REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE

MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE

ECOLE NATIONALE SUPERIEURE D'HYDRAULIQUE -ARBAOUI Abdellah-

DEPARTEMENT D'IRRIGATION ET DRAINAGE

MEMOIRE DE FIN D'ETUDES

Pour l'obtention du diplôme d'Ingénieur d'Etat en Hydraulique

Option: IRRIGATION ET DRAINAGE

THEME DU PROJET:

DIMMENSIONNEMENT DU RESEAU D'IRRIGATION DU DOMAINE COLONEL AMIROUCHE DRAA EL-MIZAN (W.TIZI-OUZOU) A PARTIR DU BARRAGE DE AIN-ZAOUIA

PRESENTE PAR:

REZZIK Mohamed Ou Chabane

Devant les membres du jury

Noms et Prénoms		Grade	Qualité
M ^r : RASSOUL	Abdelaziz	M.C.B	Président
M ^{me} : AZIEZ	Wahiba	M.A.A	Examinatrice
M ^r : YAHIAOUI	Samir	M.A.B	Examinateur
M ^r : KERID	Rachid	M.A.A	Examinateur
M ^r : MERABTI	Abdelaaziz	Doctorant	Promoteur

REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE

MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE

ECOLE NATIONALE SUPERIEURE D'HYDRAULIQUE -ARBAOUI Abdellah-

DEPARTEMENT D'IRRIGATION ET DRAINAGE

MEMOIRE DE FIN D'ETUDES

Pour l'obtention du diplôme d'Ingénieur d'Etat en Hydraulique

Option: IRRIGATION ET DRAINAGE

THEME DU PROJET:

DIMMENSIONNEMENT DU RESEAU D'IRRIGATION DU DOMAINE COLONEL AMIROUCHE DRAA EL-MIZAN (W.TIZI-OUZOU) A PARTIR DU BARRAGE DE AIN-ZAOUIA

PRESENTE PAR:

REZZIK Mohamed Ou Chabane

Devant les membres du jury

Noms et Prénoms		Grade	Qualité
M ^r : RASSOUL	Abdelaziz	M.C.B	Président
M ^{me} : AZIEZ	Wahiba	M.A.A	Examinatrice
M ^r : YAHIAOUI	Samir	M.A.B	Examinateur
M ^r : KERID	Rachid	M.A.A	Examinateur
M ^r : MERABTI	Abdelaaziz	Doctorant	Promoteur

Remerciement 500


J'adresse en premier sieu ma reconnaissance à notre DIEU tout puissant, de m'avoir, donné le courage et la volonté pour mener à bien ce travail. Car sans lui rien n'est possible.

Au terme de cette étude, je tiens à exprimer ma profonde gratitude et mes vifs remerciements à mon promoteur, M^r MERABTI Abdelaaziz qui m'a chaleureusement accueilli au sein de l'ENSH. Je le remercie pour les discussions, scientifiques que nous avons partagées, ainsi que pour son aide précieux dans l'élaboration de ce mémoire.

* A tout le corps enseignants et le personnel de l'ENSH qui ont contribué de prés où de loin a ma formation.

Aux membres de jury qui me font l'honneur d'apprécier et de juger mon travail.

* Une mention spéciale à ma famille et à mes amis pour m'avoir aéré l'esprit et pour la motivation qu'ils m'ont apportée tout au long de ce travail.

REZZIK Mohamed Ou Chabane

A Dédicaces **S**

Je dédié ce modeste travail:

* A mes chers parents

Aucune dédicace ne saurait exprimer mon respect, mon amour éternel et ma considération pour les sacrifices que vous avez consenti pour mon instruction et mon bien être. Je vous remercie pour tout le soutien et l'amour que vous me portez depuis mon enfance et j'espère que votre bénédiction m'accompagne toujours.

- * A mes chères et adorable frère et sœurs.
- * A toute la famille : REZZIK,
- * A mes amis et collègues de l'école nationale supérieure de l'hydraulique
- * Toute ma promotion, en générale et tous les étudiants de l'option irrigation et drainage en particulier

REZZIK Mohamed-Ou Chabane

الملخص

لقد قمنا في هذا العمل بدراسة عامة (مناخ، التربة و الماء...) حول المنطقة التي سننجز فيها مشروعنا. الهدف من هذا العمل هو تحديد أبعاد شبكة لقطعة أرض المسماة كولونال أعميروش، تقع في ذراع الميزان، ولاية تيزي وزو، و هذا باستعمال أحسن تقنيات السقي للحصول على مردود جيد و كذا المحافظة على الثروات المائية و نوعية التربة. كذلك إستعمال أحسن الطرق لحساب حاجة المزروعات من الماء مع الحفاظ على مردودية جيدة في التوزيع من أجل الحصول على محصول زراعي وفير بأقل التكاليف.

Résumé

A travers ce mémoire, nous avons fait une étude générale (climat, sol, eau.....) sur la région où nous réalisons notre projet.

Le but consiste à dimensionner un réseau d'irrigation sur un périmètre nommé domaine COLONEL AMIROUCHE située à DRAA EL MIZAN wilaya de TIZI OUZOU. Pour cela il faut déterminer l'évapotranspiration ETP et les besoins en eau d'irrigation des cultures.

Enfin, une évaluation du devis quantitatif et estimatif est nécessaire pour notre projet.

Abstract

Through this work, we will make a general study (climate, ground, water ...) of the area where our project will be realized. The objective consists in projecting a network of irrigation on area located in the sector of DRAA EL MIZAN city (W- TIZI OUZOU). For that it is necessary to determine evaporation and the requirements of water for irrigation for each crop which is already established. In the end, an estimation and quantitative valuation are necessary for evaluating the total cost of our project.

Sommaire

Introduction	1
I.1. Description de la zone d'étude	1
I.1.1. Situation du périmètre d'irrigation	1
I.1.2.Analyse des conditions climatiques	2
I.1.3.Les indices climatiques	5
I.1.4.Géologie et Hydrogéologique :	8
I.1.4.1Géologie	8
I.1.4.2 Hydrogéologie :	8
I.2.Etude pédologique :	9
I.2.1.Les sols et les profils de description	9
I.2.2.Les profils de description	10
I .2.3.Etude granulométriques:	12
I.3.L'aptitude culturale des sols	13
I.4. La perméabilité en surface	13
I.5.La ressource d'eau :	14
I.6.Composition chimique de l'eau d'irrigation de la zone d'étude	14
I.7.Classification des eaux d'irrigation	14
I.7.1.Classification mondiale (F.A.O)	14
I.7.2.Classification américaine	15
Conclusion	17
Chapitre II : Calcul des besoins en eau des cultures	
Introduction	18
II.1.Choix de la station représentative de la zone d'étude	18
II.2.La présentation des précipitations moyennes mensuelles et annuelles (1980-2011)	19
II.3.L'homogénéité de la série pluviométrique :	20
II.4.Etude de l'échantillon et choix du type de loi	22
II.5. Test de validité d'un ajustement :	26
II.5.1.Test de validité de l'ajustement à la loi Gumbel :	26
II.5.2.Test de validité de l'ajustement à la loi log-Normale :	26
II.6.Détermination de l'année de calcul :	27
II.7.Besoins en eau du périmètre :	27
II.8. Calcul des débits à transiter par le réseau	32
II.9. les techniques d'irrigation :	32

Sommaire

II.9.1.L'irrigation de surface:	33
II.9.1.1.Irrigation par ruissèlement :	33
II.9.1.2. Irrigation par submersion :	35
II.9.1.3.L'irrigation mixte:	36
II.9.2.L'irrigation par aspersion :	36
II.9.3.L'irrigation localisée :	37
II.10. Choix des techniques d'irrigation:	38
Conclusion	39
Chapitre III : Dimensionnement du réseau d'irrigation et des ouvrages annexes	
Introduction:	40
III.1. Le goutte à goutte:	40
III.1.1.Le pêché	41
III.1.1.1 Calcul des paramètres :	41
III.1.1.2.Dimensionnement d'un réseau d'irrigation goutte à goutte	42
III.1.2. Vignes	45
III.2. Irrigation par aspersion:	46
III.2.1.calcul des paramètres	46
III.2.2.Calculs hydrauliques:	48
III.3. Le réseau de distribution	51
III.3.1. Mode du tracé et implantation des bornes	51
III.3.2. Rôle et fonction de la borne d'irrigation	51
III.3.3.Les débits caractéristiques pour les différentes parcelles	51
III.3.4. Dimensionnement du réseau de distribution	52
III.4.Dimensionnement de la station de pompage	53
III.4.1. Choix de la variante d'adduction par pompage et l'emplacement de la station :	53
III.4.2.Type de bâtiment de la station	54
III.4.3.Dimensions de la bâche	55
III.4.4.Détermination de la hauteur d'élévation calculée	56
III.4.5.Choix du nombre pompes à axe horizontal multicellulaires	57
III.4.5.1.Choix du nombre de pompes de secours	59
III.4.5.2.Choix du moteur électrique	60
III.5.Détermination de la hauteur admissible d'aspiration	60
III.6.Détermination du diamètre économique de refoulement	61
III.7.Dimensionnement du réservoir de stockage.	62

Sommaire

Conclusion.	63
Chapitre IV : Calcul technico-économique	
Introduction	64
IV.1.Devis du réseau d'irrigation (distribution et localisée).	64
IV.2.Factures pro-forma de la station de pompage, des conduites et du réservoir	65
IV.2.1.Calcul du volume de terrassement	65
IV.2.1.1.1a Largeur du fond de la tranchée	65
IV.2.1.2.profondeur de la tranchée	65
IV.2.2.les conduites	65
IV.2.2.1. Calcul du volume de déblai	65
IV.2.2.2. Calcul du volume de lit de sable	66
IV.2.2.3. Calcul du volume de remblai	66
IV.3 : Devis estimatif pour les terrassements, la station de pompage et le réservoir	67
IV.4.Devis estimatif total	67
Conclusion	67
Chapitre V: Organisation de Chantier	
Introduction:	68
V.1. Les actions reçues par les conduites :	68
V.2.Exécution des travaux :	69
V.2.1. Vérification, manutention des canalisations :	69
V.2.2.Choix des engins de terrassement :	69
V.2.3.Aménagement du lit de pose :	70
V.2.4.La mise en place des canalisations	70
V.2.5.Remblai des tranchées	70
V.3.Nettoyage des conduites :	70
V.4.Surveillance et entretien du réseau :	71
V.5.Exploitation du système d'irrigation :	71
V.5.1.Objectif de l'exploitation :	71
V.5.2.Estimation de l'état hydro agricole des terres irriguées :	71
V.5.3.Mesures d'exploitation:	72
V.5.4.Exploitation des ouvrages hydrauliques :	72
V.5.5.Maintenance des ouvrages et équipement :	72

Liste des tableaux

Chapitre 1 : Analyse des conditions naturelles	
Tableau I-1: Précipitations moyennes mensuelles (1980-2011)	2
Tableau I-2 : Températures extrêmes et moyennes mensuelles	2
Tableau I-3: Les moyennes mensuelles des vitesses de vent (1989-2010)	3
Tableau I-4: L'évaporation moyenne mensuelle (1989-2011)	4
Tableau I-5 : Humidités relatives moyennes mensuelles (1989 à 2011)	4
Tableau I-6: Insolations moyennes mensuelles (1989 à 2011)	4
Tableau I-7 : Fréquence du sirocco. (1989 à 2011)	5
Tableau I-8 : le nombre de jours d'orage par mois (1989 à 2011)	5
Tableau I-9 : le nombre de jours de grêle par mois (1989 à 2011)	5
Tableau I-10 : Limite des climats d'après l'indice climatique de Martonne	6
Tableau I-11: les classes des sols de la région d'étude	9
Tableau I-12: Résultats des analyses des échantillons de sol du profil 36	11
Tableau I-13: Résultats des analyses des échantillons de sol du profil 146	12
Tableau I-14 : Caractéristiques physiques des sols (selon Israesen-Hansen, 1962)	13
Tableau I-15: La composition chimique des eaux superficielles	14
Tableau I-16: Classification des eaux en fonction du S.A.R	15
Chapitre II : Calcul des besoins en eau des cultures	
Tableau II-1: Coordonnées de la station pluviométrique Ain Zaouia	18
Tableau II-2 : précipitation moyenne mensuelle et annuelle	19
Tableau II-3 : Test d'homogénéité de la station d'AIN ZAOUIA	20
Tableau II-4 : Test d'homogénéité de la station d'AIN ZAOUIA (suite)	21
Tableau II-5 : Ajustement à la loi de Gauss	23
Tableau II-6 : Ajustement à la loi de Gauss (suite)	24
Tableau II-7 : Ajustement à la loi Log-Normal.	25
Tableau II-8: précipitation moyenne mensuelle de l'année de calcule	27
Tableau II-9 : Evapotranspiration de référence ET0 .	29
Tableau II-10: Les pluies efficaces calculées à l'aide du logiciel CROPWAT	30
Tableau II-11: Calcul du bilan hydrique pour le Pécher	30
Tableau II-12: Calcul du bilan hydrique pour la vigne	31
Tableau II-13: Calcul du bilan hydrique pour la Pomme de terre	31
Tableau II-14 : Besoins brutes en eau des cultures en mm/mois	32
II & Calcul des débits à transiter par le réseau	32

Liste des tableaux

Chapitre III : Dimensionnement du réseau d'irrigation et des ouvrages annexes	
Tableau III-1: données générales	40
Tableau III.2: calcul des paramètres	45
Tableau III.3: les paramètres des rampes et des portes rampes	46
Tableau III.4: calcul des débits des parcelles	46
Tableau III-5 : Les débits caractéristiques pour les différentes parcelles du périmètre	52
Tableau III-6: Caractéristiques des nœuds et bornes d'irrigation	52
Tableau III-7: Caractéristiques des conduites de distribution	53
Figure III-2 : répartition des vitesses et des pressions dans la conduite principale	53
III.4.Dimensionnement de la station de pompage	53
Tableau III-8: Dimensions de la bâche d'aspiration	56
Tableau III-9: Choix de la variante pour le nombre de pompes	59
Tableau III-10 : les frais d'exploitation	62
Tableau III-11 : les dimensions du réservoir de stockage	63
Chapitre IV : Calcul technico-économique	
Tableau IV-1 :Factures pro-forma des pièces du réseau d'irrigation	64
Tableau IV-2 : Les volumes des travaux pour les conduites	66
Tableau IV-3 : Factures pro-forma terrassement, station de pompage et le réservoir	67

Liste des figures

Chapitre I : Analyse des conditions naturelles
I.1. Description de la zone d'étude
Figure I-1 : Situation administrative de la commune d'Ain Zaouia
Figure I-2 : graphique des températures
Figure I-3 : Climogramme pluviométrique d'EMERGER
Figure I-4 : Diagramme ombrotthermique de Gaussen
Figure I-5 : Diagramme de classification des eaux d'irrigation
Chapitre II : Calcul des besoins en eau des cultures
Figure II-1: La station pluviométrique
Figure II-2: Ajustement à la loi de Gauss
Figure II-3 : Ajustement à une loi Log-normale
Figure II.4 : Les différentes techniques d'arrosages
Figure II.5 : Irrigation par planche de ruissellement
Figure II.6 : Irrigation à la raie
Figure II.7 : Irrigation par submersion
Figure II.8 : Partie essentielle d'une installation en aspersion classique
Figure II.9: Partie essentielle d'une installation localisée
Chapitre III : Dimensionnement du réseau d'irrigation et des ouvrages annexes
Figure III-1 : Schéma descriptif de la technique d'irrigation
Figure III-2 : répartition des vitesses et des pressions dans la conduite principale53
Chapitre IV : Calcul technico-économique
Figure IV. 1: schéma d'une tranchée

Liste des Planches :

Planche n°1: Plan de situation.

Planche n°2: Plan d'occupation du sol.

Planche n°3 : Plan du réseau goutte a goutte de la parcella (S1).

Planche n°4 : Plan du réseau goutte a goutte de la parcelle (S5).

Planche n°5 : Profil de la conduite principale.

Planche n°6 : Plan du réseau par aspersion.

INTRODUCTION

«Et avec l'eau, nous avons créé toute chose vivante». L'eau est universellement reconnue comme une ressource vital, rare précieuse et donc stratégique.

Depuis l'antiquité, l'homme a utilisé l'irrigation pour subvenir aux besoins des cultures, ce qu'il se faisait d'une manière aussi simple vu la disponibilité de cette ressource, mais avec la création des infrastructures grandes consommatrices d'eau et la dégradation de la qualité de cette dernière.

Nous nous sommes retrouvés dans l'obligation de mettre en œuvre de nouvelles stratégies qui auront pour but, non seulement, l'apport de la quantité d'eau juste nécessaire a la plante, mais aussi son effet a long terme sur le sol.

Des technique modernes d'irrigation, plus sophistiquées et plus efficaces permettant de diminuer la consommation d'eau, sont aujourd'hui utilisées, Elles sont de deux type : le goutte à goutte et l'aspersion .Ces techniques nécessitent des ouvrages qui coûtent chère ainsi qu'une main d'œuvre qualifiée pour la mise en place.

Ce projet de mémoire de fin d'étude est cadré dans ce contexte, il consiste à l'aménagement du périmètre Colonel Amirouche à la willaya de Tizi-Ouzou et qui s'étend sur une superficie d'environ 100 hectares par un réseau d'irrigation à partir du barrage de Ain Zaouia, qui aura pour but l'augmentation dans le rendement et la mobilisation de la ressource en eau dans la région.

Chapitre I Analyse des conditions naturelles

Introduction

L'étude topographique est nécessaire pour faire une étude d'un projet d'irrigation d'un périmètre, car elle fournir les cartes topographiques nécessaires pour notre étude, ces cartes sont généralement utilisées pour représenter: la Situation géographique d'une région , la Situation administrative et Infrastructure routière, la végétation, le relief, l'hydrographie, elles indiquent aussi les caractéristiques naturelles et artificielles de la région représentée, en raison de la grande diversité des informations qu'elles comportent, les cartes topographiques servent le plus souvent de cartes de référence pour un usage courant.

I.1. Description de la zone d'étude

I.1.1. Situation du périmètre d'irrigation

La commune de AIN ZAOUIA est située dans la partie sud-ouest de la wilaya de TIZI OUZOU, entre 3°53'39'''longitude Est et 36°32'54'' latitude Nord.

L'attitude varie de220m dans la dépression à800m dans la partie sud-est de la commune La commune d'AIN ZAOUIA est limitée comme suit :

- A L'EST, par les communes MAATKAS et BOGHNI;
- Au SUD par la commune de FRIKAT;
- A L'OUEST par la commune de DRAA ELMIZANE
- AU NORD par la commune AIT YAHIA MOUSSA (OUED KSARI).

La ville de AIN ZAOUIA est située dans la partie sud de la commune, Elle est située à 110Km au Sud-est d'ALGER et à 45Km au Sud-ouest du TIZI OUZOU.

Figure I-1: Situation administrative de la commune d'Ain Zaouia

I.1.2. Analyse des conditions climatiques

Le climat se définit comme étant l'ensemble des phénomènes météorologiques qui caractérisent l'état de l'atmosphère et de son évolution en un lieu donné.

Les différentes paramètres du climat sont les précipitations, la température, l'évaporation, l'humidité relative, le ventetc.

Pour notre zone d'étude, la seule station climatique présente est celle de AIN ZAOUIA

Code de station: 02-19-05

Nom de station: AIN ZAOUIA

X(km) = 607.1

Y(km) = 363.7

Z(m) = 220

a. Les précipitations

La précipitation est un facteur climatique très important, elle nous permet de connaître les périodes où les cultures ont besoin d'être irriguées ou pas.

Tableau I-1: Précipitations moyennes mensuelles (1980-2011)

Mois	S	О	N	D	J	F	M	A	M	J	J	A
Précipitation (mm)	36.8	54.3	82.9	111.3	93.4	84.9	68.8	68.1	50.7	9.4	2.8	9.4

Source : ANRH (Blida)

La moyenne annuelle des précipitations sur une série de 32ans est de 673mm. La période la plus sèche correspond à Juin, Juillet et Août.

b.Les températures

Les températures extrêmes et moyennes sur une période d'observation de 22 ans (1989 à 2011) sont représentées dans le tableau suivant:

Tableau I-2: Températures extrêmes et moyennes mensuelles

Mois	Jan	Fév	Mars	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
T _{moy}	10,6	10,3	13,4	17,5	19,7	23,1	27,5	28,5	24,7	19,7	15,7	13
T _{min}	6,9	6,3	8,7	12,1	14,8	17,8	21,9	21,9	18,9	14,6	12,2	8,7
T _{max}	15,8	15,7	19,5	23,5	26	29,6	34,9	37,2	32,54	27,1	21,5	19,6

Source : ONM (Tizi ouzou)

La période chaude est plus longue (Juin, Juillet, Août et Septembre) où la température maximale moyenne est de 37.2°c.

La saison hivernale dure trois mois (Décembre, Janvier et Février) où la température minimale moyenne est de 6.3°c.

La température moyenne annuelle sur cette série de 22 ans est : 17.35°C.

