الجمهورية الجزائرية الديمقراطية الشعبية وزارة التعليم العالى و البحث العلمي

NATIONAL HIGHER SCHOOL FOR HYDRAULICS

"The MujahidAbdellah ARBAOUI"

المدرسة الوطنية العليا للري "المجاهد عبد الله عرباوي" +≥∪∞+ ا+⊏8⊙⊔≤+ «⊕∞+» المدرسة ا

MEMOIRE DE FIN D'ETUDES

Pour l'obtention du diplôme d'Ingénieur d'Etat en Hydraulique

Option: CONCEPTION DES SYSTEMES D'ASSAINISSEMENT

THEME:

Etude du réseau d'assainissement des zones rurales de la commune de Bourached (W.Ain Defla)

Présenté par :

TAHRAOUI Abdel Hadi

Devant les membres du jury

Nom et Prénoms	Grade	Qualité		
BOUALEM Salah	Professeur	Président		
KAHLERRAS Malika	M.C.B	Examinateur		
BENCHIHEB Nedjoua	M.C.B	Examinateur		
YAHIAOUI Samir	M.A.A	Promoteur		

Session novembre 2021

Je dédie ce projet :

A mon cher père, A ma chère mère,

Qui n'ont jamais cessé, de formuler des prières à mon égard, de me soutenir et de m'épauler pour que je puisse atteindre mes objectifs.

A mes frères, Salah Eddine et Asma,

Pour leurs soutiens moral et leurs conseils précieux tout au long de mes études.

A mes chers grands-parents,

A mon cher ami, Mhamed,

Pour leurs aides et supports dans les moments difficiles.

A toute ma famille,

A mes amis,

A toute personne fait tout pour atteindre son rêve,

A tous ceux que j'aime et ceux qui m'aiment.

Je vous remercie de tout mon cœur, et vous souhaite tout le bonheur du monde.

Que dieu vous garde pour moi.

, Abdel Hadi Tahraoui

Tout d'abord je remercie dieux le tout puissant de m'avoir donné cette ambition, force, volonté et courage pour réaliser ce modeste travail qui a été fait avec amour, passion et honnêteté.

Ensuite je tiens à remercier mes chers parents, qui se sont donné cœurs et âmes pour que je réussisse, qui m'ont aidé moralement et financièrement, et qui m'ont toujours encouragé à donner le meilleur de moi-même. Ainsi que mes chers frères qui ont toujours étaient là pour moi.

Toute ma gratitude à mon promoteur Mr YAHIAOUI.S pour sa disponibilité, Son aide et ses conseils.

Je tiens à remercier aussi Mr BOUAlEM.S, enseignant à l'ENSH pour toutes ses efforts durant le semestre et pour son aide et son orientation.

Je remercie également les membres du jury qui me feront l'honneur d'évaluer et d'apprécier mon travail.

Ainsi que toutes mes gratitudes à l'ensemble des enseignants de l'ENSH qui m'ont éclairé, orienté et aidé durant toute ma formation.

Sans oublier mes amis qui m'ont beaucoup encouragé, et toutes les personnes ayant contribué de près ou de loin à l'élaboration de ce travail.

ملخص:

المقاطعات الريفية لمدينة بور اشد, من بين كل مقاطعات الموجودة في المنطقة التي تعرف منذ سنين مشاكل كثيرة في نظام صرف المياه فهي تشهد تلوث بيئي في المنطقة المحيطة بالمصب, و هذا لغياب محطة تطهير و انعدام تام لشبكة تصريف مياه صرف صحى فعالة.

استنادا على هذا، تهدف هذه المذكرة الى دراسة هذه المنطقة واستعمال المعطيات المستخرجة لتقدير كمية المياه الواجب صرفها، لتصميم شبكة صرف مياه تحل كل المشاكل المذكورة أعلاه وتراعي المعايير والشروط العالمية سواء البيئية او الاقتصادية.

Résume:

Les zones rurales de la ville de Bourached, parmi tous les districts dans la région qui connait depuis des années de nombreux problèmes dans le système d'égouts, elle est témoin de pollution environnementale dans la zone entourant l'exutoire, et cela est dû à l'absence de station d'épuration et une absence remarquable d'un système d'évacuation des eaux usées efficace.

Sur cette base, cette mémoire vise à étudier cette zone et à utiliser les données extraites pour estimer la quantité d'eau à rejeter pour concevoir un réseau d'assainissement qui résout tous les problèmes mentionnés ci-dessus et prend en compte les normes et conditions mondiales, qu'elles soient environnementales ou économiques.

Abstract:

The rural districts of the city of Bourached, among all the districts in this region that has experienced years of many problems in the sewerage system, it witnesses environmental pollution in the area surrounding the outlet, and this is due to the absence of a sanitation station and a good water drainage network.

Based on this, this thesis aims to study this area and use the extracted data to estimate the amount of water to be discharged to design a water drainage network that solves all the problems mentioned above and takes into account the standards and global conditions, whether environmental or economic.

Table des matières

Liste des tables	aux
------------------	-----

Liste des figures

Liste des planches

Introduction générale

CHAPITRE I : Présentation de la zone d'étude

Introduction	2
I Situation géographique	2
II Situation topographique	4
III Sismicité	4
IV Situation Climatique	4
.IV.1 Climat	4
.IV.2 Température	5
.IV.3 Humidité	6
.IV.4 Vent	6
.IV.5 Pluviométrie	6
V Hydrographie	7
VI Situation hydraulique	7
.VI.1 Alimentation en eau potable	7
.VI.2 Assainissement	7
VII Les équipements	8
Conclusion	9
CHAPITRE II : Etude hydrologique	
Introduction	11
I Averse	
II Choix de la période de retour	
III Détermination de l'intensité moyenne des précipitations	
IV Analyse des donnais pluviométrique et choix du type de la loi d'ajustement	
.IV.1 Analyse des données statiques	
.IV.1.1 Homogénisation des données	
.IV.1.2 Présentation du logiciel Hyfran-Plus (automatiquement)	
.IV.1.3 L'utilisation des formules empiriques (manuellement)	
.IV.2 Choix de la loi d'ajustement	
.IV.2.1 Ajustement à la loi de Gumbel	

.IV.2.2 Ajustement à la loi de Galton (Log-normale)	21
.IV.2.3 Ajustement à la loi GEV	22
.IV.2.4 Choix de l'ajustement à adopter	24
V Calcule des pluies et des intensités de courte durée	27
VI Intensités moyenne maximale	29
Conclusion	29
CHAPITRE III : Calcul de base	
Introduction	31
I Situation démographique	31
II Découpage de l'air d'étude en surfaces élémentaires	32
III Système d'évacuation des eaux	32
.III.1 Les différents systèmes d'assainissement	32
.III.2 Le choix du systèmes d'assainissement	
IV Schéma d'évacuation des eaux	37
.IV.1 Les différents schémas d'assainissement	37
.IV.1.1 Schéma perpendiculaire	37
.IV.1.2 Schéma par déplacement latéral	37
.IV.1.3 Schéma transversal ou oblique	
.IV.1.4 Schéma par zones étagées	38
.IV.1.5 Schéma radial	37
.IV.2 Choix du schéma d'évacuation	
V Détermination du coefficient de ruissellement	40
.V.1 Estimation du coefficient de ruissellement pour chaque sous bassin	
.V.1.1 Coefficient de ruissellement pondéré	
VI Calcul du nombre d'habitants pour chaque sous bassin	
Conclusion	45
CHAPITRE IV : Estimation des débits à évacuer	
Introduction	
I Origine et nature des eaux à évacuer	
.I.1 Les eaux usées	
.I.1.1 Les eaux usées d'origine domestique	
.I.1.2 Les eaux usées des services publiques	
.I.1.3 Les eaux usées industrielles	
.I.1.4 Les eaux parasites	
.I.2 Les eaux pluviales	
II Evaluation des débits d'eaux usées	
.II.1 Evaluation des débits d'eaux usées domestiques et des E.P	50

