 0,538 | 1,023 | 0,526 | 157,833 | 2,668 | 2,728 | 0,639 | vérifié |
| R215-R216  | 7     | 4 | 0,104 | 240,305 | 300 | 0,189 | 0,553 | 1,031 | 0,535 | 160,519 | 2,668 | 2,751 | 0,639 | vérifié |
| R216-RB192 | 8     | 4 | 0,108 | 243,094 | 300 | 0,189 | 0,571 | 1,041 | 0,545 | 163,520 | 2,668 | 2,776 | 0,639 | vérifié |

# **Conclusion:**

Dans ce chapitre, nous avons abordé le coté hydraulique à savoir le dimensionnement du réseau d'évacuation d'eaux usées et d'eaux pluviales dans l'hypothèse d'un système unitaire.

Après le dimensionnement de tous les collecteurs et la détermination de leurs paramètres hydrauliques, on constate que les vitesses d'autocurage sont admissibles.

# **CHAPITRE VI:**

# Les éléments constitutifs du réseau

#### **VI.1. Introduction:**

En matière d'assainissement, les éléments constitutifs d'un réseau d'égout doivent assurer :

- Une évacuation correcte et rapide sans stagnation des eaux de pluie.
- Le transport des eaux usées dans les conditions d'hygiène favorables.

Ainsi les ouvrages peuvent être classés en :

- Les ouvrages principaux qui constituent le corps du réseau, du début de cedernier jusqu'à l'entrée des effluents dans la station d'épuration.
- Les ouvrages annexes sont constitués par tous les dispositifs de raccordement, d'accès, de réception des eaux usées ou d'engouffrement des eaux pluviales et par les installations ayant pour rôles fonctionnel de permettre l'exploitation rationnelle du réseau (les regards, les bouches d'égout, les déversoirs d'orage, etc...).

#### **VI.2.Les ouvrages principaux :**

Les ouvrages principaux sont les ouvrages d'évacuation des effluents vers le point de rejet ou la station d'épuration ; ils comprennent les conduites et les joints.

#### **VI.2.1.** canalisations:

Elles se présentent sous plusieurs formes, cylindriques préfabriquées en usine, et sont désignées par leurs diamètres intérieurs, dit diamètres nominaux exprimés en millimètre ; ou ovoïdes préfabriquées désignées par leur hauteur exprimée en centimètre.

#### VI.2.2.Formes et sections des conduites :

- ✓ **Conduites circulaires**: Les conduites circulaires sont utilisées pour les faibles sections par rapport aux autres formes.
- ✓ **Conduites ovoïdes**: Ces conduites sont utilisées pour remplacer les conduites circulaires de diamètre supérieur à 800 mm généralement, et cela afin d'éviter le problème d'auto curage.

Dans notre projet nous optons pour les canalisations de forme circulaire.

#### VI.2.3. Types de matériaux :

Il existe plusieurs types de conduites qui sont différentes suivant leur matériau et leur destination.

#### VI.2.3.1.Conduite en fonte :

Des conduites sont rarement utiliser en assainissement sauf pour des cas spéciaux tels que :

- ✓ Traversée d'un bassin hydro minéral.
- ✓ Les cas de refoulement.
- ✓ Traversée des oueds par conduite siphon.
- ✓ Pour évacuer les eaux usées industrielles, car elle est peu influencée par le sol environnant et elle résiste à la corrosion.

#### VI.2.3.2.Conduite en amiante ciment :

Les tuyaux et pièces de raccord en amiante - ciment se composent d'un mélange de ciment Portland et d'amiante en fibre fait en présence d'eau.

Ce genre se fabrique en deux types selon le mode d'assemblage ; à emboîtement ou sans emboîtement avec deux bouts lisses. Les diamètres varient de 60 à 500 mm pour des longueurs variant de 4 à 5 m.

#### > Joints:

Pour assembler ces types de conduites, on utilise les joints sans emboitement. On distingue :

- ✓ Le joint « Everitube ».
- ✓ Le joint « Eternit », fabriqué pour l'assemblage des conduites à bout lisses.

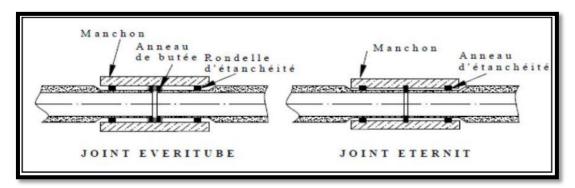



Figure VI.1: Joints sur tuyaux en amiante ciment

#### VI.2.3.3.Conduite en grés :

Le grès servant à la fabrication des tuyaux est obtenu à parties égales d'argile et de sable argileux cuits entre 1200°C à 1300°C. Le matériau obtenu est très imperméable. Il est inattaquable aux agents chimiques, sauf l'acide fluorhydrique. L'utilisation de ce genre est recommandée dans les zones industrielles. La longueur minimale est de 1 m, et les parois intérieurs très lisses permettant une très faible perte de charge.

#### > Joints:

L'assemblage de ces conduites s'effectue par trois sortes de joints :

- ✓ Joints au mortier de ciment.
- ✓ Joints avec corde goudronnée et mortier de ciment.
- ✓ Joints à double anneaux.

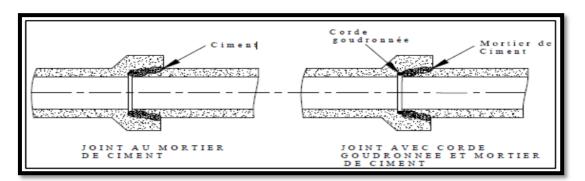



Figure VI.2:Joints sur tuyau en grès

#### VI.2.3.4.conduite en P.V.C:

Le PVC fait partie de la famille des thermoplastiques, c'est une résine Synthétique résultant de la polymérisation du chlorure de vinyle monomère ; celui-ci étant obtenu par synthèse à partir du chlorure d'hydrogène.

Le PVC rigide non plastifié, utilisé en Assainissement, est opaque et de couleur normalisée gris clair. Il offre une exceptionnelle résistance à l'agression d'ordre chimique, de ce fait, offrir un intérêt dans les installations internes industrielles. Si les tuyaux ne sont pas destinés à être assemblés par manchons à doubles bagues d'étanchéité ; il comporte à l'une de leurs extrémités une emboîture façonnée en usine ; munie d'un dispositif pour loger ou retenir une bague en élastomère. Les joints collés ne peuvent être admis que pour les tuyaux de faible diamètre ; c'est-à dire pour les branchements.

Les tuyaux en PVC non plastifiés sont sensibles à l'effet de température.

#### VI.2.3.5. Conduite en béton armé :

Les tuyaux en béton armé sont fabriqués mécaniquement par un procédé assurant une compacité élevée du béton (centrifugation, compression radiale, vibration, ... etc.). Pour pouvoir être dit « armé », un tuyau doit comporter deux séries d'armatures :

- ✓ Des barres droites appelées « génératrice »
- ✓ Des spires en hélice continues, d'un pas régulier maximal de 15cm.

Ces tuyaux doivent satisfaire aux essais de résistance à la rupture et aux essais d'étanchéité (Sous une pression de 1 bar pendant 30 minutes).

#### VI.2.3.6. Conduites en béton non armé :

Les tuyaux en béton non armé sont fabriqués mécaniquement par procéder assurant une compacité élevée du béton. La longueur utile ne doit pas dépasser 2,50m. Ces types de tuyaux ont une rupture brutale, à moins que la hauteur de recouvrement ne soit insuffisante. Elle survient aux premiers âges de la canalisation. Il est déconseillé d'utiliser les tuyaux non armés pour des canalisations visitables.

#### > Joints:

Afin d'assembler les conduites en béton armé ou non armé, on a cinq types de joints :

#### 1. Joint type Rocla:

Ce type de joint assure une très bonne étanchéité pour les eaux transitées et les eaux extérieures. Ce joint est valable pour tous les diamètres.

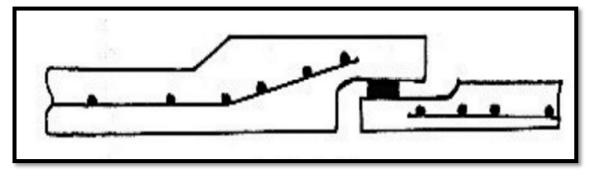



Figure VI.3: Joint type Rocla

#### 2. Joint torique:

S'adapte bien pour les terrains à faible pente, bonne étanchéité si la pression n'est pas élevée. Il est utilisé pour les diamètres allant de 700 à 900mm.

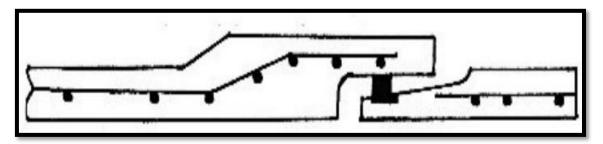



Figure VI.4 : Joint torique

#### 3. Joint à demi-emboitement :

Ne s'adapte pas pour les terrains à forte pente, il ne résiste pas aux pressions supérieures à 1bar. La longueur utile est 1m.

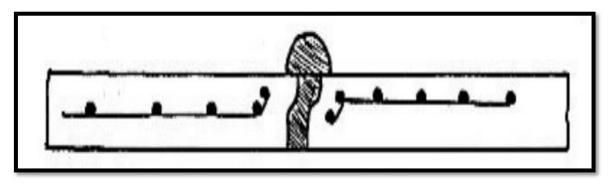



Figure VI.5 : Joint à demi-emboitement

#### 4. Joint à collet :

C'est un joint à emboîtement rigide avec collage en ciment, utilisé uniquement dans les bons sols et à éviter dans les terrains argileux.

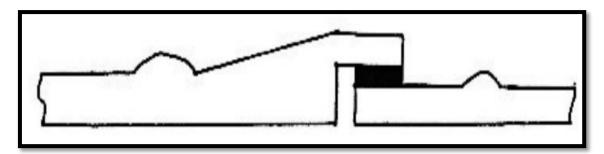



Figure VI.6 : Joint à collet

#### 5. Joint plastique:

Ce joint est étanche et résistant même si la conduite est en charge. La présence du cordon en bitume et la bague ou manchon en matière plastique contribue à la bonne étanchéité. Il s'adapte presque à tous les sols si la confection est bien faite.

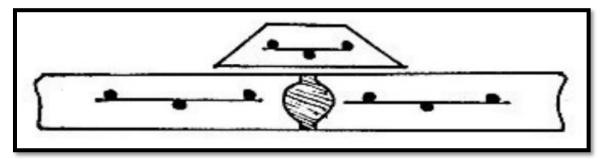



Figure VI.7: Joint plastique

#### VI.2.4. Critères du choix de conduite :

Pour faire le choix des différents types de conduite, on doit tenir compte :

- ✓ Des pentes du terrain.
- ✓ Des diamètres utilisés.
- ✓ De la nature du sol traversé.
- ✓ De la nature chimique des eaux usées transportées par la conduite.
- ✓ Des efforts extérieurs auxquels les conduites sont soumises.

Dans notre travail, nous avons opté pour les conduites en béton armé.

#### VI.2.5. Différentes actions supportées par la conduite :

Les canalisations sont exposées à des actions extérieures et intérieures ; pour cela, elles doivent être sélectionnées pour lutter contre ces actions qui sont :

#### ✓ Les actions mécaniques:

Ce type d'action résulte de l'agressivité des particules de sable et de gravier qui forment le remblai et le radier des canalisations. Cette agressivité provoque la détérioration des parois intérieures par le phénomène d'érosion dû essentiellement à de grandes vitesses imposées généralement par le relief.

# ✓ Les actions chimiques :

Elles sont généralement à l'intérieur de la conduite. Une baisse de PH favorise le développement des bactéries acidophiles qui peuvent à leur tour favoriser la formation de l'acide sulfurique  $(H_2S)$  corrosif et néfaste aux conduites.

Le gainage interne des conduites par une gaine à base de résines époxydes représente le meilleur moyen de lutte contre ces attaques, mais c'est une technique qui reste de même assez coûteuse.

#### ✓ Les actions statiques :

Les actions statiques sont dues aux surcharges fixes ou mobiles comme le remblai, au mouvement de l'eau dans les canalisations ainsi qu'aux charges dues au trafic routier.

#### VI.2.6. Protection des conduites :

Les moyens de lutte contre ces actions peuvent être résumés comme suit :

- ✓ Les temps de séjour des eaux usées dans les canalisations doivent être réduits au maximum.
- ✓ L'élimination des dépôts doit s'opérer régulièrement, car ces derniers favorisent le développement des fermentations anaérobies génératrices d'hydrogène sulfuré

(H2S). Qui est le principal facteur de la corrosion de la partie sèche de la canalisation.

- ✓ Une bonne aération permet d'éviter les condensations d'humidité sur les parois et de réduire ainsi la teneur en H2S.
- ✓ Le revêtement intérieur des conduites par le ciment limoneux ou le ciment sulfaté avec un dosage suffisant dans le béton (300 à 350 kg/m3 de béton).
- ✓ L'empêchement de l'entrée des sables par implantation des bouches d'égout.
- ✓ Le rinçage périodique des conduites.

#### VI.2.7. Essais des tuyaux préfabriqués :

Pour assurer le bon fonctionnement des conduites préfabriquées, de nombreux essais s'imposent notamment les essais à l'écrasement, à l'étanchéité, et à la corrosion.

#### VI.2.7.1. Essai à l'écrasement :

Les ouvrages doivent résister aux charges permanentes des remblais d'une part, aux surcharges dans les zones accessibles aux véhicules routiers d'autre part. Ce qui nous obligeons de faire l'essai à l'écrasement. L'épreuve à l'écrasement se fait par presse automatique avec enregistrement des efforts. Ils doivent être répartis uniformément sur la génératrice de tuyau. La mise en marche est effectuée jusqu'à la rupture par écrasement. A une vitesse de 1000 daN/m de longueur et par minute. Cet essai permet de déterminer la charge de rupture.

#### VI.2.7.2. Essai d'étanchéité:

L'essai à l'étanchéité est obligatoire à l'usine et sur le chantier.

- ✓ À l'usine : la conduite est maintenue debout, remplie d'eau, la diminution du niveau d'eau ne doit pas dépasser 2cm en 24 heures.
- ✓ Sur le chantier : l'un des trois essais suivants peut être envisagé.
- 1. l'essai à l'eau effectué pendant 30mn pour les faibles diamètres ; ainsi que pour les joints, la pression est augmentée jusqu'à 3 bars.
- 2. l'essai à la fumée : cet essai ne peut être effectué qu'en absence de vent et que si la conduite n'est pas humide.
- **3.** l'essai à l'air : Sous pression de 1 bar pendant 30 minutes, et sous une pression de 0,5 bar durant 3 minutes, Pour les conduites circulaires.

#### VI.2.7.3.Essai de corrosion:

Les conduites en béton ou en amiante ciment, sont les plus gravement corrodées par l'hydrogène sulfuré (H2S) produit par les fermentations anaérobies. Le développement de bactéries, qui amorcent la formation d'acide sulfurique, entraine une baisse du pH superficiel du béton suite au lessivage de la chaux en excès et à la carbonatation de la surface par le gaz carbonique. Celle-ci permet le développement rapide de bactéries acidophiles et s'accompagnent de la progression du processus de corrosion vers l'intérieur du béton.

L'épreuve de corrosion se fait par l'addition de différents acides (acide chlorhydrique, acide nitrique, acide sulfurique ...). Après un lavage à l'eau douce et un séchage à l'étuve, on pèse l'échantillon. Les surfaces de la paroi interne ne doivent pas être altérées.

#### VI.3. Les ouvrages annexes :

Les ouvrages annexes ont une importance considérable dans l'exploitation rationnelle des réseaux d'égout.

Ils sont nombreux et obéissent à une hiérarchie de fonction très diversifiée; Fonction de recette des effluents, de fenêtres ouvertes sur le réseau pour en faciliter l'entretien, du système en raison de leur rôle économique en agissant sur les surdimensionnements et en permettant l'optimisation des coûts.

Les ouvrages annexes sont considérés selon deux groupes :

- ✓ Les ouvrages normaux.
- ✓ Les ouvrages spéciaux.

#### 1. Ouvrages normaux:

Les ouvrages normaux sont les ouvrages courants. On les trouve aussi bien en amont ou le long des réseaux .Ils assurent généralement la fonction de recueil des effluents ou d'accès au réseau.

#### 1.1. Les branchements :

Ce sont des conduites de diamètres inférieurs aux diamètres de la canalisation publique (environ de 7/10).

Leur rôle est de collecter les eaux usées et les eaux pluviales d'immeubles. Un branchement comprend trois parties essentielles :

- ✓ Un regard de façade qui doit être disposé en bordure de la voie publique et au plus près de la façade de la propriété raccordée pour permettre un accès facile aux personnels chargés de l'exploitation et du contrôle du bon fonctionnement.
- ✓ Des canalisations de branchement qui sont de préférence raccordées suivant une oblique inclinée à 45° ou. 60° par rapport à l'axe général du réseau public.
- ✓ Les dispositifs de raccordement de la canalisation de branchement sont liés à la nature et aux dimensions du réseau public.

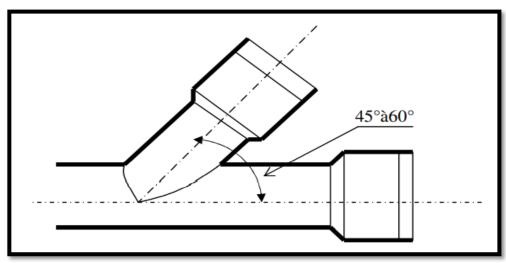



Figure VI.8: Exemple d'un branchement simple

#### 1.2. Les caniveaux :

Les caniveaux sont destinés à recueillir des eaux pluviales ruisselantes sur le profil transversal de la chaussée et des trottoirs et au transport de ces eaux jusqu'aux bouches d'égout.

#### 1.3. Les bouches d'égout :

Les bouches d'égout, appelés aussi regard de chaussée, sont des ouvrages à vocation prioritairement utilitaire et sécuritaire ; il s'agit de limiter et d'absorber les eaux de surfaces (Les eaux pluviales et les eaux de lavages).

Elles sont utilisées aux points bas des caniveaux, soit dans le trottoir (absorption par le bas), soit dans la chaussée (absorption par le haut).

On peut classer les bouches d'égout selon le recueille des eaux, en cinq types :

- ✓ Les bouches d'égout avec grille et couronnement métallique: Ce type de bouche d'égout, permet l'entrée des eaux dans le réseau, soit au moyen d'un siphon, soit directement par sur verse au-dessus du seuil du puisard de décantation.
- ✓ Les bouches d'égout avec bavette en pierre ou en béton et couronnement métallique : Afin d'évacuer l'eau, un entonnoir est prolongé par une jupe dont la base doit plonger au moins à 0,05 m au-dessous du niveau permanent du puisard de décantation.
- ✓ Les bouches d'égout avec bavette et couronnement en pierres ou en béton : Ce type est une variante applicable aux deux types précédents.
- ✓ Les bouches d'égout à avaloir métallique grille et couronnement combiné : Elles sont comme les précédentes, la seule particularité repose dans le fait que le dispositif métallique supérieur s'emboîte directement sur l'arase supérieure de la cheminée.
- ✓ La bouche d'égout à grille seule : Les bouches d'égout à grille seule, s'emboîtent directement sur l'arase supérieure de la cheminée.

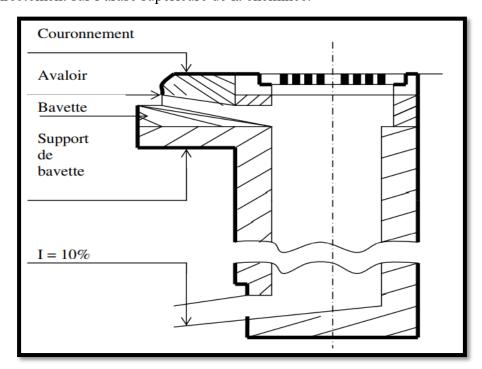



Figure VI.9: Exemple d'une bouche d'égout sans décantation

#### 1.4. Les fossés :

Les fossés sont destinés à recueillir les eaux provenant des chaussées en milieu rural. Ils sont soumis à un entretien périodique.