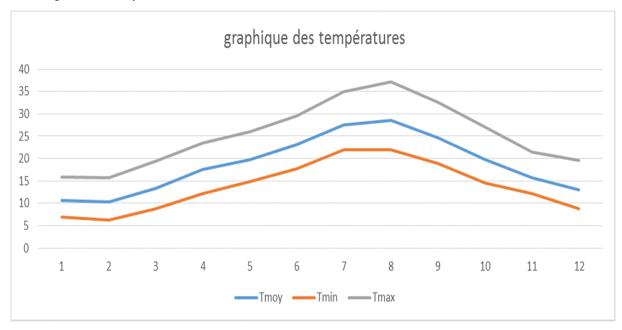


Figure I-2 : graphique des températures

c.Le vent

Le vent est un facteur destructif vu son influence directe sur les sols, la végétation et les autres facteurs tels que les précipitations et l'évapotranspiration. Il intervient aussi dans le choix de type d'irrigation.

La variation de vitesse de vent au cours de l'année est représentée dans le tableau I-3.

Tableau I-3: Les moyennes mensuelles des vitesses de vent (1989-2010)

Mois	J	F	M	A	M	J	J	A	S	О	N	D
Vitesse de vent (m/s)	2,1	1,5	1,1	0,8	1,0	1,3	1,8	1,3	1,4	1,0	0,9	1.3

Source : ONM (Tizi ouzou)

Le vent a été caractérisé seulement par ses vitesses dont la valeur moyenne est de 1.3 m/s, le vent atteint sa valeur maximale en mois de janvier à 2.1m/s. c'est un vent faible et modéré.

d.L'évaporation

L'évaporation est un phénomène physique qui permet une appréciation des conditions climatiques d'une région, elle résulte de la superposition des échanges entre l'eau et le pouvoir absorbant de l'atmosphère. Elle peut aussi être définie comme étant le passage de l'état liquide à l'état gazeux.

Les valeurs moyennes mensuelles de l'évaporation sont représentées dans le tableau ci-après :

Tableau I-4: L'évaporation moyenne mensuelle (1989-2011)

Mois	J	F	M	A	M	J	J	A	S	О	N	D
Evaporation (mm)	59	54	72	88	104	135	157	154	118	97	77	63

Source: ONM (Tizi ouzou)

On remarque d'après le tableau I-4 ; que l'évaporation atteint le maximum dans le mois de Juillet, elle atteint 157 mm

e.L'humidité relative de l'air

L'humidité relative de l'air est un élément de cycle hydrologique qui contrôle l'évaporation du sol et le couvert végétal.

Les résultats d'observation sont représentés dans le tableau I-5.

Tableau I-5: Humidités relatives moyennes mensuelles (1989 à 2011)

Mois	J	F	M	A	M	J	J	A	S	О	N	D
Humidité relative (%)	84	88	81	76	71	61	60	49	65	70	79	81

Source : ONM (Tizi ouzou)

L'humidité relative de l'air varie entre un maximum de 88 % en février et un minimum de 49% en Août,

f.L'insolation

L'insolation est la période durant laquelle le soleil brille sur le sol.

Les valeurs moyennes mensuelles sont représentées dans le tableau ci-après :

Tableau I-6: Insolations movennes mensuelles (1989 à 2011)

Mois	J	F	M	A	M	J	J	A	S	О	N	D
Inso (h/mois)	182	187	221	262	193	294	300	315	172	101	182	139

Source : ONM (Tizi ouzou)

L'insolation moyenne mensuelle enregistrée varie de 315 h/mois en Aout à 139 h/mois en Décembre.

g.Le sirocco

Le sirocco, vent chaud et sec est observé pendant 37.3 jours/an, étalé sur 11 mois avec une fréquence plus élevée de 17.3 jours durant les deux mois de juillet et août.

Tableau I-7: Fréquence du sirocco. (1989 à 2011)

Mois	J	F	M	A	M	J	J	A	S	О	N	D
Jour/mois	0	0.3	1.3	1.5	2.4	4	8.5	8.8	5.2	3.5	1.6	0.2

Source: ONM (Tizi ouzou)

h.La gelée

Les gelées en air et sur le sol sont très nuisibles pour les plantes pendant la période de croissance et floraison. Donc, il faut tenir compte des gelées de fin de printemps et de début d'automne, afin d'éviter leur action négative sur les végétaux.

Dans la région, d'étude les premières gelées d'automne s'observent en Novembre, et les dernières de printemps en Avril. Pendant ces périodes, il est nécessaire de prendre les mesures pour diminuer leurs effets.

i.La gelée blanche

D'après les données de la station pluviométrique de TIZI OUZOU, les gelées blanches n'ont que 03jours dans l'année (mois de Novembre et Mars).

j.Les Orages

Tableau suivant représente le nombre de jours d'orage par mois

Tableau I-8 : le nombre de jours d'orage par mois (1989 à 2011)

MOIS	J	F	M	A	M	J	J	A	S	О	N	D	Année
Nombre de jours d'orages	1.6	1.8	2.5	2.1	3.6	3.1	1.8	2	3.9	2.6	1.8	1.8	28.6

Source : ONM (Tizi ouzou)

k.La grêle

Dans la zone d'étude, la grêle peut tomber dans n'importe quel mois de l'année, ce qu'on voit dans le tableau suivant :

Tableau I-9 : le nombre de jours de grêle par mois (1989 à 2011)

MOIS	J	F	M	A	M	J	J	A	s	О	N	D	Année
Nombre de jours de Grêle	1.9	1.7	1.2	0.9	0.2	0.1	0	0.1	0.2	0.1	0.4	2	8.3

Source : ONM (Tizi ouzou)

I.1.3.Les indices climatiques

a.Indice d'aridité de Martonne

Il permet de connaître le degré de sècheresse de la région.

$$I_A = \frac{P}{T + 10}$$

Avec:

 I_A : indice climatique.

P: précipitation moyenne annuelle (mm).

T : température moyenne annuelle (°C).

$$I_A = \frac{673}{17.35 + 10} = 24.6$$
 $I_A = 24.6$

Tableau I-10: Limite des climats d'après l'indice climatique de Martonne.

Valeur de I _A	Type de climat	Irrigation
I _A ≤5	Désertique	Indispensable
5 <i<sub>A ≤10</i<sub>	Très sec	Indispensable
10 <i<sub>A ≤20</i<sub>	Sec	Souvent indispensable
20 <i<sub>A≤30</i<sub>	Relativement humide	Parfois utile
I _A >30	Humide	Inutile

 $I_A = 24.6$ done $20 \le I_A \le 30$

D'où notre climat est relativement humide, donc l'irrigation est parfois utile.

b. Quotient pluviométrique d'EMBERGER

Le quotient pluviométrique d'EMBERGER exprime la sècheresse globale d'un climat en faisant le rapport entre la pluie et la température.

$$Q = \frac{P}{M^2 - m^2} \times 2000$$

Avec:

P: précipitation moyenne annuelle (mm).

M: moyenne des températures maximales(Kelvin).

m : moyenne des températures minimales(Kelvin). .

M=37.2+273=310.2K

m=6.3+273=279.3K

P=673mm.

A.N: Q = 73.89

D'après le diagramme bioclimatique d'EMBERGER (voir Figure (I.3)), on peut dire que le climat de notre région est un climat semi-aride

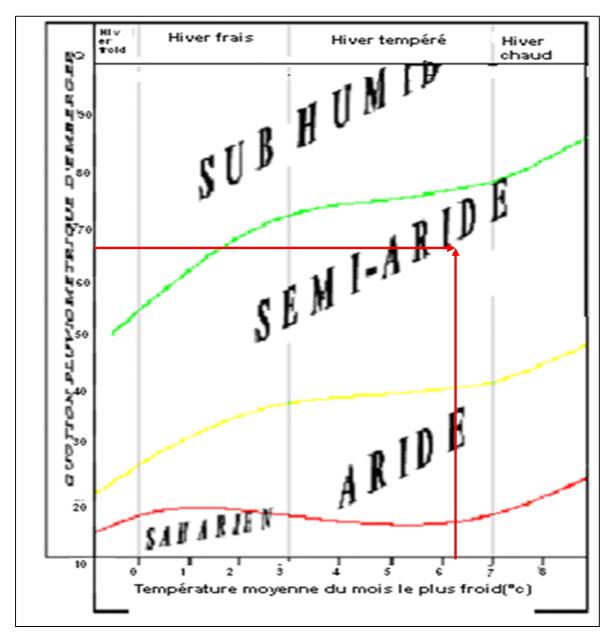


Figure I-3: Climogramme pluviométrique d'EMERGER

c. Diagramme ombrothermique de Gaussen

Le graphe est construit en mettant en abscisse les mois et en ordonnée les valeurs moyennes mensuelles des températures et des pluies, dont l'échelle des températures est égale à la moitié de celle des précipitations. (Voir Fig. : I.3). Lorsque la courbe des températures dépasse celle des précipitations, il y a sécheresse totale, dans le cas contraire, on dit que la période est humide.

D'après le diagramme ombrothermique de Gaussen on distingue une seule période sèche sur toute l'année.

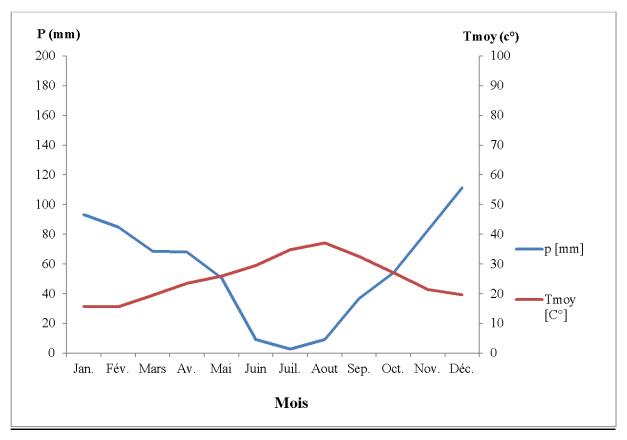


Figure I-4: Diagramme ombrotthermique de Gaussen

D'après les analyses des conditions naturelles, nous pouvons conclure que :

- ✓ Le climat est semi-aride l'irrigation est parfois utile surtout dans la période sèche qui débute en fin Mai et termine en fin septembre.
- ✓ La pluviométrie moyenne annuelle est de673mm/an.
- ✓ Une période peu pluvieuse commence au mois de septembre jusqu'à Avril, les mois les
- ✓ les mois les plus secs sont juin juillet et août.

I.1.4. Géologie et Hydrogéologique :

I.1.4.1Géologie

Au point de vue de la géologie le périmètre a irrigué est considérer en général de dépôt de l'Eocène supérieur présenté par des argiles gris-verdâtres et rouge-brunâtre avec des intercalations degrés de marnes et de calcaire.

I.1.4.2 Hydrogéologie:

Au point de vue hydrogéologie la nappe aquifère est assez profonde et n'exerce aucune influence sur les processeurs de la pédogenèse.

En général les eaux souterrains sont assez profonde elles peuvent atteindre en moyenne une profondeur de 6 m.

I.2. Etude pédologique :

La pédologie est la science qui étudie la genèse (la formation) et l'évolution d'un sol sous l'action du milieu " climat, activité biologique, végétation ...".

C'est grâce à la pédologie que l'on peut connaître précisément les contraintes et les atouts des sols (aptitudes des sols aux cultures, fertilité naturelle ...) en plus des facteurs climatiques permettant de raisonner certain aménagement afin de préserver l'équilibre écologique

I.2.1.Les sols et les profils de description

En se basant sur les prospections du terrain de la dépression Dra-El-Mizan (Etude agropédologique de la zone Dra-El-Mizan Tenira effectué par les services de la direction des études de milieu et de la recherche hydraulique service agro pédologie (W.Tizi-Ouzou) on a distingué les classes des sols.

Tableau I-11: les classes des sols de la région d'étude

Type de sol	Superficie (ha)	%
Sols minéraux bruts	780	8,8
Sols peu évolués	4320	49,3
Sols vertisols	2017	22,5
Sols isohumiques	1620	18,0
Sols hydromorphes	123	1,4
	8860	100,0

Source :(DSA Tizi-Ouzou)

On peut constater à partir de tableau précédent, que les sols peu évolués représentent presque la moitié de la superficie de la plaine étudiée avec 4320 ha (49.3%).

Classe des sols peu évolués : Cette classe constitue la majeure partie des sols du périmètre étudié. Elle est constituée principalement de sols peu évolués d'apport colluvial et de sols peu évolués d'apport alluvial et des sols d'érosion. On cite en exemple la description des profils n°36 et 146 pour les groupe des sols d'apport alluvial et colluvial respectivement :

I.2.2.Les profils de description

Profil n° 36

Classe: peu évolué S/classe: non climatique Groupe: d'apport

s/groupe: modaux Famille: sur alluvions récentes

Topographie: plat Géomorphologie: terraces Microrelief: plat d'oued

Cultures : céréalières

De 0 à27 cm: sec, 10 YR 3-4/3, texture argilo-limono, structure polyédrique émoussée dine et moyenne à prismatique en motte, poreux, racines fines et moyenne cohérant et consistant dans les agrégats, petits graviers10%, aucune effervescence.

27-50 cm: litage de sable avec le gravier, friable, racines.

50-80 cm: frais, 10YR 3-4/1-2(presaue gris), texture argilo-limoneux, structure polyédrique feuilletée angulaire fine, peu friable, poreux, fissuration fine, racines grossiers et moyennes, peu consistant, petits graviers et sable 5%, aucune effervescence.

80-100 cm: frais, 10YR5/3, structure argilo-limoneuse, massif, moyennement cohérant, racine grossières, peu poreux, consistant, graviers et sable 5%, petits gravies, aucune effervescence.

Conclusion:

- La teneur en humus diminue avec la profondeur.
- La capacité d'échange diminue brusquement avec la profondeur.
- PH diminue avec la profondeur.
- La texture devient plus légère en profondeur, s'améliore.

Profil n°146

Classe: peu évolué S/classe: non climatique Groupe: d'apport colluvial

groupe : vertique Famille : sur argiles

Coordonnées métrique : X-597m Y-363m Z-350m

Topographie: pente Géomorphologie: piedmont et glacis

Microrelief: couvert de mottes Cultures: céréalières, arboriculture

0à15cm: sec, gris-olive, argileux, structure polyédrique anguleux à prismatique en motte, faiblement poreux un peu consistant mais friable sur la surface, peu de racines fines, fissuration dans les mottes, 5%débris des roches, aucune effervescence.

15-42cm: frais, gris-olive, argileux, structure prismatique; sous-structure polyédrique anguleux porosité faible, peu de racines, fissures verticales 2cm de large débris de roches argileuse, plombs de chasse Mn et se consistant, cohérent, parfois faces lissées aucune effervescence.

42-48cm : Couche argileuse, imperméable.

48-102cm : Argile oligocènes altérées, consistant, faible porosité.

102-108cm: Roche argileuse consistante, faiblement altérée, non poreuse, les argiles sont hétérogènes de couleur différente, aucune effervescence.

Tableau I-12: Résultats des analyses des échantillons de sol du profil 36

Profondeur ((cm)			0 – 27	27-50	50-80	80-100		
	Argile %			48	31	37	30		
	Limons fins %	6		20	16	17	17		
rie	Limons gross	iers %		4	6	6	8		
lomét	Sables fins %	ó				16	15	12	21
Granulométrie	Sables grossi	ers %		8	9	14	14		
	- J	C %		10	6,2	7,4	4,9		
	aniqu	МО %		1,7	1,05	1,25	0,83		
	Matière organique	N %		1,39	0,96	/	/		
	⁄atièr	C/N		8	6	/	/		
Calcaire tota				0,8	0,8	0,32	0,4		
Calcaire acti	if %								
PH				7,4	7,58	7,34	7,34		
CE dS/m				0,5	0,45	0,45	0,75		
		Са		22	23	20	18		
		Mg		5	3	3	3		
		K		1,03	0,52	0,49	0,37		
		Na		0,56	0,56	0,39	0,39		
	<u> 5</u> 0	S							
	CEC Cmol/kg	Т		39	28	30	23		
	EC (S/T							
Densité réel		1		2,5	2,4	2,3	2,3		
Densité appa	arente			1,4	1,8	1,9	1,9		
	2								
			2,5	34,6	25	27	23,9		
		<u></u>	3	27,7	19,8	21,8	19		
		pF (H %)	4,2	18,3	13,1	14,1	11,8		
K assimilabl	le Cmol/kg	<u> </u>	1	2,4	4,9	4,9	4,3		

Source :(DSA Tizi-Ouzou)

Tableau I-13: Résultats des analyses des échantillons de sol du profil 146

	Profondeur (cm)		0 – 15	15-42	42 -48	48-80	80-100
	Argile %	ı	53	53	20	56	49
trie	Limons fins	%	29	29	20	33	44
Granulométrie	Limons grossie	ers %	3	2	1	2	2
Gram	Sables fins	%	7	7	10	2	2
	Sables grossie	ers %	4	4	17	2	0
	dne	С%	5,8	5,1	3,14	2,2	1,3
	Matière organique	MO %	0,98	0,86	0,52	0,37	0,22
	ière o	N %	1,05	0,9	0,62	/	0,34
	Mati	C/N	5	5	5	/	4
	Calcaire total %		1,6	2,4	2	1,2	0,24
	Calcaire actif %		0,86	0,28	0,19	0,2	0,42
	PH		7,53	7,66	7,6	7,58	7,34
	CE dS/m		0,32	0,36	0,65	1,23	3,87
		Са	2,9	2,9	2,3	2,1	2,2
		Mg	3	3	5	7	7
	l/kg	K	1	1	0,67	0,72	0,72
	C Cmol/kg	Na	0,72	1	1,3	2,5	3,2
	CEC	S	/	/	/	/	/
		Т	27	34	30	29	29
		S/T	/	/	/	/	/
	Densité réelle		2,3	2,3	2,3	2,3	2,3
	Densité apparente			1,9	1,8	1,9	1,8
	2			/	/	/	/
	(%) I		30,7	31	31	34,3	32,4
	pF (H %)		26,1	26,7	26,9	29,7	28
	4,2			21	21,3	2,38	22,2
K	K assimilable Cmol/kg			3,2	2,8	1,2	1,7

Source :(DSA Tizi-Ouzou)

I .2.3. Etude granulométriques:

L'étude granulométrique nous permet de connaître la texture du sol.

La texture du sol est sa composition en différents éléments, le triangle textural nous permet de la déterminer, on connaît les pourcentages des éléments fins et grossiers qui constituent ce sol.

I.3.L'aptitude culturale des sols

Le choix des cultures se fait selon plusieurs facteurs qui sont:

<u>→Climat</u>: La plante a des exigences climatiques telles que la quantité de chaleur nécessaire pour accomplir son cycle, température, minimales et optimales, besoins en eau et périodes critiques.

——▶Sol: Les caractéristiques des sols ont une importance pour le choix des cultures, telle que la structure, le PH ...

La détermination des aptitudes culturales a été faite en tenant compte des exigences des divers types de cultures à l'égard des conditions du sol et du climat, qui constituent le milieu naturel.

A savoir que notre sol est à salinité faible (≤8 mmhos/cm²), et que sa texture est fine avec 25à30% des éléments grossier, le calcaire actif est inférieur à 25%, sa profondeur varié de 50 à120 cm.

Alors, ce sol est favorable à toutes les cultures méditerranéennes (arboriculture, maraichère, culture industrielle et cultures céréalières et fourragères).

I.4. La perméabilité en surface

La perméabilité: c'est l'aptitude qu' à un sol de se laisse plus ou moins traverse le sol par l'eau. Elle est déterminée par la mesure de l'infiltration

Vu l'absence de données concrètes consternant ce paramètre, nous nous sommes permis d'en tirer les valeurs théoriquement en se basant sur le tableau de Israesen-Hansen.

Notre périmètre est de texture argilo-limoneuse, donc si on se réfère au tableau suivant on aura :

Tableau I-14: Caractéristiques physiques des sols (selon Israesen-Hansen, 1962)

Texture du sol	Perméabilité	Porosité	Masse volumique	Capacité de rétention	Point de flétrissement	Réserve utile
Teature da sor	cm.h-1	%	Kg.dm-3	% vol.	% vol.	mm.M ³ Profondeur
Sablo-limoneux	5	38	1.65	15	7	80
Sablo-limoneux	2.5	43	1.5	21	9	120
Limoneux	1.3	47	1.4	31	14	170
Argilo-limoneux	0.8	49	1.35	36	17	190
Limono-argileux	0.25	51	1.3	40	19	210
Argileux	0.05	53	1.25	44	21	230

Chapitre I

Analyse des conditions naturelles

Donc à partir de ce tableau on a les caractéristiques suivantes :

Perméabilité=0.8cm/h Porosité=49% Masse volumique=1.35kg/dm3

Masse volumique=1.35kg/dm3 Hcc=36%vol / Hpf=1%

Ru=19 mm. M3 de profondeur.

I.5.La ressource d'eau:

La région de la construction du barrage de Ain Zaouïa est situé dans la partie Sud-Ouest de la wilaya de Tizi-Ouzou et a 3 Km de la ville Ain Zaouïa. Les caractéristiques de ce barrage sont la suivante :

• Nom : barrage d'Ain Zaouïa

• Coordonnée : X : 360.234 / Y : 604.751

• Volume : 1.4Mm³.

• Hauteur : 13.5 m

• Année de réalisation : 1977

• Superficie: 5008.21 m²

Et notre périmètre sera irrigué à partir de ce petit barrage.