.II.2 Débits totaux des eaux usées à évacuer	51
III Estimation des débits des eaux pluviales	52
.III.1 La méthode rationnelle	52
.III.1.1 Validité de la méthode rationnelle	52
.III.1.2 Hypothèse de la méthode rationnelle	e52
.III.1.3 Temps de concentration	52
.III.1.4 Critique de la méthode rationnelle	52
.III.2 La méthode superficielle	55
.III.2.1 Evaluation des paramètre de Caquot	52
.III.2.2 Validité de la méthode superficielle.	52
.III.2.3 Pente moyenne	52
.III.2.4 Groupement des bassins en série ou	en parallèle52
.III.2.5 Critique de la méthode superficielle	52
.III.2.6 Choix de la méthode	52
.III.3 Calcul des débits pluviaux	58
.III.3.1 Choix de la méthode	52
.III.4 Les débits totaux de chaque sous bassin	n60
Conclusion	60
CHAPITRE V : Dimensionnement	
Introduction	
Introduction I Principe de conception d'un système d'assaini	62
Introduction I Principe de conception d'un système d'assaini .I.1 Conditions d'implantation des réseaux	
Introduction I Principe de conception d'un système d'assaini .I.1 Conditions d'implantation des réseaux .I.2 Conditions d'écoulement et de dimension .I.3 Hypothèse de calcul	
Introduction I Principe de conception d'un système d'assaini I.1 Conditions d'implantation des réseaux I.2 Conditions d'écoulement et de dimension I.3 Hypothèse de calcul II Mode de dimensionnement des canalisations	
Introduction I Principe de conception d'un système d'assaini I.1 Conditions d'implantation des réseaux I.2 Conditions d'écoulement et de dimension I.3 Hypothèse de calcul II Mode de dimensionnement des canalisations II.1 Base de calcul	
Introduction I Principe de conception d'un système d'assaini .I.1 Conditions d'implantation des réseauxI.2 Conditions d'écoulement et de dimension .I.3 Hypothèse de calcul II Mode de dimensionnement des canalisationsII.1 Base de calcul	
Introduction I Principe de conception d'un système d'assaini I.1 Conditions d'implantation des réseaux I.2 Conditions d'écoulement et de dimension I.3 Hypothèse de calcul	
Introduction I Principe de conception d'un système d'assaini .I.1 Conditions d'implantation des réseauxI.2 Conditions d'écoulement et de dimension .I.3 Hypothèse de calcul II Mode de dimensionnement des canalisationsII.1 Base de calcul	
Introduction I Principe de conception d'un système d'assaini I.1 Conditions d'implantation des réseaux I.2 Conditions d'écoulement et de dimension I.3 Hypothèse de calcul	
Introduction I Principe de conception d'un système d'assaini I.1 Conditions d'implantation des réseaux I.2 Conditions d'écoulement et de dimension I.3 Hypothèse de calcul II Mode de dimensionnement des canalisations II.1 Base de calcul II.2 Formule de MANNING-STRICKLER III Résultats du dimensionnement Conclusion CHAPITRE VI : Les élémentement	
Introduction	
Introduction	
Introduction I Principe de conception d'un système d'assaini I.1 Conditions d'implantation des réseaux I.2 Conditions d'écoulement et de dimension I.3 Hypothèse de calcul II Mode de dimensionnement des canalisations II.1 Base de calcul II.2 Formule de MANNING-STRICKLER III Résultats du dimensionnement Conclusion CHAPITRE VI : Les élémer Introduction I Les ouvrages principaux I.1 Canalisation	
Introduction I Principe de conception d'un système d'assaini I.1 Conditions d'implantation des réseaux I.2 Conditions d'écoulement et de dimension I.3 Hypothèse de calcul II Mode de dimensionnement des canalisations II.1 Base de calcul III.2 Formule de MANNING-STRICKLER III Résultats du dimensionnement Conclusion CHAPITRE VI : Les élément Introduction I Les ouvrages principaux I.1 Canalisation II.2 Type de canalisation	
Introduction I Principe de conception d'un système d'assaini I.1 Conditions d'implantation des réseaux I.2 Conditions d'écoulement et de dimension I.3 Hypothèse de calcul II Mode de dimensionnement des canalisations II.1 Base de calcul III.2 Formule de MANNING-STRICKLER III Résultats du dimensionnement Conclusion CHAPITRE VI : Les élémer Introduction I Les ouvrages principaux I.1 Canalisation I.2 Type de canalisation II.2 Type de canalisation II.3 Conduites en béton armé	

.I.2.3	3 Cond	duite en grés	70
.I.2.4	4 Cond	duite en chlorure de polyvinyle (P.V.C) non plastifié	71
.I.3	Choix d	lu type de canalisation	75
.I.4	Les essa	nis de conduites préfabriqués	75
.I.4.	1 Essa	i à l'écrasement	75
.I.4.2	2 Essa	i d'étanchéité	75
.I.4.3	3 Essa	i de corrosion (chimique)	72
.I.5	Différer	ntes actions supportées par la conduite	77
.I.5.	1 Actio	on mécaniques	77
.I.5.2	2 Actio	on chimiques	77
.I.5.3	3 Actio	on statique	77
.I.6	Protecti	on des conduites	77
.I.6.	l Prote	ection contre lese effects érosifs du sable	77
.I.6.2	2 Prote	ection contre les effets corrosifs de l'H2S	77
.I.7	La pose	de canalisation	78
.I.7.	l Les c	conditions de pose	77
.I.7.2	2 Les r	modes de pose	77
II Les o	ouvrages	s annexes	78
.II.1	Les o	ouvrages normaux	78
.II.1	.1 Les	branchements particuliers	78
.II.1	.2 Les	caniveaux	78
.II.1	.3 Les	bouches d'égout	78
.II.1	.4 Les	regards	78
.II.1	.5 Les	types de regards	78
.II.2	Les o	ouvrages spéciaux	80
.II.2	.1 Les	déversoirs d'orage	78
.1	I.2.1.1	Composition d'un déversoir d'orage	78
.1	I.2.1.2	Les ouvrages annexes du déversoir d'orage	78
.1	I.2.1.3	Types des déversoirs	78
.1	I.2.1.4	Dimensionnement des déversoirs d'orage	78
.1	I.2.1.5	Dimensionnement du premier déversoir d'orage latérale	80
.1	I.2.1.6	Dimensionnement du deuxiéme déversoir d'orage latérale	82
.II.2	.2 Din	nensionnement du bassin de décantation	84
VI.1	Amelio	ration du bassin de décantation	89
Conclusio	on		89