#### 1.5. Les regards :

Ils ont pour rôle d'assurer une aération, un débourdage et nettoyage des ouvrages ainsi que la jonction des conduites de différents diamètres et l'accès au personnel pour les travaux d'entretien et de curage, dans le cas des ouvrages visitables.

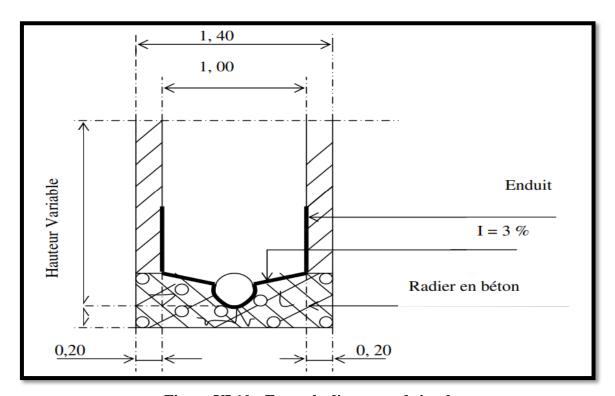



Figure VI.10: Exemple d'un regard simple

#### **Emplacement:**

Un regard doit être installé sur les canalisations :

- ✓ A tous les points de jonctions.
- ✓ Au changement de direction.
- ✓ Au changement de pente de canaux.
- ✓ Aux points de chute.
- ✓ A chaque changement de diamètre.

#### > Types de regards :

Les types de regards varient en fonction de l'encombrement et de la pente du terrain, ainsi que du système d'évacuation, donc on distingue :

#### ✓ Regard de visite :

Ces regards sont destinés à l'entretien courant et le curage régulier des canalisations tout en assurant une bonne ventilation de ces dernières, l'intervalle d'espacement est de 35 à 80m. Les dimensions minimales de ces regards sont les suivantes :

• Profondeur inférieure à 1.5m; diamètre 80cm.

- Profondeur supérieure à 1.5m; diamètre 1.00m avec échelon d'accès.
- L'épaisseur des parois est de 8cm en béton préfabriqué en usine, 12cm en béton coulé sur place avec un enduit étanche de 2cm.

## ✓ Regard de ventilation :

La présence d'air dans les égouts est la meilleure garantie contre la fermentation et la production du sulfure d'hydraulique gazeux ; la ventilation s'opère par :

- Les tampons des regards munis d'orifices appropriés.
- Les tuyaux de chute qui doivent être prolongés jusqu'à l'air libre.
- Les cheminées placées sur l'axe de la canalisation.

# ✓ Regard de jonction :

Ils servent à unir deux collecteurs de même ou de différentes sections, ils sont construits de telle manière à avoir :

- Une bonne aération des collecteurs en jonction (regard).
- Les dénivelées entre les radiers des collecteurs.
- Une absence de reflux d'eau par temps sec.
- Les niveaux d'eau des conduites doivent être à la même hauteur.

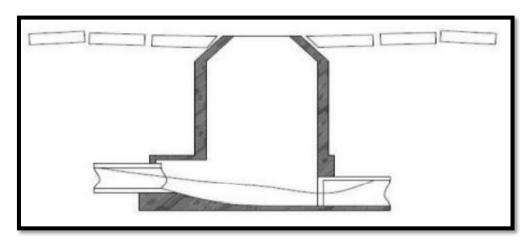



Figure VI.11: Exemple d'un regard de jonction

#### ✓ Regard de chute :

C'est l'ouvrage le plus répondu en Assainissement, il permet d'obtenir une dissipation d'énergie en partie localisée, il est très utilisé dans le cas où le terrain d'une agglomération est trop accidenté. Ils sont généralement utilisés pour deux différents types de chutes :

#### 1. La chute verticale profonde :

Utilisée pour un diamètre faible et un débit important ; leur but et de réduire la vitesse.

#### 2. La chute toboggan :

Cette chute est utilisée pour des diamètres assez importants, elle assure la continuité d'écoulement et permet d'éviter le remous.

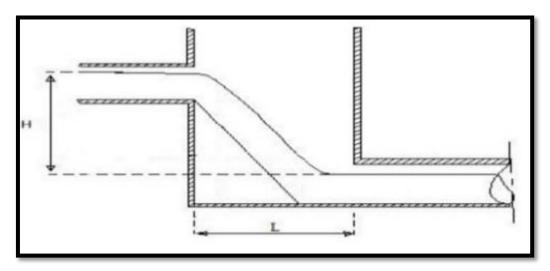



Figure VI.12 : Exemple d'un regard de chute

• Dimensionnement du regard de chute :

$$X = v.t (VI.1)$$

$$Y = \frac{1}{2}gt^2 \tag{VI.2}$$

De (VI.1):

$$t = \frac{x}{v}$$
 (VI.3)

Ou X: Largueur du regard (m).

Y: La différence de niveau entre les deux collecteurs (m) à partir de la cote du radier.

V : Vitesse d'écoulement dans la conduite. (m/s).

D'après les trois équations on aura :

$$\mathbf{X} = \sqrt{\frac{2 \times y}{g}} \times V \tag{VII.4}$$

#### Remarque:

Les dimensions des regards de chute des deux collecteurs principaux sont mentionnées en annexe [3].

#### 2. Les ouvrages spéciaux :

#### 2.1. Déversoirs d'orage :

Un déversoir d'orage est un véritable « fusible hydraulique », ou une « soupape de sécurité ». Le terme déversoir d'orage c'est l'ensemble de dispositifs permettant d'évacuer directement et sans traitement vers le milieu naturel, les pointes de ruissèlement de manière à décharger le réseau aval, donc un déversoir d'orage sépare les eaux quantitativement pas qualitativement. Ce terme générique de déversoir peut être précisé par différents aspects, par exemple :

- ✓ Une deuxième fonction du déversoir est d'assurer un partage qualitatif des flux polluants entre le milieu naturel et le collecteur aval.
- ✓ Le déversoir d'orage est un ouvrage permettant le rejet direct d'une partie des effluents dans le milieu naturel lorsque le débit à l'amont dépasse une certaine valeur.
- ✓ Les déversoirs d'orage sont généralement installés sur les réseaux unitaires dans le but de limiter les apports du réseau aval et en particulier dans la STEP en cas de pluie.

Les déversoirs d'orage sont souvent construits sur des systèmes unitaires, à proximité d'un milieu récepteur. Le choix d'un déversoir d'orage résulte d'un compromis fait au moment de la réalisation ou de la rénovation du réseau unitaire selon quatre types de paramètres :

#### 1. Physiques (géométrie et hydraulique) :

- ✓ Topographie : pente, bassins hydrographiques, existence d'exutoires naturels, ...etc.
- ✓ Occupation du sol : densité de l'habitat et des activités, voirie, sous-sol, ...etc.
- ✓ Ouvrages hydrauliques proches du (bassin, station de pompage...).

#### 2. Environnementales:

- ✓ Protection du milieu naturel contre les pollutions.
- ✓ Protections des riverains contre les pollutions diverses (santé, odeurs, bruit...).
- ✓ Variations du niveau d'eau du milieu naturel.

#### 3.Économiques:

Coût des collecteurs vis-à-vis du coût du déversoir et de ses ouvrages annexes.

#### 4. Gestion:

Mode de gestion : statique, dynamique (ouvrages mobiles). Facilités d'exploitation : accès, nettoyage, entretien...

#### 2.1.1. Composition des organes d'un déversoir d'orage :

Dans tous les cas de figure, le déversoir d'orage comprend :

- ✓ Un ouvrage de dérivation.
- ✓ Un canal ou collecteur de décharge conduisant l'eau déversée à un émissaire naturel (Ruisseau, rivière), y compris l'ouvrage de rejet lui-même au droit de l'émissaire.

Le déversoir d'orage est raccordé :

- ✓ À l'amont : au collecteur d'arrivée amenant les eaux unitaires.
- √ À l'aval : au collecteur de départ qui transporte vers la station d'épuration les eaux à épurer.

L'ouvrage de dérivation peut être constitué de tout autre organe qu'un déversoir au sens hydraulique du terme.

Le collecteur de décharge peut être très court (cas d'égouts longeant le ruisseau).

Un ouvrage ou un système de stockage (bassin d'orage) peut être adjoint à l'ouvrage de dérivation pour stocker temporairement une partie du flot (premier flot d'orage notamment).

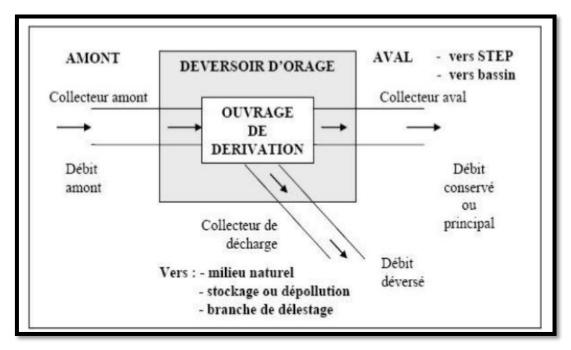



Figure VI.13 : Schéma de principe du déversoir d'orage.

#### 2.1.2. Positionnement:

La construction d'un déversoir d'orage résulte théoriquement d'une étude économique, en plus de considérations techniques. Il ne peut y avoir de déversoir que s'il y a un émissaire pouvant recevoir les eaux d'un collecteur de décharge, aussi bien sous l'angle débit que sous l'angle pollution. Quand c'est le cas, le nombre et la position des déversoirs résultent de comparaisons économiques.

Chaque fois que l'on met un déversoir, on crée un ouvrage coûteux, mais on réduit le diamètre du collecteur aval. Il n'y a donc pas de règle générale.

Les déversoirs d'orage pourront être placés :

- ✓ Sur des collecteurs secondaires afin de limiter les débits d'apport aux collecteurs principaux.
- ✓ À l'entrée d'ouvrages tels que les bassins d'orage, les siphons, etc...
- ✓ À l'entrée des stations d'épuration.

#### 2.1.3. Les différents types des déversoirs d'orage :

Le seul élément qui caractérise réellement un déversoir d'orage est l'ouvrage de dérivation. On peut distinguer pour celui-ci :

#### 2.1.3.1. Les ouvrages à seuil déversant :

#### ✓ Les déversoirs à seuil haut :

Le seuil haut est un déversoir classique dont le fonctionnement est un peu perturbé par une vitesse d'approche de l'eau parallèle au seuil, dans le cas du déversoir latéral. Mais cette vitesse est faible et on peut sans inconvénient utiliser les formules classiques.

Ce type de déversoir est caractérisé par la présence d'un étranglement, son diamètre est calculé pour faire passer juste de débit demandé pour la STEP, au-delà il se déverse.

#### ✓ Déversoirs à seuil bas :

À l'opposé, le déversoir à seuil bas est en quelque sorte une ouverture faite latéralement dans un collecteur. Suivant la pente du radier, les conditions hydrauliques d'écoulement à l'amont et à l'aval, la fraction de débit déversée, etc., la ligne d'eau au droit du déversoir peut présenter différentes configurations (hauteur d'eau plus faible en tête du déversoir qu'en extrémité, ou le contraire, ressaut à l'amont, à l'aval, au milieu). Il y a donc de très nombreux cas de fonctionnement possibles, plus ou moins bien connus, ce qui explique en partie le nombre de formules proposées par différents auteurs, parfois contradictoires.

Du point de vue hydraulique, le fonctionnement des déversoirs à seuil haut est beaucoup mieux connu que celui des déversoirs à seuil bas.

#### ✓ Les déversoirs à seuil latéral :

Dans le cas du déversoir à seuil latéral, le seuil est rectiligne et strictement parallèle à l'écoulement. Le seuil déversant latérale peut être placé sur un coté de l'ouvrage ou de chaque côté.

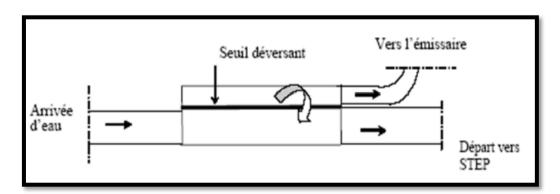



Figure VI.14 : Déversoir à seuil latéral pur, vue de dessus

#### ✓ Les déversoirs à seuil frontal :

Le seuil est alors rectiligne et perpendiculaire à l'écoulement. Parmi les déversoirs à seuils frontaux, on peut encore établir une sous-catégorie selon la présence ou non d'une contraction au niveau du seuil, selon la mise en charge de la conduite aval et selon l'orientation de cette même conduite par rapport à la crête.

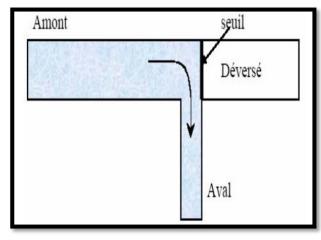



Figure VI.15 : déversoir à seuil frontal



Figure VI.16 : Exemples de déversoir frontal

#### ✓ Déversoir à seuil double :

Le seuil est placé de chaque côté de l'ouvrage. Ce type de déversoirs représente environ 15% des déversoirs à seuil. Ce sont des déversoirs suspendus.

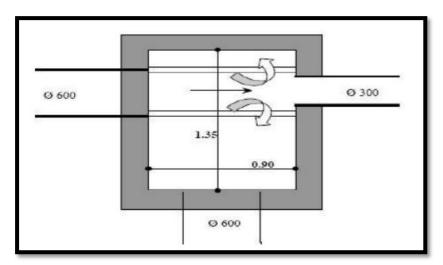



Figure VI.17 : Schéma d'un déversoir à seuil double

#### 2.1.3.2. Les ouvrage n'utilisant pas le seuil :

On trouve dans cette catégorie toute une série de dispositifs, parfois appelés de régulation, qui font intervenir différents principes de fonctionnement. Mais si on se limite aux ouvrages habituellement utilisés, on trouve essentiellement :

- ouvrage à ouverture de radier.
- ouvrages avec les trous dans le mur.
- ouvrage avec siphon.
- ouvrage avec orifice.
- ouvrages à vortex.
- ouvrage avec vannes.

#### 2.1.3.3. Déversoir by-pass :

Ce type de déversoir permettant d'évacuer vers le milieu naturel les pointes de ruissellement de manière à dégager le réseau aval ; assurer le partage du flux polluant entre le milieu naturel et le collecteur aval ; envoyer les eaux excédentaires lors des orages vers un autre collecteur en assurant un rôle de maillage du réseau. Ce type de déversoir est utilisé dans la gestion du réseau, on fait by-passer l'écoulement vers un autre collecteur pour exécuter les travaux de réhabilitation.

Pour avoir la capacité de transports, prélever les eaux de temps sec pour les envois vers un égout des eaux, transformation de la partie aval du collecteur unitaire en collecteur semipluvial, possible qu'avec un vannage.

#### 2.1.4. Les ouvrages annexes du déversoir d'orage :

#### 2.1.4.1. Les grilles et les dégrailleurs :

Leurs rôles est de contrôler les gros solides (d > 6mm) aux déversoirs pour éviter leur envoi au milieu naturel, ils sont placés à l'amont des déversoirs, et caractérisées par :

- épaisseur des barreaux des grilles : 10 à 12mm ;
- espacement des barreaux des grilles : 10 à 15mm ;
- rendement des grilles : 50%.

#### 2.1.4.2. La chambre de tranquillisation et de dessablement :

Cette chambre est située à l'amont du déversoir, a pour but en réduisant la vitesse du flux, d'assurer une décantation des matières en suspension les plus lourdes et de faire remonter en surface les flottants. Pour éviter l'envasement, on recommande :

$$D_{min} = 0.815 \times Q_p^{0.4}$$
 (VI.5)

Avec:

 $Q_p$ : Débit de pointe de 2 à 5ans de période de retour  $[m^3/s]$ .

#### 2.1.5. Dimensionnement du déversoir d'orage :

#### 2.1.5.1. Dimensionnement du déversoir d'orage latéral (DO N°1) :

Les données de base sont les suivantes :

- -Diamètre d'entrée : D = 1200 mm
- -Débit à pleine section :  $Q_{ps} = 2.52m^3/s$
- -Débit de pointe d'eau usées :  $Q_{eu} = 0.035m^3/s$
- -Débit de pointe allant vers la station d'épuration : on propose une dilution de 3 fois

Alors :  $Q_{\text{step}} = 3 \times 0.035 = 0.105 \, m^3/s$ 

- -Hauteur d'eau à l'entrée :  $H_e = 823,54 \text{ mm}$
- -la pente = 0.0044 m/m

#### ✓ Détermination du débit critique :

$$Q_{cr} = Z \times Q_t \tag{VI.6}$$

Avec:

Z: coefficient de retardement

$$Z = 1 - \frac{T_c}{100}$$
 (VI.7)

tq: $T_c$ c'est le temps de concentration en mn

Pour notre zone d'étude, il s'agit d'une agglomération urbanisée qui doit comporter des canalisations, alors le temps de concentration sera donné comme suit :

$$T_c = t_1 + t_2 \tag{VI.8}$$

Avec:

$$t_1 = \frac{L_S}{60 \times V} \text{ (min)} \tag{VI.9}$$

 $t_2$ : Temps mis par l'eau pour atteindre le premier ouvrage d'engouffrement, il est varié de 2 à 20 minutes.

tq:

 $L_s$ : Longueur totale de collecteur le plus longs

 $\boldsymbol{V}$  : vitesse moyen égale à la somme des vitesses de chaque tronçon sur le nombre des tronçons

A.N

$$\begin{cases} t_1 = \frac{1295,39}{60 \times 3,83} = 5,64 \text{ min} \\ t_2 = 2min. \end{cases}$$
 
$$\begin{cases} T_c = 5,64 + 2 = 7,64 \text{ min.} \\ Z = 1 - \frac{7,64}{100} = 0,92 \text{ .} \end{cases}$$

Alors:  $Q_{cr} = 0.92 \times 2.074 = 1.91 \, m^3/s$ .

✓ Détermination du débit déversé :

$$Q_{dev} = Q_{cr} - Q_{step} (VI.10)$$

 $Q_{\text{dev}} = 1.91 - 0.105 = 1.805 m^3 / s.$ 

✓ Détermination de la hauteur demandée par la station d'épuration  $h_{step}$ :

Nous avons:

$$R_{Qstep} = \frac{Q_{step}}{Q_{ps}}$$
  $\longrightarrow$   $R_{Qstep} = \frac{0,105}{2.52} = 0,042.$ 
 $R_{hstep} = \frac{h_{step}}{D}$   $\longrightarrow$   $h_{step} = R_{hstep} \times D$ 

De l'abaque d'annexe [2] nous tirons  $R_h$ et  $R_v$ :  $\begin{cases} R_{hstep} = 0.06 \\ R_{vstep} = 0.25 \end{cases}$ 

$$h_{step} = 0.06 \times 1200 = 72 \text{ mm}.$$

#### ✓ Détermination de la hauteur d'eau déversée $h_{dev}$ :

Nous avons:

$$R_{Qcr} = \frac{q_{cr}}{q_{ps}} \longrightarrow R_{Qcr} = \frac{1,91}{2,52} = 0,76.$$

$$R_{hcr} = \frac{h_{cr}}{D} \longrightarrow h_{cr} = R_{hcr} \times D$$

De l'abaque d'annexe [2] nous tirons  $R_h$ :  $R_{hcr} = 0.65$ 

$$h_{cr} = 0.65 \times 1200 = 780 \, mm$$
.

$$\mathbf{h}_{\text{dev}} = \mathbf{h}_{\text{cr}} - \mathbf{h}_{\text{step}} \tag{VI.11}$$

$$h_{\text{dev}} = 780 - 72 = 708 \, mm.$$

#### ✓ Détermination de la longueur du déversoir :

Nous appliquons la formule de BAZIN :

$$Q_d = \frac{2}{3} \mu L \sqrt{2g} h_d^{\frac{3}{2}}$$
 (VI.12)

$$L = \frac{Q_d}{\frac{2}{3}\mu\sqrt{2g}\ h_d^{\frac{3}{2}}} = \frac{1,805}{\frac{2}{3}\times0.4\times\sqrt{2\times9.81}\times(0.708)^{\frac{3}{2}}} = \mathbf{2,56}\ \mathbf{m}.$$

$$L=2,56 m$$

#### 2.1.5.2. Dimensionnement du déversoir d'orage latéral (DO N°2) :

Les données de base sont les suivantes :

- -Diamètre d'entrée : D = 600 mm
- -Débit à pleine section :  $Q_{ps} = 0.97m^3/s$
- -Débit de pointe d'eau usées :  $Q_{eu} = 0.0116m^3/s$
- -Débit de pointe allant vers la station d'épuration : on propose une dilution de 3 fois Alors :  $Q_{\text{step}} = 3 \times 0.0116 = 0.0348 \, m^3/s$

-Hauteur d'eau à l'entrée :  $H_e = 426,64 \text{ mm}$ 

-la pente = 0.026 m/m.