I.6. Composition chimique de l'eau d'irrigation de la zone d'étude

L'analyse chimique des eaux superficielles de la région d'étude au sein des laboratoires de l'ANRH a montrée la composition suivante

Tableau I-15: La composition chimique des eaux superficielles

Eléments	Ca (mg/l)	Mg (mg/l)	Na (mg/l)	NO3 (mgN/1)	SO4 (mg/l)	CE (mmhos/cm)	Alcalinité (Mg/CaCo ₃)	РН
-	72	28	16	0.3	162	0.730	130	7.9

Source: (ANRH Alger)

I.7. Classification des eaux d'irrigation

I.7.1.Classification mondiale (F.A.O)

La classification donnée en fonction de la concentration des sels

*1 g/l bonne à l'irrigation.

*1-3 g/l faiblement salée.

*3-5 g/l moyennement salée

*5-10 g/l fortement salée.

*>10g/l extrêmement salée.

D'après le tableau précédent, il résulte que l'eau destiné a l'irrigation de notre périmètre n'est pas Sallé.

I.7.2. Classification américaine

La classification américaine est basée sur deux paramètres (CE à 25°C et S.A.R)

• Pour la conductivité électrique C.E

C1 : C.E<0,250	mmhos/em	l'eau de faible salinité
C2:0,250 <c.e<2,750< td=""><td>mmhos/cm</td><td>l'eau de salinité moyenne</td></c.e<2,750<>	mmhos/cm	l'eau de salinité moyenne
C3:2.750 <c.e<2,250< td=""><td>mmhos/em</td><td>l'eau à forte salinité</td></c.e<2,250<>	mmhos/em	l'eau à forte salinité
C4:C.E>2.250	mmhos/em	l'eau à très forte salinité

• Pour le coefficient d'adsorption du sodium S.A.R

Le S.A.R est calculé par la formule suivante :

S.A.R =
$$\frac{Na^{+}}{\sqrt{\frac{Ca^{++} + Mg^{++}}{2}}}$$

Avec: Na+, Ca++, et Mg++en meq/l.

Tableau I-16: Classification des eaux en fonction du S.A.R

Classe	S.A.R.	Danger d'alcalinisation
S_1	$SAR \le 10$	Risque faible
S_2	$10 \le SAR \le 18$	Risque moyen
S_3	$18 \le SAR \le 26$	Risque élevé
S_4	SAR > 26	Risque très élevé

• S1 :S.A.R<10

L'eau contenant une faible quantité de sodium, peut être utilisée pour l'irrigation de presque tous les sols sans qu'il y ait à craindre que des difficultés ne surgissent du point de vue alcalinisation.

• S2:10<S.A.R<18

Les eaux contenant une faible quantité moyenne de sodium, peuvent présenter quelques difficultés dans les sols à texture fine, à moins qu'il n'y ait du gypse dans le sol, ces eaux peuvent être utilisées sur des sols à texture grossière ou sur des sols organiques qui absorbent bien l'eau.

• S3:18<S.A.R<26

Les eaux contenant une quantité de sel élevée, peuvent provoquer des difficultés dans la plupart des sols et ne peuvent être employées qu'avec des précautions spéciales : bon drainage, lessivage important et addition de matière organiques. S'il y a une forte quantité de gypse dans le sol, il peut ne pas surgir de difficultés pendant quelques temps. S'il n'y pas de gypse, il faut ajouter un amendement chimique exerçant le même effet.

• S4:S.A.R>26

Les eaux contenant une quantité très élevée de sodium, sont généralement impropres à l'irrigation, sauf pour un degré de salinité moyen ou faible, lorsque l'usage de gypse ou amendements analogues permettent l'utilisation. Voir figure I.7.

Dans notre cas le calcul du SAR a donné la valeur suivante :

$$- \mathbf{S.A.R} = \frac{17}{\sqrt{\frac{70 + 26}{2}}} = 2.45$$

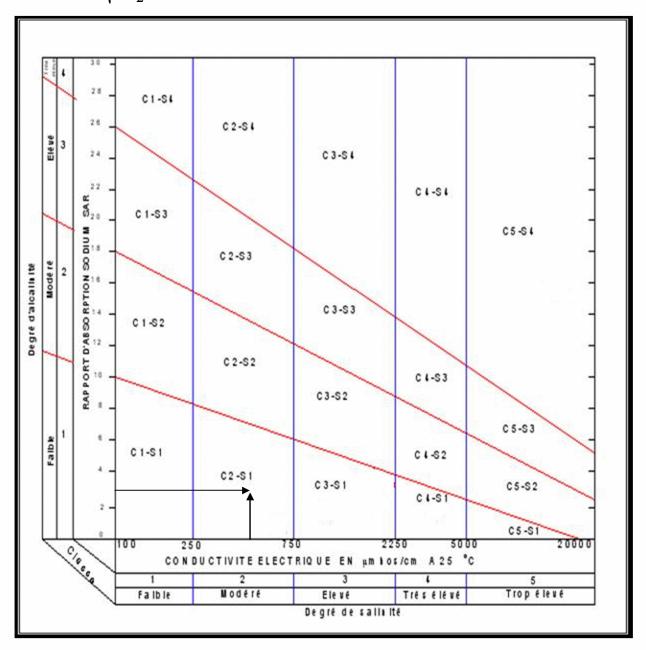


Figure I-5: Diagramme de classification des eaux d'irrigation

CONCLUSION

Selon l'étude faite sur la région, on a déterminé le type du sol, la qualité des eaux d'irrigation et les cultures répondant à l'aptitude culturale du sol. Notre sol est à salinité faible (≤8 mmhos/cm²), et que sa texture est fine avec 25à30% des éléments grossier, le calcaire actif est inférieur à 25%, sa profondeur varié de 50 à120 cm. Alors, ce sol est favorable à toutes les cultures méditerranéennes (arboriculture, maraichère, culture industrielle et cultures céréalières et fourragères).

L'eau contenant une faible quantité de sodium le S.A.R=2.45.Donc l'eau du barrage de Ain Zaouia est de très bonne qualité. En effet cette eau peut être utilisée pour l'irrigation de notre périmètre.

Chapitre II Calcul des besoins en eau des cultures

Introduction

L'estimation des besoins en eau des cultures envisageables sur le périmètre nécessite les données résultant de l'étude hydrologique, pour but de déterminer les caractéristiques des pluies de fréquences données, puis le dimensionnement du réseau.

II.1.Choix de la station représentative de la zone d'étude

Compte tenu de la position géographique de notre périmètre; ces caractéristiques sont les suivant :

- Localisation géographique ; la station de AIN ZAOUIA est juste accoté du périmètre
- Les relèves de station sont récentes et s'étalent sur une période d'observation acceptable (trente-deux ans d'observation).

Tableau III-1: Coordonnées de la station pluviométrique Ain Zaouia

Nom	Nom de la Code de		1a	Cordonnées Lambert		Altitude	Années	N		
Station		station			X (km)	Y (km)	(m)	D'observations	11	
Ain Za	ouia		02-19-0)5		607,1	363,5	220	1980-2011	32ans

(ANRH BLIDA)

Figure II-1: La station pluviométrique

II.2.La présentation des précipitations moyennes mensuelles et annuelles (1980-2011)

Tableau II-2: précipitation moyenne mensuelle et annuelle

années	sept	oct.	nov	Dec	janv	fev	mars	Avril	mai	juin	juil	aout	annuel
1980	2,5	53,4	118,8	221,5	45,9	77	70,2	74,3	36,6	2,9	0	30,9	734
1981	2,2	41,9	32,5	70,5	180,8	145,9	41,7	29,3	78,5	9,3	0	2,5	635,1
1982	62	155,5	161,6	143,4	0	41,3	27,9	52,5	4,4	0	11	8,6	668,2
1983	0	13,3	70,4	140	112,3	149,1	47,7	47,6	90,4	17	8,7	0	556.5
1984	32,9	123	30,2	149,9	94,5	37,3	270,9	14	81,5	0	1,5	0	835,7
1985	43,7	53,2	63,8	56,9	66,1	120,3	217,8	52	4,5	32	0,5	5	715,8
1986	27,8	67,5	97,8	216,7	121,2	231,3	60,6	18,4	15,5	17,8	0	6	880,6
1987	10,7	47,1	92,1	49,2	55,4	56,6	66,4	77,1	50,2	16,1	0	0	520,9
1988	27,3	5,2	42	232,1	49,7	25,8	45,8	112,8	10,7	12	2,5	31,8	597,7
1989	18,5	38	40,9	36	82,6	0	64,5	52,9	107	8,5	26,7	0	475,6
1990	19,8	31,6	59,6	188,8	112,5	132	92	34,8	62,8	2,2	0,9	6,6	743,6
1991	44,1	97,5	35,7	18	113,8	35,6	94,1	182,4	72,4	27,8	7,6	0	729
1992	11,9	48	127,3	129,9	38,5	77	18,3	87,7	42,7	0	0	5,5	586,8
1993	74,2	38,4	80	130,1	65,4	61,1	2,5	51	1,5	0	0	10	514,2
1994	75,3	75	34,5	76,3	213,8	29,7	107,3	23,9	0,8	23,2	0	10,5	670,3
1995	13,9	28,9	24,7	38,2	128,1	199,2	57,4	104,6	56,8	38,3	4,4	7,7	702,2
1996	22,5	24,2	39,5	58	37,6	20,5	43,3	75,9	25,5	2,3	2,5	42,2	394
1997	120	82,6	164,5	92,1	47,9	110,1	47,7	83,2	185,7	2	0	0,7	936,6
1998	20,5	78,8	123,4	72,1	83,9	90,9	44,3	11,3	26,3	1,2	0	5,1	557,8
1999	43,3	16,9	71,1	191	10,6	3,3	7,7	32,3	38,5	0	0	0	414,7
2000	3,1	58,3	61,6	61	263,8	74,6	4,7	49,9	42,4	0	0	4,8	624,2
2001	37,1	2,2	34,5	44,4	78,4	27,1	40,1	58,8	30,5	9,5	5,9	24	392,5
2002	22,8	31,7	214,8	253,1	237,7	135,9	27,5	133	26,7	2,1	0	21,6	1106,9
2003	39	115,6	68,7	122,7	92,2	37,4	44,7	91,7	119,7	0	0	8,5	740,2
2004	25,3	48	100,1	177	172,2	138,1	23,7	30,6	1,9	0	0	0	716,9
2005	27,9	40,3	78	105	90	124,3	65,5	7,2	52	0	0	0	590,2
2006	72,7	19,9	13,2	176,2	2,7	52,7	248,1	180,5	57,4	2,8	19,1	13,9	859,2
2007	53,7	128,7	149,8	89,6	13,6	28,2	78,8	25,4	64,9	16,1	0	0	648,8
2008	65	37,9	97,8	77,4	155,5	28,8	21,8	91,3	59,6	3,7	0	3,1	641,9
2009	154	15,4	87,4	131,9	83,6	69,2	72,8	32,6	48,5	14,2	0	16,2	725,7
2010	0,1	72	120,1	67,2	67,6	119,7	74,8	109	97	41,4	0	0	768,9
2011	3,1	46,7	119,5	86,7	69,7	238,1	71	152	30,3	0	0	36	853,1

Argumentation:

D'âpres les résultats de tableau pendant la période 1980-2011; On remarque une irrégularité dans la reparution de précipitation et aussi une variabilité mensuelles et annuelles. Ces pluies sont notamment insuffisante pour le moins de juin; juillet et Aout; elles sont moyennes au printemps et maximum en hiver

L'étude statistique de la série s'effectue par logiciel HYDROLAB

Donnant sont diagramme de dispersion et son traitement. Le même logiciel fait son ajustement aux lois théorique (; Normale ; log-Normale)

II.3.L'homogénéité de la série pluviométrique :

L''homogénéisation des données est une analyse statistique de l'information aidant à une prise de décision conséquente. Pour vérifier l'homogénéité de la série pluviométrique on procède au test de Wilcoxon, la vérification de l'homogénéité d'une série pluviométrique par cette méthode repose sur le procédé ci-dessous :

-On divise la série complète en deux sous série : x et y tel que : N₁et N₂représentant respectivement les tailles de ces deux sous séries, considérant généralement N₁>N₂.

-On constitue par la suite, la série x unions y après avoir classé la série de pluie d'origine par ordre croissant. À ce stade, on attribue à chaque valeur de la série pluviométrique classée, son rang, tout en précisant à quels sous série elle appartient

Tableau II-3: Test d'homogénéité de la station d'AIN ZAOUIA

Rang	Série d'origine P (mm)	Séries-Y	Série X	TRI (mm)	YUX
1	734	702,2	734	392,5	y
2	635,1	394	635,1	394	y
3	668,2	936,6	668,2	414,7	у
4	556,5	557,8	556.5	475,6	X
5	835,7	414,7	835,7	514,2	X
6	715,8	624,2	715,8	520,9	X
7	880,6	392,5	880,6	556,5	X
8	520,9	1106,9	520,9	557,8	Y
9	597,7	740,2	597,7	586,8	X
10	475,6	716,9	475,6	590,2	Y
11	743,6	590,2	743,6	597,7	X
12	729	859,2	729	624,2	Y
13	586,8	648,8	586,8	635,1	X
14	514,2	641,9	514,2	641,9	Y
15	670,3	725,7	670,3	648,8	Y
16	702,2	768,9		668,2	X
17	394	853,1		670,3	X
18	936,6			702,2	Y
19	557,8			715,8	X
20	414,7			716,9	у
21	624,2			725,7	y

Tableau II-4: Test d'homogénéité de la station d'AIN ZAOUIA (suite)	Tableau I	[I-4 :	Test d'h	iomogén	éité de la	station	d'AIN	ZAOUIA	(suite)
---	-----------	----------------	----------	---------	------------	---------	-------	--------	---------

Rang	Série d'origine P (mm)	Séries-Y	Série X	TRI (mm)	YUX
22	392,5			729	X
23	1106,9			734	X
24	740,2			740,2	у
25	716,9			743,6	X
26	590,2			768,9	y
27	859,2			835,7	X
28	648,8			853,1	у
29	641,9			859,2	у
30	725,7			880,6	X
31	768,9			936,6	у
32	853,1			1106,9	у

❖ M^r Wilcoxona montré que la série est homogène avec une probabilité de 95%, si la relation ci-dessous est vérifiée avec :

$$W_{min}\!\!<\!\!W_x\!\!<\!\!W_{max}$$

$$W_x = |Rang|_{x}$$

W_x: Somme des rangs de sous séries

$$W_x = 234$$

$$W_{\min} = \left[\left(\frac{\left(N_1 + N_2 + 1 \right) x N_1 - 1}{2} \right) - 1,96 x \left(\frac{N_1 x N_2 \left(N_1 + N_2 + 1 \right)}{12} \right) \right]^{1/2}$$

$$W_{\text{min}} = 195.6$$

$$W_{\text{max}} = 299.4$$

La condition de M^r Wilcoxonest vérifiée, donc la série des précipitations moyennes annuelles de la station d'AIN ZAOUIAest homogène.

II.4. Etude de l'échantillon et choix du type de loi

La pluviométrie est souvent ajustable à des lois statistiques très nombreuses, on utilise pour notre projet celle qui garantit le meilleur ajustement possible. Les lois d'ajustement les plus communément employées sont les suivantes :

- ➤ Loi de Gauss ou loi Normale
- ➤ Loi de Galton ou loi log –Normale

❖ Choix du type de loi :

Ces critères de choix sont liés à un ajustement graphique d'abord et ensuite à un teste d'adéquation. L'allure des points sur du papier à probabilité a permet de prime abord d'accepter ou de rejeter la loi (toute sinusite, mauvaise courbure ou cassure de pente est considérée comme un mauvais ajustement).

On essaie toujours d'ajuster une loi normale à un échantillon ou de se ramener à une loi normale par changement de variable.

Généralement la loi de probabilité ajustable à l'échantillon est d'autant plus prés à la normalité que la variable concerne une longue échelle de temps et que le coefficient de variation à 0,5. (TOUIBIA 2004).

a) Traitement des données

La simulation des apports annuels avec le logiciel HYDROLAB nous donne les résulta suivantes :

Station d'AIN ZAOUIA

Statistiques de base

Nombre d'observations 32

Minimum 395.1

Maximum 1008.7

Moyenne 673,05625

Ecart-type 159,65002

b) Ajustement de la série pluviométrique

On soumet la série pluviométrique annuelle de la station retenue aux ajustements à la loi Normale, la loi log –normale et la loi de Gumbel.

b.1. Ajustement à la loi Normale (GAUSS)

L'ajustement des séries par la loi normale appelée souvent loi de Gauss s'adapte bien avec les pluies moyennes annuelles. En effet sa fonction de répartition est de la forme

$$F(u) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\mu} Exp\left(\frac{-1}{2x\mu^2}\right) du$$

Pour notre projet, il sera utile de connaître les variations annuelles des précipitations pour une période de retour de 5ans.

Les résultats de l'ajustement de la série des pluies moyennes annuelles de la station de AIN ZAOUIA son groupés dans le tableau et la figure suivantes

Tableau II-5 : Ajustement à la loi de Gauss

	Ajustement à une loi de Gauss									
		Moyenne	=673,05625							
Taille	n=32	Ecart-type	=159,65002		I.C. à (en%)=80)	U Gauss	=1,2817		
Valeurs de départ	Valeurs classées	Ordre de Classement	Fréquence expérimentale	Variable Réduite	Valeur expérimentale	Valeur théorique	Borne inférieure	Borne supérieure		
734	392,5	1	0,0156	-2,154	392,5	329,119334	252,404973	387,711341		
635,1	3 94	2	0,0469	-1,676	394	405,43364	340,806982	455,959014		
668,2	414,7	3	0,0781	-1,418	414,7	446,663786	388,123259	493,275485		
556,5	475,6	4	0,1094	-1,230	475,6	476,686466	422,308853	520,717174		
835,7	514,2	5	0,1406	-1,078	514,2	501,025961	449,818325	543,169162		
715,8	520,9	6	0,1719	-0,947	520,9	521,914603	473,25541	562,610004		
880,6	556,5	7	0,2031	-0,830	556,5	540,492935	493,947714	580,053272		
520,9	557,8	8	0,2344	-0,724	557,8	557,429274	512,671125	596,09493		
597,7	586,8	9	0,2656	-0,626	586,8	573,153166	529,92257	611,119776		
475,6	590,2	10	0,2969	-0,533	590,2	587,960265	546,04247	625,394273		
743,6	597,7	11	0,3281	-0,445	597,7	602,065478	561,276741	639,113644		
729	624,2	12	0,3594	-0,360	624,2	615,632431	575,811119	652,428028		
586,8	635,1	13	0,3906	-0,277	635,1	628,791017	589,791556	665,458101		
514,2	641,9	14	0,4219	-0,197	641,9	641,648509	603,337087	678,305027		
670,3	648,8	15	0,4531	-0,118	648,8	654,297021	616,5484	691,057202		
702,2	668,2	16	0,4844	-0,039	668,2	666,818832	629,513868	703,795142		
3 94	670,3	17	0,5156	0,039	670,3	679,293668	642,317358	716,598632		
936,6	702,2	18	0,5469	0,118	702,2	691,815479	655,055298	729,5641		
557,8	715,8	19	0,5781	0,197	715,8	704,463991	667,807473	742,775413		
414,7	716,9	20	0,6094	0,277	716,9	717,321483	680,654399	756,320944		
624,2	725,7	21	0,6406	0,360	725,7	730,480069	693,684472	770,301381		
392,5	729	22	0,6719	0,445	729	744,047022	706,998856	784,835759		
1106,9	734	23	0,7031	0,533	734	758,152235	720,718227	800,07003		
740,2	740,2	24	0,7344	0,626	740,2	772,959334	734,992724	816,18993		
716,9	743,6	25	0,7656	0,724	743,6	788,683226	750,01757	833,441375		
590,2	768,9	26	0,7969	0,830	768,9	805,619565	766,059228	852,164786		
859,2	835,7	27	0,8281	0,947	835,7	824,197897	783,502496	872,85709		
648,8	853,1	28	0,8594	1,078	853,1	845,086539	802,943338	896,294175		
641,9	859,2	29	0,8906	1,230	859,2	869,426034	825,395326	923,803647		
725,7	880,6	30	0,9219	1,418	880,6	899,448714	852,837015	957,989241		
768,9	936,6	31	0,9531	1,676	936,6	940,67886	890,153486	1005,30552		
853,1	1106,9	32	0,9844	2,154	1106,9	1016,99317	958,401159	1093,70753		

Tableau II-6: Ajustement à la loi de Gauss (suite)

Fréquence	U.Gauss	Val. Théo.	Borne inf.	Borne sup.	Valeur	Fréq. Théo.	Pér. Ret.
0,2	-0,841	538,717668	491,97714	578,379772	538,71	0,200	1,3
0,5	0,000	673,056266	635,929794	710,182739	673,05	0,500	2,0
0,8	0,841	807,394832	767,732728	854,13536	807,39	0,800	5,0

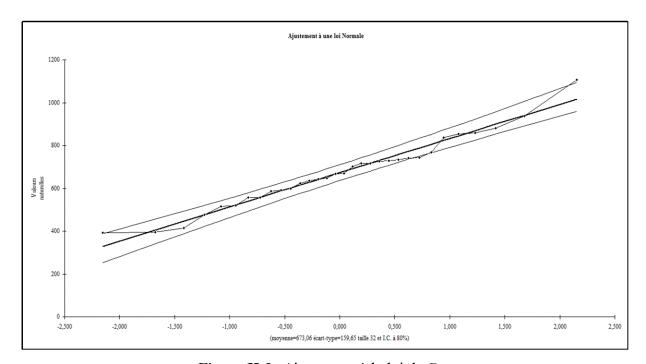


Figure II-2: Ajustement à la loi de Gauss

b.2 . Ajustement à la loi Log-Normale (GALTON)