CHAPITRE VII: Organisation du chantier

Introduc	tion	91
I Les	étapes de réalisation du projet	91
.I.1	Manutention et stockage des conduites	91
.I.1	.1 Manutention	91
.I.1	.2 Stockage	91
.I.2	Décapage de la terre végétale :	91
.I.3	Exécution des tranchées et des fouilles des regards :	91
.I.4	La profondeur de la tranchée :	91
.I.5	Largeur de la tranchée :	92
.I.6	Aménagement du lit de pose :	92
.I.7	Emplacement des jalons des piquets (piquetage) :	92
.I.8	Pose des canalisations :	
.I.9	Assemblage des tuyaux :	93
.I.10	Essai d'étanchéité :	93
.I.11	Construction des regards :	93
II Cho	pix des engins :	93
III D	Détermination des différents volumes des travaux :	94
.III.1	Volume du décapage de la couche végétale :	94
.III.2	Volume occupé par le lit de sable :	95
.III.3	Volume occupé par les conduites :	95
.III.4	Volume de la couche de tout-venant :	95
.III.5	Volume du remblai de protection :	95
.III.6	Volume excédentaire :	96
Conclus	ion:	97

Conclusion générale

Liste des tableaux

CHAPITRE I : Présentation de la zone d'étude

Tableau I-1: Répartition mensuelle de la température de Bourached (2010-2011)	6
Tableau I-2: Répartition mensuelle de la température de Bourached (2010-2011)	7
Tableau I-3: Equipements de la fraction Ouled Ziri	9
Tableau I-4: Equipements de la fraction Kebairya	9
CHAPITRE II : Etude hydrologique	
CHAITIKE II. Etude nyurologique	
Tableau II-1: Identification de la station d'Ain Defla	13
Tableau II-2: La série pluviométrique (station d'Ain Defla) (1969-2011)	14
Tableau II-3: Calcule des paramètres du test de la médiane	16
Tableau II-4: Résultats du test de la médiane	17
Tableau II-5: Les caractéristiques de la série pluviométriques	18
Tableau II-6: Pluies de courte durée de différentes périodes de retour et leurs intensités	28
CHAPITRE III : Calcul de base	
Tableau III-1: La population dans chaque zone	32
Tableau III-2: Avantages et inconvénients du système unitaire	
Tableau III-2: Avantages et inconvénients du système séparatif	
Tableau III-4: Les critères de choix d'un système d'assainissement	
Tableau III-5: Valeurs du coefficient de ruissellement en fonction de la catégorie d'urbanisation	
Tableau III-6: Valeurs du coefficient de ruissellement en fonction de la densité de la population	
Tableau III-7: Valeurs du coefficient de ruissellement en fonction de la catégorie d'urbanisation	
Tableau III-8: Valeurs du coefficient de ruissellement pour chaque sous bassin	
Tableau III-9: nombre d'habitant pour chaque sous bassin	
CHAPITRE IV : Estimation des débits à évacuer	
Tableau IV. 1. Débite des cour veées des équinement mubliques nous abeque cous bassin	<i>5</i> 1
Tableau IV-1: Débits des eaux usées des équipement publiques pour chaque sous bassin Tableau IV-2: Débits totaux des usées à évacuer pour chaque sous bassin	
Tableau IV-2: Debits totaux des usées à évacuer pour chaque sous bassin	
Tableau IV-4: des eaux pluviales à évacuer de chaque sous bassin Tableau IV-5: Débits totaux de chaque sous bassin	
Tableau TV-3. Debits totaux de chaque sous bassin	00
CHAPITRE VII: Organisation du chantier	
Tableau VII-1: le coefficient de foisonnement selon la nature du sol.	
Tableau VII-2: Devis estimatif des couts de projets	96

Liste des figures

CHAPITRE I : Présentation de la zone d'étude

Figure I-1: carte géographique de la wilaya de Ain Defla	2
Figure I-2: localisation de la zone d'étude	3
Figure I-3:la carte des climats de Köppen-Geiger	5
Figure I-4: température maximal, minimale et moyenne de Bourached	5
Figure I-5: température et précipitation moyenne de Bourached (2018)	
Figure I-6: Bassin de décantation (fraction Ouled Ziri)	
CHAPITRE I : Présentation de la zone d'étude	
Figure II-1: Le cycle de l'eau	
Figure II-2: L'hydrogramme	
Figure II-3: Le Pluviographe	
Figure II-4: La page d'accueil de logiciel	
Figure II-5: Figure XI-2Logo du logiciel Hyfran	18
Figure II-6: Résultat de l'ajustement à la loi de Gumbel	20
Figure II-7: Ajustement graphique à la loi de Gumbel	
Figure II-8: Résultat de l'ajustement à la loi de Log-normale	21
Figure II-9: Ajustement graphique à la loi Log-normale	
Figure II-10: Résultat de l'ajustement à la loi de GEV	
Figure II-11: Ajustement graphique à la loi de GEV	23
Figure II-12: les résultats du test de khi-deux x^2 de la loi de Galton	
Figure II-13: détermination de X^2 de Galton depuis la table de Pearson	
Figure II-14: les résultats du test de khi-deux x^2 de la loi de Gumbel	
Figure II-15: détermination de X^2 de Gumbel depuis la table de Pearson	26
CHAPITRE I : Présentation de la zone d'étude	
Figure III-1: schéma représentatif des branchements dans le système unitaire	33
Figure III-2: schéma représentatif des branchements dans le système séparatif	
Figure III-3: schéma représentatif des branchements dans le système pseudo-séparatif	
Figure III-4: schéma perpendiculaire	
Figure III-5: schéma déplacement latéral	
Figure III-6: schéma transversal ou oblique	
Figure III-7: schéma zones étagées	
Figure III-8: schéma radial	
CHAPITRE I : Présentation de la zone d'étude	
Figure VI-1: Joints sur tuyaux en béton	
Figure VI-2: Joints sur tuyaux en amiante ciment	
Figure VI-3: Joints sur tuyaux en grès	
Figure VI-4: L'essai à l'écrasement sur les conduites en béton	
Figure VI-5: L'essai d'étanchéité à l'air sous pression	

Figure VI-6: Schéma de principe du déversoir d'orage	81
Figure VI-7: fonctionnement d'un déversoir d'orage latéral	82
Figure VI-8: fonctionnement d'un déversoir d'orage frontal	83
CHAPITRE I : Présentation de la zone d'étude	
Figure VII-3: Pose du lit de sable	92
Figure VII-8: Compacteur à rouleaux lisses	

Liste des planches

Planche n°1/4: Tracé du réseau projeté.

Planche n°2/4: Plan de masse avec levé topographique des zones rurales de la ville de Bourached.

Planche n°1/4: Profile en long du collecteur principal.

Planche n°1/4: Les éléments constructifs du réseau d'égout.

Liste des annexes

Annexe 1 : Le calcul hydraulique

Annexe 2:

Abaque N°1: Dimensionnement du réseau d'assainissement.

Abaque $N^{\circ}2$: Variation de la vitesse en fonction de la hauteur de remplissage.

Introduction générale

L'assainissement s'agit de la science qui consiste à collecter, tranporter et évacuer par voie hydraulique les eaux usées et pluviales à travers un réseau bien dimensionné, assurant le rejet dans un exutoire, dans le but de protéger la santé humaine et préserver l'environnement.