#### ✓ Détermination du débit critique :

$$\begin{cases} t_1 = \frac{813}{60 \times 2,92} = 4,64 \text{ min} \\ t_2 = 2min. \end{cases}$$
 
$$\begin{cases} T_c = 4,64 + 2 = 6,64 \text{ min.} \\ Z = 1 - \frac{6,64}{100} = 0,93 \text{ .} \end{cases}$$

Alors:  $Q_{cr} = 0.93 \times 0.83 = 0.77 \, m^3/s$ .

✓ Détermination du débit déversé :

$$Q_{\text{dev}} = 0.77 - 0.0348 = 0.74 \, \text{m}^3/\text{s}.$$

 $\checkmark$  Détermination de la hauteur demandée par la station d'épuration  $h_{step}$  :

Nous avons:

$$R_{Qstep} = \frac{Q_{step}}{Q_{ps}}$$
  $\longrightarrow$   $R_{Qstep} = \frac{0,0348}{0.97} = 0,035.$   $R_{hstep} = \frac{h_{step}}{D}$   $\longrightarrow$   $h_{step} = R_{hstep} \times D$ 

De l'abaque d'annexe [2] nous tirons  $R_h$ et  $R_v$ :  $\begin{cases} R_{hstep} = 0.05 \\ R_{vstep} = 0.2 \end{cases}$ 

$$h_{step} = 0.05 \times 600 = 30 \text{ mm}.$$

✓ Détermination de la hauteur d'eau déversée  $h_{dev}$ :

Nous avons:

$$R_{Qcr} = \frac{Q_{cr}}{Q_{ps}}$$
  $\longrightarrow$   $R_{Qcr} = \frac{0,77}{0,97} = 0,79.$   $R_{hcr} = \frac{h_{cr}}{D}$   $\longrightarrow$   $h_{cr} = R_{hcr} \times D$ 

De l'abaque d'annexe [2] nous tirons  $R_h: R_{hcr} = 0.68$ 

$$h_{cr} = 0.68 \times 600 = 408 \ mm$$
.

$$h_{dev} = 408 - 30 = 378 \, mm$$
.

✓ Détermination de la longueur du déversoir :

$$L = \frac{Q_d}{\frac{2}{3}\mu\sqrt{2g}\ h_d^{\frac{3}{2}}} = \frac{0.74}{\frac{2}{3}\times0.4\times\sqrt{2\times9.81}\times(0.378)^{\frac{3}{2}}} = 2.7\ m.$$

$$L=2,7 m$$

Les résultats sont résumés dans le tableau suivant :

Tableau VI.1: dimensionnement des déversoirs d'orage projetés.

| N°<br>du<br>DO | $Q_{\rm cr}$ $m^3/s$ | $Q_{step} \ m^3/s$ | $Q_{ps}$ $m^3/s$ | $Q_{\text{dev}} m^3/s$ | $R_{Qstep}$ | $R_{hstep}$ | $R_{vstep}$ | $h_{step}$ (mm) | $R_{Qcr}$ | $R_{hcr}$ | h <sub>cr</sub> (mm) | h <sub>dev</sub><br>(mm) | L<br>(m) |
|----------------|----------------------|--------------------|------------------|------------------------|-------------|-------------|-------------|-----------------|-----------|-----------|----------------------|--------------------------|----------|
| DO1            | 1,91                 | 0,105              | 2,52             | 1,805                  | 0,042       | 0,06        | 0,25        | 72              | 0,76      | 0,65      | 780                  | 708                      | 2,56     |
| DO2            | 0,77                 | 0,0348             | 0.97             | 0,74                   | 0,035       | 0,05        | 0,2         | 30              | 0,79      | 0,68      | 408                  | 378                      | 2,7      |

#### **Conclusion:**

Dans ce chapitre on a cité éléments constitutifs du réseau d'égout, et on a projeté des bouches d'égout, des regards ; ainsi pour les ouvrages principaux, notre choix été fait pour les canalisations en béton armé afin d'assurer un bon fonctionnement du système d'évacuation.

Et de l'autre cote pour faciliter les opérations de curage et assurer une meilleure sécurité à notre réseau. On a procédé à l'implantation et au dimensionnement des deux déversoirs d'orages de type latéral.

# **CHAPITRE VII:**

Organisation de chantier et sécurité du travail

#### **VII.1.Introduction:**

L'organisation de chantier consiste à déterminer et à coordonner la mise en œuvre des moyens nécessaires pour accomplir dans les meilleures conditions possibles les travaux à exécuter avant d'aller sur chantier et avant le commencement de la réalisation. Pour cela il faut toujours commencer par une étude théorique et ensuite la partie pratique. Dans la première on détermine le temps de réalisation avec précision, le matériel à utiliser, la main d'ouvre nécessaire et les matériaux de construction nécessaires. Dans la deuxième partie on passe à l'exécution des travaux sur terrain.

#### VII.2. Exécution des travaux :

- ✓ Les principales opérations à exécuter pour la pose des canalisations sont :
- ✓ Manutention et stockage des conduites.
- ✓ Décapage de la couche de terre végétale.
- ✓ Exécution des tranchées et des fouilles pour les regards.
- ✓ Aménagement du lit de pose.
- ✓ Emplacement des jalons des piquets.
- ✓ La mise en place des canalisations en tranchée.
- ✓ Assemblage des tuyaux.
- ✓ Faire les essais d'étanchéité pour les conduites et les joints.
- ✓ Remblaiement des tranchées.
- ✓ Construction des regards en béton armé.

#### VII.2.1.Manutention et stockage des conduites :

#### **VII.2.1.1.Chargement et transport :**

Le chargement des véhicules doit être effectué de façon à ce qu'aucune détérioration ou déformation des tubes et des accessoires ne se produise pendant le transport. Il faut éviter :

- ✓ Les manutentions brutales, les flèches importantes, les ballants.
- ✓ Tout contact des tubes et des raccords avec des pièces métalliques saillantes. les tubes avec emboîture doivent être alternés. les emboîtures doivent dépasser la pile.

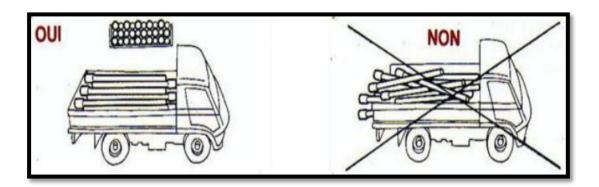



Figure VII.1: chargement des canalisations

#### VII.2.1.2. Déchargement :

Le déchargement brutal des tubes et des raccords sur le sol est à proscrire

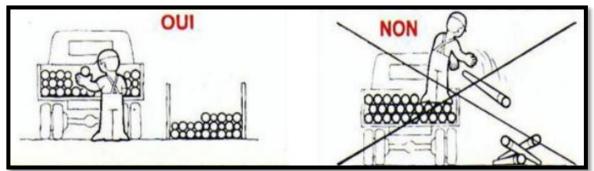



Figure VII.2 : déchargement des canalisations

#### VII.2.1.3. Stockage:

- ✓ L'aire destinée à recevoir les tubes et les raccords doit être nivelée et plane.
- ✓ L'empilement doit se faire en alternant les emboîtures et en laissant celles-ci dépasser la pile.
- ✓ La hauteur de gerbage doit être limitée à 1.50m.
- ✓ Les tubes et les accessoires doivent être stockés à l'abri du soleil. (la décoloration du tube n'affecte en rien ses caractéristiques mécaniques).
- ✓ Les accessoires ne doivent être déballés qu'au moment de leur utilisation.
- ✓ Eviter le contact avec l'huile les solvants et autres substances chimiques.
- ✓ Le stockage des tubes doit assurer leur protection mécanique et contre la chaleur.

#### VII.2.2.Décapage de la couche de terre végétale :

C'est une opération préliminaire se fait par un dozer, qui consiste à éliminer la couche superficielle du sol (les dix (10) premiers centimètres de la surface) constituée principalement de matière végétale.

#### VII.2.3.Exécution des tranchées et des fouilles pour les regards :

#### • Largeur du tranché:

La largeur de la tranchée, doit être au moins égale au diamètre extérieur de la conduite avec des sur largeurs entre (0.3-0.5) cm de part et d'autre.

La largeur de tranchée est donnée par la formule :

$$\mathbf{B} = \mathbf{D} + (2 \times \mathbf{c}) \tag{VII.1}$$

#### Avec:

✓ **B**: largeur de la tranchée en (m).

✓ **D** : diamètre de la conduite en (m).

✓ c: largeur entre conduite et parois de tranché.

#### • Profondeur du tranché:

La profondeur est donnée par la formule suivante :

$$\mathbf{H} = \mathbf{e} + \mathbf{D} + \mathbf{h} \tag{VII.2}$$

#### Avec:

- ✓ **H**: profondeur de la tranchée en (m).
- ✓ e : épaisseur de lit de sable en (m), e = 10 cm.
- ✓ **D** : diamètre de la conduite en (m).
- ✓ **h**: la hauteur du remblai au-dessus de la conduite en (m).

#### VII.2.4. Aménagement du lit de pose :

Les conduites seront posées sur un lit de pose de sable d'épaisseur égale au moins à 10 cm. Ce dernier sera bien nivelé suivant les côtes du profil en long.

Le lit de pose doit être constitué de sable contenant au moins 12% de particules inférieures 0,1mm

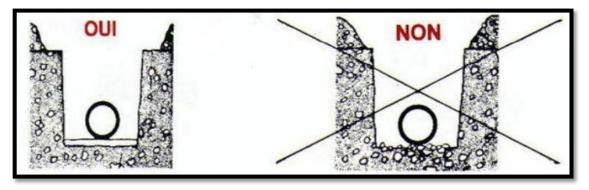



Figure VII.3: lit de pose

#### VII.2.5. Emplacement des jalons des piquets :

Suivant les tracés du plan de masse, les jalons des piquets doivent être placés dans chaque point d'emplacement d'un regard à chaque changement de direction ou de pente et à chaque branchement ou jonction de canalisation.

#### VII.2.6.Pose canalisations dans la tranchée :

De plus, des règles de bonne pratique sont à respecter ; ainsi, il est conseillé :

- ✓ d'éviter de poser les tuyaux sur des tasseaux qui concentrent les efforts d'écrasement et les font travailler en flexion longitudinale.
- ✓ de réaliser un fond de fouille bien rectiligne pour que les tuyaux y reposent sur toute leur longueur.
- ✓ de creuser le fond de fouille, lorsque les tuyaux sont à emboîtement par collet extérieur sur tout leur pourtour, de façon à éviter que les collets ne portent sur le sol.
- ✓ de placer toujours les tuyaux sur des fouilles sèches.
- ✓ d'éliminer du fond des fouilles tous les points durs (grosses pierres, crêtes rocheuses, vieilles maçonneries,...) qui constituent des tasseaux naturels.
- ✓ en sol rocheux, d'approfondir la fouille de 15 à 20 cm et de confectionner un lit de pose bien damé avec des matériaux pulvérulents ou de procéder à une pose sur un bain fluant de mortier.

#### VII.2.7. Assemblage des conduites :

Suivant la section, la forme et la nature du matériau de la conduite, on effectue la jointure de ces dernières.

#### VII.2.8. Essais d'étanchéité :

C'est une épreuve d'étanchéité au quelle sont soumises les conduites déjà placées au fond de la tranchée.

L'essai est réalisé avec de l'eau, de l'air, de la fumée ou un mélange d'eau et d'air.

#### VII.2.9. Réalisation des regards :

Les regards sont généralement de forme cubique, leurs dimensions varient en fonction des collecteurs, La profondeur et l'épaisseur varient d'un regard à un autre.

La réalisation de ces regards s'effectue sur place avec le béton armé, On peut avoir des regards préfabriqués.

Les tampons doivent comporter un orifice, ayant pour but de faciliter leur levage ainsi que l'aération de l'égout.

Les différentes étapes d'exécution d'un regard sont les suivantes :

- ✓ Réglage du fond du regard.
- ✓ Exécution de la couche du béton de propreté.
- ✓ Ferraillage du radier de regard.
- ✓ Bétonnage du radier.
- ✓ Ferraillage des parois.
- ✓ Coffrage des parois.
- ✓ Bétonnage des parois.
- ✓ Décoffrage des parois.
- ✓ Ferraillage de la dalle.
- ✓ Coffrage de la dalle.
- ✓ Bétonnage de la dalle.
- ✓ Décoffrage de la dalle.

#### VII.2.10. Remblaiement et compactage des tranchées :

Après avoir effectué la pose des canalisations dans les tranchées, un remblayage de qualité est nécessaire sur une certaine hauteur au-dessus de la génératrice supérieure pour assurer, d'une part la transmission régulière des charges agissant sur la canalisation et, d'autre part, sa protection contre tout dégât lors de l'exécution du remblai supérieur.

Le matériau utilisé est similaire à celui mis en œuvre pour le remblayage latéral. L'exécution d'un remblayage de qualité doit être effectuée sur une hauteur minimale de 10 cm au-dessus de la génératrice supérieure.

#### VII.2.11. Choix des engins :

Le choix des engins est très important dans la réalisation des travaux, chaque opération à un engin qui lui convient :

#### ✓ Pour le décapage de la couche de la terre végétale :

Pour le décapage de la terre végétale on utilise la "niveleuse " sur les terrains facile à décapé, elle est constituée d'un tracteur à quatre roues dans deux prolongé vers l'avant, une lame

montée sur une couronne et par rapport à laquelle elle peut tourner ou se déplacer dans son prolongement dans toutes directions.



Figure VII.4: Niveleuse

Dans les terrains difficiles on utilise le "Bulldozer":



Figure VII.5: Bulldozer

#### ✓ Pour l'excavation des tranchées :

On utilise une pelle équipée en rétro

Les pelles sont des engins de terrassement qui conviennent à tous les types de terrains. Ce sont des engins dont le rôle est l'exécution des déblais et leur chargement. Ils sont de type à fonctionnement discontinu, c'est à dire que le cycle de travail comprend les temps suivants :

- Temps de fouille.
- Temps de transport.
- Temps de déchargement.

• Temps de remise en position de déblais.

Ces engins sont très répandus et utilisés à grande échelle grâce à leur bon rendement et à la qualité du travail qu'ils peuvent fournir.

Dans les terrains difficiles on doit utiliser une pelle à chenille.

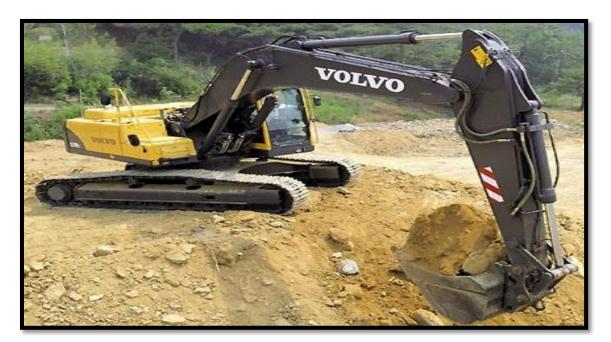



Figure VII.6 : Pelle à chenille

#### ✓ Pour le remblaiement des tranchées :

Le remblayage a été fait en utilisant une chargeuse, qui comporte un corps automoteur articulé, et une benne de grande taille à l'avant.



Figure VII.7 : Chargeuse

#### **✓** Pour le compactage :

Le compactage de la terre après remblayage a été fait avec un compacteur à rouleaux lisses, qui est un engin lourd, qui tasse la terre sous lui grâce à un ou plusieurs rouleaux en fonte.



Figure VII.8: Compacteur à rouleaux lisses

#### VII.3. Détermination des différents volumes :

#### VII.3.1. Volume du décapage de la couche végétale :

$$V_{dcv} = H_v \times L \times B \tag{VII.3}$$

#### Avec:

- ✓  $V_{dcv}$ : Volume de la couche de terre végétale décapée en  $(m^3)$ .
- ✓ H<sub>v</sub>: Profondeur la couche de terre végétale.
- ✓ L: Longueur totale de la tranchée en (m).
- ✓ **B** : Largeur de la couche de terre végétale en (m).

#### VII.3.2. Volume des déblais des tranchées :

$$V_{d} = B \times L \times H \qquad (VII.4)$$

#### Avec:

- ✓  $V_d$ : volume du déblai des tranchées (m<sup>3</sup>).
- ✓ **B**: largeur de la tranchée (m).
- ✓ **H**: profondeur de la tranchée (m).
- ✓ L: longueur totale de la tranchée (m).

#### VII.3.3.Volume du lit du sable :

$$V_{ls} = e \times L \times B \tag{VII.5}$$

Avec:

✓  $V_{ls}$ : Volume du lit du sable en (m<sup>3</sup>).

✓ e : Epaisseur de la couche de sable en (m).

✓ **B**: Largeur de la couche du tronçon en (m).

✓ L: Longueur totale de la tranchée en (m).

#### VII.3.4. Volume occupé par les conduites :

$$V_{cond} = L \times \pi \times D^2/4$$
 (VII.6)

Avec:

✓  $V_{cond}$ : Volume occupé par les conduites en (m<sup>3</sup>).

✓ L: Longueur totale de la tranchée en (m).

✓ **D**: Diamètre de la conduite en (m).

#### VII.3.5.Volume de l'enrobage :

$$\mathbf{V}_{\mathbf{e}} = \mathbf{H}_{\mathbf{e}} \times \mathbf{L} \times \mathbf{B} \tag{VII.7}$$

Avec:

 $\checkmark$   $V_e$ : volume de l'enrobage

✓  $H_e$ : hauteur d'enrobage

✓ **B**: Largeur de la tranchée (m).

✓ L: longueur totale de la tranchée (m).

#### VII.3.6.Volume du remblai :

$$V_{r} = V_{d} - [V_{e} + V_{dcv} + V_{ls}]$$
 (VII.8)

Avec:

✓  $V_r$ : Volume du remblai en (m<sup>3</sup>).

#### VII.3.7.Volume excédentaire :

$$V_{\text{exc}} = V_{\text{f}} - V_{r} - V_{\rho} \tag{VII.9}$$

Avec:

✓  $V_{exc}$ : Volume du sol excédentaire (m<sup>3</sup>).

✓  $V_f$ : Volume du sol foisonné (m<sup>3</sup>).

✓  $V_{rem}$ : Volume du remblai (m<sup>3</sup>).

Sachant que:

$$V_f = V_d \times K_f \tag{VII.10}$$

Tel que:

✓ K<sub>f</sub>: Coefficient de foisonnement dépend de la nature de sol.

#### Remarque:

Les calculs des terrassements de la canalisation de notre zone en annexe [4]

Tableau VII.1: Volumes des travaux

| $V_{dcv}(m^3)$ | $V_{\rm d}(m^3)$ | $V_{ls}(m^3)$ | $V_{cond}(m^3)$ | $V_{e}(m^3)$ | $V_r(m^3)$ | $V_{\rm exc}(m^3)$ |
|----------------|------------------|---------------|-----------------|--------------|------------|--------------------|
| 698,228        | 13049,301        | 698,228       | 1381,098        | 3578,956     | 8073,888   | 4006,317           |

#### VII.4. Devis quantitatif et estimatif:

Afin d'avoir une idée sur le coût de réalisation de notre projet, il faut passer par le calcul du devis quantitatif et estimatif.

Ce calcul consiste à déterminer les quantités de toutes les opérations effectuées sur le terrain pour la réalisation du projet, ensuite les multiplier par le prix unitaire correspondant.