Les résultats de l'ajustement de la série des pluies moyennes annuelles de la station d'AIN ZAOUIA sont regroupés dans le tableau et la figure suivant:

Tableau II-7 : Ajustement à la loi Log-Normal

Ajustement à une loi Log-normale								
Taille	n=32	Moy.log(x-xo)=	=2,815908443	,	.C. à (en%)=80		II Cona	a_1 202
XO=	=0	E.T. log(xxo)=	0,105735736	J	c. a (e11%)–80		U Gaus	s=1,282
Valeurs	Valeurs	Ordre de	Fréquence	Variable	Valeur	Valeur	Borne	Borne
de départ	classées	classement	expérimentale	réduite	expérimentale	théorique	inférieure	supérieure
734	392,5	1	0,016	-2,154	392,5	387,365	344,598	423,57016
635,1	394	2	0,047	-1,676	394	435,174	394,331	470,03001
668,2	414,7	3	0,078	-1,418	414,7	463,414	423,836	497,55395
556,5	475,6	4	0,109	-1,230	475,6	485,125	446,518	518,81763
835,7	514,2	5	0,141	-1,078	514,2	503,47	465,649	536,88913
715,8	520,9	6	0,172	-0,947	520,9	519,766	482,593	553,04468
880,6	556,5	7	0,203	-0,830	556,5	534,702	498,064	567,95359
520,9	557,8	8	0,234	-0,724	557,8	548,693	512,491	582,01904
597,7	586,8	9	0,266	-0,626	586,8	562,009	526,152	595,50869
475,6	590,2	10	0,297	-0,533	590,2	574,843	539,247	608,61417
743,6	597,7	11	0,328	-0,445	597,7	587,343	551,921	621,48172
729	624,2	12	0,359	-0,360	624,2	599,621	564,291	634,22949
586,8	635,1	13	0,391	-0,277	635,1	611,775	576,451	646,95819
514,2	641,9	14	0,422	-0,197	641,9	623,889	588,483	659,75804
670,3	648,8	15	0,453	-0,118	648,8	636,04	600,459	672,71393
702,2	668,2	16	0,484	-0,039	668,2	648,302	612,45	685,90935
394	670,3	17	0,516	0,039	670,3	660,753	624,525	699,43351
936,6	702,2	18	0,547	0,118	702,2	673,492	636,776	713,40053
557,8	715,8	19	0,578	0,197	715,8	686,609	649,28	727,91931
414,7	716,9	20	0,609	0,277	716,9	700,205	662,126	743,11222
624,2	725,7	21	0,641	0,360	725,7	714,398	675,415	759,12555
392,5	729	22	0,672	0,445	729	729,332	689,269	776,13931
1106,9	734	23	0,703	0,533	734	745,19	703,841	794,38182
740,2	740,2	24	0,734	0,626	740,2	762,209	719,331	814,15193
716,9	743,6	25	0,766	0,724	743,6	780,707	736,003	835,85518
590,2	768,9	26	0,797	0,830	768,9	801,133	754,23	860,06544
859,2	835,7	27	0,828	0,947	835,7	824,155	774,563	887,63813
648,8	853,1	28	0,859	1,078	853,1	850,832	797,87	919,93737
641,9	859,2	29	0,891	1,230	859,2	883,006	825,662	959,35138
725,7	880,6	30	0,922	1,418	880,6	924,374	860,948	1010,6917
768,9	936,6	31	0,953	1,676	936,6	984,36	911,363	1086,3159
853,1	1106,9	32	0,984	2,154	1106,9	1105,85	1011,33	1243,0956

Fréquence	U de Gauss	Valeur théo.	Borne inf.	Borne sup.	Valeur	Fréq. théo.	Pér. Ret.
0,2	-0,841	533,2567948	496,5698	566,5059715	533,25	0,200	1,3
0,5	0,000	654,4981965	618,4715	692,6234754	654,49	0,500	2,0
0,8	0,841	803,3050349	756,1577	862,6539252	756,15	0,724	3,6

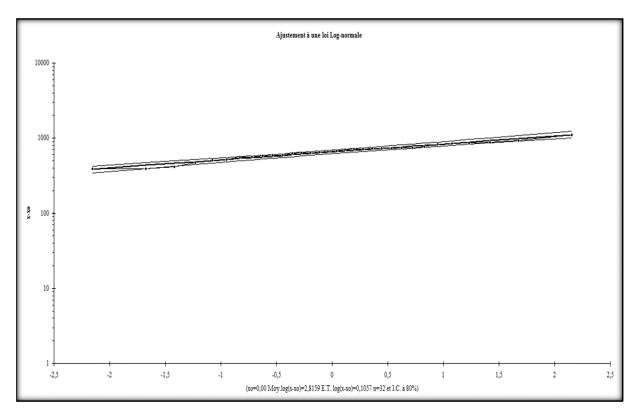


Figure II-3: Ajustement à une loi Log-normale

II.5. Test de validité d'un ajustement :

La loi choisie pour ajuster la distribution statistique de l'échantillon, ne représente qu'approximativement l'échantillon étudié, l'erreur commise en adoptant une loi donnée est une erreur d'adéquation. Il convient par conséquent de comparer l'adéquation de ces lois afin d'adopter le meilleur ajustement. L'un des tests le plus employé, est le test du Khi carrée " χ^2 ".

II.5.1. Test de validité de l'ajustement à la loi Gumbel :

Le test de validité de Khi carrée pour l'ajustement à la loi Normale est fait par le logiciel Hyfran.

- > Test d'adéquation : Loi Normale
- Résultats :
 - ✓ Khi carré = $1.45 = \chi^2_{\text{calculée}}$
 - ✓ Probabilité p $(\chi^2 \text{ calculée}) = 0,6928$.
 - ✓ Degrés de liberté : $\gamma = 3$.
 - ✓ Nombre des classes : k=6

II.5.2. Test de validité de l'ajustement à la loi log-Normale :

Le test de validité de Khi carrée pour l'ajustement à la loi log-Normale est fait par le logiciel Hyfran.

Test d'adéquation : Loi log-Normale

Résultats

✓ Khi carré =1,45 = $\chi^2_{\text{calculée}}$

✓ Probabilité p ²_(γ calculée) =0,692

✓ Degrés de liberté : $\gamma = 3$

✓ Nombre des classes : k=6.

Le test de Khi carré et les Figure II.2 ; Figure II.3 montrent que la loi log-Normale présente une adéquation meilleure que la loi Normale.

II.6.Détermination de l'année de calcul :

Puisque la loi GALTON est la plus adéquate, alors nous la retenons pour l'estimation de la pluviométrie moyenne annuelle représentative de la région, et comme nous sommes dans une région semi aride et que la pratique montre que pour ce type de climat la probabilité de calcul doit être prise entre 75 % et 90 %.

La probabilité pour laquelle on assure l'irrigation est donnée souvent pour la fréquence 80% : L'année de calcul est obtenue en appliquant la formule suivante :

$$P_{i,80\%} = P_{i,moy} \times \frac{P_{80\%} (annuel)}{P_{50\%} (annuel)}$$

D'après le tableau de l'Ajustement à la loi log normale on trouve :

$$P_{80\%} = 533.25 \text{ mm}$$
 et $P_{50\%} = 654.49 \text{ mm}$

$$\frac{P80\%}{P50\%} = 0.81 < 1$$

Tableau II-8: précipitation moyenne mensuelle de l'année de calcule.

Mois	S	О	N	D	J	F	M	A	M	JUI	JUIL	A	Total annuel
P _{moy}	29.8	43.9	67.2	90.2	75.7	68.8	55.7	55.1	41.1	7.6	2.3	7.6	545

II.7.Besoins en eau du périmètre :

Le besoin en eau d'irrigation ou la consommation en eau de la culture définie comme la hauteur d'eau (mm) consommé par l'évapotranspiration de la culture.

Pour déterminer l'évapotranspiration de la culture (ETc) on utilise l'évapotranspiration de référence (ET0) d'une culture de référence conduite dans des conditions de référence, de sorte que le taux d'évapotranspiration (mm/j) représente les conditions climatiques locales.

L'évaluation des besoins en eau du périmètre est basée sur la détermination des besoins de chaque culture dans le calendrier agronomique, pour cela il faut déterminer :

a.L'évapotranspiration potentielle de référence (ET0) :

C'est l'évapotranspiration maximale (c.a.d le sol est à sa capacité de retentions) d'un gazon ras couvrant complètement le sol, bien alimenté en eau, en phase active de croissance et situé au sein d'une parcelle suffisamment étendue (Perrier, 1977).

Pour prédire l'évapotranspiration de référence on utilise une méthode basée sur des variables climatiques, parmi les plus communiquent employé sont :

- Méthodes de lysimétre
- Méthodes des stations expérimentales
- Méthodes directes de l'évaporation
- Méthodes empiriques

En ce qui concerne les méthodes empiriques, il existe des formules de calcul dont les principales sont :

- Prinstley-Taylor
- Makkink
- Ture
- Hargreaves
- Blaney-Cridle
- Thornthwaite
- Penman et Monteith modifiée

Sur la base des résultats de plusieurs études, notamment celle de Jensen (1990), la consultation d'experts menée par la FAO sur les méthodologies d'estimation des besoins en eau des cultures (Smith 1992), a conduit à recommander la méthode de Penman Monteith modifiée comme méthode privilégiée d'estimation de ETO du gazon.

La formule de Penman et Monteith modifiée se présentant comme suit :

$$ET0 = C \times [w \times Rn + (1 - w) \times F(u) \times (ea - ed)]$$

Avec:

ET0 : représente l'évapotranspiration de référence, exprimée en mm/jour.

W : facteur de pondération rendant compte de l'effet de rayonnement à différente température et altitude.

Rn: rayonnement net évaporation équivalente exprimé en mm/j

F (u): fonction liée au vent

Ea : tension de vapeur saturante à la température moyenne de l'air, en millibars

Ed : tension de vapeur réelle moyenne de l'air, exprimée en millibars

(ea-ed) : constitue le facteur de correction, afin de compenser les conditions météorologiques diurnes et nocturnes.

Le calcul de l'évapotranspiration de référence est effectué à l'aide d'un logiciel appelé CROPWAT 8.0, fondé sur la méthode de Penman et Montheit modifiée et recommandée par la consultation des experts de la FAO tenue à Rome en MAI 1990.

Pour l'exploitation du logiciel, nous devons fournir les données climatiques mensuelles de la station météorologique : à savoir :

- Les températures moyennes en °C
- L'humidité relative de l'air exprimé en (%)
- L'insolation journalière en heure
- La vitesse du vent en m/s

Les résultats de l'évapotranspiration de référence ET0 calculés à l'aide du logiciel CROPWAT 8.0 sont récapitulés dans le tableau II.6

Tableau II-9: Evapotranspiration de référence ET0 calculée à l'aide du logiciel CROPWAT 8

	Evapotranspiration de référence ET0 de Penman et Morteith									
	Pays	: Algérie	S	Station 6	climatique :	AIN ZAOUIA	<u> </u>			
	Altitude	: 220 mètre	es Latitu	ide :36.	3 N° Long	itude :3.5E°				
MOIS	Tem min	Tem max	Humidité	Vent	Insolation	Radiation	ET0 Penman			
MOIS	$^{\circ}\mathrm{C}$	°C	%	m/s	heures	MJ/m².jour	mm/j			
Janvier	6.2	15.3	76	1.6	4.9	8.6	1.2			
Février	6.5	16.5	73	1.35	6.1	11.9	1.8			
Mars	8.5	19.5	69	1.32	6.7	15.5	2.68			
Avril	10.3	21.5	69	1.42	7.8	19.6	3.55			
Mai	14.1	26.3	67	1.26	8.1	21.6	4.54			
Juin	18.2	31.7	58	1.35	11.4	26.9	6.37			
Juillet	21.2	35.5	56	1.64	11.1	26.1	6.94			
Août	21.3	36.1	57	1.72	10.2	23.5	6.22			
Septembre	18.7	31.1	61	1.8	8.2	18.3	4.33			
Octobre	14.6	26.7	66	2.15	7.4	14.3	2.94			
Novembre	10.8	20.2	72	2.2	6.0	10.1	1.62			
Décembre	7.5	17.3	76	1.9	4.6	7.8	1.25			
Moyenne	13.2	24.8	67	1.66	7.7	17.0	3.62			

b.Pluie efficace:

La pluie efficace est définie comme étant la la fraction des précipitations contribuent effectivement à la satisfaction des besoins de l'évapotranspiration de la culture après déduction des pertes par ruissellement de surface, et par percolation en profondeur, etc...Ces pertes sont estimées de 20% de la pluie tombée.

Les valeurs moyennes mensuelles de Peff sont regroupées dans le tableau N° 13

Tableau II-10: Les pluies efficaces calculées à l'aide du logiciel CROPWAT

Mois	Jan	Fev	Mar	avr	mai	jui	Juil	aou	sep	oct	nov	dec	Total
P (mm)	75.7	68.8	55.7	55.1	41.1	7.6	2.3	7.6	29.8	43.9	67	90	545
Peff (mm)	66,5	61,2	50,7	50,2	38,4	7,5	2,3	7 ,5	28 ,4	40,8	60	77,2	490,8

Tableau II-11: Calcul du bilan hydrique pour le Pécher

Mois	K _C	ET_0	ET_0	ETM	Peff	RFU	$\mathrm{B}_{\mathrm{net}}$	B_{net}
Mois	IXC	(mm/jour)	(mm/mois)	(mm/mois)	(mm/mois)	(mm/mois)	(mm/mois)	(mm/mois)
J	0,78	1,2	37,2	29,02	66,5	75,25	-112,73	0
F	0,72	1,8	50,4	36,29	61,2	105,46	-130,37	0
M	0,5	2,68	83,08	41,54	50,7	125,12	-134,28	0
A	0,5	3,55	106,5	53,25	50,2	122.57	-148,95	0
M	0,58	4,54	140,74	81,63	38,4	0	43,23	43,30
J	0,73	6,37	191,1	139,50	7,5	0	132,00	132,00
J	0,89	6,94	215,14	191,47	2,3	0	189,17	189,17
A	0,95	6,22	192,82	183,18	7,5	0	175,68	175,68
S	0,95	4,33	129,9	123,41	28,4	0	95,01	95,01
О	0,95	2,94	91,14	86,58	40,8	0	45,78	45,78
N	0,91	1,62	48,6	44,23	60	0	-15,77	0
D	0,85	1,25	38,75	32,94	77,2	27,06	-71,33	0

Tableau II-12: Calcul du bilan hydrique pour la vigne

Mois	$_{ m K_C}$	ET_0	ET_0	ETM	Peff	RFU	B _{net}	B _{net}
WIOIS		(mm/jour)	(mm/mois)	(mm/mois)	(mm/mois)	(mm/mois)	(mm/mois)	(mm/mois)
J	0,2	1,2	37,2	7,44	66,5	145,80	-204,86	0
F	0,25	1,8	50,4	12,60	61,2	199,70	-248,30	0
M	0,25	2,68	83,08	20,77	50,7	210,00	-239,93	0
A	0,3	3,55	106,5	31,95	50,2	210,00	-228,25	0
M	0,5	4,54	140,74	70,37	38,4	0,00	31,97	31,97
J	0,7	6,37	191,1	133,77	7,5	0	126,27	126,27
J	0,8	6,94	215,14	172,11	2,3	0	169,81	169,81
A	0,8	6,22	192,82	154,26	7,5	0	146,76	146,76
S	0,65	4,33	129,9	84,44	28,4	0	56,04	56,04
О	0,5	2,94	91,14	45,57	40,8	0	4,77	4,77
N	0,35	1,62	48,6	17,01	60	24	-66,78	0
D	0,2	1,25	38,75	7,75	77,2	76,04	-145,49	0

Tableau II-13: Calcul du bilan hydrique pour la Pomme de terre

Mois	K _C	ET ₀ (mm/jour)	ET ₀ (mm/mois)	ETM (mm/mois)	P _{eff} (mm/mois)	RFU (mm/mois)	B _{net} (mm/mois)	B _{net} (mm/mois)
J	0	1,2	37,2	0	66,5		-66,50	0
F	0	1,8	50,4	0	61,2		-61,20	0
M	0	2,68	83,08	0	50,7		-50,70	0
A	0	3,55	106,5	0	50,2		-50,20	0
M	0	4,54	140,74	0	38,4		-38,40	0
J	0	6,37	191,1	0	7,5		-7,50	0
J	0	6,94	215,14	0	2,3		-2,30	0
A	0,5	6,22	192,82	96,41	7,5	0	88,91	88,91
S	0,85	4,33	129,9	110,42	28,4	0	82,02	82,02
О	1,02	2,94	91,14	92,96	40,8	0	52,16	52,16
N	0,85	1,62	48,6	41,31	60	0	-18,69	0
D	0,75	1,25	38,75	29,06	77,2	30,94	-79,08	0

Besoins Mensuels Besoins F J S D Μ A J O N Cultures Μ Α total Pêcher 43.3 132 189.1 175.7 95 45.8 680.9 Pomme 88.9 82 223 52.1 de terre 32 126.3 169.8 146.8 56 4.8 1039.7 vigne 233 Besoins 75.3 258.3 358.9 411.4 102.7 1943.4

Tableau II-14: Besoins brutes en eau des cultures en mm/mois

II.8. Calcul des débits à transiter par le réseau

Les besoins en eau du mois de pointe seront donc :

$$B_n = 1891.7 m^3 / ha$$

Débit de l'installation est calculé par la formule suivante

$$Q_{inst} = \frac{B_p}{T * t * k} \quad \text{En 1/s/ha.}$$

Avec:

B_P: Besoins de mois de pointe, en m³/ha.

T: Temps d'irrigation qui correspond à une irrigation de 25 jours par mois,

Avec t=20 heures d'arrosage par jour.

k: Efficience d'irrigation ≈75%.

$$Q_{inst} = \frac{189.17*10*1000}{25*20*3600*0.75}$$

II.9. les techniques d'irrigation :

Le choix du mode d'irrigation dépend de certains facteurs techniques et sociologiques. Les facteurs techniques englobent le type de culture, le type de sol, la structure parcellaire, la topographie et la qualité d'eau.

Les facteurs sociologiques incluent la structure des exploitations, les coûts d'investissements, les frais de fonctionnement et d'entretien et les besoins en main d'œuvre. La disponibilité en matériel sur marché national est un autre facteur important en ce qui concerne le choix de la méthode d'irrigation.

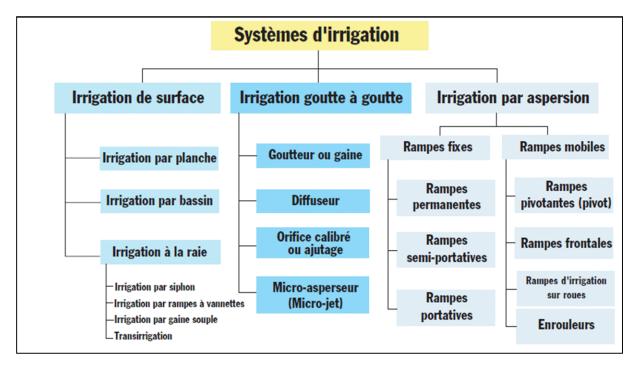


Figure II.4: Les différentes techniques d'arrosages

Les techniques d'arrosages peuvent être rangées en trois (03) classes, soit :

- ✓ L'irrigation de surface
- ✓ L'irrigation par aspersion
- ✓ L'irrigation localisée ou micro irrigation

II.9.1.L'irrigation de surface :

L'irrigation de surface regroupe l'ensemble des techniques d'arrosage dans lesquelles la réparation de l'eau à la parcelle se fait entièrement à l'air libre par simple écoulement à la surface du sol. La répartition de l'eau est assurée grâce à la topographie du terrain, et aux propriétés hydriques du sol (ruissellement, infiltration, et capillarité).

En irrigation de surface, la distinction entre les différentes techniques est essentiellement fondée sur la méthode d'application de l'eau : ruissellement, submersion ou technique mixte.

II.9.1.1. Irrigation par ruissèlement :

a.Les planches de ruissèlement :

- On divise la surface à irriguer en bandes rectangulaires prise dans le sens de la plus grande pente.
- En général, la longueur des planches varie de 5 à 30 m. et leur longueur de 50 à 800 m.
- L'irrigation par planches convient le mieux aux pentes inférieures à 0,5 %. Cependant, les pentes longitudinales maximales des planches peuvent atteindre 4 % à 5 %.
- Les sols convenant le mieux à cette technique sont les sols moyennement filtrants.

- L'irrigation par planches s'applique aux cultures telles que les prairies, les céréales et les vergers.
- La préparation des planches est minutieuse et coûteuse et exige une main-d'œuvre qualifiée et des équipements de terrassement performants.
- Les pertes par percolation profonde et en colature est importante, et font remonter dangereusement le niveau des nappes phréatiques.
- Les efficiences observées, s'échelonnent dans une gamme très large allant de 45 à 85 %.