Les zones rurales de la ville de Bourached sont connues dernièrement un développement de la population, mené à une augmentation des surfaces imperméable, ce qui a causé un changement remarquable de plan d'occupation de la ville ainsi qu'une augmentation du volume des rejets pollués.

Face à ces problèmes nous avons rédigé cette mémoire qui a pour but la conception d'un système d'évacuation unitaire des eaux usées et pluviales des zones rurale de la ville de Bourached qui va résoudre tous les problèmes dont nous avons parlé, et qui va être compatible avec toutes les situations de notre zone d'étude et durera longtemps.

Dans notre travail on va commencer par la présentation de notre zone d'étude, ensuit on calcule les débits selon les données de base et l'étude hydrologique, après on va dimensionner notre système d'évacuation de façon à vérifier tous les critères de dimensionnement des canalisations mené à faire le tracé de notre schéma d'évacuation, et le plus important, la pose de canalisation prenons en considération toutes les choses qui peuvent influencer sure les conduites après la finition de cette opération, et finalement on va résumer la valeur financière de notre travail par un devis quantitatif estimatif.

CHAPITRE I:

Présentation de la zone d'étude

Présentation de la zone d'étude

Introduction:

Afin d'établir un projet d'assainissement, on doit au début faire la présentation de la zone d'étude qui s'agit de décrire le site du point de vue : géographique, topographique, climatique, démographique et hydraulique ...; pour bien déterminer les facteurs influents sur la conception du projet.

I Situation géographique :

La commune de Bourached s'étend sur une superficie de 138 000 ha répartie sur un relief légèrement mouvementé qui est dans l'ensemble constitué de montagnes et plaines arables.

L'altitude moyenne dans la commune est de l'ordre de 417 mètres. Les limites naturelles (Chaabets, lignes de crêtes) et les voies artificielles (routes, pistes) constituent les limites administratives du territoire communal.

Les limites naturelles (Chaabets, lignes de crêtes), les voies artificielles (routes, pistes) et les terres agricoles constituent les limites administratives du territoire communal.

Bourached est l'une des communes de la wilaya de Ain Defla qui en compte 14 Daïra et 36 communes. Cette commune qui fait partie de la daïra de Djelida, elle est située à environ 18 Km à l'ouest du chef-lieu de daïra.

COORDONNEES GEOGRAPHIQUES:

Latitude: 36° 10' 9" NordLongitude: 1° 55' 45" Est

Figure I-1: carte géographique de la wilaya de Ain Defla

Présentation de la zone d'étude

La commune de Bourached est limitée comme suite :

- Nord : la commune de Ain defla.
- Sud: les communes Djemaa Ouled Echikh, et Zeddine
- Est: la commune de Djelida.
- Ouest: les communes de Rouina et Zeddine

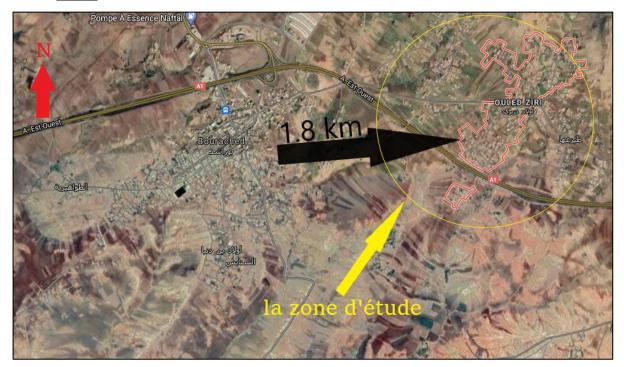


Figure I-2: localisation de la zone d'étude

Source : Google Earth (2021)

Les fractions concernées par la présente étude sont localisées comme suite :

- **1- Fraction Kouadha** : localisé au sud-est du chef-lieu de la commune de Bourached à environ 3 Km, elle est limitée comme suite :
- Au Nord: Fraction Ouled Ziri et l'auto route est-ouest.
- Au Sud: Fraction Zegagra.
- A l'Ouest : Chaâba et talwegs
- A l'Est : Chemin de wilaya N° 42.
- **2- Fraction Ouled Ziri**: localisé à l'est du chef-lieu de la commune de Bourached à environ 3 Km, elle est limitée comme suite :
- Au Sud: l'auto route est-ouest.
- A l'Ouest : Fraction Houaouria.
- A l'Est : l'auto route est-ouest.

Présentation de la zone d'étude

- **3- Fraction Kebairya** : localisé à l'est du chef-lieu de la commune de Bourached à environ 2 Km, elle est limitée comme suite :
- Au Nord-Ouest: Fraction Houaouria.
- Au Sud: l'auto route est-ouest.
- A l'Est: Fraction Ouled Ziri.

II Situation topographique:

Le contexte topographique de la zone concernée par la présente étude est caractérisé par :

- Un milieu physique dont le relief est plus homogène.
- La caractéristique principale : les altitudes sont comprises entre 340 m et plus de 620 m ; Ces altitudes augmentent du Sud vers le Nord.
- Il est constitué d'un ensemble de montagnes et de hautes plaines délimitées par des oueds et des Chaâbats de très faible encaissement. Il n'y a pas de grande cassure dans le relief. Les sommets sont arrondis et les pentes très longues.
- Il est localisé dans un site à morphologie très varié, c'est à la fois une sorte de cuvette aux pentes ravinées par des Chaâbats et un vallon orienté du nord au sud.
- Pour ce qui concerne les pentes ; elles présentent un fort taux de terrains en pentes, elles se répartissent du nord au sud.

III Sismicité:

La zone d'étude située au-dessus de la faille tectonique qui sépare le continent Africain du continent Européen, est géologiquement instable. Selon le Centre National de Recherche Appliquée en Génie Parasismique (CGS), elle appartient à la zone II-b de moyenne sismicité caractérisée par une période de retour de 30 à 40 ans.

IV Situation Climatique:

.IV.1 Climat:

Le climat y est chaud et tempéré. La pluie dans Bourached tombe surtout en hiver, avec relativement peu de pluie en été. D'après Köppen et Geiger, le climat y est classé Csa. Bourached affiche 17.7 °C de température en moyenne sur toute l'année. Il tombe en moyenne 535 mm de pluie par ans.

Présentation de la zone d'étude

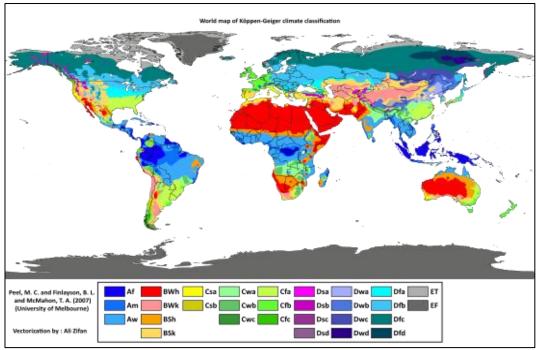


Figure IV-3:la carte des climats de Köppen-Geiger

Source: fr.wikipedia.org

.IV.2 Température :

D'après l'analyse de ce diagramme, on constate que le mois d'Aout est le mois le plus chaud de l'année. La température moyenne est de 29.1 °C à cette période. Janvier est le mois le plus froid de l'année. La température moyenne est de 8.5 °C à cette période.