Tableau VII-2: Devis quantitatif et estimatif des couts de projets

| N° | Désignation des travaux              | Unité        | Quantité        | Prix unitaire<br>(DA) | Montant (DA) |  |  |  |  |  |  |  |
|----|--------------------------------------|--------------|-----------------|-----------------------|--------------|--|--|--|--|--|--|--|
| A  |                                      | Travaı       | ıx de terrasser | nent                  |              |  |  |  |  |  |  |  |
| 1  | Décapage                             | $m^3$        | 698,228         | 200                   | 139645,6     |  |  |  |  |  |  |  |
| 2  | Déblai                               | $m^3$        | 13049,301       | 1000                  | 13049301     |  |  |  |  |  |  |  |
| 3  | Lit de pose                          | $m^3$        | 698,228         | 1500                  | 1047342      |  |  |  |  |  |  |  |
| 4  | Enrobage                             | $m^3$        | 3578,956        | 200                   | 715791,2     |  |  |  |  |  |  |  |
| 5  | Remblai de la tranchée               | $m^3$        | 8073,888        | 700                   | 5651721,6    |  |  |  |  |  |  |  |
| 6  | Evacuation des déblaies excédentaire | $m^3$        | 4006,317        | 200                   | 801263,4     |  |  |  |  |  |  |  |
| В  |                                      | Canalisation |                 |                       |              |  |  |  |  |  |  |  |
| 1  | 135А-Ф 300                           | ml           | 3603            | 4000                  | 14412000     |  |  |  |  |  |  |  |
| 2  | 135А-Ф 400                           | ml           | 607,9           | 5000                  | 3039500      |  |  |  |  |  |  |  |
| 3  | 135А-Ф 500                           | ml           | 994,5           | 6000                  | 5967000      |  |  |  |  |  |  |  |
| 4  | 135А-Ф 600                           | ml           | 507,37          | 6500                  | 3297905      |  |  |  |  |  |  |  |
| 5  | 135А-Ф 800                           | ml           | 288             | 7000                  | 2016000      |  |  |  |  |  |  |  |
| 6  | 135А-Ф 1000                          | ml           | 180             | 10000                 | 1800000      |  |  |  |  |  |  |  |
| 7  | 135А-Ф 1200                          | ml           | 368             | 12000                 | 4416000      |  |  |  |  |  |  |  |
| C  |                                      | (            | Construction    |                       |              |  |  |  |  |  |  |  |
| 1  | Regards                              | U            | 366             | 40000                 | 14640000     |  |  |  |  |  |  |  |
| 2  | Exécution des déversoirs d'orage     | U            | 2               | 300000                | 600000       |  |  |  |  |  |  |  |
|    |                                      | НТ           |                 |                       | 71593469,8   |  |  |  |  |  |  |  |
|    | TV                                   | A 19%        |                 |                       | 13602759,26  |  |  |  |  |  |  |  |
|    | Т                                    | TC           |                 |                       | 85196229,06  |  |  |  |  |  |  |  |

#### VII.5. Sécurité de travail :

#### VII.5.1. Introduction:

L'objectif de la protection est de diminuer la fréquence et la gravité des accidents dans le chantier. Il existe pour cela un certain nombre de dispositifs, de consignes et de règlement à suivre.

Lorsqu'on évoque les accidents du travail, on a souvent plus ou moins tendance à penser qu'une seule cause serait à l'origine de la situation. S'agissant de l'accident de travail, on peut l'attribuer soit à la machine, soit à l'homme. Dans l'autre cas, on tente de faire ressortir la part de l'homme et la part de la machine. Ainsi les préoccupations concernant les risques professionnels, ne doivent pas être séparées de l'analyse du travail et les conditions dans lesquelles le travailleur est amené à exécuter son travail. L'analyse des causes d'accident n'a intérêt que si elle met celle-ci en relation avec le travail des opérateurs et on prend place dans un diagnostic général de la situation de travail et de ses effets sur la charge de travail, les risques pour la santé et la sécurité.

#### **VII.5.2.** Les Causes Des Accidents :

L'accident du travail n'est jamais le fait d'un hasard ou de la fatalité. Les causes sont la somme des différents éléments classés en deux catégories : Facteur matériel et facteur humain.

Le facteur matériel concerne les conditions dangereuses susceptibles d'évoluer au cours du travail.

Les causes d'accident d'origine matérielle proviennent soit :

- ✓ De la profession en général et du poste de travail en particulier.
- ✓ De la nature de la forme des matériaux mis en œuvre.
- ✓ Des outils et machines utilisés, implantation, entretien.
- ✓ De l'exécution du travail, difficultés particulières.
- ✓ Du lieu de travail, éclairage, conditions climatiques.
- ✓ Des conditions d'hygiène et de sécurité, ventilation, protection etc...

Par opposition aux conditions dangereuses techniquement et pratiquement décevables, les actions dangereuses dans le travail sont imputables au facteur humain et nécessitant parfois l'intervention de psychologues avertis.

Certaines actions dangereuses sont des réactions psychiques difficilement prévisibles, car chaque être humain est un cas particulier qui réagit différemment, selon les circonstances.

#### VII.5.3. Les conditions dangereuses :

**CD** n°1: Installation non protégée.

Ex: Absence de carters sur les lames et valant des scies à ruban.

CD n°2: Installation mal protégée. Ex: Ancien interrupteur à couteaux.

**CD n**°**3**: Protection individuelle inexistence.

Ex: Absence tabouret isolé dans une cabiné haute tension.

CD n°4: Outillage, engin, équipement en mauvais état.

Ex: Echelledont les barreaux cassés ont été remplacés par des planches clouées.

CD n°5: Défaut dans la conception, dans la construction.

Ex: Installation électrique en fil souple.

CD n°6: Matière défectueuse.

**Ex**: Nœud dans une planche à toupiller.

**CD n**°**7** : Stockage irrationnel.

**Ex :** Empilage des couronnes de fil machine sur une grande hauteur.

**CD n**°**8** : Mauvaise disposition des lieux.

Ex: Escalier trop étroit.

CD n°9: Eclairage défectueux.

Ex: Eclairage individuel du poste de travail sans éclairage générale.

**CD n°10 :** Facteurs d'ambiances impropres.

Ex: Vapeur dans les blanchisseries.

**CD** n°11 : Condition climatiques défavorables.

Ex: Pose d'une antenne de télévision sur un toit givré.

#### VII.5.4. Les actions dangereuses :

**AD n°1 :** Intervenir sans précaution sur des machines en mouvement.

Ex: Graisser en marche.

 $AD\ n^{\circ}2$ : Intervenir sans précaution sur des installations sous tension ou contenant des substances inflammables ou toxiques.

Ex: Ramasser un outil à proximité d'un conducteur sous tension.

**AD n°3 :** Agir sans prévenir ou sans autorisation.

Ex: Pénétrer dans un silo sans avertir

AD n°4: Neutraliser les dispositifs de sécurité.

**Ex:** Travaux d'entretien dans un malaxeur sans cadenasser l'interrupteur.

**AD n°5 :** Ne pas utiliser l'équipement de protection individuelle.

**Ex**: Meuler sans lunettes.

**AD n°6 :** Mauvaise utilisation d'un outillage, engin.

**Ex**: Tirer un wagonnet au lieu de le pousser.

**AD n°7 :** Imprudence durant les opérations de stockage et manutention.

**Ex**: Passer sous une charge suspendue.

**AD** n°8: Adopter une position peu sure.

Ex: Transport de personnel sur la plate-forme d'un camion charge de gros matériel.

AD n°9: Travailler dans une attitude inappropriée.

Ex: Utiliser une caisse pour atteindre un objet hors de portée.

AD n°10 : Suivre un rythme de travail inadapté.

**Ex**: Cadence de travail trop rapide.

**AD n°11 :** Plaisanter ou se quereller.

#### VII.5.4. Organisation de La prévention des accidents du travail :

L'organisation de la prévention se présente à travers les activités professionnelles du pays comme une immense chaîne de solidarité, composée de multiples maillons, correspondant chacun aux différents services ou personnes intéressées figurés dans l'organigramme ciaprès :

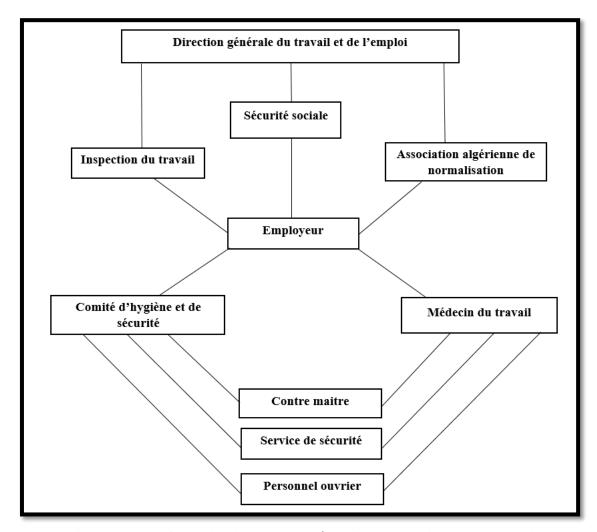



Figure VII.9 : Organisation de La prévention des accidents du travail

Le contremaître constitue le maillon essentiel de la chaîne de prévention des accidents du travail. Vu sous l'angle de la protection du personnel, le rôle du contremaître revêt trois aspects important, pédagogique, de surveillance, de suggestion.

#### VII.6. Planification des travaux

Elle consiste à chercher constamment la meilleure façon d'utiliser avec économie la main d'œuvre et les autres moyens de mise en œuvre pour assurer l'efficacité de l'action à entreprendre, elle consiste en :

- Installation des postes de travail ;
- Observations instantanées;
- Analyse des tâches ;
- Le chronométrage ;
- Définition des objectifs et des attributions ;
- Simplification des méthodes ;
- Stabilisation des postes de travail.

#### VII.6.1. Techniques de la planification

Il existe deux principales méthodes de planification à savoir :

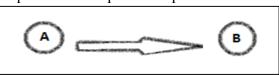
- Méthodes basées sur le réseau ;
- Méthodes basées sur le graphique.

#### VII.6.1.1. Méthodes basées sur le réseau

#### a. Définition du réseau

Le réseau est une représentation graphique d'un projet qui permet d'indiquer la relation entre les différentes opérations qui peuvent être successives, simultanées, convergentes et la durée de réalisation. On distingue deux types de réseaux :

#### • Réseau à flèches


L'opération est représentée par une flèche et la succession des opérations par des nœuds.



L'opération A précède l'opération B.

#### • Réseau à nœuds

L'opération est représentée par un nœud et la succession des opérations par des flèches :



L'opération (**B**) ne peut commencer que si l'opération (**A**) est complètement achevée.

#### b. Construction du réseau

Pour construire un réseau il convient d'effectuer les six (6) opérations suivantes :

#### • Etablissement d'une liste des tâches

Il s'agit dans cette première phase de procéder à un inventaire très précis et détaillé de toutes les opérations indispensables à la réalisation d'un projet.

#### • Détermination des tâches antérieures :

Après avoir dressé la liste des tâches à effectuer, il n'est pas toujours facile de construire un réseau car il n'est pas aisé de dire si les tâches antérieures doivent être successives ou convergentes.

- o Construction des graphes partiels;
- o Regroupement des graphes partiels;
- O Détermination des tâches de début de l'ouvrage et de fin de l'ouvrage ;
- o Construction du réseau.

#### VII.6.1.2. Méthode C.P.M (méthode du chemin critique)

L'objectif de cette méthode est de réduire les temps de réalisation d'un ouvrage en tenant compte de trois phases :

- 1ère phase : l'effectif nécessaire pour effectuer le travail considéré ;
- **2ème phase :** analyser systématiquement le réseau, heure par heure, jour pour jour, selon l'unité de temps retenue ;
- 3ème phase : adapter le réseau aux conditions ou contraintes fixées par l'entreprise.

#### VII.6.2. Les étapes de la planification

La planification est le processus de la ligne de conduite des travaux à réaliser, elle comprend des étapes suivantes :

Collection des informations :

L'établissement d'une synthèse d'analyse des informations acquises par des études comparatives permet l'usage correct du plan de réalisation de notre projet.

Décomposition du projet :

C'est une partie importante car chaque projet peut être analysé de diverses manières ; nous attribuons à chaque tâche un responsable et ses besoins en matériels.

Relations entre les tâches :

Il existe deux relations essentielles entre les tâches lors de la réalisation; l'une porte sur un enchaînement logique et l'autre sur un enchaînement préférentiel.

Les paramètres de la méthode C.P.M:

Les paramètres indispensables dans l'exécution de cette méthode sont les suivants :

| DCP  | TR   |
|------|------|
| DFP  | DCPP |
| DFPP | MT   |

Avec:

TR: temps de réalisation;

DCP : date de commencement au plus tôt ; DCPP : date de commencement au plus tard ;

DFP: date de finition au plus tôt; DFPP: date de finition au plus tard;

MT : marge totale.

Et:

DFP= DCP+TR DCPP=DFPP-TR

\*C.P.M: méthode du chemin critique.

#### Chemin critique (C.C):

C'est le chemin qui donne la durée totale du projet (DTR) reliant les opérations possédant la marge totale nulle (0).

Donc pour retrouver un chemin critique il suffit de vérifier la double condition suivante :

$$MT=0$$

$$C.C \leftrightarrow \{ \Sigma TR_{C.C} = DTP \}$$

#### VII.6.2.1. Attribution des durées de chaque opération

Pour l'attribution du temps, il est nécessaire de se baser sur deux points :

Le nombre de ressources (moyens humains et matériels);

Dimensions du projet.

En utilisant les normes **C.N.A.T**, on pourra appliquer la formule suivante :

$$T = (Q*N)/n$$

Avec:

n: Nombre d'équipes

N: Rendement

Q : Quantité de travail

#### VII.6.3. Symboles des différentes opérations

Les principales opérations à exécuter sont :

- A. Décapage de la couche de terre ;
- **B.** Piquetage;
- C. Exécution des tranchées et des fouilles pour les regards ;
- **D.** Aménagement du lit de pose ;
- E. La mise en place des canalisations en tranchée ;
- **F.** Assemblage des tuyaux ;
- G. Faire les essais d'étanchéité pour les conduites et joints ;
- **H.** construction des regards;
- I. remblai des tranchées;
- **J.** Travaux de finition.

Tableau VII-3: Détermination des délais

| Opération | TR (jours) | Г   | )P  | D    | PP   | MT |
|-----------|------------|-----|-----|------|------|----|
|           |            | DCP | DFP | DCPP | DFPP |    |
| A         | 15         | 0   | 15  | 0    | 15   | 0  |
| В         | 20         | 15  | 35  | 15   | 35   | 0  |
| C         | 80         | 35  | 115 | 35   | 115  | 0  |
| D         | 15         | 115 | 130 | 115  | 130  | 0  |
| Е         | 40         | 130 | 170 | 130  | 170  | 0  |
| F         | 30         | 170 | 200 | 170  | 200  | 0  |
| G         | 15         | 200 | 215 | 200  | 215  | 0  |
| Н         | 25         | 130 | 155 | 190  | 215  | 60 |
| Ι         | 25         | 215 | 240 | 215  | 240  | 0  |
| J         | 20         | 240 | 260 | 240  | 260  | 0  |

#### Le chemin critique:

 $\Sigma TR_{C.C} = 260$  jours

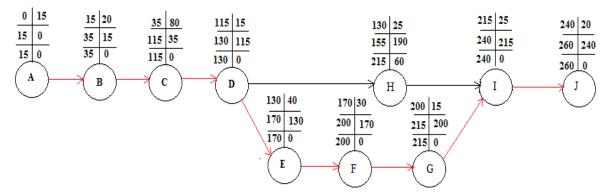



Figure VII.10: Réseaux à nœuds (méthode CPM)

Chemin critique en rouge: A-B-C-D-E-F-G-I-J

#### **Conclusion:**

D'après ce chapitre on peut conclure que :

L'organisation de chantier est nécessaire avant le commencement des travaux, car elle nous permet de définir tous les volumes des travaux nécessaires pour l'élaboration du chantier. D'autre part, définie aussi tous les engins que l'on peut utiliser dans le chantier.

Les bonnes conditions du travail et la sécurité sur chantier joue un rôle capital dans le bon déroulement des travaux et la protection des ouvriers.

L'étude estimative des volumes des travaux, nous permet d'établir un devis quantitatif et estimatif qui nous aide à évaluer le coût total de notre projet estimé à 85196229,06 DA.

# Conclusion générale

#### Conclusion générale

En conclusion, nous pouvons dire que dans ce mémoire, nous avons conçus un système d'évacuation des eaux usée et pluviales de la zone (Safsafa commune Grarem GougaWilaya de MILA) vers un exutoire afin de protéger la santé publique et l'environnement.

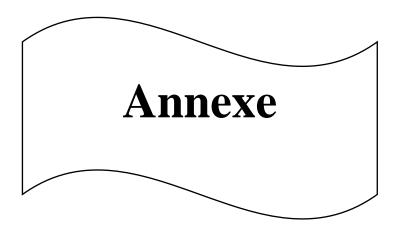
Nous avons commencé par la présentation de la zone d'étude et ses caractéristiques. Après, on fait l'étude hydrologique pour déterminer l'intensité moyenne maximale qui est de 128 L/s/ha, en utilisant les résultats obtenus par l'ajustement de la série pluviométrique à la loi Lognormale.

Le réseau que nous avons établi, est un réseau unitaire, avec un schéma d'évacuation par déplacement latéral, acheminant les eaux usées évacuées vers la station d'épuration et les eaux pluviales vers Chaaba.

Pour l'évaluation des débits des eaux usées, nous avons pris en considération les débits domestiques et publics vu qu'il n'y a pas des industries au niveau de la zone. Pour l'estimation des débits pluviaux, nous avons découpé la zone en 33 sous-bassins, et opté pour la méthode rationnelle.

Nous avons choisi des conduites en béton armé vu ses avantages (résistantes à la corrosion et inertes vis-à-vis des produits chimiques qui composent ces eaux).

Concernant les ouvrages annexes, nous avons projeté des regards de visite, des regards de jonction, et des regards de chute sont utilisés car la pente est trop importante.


Et pour faciliter les opérations de curage et assurer une meilleure sécurité à notre réseau, on a procédé à l'implantation et au dimensionnement des deux déversoirs d'orages de type latéral.

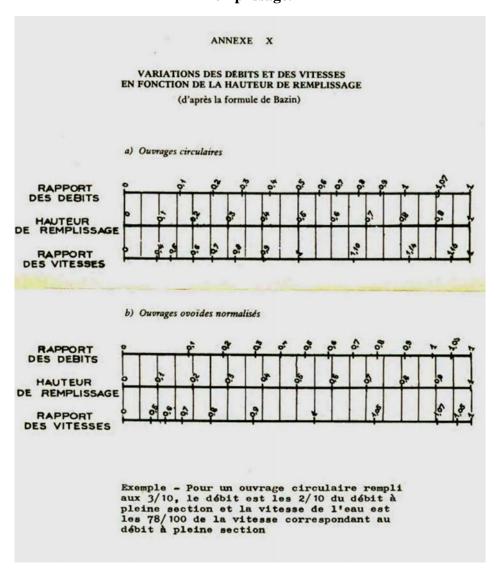
Du coté économique, nous avons élaboré un devis quantitatif et estimatif afin d'évaluer le coût de projet qui est de **85196229,06 DA**.