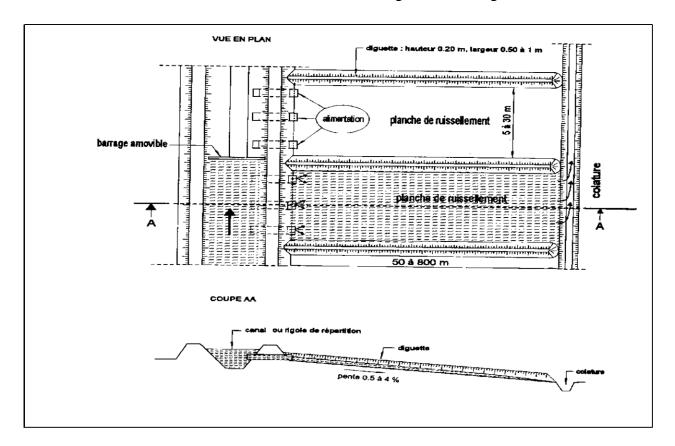


Figure II.5: Irrigation par planche de ruissellement

b.L'arrosage à la raie :

- Consiste à amener l'eau à la plante, par une série plus au moins dense (espacement d'environ 0,75 à 1 m.) de petits fossés à ciel ouvert à pente faible mais régulière.
- Les raies sont tracées suivant la ligne de plus grande pente du terrain pour des pentes
 02 %. Pour des pentes > 02 % les raies sont orientées obliquement par rapport à la ligne de plus grande pente. La forme des sections des raies peut être triangulaire, trapézoïdale ou parabolique avec :

- Largeur: 25 à 40 cm.

- Profondeur: 15 à 30 cm.

- L'arrosage aux raies se pratique sur les terrains d'environ 0,5 à 4 % de pente et convient à toutes les cultures de céréales et de plantes sarclées (Maïs, Coton, etc. ...).
 L'arrosage à la raie pose de sérieux problèmes d'application de l'eau lorsque la longueur des raies devient importante (supérieure à 250 m.).
- Il exige une main d'œuvre abondante et qualifiée pour la conduite des arrosages.
- L'efficience des arrosages telle qu'elle est constatée peut se situer entre 40 % et 70 %.

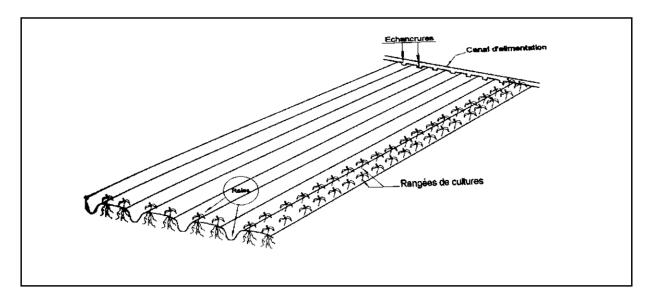


Figure II.6: Irrigation à la raie

II.9.1.2. Irrigation par submersion:

- L'eau submerge le terrain et s'y infiltre.
- Dans la pratique de la submersion, l'eau est apportée et répandue aussi vite que possible sur l'ensemble de la parcelle à irriguer avant la phase d'infiltration proprement dite. La pratique de la submersion, nécessite l'aménagement du terrain en bassins de submersion, avec des petites digues de 30 à 40 cm. de hauteur et une revanche minimum de 10 cm.
- L'irrigation par submersion est une technique d'arrosage appliquée de préférence en terrain presque plat (moins de 0,1 %de pente).
- L'uniformité de l'arrosage est directement liée à trois (03) facteurs :
 - 1). Faible perméabilité (terrain très peu ou moyennement perméable)
 - 2). Qualité du nivellement.
 - 3). Fort débit d'apport.
- La nécessité du nivellement implique généralement des travaux de terrassement importants et coûteux.

- Ce système d'irrigation s'emploie dans les rizicultures, les pâturages, les vergers, les prairies, les céréales en ligne, mais en raison du coût du nivellement des parcelles, il est généralement réservé à des terrains plats.
- L'efficience de la technique d'irrigation en submersion se situe entre 45 et 70%
- L'application d'une couche d'eau sur la surface de sol à irriguer provoque leur tassement et le rend moins perméable et par conséquent gêne l'aération du sol.

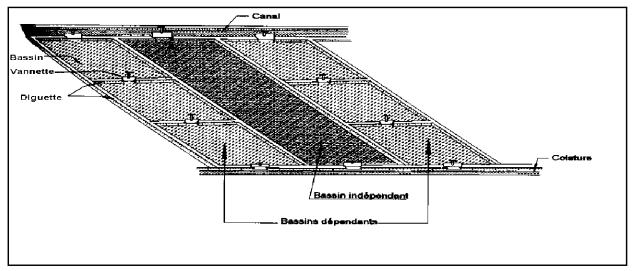


Figure II.7: Irrigation par submersion

II.9.1.3.L'irrigation mixte:

Il s'agit d'un ruissellement suivi d'une submersion.

Les dispositions générales de ce mode d'irrigation sont identiques à celles que nous avons vu, mais lorsque l'eau atteint le niveau voulu dans le bassin, on continue à les alimenter en prenant soin d'évacuer les surplus.

A cet effet, les compartiments sont munis d'un déversoir arasé au niveau fixé pour le plan maximal. L'eau en excès est évacuée dans les colatures ou dans un bassin contigu.

L'avantage de ce système est que l'eau est plus aérée apporte plus de matières nutritives et présente une température plus régulière ce qui peut être intéressant pour les cultures.

II.9.2.L'irrigation par aspersion:

En irrigation par aspersion, l'eau parvient aux cultures d'une façon qui imite la chute naturelle de la pluie, grâce à l'utilisation de divers appareils de projection ,alimentés sous pression. Pour cette technique d'irrigation aucun nivellement de la surface n'est nécessaire. Tous les types de sols peuvent convenir

Cette technique d'irrigation présente une excellente efficience située entre 55- 85 %, essentiellement en fonction de la maîtrise technique des irrigants.

L'irrigation par aspersion est utilisée pour l'arrosage des cultures les plus, diverses : fourragères, maraîchères, céréales, vergers, , etc.....

Les techniques d'arrosage appliquées en irrigation par aspersion dépendent du matériel utilisé. Elles se divisent en deux grandes catégories :

- ✓ L'aspersion simple (rampes perforées, asperseurs, canons)
- ✓ Les machines à irriguer (rampes frontales, pivots, enrouleurs, etc. ...)

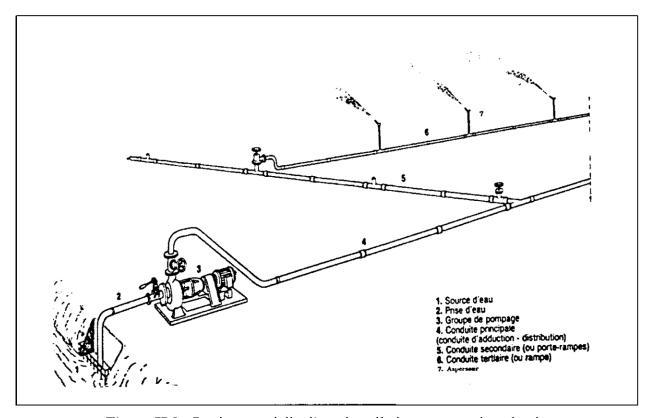


Figure II.8: Partie essentielle d'une installation en aspersion classique

II.9.3.L'irrigation localisée:

L'irrigation localisée ou micro-irrigation, est une méthode qui regroupe plusieurs systèmes de distribution de l'eau à la parcelle. Elle se caractérise par :

- ✓ La mise en place sur la parcelle d'un réseau de canalisation.
- ✓ Une discontinuité des points d'apport permettant de n'irriguer que les zones utiles à la plante.
 - ✓ Des débits faibles
- ✓ Une distribution fréquente pour maintenir un certain volume d'eau à un niveau voisin de la capacité au champ.

Selon le type de distribution utilisé, l'eau se localise par points (goûteurs, gaines), par lignes (tubes poreux) ou par surface plus au moins grandes (muni diffuseurs, micro-asperseurs). L'efficacité de l'irrigation localisée est excellente. Elle est située entre 70% à 95%.

L'irrigation localisée est surtout pratiquée en cultures fruitières.

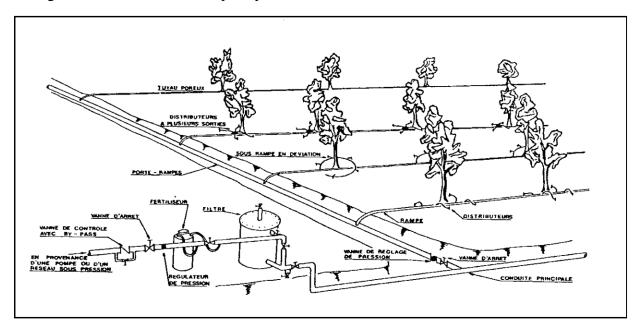


Figure II.9: Partie essentielle d'une installation localisée

II.10. Choix des techniques d'irrigation :

Plusieurs facteurs entrent en considération pour le choix des techniques d'irrigation et en particulier :

- ✓ La pente du terrain à irriguer
- ✓ Le débit dont on dispose
- ✓ Nature du sol (perméabilité)
- ✓ Nature des cultures
- ✓ Facteurs économiques
- ✓ Rentabilité de l'opération

A cause de la variété des conditions naturelles (pente, vent, perméabilité des sols) ainsi la qualité mauvaise et la quantité limitée des eaux du barrage, la technique d'arrosage sous pression (aspersion et l'irrigation localisée) est la mieux adaptée à la zone d'étude.

Les avantages présentés par cette technique d'irrigation sont :

- ➤ Absence de nivellement préalable
- ➤ Bonne adaptation à tous les types de sols
- Possibilité de contrôle précis des doses appliquées, ce qui permet une bonne efficience des arrosages (à condition que la technique soit bien maîtrisée par les irrigants).
- Excellente efficience des réseaux de canalisation qui, avec une efficience d'arrosage à la parcelle réduit les consommations en eau par rapport à l'irrigation de surface.
- Automatisation très poussée permise par le réseau sous pression.
- Facilité de mesure des consommations d'eau.

- Possibilité de mélanger facilement des engrais et pesticides à l'eau d'irrigation.
- > Suppression des surfaces perdues en canaux et rigoles.
- Le matériel gêne rarement les façons culturales, adoptables à tous les cas particuliers.
- > Excellent rendement des cultures

Comme cette technique d'irrigation présente des avantages, elle présente aussi des inconvénients :

- > Coûts d'investissement élevés,
- Exige un certain niveau de compétence de la part de l'irrigant

Conclusion

Cette étude à pour but principal de déterminer les besoins en eau des cultures ainsi que le volume nécessaire pour le mois de pointe et pour l'ensemble de l'année.

Comme on a situé les différentes méthodes d'irrigation, dans notre zone d'étude toutes les contraintes ainsi que les cultures choisies nous guident vers les deux systèmes d'irrigation localisée pour l'arboriculture et aspersion pour les cultures maraichères parfois localisé.

Introduction:

Dans Ce chapitre nous allons dimensionner le réseau de distribution ainsi que le réseau d'irrigation après avoir choisi les techniques compatible avec les types des cultures comme on va déterminer les diamètres ainsi que les longueurs et les débits qui passent par ces conduites. Et Pour assurer une irrigation continue, et que ce réseau de distribution soit alimenté par gravité, le dimensionnement d'un réservoir de stockage est inévitable

III.1.Le goutte à goutte:

Le goutte-à-goutte, ou irrigation localisée, Il consiste à apporter l'eau sous faible pression jusqu'aux racines de chacune des plantes et à la distribuer au compte-goutte, cette technique permet de notablement diminuer la consommation d'eau : elle n'humidifie que la portion de sol située au voisinage immédiat des racines, et elle limite les pertes par évaporation, ruissèlement ou infiltration profonde



Figure III-1: Schéma descriptif de la technique d'irrigation

Tableau III-1: données générales

Culture	Pêcher	vigne
Espacement entre arbres	4m	2m
Espacement entre rangs	4m	3m
Caractéristique de goutteur	4 1/h	21/h
Pression nominal	10 m.c.e	10 m.c.e
Espacement des goutteurs	1 m	-

III.1.1.Le pêcher

Dimensionnement du réseau d'irrigation et des ouvrages annexes

III.1.1.1. Calcul des paramètres :

1.les besoins nets

$$B_{net} = ETR*K_r$$

K_r: Coefficient de réduction se calcul comme suit:

$$K_r = 0.1 + C_s$$
 par DECROIX et Cs=0.6 donc $K_r = 0.6 + 0.1 K_r = 0.7$

$$B_{net} = ETR*K_r = 189.17*0.7 = 132.42 \text{ mm/mois} = 4.41 \text{mm/j}$$

Bnet =
$$4.41 \text{ mm/j}$$

2.calcul des besoins brutes:

$$B_{brut} = B_{net}/Rp$$

Avec:

Rp: Le rendement de la parcelle

E: effécacité de l'arrosage est donnée par la rolation suivante:

Et Cu : le coefficient d'unéfomité Cu=0.9

Done: Bbrut=4.41/0.81 =5.44mm/j

Bbrut =5.44 mm/j

3.le pourcentage d'humidification:

$$P\% = \frac{n.S_{pd}.S_{h}}{Sa.Sr}$$

n : Nombre de point de distribution par arbre.

 S_{pd} : Distance entre deux points de distribution voisins du même arbre ; (m)

S_h: Largeur de la bande humidifiée; (m).

 S_r : Ecartement entre rangs d'arbre ; (m)

$$P\% = \frac{1 * 2 * 2}{4 * 4} = 0.25$$

4.calcul de la dose net:

$$D_{net} = (Dr *p)/100$$

Dnett=
$$(210*25)/100 = 52.5$$
 mm.

$$D_{nett}$$
=52.5 mm

5.la dose brute:

$$D_{\text{brut}} \!\!=\!\! D_{\text{nett}} \!/ Rp$$

$$D_{brut} = 52.5/0.81 = 65.62$$
mm.

$$D_{brut}=65.62mm$$

Dimensionnement du réseau d'irrigation et des ouvrages annexes

6.La durée d'arrosage:

$$d = \frac{D_{bnt} * S_{d} * S_{r}}{Q_{d}} = \frac{65.62 * 10^{-3} * 4 * 4}{2 * 4 * 10^{-3}} = 131.25h$$

7.la fréquence minimale d'arrosage:

$$F = \frac{Dbrute}{Bnet}$$
; $F = \frac{65.62}{4.41} = 14 \text{ jr}$
 $F = 14 \text{ ir}$

8.Le temps d'arrosage journalier:

$$Tp = \frac{temps max de travail}{Fmin} = \frac{131.25}{14} = 9.38 h.$$

$$Tp=10h$$

III.1.1.2.Dimensionnement d'un réseau d'irrigation goutte à goutte

Un réseau d'irrigation est l'ensemble d'organes, d'ouvrages et appareils qui assurent le transport, la répartition et la distribution à chaque exploitation agricole, dans chaque parcelle des eaux destinées à l'irrigation, sans oublier par ailleurs les organes qui doivent éventuellement évacuer les eaux en excès.

Les calculs hydrauliques consistent à déterminer les paramètres suivants :

- Les débits au niveau de chaque tronçon et à la tête du réseau.
- Les diamètres des conduites.
- Les vitesses d'écoulement de l'eau dans les conduites.
- Les pertes de charges totales.

Dimensionnement de la parcelle I

Le nombre de poste de la parcelle I:

$$N = \frac{temps \max detravail}{temps.journalier} = \frac{20}{9.37} = 2$$

-le nombre de poste :2

-la surface de la parcelle : 7.19ha

Le poste A

✓ la longueur de la rampe entre (180 -12)m.

✓ la longueur de la conduite secondaire : 370 m.

✓ la longueur de la porte rampe :200m

✓ le nombre de rampe :

$$N_r = \frac{L}{S_r} = \frac{200}{4} = 50$$
 Rampe

Dimensionnement du réseau d'irrigation et des ouvrages annexes

✓ le nombre d'arbre par rampe : | longueur de la rampe | espacement entre les rampes |

$$\frac{R1}{4} = \frac{180}{4} = 45$$
 arbres.

$$\frac{R2}{4} = \frac{12}{4} = 3 \text{ arbres}$$

✓ le nombre des goutteurs par rampe :

$$45*2 = 90$$
 goutteurs

$$3*2 = 6$$
 goutteurs

Calculs hydrauliques:

On a:
$$q = k * H^x$$

Avec:

K: coefficient du goutteur.

X : coefficient ; dépend du régime et du goutteur (x=0.5).

H: la pression ou pertes de charge.

La variation du débit entre goutteurs est donnée par la relation suivante : $\frac{\Delta q}{q} = 10\%$

H=10 m.c.e

$$\frac{\Delta q}{q} = x \frac{\Delta H}{H} \Rightarrow 10\% = 0.5 \frac{\Delta H}{10} \Rightarrow \Delta H = 2m.c.e$$

✓ les pertes de charge singuliere :

$$pcs = 10\%(p.c) = 10\%(\Delta H) = 0.1*2 = 0.2m$$

Pcs=0.2m

✓ les perte de charge lineaire:

$$pcl = \Delta H - (p.c.s) = 2 - 0.2 = 1.8m$$

Pcl=1.8m

Répartition des pertes de charge :

○ Les pertes de charge lineaire de la rampe=2/3* pcl= 1.8*2/3= 1.2 m

○ Les pertes de charge du porte rampe=1/3* pcl=1.8*1/3 = 0.6m

a. pour la rampe:

> On a le debit dans la rampe: $q_r = N_g * q_g$

Avec:

q_r: débit de la rampe.

N_g: nombre de goutteurs par rampe.

qg: débit d'un goutteur=41/h

$$q_{r\,1} = 90*4 = 360 \, l/h$$

Dimensionnement du réseau d'irrigation et des ouvrages annexes

$$qr2=6*4=281/h$$

> Le diamètre de la rampe :

On applique la relation suivante:

$$D_r = \left(\frac{2.75 * J}{0.478 * q_r^{1.75} * L_r}\right)^{-\frac{1}{4.75}}$$

$$D_r = \left(\frac{2.75 * 1.2}{0.478 * 360^{1.75} * 180}\right)^{-\frac{1}{4.75}} = 17.3 mm$$

 $D_r=20mm$

b. pour la porte rampe:

le débit :

 $Q_{pr} = \Sigma$ débit des rampes.

$$\begin{array}{ll} Q_{r1}*n_1+q_{r1}*n_1/2 & = 39*360+11*360/2=16020 \ l/h=16.02m^3/h \\ Q_{pr}=16.02m^3/h & \end{array}$$

> Le diamétre :

$$D_{p} = \left(\frac{2.75*0.6}{0.478*16020^{1.75}*200}\right)^{-\frac{1}{4.75}} = 82.14mm$$

D=90 mm.

Le débit reçoit la parcelle I égal à la somme des débits des deux postes (A-B) 91.53 m³/h. La surface de poste A = la surface de poste B

Alor:

Le débit nécessaire qui reçoit la parcelle I : Q_{pI} =2* Q_1 =16.02*2=32.04l/h Q_{PI} =32.04m³/h

> Dimensionnement des autres parcelles (II-III-VI-) :

La parcelle II:

La surface = 94792

○ Le nombre d'arbre =
$$\frac{\text{la surface de la parcelle}}{\text{espace des rampes*espace arbres}} = \frac{94792}{16} = 5924 \text{arbres}$$

o le débit nécessaire q = Nb d'arbre * Nb de goutteurs par arbre *débit d'un goûteur.

$$.=5924*2*4=47.39m^3/h$$

$$Q_{PI} = 47.39 m^3/h$$

La parcelle III:

 \circ La surface = 72838m²

○ Le nombre d'arbre =
$$\frac{\text{la surface de la parcelle}}{\text{espace des rampes*espacde arbres}} = \frac{72838}{16} = 4552 \text{arbres}$$

o le débit nécessaire q = Nb d'arbre * Nb de goutteurs par arbre *débit d'un goûteur.