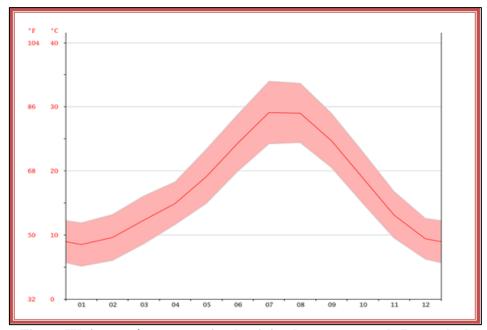


Figure IV-4: température maximal, minimale et moyenne de Bourached

Source: DRE (Ain Defla)

Présentation de la zone d'étude

Les précipitations varient de 80 mm entre le plus sec et le plus humide des mois. La température moyenne au cours de l'année varie de 20.6 °C.

Tableau IV-1: Répartition mensuelle de la température de Bourached (2010-2011)

Mois	Sep.	Oct.	Nov.	Déc.	Jan.	Fév.	Mars	Avr.	Mai	Juin	Juil.	Août	Moyenne
	•												Interannue
Moy.	24.7	18.9	13.1	9.4	8.5	9.6	12.3	15.9	20.1	25.3	30.1	31.1	18.25
(° C)		10.5	10.1	,		7.0	12.0	10.5	2011	20.0	00.1	0111	10.20
Min.	20.5	14.9	9.5	6.2	5.1	6	8.6	12.6	15.9	20.9	25.2	25.5	14.24
(° C)													
Max.	29	23	16.8	12.6	11.9	13.2	16.1	19.3	24.4	29.8	35	36.7	22.73
(°C)		23	10.0	12.0	11.7	13.2	10.1	17.5	27.7	27.0	33	30.7	22.13

Source: DRE (Ain Defla)

.IV.3 Humidité:

Elle augmente pendant la nuit en compensant la perte d'eau en jour, cette humidité est enregistrée dans la zone au mois de décembre à mai qui diminue progressivement, elle peut atteindre jusqu'à 69%.

.IV.4 Vent:

Il représente l'un des paramètres le plus important, car il a une influence directe sur les températures et l'humidité et il active l'évaporation. Il peut atteindre jusqu'à 14 Km/h.

.IV.5 Pluviométrie:

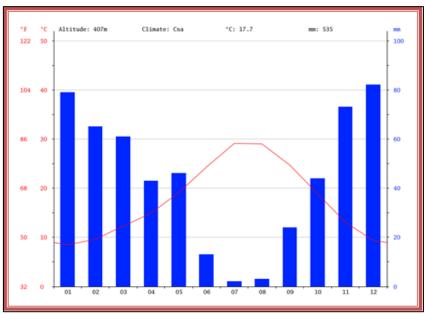


Figure IV-5: température et précipitation moyenne de Bourached (2018)

source: DRE (Ain Defla)

Présentation de la zone d'étude

D'après l'analyse de ce diagramme, on constate que les précipitations moyennes les plus faibles sont enregistrées en Juillet et aout avec 2 mm seulement. Le mois de Décembre, les précipitations sont les plus importantes de l'année avec une moyenne de 82 mm.

Tableau IV-2: Répartition mensuelle de la température de Bourached (2010-2011)

Mois	Sep.	Oct.	Nov.	Déc.	Jan.	Fév.	Mar.	Avr.	Mai	Juin	Juil.	Aout.	Total
P(mm)	24	44	73	82	79	65	61	43	46	13	2	3	535
P (%)	4.49	8.22	13.64	15.33	14.77	12.15	11.4	8.04	8.7	2.43	0.37	0.55	100

source: DRE (Ain Defla)

V Hydrographie:

Le territoire de la zone concernée par la présente étude est drainé par un réseau hydrographique assez dense de type endoréique. Il est constitué de nombreuses Chaâbates et ravines qui ne sont pas encaissées. L'écoulement est intermittent.

Ce réseau n'est actif qu'en saison pluvieuse lors des chutes importantes, mais le reste de l'année il est sec. Le principal exutoire, Oued Erromi qui traverse notre zone d'étude du nord (Ouled Ziri) vers le sud-est (Zégagra).

VI Situation hydraulique:

.VI.1 Alimentation en eau potable :

- o Fraction Kouadha: cette fraction n'a pas encore été desservie par un réseau d'alimentation en eau potable.
- o Fraction Ouled Ziri et Kebairya : ces deux fractions sont alimentées à partir de deux réservoirs d'une capacité totale de 100 m³, ces réservoirs sont alimentés par une conduite de refoulement qui relient le forage. Ces ouvrages alimentent à leurs tours la totalité de la fraction.

L'alimentation est aussi assurée par des forages existants localisés à travers le périmètre des deux fractions.

.VI.2 Assainissement :

D'après les renseignements requis auprès des services techniques de l'APC et la subdivision de l'hydraulique, et les visites effectuées sur les lieux, on put relever les remarques suivantes :

Présentation de la zone d'étude

- Le réseau d'assainissement actuel ne couvre pas la totalité de du périmètre concerné par la présente étude.
- Une grande partie du périmètre d'étude n'est pas assaini.
- La partie assainie est en béton comprimé.
- Le réseau existant comporte neuf (09) points de rejets qui se jettent dans Oued Erromi qui mène vers un barrage.
- <u>1-</u> <u>Fractions Kouadha et Kebairya :</u> actuellement ces fractions ne sont pas desservies par un réseau d'assainissement.
- 2- Fractions Ouled Ziri: actuellement le réseau d'assainissement actuel couvre une très petite zone. On note la présence d'un réseau d'assainissement très ancien en béton comprimé au niveau de la cité qui converge vers un bassin de décantation localisé au sud de l'école primaire.

D'une manière générale, les habitations existantes de la zone d'étude manquent d'un système d'assainissement proprement dit. Donc une étude de projection d'un nouveau réseau d'assainissement qui prend en charge la globalité des habitations existantes et la zone d'extension est une nécessité inéluctable.

Figure VI-6: Bassin de décantation (fraction Ouled Ziri)

source: B.E.T.H BETECH (Chlef)

VII Les équipements :

Les tableaux ci-après vont décrire clairement les différents équipements existant dans notre zone d'étude par fractions :

Présentation de la zone d'étude

o La fraction de Ouled Ziri:

Tableau VII-3: Equipements de la fraction Ouled Ziri

Fractions	Equipements	Nbr	Unité	Quantité	Dotation (l/j/U)
	Mosquée	2	Fidèles	250	30
Ouled Ziri	Centre de santé	1	Patients	50	15
ouled Zm1	Antenne APC	1	Employé	10	20
	Ecole primaire	2	Élèves	200	20

source: DRE (Ain Defla)

o La fraction de Kebairya:

Tableau VII-4: Equipements de la fraction Kebairya

Fractions	Equipements	Nbr	Unité	Quantité	Dotation (l/j/U)
Kebairya	Mosquée	1	Fidèles	200	30
Kebairya	Ecole primaire	1	Élèves	200	20

source: DRE (Ain Defla)

Conclusion:

Dans ce chapitre on a collecté toutes les données nécessaires à travers plusieurs source (ADE Ain Defla, Google Earth, B.E.T.H BETECH (Chlef)) pour les introduire dans la présentation de la zone d'étude, qui est une étape principale, elle va nous aider pour la réalisation d'un dimensionnement avec les mois erreur possible pour notre réseau d'évacuation.