# Référence bibliographique

### Référence bibliographique

- « Manuel pratique d'hydrologie » de Dr. B. Touaibia- Mars 2004.
- SALAH, B., 2014 « polycopie d'assainissement », école nationale supérieure de l'hydraulique, BLIDA.
- GOMELLA, C., GUERREE, H., 1986 « Guide d'assainissement dans les agglomérations urbaines et rurales (tome 1), Eyrolles, Paris
- SATIN.M et SELMI.B, Guide technique de l'assainissement, 3éme Edition, 1989, 126 Pages.
- Bourrier.R «Les réseaux d'Assainissement. Calcul-Application-Perspectives»
- article hydraulique urbain, étude et chantier 2016
- REGIS, B., 1984 «les réseaux d'assainissement, calculs application et perspective »,
   Paris




### Annexe [1] : table de $\chi$ 2

## TABLE DU X2

La table donne la probabilité  $\alpha$  pour que  $\chi^2$  égale ou dépasse une valeur donnée, en fonction du nombre de degrés de liberté v. Exemple : avec  $\nu=3$ , pour  $\chi^2=0.11$  la probabilité  $\alpha=0.99$ .

| v  | 0,99   | 0,975 | 0,95  | 0,90  | 0,10  | 0,05  | 0,025 | 0,01  | 0,001 |
|----|--------|-------|-------|-------|-------|-------|-------|-------|-------|
| 1  | 0,0002 | 0,001 | 0,004 | 0,016 | 2,71  | 3,84  | 5,02  | 6,63  | 10,83 |
| 2  | 0,02   | 0,05  | 0,10  | 0,21  | 4,61  | 5,99  | 7,38  | 9,21  | 13,82 |
| 3  | 0,11   | 0,22  | 0,35  | 0,58  | 6,25  | 7,81  | 9,35  | 11,34 | 16,27 |
| 4  | 0,30   | 0,48  | 0,71  | 1,06  | 7,78  | 9,49  | 11,14 | 13,28 | 18,47 |
| 5  | 0,55   | 0,83  | 1,15  | 1,61  | 9,24  | 11,07 | 12,83 | 15,09 | 20,51 |
| 6  | 0,87   | 1,24  | 1,64  | 2,20  | 10,64 | 12,59 | 14,45 | 16,81 | 22,46 |
| 7  | 1,24   | 1,69  | 2,17  | 2,83  | 12,02 | 14,07 | 16,01 | 18,48 | 24,32 |
| 8  | 1,65   | 2,18  | 2,73  | 3,49  | 13,36 | 15,51 | 17,53 | 20,09 | 26,12 |
| 9  | 2,09   | 2,70  | 3,33  | 4,17  | 14,68 | 16,92 | 19,02 | 21,67 | 27,88 |
| 10 | 2,56   | 3,25  | 3,94  | 4,87  | 15,99 | 18,31 | 20,48 | 23,21 | 29,59 |
| 11 | 3,05   | 3,82  | 4,57  | 5,58  | 17,28 | 19,68 | 21,92 | 24,73 | 31,26 |
| 12 | 3,57   | 4,40  | 5,23  | 6,30  | 18,55 | 21,03 | 23,34 | 26,22 | 32,91 |
| 13 | 4,11   | 5,01  | 5,89  | 7,04  | 19,81 | 22,36 | 24,74 | 27,69 | 34,53 |
| 14 | 4,66   | 5,63  | 6,57  | 7,79  | 21,06 | 23,68 | 26,12 | 29,14 | 36,12 |
| 15 | 5,23   | 6,26  | 7,26  | 8,55  | 22,31 | 25,00 | 27,49 | 30,58 | 37,70 |
| 16 | 5,81   | 6,91  | 7,96  | 9,31  | 23,54 | 26,30 | 28,85 | 32,00 | 39,25 |
| 17 | 6,41   | 7,56  | 8,67  | 10,09 | 24,77 | 27,59 | 30,19 | 33,41 | 40,79 |
| 18 | 7,01   | 8,23  | 9,39  | 10,86 | 25,99 | 28,87 | 31,53 | 34,81 | 42,31 |
| 19 | 7,63   | 8,91  | 10,12 | 11,65 | 27,20 | 30,14 | 32,85 | 36,19 | 43,82 |
| 20 | 8,26   | 9,59  | 10,85 | 12,44 | 28,41 | 31,41 | 34,17 | 37,57 | 45,31 |
| 21 | 8,90   | 10,28 | 11,59 | 13,24 | 29,62 | 32,67 | 35,48 | 38,93 | 46,80 |
| 22 | 9,54   | 10,98 | 12,34 | 14,04 | 30,81 | 33,92 | 36,78 | 40,29 | 48,27 |
| 23 | 10,20  | 11,69 | 13,09 | 14,85 | 32,01 | 35,17 | 38,08 | 41,64 | 49,73 |
| 24 | 10,86  | 12,40 | 13,85 | 15,66 | 33,20 | 36,42 | 39,36 | 42,98 | 51,18 |
| 25 | 11,52  | 13,12 | 14,61 | 16,47 | 34,38 | 37,65 | 40,65 | 44,31 | 52,62 |
| 26 | 12,20  | 13,84 | 15,38 | 17,29 | 35,56 | 38,89 | 41,92 | 45,64 | 54,05 |
| 27 | 12,88  | 14,57 | 16,15 | 18,11 | 36,74 | 40,11 | 43,19 | 46,96 | 55,48 |
| 28 | 13,56  | 15,31 | 16,93 | 18,94 | 37,92 | 41,34 | 44,46 | 48,28 | 56,89 |
| 29 | 14,26  | 16,05 | 17,71 | 19,77 | 39,09 | 42,56 | 45,72 | 49,59 | 58,30 |
| 30 | 14,95  | 16,79 | 18,49 | 20,60 | 40,26 | 43,77 | 46,98 | 50,89 | 59,70 |

Annexe [2] : Les variations des débits et des vitesses en fonction de la hauteur de remplissage.



Annexe [3]: dimensions des regards de chute.

| <b>N</b> ° | regard de<br>chute | h1   | h2   | у   | v    | x    |
|------------|--------------------|------|------|-----|------|------|
| 1          | R2                 | 1,39 | 1,89 | 0,5 | 1,27 | 0,40 |
| 2          | R3                 | 1,47 | 1,97 | 0,5 | 1,68 | 0,54 |
| 3          | R4                 | 1,52 | 2,52 | 1   | 1,95 | 0,88 |
| 4          | R5                 | 1,49 | 2,49 | 1   | 2,09 | 0,95 |
| 5          | R6                 | 1,45 | 2,25 | 0,8 | 2,19 | 0,88 |
| 6          | R7                 | 1,86 | 2,66 | 0,8 | 2,24 | 0,91 |
| 7          | R8                 | 2,27 | 2,77 | 0,5 | 2,26 | 0,72 |
| 8          | R9                 | 2,03 | 2,53 | 0,5 | 2,32 | 0,74 |
| 9          | R10                | 1,78 | 2,58 | 0,8 | 2,39 | 0,96 |
| 10         | R11                | 1,74 | 2,54 | 0,8 | 2,46 | 1,00 |
| 11         | R12                | 1,7  | 2,5  | 0,8 | 2,54 | 1,02 |
| 12         | R13                | 1,7  | 2,5  | 0,8 | 2,61 | 1,05 |
| 13         | R14                | 1,7  | 2,5  | 0,8 | 2,69 | 1,09 |
| 14         | R15                | 1,7  | 3,2  | 1,5 | 2,76 | 1,52 |
| 15         | R16                | 1,89 | 3,39 | 1,5 | 2,82 | 1,56 |
| 16         | R17                | 2,08 | 3,58 | 1,5 | 2,86 | 1,58 |
| 17         | R18                | 2,4  | 3,9  | 1,5 | 2,89 | 1,60 |
| 18         | R19                | 2,26 | 3,76 | 1,5 | 2,91 | 1,61 |
| 19         | R20                | 2,13 | 3,63 | 1,5 | 2,92 | 1,61 |
| 20         | R21                | 2,13 | 3,63 | 1,5 | 2,92 | 1,62 |
| 21         | R22                | 2,36 | 3,86 | 1,5 | 2,93 | 1,62 |
| 22         | R23                | 2,6  | 4,1  | 1,5 | 2,93 | 1,62 |
| 23         | R24                | 2,94 | 3,44 | 0,5 | 2,94 | 0,94 |
| 24         | R25                | 2,43 | 2,93 | 0,5 | 2,94 | 0,94 |
| 25         | R26                | 1,92 | 2,42 | 0,5 | 2,95 | 0,94 |
| 26         | R30                | 1,35 | 1,85 | 0,5 | 2,75 | 0,88 |

| 27 | R31   | 1,7  | 2,2  | 0,5  | 3,05 | 0,97 |
|----|-------|------|------|------|------|------|
| 28 | R33   | 1,89 | 2,39 | 0,5  | 0,82 | 0,26 |
| 29 | R35   | 1,89 | 2,39 | 0,5  | 0,82 | 0,26 |
| 30 | R37   | 1,95 | 2,45 | 0,5  | 0,82 | 0,26 |
| 31 | R39   | 2,02 | 2,52 | 0,5  | 0,82 | 0,26 |
| 32 | R40   | 2,27 | 2,77 | 0,5  | 0,82 | 0,26 |
| 33 | R41   | 1,9  | 2,4  | 0,5  | 0,82 | 0,26 |
| 34 | R42   | 1,53 | 2,03 | 0,5  | 0,82 | 0,26 |
| 35 | R44   | 1,87 | 2,37 | 0,5  | 0,88 | 0,28 |
| 36 | R125  | 2,11 | 3,02 | 0,91 | 2,92 | 1,26 |
| 37 | R128  | 1,76 | 2,76 | 1    | 2,95 | 1,33 |
| 38 | RB131 | 2,3  | 2,8  | 0,5  | 2,98 | 0,95 |
| 39 | R132  | 2,43 | 2,93 | 0,5  | 4,03 | 1,29 |
| 40 | R133  | 2,56 | 3,06 | 0,5  | 4,03 | 1,29 |
| 41 | R134  | 2,69 | 3,19 | 0,5  | 4,04 | 1,29 |
| 42 | R135  | 2,75 | 3,25 | 0,5  | 4,04 | 1,29 |
| 43 | R136  | 2,37 | 2,87 | 0,5  | 4,05 | 1,29 |
| 44 | R145  | 1,94 | 2,44 | 0,5  | 4,30 | 1,37 |

Annexe [4]: le volume du terrassement.

| $T_r$   | D    | L            | В            | H    | $V_{dcv}$ | $V_d$   | $V_{ls}$ | V <sub>cond</sub> | $V_e$   | $V_r$   | V <sub>exc</sub> | $V_f$   |
|---------|------|--------------|--------------|------|-----------|---------|----------|-------------------|---------|---------|------------------|---------|
|         | (mm) | ( <b>m</b> ) | ( <b>m</b> ) | (m)  | $(m^3)$   | $(m^3)$ | $(m^3)$  | $(m^3)$           | $(m^3)$ | $(m^3)$ | $(m^3)$          | $(m^3)$ |
| R1-R2   | 300  | 11           | 0,9          | 1,39 | 0,99      | 13,76   | 0,99     | 0,78              | 4,17    | 7,61    | 4,73             | 16,51   |
| R2-R3   | 300  | 11           | 0,9          | 1,47 | 0,99      | 14,55   | 0,99     | 0,78              | 4,17    | 8,40    | 4,89             | 17,46   |
| R3-R4   | 300  | 12           | 0,9          | 1,52 | 1,08      | 16,42   | 1,08     | 0,85              | 4,55    | 9,70    | 5,44             | 19,70   |
| R4-R5   | 300  | 11           | 0,9          | 1,49 | 0,99      | 14,75   | 0,99     | 0,78              | 4,17    | 8,60    | 4,93             | 17,70   |
| R5-R6   | 300  | 11           | 0,9          | 1,45 | 0,99      | 14,36   | 0,99     | 0,78              | 4,17    | 8,20    | 4,85             | 17,23   |
| R6-R7   | 300  | 10           | 0,9          | 1,86 | 0,90      | 16,74   | 0,90     | 0,71              | 3,79    | 11,15   | 5,15             | 20,09   |
| R7-R8   | 300  | 10           | 0,9          | 2,66 | 0,90      | 16,74   | 0,90     | 0,71              | 3,79    | 11,15   | 5,15             | 20,09   |
| R8-R9   | 300  | 10           | 0,9          | 2,03 | 0,90      | 23,94   | 0,90     | 0,71              | 3,79    | 18,35   | 6,59             | 28,73   |
| R9-R10  | 300  | 11           | 0,9          | 1,78 | 0,99      | 20,10   | 0,99     | 0,78              | 4,17    | 13,94   | 6,00             | 24,12   |
| R10-R11 | 300  | 11           | 0,9          | 1,74 | 0,99      | 17,62   | 0,99     | 0,78              | 4,17    | 11,47   | 5,50             | 21,15   |
| R11-R12 | 300  | 10           | 0,9          | 1,70 | 0,90      | 15,66   | 0,90     | 0,71              | 3,79    | 10,07   | 4,93             | 18,79   |
| R12-R13 | 300  | 10           | 0,9          | 1,70 | 0,90      | 15,30   | 0,90     | 0,71              | 3,79    | 9,71    | 4,86             | 18,36   |
| R13-R14 | 300  | 11           | 0,9          | 1,70 | 0,99      | 16,83   | 0,99     | 0,78              | 4,17    | 10,68   | 5,35             | 20,20   |
| R14-R15 | 300  | 11           | 0,9          | 1,70 | 0,99      | 16,83   | 0,99     | 0,78              | 4,17    | 10,68   | 5,35             | 20,20   |
| R15-R16 | 300  | 11           | 0,9          | 1,89 | 0,99      | 18,71   | 0,99     | 0,78              | 4,17    | 12,56   | 5,72             | 22,45   |
| R16-R17 | 300  | 10           | 0,9          | 2,08 | 0,90      | 18,72   | 0,90     | 0,71              | 3,79    | 13,13   | 5,54             | 22,46   |
| R17-R18 | 300  | 10           | 0,9          | 2,40 | 0,90      | 21,60   | 0,90     | 0,71              | 3,79    | 16,01   | 6,12             | 25,92   |
| R18-R19 | 300  | 9            | 0,9          | 2,26 | 0,81      | 18,31   | 0,81     | 0,64              | 3,41    | 13,27   | 5,28             | 21,97   |
| R19-R20 | 300  | 12           | 0,9          | 2,13 | 1,08      | 23,00   | 1,08     | 0,85              | 4,55    | 16,29   | 6,76             | 27,60   |
| R20-R21 | 300  | 11           | 0,9          | 2,13 | 0,99      | 21,09   | 0,99     | 0,78              | 4,17    | 14,93   | 6,20             | 25,30   |
| R21-R22 | 300  | 12           | 0,9          | 2,36 | 1,08      | 25,49   | 1,08     | 0,85              | 4,55    | 18,78   | 7,26             | 30,59   |
| R22-R23 | 300  | 12           | 0,9          | 2,60 | 1,08      | 28,08   | 1,08     | 0,85              | 4,55    | 21,37   | 7,78             | 33,70   |
| R23-R24 | 300  | 11           | 0,9          | 2,94 | 0,99      | 29,11   | 0,99     | 0,78              | 4,17    | 22,95   | 7,80             | 34,93   |
| R24-R25 | 300  | 10           | 0,9          | 2,43 | 0,90      | 21,87   | 0,90     | 0,71              | 3,79    | 16,28   | 6,17             | 26,24   |
| R25-R26 | 300  | 10           | 0,9          | 1,92 | 0,90      | 17,28   | 0,90     | 0,71              | 3,79    | 11,69   | 5,26             | 20,74   |
| R26-R27 | 300  | 10           | 0,9          | 1,41 | 0,90      | 12,69   | 0,90     | 0,71              | 3,79    | 7,10    | 4,34             | 15,23   |

| R27-R28   | 300 | 11   | 0,9 | 1,41 | 0,99 | 13,96 | 0,99 | 0,78 | 4,17  | 7,81  | 4,77  | 16,75 |
|-----------|-----|------|-----|------|------|-------|------|------|-------|-------|-------|-------|
| R28-R29   | 300 | 11   | 0,9 | 1,42 | 0,99 | 14,06 | 0,99 | 0,78 | 4,17  | 7,91  | 4,79  | 16,87 |
| R29-R30   | 400 | 30   | 1   | 1,35 | 3,00 | 40,50 | 3,00 | 3,77 | 14,23 | 20,27 | 14,10 | 48,60 |
| R30-R31   | 400 | 10   | 1   | 1,70 | 1,00 | 17,00 | 1,00 | 1,26 | 4,74  | 10,26 | 5,40  | 20,40 |
| R31-RB32  | 400 | 10   | 1   | 2,04 | 1,00 | 20,40 | 1,00 | 1,26 | 4,74  | 13,66 | 6,08  | 24,48 |
| RB32-R33  | 400 | 10   | 1   | 1,89 | 1,00 | 18,90 | 1,00 | 1,26 | 4,74  | 12,16 | 5,78  | 22,68 |
| R33-R34   | 400 | 10   | 1   | 2,14 | 1,00 | 21,40 | 1,00 | 1,26 | 4,74  | 14,66 | 6,28  | 25,68 |
| R34-R35   | 400 | 10   | 1   | 1,89 | 1,00 | 18,90 | 1,00 | 1,26 | 4,74  | 12,16 | 5,78  | 22,68 |
| R35-R36   | 400 | 10   | 1   | 2,15 | 1,00 | 21,50 | 1,00 | 1,26 | 4,74  | 14,76 | 6,30  | 25,80 |
| R36-R37   | 400 | 9,72 | 1   | 1,95 | 0,97 | 18,95 | 0,97 | 1,22 | 4,61  | 12,40 | 5,73  | 22,74 |
| R37-R38   | 400 | 8,28 | 1   | 2,27 | 0,83 | 18,80 | 0,83 | 1,04 | 3,93  | 13,21 | 5,42  | 22,55 |
| R38-R39   | 400 | 13   | 1   | 2,27 | 1,30 | 29,51 | 1,30 | 1,63 | 6,17  | 20,74 | 8,50  | 35,41 |
| R39-RB40  | 400 | 13   | 1   | 2,27 | 1,30 | 29,51 | 1,30 | 1,63 | 6,17  | 20,74 | 8,50  | 35,41 |
| RB40-R41  | 400 | 14   | 1   | 1,90 | 1,40 | 26,60 | 1,40 | 1,76 | 6,64  | 17,16 | 8,12  | 31,92 |
| R41-R42   | 400 | 14   | 1   | 1,53 | 1,40 | 21,42 | 1,40 | 1,76 | 6,64  | 11,98 | 7,08  | 25,70 |
| R42-R43   | 400 | 15   | 1   | 1,95 | 1,50 | 29,25 | 1,50 | 1,88 | 7,12  | 19,13 | 8,85  | 35,10 |
| R43-RB44  | 400 | 15   | 1   | 1,87 | 1,50 | 28,05 | 1,50 | 1,88 | 7,12  | 17,93 | 8,61  | 33,66 |
| RB44-R45  | 500 | 30   | 1,1 | 2,30 | 3,30 | 75,90 | 3,30 | 5,89 | 17,21 | 52,09 | 21,78 | 91,08 |
| R45-R46   | 600 | 30   | 1,2 | 1,91 | 3,60 | 68,76 | 3,60 | 8,48 | 20,32 | 41,24 | 20,95 | 82,51 |
| R46-R47   | 600 | 30   | 1,2 | 1,79 | 3,60 | 64,44 | 3,60 | 8,48 | 20,32 | 36,92 | 20,09 | 77,33 |
| R47-R48   | 600 | 30   | 1,2 | 1,79 | 3,60 | 64,44 | 3,60 | 8,48 | 20,32 | 36,92 | 20,09 | 77,33 |
| R48-R49   | 600 | 25   | 1,2 | 1,84 | 3,00 | 55,20 | 3,00 | 7,07 | 16,94 | 32,27 | 17,04 | 66,24 |
| R49-R50   | 600 | 21   | 1,2 | 1,89 | 2,52 | 47,63 | 2,52 | 5,93 | 14,23 | 28,36 | 14,57 | 57,15 |
| RB50-RB51 | 600 | 21   | 1,2 | 1,89 | 2,52 | 47,63 | 2,52 | 5,93 | 14,23 | 28,36 | 14,57 | 57,15 |
| RB51-R52  | 600 | 24   | 1,2 | 2,03 | 2,88 | 58,46 | 2,88 | 6,78 | 16,26 | 36,45 | 17,45 | 70,16 |
| R52-RB53  | 600 | 30   | 1,2 | 2,00 | 3,60 | 72,00 | 3,60 | 8,48 | 20,32 | 44,48 | 21,60 | 86,40 |
| RB53-R54  | 600 | 30   | 1,2 | 1,67 | 3,60 | 60,12 | 3,60 | 8,48 | 20,32 | 32,60 | 19,22 | 72,14 |
| R54-R55   | 600 | 30   | 1,2 | 1,67 | 3,60 | 60,12 | 3,60 | 8,48 | 20,32 | 32,60 | 19,22 | 72,14 |
| R55-DO2   | 600 | 30   | 1,2 | 2,08 | 3,60 | 74,88 | 3,60 | 8,48 | 20,32 | 47,36 | 22,18 | 89,86 |
| R56-R57   | 300 | 12   | 0,9 | 1,23 | 1,08 | 13,28 | 1,08 | 0,85 | 4,55  | 6,57  | 4,82  | 15,94 |
| R57-R58   | 300 | 11   | 0,9 | 1,65 | 0,99 | 16,34 | 0,99 | 0,78 | 4,17  | 10,18 | 5,25  | 19,60 |