.=72838*2*4=36.4
$$m^3$$
/h
$$Q_{PI}$$
=36.4 m^3 /h

La parcelle IV:

 \circ La surface =111225 m²

 \circ le débit nécessaire q = Nb d'arbre * Nb de goutteurs par arbre *débit d'un goûteur.

$$.6951*2*4=55.6m^3/h$$

 $Q_{PI} = 55.6 m^3/h$

Le débit total:
$$Q_{T(I-II-III-IV)}=32.04+47.39+36.4+55.6=171.43m^3/h$$

$$Q_T=171.43m^3/h$$

III.1.2. Vignes

Tableau III.2: calcul des paramètres

Paramètres	Unité	Vigne
B _{nett}	Mm/j	3.96
B _{brut}	Mm/j	4.88
Qg	L / h	2
S_a	M	2
S_r	M	3
N	Unité	1
S_{pd}	M	1
S_h	M	1
P	%	26
D _{nett}	Mm	54.6
D _{brut}	Mm	67.4
Ta	Н	202.2
F	J	11.16
ta	Н	

Dimensionnement du réseau d'irrigation et des ouvrages annexes

> Dimensionnement de la parcelle V

$$N = \frac{temps \max detravail}{temps.journalier} = \frac{20}{8.5} = 2 \text{ postes}$$

Tableau III.3: les paramètres des rampes et des portes rampes

N°p	$L_{r}(m)$	L _{pr}	Nr	Na	Na	Qr	Dr	Qpr	Dpr
Пр		(m)	INI	INa	Ng	(1/h)	(mm)	(1/h)	(mm)
1	192	261	87	8160	8160	192	20	16320	90
2	226	285	95	10396	10396	226	20	20792	100

$$Q_{prV} = Q1 + Q2 = 37.112 m^3/h$$

$$Q_{PrV} = 37.112 m^{3/}/h$$

> Dimensionnement des autres parcelles (II-III-VI-) :

Tableau III.4: calcul des débits des parcelles

N°P	S(m ²)	Nbre Arbres	Q(m ² /h)
VI	136100	22683	45.366
VII	106745	17790	35.558
VIII	124316	20719	41.438

Le débit total :

$$\mathbf{Q}_{T}=37.112+45.366+35.558+41.438=159.474\text{m}^3/\text{h}$$

$$Q_T = 159.474 m^3/h$$

III.2. Irrigation par aspirtion:

La culture : La pomme de terre :

$$h = 35 \text{ m.c.e}$$

$$g = 9.81 \text{ m/s}^2$$

III.2.1.calcul des paramètres

1. le diamètre de la buse (d_b) :

On a:
$$p = 1.5 \frac{d_b}{1.04} \Rightarrow d_b = \frac{1.04 * p}{1.5}$$

On prendra p=k= $2.22 *10^{-6} \text{ m/s} = 8 \text{ mm/h}.$

$$d_b = 1.04*8/1.5 = 5.54mm$$

$$D_b=5.54m$$

2. la portée (L):

$$L=3d^{0.5}h^{0.25}=3*(5.54)^{0.5}*35^{0.25}=11.2m$$

 $L=11.2m$

3. l'écartement :

On a:

$$E_r = (1.3-1.02)*L$$

$$E_a = (0.8 - 0.5) L$$

Etant donner que le vent et faible :

$$E_r = 1.03*L = 1.3*11.2 = 14.56m \Rightarrow E_r = 14.56m \text{ Er normalisé} = 18m$$

$$E_a=0.6 L=0.8*11.2=6.96m \Rightarrow E_a=8.96m E_a normalisé=18m$$

4. le débit :

$$Q = m \frac{\Pi d^2}{4} \sqrt{2gh}$$

Avec : m : est le coefficient de débit

m= (0.94- 0.95) pour les pressions moyennes (2-4) bars et un diamètre \leq 12 mm

m=(0.98-0.99) pour des grandes pressions où le diamètre des buses > 12 mm

$$Q = 0.95 \frac{3.14(5.4*10^{-3})^2}{4} \sqrt{2*9.81*35} = 2.25 m^3 / h$$

q=2.25 m³/h

5. la pluviométrie :

$$P = \frac{q}{E_{T^*E_a}} = (2.25*10^3)/(18*18) = 7 \text{ mm/h}$$

$$P=7mm/h$$

6. le temps nécessaire pour donner une dose par un asperseur :

$$D_{net} = (H_{cc} - H_{pf}) *Z *y = .0.6 *210 *1./3 = 42mm$$

Dnett= 42mm

$$T = \frac{\text{dose}}{p} = 42/29.2 = 1.44h$$
;

$$T=2h$$

7. volume fourni par un asperseur par mois (v):

a. Nombre d'irrigations par mois (NI) :

B_{net} = (88.91*0.7)=62.24mm pour le mois de pointe de la pomme de terre

$$N_{irri} = \frac{\text{besoin net}}{\text{dose net}} = 62.24/42 = 1.4$$

$$N_{irri}=1$$

b.la durée d'une rotation d'irrigation :

D.R.
$$I = \frac{\text{nombre jrs/mois}}{\text{Nirri}} = \frac{25}{1} = 25 \text{ jours}$$

Dimensionnement du réseau d'irrigation et des ouvrages annexes

\triangleright le volume fourni par un asperseur(V_{asp}):

 $V_{asp} = (nbr de position d'asperseur par jour)*(nbr de jour par mois)*dose*E_r*E_a$

Nombre de position d'asperseur par jour =tps max de travail / tps d'irrigation

$$=20/20=1$$

$$V_{asp} = 1*25*0.042*18*18 = 340.2m^3/mois$$

$$V_a = 340.2 \text{ m}^3 / \text{mois}$$

! le volume total :

$$V_{tot}$$
=besoin * S = 88.91*10*7.24=6474.56 m³

$$V_{tot} = 6474.56 \text{ m}^3 / \text{mois}$$

; Avec :

S: surface de la parcelle

8. Nombre d'asperseurs :

$$N_{a} = \frac{V_t}{V_a} = \frac{6474.56}{340.2} = 19.03 \text{ asperseurs};$$

$$N_a = 19$$
asperseurs

9. calculs de la rampe :

a. Longueur de la rampe (L_r) :

$$L_{r}\!\!=\!\frac{\text{larger deterrain}}{\frac{2}{2}}\!-\!\frac{\text{Ea}}{2}\!\!=\!\!185/2\text{-}18/2\!\!=\!\!83.5~\text{m}$$

$$L_{\rm r} = 83.5 \text{ m}$$

b. le nombre d'asperseurs par rampe (n_a):

$$n_a = \frac{Lr}{E_a} + 1 = \frac{83.5}{18} + 1 = 5..63$$
 asperseurs

c.le nombre de rampes qui fonctionnent en même temps (N_r) :

$$N_r = \frac{Na}{na} = \frac{19}{6} = 3$$

$$N_r=3$$

d.Le débit d'une rampe(Q_r):

$$Q_{rampe} = q_{asperseur} * n_a = 2.25 * 6 = 13.5 \text{m}^3/\text{h}$$

$$Q_{rampe} = 13.5 \text{ m}^3/\text{h}$$

e.Le nombre de position d'une rampe (N_{pr}) :

$$N_{pr}=L_{terrain}/E_r=385/18=21.38$$
 positions

Dimensionnement du réseau d'irrigation et des ouvrages annexes

III.2.2. Calculs hydrauliques:

1.Calcul des pertes de charge (formule de MANING) :

$$j = a \frac{Q^b}{D^c}$$

Avec:

 $a=10.294 n^2$ telle que n : rugosité=0.01.

b=2 et c=5.333 « fonction du matériau de la conduite (aluminium pour notre cas) ».

> Calcul de la longueur fictive :

$$\mathbf{l_{f}} = \frac{\mathbf{E_a(n+1)(2n+1)}}{6*n} = \frac{18*(6+1)(2*6+1)}{6*6} = 136.5 \text{ m}$$

$$1_f = 136,5m$$

$$L_{fT} = (L_{PR} - E_r) + l_{fr} = (186,75 - 18) + 136.5 = 305.25 \text{ m}$$

$$L_{fT} = 305.25 \text{ m}$$

$$L_{PR} = L/2 - Er/2 = 385/2 - 18/2 = 186.75m$$

> Calcul de la perte de charge unitaire :

$$20\% = \frac{\Delta H}{H} \text{ donc}$$
 $\Delta H = J = 35 * 0.2 = 7 \text{ m.c.e}$

$$\Delta H = 7 \text{ m}$$

$$j = \frac{J}{L_{fT}} = \frac{7}{305.25} = 0.022$$

$$J = 0.022 m/m$$

Calcul de diamètre de la porte rampe :

$$D_{ec} = \sqrt{\frac{4*q_{pr}}{\pi*v}}$$
; avec: $q_{pr} = n * q_r$; $V = V_{ec} = (1.25-1.5) \text{ m/s}$

n : nombre de rampe qui fonctionne en même temps = 3 rampe

$$q_{pr} = 3*13,5 = 40,5 \text{m}^3 / \text{h}$$

$$q_{pr} = 21 \text{ m}^3 / \text{h}$$

$$Dec = \sqrt{\frac{4*40,5/3600}{3,14*1,35}}$$

$$Dec = 0.103m = 103mm$$

$$D {=} \sqrt{\frac{4*q_{pr}}{\pi*v}} \quad ; \ V {=} \ V_{max} = 1.8 \ m/s \label{eq:proposition}$$

$$Dec = \sqrt{\frac{4 * 40.5/3600}{3.14 * 1.8}}$$

$$Dec = 0.089 \text{ m} = 89 \text{mm}$$

Dimensionnement du réseau d'irrigation et des ouvrages annexes

D = 89mm

$$j = \frac{a*q_{pr}^b}{D^c}$$
; Avec: $a=10.294 \text{ n}^2$; $b=2$; $c=5.33$

Et : n : coefficient de rugosité

✓
$$n = 0.095$$
 ; pour acier galvanisé + raccord

$$\checkmark$$
 n=0.01 ; pour un alliage aluminium (raccord)

$$D = \sqrt[5.33]{\frac{10.294n^2 * q_p^2 \, r}{j}} = \sqrt[5.83]{\frac{10.294*0.01^2 (40.5/3600)^2}{0.022}} = 0.105 m = 105 mm$$

On prend le diamètre le plus grand qui est le diamètre calculé par les pertes de charge dans ce cas $D = 98 mm \quad qui \ correspond \ au \ diamètre \ normalisé$

c. Recalcul de j avec le diamètre choisi :

$$j = \frac{a*q_{pr}^{b}}{D^{c}} = \frac{10.294*0.01^{2}*(40.5/3600)^{2}}{0.100.4^{5.88}} = 0.035 \text{m/m}$$

$$j = 0.0075 \text{m/m}$$

$$J_r = \Delta H - j*L_{pr} = 7 - 0.035*186,75 = 0.49m$$

$$J_r = 0.49 \text{m}$$

Calcul de diamètre de la rampe :

Le calcul du diamètre se fait en tenant compte aux pertes de charge.

La perte de charge disponible pour la rampe la plus défavorisée est donnée par la formule suivante :

$$i_r = 7 - \left[i(L_{pr} - E_r)\right] = 7 - \left[\frac{\Delta H}{L_{ft}}(L_{pr} - E_r)\right] = 7 - \left[\frac{7}{305.25}(186,75 - 18)\right] = 1..14m$$

Les pertes de charge unitaires dans la rampe sont :

$$i_{runitaine} = \frac{i_r}{L_f} = \frac{1,14}{83} = 0,0137$$

$$D = \sqrt[5.58]{\frac{10.294 n^2 * q_{pr}^2}{j_r}} = \sqrt[5.88]{\frac{10.294 * 0.01^2 (40.5/3600)^2}{0.0137}} = 0,075 m$$

$$D = 75 mm$$

On prend le diamètre le plus grand qui est le diamètre calculé par les pertes de charge dans ce cas D = 75mm qui correspond au diamètre normalisé.

Dnormalisé = 90mm

III.3. Le réseau de distribution

Le réseau de distribution est un système de conduites connectées entre eux. L'eau est distribuée à partir de ce réseau qui doit être dimensionné de telle façon à assurer le débit maximal et la pression suffisante à chaque parcelle. Alor pour les arboricultures le débit de dimensionnement est calculé à partir des besoins et les débits des goutteurs. Pour les reste parcelles on va calculer le débit de dimensionnement a partir des besoins de la culture qui demande beaucoup d'eau.

III.3.1. Mode du tracé et implantation des bornes

Le réseau étant en effet destiné à amener l'eau en un certain nombre de points, il est préférable d'étudier d'abord les tracés des conduites et après on place les bornes.

La position de chaque borne résulte d'un compromis entre l'intérêt économique qu'il y a à limiter le nombre de bornes et le désir d'une utilisation facile par l'agriculteur.

En effet une forte densité améliore les conditions de travail des agriculteurs en diminuant les longueurs de canalisation mobile de surface, mais il en résulte une augmentation importante des frais d'installation du réseau fixe.

On admet généralement que l'implantation des bornes répond aux critères suivant :

- Pour les zones de petites et moyennes exploitations :
 - > une prise par ilot d'exploitations.
 - > quatre (04) prises maximum sur une même borne.
 - > bornes implantées en limites d'ilots.
 - > prend en considération la possibilité d'une modification de la structure foncière.
- pour les zones a grande exploitation.
 - ➤ La borne se situe au centre de la parcelle.
 - ➤ 4 prises sur les mêmes bornes.

III.3.2. Rôle et fonction de la borne d'irrigation

La borne assure quatre fonctions:

- > Le vannage.
- > La stabilisation de la pression.
- La limite du débit.
- Le comptage du volume d'eau délivré.

III.3.3.Les débits caractéristiques pour les différentes parcelles

Le dimensionnement du réseau de distribution nécessite la détermination des débits des différentes parcelles qui constituent le périmètre à étudier.

Pour les arboricultures (parcelles I-II-III-IV-V-VI-VII-VIII) on a déjà calculé leurs débits.

pour les parcelles (IX-X-XI) on va calculer les débits à partir du plus grand besoin de la culture qui s'adapte dans la région (arboriculture, maraichère, culture industrielle et cultures céréalières et fourragères). après l'analyse des besoins on trouver que le calcule de débit ce fera à partir q spécifique des arboricultures (pécher). $Q_{ct}=q_{sp}*s$

Tableau III-5: Les débits caractéristiques pour les différentes parcelles du périmètre

Les parcelles	Le débit caractéristique	Le débit caractéristique	
	(m ³ /h)	(l/s)	
SI	32.04	8.90	
S II	47.39	13.16	
S III	36.40	10.11	
SIV	55.6	15.44	
S V	37.11	10.31	
S VI	45.36	12.60	
S VII	35.56	9.88	
S VIII	41.44	11.51	
SIX	39.96	11.10	
SX	36.49	10.14	
S XII	32.51	9.03	
total	440	122.22	

III.3.4. Dimensionnement du réseau de distribution

L'acheminement des eaux vers les différentes parcelles s'effectue par gravité à l'aide de conduites en PEHD, le secteur se compose de 11 parcelles.

Le Calcul a été fait à l'aide du logiciel WATER-CAD dont la figure III.1 représente la distribution des vitesses et des pressions.

Tableau III-6: Caractéristiques des nœuds et bornes d'irrigation

Nœud	Elévation	Demande	charge	Pression
Nœud	(m)	(L/s)	(m)	(m)
N1	341.57	22.06	380.88	39.2
N2	325.02	24.47	380.36	55.2
N3	328.37	21.21	378.86	50.4
N4	309.43	20.02	378.16	68.6
N5	315.92	10.31	376.28	60.2
N6	323.61	12.60	374.87	51.2
N7	360.77	11.51	371.29	10.5

Tableau III-7: Caractéristiques des conduites de distribution

Tronçons	longueur (m)	Diamètre (mm)	débit (L/s)	Vitesse (m/s)	Gradient de PDC (m/km)
T1	157.77	315	122.18	1.57	7.343
T2	100.74	315	100.12	1.28	5.078
Т3	161.39	250	75.65	1.54	9.315
Т4	137.29	250	54.44	1.11	5.065
T5	99	160	34.42	1.71	19.051
Т6	142.23	160	24.11	1.2	9.853
Т7	230.55	110	11.51	1.21	15.542

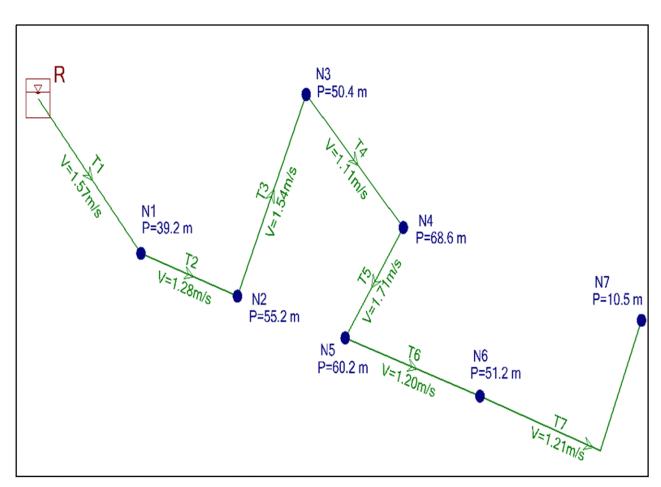


Figure III-2: répartition des vitesses et des pressions dans la conduite principale

III.4.Dimensionnement de la station de pompage

En se basant sur les données existantes, cette partie permet de faire le dimensionnement de la station de pompage: Le choix des pompes, la définition des ouvrages et des appareillages, choix du mode de fonctionnement et la protection de l'installation.

III.4.1. Choix de la variante d'adduction par pompage et l'emplacement de la station de pompage :

Un projet d'alimentation en eau d'irrigation de la 1ére élévation est constitué d'une prise d'eau, une station de pompage et un bassin d'irrigation.

Ces constructions se font suivantes des schémas types, de dispositions plus adéquates pour un tel type de conditions d'exploitation, la construction dépend aussi du relief, de l'environnement. Et pour ces raisons on prend en considération certains paramètres essentiels.

- > Il ne faut jamais construire la station de pompage, dans les zones sismiques et les zones non stables
- Les lignes d'électricité doivent être placées le long de champ d'isolement des routes et des quartiers d'habitation
- ➤ Il faut prendre en considération la distance entre la station de pompage et les différents ouvrages urbains, une distance qui assure l'élimination des dangers provoqués par l'un au l'autre.
- ➤ Choisir le cheminement le plus court pour la conduite de refoulement pour réduire les pertes de charges ainsi que les travaux de terrassement.
- Construire la station de pompage en prenant en considération les normes internationales dans ce domaine.

La station de pompage doit être équipée de

- L'accès à tous les ouvrages
- Plateforme avec une très bonne qualité de béton
- Prévoir des moyens de dérivation des eaux pluviales, drainage par des caniveaux
- Faire un profil en long de l'emplacement de la prise d'eau et la conduite de refoulement.

III.4.2. Type de bâtiment de la station

- Le bâtiment de la station de pompage se construira pour abriter l'ensemble des installations suivantes :
- équipements hydrauliques, hydromécaniques, principaux et auxiliaires.
- appareillage électrique.
- locaux de personnel, etc. ...

Le type de bâtiment choisi devra en premier lieu satisfaire aux facteurs suivants :

- mode de raccordement prise d'eau Station de refoulement
- but de la station de pompage (AEP, Assainissement ou Irrigation)
- les matériaux de construction et leur disponibilité
- Conditions de (climat, relief, géologie, hydrogéologie...) de la région

- L'encombrement dû à la pompe et ses accessoires. On distingue donc les types bâtiments résultants de ces conditions, d'où on a :
 - ➤ Bâtiments type Bloc
 - ➤ Bâtiments type bâche sèche
 - ➤ Bâtiments type bâche mouillée pompe submersible
 - ➤ Bâtiments type enterrée
 - ➤ Bâtiments type semi enterrée

Vu les conditions géologiques et topographiques du site de la station, on opte pour un bâtiment type Bâtiments type bâche sèche tel que la partie souterraine est constituée par :

- > Bâche d'aspiration.
- > Fosse des pompes.
- > Chambre pour les vannes.

Avantage du bâtiment:

- Installation des pompes est verticale à sec.
- Le cout de réalisation n'est pas très élevé.
- > Facilité de la réalisation et de la maintenance

III.4.3.Dimensions de la bâche

a. volume de la bâche

Le volume du réservoir de stockage de la station est adopté égal au débit total qui arrive en un temps déterminé.

$$Vt = Q * t$$

Vt : volume de la bâche en (m³)

Q : débit total qui arrive à la station de pompage

t : temps de stockage des eaux dans la bâche pendant l'arrêt des pompes, Pour notre projet on considère que la station de pompage fonctionne pendant 4h/jour

on fixe t = 4 heures

on aura done:

$$Vt = 439,84 * 4 = 1759.39$$
m³

Le volume total de la bâche sera : $V = 1759.39 \text{m}^3$

b.surface de la bâche

On a : $S = \frac{V}{H}$ (la forme de bâche est rectangulaire).

S : surface de la bâche en (m^2) ; V : volume de la bâche en (m^3)

H: la hauteur de la bâche en (m), on fixe cette hauteur à H=6m

Dimensionnement du réseau d'irrigation et des ouvrages annexes

c. Longueur et largeur de la bâche

On a : S = B. L (la forme de la bâche est rectangulaire).

L : la longueur de la bâche en (m)

B: la largeur de la bâche

Tableau III-8: Dimensions de la bâche d'aspiration

Dimensions	la bâche		
Volume (m ³)	1759.4		
Hauteur (m)	6		
Surface (m ²)	293.2		
Longueur (m)	20		
Largeur (m)	15		

III.4.4.Détermination de la hauteur d'élévation calculée

La hauteur d'élévation se calcule comme suivant :

$$Hcal = ha + hr + \sum hp (asp) + \sum hp (ref) + Pexh$$

Avec:

➤ ha: Hauteur d'aspiration (m);

> hr : Hauteur de refoulement (m);

 $ightharpoonup \Sigma h_p(asp)$: Pertes de charges à l'aspiration (m);

 \triangleright $\sum h_p$ (ref): Pertes de charges au refoulement (m);

> P_{exh}: Pression nécessaire à l'exhaure (sortie du collecteur)

 $ightharpoonup P_{\text{exh}} = (1,0 \div 1,5) \text{ m}$; On prend $P_{\text{exh}} = 1 \text{ m}$

Pour notre cas:

Hg = ha + hr (hauteur géométrique)

D'où:

$$Hg^{max} = \nabla max - \nabla PBE$$

$$Hg^{min} = \nabla max - \nabla PHE$$

$$Hg^{moy} = (Hg^{max} + Hg^{min})/2$$

On a done:

$$\nabla$$
max = 379 m

$$\nabla PBE = 300 \text{ m}$$

$$\nabla PHE = 306 \text{ m}$$

D'où

$$Hg^{max}=79m$$

$$Hg^{min} = 73 m$$

$$\Rightarrow$$
Hg^{moy} =76 m

$$\sum h_p = \sum h_p (asp) + \sum h_p (ref)$$

Pour calculer H_{calmax} et H_{calmin} on va estimer des pertes de charge pour l'aspiration et le refoulement

4m de pdc→1Km

Notre conduite de refoulement à une longueur de 870 m.