CHAPITRE II:

Etude hydrologique

Etude hydrologique

Introduction

L'hydrologie est l'étude scientifique de l'eau : elle s'intéresse donc à l'eau et tout ce qui s'y rapporte. Le nom vient du grec « hydro » (eau) et « logos » (étude, connaissance).

L'hydrologie s'intéresse à plusieurs aspects de l'eau (eau de pluie, cours d'eau, mares et étangs, qualité de l'eau, distribution à la surface de la Terre et sous la surface, mouvement, relation avec les organismes vivants, lien avec l'économie...) et comporte donc de nombreuses sous-spécialités (ou branches).

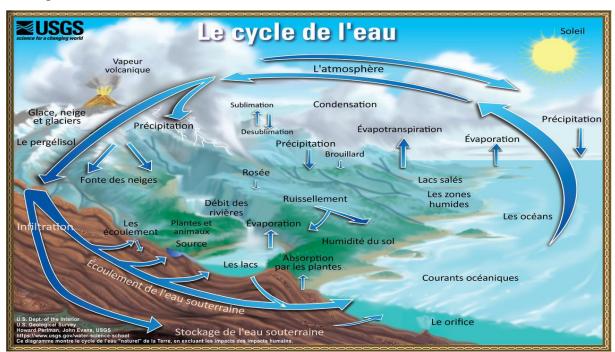


Figure 0I-1: Le cycle de l'eau

Source: www.usgs.gov

L'étude hydrologiques joue un rôle capital dans le domaine de l'ingénierie et des sciences environnementales. Elle concerne aussi bien les mécanismes d'écoulement des eaux dans les systèmes naturels (bassin versant) ou anthropisés (zones industrielles ou urbanisées) ainsi que le dimensionnement des ouvrages hydrauliques utiles à l'exploitation et à la gestion des eaux. Elle permet également de mieux comprendre et simuler le comportement dynamique des eaux dans les zones où elles se répandent et de mieux saisir les impacts des aménagements hydrauliques sur l'environnement.

Etude hydrologique

I Averse

On entend par averse une période de forte pluie ininterrompue, l'averse est caractérisée par son intensité c'est-à-dire par la quantité de pluie ΔH tombée en un temps Δt , L'intensité de pluie varie à chaque instant au cours d'une même averse.

Le volume d'eau qui tombe est déterminé sur un hydrogramme suite au dépouillement d'un pluviographe enregistrant la variation de la lame (H) d'eau dans le temps (Δt) .

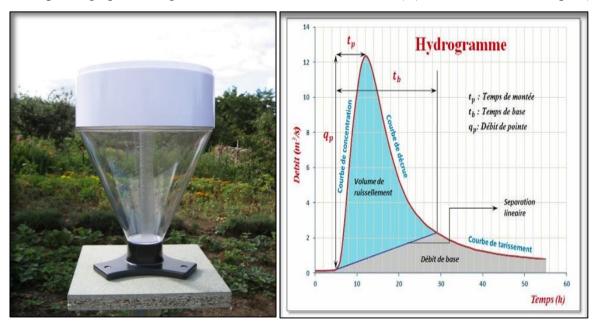


Figure I-2: L'hydrogramme

Figure I-3: Le Pluviographe

Source: fr.wikipedia.org

II Choix de la période de retour

La période de retour représente le temps que met une averse d'une intensité donnée pour se manifester.

Dans le domaine d'Assainissement le choix de la période de retour se fait à partir des situations générales ou particulières, de degrés de protection ou de compromis dont l'évaluation appartient aux responsables locaux.

Pour des raisons technico-économiques, en Algérie nous optons généralement pour une période de retour décennale (T=10 ans).

III Détermination de l'intensité moyenne des précipitations

L'analyse de cette intensité moyenne maximale est très importante dans le dimensionnement des réseaux d'égout.

Etude hydrologique

Lors de l'étude d'une averse, il convient de déterminer les intensités moyennes maximales qui se définissent par le rapport de la hauteur d'eau tombée Δh et la durée Δt .

Soit:
$$i_{m (mm/h)} = \frac{\Delta h}{\Delta t}$$

Avec:

- i_m : intensité moyenne en mm/h.

- Δh : hauteur de pluie tombée pendant la durée Δt .

Pour le calcul de l'intensité, on doit :

- Analyser les données pluviométriques et faire le choix du type de loi à laquelle il faut ajuster nos résultats.
- Calculer les paramètres de la loi choisie et vérifier son adéquation.
- Calculer la valeur de l'intensité moyenne de précipitation.

IV Analyse des donnais pluviométrique et choix du type de la loi d'ajustement

.IV.1 Analyse des données statiques

L'analyse des pluies est basée sur les relevés pluviométriques effectués dans un certain nombre de stations sur une surface topographique considérée. Elle est basée sur l'hypothèse que la pluie tombée une station est représentative de celle tombée tout autour de cette station sur une étendue plus ou moins large selon la densité du réseau que l'on appelle zone d'influence du pluviomètre.

Les données pluviométriques ont été prélevées de la station d'Ain Defla qui se trouve à 20 km au nord de notre zone d'étude et sur une altitude (270 m) avoisinante qui se caractérise pratiquement les mêmes indicateurs climatiques.

Tableau IVI-1: Identification de la station d'Ain Defla

Station	Code	X(km)	Y(km)	Z(m)	Nombre d'observation	Période d'observations
AIN DEFLA	011804	434.6	329.9	270	42	1969 à 2011

Source: ANRH

La station contient une série d'observation allant de 1969 jusqu'à 2011. L'analyse statistique des données pluviométriques consiste à déterminer les caractéristiques empiriques d'un échantillon d'une série d'observation de précipitations maximales journalières de 42 années.

Etude hydrologique

Le tableau suivant (Tableau II-2) présente la série pluviométrique de la station d'Ain Defla dans la période (1969-2011) :

Tableau IV-2: La série pluviométrique (station d'Ain Defla) (1969-2011)