| R58-R59   | 300 | 10    | 0,9 | 2,12 | 0,90 | 19,08 | 0,90 | 0,71 | 3,79  | 13,49 | 5,62  | 22,90 |
|-----------|-----|-------|-----|------|------|-------|------|------|-------|-------|-------|-------|
| R59-R60   | 300 | 10    | 0,9 | 2,12 | 0,90 | 19,08 | 0,90 | 0,71 | 3,79  | 13,49 | 5,62  | 22,90 |
| R60-R61   | 300 | 10    | 0,9 | 2,12 | 0,90 | 19,08 | 0,90 | 0,71 | 3,79  | 13,49 | 5,62  | 22,90 |
| R61-R62   | 300 | 11    | 0,9 | 2,12 | 0,99 | 20,99 | 0,99 | 0,78 | 4,17  | 14,84 | 6,18  | 25,19 |
| R62-R63   | 300 | 11    | 0,9 | 1,44 | 0,99 | 14,26 | 0,99 | 0,78 | 4,17  | 8,10  | 4,83  | 17,11 |
| R63-R64   | 300 | 10    | 0,9 | 1,26 | 0,90 | 11,34 | 0,90 | 0,71 | 3,79  | 5,75  | 4,07  | 13,61 |
| R64-R65   | 300 | 10    | 0,9 | 1,23 | 0,90 | 11,07 | 0,90 | 0,71 | 3,79  | 5,48  | 4,01  | 13,28 |
| R65-R66   | 300 | 11    | 0,9 | 1,72 | 0,99 | 17,03 | 0,99 | 0,78 | 4,17  | 10,88 | 5,39  | 20,43 |
| R66-R67   | 300 | 11    | 0,9 | 2,54 | 0,99 | 25,15 | 0,99 | 0,78 | 4,17  | 18,99 | 7,01  | 30,18 |
| R67-RB32  | 300 | 11,98 | 0,9 | 1,54 | 1,08 | 19,08 | 1,08 | 0,85 | 4,54  | 12,38 | 5,97  | 22,90 |
| R68-R69'  | 300 | 35    | 0,9 | 1,77 | 3,15 | 55,76 | 3,15 | 2,47 | 13,28 | 36,18 | 17,45 | 66,91 |
| R69'-RB40 | 300 | 35    | 0,9 | 1,77 | 3,15 | 55,76 | 3,15 | 2,47 | 13,28 | 36,18 | 17,45 | 66,91 |
| R69-R70   | 300 | 10    | 0,9 | 1,65 | 0,90 | 14,85 | 0,90 | 0,71 | 3,79  | 9,26  | 4,77  | 17,82 |
| R70-R71   | 300 | 10    | 0,9 | 2,00 | 0,90 | 18,00 | 0,90 | 0,71 | 3,79  | 12,41 | 5,40  | 21,60 |
| R71-R72   | 300 | 10    | 0,9 | 2,35 | 0,90 | 21,15 | 0,90 | 0,71 | 3,79  | 15,56 | 6,03  | 25,38 |
| R72-R73   | 300 | 10    | 0,9 | 1,83 | 0,90 | 16,47 | 0,90 | 0,71 | 3,79  | 10,88 | 5,09  | 19,76 |
| R73-R74   | 300 | 10    | 0,9 | 1,81 | 0,90 | 16,29 | 0,90 | 0,71 | 3,79  | 10,70 | 5,06  | 19,55 |
| R74-R75   | 300 | 10    | 0,9 | 1,79 | 0,90 | 16,11 | 0,90 | 0,71 | 3,79  | 10,52 | 5,02  | 19,33 |
| R75-R76   | 300 | 10    | 0,9 | 2,18 | 0,90 | 19,62 | 0,90 | 0,71 | 3,79  | 14,03 | 5,72  | 23,54 |
| R76-R77   | 300 | 10    | 0,9 | 2,56 | 0,90 | 23,04 | 0,90 | 0,71 | 3,79  | 17,45 | 6,41  | 27,65 |
| R77-R78   | 300 | 10    | 0,9 | 2,45 | 0,90 | 22,05 | 0,90 | 0,71 | 3,79  | 16,46 | 6,21  | 26,46 |
| R78-R79   | 300 | 10    | 0,9 | 2,32 | 0,90 | 20,88 | 0,90 | 0,71 | 3,79  | 15,29 | 5,98  | 25,06 |
| R79-R80   | 300 | 10    | 0,9 | 2,50 | 0,90 | 22,50 | 0,90 | 0,71 | 3,79  | 16,91 | 6,30  | 27,00 |
| R80-R81   | 300 | 10    | 0,9 | 2,67 | 0,90 | 24,03 | 0,90 | 0,71 | 3,79  | 18,44 | 6,61  | 28,84 |
| R81-R82   | 300 | 11    | 0,9 | 2,95 | 0,99 | 29,21 | 0,99 | 0,78 | 4,17  | 23,05 | 7,82  | 35,05 |
| R82-R83   | 300 | 11    | 0,9 | 3,23 | 0,99 | 31,98 | 0,99 | 0,78 | 4,17  | 25,82 | 8,38  | 38,37 |
| R83-R84   | 300 | 11,28 | 0,9 | 2,50 | 1,02 | 25,38 | 1,02 | 0,80 | 4,28  | 19,07 | 7,11  | 30,46 |
| R84-R85   | 300 | 10    | 0,9 | 2,52 | 0,90 | 22,68 | 0,90 | 0,71 | 3,79  | 17,09 | 6,34  | 27,22 |
| R85-R86   | 300 | 10    | 0,9 | 2,55 | 0,90 | 22,95 | 0,90 | 0,71 | 3,79  | 17,36 | 6,39  | 27,54 |
| R86-R87   | 300 | 10    | 0,9 | 2,08 | 0,90 | 18,72 | 0,90 | 0,71 | 3,79  | 13,13 | 5,54  | 22,46 |
| R87-R88   | 300 | 30    | 0,9 | 2,08 | 2,70 | 56,16 | 2,70 | 2,12 | 11,38 | 39,38 | 16,63 | 67,39 |

| R88-R89    | 300 | 30    | 0,9 | 2,08 | 2,70 | 56,16 | 2,70 | 2,12 | 11,38 | 39,38 | 16,63 | 67,39 |
|------------|-----|-------|-----|------|------|-------|------|------|-------|-------|-------|-------|
| R89-R90    | 300 | 20    | 0,9 | 2,64 | 1,80 | 47,52 | 1,80 | 1,41 | 7,59  | 36,33 | 13,10 | 57,02 |
| R90-R91    | 300 | 11    | 0,9 | 2,44 | 0,99 | 24,16 | 0,99 | 0,78 | 4,17  | 18,00 | 6,81  | 28,99 |
| R91-RB44   | 300 | 11,39 | 0,9 | 1,72 | 1,03 | 17,63 | 1,03 | 0,80 | 4,32  | 11,26 | 5,58  | 21,16 |
| R92-R93    | 300 | 10    | 0,9 | 1,39 | 0,90 | 12,51 | 0,90 | 0,71 | 3,79  | 6,92  | 4,30  | 15,01 |
| R93-R94    | 300 | 10    | 0,9 | 1,47 | 0,90 | 13,23 | 0,90 | 0,71 | 3,79  | 7,64  | 4,45  | 15,88 |
| R94-R95    | 300 | 10    | 0,9 | 1,56 | 0,90 | 14,04 | 0,90 | 0,71 | 3,79  | 8,45  | 4,61  | 16,85 |
| R95-R96    | 300 | 11    | 0,9 | 1,62 | 0,99 | 16,04 | 0,99 | 0,78 | 4,17  | 9,89  | 5,19  | 19,25 |
| R96-R97    | 300 | 11    | 0,9 | 1,68 | 0,99 | 16,63 | 0,99 | 0,78 | 4,17  | 10,48 | 5,31  | 19,96 |
| R69-RB98   | 300 | 13    | 0,9 | 1,65 | 1,17 | 19,31 | 1,17 | 0,92 | 4,93  | 12,03 | 6,20  | 23,17 |
| RB98-R99   | 300 | 10    | 0,9 | 1,84 | 0,90 | 16,56 | 0,90 | 0,71 | 3,79  | 10,97 | 5,11  | 19,87 |
| R99-R100   | 300 | 10    | 0,9 | 2,01 | 0,90 | 18,09 | 0,90 | 0,71 | 3,79  | 12,50 | 5,42  | 21,71 |
| R100-R101  | 300 | 10    | 0,9 | 2,17 | 0,90 | 19,53 | 0,90 | 0,71 | 3,79  | 13,94 | 5,71  | 23,44 |
| R101-R102  | 300 | 10    | 0,9 | 2,01 | 0,90 | 18,09 | 0,90 | 0,71 | 3,79  | 12,50 | 5,42  | 21,71 |
| R102-R103  | 300 | 10    | 0,9 | 1,85 | 0,90 | 16,65 | 0,90 | 0,71 | 3,79  | 11,06 | 5,13  | 19,98 |
| R103-RB104 | 300 | 10    | 0,9 | 1,69 | 0,90 | 15,21 | 0,90 | 0,71 | 3,79  | 9,62  | 4,84  | 18,25 |
| RB104-R105 | 300 | 20    | 0,9 | 1,69 | 1,80 | 30,42 | 1,80 | 1,41 | 7,59  | 19,23 | 9,68  | 36,50 |
| R105-RB106 | 300 | 21    | 0,9 | 1,76 | 1,89 | 33,26 | 1,89 | 1,48 | 7,97  | 21,52 | 10,43 | 39,92 |
| RB106-R107 | 300 | 29    | 0,9 | 1,82 | 2,61 | 47,50 | 2,61 | 2,05 | 11,00 | 31,28 | 14,72 | 57,00 |
| R107-RB51  | 300 | 27,51 | 0,9 | 1,66 | 2,48 | 41,10 | 2,48 | 1,94 | 10,44 | 25,71 | 13,17 | 49,32 |
| R108-R109  | 300 | 25    | 0,9 | 1,60 | 2,25 | 36,00 | 2,25 | 1,77 | 9,48  | 22,02 | 11,70 | 43,20 |
| R109-RB98  | 300 | 25,09 | 0,9 | 1,59 | 2,26 | 35,90 | 2,26 | 1,77 | 9,52  | 21,87 | 11,70 | 43,08 |
| R110-R111  | 300 | 28    | 0,9 | 1,60 | 2,52 | 40,32 | 2,52 | 1,98 | 10,62 | 24,66 | 13,10 | 48,38 |
| R111-R112  | 300 | 28    | 0,9 | 1,60 | 2,52 | 40,32 | 2,52 | 1,98 | 10,62 | 24,66 | 13,10 | 48,38 |
| R112-RB104 | 300 | 21,14 | 0,9 | 1,60 | 1,90 | 30,44 | 1,90 | 1,49 | 8,02  | 18,62 | 9,89  | 36,53 |
| R113-R114  | 300 | 30    | 0,9 | 1,79 | 2,70 | 48,33 | 2,70 | 2,12 | 11,38 | 31,55 | 15,07 | 58,00 |
| R114-R115  | 300 | 30    | 0,9 | 1,60 | 2,70 | 43,20 | 2,70 | 2,12 | 11,38 | 26,42 | 14,04 | 51,84 |
| R115-R116  | 300 | 25    | 0,9 | 1,60 | 2,25 | 36,00 | 2,25 | 1,77 | 9,48  | 22,02 | 11,70 | 43,20 |
| R116-RB106 | 300 | 19,42 | 0,9 | 1,65 | 1,75 | 27,96 | 1,75 | 1,37 | 7,37  | 17,10 | 9,09  | 33,56 |
| R117-R118  | 300 | 30    | 0,9 | 1,60 | 2,70 | 47,79 | 2,70 | 2,12 | 11,38 | 31,01 | 14,96 | 57,35 |
| R118-R119  | 300 | 30    | 0,9 | 1,77 | 2,70 | 52,92 | 2,70 | 2,12 | 11,38 | 36,14 | 15,98 | 63,50 |

| R119-R120  | 300 | 30    | 0,9 | 1,96 | 2,70 | 43,20 | 2,70 | 2,12 | 11,38 | 26,42 | 14,04 | 51,84 |
|------------|-----|-------|-----|------|------|-------|------|------|-------|-------|-------|-------|
| R120-RB51  | 300 | 30,06 | 0,9 | 1,60 | 2,71 | 43,29 | 2,71 | 2,12 | 11,40 | 26,47 | 14,07 | 51,94 |
| R121-R122  | 300 | 30    | 0,9 | 1,60 | 2,70 | 43,20 | 2,70 | 2,12 | 11,38 | 26,42 | 14,04 | 51,84 |
| R122-R123  | 300 | 30    | 0,9 | 1,60 | 2,70 | 57,24 | 2,70 | 2,12 | 11,38 | 40,46 | 16,85 | 68,69 |
| R123-R123' | 300 | 30    | 0,9 | 2,12 | 2,70 | 43,74 | 2,70 | 2,12 | 11,38 | 26,96 | 14,15 | 52,49 |
| R123'-RB53 | 300 | 29,03 | 0,9 | 1,62 | 2,61 | 42,33 | 2,61 | 2,05 | 11,01 | 26,09 | 13,69 | 50,79 |
| R124-R125  | 300 | 30    | 0,9 | 1,73 | 2,70 | 46,71 | 2,70 | 2,12 | 11,38 | 29,93 | 14,74 | 56,05 |
| R125-R126  | 300 | 30    | 0,9 | 2,78 | 2,70 | 75,06 | 2,70 | 2,12 | 11,38 | 58,28 | 20,41 | 90,07 |
| R126-R127  | 300 | 30    | 0,9 | 2,11 | 2,70 | 56,97 | 2,70 | 2,12 | 11,38 | 40,19 | 16,79 | 68,36 |
| R127-R128  | 300 | 30    | 0,9 | 1,76 | 2,70 | 47,52 | 2,70 | 2,12 | 11,38 | 30,74 | 14,90 | 57,02 |
| R128-R129  | 300 | 25    | 0,9 | 2,30 | 2,25 | 51,75 | 2,25 | 1,77 | 9,48  | 37,77 | 14,85 | 62,10 |
| R129-R130  | 300 | 25    | 0,9 | 2,30 | 2,25 | 51,75 | 2,25 | 1,77 | 9,48  | 37,77 | 14,85 | 62,10 |
| R130-RB131 | 300 | 18,45 | 0,9 | 2,30 | 1,66 | 38,19 | 1,66 | 1,30 | 7,00  | 27,87 | 10,96 | 45,83 |
| RB131-R132 | 500 | 10    | 1,1 | 2,43 | 1,10 | 26,73 | 1,10 | 1,96 | 5,74  | 18,79 | 7,55  | 32,08 |
| R132-R133  | 500 | 10    | 1,1 | 2,56 | 1,10 | 28,16 | 1,10 | 1,96 | 5,74  | 20,22 | 7,83  | 33,79 |
| R133-R134  | 500 | 10    | 1,1 | 2,69 | 1,10 | 29,59 | 1,10 | 1,96 | 5,74  | 21,65 | 8,12  | 35,51 |
| R134-R135  | 500 | 10    | 1,1 | 2,75 | 1,10 | 30,25 | 1,10 | 1,96 | 5,74  | 22,31 | 8,25  | 36,30 |
| R135-R136  | 500 | 20    | 1,1 | 2,37 | 2,20 | 52,14 | 2,20 | 3,93 | 11,48 | 36,27 | 14,83 | 62,57 |
| R136-R137  | 500 | 10    | 1,1 | 2,36 | 1,10 | 25,96 | 1,10 | 1,96 | 5,74  | 18,02 | 7,39  | 31,15 |
| R137-R138  | 500 | 10    | 1,1 | 2,34 | 1,10 | 25,74 | 1,10 | 1,96 | 5,74  | 17,80 | 7,35  | 30,89 |
| R138-R139  | 500 | 10    | 1,1 | 2,32 | 1,10 | 25,52 | 1,10 | 1,96 | 5,74  | 17,58 | 7,30  | 30,62 |
| R139-R140  | 500 | 10    | 1,1 | 2,42 | 1,10 | 26,62 | 1,10 | 1,96 | 5,74  | 18,68 | 7,52  | 31,94 |
| R140-R141  | 500 | 10    | 1,1 | 2,51 | 1,10 | 27,61 | 1,10 | 1,96 | 5,74  | 19,67 | 7,72  | 33,13 |
| R141-R142  | 500 | 10    | 1,1 | 2,62 | 1,10 | 28,82 | 1,10 | 1,96 | 5,74  | 20,88 | 7,96  | 34,58 |
| R142-R143  | 500 | 25    | 1,1 | 2,62 | 2,75 | 72,05 | 2,75 | 4,91 | 14,34 | 52,21 | 19,91 | 86,46 |
| R143-RB144 | 500 | 17,94 | 1,1 | 1,85 | 1,97 | 36,51 | 1,97 | 3,52 | 10,29 | 22,27 | 11,25 | 43,81 |
| RB144-R145 | 600 | 18    | 1,2 | 1,85 | 2,16 | 39,96 | 2,16 | 5,09 | 12,19 | 23,45 | 12,31 | 47,95 |
| R145-R146  | 600 | 10    | 1,2 | 2,31 | 1,20 | 27,72 | 1,20 | 2,83 | 6,77  | 18,55 | 7,94  | 33,26 |
| R146-R147  | 600 | 10    | 1,2 | 2,18 | 1,20 | 26,16 | 1,20 | 2,83 | 6,77  | 16,99 | 7,63  | 31,39 |
| R147-R148  | 600 | 10    | 1,2 | 2,05 | 1,20 | 24,60 | 1,20 | 2,83 | 6,77  | 15,43 | 7,32  | 29,52 |
| R148-R149  | 600 | 10    | 1,2 | 2,05 | 1,20 | 24,60 | 1,20 | 2,83 | 6,77  | 15,43 | 7,32  | 29,52 |