D'où:

$$hp(ref) = \frac{870}{1000} * 4 = 3,48m$$

$$\sum$$
hp (ref) =3.48 m

$$\sum hp(asp) = = \frac{3}{1000} * 4 = 0.06 m$$

Done:
$$\Sigma hp=3.48+0.06=3.54 \text{ m}$$

$$H_{cal}^{max} = 79 + 3,54 + 1 = 83.54 m;$$

$$H_{cal}^{min} = 73 + 3.18 + 1 = 77.54m;$$

$$Hcal^{moy} = (79,18+75,18)/2=80.54 \text{ m}$$

Donc la hauteur d'élévation

$$H_{Cal} = 80.54 m$$

III.4.5.Choix du nombre pompes à axe horizontal multicellulaires

Pour une seule pompe on a:

$$Q_{cal} = \frac{Q_{ista}}{n} = \frac{0,12218}{1} = 0,12218 \text{m}^3/\text{s}$$
 D'autre part on a Heal = 80.54 m

D'où d'après le logiciel caprar pump tutor on trouve que cette pompe à comme caractéristiques :

Diamètre d'aspiration Da =200mm

Diamètre de refoulement Dr =150 mm

Débit Q = 1221/s

Hauteur manométrique totale H =80.5 m

La vitesse de rotation n = 1750 tr/min

Puissance absorbée Pa = 137 Kw.

NPSHr = 8.33 m

Chapitre III:

Dimensionnement du réseau d'irrigation et des ouvrages annexes

Le rendement $\eta = 70.2\%$

❖ pour n=2 :

Pour deux pompes on a:

$$Q_{cal} = \frac{Q_{inst}}{n} = \frac{0.12218}{2} = 0.061 \text{ m}^3/\text{s}$$

D'autre part on a Hcal =80.54 m

D'où d'après le logiciel caprari pump tutor on trouve que cette pompe à comme caractéristiques :

Diamètre d'aspiration Da = 150mm

Diamètre de refoulement Dr = 125 mm

Débit Q = 741/s

Hauteur manométrique totale H = 81.3m

La vitesse de rotation n = 1750 tr/min

Puissance absorbée Pa = 79.6Kw.

NPSHr = 3.49m

Le rendement $\eta = 74.8 \%$

\Rightarrow pour n=3:

Pour le nombre de pompes principales égales à 3 on a

$$Q_{cal} = \frac{Q_f}{n} = \frac{0.12218}{3} = 0.04 \,\text{lm}^3/\text{s}$$

D'après le logiciel caprari pump tutor, on trouve que cette pompe à comme caractéristiques

Diamètre d'aspiration Da = 150 mm

Diamètre de refoulement Dr = 125 mm

Débit Q = 471/s

Hauteur manométrique totale H = 81 m

La vitesse de rotation n = 1750 tr/min

Puissance absorbée Pa = 50.2Kw.

NPSHr = 2.61m

Le rendement $\eta = 76\%$

Et les résultats sont représentés dans le tableau suivant

Tableau III-9: Choix de la variante pour le nombre de pompes

°N	Qcal (1/s)	H _{cal} (mce)	Pompe	ι (%)	n (tr/min)	P (Kw)	(NPSH)r (m)
1	122	80.5	PM 150/3C	79,7	1750	137	8.33
2	61	80.5	MEC-AZ4/125A	79	1750	79.6	3.49
3	41	80.5	PM 125/3C	76	1750	50.2	2.61

On remarque qu'on a de bonnes caractéristiques pour la variante $N^\circ 3$ donc on prend une installation de 3 pompes

III.4.5.1.Choix du nombre de pompes de secours

D'après le choix de nombre de pompes. On détermine le nombre de pompes de secours. Les intervalles des nombres de pompes sont :

Si:

 $N_P \le 4 \rightarrow 1$ pompe de secours

 $4 \le N_p \le 6 \rightarrow 2$ pompes de secours

 $N_p \ge 6 \rightarrow 3$ pompes de secours

Pour notre projet, on a une seule pompe de secours.

Donc, la variante choisie est 3 pompes à axe horizontal multicellulaires, avec une pompe de secours ayant les caractéristiques suivantes

Diamètre d'aspiration Da = 150 mm

Diamètre de refoulement Dr = 125 mm

Débit Q = 471/s

Hauteur manométrique totale H = 81 m

La vitesse de rotation n = 1750 tr/min

Puissance absorbée Pa = 50.2Kw.

NPSHr = 2.61m

Le rendement $\eta = 76\%$

III.4.5.2.Choix du moteur électrique

D'après le catalogue des moteurs on trouve que notre moteur électrique a les caractéristiques suivantes :

Un moteur triphasé 60Hz

Tension nominale 460V

Vitesse nominale 1750t_r/min

Nombre de pôles 4

Puissance nominaleP₂ 75KW

Courant nominale –A

Degré de protection IP55

III.5. Détermination de la hauteur admissible d'aspiration

Pour que la pompe soit bien calée vis-à-vis de la cavitation

Nous avons:

$$(NPSH)d = (NPSH)r + 0.5$$

(NPSH)d =
$$\frac{Pat}{\varpi} - \frac{Pv}{\varpi} - \sum h_p^{asp} - \frac{V_{asp}.Vasp}{2g} - h_{adm}^{asp} = (NPSH)r + 0.5$$

$$\Rightarrow h_{adm}^{asp} = \frac{Pat}{\varpi} - \frac{Pv}{\varpi} - \sum h_p^{asp} - \frac{V_{asp}.Vasp}{2g} - (NPSH)r - 0.5$$

Done:

La longueur d'aspiration $L_{asp} = 3 m$

$$\sum h_{asp}^{lin} = \frac{3}{1000}.4 = 0.06 m$$

Et:

$$\sum h_p^{\sin g} = (0,10 \div 0,15). \sum h_p^{\lim}$$

$$\sum h_p^{asp} = 0.06 + 0.006 = 0.066m$$

$$V_{asp} = \frac{4Q}{\pi D_a^2} = \frac{4*0.041}{3.14*(0.150)^2} = 2,32m / s$$

$$\frac{VaspVasp}{\overline{2g}} = 0,27$$

$$\frac{Pv}{\omega} = 0.183 \qquad \text{À } 25^{\circ} \text{ c}$$

$$h_{adm}^{asp} = 10,33 - 0,183 - 0,066 - 0,27 - 2,61 - 0,5 = 6,05m$$

Notre pompe est loin de risque de cavitation.

La cote d'aspiration sera donc :

$$\nabla asp = \nabla min + h_{asp}^{adm} - 0.1$$
$$= 300+6.05-0.1 = 305.95 \text{ m}$$

III.6.Détermination du diamètre économique de refoulement

Il faut tout d'abord déterminer les pertes de charge engendrées dans les canalisations. Connaissant la hauteur géométrique, on peut déterminer les hauteurs manométriques totales (HMT) correspondantes à chaque diamètre

La hauteur géométrique Hg = 73m

Calcul des pertes de charge

La formule de Darcy WEISBACH

$$\sum h_p = \frac{8 \lambda L Q^{-2}}{\pi^2 g D^{-5}}$$

Où Q : est le débit moyenne de l'eau dans la section (m/s).

g: l'accélération de la pesanteur. $(g = 9.81 \text{m/s}^2)$

L: longueur de la conduite (m)

D : diamètre intérieur de la conduite (m).

 λ : Coefficient de frottement linéaire (coefficient de perte de charge). donné par la formule

$$\lambda = [1,14 - 0.86 \text{ x Ln } (\epsilon / \Phi)]^{-2}$$

Avec : L=870m

Où:

$$V = \frac{4Q}{\pi * D^2}$$
 et $0.8 \le V \le 1.5$

ε : coefficient de rugosité équivalente de la paroi

Dans notre projet en prend E=0.001

Φ : Diamètre de la conduite.

Fexp: frais d'exploitation

Ea : énergie consommée annuellement par l'installation de pompage en (Kwh) donnée par :

Ea = Pt *1*365 ; Pt =
$$n*p$$

n = nombre de pompes en fonctionnement <math>n = 3

p = puissance absorbée par l'installation de pompage, donnée par

La formule suivante :
$$P = \frac{9,81.Q.HMT}{\eta p}$$
 (Kw)

Q : le débit à refouler.

HMT : la hauteur manométrique totale.

 $\eta_{\,p}\,$: Le Rendement de pompage (80%).

e : le tarif de l'énergie électrique. e = 4.13Kw/h (SONELGAZ).

Les résultats de calcule sont représenté dans le tableau ci-dessous

Tableau III-10: les frais d'exploitation

D (mm)	λ	Σhpm)	HMT(m)	Pt (kw)	Ea(kwh)	Fexp(DA)
50	0,0091661	31507,459	31584,459	141,96256	51816,33609	214001,46803
63	0,080819	87476,626	87553,626	393,52700	143637,35491	593222,27577
75	0,0881762	39914,085	39991,085	179,74780	65607,94764	270960,82374
90	0,0969984	17645,466	17722,466	79,65711	29074,84541	120079,11156
110	0,1083306	7225,517	7302,517	32,82260	11980,24810	49478,42465
125	0,1166173	4104,820	4181,820	18,79601	6860,54480	28334,05001
150	0,1301856	1841,568	1918,568	8,62338	3147,53482	12999,31881
200	0,1569572	526,881	603,881	2,71426	990,70529	4091,61284
250	0,18385	202,230	279,230	1,25505	458,09406	1891,92849
300	0,2113076	93,409	170,409	0,76594	279,56738	1154,61329
315	0,2197011	76,096	153,096	0,68812	251,16348	1037,30517
350	0,2396229	49,008	126,008	0,56637	206,72465	853,77281
400	0,2690181	28,220	105,220	0,47293	172,62078	712,92381
500	0,3317777	11,405	88,405	0,39735	145,03336	598,98778

D'âpres le tableau on a les frais d'exploitation minimale ceux qui ont un diamètre 200mm, 250mm et 300mm et on a la vitesse pour le diamètre D=350mm \rightarrow V= $\frac{4*Q}{3.14*D^2}$ = 1.26m/s>1.2

Et pour le diamètre D=400mm \rightarrow V= $\frac{4*Q}{3.14*D^2}$ =0,97 donc $0.8 \le$ V \le 1.2 on prend le diamètre économique D=400mm

III.7.Dimensionnement du réservoir de stockage.

Pour assurer une irrigation en continue, et pour que le réseau de distribution soit alimenté par gravité, un réservoir de stockage s'avère inévitable,

Et pour le dimensionnement de ce dernier, on a: La durée d'arrosage = 10 h/j et le débit totale égal a 122,18

Le réservoir de stockage serait de forme circulaire et ses dimensions sont mentionnées dans le tableau ci-dessous

Tableau III-11: les dimensions du réservoir de stockage.

I a h a s a i u (m ³ /h)	Volume journalier	Hauteur du	Le rayon du
Le besoin (m ³ /h)	Nécessaire (m³)	réservoir (m)	réservoir (m)
439.84	4398	10	12

Conclusion

Dans ce chapitre, on s'est intéressé au dimensionnement des différents organes du réseau d'irrigation, en passant par la station de pompage puis la conduite de refoulement et le réservoir de stockage, vers la conduite principale qui alimente les conduites secondaires, où ces dernières alimentent les porte-rampes et les rampes. Enfin, on arrive aux goutteurs qui alimentent les plantes.

Chapitre IV Calcul technicoéconomique

Introduction

L'étude technico-économique est nécessaire lors d'une étude d'un projet hydraulique elle permet d'estimer le cout de réalisation, son objectif essentiel est minimiser le cout de réalisation en choisissant d'autre matériaux qui ont les mêmes caractéristiques.

Pour le cas de notre projet on va faire une estimation sur deux réseaux (réseau de distribution et réseau localisé).

IV.1.Devis du réseau d'irrigation (distribution et localisée).

Les globaux des pièces sont présentés dans le tableau suivant.

Tableau IV-1: Factures pro-forma des pièces du réseau d'irrigation

Pièces	Unité de mesure	Quantité	Prix unitaire (DA)	Montant (DA)
TubeØ20 PEBD	m/l	18 000	29,07	523 260
TubeØ90 PEHD	m/l	770	350,09	269 569,3
TubeØ110 PEHD	m/l	230,55	721,62	124 612,28
TubeØ160 PEHD	m/l	241,23	1 526,93	275 544,97
TubeØ250 PEHD	m/1	298,68	3 709,88	775 074,6
TubeØ315 PEHD	m/1	258,51	5 881,51	1 058 228,8
Vanne Ø90	Un	8	4500	36 000
Bouchon Ø20	Un	100	20	2 000
Bouchon Ø90	Un	3	300	900
Coude 90° Ø90	Un	2	3243,27	6 486,54
Coude 90° Ø160	Un	1	3471,55	3 471,55
Coude 90° Ø250	Un	1	3758,03	3 758,03
Coude 120° Ø315	Un	1	3976,2	3 976,2
Filtre	Un	1	15432,77	15 432,77
Goutteur réglable	Un	8795	6,13	53 913,35
Total 1				3 152 228,36

IV.2. Factures pro-forma de la station de pompage, des conduites et du réservoir

IV.2.1.Calcul du volume de terrassement

IV.2.1.1.1a Largeur du fond de la tranchée

La pose en terre des conduites s'effectue dans une tranché dont la largeur de fond B sera donnée par la formule suivante :

$$B=D+2\times 0,3$$
(IX.1)

Avec : B : largeur de tranché (m)

D : diamètre de la conduite (m)

IV.2.1.2.profondeur de la tranchée

La profondeur de la conduite doit permettre la réalisation correcte des branchements particuliers, empêcher toute intercommunication avec les autres conduites.

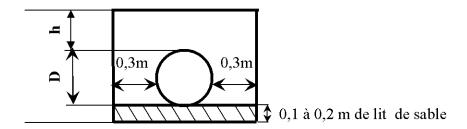


Figure IV. 1: schéma d'une tranchée

H=e+d+h (m)

Avec:

H: profondeur de la tranchée (m).

e : hauteur de lit de pose (m).

d : diamètre de la conduite (m).

h: la hauteur du remblai au-dessus de la conduite.

IV.2.2.les conduites

IV.2.2.1. Calcul du volume de déblai

La section de tranché est la section de rectangle.

S=B*H telle que : B la largeur de tranché.

Donc: B=2*0,3+ Ø(IX.2)

La profondeur de fouille est en fonction du diamètre de la conduite, de la température du lieu (max, min) et les sollicitations des charges mobiles.

 $H\geq D+0.8$

IV.2.2.2. Calcul du volume de lit de sable

Ce lit correspond à une couche de sable de 12cm sur le fond de la tranché, donc c'est une surface constante le long de la tranchée, on calcule cette surface en utilisant la formule suivante.

$$V = e^*B^*L....$$
 (IX.3)

IV.2.2.3. Calcul du volume de remblai

Ce volume est déduit à partir du volume du déblai, c'est le volume qu'occupent la conduite et le volume occupé par le lit de sable.

$$V_{\text{r}} = V_{\text{d}}\text{-}(V+Vs).....(IX.4)$$

Avec:

V_r: Volume du remblai compacté (m³)

V_d: Volume du déblai (m³)

V_s: Volume du sable

V : Volume occupé par la conduite (m³) ; $V = L^*(\frac{\pi D^2}{4})$

L : Longueur de la conduite

D : Diamètre de la conduite.

Les volumes des travaux pour les conduites sont représentés dans le tableau IX.2

Tableau IV-2: Les volumes des travaux pour les conduites

4	Diamètre	Longueur	Volume de	Volume de lit	Volume de
tronçon	(mm)	(m)	Déblai (m³)	(m^3)	remblai (m³)
T1	315	157,77	189,832808	17,323146	172,431771
T2	315	100,74	121,212887	11,061252	110,073743
Т3	250	161,39	171,476875	16,46178	154,966033
T4	250	137,29	145,870625	14,00358	131,817983
T5	160	99	87,2784	9,0288	78,229504
T6	160	142,23	125,389968	12,971376	112,398496
T7	110	230,55	181,696455	19,64286	162,044097
Total			1022,75802	100,49279	921,961625

IV.3 : Devis estimatif pour les terrassements, la station de pompage et le réservoir

Tableau IV-3: Factures pro-forma terrassement, station de pompage et le réservoir.

Désignation des travaux	Unité	Quantité	Prix unitaire DA	Montant DA
1) déblai en terrain	m ³	1022,758	300	306 827,4
2) lit de sable	m ³	100,492	800	80 393,6
3) remblaiement de tranchée	m ³	921,961	200	184 392,2
	station de	pompage		
PM 125/3C	U	4	1 450 000	5 800 000
Accessoire		1	250 000	250 000
Réservoir	m ³	4398	10 000	43 980 000
Total 2				50 601 613

IV.5.Devis estimatif total

D=total 1+total 2=53 753 841,6DA

Conclusion

D'après le coût de la projection de réseaux de distribution et le réseau localisé on remarque que l'estimation du réseau de distribution est très élevée, cette élévation est due à l'utilisation d'un nombre de conduites assez important, malgré cette élévation du cout ,le projet va apporter l'économie sur l'énergie électrique ,puisque les agriculteurs sont pas obliger de payer les factures d'électricité de moment que leur champ agricole reçoit l'eau seulement par gravité.

Chapitre V Organisation de chantier

Introduction

Le but de l'organisation de chantier est à cet effet, de réaliser des projets dans des délais courts et de moindres coûts.

L'organisation de chantier consiste à rechercher constamment, la meilleure façon d'utiliser de façon économique la main d'œuvre et les autres moyens mis en œuvre pour gérer le chantier.

Afin d'atteindre cet objectif, il est impératif de :

- ✓ Définir avec précision les méthodes d'exécution, le mode opératoire permettant la mise en pratique des techniques modernes de construction avec un haut rendement.
- ✓ Arrêter en quantité et en qualité le personnel à employer, le coût de la main d'œuvre ayant une incidence importante sur le prix de revient.
- ✓ Répartir et coordonner les taches par la concentration d'une main d'œuvre spécialisée.
- ✓ Structurer convenablement les postes de travail stabilisés pour les quels, on adoptera une mécanisation de plus en plus poussée.

V.1. Les actions reçues par les conduites :

La Pose des conduites demeure un facteur très important pour une protection des conduites celles-ci peuvent être poses de différentes manières selon le lieu et les obstacles rencontre si ils existent

Les conduites enterrées sont soumises à des actions qui sont les suivantes :

- ✓ Le tassement du terrain
- ✓ Les chocs lors de la mise en œuvre
- ✓ Action des racines des arbres
- ✓ La pression verticale due au remblai
- ✓ La pression résultant des charges roulantes
- ✓ La pression résultant des charges permanentes de surface
- ✓ La pression hydrostatique extérieure due à la présence éventuelle d'une nappe phréatique
- ✓ Le poids propre de l'eau véhiculée

V.2. Exécution des travaux :

Les principales étapes à exécuter pour la pose des canalisations sont :

- ✓ Vérification, manutention des conduites
- ✓ Emplacement des jalons les piquets
- ✓ Aménagement du lit de pose
- ✓ La mise en place des canalisations en tranchée
- ✓ Assemblage des tuyaux
- ✓ Faire les essais d'étanchéité pour les conduites et les joints
- ✓ Remblai des tranchées

Dans notre zone d'étude nous avons besoin de :

- ✓ pelle excavatrice pour le terrassement de la tranchée.
- ✓ Bulldozer ou un chargeur pour le remblayage.
- ✓ Camions pour le transport des tronçons des conduites.
- ✓ Grue automotrice pour soulever, déplacer et déposer les tronçons des conduites

V.2.1. Vérification, manutention des canalisations :

Les produits préfabriqués font l'objet de vérification sur chantier portant sur :

- ✓ Les quantités
- ✓ L'aspect et le contrôle de l'intégrité
- ✓ Le marquage en cas de défaut

Précautions:

Les conduites sont posées sans brutalité sur le sol où dans le fond des tranchées et ne doivent pas être roulées sur des pierres ou sur le sol rocheux, mais sur des chemins de roulement.

V.2.2.Choix des engins de terrassement :

Pour l'excavation des tranchées de notre réseau, on optera pour la pelle rétro.

Les aptitudes de la pelle rétro sont :

- ✓ creuser au-dessous de la surface d'appui
- ✓ creuser rapidement et précisément les tranchées à talus vertical
- ✓ creuser à une profondeur importante
- ✓ creuser dans la direction de la machine

V.2.3. Aménagement du lit de pose :

Les conduites doivent être posées sur un lit de pose de 0,1 m d'épaisseur qui se compose généralement de sable bien nivelé suivant les côtes du profil en long.

Mais si les terrains sont peu consistants, le fond des tranchées sera consolidé Chaque tuyau repose sur deux briques placées sur ce fond, le vide doit être rempli de sable.