				Préc	cipitions	s moyen	ne journ	alières ((mm)				
Années	Sep.	Oct.	Nov.	Déc.	Jan.	Fév.	Mars.	Avr.	Mai.	Juin.	Juil.	Aout.	Max.
69-70	29,2	32,2	33,5	20	20	5,1	11	9,8	8,4	0	0	0	33,5
70-71	0	16	1,6	15,5	45,5	3,8	21,1	14,1	10,3	0	0	0	45,5
71-72	5,8	5,6	29,7	19,5	46,7	24,3	19,9	8,7	15,4	2,9	0	7,3	46,7
72-73	23,3	14,4	20,6	10,2	18,1	34,2	10,3	13,6	3,2	23,2	0	2,1	34,2
73-74	21,2	2,1	3,1	31,5	3,2	31,2	37,3	23,4	1,4	2,2	0	2,1	37,3
74-75	3,4	14,7	13,3	2	4,3	22,5	24,7	71	15,2	4,9	0	1,9	71
75-76	9,2	0	29,2	15,5	44,3	33,9	12,4	7,7	26,7	6,2	3,6	6,3	44,3
76-77	2,6	38	18,8	15,3	25,7	10,6	6,7	35,8	28,4	19,7	0,2	4,5	38
77-78	1,4	5,2	14,8	16,6	14,5	6,9	15,3	15	18,3	6,5	0	0	18,3
78-79	47,2	24,1	16,9	13,7	15,3	36,3	51,9	9,7	3,5	19,1	0,6	0	51,9
79-80	19,2	24,8	13,6	20,6	33	14,8	40,2	15,1	14,8	5,9	0	1,2	40,2
80-81	0,1	7,8	10,8	46,8	15,8	11,8	19,1	18,2	14,5	0	0	0	46.8
81-82	6,3	16,9	0	47,9	14,4	25,4	10,8	7,4	10,3	2,6	0	0	47,9
82-83	7,5	28,8	28,5	22,9	0	16,6	8,3	7,6	9,8	0	0,4	0	28,8
83-84	0	7,5	30,9	17,3	12,7	17,7	18,1	10,3	19,9	30,7	0	17,5	30,9
84-85	5,3	42,4	23,4	24,3	14,8	26,9	14,5	12,5	14,3	2,5	0	0	42,4
85-86	6,3	9,8	25,4	15,3	54,2	33,9	26,1	4,8	0,2	27,5	3,5	0	54,2
86-87	16,1	21,2	16,9	29,9	30,8	21,9	8,5	4,3	6,2	2,5	1,9	0	30,8
87-88	2,6	7,7	16,9	6,8	17,1	8,7	19,7	15,8	12,9	14,6	0,2	0	19,7
88-89	4,6	10,3	10,8	23,1	1,7	9,7	25,7	16,9	3,5	10,5	0	23,9	25,7
89-90	18,9	16,8	6	12	23,6	0	15	20	7	0	7,8	0	23,6
90-91	0	2	18,4	12	12,3	16,4	17,7	6,5	4,3	5	0	1,2	18,4
91-92	4	16,5	26,7	4,8	33	5,1	28,5	22,5	13,5	11	3,5	0	33
92-93	0	13,5	11,2	7	1,6	31	25,8	25,4	15,6	0	0	0	31
93-94	20,5	5	10,5	16,3	19	21,3	3,2	13,5	21	0	0	0	21,3
94-95	37,5	9,4	17,5	30	28,9	17,5	30,5	8,5	3,5	20,5	0	13,5	37,5
95-96	19,3	8,3	24	6,8	12,5	35,3	26	13,3	9,5	7,8	6,8	1,6	35,3

Etude hydrologique

Années	Précipitions maximal journalières (mm)									Max			
7 Hillices	Sep.	Oct.	Nov.	Déc.	Jan.	Fév.	Mars.	Avr.	Mai.	Juin.	Juil.	Aout.	Mux
96-97	2,6	8,5	4,8	10,2	18,4	14	37,5	37,5	16,2	0	0	4,8	37,5
97-98	10,3	14,6	25,3	14,3	8,2	18,3	15,6	21,3	45,2	3	0	3	45,2
98-99	6	21	12,7	3,2	26,7	30	28,7	6	7,2	0	0	10	30
99-00	6,8	6,4	14,8	25,1	1,8	0	3,5	14,3	5,6	30	0	0	30
00-01	2,9	31,6	29,8	10,8	25,2	11,5	0	28,4	5	0	0,4	0	31,6
01-02	13,8	3,5	54,5	15	12,8	4,5	24,4	14,8	17,8	0	0	5,6	54,5
02-03	0	20,3	13,5	20,3	26,3	24,9	13,6	15,3	14,8	0	0	4,8	26,3
03-04	2,8	10,3	27,7	21,1	13,3	15,5	11,7	4,6	12,7	7,3	0	4,7	27,7
04-05	9,1	11,8	27,7	18,6	33,5	20,7	12,3	7,8	0	0	0	0	33,5
05-06	3,2	20,9	20,8	21	13,1	18,5	9	10,6	47,2	0	0	5,6	47,2
06-07	8,9	0	0	21,4	15,3	22,8	28	29,8	7,5	0	26,5	0	29,8
07-08	55,8	23,7	55,1	16,9	11,2	7,1	30	8,6	20	7,3	0	0	55,8
08-09	6,5	19,8	19,6	20,5	21,1	12,5	20,1	14,2	14,8	0	0	0	21,1
09-10	16,7	7,5	16,4	17,8	21,2	28,1	27,6	21,5	6,4	0	0	23,7	28,1
10-11	7,4	39,3	13,7	9,8	28,1	44,1	15,2	23,5	18,8	16,3	0	0	44,1

Source : ANRH

.IV.1.1 Homogénéisation de données

On doit s'assurer que notre série est dépourvue des lacunes et vérifier si la série des données est homogène ou pas. Pour cela, on fait appel au test de la médiane, dont les démarches sont les suivantes :

- 1- Trier la série par ordre croissant.
- 2- Déterminer la valeur M de la médiane d'ordre m (de telle sorte que 50% des xi soient inférieurs à x et 50% des xi soient supérieure à x), Deux cas sont alors possibles :
- Si N est impair, on prend la $(\frac{N+1}{2})^{i \ge me}$ valeur.
- Si N est pair, on prend la moyenne entre la $(\frac{N}{2})^{i \ge me}$ valeur et la valeur $(\frac{N}{2} + 1)^{i \ge me}$.

On a : N = 42, donc : M = $\frac{42}{2}$ = 21, alors la médiane est : **M** = 33.85mm.

- 3- Pour la série non triée, attribuer à chaque valeur un signe (+) si xi > M ou bien un signe (-) si xi < M.
- 4- Calculons NS et TS.

Etude hydrologique

5- Tel que : Ns est le nombre total des séries (+) ou (-), et Ts est la taille de la plus grande série (+) ou (-). Les conditions du test sont :

$$N_s > \frac{1}{2} (N + 1 - 1.96 \times \sqrt{N+1})$$
 (II.1)
 $T_s < 3.3 [\log_{10}(N) + 1]$ (II.2)

Tableau IVI-3: Calcule des paramètres du test de la médiane

$P_{max,j}$ (mm) trier par ordre croissant	Ordre m	Année	$P_{max,j}$ (mm) non trier
18,3	1	69-70	-33,5
18,4	2	70-71	+45,5
19,7	3	71-72	+46,7
21,1	4	72-73	+34,2
21,3	5	73-74	+37,3
23,6	6	74-75	+71
25,7	7	75-76	+44,3
26,3	8	76-77	+38
27,7	9	77-78	-18,3
28,1	10	78-79	+51,9
28,8	11	79-80	+40,2
29,8	12	80-81	+46,8
30	13	81-82	+47,9
30	14	82-83	-28,8
30,8	15	83-84	-30,9
30,9	16	84-85	+42,4
31	17	85-86	+54,2
31,6	18	86-87	-30,8
33	19	87-88	-19,7
33,5	20	88-89	-25,7
33,5	21	89-90	-23,6