| R149-R150  | 600  | 10    | 1,2 | 2,09 | 1,20 | 25,08  | 1,20 | 2,83  | 6,77  | 15,91 | 7,42  | 30,10  |
|------------|------|-------|-----|------|------|--------|------|-------|-------|-------|-------|--------|
| R150-R151  | 600  | 10    | 1,2 | 2,12 | 1,20 | 25,44  | 1,20 | 2,83  | 6,77  | 16,27 | 7,49  | 30,53  |
| R151-R152  | 600  | 10    | 1,2 | 1,98 | 1,20 | 23,76  | 1,20 | 2,83  | 6,77  | 14,59 | 7,15  | 28,51  |
| R152-R153  | 600  | 10    | 1,2 | 1,79 | 1,20 | 21,48  | 1,20 | 2,83  | 6,77  | 12,31 | 6,70  | 25,78  |
| R153-R154  | 600  | 10    | 1,2 | 1,60 | 1,20 | 19,20  | 1,20 | 2,83  | 6,77  | 10,03 | 6,24  | 23,04  |
| R154-RB155 | 800  | 42    | 1,4 | 1,44 | 5,88 | 84,67  | 5,88 | 21,10 | 37,70 | 35,21 | 28,69 | 101,61 |
| RB155-R156 | 800  | 23    | 1,4 | 1,44 | 3,22 | 46,37  | 3,22 | 11,56 | 20,64 | 19,28 | 15,71 | 55,64  |
| R156-RB157 | 800  | 21    | 1,4 | 1,65 | 2,94 | 48,51  | 2,94 | 10,55 | 18,85 | 23,78 | 15,58 | 58,21  |
| RB157-R158 | 800  | 25    | 1,4 | 1,81 | 3,50 | 63,35  | 3,50 | 12,56 | 22,44 | 33,91 | 19,67 | 76,02  |
| R158-RB159 | 800  | 17,02 | 1,4 | 1,97 | 2,38 | 46,94  | 2,38 | 8,55  | 15,28 | 26,90 | 14,15 | 56,33  |
| RB159-R160 | 800  | 25    | 1,4 | 2,17 | 3,50 | 75,95  | 3,50 | 12,56 | 22,44 | 46,51 | 22,19 | 91,14  |
| R160-R161  | 800  | 22,98 | 1,4 | 2,23 | 3,22 | 71,74  | 3,22 | 11,55 | 20,63 | 44,68 | 20,78 | 86,09  |
| R161-R162  | 800  | 20    | 1,4 | 2,47 | 2,80 | 69,16  | 2,80 | 10,05 | 17,95 | 45,61 | 19,43 | 82,99  |
| R162-R163  | 800  | 15    | 1,4 | 2,49 | 2,10 | 52,29  | 2,10 | 7,54  | 13,46 | 34,63 | 14,66 | 62,75  |
| R163-R164  | 800  | 25    | 1,4 | 2,47 | 3,50 | 86,45  | 3,50 | 12,56 | 22,44 | 57,01 | 24,29 | 103,74 |
| R164-R165  | 800  | 12    | 1,4 | 2,47 | 1,68 | 41,50  | 1,68 | 6,03  | 10,77 | 27,36 | 11,66 | 49,80  |
| R165-R166  | 800  | 20    | 1,4 | 2,12 | 2,80 | 59,36  | 2,80 | 10,05 | 17,95 | 35,81 | 17,47 | 71,23  |
| R166-R167  | 800  | 20    | 1,4 | 2,04 | 2,80 | 57,12  | 2,80 | 10,05 | 17,95 | 33,57 | 17,02 | 68,54  |
| R167-R168  | 1000 | 30    | 1,6 | 2,04 | 4,80 | 97,92  | 4,80 | 23,55 | 34,05 | 54,27 | 29,18 | 117,50 |
| R168-R169  | 1000 | 30    | 1,6 | 2,12 | 4,80 | 101,76 | 4,80 | 23,55 | 34,05 | 58,11 | 29,95 | 122,11 |
| R169-R170  | 1000 | 30    | 1,6 | 2,19 | 4,80 | 105,12 | 4,80 | 23,55 | 34,05 | 61,47 | 30,62 | 126,14 |
| R170-R171  | 1000 | 30    | 1,6 | 2,19 | 4,80 | 105,12 | 4,80 | 23,55 | 34,05 | 61,47 | 30,62 | 126,14 |
| R171-R172  | 1000 | 30    | 1,6 | 2,22 | 4,80 | 106,56 | 4,80 | 23,55 | 34,05 | 62,91 | 30,91 | 127,87 |
| R172-R173  | 1000 | 30    | 1,6 | 2,07 | 4,80 | 99,36  | 4,80 | 23,55 | 34,05 | 55,71 | 29,47 | 119,23 |
| R173-R174  | 1200 | 38    | 1,8 | 2,07 | 6,84 | 141,59 | 6,84 | 42,96 | 52,80 | 75,10 | 42,00 | 169,91 |
| R174-R175  | 1200 | 30    | 1,8 | 2,10 | 5,40 | 113,40 | 5,40 | 33,91 | 41,69 | 60,91 | 33,48 | 136,08 |
| R175-R176  | 1200 | 30    | 1,8 | 2,09 | 5,40 | 112,86 | 5,40 | 33,91 | 41,69 | 60,37 | 33,37 | 135,43 |
| R176-R177  | 1200 | 30    | 1,8 | 2,04 | 5,40 | 110,16 | 5,40 | 33,91 | 41,69 | 57,67 | 32,83 | 132,19 |
| R177-R178  | 1200 | 30    | 1,8 | 2,04 | 5,40 | 110,16 | 5,40 | 33,91 | 41,69 | 57,67 | 32,83 | 132,19 |
| R178-R179  | 1200 | 30    | 1,8 | 1,89 | 5,40 | 102,06 | 5,40 | 33,91 | 41,69 | 49,57 | 31,21 | 122,47 |
| R179-R180  | 1200 | 30    | 1,8 | 1,87 | 5,40 | 100,98 | 5,40 | 33,91 | 41,69 | 48,49 | 31,00 | 121,18 |

| R180-R181  | 1200 | 30    | 1,8 | 1,80 | 5,40 | 97,20 | 5,40 | 33,91 | 41,69 | 44,71 | 30,24 | 116,64 |
|------------|------|-------|-----|------|------|-------|------|-------|-------|-------|-------|--------|
| R181-R182  | 1200 | 30    | 1,8 | 1,74 | 5,40 | 93,96 | 5,40 | 33,91 | 41,69 | 41,47 | 29,59 | 112,75 |
| R182-R183  | 1200 | 30    | 1,8 | 1,74 | 5,40 | 93,96 | 5,40 | 33,91 | 41,69 | 41,47 | 29,59 | 112,75 |
| R183-R184  | 1200 | 30    | 1,8 | 1,70 | 5,40 | 91,80 | 5,40 | 33,91 | 41,69 | 39,31 | 29,16 | 110,16 |
| R184-DO1   | 1200 | 30    | 1,8 | 1,34 | 5,40 | 72,36 | 5,40 | 33,91 | 41,69 | 19,87 | 25,27 | 86,83  |
| R188-R189  | 300  | 10    | 0,9 | 0,99 | 0,90 | 8,91  | 0,90 | 0,71  | 3,79  | 3,32  | 3,58  | 10,69  |
| R189-R190  | 300  | 10    | 0,9 | 0,99 | 0,90 | 8,91  | 0,90 | 0,71  | 3,79  | 3,32  | 3,58  | 10,69  |
| R190-R191  | 300  | 10    | 0,9 | 1,35 | 0,90 | 12,15 | 0,90 | 0,71  | 3,79  | 6,56  | 4,23  | 14,58  |
| R191-R192  | 300  | 10    | 0,9 | 1,52 | 0,90 | 13,68 | 0,90 | 0,71  | 3,79  | 8,09  | 4,54  | 16,42  |
| R192-R193  | 300  | 10    | 0,9 | 1,68 | 0,90 | 15,12 | 0,90 | 0,71  | 3,79  | 9,53  | 4,82  | 18,14  |
| R193-R194  | 300  | 10    | 0,9 | 1,84 | 0,90 | 16,56 | 0,90 | 0,71  | 3,79  | 10,97 | 5,11  | 19,87  |
| R194-R195  | 300  | 10    | 0,9 | 1,98 | 0,90 | 17,82 | 0,90 | 0,71  | 3,79  | 12,23 | 5,36  | 21,38  |
| R195-R196  | 300  | 10    | 0,9 | 2,11 | 0,90 | 18,99 | 0,90 | 0,71  | 3,79  | 13,40 | 5,60  | 22,79  |
| R196-R197  | 300  | 10    | 0,9 | 2,24 | 0,90 | 20,16 | 0,90 | 0,71  | 3,79  | 14,57 | 5,83  | 24,19  |
| R197-R198  | 300  | 10    | 0,9 | 2,00 | 0,90 | 18,00 | 0,90 | 0,71  | 3,79  | 12,41 | 5,40  | 21,60  |
| R198-R199  | 300  | 10    | 0,9 | 1,96 | 0,90 | 17,64 | 0,90 | 0,71  | 3,79  | 12,05 | 5,33  | 21,17  |
| R199-R200  | 300  | 10    | 0,9 | 1,92 | 0,90 | 17,28 | 0,90 | 0,71  | 3,79  | 11,69 | 5,26  | 20,74  |
| R200-R201  | 300  | 10    | 0,9 | 2,04 | 0,90 | 18,36 | 0,90 | 0,71  | 3,79  | 12,77 | 5,47  | 22,03  |
| R201-R202  | 400  | 10    | 1   | 2,17 | 1,00 | 21,70 | 1,00 | 1,26  | 4,74  | 14,96 | 6,34  | 26,04  |
| R202-RB131 | 400  | 10    | 1   | 2,30 | 1,00 | 23,00 | 1,00 | 1,26  | 4,74  | 16,26 | 6,60  | 27,60  |
| R203-R204  | 300  | 10    | 0,9 | 1,18 | 0,90 | 10,62 | 0,90 | 0,71  | 3,79  | 5,03  | 3,92  | 12,74  |
| R204-R205  | 300  | 10    | 0,9 | 1,56 | 0,90 | 14,04 | 0,90 | 0,71  | 3,79  | 8,45  | 4,61  | 16,85  |
| R205-R206  | 300  | 10    | 0,9 | 1,93 | 0,90 | 17,37 | 0,90 | 0,71  | 3,79  | 11,78 | 5,27  | 20,84  |
| R206-R207  | 300  | 10    | 0,9 | 2,36 | 0,90 | 21,24 | 0,90 | 0,71  | 3,79  | 15,65 | 6,05  | 25,49  |
| R207-R208  | 300  | 10    | 0,9 | 2,59 | 0,90 | 23,31 | 0,90 | 0,71  | 3,79  | 17,72 | 6,46  | 27,97  |
| R208-R209  | 300  | 13,07 | 0,9 | 2,30 | 1,18 | 27,05 | 1,18 | 0,92  | 4,96  | 19,74 | 7,76  | 32,47  |
| R209-R210  | 300  | 9,93  | 0,9 | 2,30 | 0,89 | 20,56 | 0,89 | 0,70  | 3,77  | 15,00 | 5,90  | 24,67  |
| R210-R211  | 300  | 9     | 0,9 | 2,05 | 0,81 | 16,61 | 0,81 | 0,64  | 3,41  | 11,57 | 4,94  | 19,93  |
| R211-R112  | 300  | 8,07  | 0,9 | 1,92 | 0,73 | 13,94 | 0,73 | 0,57  | 3,06  | 9,43  | 4,24  | 16,73  |
| R212-R213  | 300  | 7,93  | 0,9 | 1,82 | 0,71 | 12,99 | 0,71 | 0,56  | 3,01  | 8,55  | 4,03  | 15,59  |
| R213-R214  | 300  | 10    | 0,9 | 1,50 | 0,90 | 13,50 | 0,90 | 0,71  | 3,79  | 7,91  | 4,50  | 16,20  |

| R214-R215  | 300 | 6,7   | 0,9 | 1,54 | 0,60 | 9,29  | 0,60 | 0,47 | 2,54  | 5,54  | 3,06  | 11,14 |
|------------|-----|-------|-----|------|------|-------|------|------|-------|-------|-------|-------|
| R215-R216  | 300 | 7     | 0,9 | 1,56 | 0,63 | 9,83  | 0,63 | 0,49 | 2,66  | 5,91  | 3,23  | 11,79 |
| R216-RB192 | 300 | 8     | 0,9 | 1,47 | 0,72 | 10,58 | 0,72 | 0,57 | 3,03  | 6,11  | 3,56  | 12,70 |
| R219-R220  | 300 | 10    | 0,9 | 1,72 | 0,90 | 15,48 | 0,90 | 0,71 | 3,79  | 9,89  | 4,90  | 18,58 |
| R220-R221  | 300 | 10    | 0,9 | 1,94 | 0,90 | 17,46 | 0,90 | 0,71 | 3,79  | 11,87 | 5,29  | 20,95 |
| R221-R222  | 300 | 10    | 0,9 | 2,16 | 0,90 | 19,44 | 0,90 | 0,71 | 3,79  | 13,85 | 5,69  | 23,33 |
| R222-R223  | 300 | 10    | 0,9 | 2,20 | 0,90 | 19,80 | 0,90 | 0,71 | 3,79  | 14,21 | 5,76  | 23,76 |
| R223-R224  | 300 | 10    | 0,9 | 2,25 | 0,90 | 20,25 | 0,90 | 0,71 | 3,79  | 14,66 | 5,85  | 24,30 |
| R224-R225  | 300 | 10    | 0,9 | 2,29 | 0,90 | 20,61 | 0,90 | 0,71 | 3,79  | 15,02 | 5,92  | 24,73 |
| R225-R226  | 300 | 10    | 0,9 | 2,17 | 0,90 | 19,53 | 0,90 | 0,71 | 3,79  | 13,94 | 5,71  | 23,44 |
| R226-R227  | 300 | 10    | 0,9 | 2,05 | 0,90 | 18,45 | 0,90 | 0,71 | 3,79  | 12,86 | 5,49  | 22,14 |
| R227-R228  | 300 | 12    | 0,9 | 2,30 | 1,08 | 24,84 | 1,08 | 0,85 | 4,55  | 18,13 | 7,13  | 29,81 |
| R228-R229  | 300 | 10    | 0,9 | 2,12 | 0,90 | 19,08 | 0,90 | 0,71 | 3,79  | 13,49 | 5,62  | 22,90 |
| R229-R230  | 300 | 10    | 0,9 | 2,13 | 0,90 | 19,17 | 0,90 | 0,71 | 3,79  | 13,58 | 5,63  | 23,00 |
| R230-R231  | 300 | 10    | 0,9 | 2,75 | 0,90 | 24,75 | 0,90 | 0,71 | 3,79  | 19,16 | 6,75  | 29,70 |
| R231-R232  | 300 | 10    | 0,9 | 2,31 | 0,90 | 20,79 | 0,90 | 0,71 | 3,79  | 15,20 | 5,96  | 24,95 |
| R232-R233  | 300 | 10    | 0,9 | 1,86 | 0,90 | 16,74 | 0,90 | 0,71 | 3,79  | 11,15 | 5,15  | 20,09 |
| R233-R234  | 300 | 10    | 0,9 | 1,42 | 0,90 | 12,78 | 0,90 | 0,71 | 3,79  | 7,19  | 4,36  | 15,34 |
| R234-RB201 | 300 | 10,98 | 0,9 | 1,72 | 0,99 | 17,00 | 0,99 | 0,78 | 4,17  | 10,86 | 5,38  | 20,40 |
| R235-R236  | 300 | 30    | 0,9 | 1,60 | 2,70 | 43,20 | 2,70 | 2,12 | 11,38 | 26,42 | 14,04 | 51,84 |
| R236-R237  | 300 | 30    | 0,9 | 1,95 | 2,70 | 52,65 | 2,70 | 2,12 | 11,38 | 35,87 | 15,93 | 63,18 |
| R237-R238  | 300 | 30,04 | 0,9 | 2,04 | 2,70 | 55,15 | 2,70 | 2,12 | 11,40 | 38,35 | 16,44 | 66,18 |
| R238-R239  | 300 | 26,83 | 0,9 | 2,19 | 2,41 | 52,88 | 2,41 | 1,90 | 10,18 | 37,87 | 15,41 | 63,46 |
| R239-R240  | 300 | 30    | 0,9 | 2,00 | 2,70 | 54,00 | 2,70 | 2,12 | 11,38 | 37,22 | 16,20 | 64,80 |
| R240-R241  | 300 | 30    | 0,9 | 1,80 | 2,70 | 48,60 | 2,70 | 2,12 | 11,38 | 31,82 | 15,12 | 58,32 |
| R241-R242  | 300 | 30    | 0,9 | 1,78 | 2,70 | 48,06 | 2,70 | 2,12 | 11,38 | 31,28 | 15,01 | 57,67 |
| R242-R243  | 300 | 17    | 0,9 | 1,97 | 1,53 | 30,14 | 1,53 | 1,20 | 6,45  | 20,63 | 9,09  | 36,17 |
| R243-R244  | 300 | 10,13 | 0,9 | 2,38 | 0,91 | 21,70 | 0,91 | 0,72 | 3,84  | 16,03 | 6,16  | 26,04 |
| R244-R245  | 300 | 10    | 0,9 | 2,81 | 0,90 | 25,29 | 0,90 | 0,71 | 3,79  | 19,70 | 6,86  | 30,35 |
| R245-RB144 | 300 | 12,41 | 0,9 | 1,84 | 1,12 | 20,55 | 1,12 | 0,88 | 4,71  | 13,61 | 6,34  | 24,66 |
| R246-R247  | 500 | 30    | 1,1 | 1,95 | 3,30 | 64,35 | 3,30 | 5,89 | 17,21 | 40,54 | 19,47 | 77,22 |

| R247-R248  | 500 | 30    | 1,1 | 1,87 | 3,30 | 61,71 | 3,30 | 5,89 | 17,21 | 37,90 | 18,94 | 74,05 |
|------------|-----|-------|-----|------|------|-------|------|------|-------|-------|-------|-------|
| R248-R249  | 500 | 10    | 1,1 | 1,73 | 1,10 | 19,03 | 1,10 | 1,96 | 5,74  | 11,09 | 6,01  | 22,84 |
| R249-R250  | 500 | 10    | 1,1 | 1,59 | 1,10 | 17,49 | 1,10 | 1,96 | 5,74  | 9,55  | 5,70  | 20,99 |
| R250-R251  | 500 | 10    | 1,1 | 1,44 | 1,10 | 15,84 | 1,10 | 1,96 | 5,74  | 7,90  | 5,37  | 19,01 |
| R251-R252  | 500 | 8     | 1,1 | 1,60 | 0,88 | 14,08 | 0,88 | 1,57 | 4,59  | 7,73  | 4,58  | 16,90 |
| R252-R253  | 500 | 10,44 | 1,1 | 1,66 | 1,15 | 19,06 | 1,15 | 2,05 | 5,99  | 10,78 | 6,11  | 22,88 |
| R253-RB254 | 500 | 8,58  | 1,1 | 1,52 | 0,94 | 14,35 | 0,94 | 1,68 | 4,92  | 7,54  | 4,76  | 17,21 |
| RB254-R255 | 600 | 29    | 1,2 | 1,48 | 3,48 | 51,50 | 3,48 | 8,20 | 19,64 | 24,90 | 17,26 | 61,80 |
| R255-RB145 | 600 | 27,78 | 1,2 | 1,48 | 3,33 | 49,34 | 3,33 | 7,85 | 18,82 | 23,85 | 16,53 | 59,20 |
| R256-R257  | 300 | 30    | 0,9 | 1,59 | 2,70 | 42,93 | 2,70 | 2,12 | 11,38 | 26,15 | 13,99 | 51,52 |
| R257-RB254 | 300 | 35,07 | 0,9 | 1,65 | 3,16 | 52,08 | 3,16 | 2,48 | 13,30 | 32,46 | 16,73 | 62,49 |
| R258-R259  | 300 | 29    | 0,9 | 1,60 | 2,61 | 41,76 | 2,61 | 2,05 | 11,00 | 25,54 | 13,57 | 50,11 |
| R259-RB260 | 300 | 17,9  | 0,9 | 1,61 | 1,61 | 25,94 | 1,61 | 1,26 | 6,79  | 15,92 | 8,41  | 31,12 |
| RB260-R261 | 300 | 28,32 | 0,9 | 1,61 | 2,55 | 41,04 | 2,55 | 2,00 | 10,74 | 25,19 | 13,30 | 49,24 |
| R261-R262  | 300 | 19    | 0,9 | 1,63 | 1,71 | 27,87 | 1,71 | 1,34 | 7,21  | 17,25 | 8,99  | 33,45 |
| R262-RB263 | 300 | 18,92 | 0,9 | 1,60 | 1,70 | 27,24 | 1,70 | 1,34 | 7,18  | 16,66 | 8,85  | 32,69 |
| RB263-R264 | 400 | 25    | 1   | 1,60 | 2,50 | 40,00 | 2,50 | 3,14 | 11,86 | 23,14 | 13,00 | 48,00 |
| R264-R265  | 400 | 22    | 1   | 1,68 | 2,20 | 36,96 | 2,20 | 2,76 | 10,44 | 22,12 | 11,79 | 44,35 |
| R265-R266  | 400 | 12    | 1   | 1,90 | 1,20 | 22,80 | 1,20 | 1,51 | 5,69  | 14,71 | 6,96  | 27,36 |
| R266-R267  | 400 | 20    | 1   | 1,65 | 2,00 | 33,00 | 2,00 | 2,51 | 9,49  | 19,51 | 10,60 | 39,60 |
| R267-RB268 | 500 | 20    | 1,1 | 1,60 | 2,20 | 35,20 | 2,20 | 3,93 | 11,48 | 19,33 | 11,44 | 42,24 |
| RB268-R269 | 500 | 35    | 1,1 | 1,60 | 3,85 | 61,60 | 3,85 | 6,87 | 20,08 | 33,82 | 20,02 | 73,92 |
| R269-R270  | 500 | 25    | 1,1 | 1,80 | 2,75 | 49,50 | 2,75 | 4,91 | 14,34 | 29,66 | 15,40 | 59,40 |
| R270-R271  | 500 | 20    | 1,1 | 1,60 | 2,20 | 35,20 | 2,20 | 3,93 | 11,48 | 19,33 | 11,44 | 42,24 |
| RB271-R272 | 600 | 20    | 1,2 | 1,46 | 2,40 | 35,04 | 2,40 | 5,65 | 13,55 | 16,69 | 11,81 | 42,05 |
| R272-RB155 | 600 | 21,59 | 1,2 | 1,41 | 2,59 | 36,53 | 2,59 | 6,10 | 14,63 | 16,72 | 12,49 | 43,84 |
| R273-R274  | 300 | 35    | 0,9 | 1,40 | 3,15 | 44,10 | 3,15 | 2,47 | 13,28 | 24,52 | 15,12 | 52,92 |
| R274-RB260 | 300 | 35,07 | 0,9 | 1,41 | 3,16 | 44,50 | 3,16 | 2,48 | 13,30 | 24,89 | 15,21 | 53,40 |
| R275-R276  | 300 | 31,75 | 0,9 | 1,40 | 2,86 | 40,01 | 2,86 | 2,24 | 12,04 | 22,25 | 13,72 | 48,01 |
| R276-R277  | 300 | 35    | 0,9 | 1,40 | 3,15 | 44,10 | 3,15 | 2,47 | 13,28 | 24,52 | 15,12 | 52,92 |
| R277-RB263 | 300 | 35,75 | 0,9 | 1,40 | 3,22 | 45,05 | 3,22 | 2,53 | 13,56 | 25,05 | 15,44 | 54,05 |