V.2.4.La mise en place des canalisations

La mise en place des conduites répond aux opérations suivantes :

- ✓ Les éléments sont posés à partir de l'aval et l'emboîture des tuyaux est dirigée vers l'amont.
- ✓ Chaque élément doit être posé avec précaution dans la tranchée et présenté dans l'axe de l'élément précédemment posé.
- ✓ Avant la mise en place, il faut nettoyer le lit des tranchées.
- ✓ Le calage soit définitif par remblai partiel, soit provisoire à l'aide des cales.
- ✓ A chaque arrêt de travail, les extrémités des tuyaux non visitables sont provisoirement obturées pour éviter l'introduction des corps étrangers.

V.2.5.Remblai des tranchées

Après avoir effectué la pose des canalisations dans les tranchées, on procède au remblaiement par la méthode suivante :

- ✓ L'enrobage de (10 : 15 cm) au-dessus de la génératrice supérieure de la conduite,
- ✓ Le matériau utilisé est constitué par des déblais expurgés des pierres grossières ;
- ✓ A l'aide des engins on continue à remblayer par des couches successives. Pour cette étape on utilise la terre des déblais ;

Pour que les conduites résistent aux forces extérieures dues à des charges fixes et mobiles et au remblai il faut choisir des matériaux qui garantissent la résistance à ce dernier.

V.3. Nettoyage des conduites :

dans les canalisations il se forme généralement des dépôts organiques et limoneux pour palier a ceci on utilise un procède mécanique ou un procédé chimique à base d'acide passive

V.4. Surveillance et entretien du réseau :

Détection des fuites d'eau :

les principales causes de fuites et qui doivent donc être évités lors de la mise en place du réseau sont les suivantes :

- ✓ conduites placées où il y a risque de gel
- ✓ terrain agressif ou instable
- ✓ caractéristiques de la conduite non adaptées à la pression de distribution
- ✓ protection insuffisante par rapport au trafic de surface
- ✓ mauvaise qualité du matériau
- ✓ appui de la conduite sur un point dur
- ✓ affaissement de terrain

V.5. Exploitation du système d'irrigation :

Dans notre projet Exploitation du système d'irrigation se présente comme suit:

- ✓ Planification de l'utilisation de l'eau d'irrigation.
- ✓ Mesure d'exploitation et de répartition du système d'irrigation.
- ✓ Modernisation et amélioration du système en fonction de l'apparition de nouvelles techniques.
- ✓ Contrôle de l'état des terres irriguées.

V.5.1. Objectif de l'exploitation :

L'exploitation d'un système d'irrigation doit :

- ✓ Assurer le bon fonctionnement des conduites et des ouvrages.
- ✓ Utiliser de façon complète et rationnelle des ressources hydrauliques.
- ✓ Assure la réalisation des plans envisagés.
- ✓ Protéger les terres agricoles contre la submersion, la formation des marées, la salinisation, et la dégradation des sols par les eaux et les vents.

V.5.2. Estimation de l'état hydro agricole des terres irriguées :

Le phénomène de formation des sols humides et sols salés et du à la mauvaise utilisation de l'eau d'irrigation

- ✓ Réalisation d'un drainage pour les sols humides.
- ✓ Réalisation d'un drainage et lessivage pour les sols salés.

V.5.3. Mesures d'exploitation :

Ils consistent à faire un inventaire détaillé des surfaces susceptibles d'être touchées par ces phénomènes et une surveillance permanente qui se résume dans :

- ✓ Mesure de la variation du niveau de la nappe.
- ✓ Mesure de la concentration des sels de la nappe.
- ✓ Mesure de la concentration des sels dans le sol.
- ✓ Une bonne utilisation de l'eau d'irrigation.

V.5.4. Exploitation des ouvrages hydrauliques :

Les mesures à prendre, pour l'entretien des installations des systèmes d'irrigations sont :

- ✓ Gardiennage
- ✓ Mesures contre l'incendie.
- ✓ Les visites périodiques.
- ✓ Surveillance et maintenance des travaux

V.5.5.Maintenance des ouvrages et équipement :

a. Maintenance des premiers niveaux :

Pour les interventions courantes, les activités de maintenance de premiers niveaux sont généralement réalisés par les agents d'exploitation, proche des ouvrages dont ils ont la responsabilité, d'où une économie sensible en frais de personnel et déplacement, et une plus grande rapidité d'intervention.

b. Maintenance spécialisé :

Pour les interventions de niveau supérieur, par nature plus complexe, les moyens sont nécessairement plus spécifiques. Dans notre projet la maintenance spécialisée des spécialités se présente de la manière suivante :

Les spécialités les plus courantes sont les suivantes :

- ✓ Génie civil
- ✓ Appareillages :
 - -Mécaniques
 - -Electriques
 - -Electroniques

Conclusion générale

Ce mémoire a porté sur le dimensionnement d'un réseau d'irrigation de domaine colonel Amirouche Draa El-Mizane (wilaya Tizi-Ouzou) à partir du barrage de Ain Zaouïa.

A l'issu de ce travail on s'est intéressé sur le type du sol, la qualité des eaux d'irrigation et les cultures répondantes à l'aptitude culturale du sol. On s'aperçoit, en effet que notre sol a une salinité faible (≤8 mmhos/cm²), et que sa texture est fine avec 25 à 30% des éléments grossiers, le calcaire actif est inférieur à 25%, sa profondeur varié de 50 à 120 cm.

- Alors, ce sol est favorable à toutes les cultures méditerranéennes (arboriculture, maraichère, culture industrielle et cultures céréalières et fourragères).

L'eau contenant une faible quantité de sodium le S.A.R est estimé à 2.45

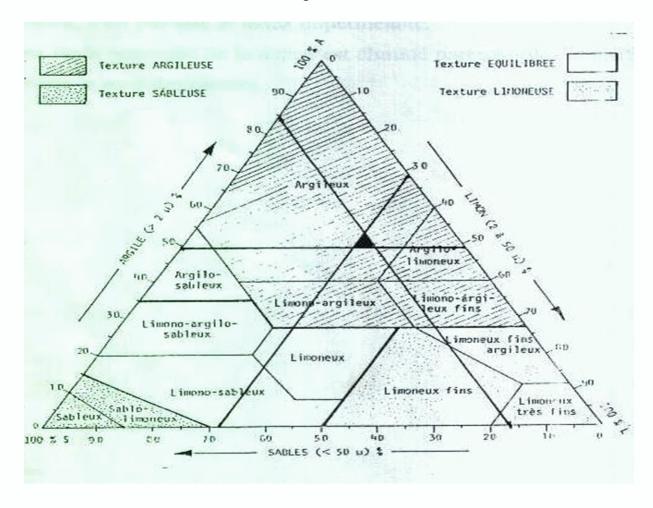
- L'eau de barrage de Ain Zaouïa est de très bonne qualité, donc elle peut être utilisée pour l'irrigation de notre périmètre.

Au long de cette étude on a déterminé les besoins en eau des cultures, ces derniers ont été estimé à 189 mm/mois.

On a évoqué aussi les différentes méthodes d'irrigation, dans notre zone d'étude toutes les contraintes ainsi que les cultures choisies nous guident vers les deux systèmes d'irrigation localisées pour l'arboriculture et aspersion pour les cultures maraichères.

Le but, à cet égard que devrait viser toute étude dans le domaine d'irrigation serait de dimensionner des différents organes du réseau d'irrigation, en passant par la station de pompage puis la conduite de refoulement et le réservoir de stockage, vers la conduite principale qui alimente les conduites secondaires, où ces dernières alimentent les porte-rampes et les rampes. Enfin, on arrive aux goutteurs qui alimentent les plantes.

Ce qu'il convient de mettre en exergue dans ce travail est le coût de projet, dont le devis estimatif est très élevée, environ de 54 million dinars, cette élévation est due à l'utilisation d'un nombre de conduites assez important, malgré cette élévation du coût, le projet va apporter l'économie sur l'énergie électrique, puisque les agriculteurs sont pas obligés de payer les factures d'électricité de moment que leurs champs agricoles reçoivent l'eau seulement par gravité.


ANNEXE 1 Caractéristiques hydriques de quelques sols

	Humidités po	Réserve utile			
Texture	à la rétention	du flétrissement	disponible	volumétrique	
	HCC	HPF	HCC-HPF	en mm/m	
Sableuse	9	4	5	85	
	(6 à 12)*	(2 à 6)*	(4 à 6)*	(70 à 100)*	
Sablo-limoneuse	14	6	8	120	
	(10 à 18)	(4 à 8)	(6 à 10)	(90 à 150)	
Limoneuse	22	10	12	170	
	(18 à 26)	(8 à 12)	(10 à 14)	(140 à 190)	
Limono-argileuse	27 (25 à 31)	13 (11 à 15)	(12 à 16)	190 (170 à 220)	
Argilo-limoneuse	31 (27 à 35)	15 (13 à 17)	(14 à 18)	210 (180 à 230)	
Argileuse	35	17	18	230	
	(31 à 39)	(15 à 19)	(16 ă 20)	(220 à 250)	

 ${\bf ANNEXE~2} \\ {\bf Valeurs~minimales~et~maximales~de~Z~pour~diverses~cultures}$

Cultures	Z m
Tomates	1 - 1,2
Cultures maraîchèrs	0,3 - 0,6
Agrumes	1 - 1,2
Arbres fruitiers à feuilles caduques	7 1 - 2
Vigne	1 - 3

ANNEXE 3
Triangle de texture

ANNEXE:4 GUIDE D'ESTIMATION DE P

(p = pourcentage de sol humidifié pour divers débits de distributeurs et divers espacements entre rampes et entre distributeurs dans le cas d'une seule rampe, rectiligne, équipée de distributeurs uniformément espacés délivrant une dose de 40 mm par arrosage sur l'ensemble de la surface)

Ecartement							Débit	des distribut	eurs						
entre	me	oins de 1,	,51/b		2 1/h			4 1/h			8 1/h		Plus	de 12 1/	h
rampes				1	spacem	ent recom	mandé d	es distribute	urs sur	la rampe,	Sd en m				
S_1					en s	ol de text	ure gross	sière (G), mo	oyenne	(M), fine	(F)				
en m	G	М	F	G	М	F	G	М	F	G	М	F	G	М	F
	0,2	0,5	0,9	0,3	0,7	1,0	0,6	1,0	1,3	1,0	1,3	1,7	1,3	1,6	2,0
						Pour	rcentage	en sol hum	idifié	р%					
0,8	38	88	100	50	100	100	100	100	100	100	100	100	100	100	10
1,0	33	70	100	40	80	100	80	100	100	100	100	100	100	100	10
1,2	25	58	92	33	67	100	67	100	100	100	100	100	100	100	10
1,5	20	47	73	26	53	80	53	80	100	80	100	100	100	100	10
2,0	15	35	55	20	40	60	40	60	80	60	80	100	80	100	10
2,5	12	28	44	16	32	48	32	48	64	48	64	80	64	80	10
3,0	10	23	37	13	26	40	26	40	53	40	53	67	53	67	80
3,5	9	20	31	11	23	34	23	34	46	34	46	57	46	57	68
4,0	8	18	28	10	20	30	20	30	40	30	40	50	40	50	60
4,5	7	16	24	9	18	26	18	26	36	26	36	44	36	44	5
5,0	6	14	22	8	16	24	16	24	32	24	32	40	32	40	4
6,0	5	12	18	7	14	20	14	20	27	20	27	34	27	34	40

ANNEXE 5 Coefficients culturaux (KC) pour les différentes cultures

2. COEFFICIENTS CULTURAUX (Kc)

CULTURE		Durée totale de la				
	lmitial	Dévelop- pement	Mi- saison	Arrière saison	Récolte	période végétative
Bananier tropical subtropical	0.4-0.5 0.5-0.65	0.7-0.85 0.8-0.9	1.0-1.1 1.0-1.2	0,9-1,0 1.0-1,15	0.75-0.85 1.0-1.15	0.7-0.8 0.85-0.95
Haricot vert sec	0.3-0.4 0.3-0.4	0.65-0.75 0.7-0.8	0.95-1.05 1.05-1.2	0.9-0.95 0.65-0.75	0.85-0.95 0.25-0.3	0.85-0.9 0.7-0.8
Chou	0.4-0.5	0.7-0.8	0.95-1.1	0.9-1.0	0.8-0.95	0.7-0.8
Coton	0.4-0.5	0.7-0.8	1.05-1.25	0.8-0.9	0.65-0.7	0.8-0.9
Raisin	0.35-0.55	0.6-0.8	0.7-0.9	0.6-0.8	0.55-0.7	0.55-0.75
Arachide	0.4-0.5	0.7-0.8	0.95-1.1	0.75-0.85	0.55-0.6	0.75-6.8
Maïs doux grain	0.3-0.5 0.3-0.5*	0.7-0.9 0.7-0.85*	1.05-1.2 1.05-1.2*	1.0-1.15 0.8-0.95	0.95-1.1 0.55-0.6*	0.8-0.95 0.75-0.9*
Oignon sec vert	0.4-0.6 0.4-0.6	0.7-0.8 0.6-0.75	0.95-1.1 0.95-1.05	0.85-0.9 0.95-1.05	0.75-0.85 0.95-1.05	0.8-0.9 0.65-0.8
Pois, frais	0.4-0.5	0.7-0.85	1.05-1.2	1.0-1.15	0.95-1.1	0.8-0.95
Poivron, frais	0.3-0.4	0.6-0.75	0.95-1.1	0.85-1.0	0.8-0.9	0.7-0.8
Pomme de teгте	0.4-0.5	0.7-0.8	1.05-1.2	0.85-0.95	0.7-0.75	0.75-0.9
Riz	1.1-1.15	1.1-1.5	1.1-1.3	0.95-1.05	0.95-1.05	1.05-1,2
Carthame	0.3-0.4	0.7-0.8	1.05-1.2	0.65-0.7	0.2-0.25	0.65-0.7
Sorgho	0.3-0.4	0.7-0.75	1.0-1.15	0.75-0.8	0.5-0.55	0.75-0.85
Soja	0.3-0.4	0.7-0.8	1.0-1.15	0.7-0.8	0.4-0.5	0.75-0.9
Betterave sucrière	0.4-0.5	0.75-0.85	1.05-1.2	0.9-1.0	0.6-0.7	0.8-0.9
Canne à sucre	0.4-0.5	0.7-1.0	1.0-1.3	0.75-0.8	0.5-0.6	0.85-1.05
Tournesol	0.3-0.4	0.7-0.8	1.05-1.2	0.7-0.8	0.35-0.45	0.75-0.85
Tabac	0.3-0.4	0.7-0.8	1.0-1.2	0.9-1.0	0.75-0.85	0.85-0.95
Tomate	0.4-0.5	0.7-0.8	1.05-1.25	0.8-0.95	0.6-0.65	0.75-0.9
Pastèque	0.4-0.5	0.7-0.8	0.95-1.05	0.8-0.9	0.65-0.75	0.75-0.85
Blé	0.3-0.4	0.7-0.8	.05-1.2	0.65-0.75	0.2-0.25	0.8-0.9
Luzerne	0.3-0.4			į	1.05-1.2	0.85-1.05
Agrumes sarclés sans sarclage						0.65-0.75 0.85-0.9
Olivier						0.4-0.6

Source: Bulletin FAO d'Irrigation et Drainage nº 33, Tableau 18.

ANNEXE 6

Gamme de prix tubes PEHD eau selon : SARL K-PLASTIQUE

UNITE TUBE

GAMME DE PRIX

TUBES PEHD EAU (PE80 & PE100)
(Prix Valable à comptet du : 01 AVRIL 2010)
Selon la Norme ISO 4427

	TUBI	ES PEI	HD : PN 06	1	
482	Diara, Ext	EP.	Prix H.T DA/ML	Prix TTC DA/ML	7.
•	Ø20	-			P7580
13003	925	-	36,28	42,45	PERO
13006	Ø32	•	48,35	58,57	P1990
13009	040	2.0	64,6	75,58	PEso
13012	Ø50	2.4	98.25	114,95	PEN
13015	Ø63	3.0	150.25	137,49	Pion
13018	Ø75	3.6	225.21	263,49	Prug
(3)22	Ø90 ·	4.3	296.03	346.35	P183160
13025	Ø110	4.0	357,86	418,70	PERO
3040	9125		473,08	553,50	Picico
2030	Ø160	5.8	770.85	901,89	PENO
3044	692000	7.2	1 163,39	1 361,17	PEim
3056	Ø250	. 9.1	1 850,00	2 281.5	Phose
3042	Ø315	11.4	3 080.00	3 503.6	PE100
3039	69400	14.5	5 134,24	6 007,08	PENO
3061	Ø500	. 19.1	6 938,13	8 117,61	PENO
3052	Ø630	24.1	12 682,50	14 838,53	PEtito

	TUBES	PEHD	: PN 10	7 .	
5666e	Diam .Ext	EP,	Prix H.T DA/ML	Prix TTC DA/ML]
P351300)	Ø20		29,07	34,01	PE80
P3513004	Ø25	2.5	38,28	44,79	PE250
P3513007	Ø32	2.5	55,48	64,91	PE80
P3513010	Ø40	3.0	84.10	98,40	PEsu
P3\$13013	Ø50	3.7	135,28	158,25	PESO
P3813016	Ø63	4.7	209.69		PEM
P3\$13019	Ø75	5.6	300,60	245,34	
P3613923	Ø90	5.4	359,09	351,59	PRSO
P3513026	Ø110	6.6	840,50	420,14	PE100
P3513028	Ø125	7.4		632,39	PERC
P3513031	Ø160	9.5	680,13	772,35	PE100
P3513033	Ø200	11.9	1 142.25	1 \$36.43	PE100
P3813035	Ø250	14.8	1 650,84	1 931,48	PE100
P3523041	Ø315		2 595,00	3 036,15	PE100
P3613038	Ø400	18.7	4 093.57	4 789.47	PE100
50223649	Ø500	23.7	6 898,74	7 837,53	PB100
P3513048		29.7	10 152,51	11 878,44	PE100
3313948	Ø630	37,4	15 738.79	18 414.38	PE160

	TUBI	S PEH	7		
[w, [Diam. Ext	KP.mm	Prix H.T -	Prix TTC DA/ML	7
100	Ø20	2.3	32,18	37,66	PF.(0)
11,5	Ø25	2.8	50,88	59,49	PESO
KB	Ø32	3.6	78,51	91,88	PES0
11	Ø40	4.5	120,95	141,51	PESU
14	Ø50	5.6	188,28	220,29	PESO
tr	Ø63	7.1	297,95	348,60	PE80
20	.075	8.4	407.8	477,13	P7580
14	@90	8.2	510,71	597,63	PEIDO
7	Ø118	10.0	767,19	885,91	PÉGO
9	Ø125	11.4	967,90	1 132,44	PE100
2	Ø160	14.6	1 560,00	1 825,20	PEGG
4	Ø200	18.2	2 472,00	× 2 892,24	PE100
6	Ø250	22.7	3 818.00	4 463,55	PERCO
7	Ø315	28.6	5 850,00		PE100
T	Ø400	36,3	9 320,00	8 844,50	
1	Ø500	45.4	14 911,00	10 904,40	PE100
1	Ø630	57.2	23 123,50	17 445,87 27 064,50	PE100

	TUBES	PEHD	1	* * * * * *	
Udae	Diam. .Ext	EP.mm	Prix H.T DA/ML	Prix TTC DA/ML	7
P3513101	@20	2.3	38,01	44,47	PE100
P3613162	925	3.0	53,29	62,35	PE10b
P3513103	Ø32	3.6	82,22	96.20	PERCO
P3513104	Ø40	4.5	128,15	149,94	PE100
P3813105	Ø50	5.6	200,7	234,82	PERCO
P3513106	063	7.1	338,73	396,31	PE100
P3513197	Ø75	8.4	447,35	523,40	PE100
P3313108	Ø90	10.1	627,09	733,70	PE100
P351310)	Ø110	12.3	948,86		
P3513110	Ø125	14.0	1 202,75	1 110,17	PE100
PSSBUI	Ø160	17.9	1 947,69	1 407,22	PE:100
P35(3112	Ø200	22.4		2 273,68	PE109
P3513113	Ø250	27.9	3 121,70	3 652,39	PH100
P3513114	Ø315	35.2	4 848,33	5 670,21	PE100
P3513115	69400		7 585,88	8 875,48	PE100
23513034		44.7	12 110,03	14 168,74	PE100
1,00,000	Ø500	55.8	19 063,81	22 304,68	PErco
	Ø630				PE100

Longueur de Tubes : du Diamètre 25 mm au 110 mm sont des Cournaires (Rocksux) de 100 ML. Longueur de Tubes : du Diamètre 125 mm au 400 mm sont des tubes de 12 ML. Longueur de Tubes : du Diamètre 500 mm au 630 mm sont des robes de 10 ML.

SARL K - PLAST Transformation de Plastique

BIBLIOGRAPHIE

- [1] BULLETIN DE FAO N°29, Qualité des eaux d'irrigation, FAO. Rome. ;
- [2]Clément, R. Galand, A,1979. Irrigation par aspersion et réseau collectifs de distribution sous pression
- [3] **Tierclin, J-R. 1998**. Traité d'irrigation, édition Lavoisier technique et documentation 11, Rue Lavoisier ; F 75384 Cedexe 8. Paris
- [4] Touibia.B, 2005: Manuel pratique d'hydrologie;
- [5] René CLÉMENT, Alain GALAND. Programmes d'irrigation. P 02
- [6] M. L. COMPAORE, cours de micro-irrigation (2003). p 94
- [7] Cours d'irrigation de 4eme année.