| R278-R279  | 300 | 32    | 0.0 | 1,40 | 2,88 | 40,32 | 200  | 2.26 | 12,14 | 22.42 | 13,82                                 | 48,38 |
|------------|-----|-------|-----|------|------|-------|------|------|-------|-------|---------------------------------------|-------|
|            |     |       | 0,9 |      |      |       | 2,88 | 2,26 |       | 22,42 | · · · · · · · · · · · · · · · · · · · |       |
| R279-R280  | 300 | 30    | 0,9 | 1,58 | 2,70 | 42,66 | 2,70 | 2,12 | 11,38 | 25,88 | 13,93                                 | 51,19 |
| R280-R281  | 300 | 30    | 0,9 | 1,68 | 2,70 | 45,36 | 2,70 | 2,12 | 11,38 | 28,58 | 14,47                                 | 54,43 |
| R281-RB268 | 300 | 32    | 0,9 | 1,50 | 2,88 | 43,20 | 2,88 | 2,26 | 12,14 | 25,30 | 14,40                                 | 51,84 |
| R282-R283  | 300 | 32    | 0,9 | 1,40 | 2,88 | 40,32 | 2,88 | 2,26 | 12,14 | 22,42 | 13,82                                 | 48,38 |
| R283-R284  | 300 | 32    | 0,9 | 1,40 | 2,88 | 40,32 | 2,88 | 2,26 | 12,14 | 22,42 | 13,82                                 | 48,38 |
| R284-RB271 | 300 | 36,01 | 0,9 | 1,40 | 3,24 | 45,37 | 3,24 | 2,54 | 13,66 | 25,23 | 15,56                                 | 54,45 |
| R285-R286  | 400 | 25    | 1   | 1,60 | 2,50 | 40,00 | 2,50 | 3,14 | 11,86 | 23,14 | 13,00                                 | 48,00 |
| R286-R287  | 400 | 23    | 1   | 1,60 | 2,30 | 36,80 | 2,30 | 2,89 | 10,91 | 21,29 | 11,96                                 | 44,16 |
| R287-R288  | 400 | 25    | 1   | 1,69 | 2,50 | 42,25 | 2,50 | 3,14 | 11,86 | 25,39 | 13,45                                 | 50,70 |
| R288-R289  | 400 | 29    | 1   | 1,74 | 2,90 | 50,46 | 2,90 | 3,64 | 13,76 | 30,90 | 15,89                                 | 60,55 |
| R289-R290  | 400 | 25    | 1   | 1,54 | 2,50 | 38,50 | 2,50 | 3,14 | 11,86 | 21,64 | 12,70                                 | 46,20 |
| R290-R291  | 300 | 25    | 0,9 | 1,40 | 2,25 | 31,50 | 2,25 | 1,77 | 9,48  | 17,52 | 10,80                                 | 37,80 |
| R291-R292  | 300 | 25    | 0,9 | 1,40 | 2,25 | 31,50 | 2,25 | 1,77 | 9,48  | 17,52 | 10,80                                 | 37,80 |
| R292-RB157 | 300 | 27,93 | 0,9 | 1,40 | 2,51 | 35,19 | 2,51 | 1,97 | 10,60 | 19,57 | 12,07                                 | 42,23 |
| R293-R294  | 300 | 22    | 0,9 | 1,40 | 1,98 | 27,72 | 1,98 | 1,55 | 8,35  | 15,41 | 9,50                                  | 33,26 |
| R294-RB289 | 300 | 22    | 0,9 | 1,57 | 1,98 | 31,09 | 1,98 | 1,55 | 8,35  | 18,78 | 10,18                                 | 37,30 |
| R295-R296  | 300 | 30    | 0,9 | 1,45 | 2,70 | 39,15 | 2,70 | 2,12 | 11,38 | 22,37 | 13,23                                 | 46,98 |
| R296-R297  | 300 | 30    | 0,9 | 1,40 | 2,70 | 37,80 | 2,70 | 2,12 | 11,38 | 21,02 | 12,96                                 | 45,36 |
| R297-R298  | 300 | 30    | 0,9 | 1,40 | 2,70 | 37,80 | 2,70 | 2,12 | 11,38 | 21,02 | 12,96                                 | 45,36 |
| R298-RB159 | 400 | 15    | 1   | 1,40 | 1,50 | 21,00 | 1,50 | 1,88 | 7,12  | 10,88 | 7,20                                  | 25,20 |
| R299-R300  | 400 | 30    | 1   | 1,80 | 3,00 | 54,00 | 3,00 | 3,77 | 14,23 | 33,77 | 16,80                                 | 64,80 |
| R300-R301  | 400 | 30    | 1   | 1,77 | 3,00 | 53,10 | 3,00 | 3,77 | 14,23 | 32,87 | 16,62                                 | 63,72 |
| R301-R302  | 400 | 10    | 1   | 1,85 | 1,00 | 18,50 | 1,00 | 1,26 | 4,74  | 11,76 | 5,70                                  | 22,20 |
| R302-R303  | 400 | 10    | 1   | 1,92 | 1,00 | 19,20 | 1,00 | 1,26 | 4,74  | 12,46 | 5,84                                  | 23,04 |
| R303-R304  | 500 | 10    | 1,1 | 2,00 | 1,10 | 22,00 | 1,10 | 1,96 | 5,74  | 14,06 | 6,60                                  | 26,40 |
| R304-R305  | 500 | 10    | 1,1 | 2,00 | 1,10 | 22,00 | 1,10 | 1,96 | 5,74  | 14,06 | 6,60                                  | 26,40 |
| R305-R306  | 500 | 10    | 1,1 | 2,06 | 1,10 | 22,66 | 1,10 | 1,96 | 5,74  | 14,72 | 6,73                                  | 27,19 |
| R306-R307  | 500 | 10    | 1,1 | 2,13 | 1,10 | 23,43 | 1,10 | 1,96 | 5,74  | 15,49 | 6,89                                  | 28,12 |
| R307-R308  | 500 | 10    | 1,1 | 2,21 | 1,10 | 24,31 | 1,10 | 1,96 | 5,74  | 16,37 | 7,06                                  | 29,17 |
| R308-RB309 | 500 | 13,99 | 1,1 | 2,02 | 1,54 | 31,09 | 1,54 | 2,75 | 8,03  | 19,98 | 9,29                                  | 37,30 |

| RB309-R310 | 500 | 10,01 | 1,1 | 2,29 | 1,10 | 25,22 | 1,10 | 1,96 | 5,74  | 17,27 | 7,25  | 30,26  |
|------------|-----|-------|-----|------|------|-------|------|------|-------|-------|-------|--------|
| R310-R311  | 500 | 10    | 1,1 | 2,07 | 1,10 | 22,77 | 1,10 | 1,96 | 5,74  | 14,83 | 6,75  | 27,32  |
| R311-R312  | 500 | 9,99  | 1,1 | 1,85 | 1,10 | 20,33 | 1,10 | 1,96 | 5,73  | 12,40 | 6,26  | 24,40  |
| R312-R313  | 500 | 10,01 | 1,1 | 2,18 | 1,10 | 24,00 | 1,10 | 1,96 | 5,74  | 16,06 | 7,00  | 28,80  |
| R313-R314  | 500 | 10    | 1,1 | 2,02 | 1,10 | 22,22 | 1,10 | 1,96 | 5,74  | 14,28 | 6,64  | 26,66  |
| R314-R315  | 500 | 9,99  | 1,1 | 2,36 | 1,10 | 25,93 | 1,10 | 1,96 | 5,73  | 18,00 | 7,38  | 31,12  |
| R315-R316  | 500 | 10,01 | 1,1 | 2,19 | 1,10 | 24,11 | 1,10 | 1,96 | 5,74  | 16,17 | 7,03  | 28,94  |
| R316-R317  | 500 | 10    | 1,1 | 2,02 | 1,10 | 22,22 | 1,10 | 1,96 | 5,74  | 14,28 | 6,64  | 26,66  |
| R317-R318  | 500 | 9,99  | 1,1 | 2,36 | 1,10 | 25,93 | 1,10 | 1,96 | 5,73  | 18,00 | 7,38  | 31,12  |
| R318-R319  | 500 | 36,98 | 1,1 | 1,96 | 4,07 | 79,73 | 4,07 | 7,26 | 21,22 | 50,38 | 24,08 | 95,67  |
| R319-R320  | 500 | 30    | 1,1 | 1,89 | 3,30 | 62,37 | 3,30 | 5,89 | 17,21 | 38,56 | 19,07 | 74,84  |
| R320-R321  | 500 | 30    | 1,1 | 1,89 | 3,30 | 62,37 | 3,30 | 5,89 | 17,21 | 38,56 | 19,07 | 74,84  |
| R321-R322  | 500 | 18    | 1,1 | 1,80 | 1,98 | 35,64 | 1,98 | 3,53 | 10,33 | 21,35 | 11,09 | 42,77  |
| R322-R323  | 500 | 35    | 1,1 | 1,80 | 3,85 | 69,30 | 3,85 | 6,87 | 20,08 | 41,52 | 21,56 | 83,16  |
| R323-R324  | 500 | 40    | 1,1 | 2,07 | 4,40 | 91,08 | 4,40 | 7,85 | 22,95 | 59,33 | 27,02 | 109,30 |
| R324-R325  | 500 | 35    | 1,1 | 1,96 | 3,85 | 75,46 | 3,85 | 6,87 | 20,08 | 47,68 | 22,79 | 90,55  |
| R325-R326  | 500 | 40    | 1,1 | 1,80 | 4,40 | 79,20 | 4,40 | 7,85 | 22,95 | 47,45 | 24,64 | 95,04  |
| R326-R327  | 500 | 11,03 | 1,1 | 2,03 | 1,21 | 24,63 | 1,21 | 2,16 | 6,33  | 15,87 | 7,35  | 29,56  |
| R327-R328  | 500 | 13,97 | 1,1 | 2,17 | 1,54 | 33,35 | 1,54 | 2,74 | 8,02  | 22,26 | 9,74  | 40,02  |
| R328-R329  | 500 | 11,03 | 1,1 | 1,99 | 1,21 | 24,14 | 1,21 | 2,16 | 6,33  | 15,39 | 7,26  | 28,97  |
| R329-R330  | 500 | 13,97 | 1,1 | 2,27 | 1,54 | 34,88 | 1,54 | 2,74 | 8,02  | 23,79 | 10,05 | 41,86  |
| R330-R331  | 500 | 10    | 1,1 | 1,96 | 1,10 | 21,56 | 1,10 | 1,96 | 5,74  | 13,62 | 6,51  | 25,87  |
| R331-R332  | 500 | 10    | 1,1 | 2,15 | 1,10 | 23,65 | 1,10 | 1,96 | 5,74  | 15,71 | 6,93  | 28,38  |
| R332-R333  | 500 | 9,03  | 1,1 | 1,91 | 0,99 | 18,97 | 0,99 | 1,77 | 5,18  | 11,80 | 5,78  | 22,77  |
| R333-R334  | 500 | 10    | 1,1 | 2,14 | 1,10 | 23,54 | 1,10 | 1,96 | 5,74  | 15,60 | 6,91  | 28,25  |
| R334-R335  | 500 | 10    | 1,1 | 2,37 | 1,10 | 26,07 | 1,10 | 1,96 | 5,74  | 18,13 | 7,41  | 31,28  |
| R335-R336  | 500 | 8,97  | 1,1 | 2,12 | 0,99 | 20,92 | 0,99 | 1,76 | 5,15  | 13,80 | 6,16  | 25,10  |
| R336-R337  | 500 | 10,03 | 1,1 | 2,35 | 1,10 | 25,93 | 1,10 | 1,97 | 5,75  | 17,97 | 7,39  | 31,11  |
| R337-R338  | 500 | 10    | 1,1 | 2,08 | 1,10 | 22,88 | 1,10 | 1,96 | 5,74  | 14,94 | 6,78  | 27,46  |
| R338-R339  | 500 | 11,97 | 1,1 | 2,26 | 1,32 | 29,76 | 1,32 | 2,35 | 6,87  | 20,26 | 8,58  | 35,71  |
| R339-R340  | 500 | 10,03 | 1,1 | 1,93 | 1,10 | 21,29 | 1,10 | 1,97 | 5,75  | 13,33 | 6,47  | 25,55  |

| R340-R341  | 500 | 9,97  | 1,1 | 1,91 | 1,10 | 20,95 | 1,10 | 1,96 | 5,72  | 13,03 | 6,38  | 25,14 |
|------------|-----|-------|-----|------|------|-------|------|------|-------|-------|-------|-------|
| R341-R342  | 500 | 9,03  | 1,1 | 1,54 | 0,99 | 15,30 | 0,99 | 1,77 | 5,18  | 8,13  | 5,05  | 18,36 |
| R342-R343  | 500 | 7,29  | 1,1 | 1,58 | 0,80 | 12,67 | 0,80 | 1,43 | 4,18  | 6,88  | 4,14  | 15,20 |
| R343-R344  | 500 | 9,25  | 1,1 | 2,27 | 1,02 | 23,10 | 1,02 | 1,82 | 5,31  | 15,76 | 6,65  | 27,72 |
| R344-RB174 | 600 | 9,5   | 1,2 | 2,12 | 1,14 | 24,17 | 1,14 | 2,68 | 6,44  | 15,45 | 7,11  | 29,00 |
| R345-R346  | 300 | 30    | 0,9 | 1,68 | 2,70 | 45,36 | 2,70 | 2,12 | 11,38 | 28,58 | 14,47 | 54,43 |
| R346-R347  | 300 | 20    | 0,9 | 2,00 | 1,80 | 36,00 | 1,80 | 1,41 | 7,59  | 24,81 | 10,80 | 43,20 |
| R347-R348  | 300 | 21,03 | 0,9 | 2,00 | 1,89 | 37,85 | 1,89 | 1,49 | 7,98  | 26,09 | 11,36 | 45,42 |
| R348-R349  | 300 | 25    | 0,9 | 2,00 | 2,25 | 45,00 | 2,25 | 1,77 | 9,48  | 31,02 | 13,50 | 54,00 |
| R349-RB328 | 300 | 18,47 | 0,9 | 2,00 | 1,66 | 33,25 | 1,66 | 1,30 | 7,01  | 22,91 | 9,97  | 39,90 |
| R350-R351  | 300 | 30    | 0,9 | 2,00 | 2,70 | 54,00 | 2,70 | 2,12 | 11,38 | 37,22 | 16,20 | 64,80 |
| R351-R352  | 300 | 30    | 0,9 | 2,15 | 2,70 | 58,05 | 2,70 | 2,12 | 11,38 | 41,27 | 17,01 | 69,66 |
| R352-R353  | 300 | 30    | 0,9 | 2,24 | 2,70 | 60,48 | 2,70 | 2,12 | 11,38 | 43,70 | 17,50 | 72,58 |
| R353-R354  | 300 | 30    | 0,9 | 2,00 | 2,70 | 54,00 | 2,70 | 2,12 | 11,38 | 37,22 | 16,20 | 64,80 |
| R354-R355  | 300 | 30    | 0,9 | 2,00 | 2,70 | 54,00 | 2,70 | 2,12 | 11,38 | 37,22 | 16,20 | 64,80 |
| R355-RB356 | 300 | 11,73 | 0,9 | 1,94 | 1,06 | 20,48 | 1,06 | 0,83 | 4,45  | 13,92 | 6,21  | 24,58 |
| RB356-R357 | 400 | 30    | 1   | 1,94 | 3,00 | 58,20 | 3,00 | 3,77 | 14,23 | 37,97 | 17,64 | 69,84 |
| R357-RB338 | 400 | 30,6  | 1   | 2,00 | 3,06 | 61,20 | 3,06 | 3,84 | 14,52 | 40,56 | 18,36 | 73,44 |
| R358-R359  | 300 | 30    | 0,9 | 1,40 | 2,70 | 37,80 | 2,70 | 2,12 | 11,38 | 21,02 | 12,96 | 45,36 |
| R359-R360  | 300 | 30    | 0,9 | 1,91 | 2,70 | 51,57 | 2,70 | 2,12 | 11,38 | 34,79 | 15,71 | 61,88 |
| R360-RB356 | 400 | 29,3  | 1   | 1,68 | 2,93 | 49,22 | 2,93 | 3,68 | 13,90 | 29,46 | 15,70 | 59,07 |
| R361-R362  | 300 | 30    | 0,9 | 1,68 | 2,70 | 45,36 | 2,70 | 2,12 | 11,38 | 28,58 | 14,47 | 54,43 |
| R362-R363  | 300 | 19,5  | 0,9 | 1,40 | 1,76 | 24,57 | 1,76 | 1,38 | 7,40  | 13,66 | 8,42  | 29,48 |
| R363-R364  | 300 | 30    | 0,9 | 1,73 | 2,70 | 46,71 | 2,70 | 2,12 | 11,38 | 29,93 | 14,74 | 56,05 |
| R364-R365  | 300 | 20    | 0,9 | 1,70 | 1,80 | 30,60 | 1,80 | 1,41 | 7,59  | 19,41 | 9,72  | 36,72 |
| R365-R366  | 300 | 20,45 | 0,9 | 1,40 | 1,84 | 25,77 | 1,84 | 1,44 | 7,76  | 14,33 | 8,83  | 30,92 |
| R366-R367  | 300 | 20    | 0,9 | 1,40 | 1,80 | 25,20 | 1,80 | 1,41 | 7,59  | 14,01 | 8,64  | 30,24 |
| R367-RB54  | 300 | 16,89 | 0,9 | 1,42 | 1,52 | 21,59 | 1,52 | 1,19 | 6,41  | 12,14 | 7,36  | 25,90 |
| R368-RB309 | 300 | 29,87 | 0,9 | 1,40 | 2,69 | 37,64 | 2,69 | 2,11 | 11,33 | 20,93 | 12,90 | 45,16 |
|            |     |       |     |      |      |       |      |      |       |       |       |       |