Etude hydrologique

$P_{max,j}(\text{mm})$ trier par ordre croissant	Ordre m	Année	$P_{max,j}$ (mm) non trier
34,2	22	90-91	-18,4
35,3	23	91-92	+33
37,3	24	92-93	-31
37,5	25	93-94	-21,3
37,5	26	94-95	+37,5
38	27	95-96	+35,3
40,2	28	96-97	+37,5
42,4	29	97-98	+45,2
44,1	30	98-99	-30
44,3	31	99-00	-30
45,2	32	00-01	-31,6
45,5	33	01-02	+54,5
46,7	34	02-03	-26,3
46,8	35	03-04	-27,7
47,2	36	04-05	-33,5
47,9	37	05-06	+47,2
51,9	38	06-07	-29,8
54,2	39	07-08	+55,8
54,5	40	08-09	-21,1
55,8	41	09-10	-28,1
71	42	10-11	+44,1

Les Résultats du test de la médiane sont résumés dans le tableau suivant (Tableau II-4) :

Tableau IVI-4: Résultats du test de la médiane

Paramètre	Valeur	Comparaison
Ns	18	10 \ 15 (andition n°1 whilian)
$\frac{1}{2}(N+1-1.96 \times \sqrt{N+1})$	15	18>15 (condition n°1 vérifier)
Ts	7	7<8.65 (condition n°2 vérifier)
$3.3[\log_{10}(N) + 1]$	8.65	/\0.03 (condition if 2 verifier)

Etude hydrologique

Interprétation : d'après les résultats du test de la médiane (Tableau II-3), on conclut que la série des pluies maximales journalières est homogène.

.IV.1.2 Présentation du logiciel HYFRAN-PLUS (automatiquement)

Le logiciel HYFRAN-PLUS permet d'ajuster un nombre important de distributions statistiques à une série de données qui vérifient les hypothèses d'indépendance, d'homogénéité et de stationnarité. Un Système d'Aide à la Décision (SAD) a été développé pour permettre de choisir la classe de distributions la plus adéquate pour estimer le quantile de période de retour élevée.

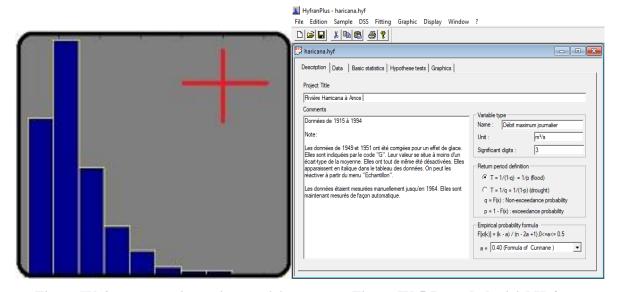


Figure IV-4: La page d'accueil de logiciel

Figure IV-5:Logo du logiciel Hyfran

.IV.1.3 L'utilisation des formule empirique (manuellement)

Les caractéristiques de cette série sont résumées dans le tableau suivant :

Tableau IV-5: Les caractéristiques de la série pluviométriques

Caractéristique	Formule	Valeurs
Nombre d'années d'observation	N	42
La moyenne $\ll \overline{P_{\text{max, j}}} \gg (mm)$	$\overline{P_{max,J}} = \frac{\sum_{i=1}^{N} P_{max,j}}{N}$	36.4
L'écart-type $\ll \sigma_{\mathrm{P}_{\mathrm{max},j}} \gg (mm)$	$\sigma_{P_{max,j}} = \sqrt{\frac{\sum_{i=1}^{N} (P_{max,j} - \overline{P_{max,j}})^2}{N}}$	11.6
Le coefficient de variation $\ll cv \gg$	$Cv = \frac{\sigma_{P_{max,j}}}{\overline{P_{max,j}}}$	0.318

Etude hydrologique

Caractéristique	Formule	Valeurs
Le médiane (mm)	X (50%)	33.9
Minimum (mm)		18.3
Maximum (mm)		71

.IV.2 Choix de la loi d'ajustement

Des crues d'importants débits sont générés par les pluies maximales journalières de rares fréquences, et ils existent plusieurs lois d'ajustement des séries pluviométriques mais elle ne puisera pas être applicable sur un échantillon sauf si les conditions d'homogénéité sont réunies. Les critères de choix d'une loi sont liés à un ajustement graphique d'abord et ensuite à un test de dispersion.

L'allure des points sur du papier à probabilité permet à prime abord d'accepter ou de rejeter la loi (Toute sinuosité, mauvaise courbure ou cassure de pente est considérée comme un mauvais ajustement).

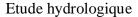
En Algérie nous optons généralement pour une période de retour décennale (T=10 ans) a cause des raisons technico-économiques.

.IV.2.1 Ajustement de la loi de Gumbel

• La fonction de répartition de la loi de Gumbel est :

$$F(x) = e^{-e^{-y}}$$
(II.3)

• Sachant que « y » est la variable réduite de la loi Gumbel :


$$y = \frac{x - x_0}{a} = -\ln[-\ln(F(x))]$$
(II.4)

Avec:

- x: variable étudiée ($P_{max,j}$).
- x_0 : paramètre de position (ordonnée à l'origine).
- α : paramètre de l'échelle ($\alpha > 0$).
- L'équation de la droite de Gumbel sur papier à probabilité Gumbel :

$$x = P_{max,j,p\%} = \left(\frac{1}{\alpha}\right)y + x_0$$
(II.5)

• On obtient comme les paramètres de Gumbel :

$$\frac{1}{\alpha} = 9.71$$
 ; $x_0 = 30.97$

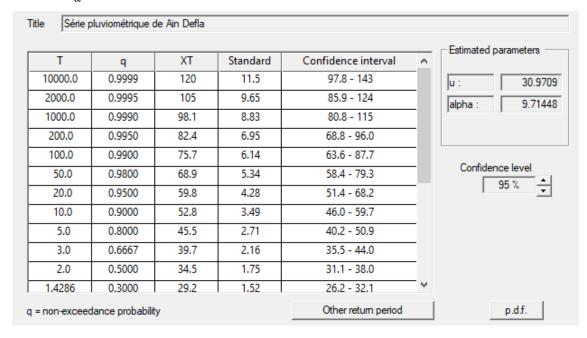


Figure IV-6: Résultat de l'ajustement à la loi de Gumbel

Pour des raisons technico-économiques, en Algérie nous optons généralement pour une période de retour décennale (T=10 ans).

Donc:

$$P_{max,j,10\%} = 52.8$$
mm

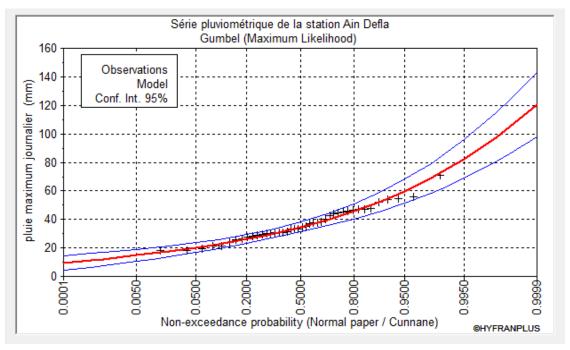


Figure IV-7: Ajustement graphique à la loi de Gumbel

Etude hydrologique

.IV.2.2 Ajustement de la loi de Galton (log normale)

• La fonction de répartition de la loi Log-normale :

$$F(x) = \sqrt{2\pi} \int_{-\infty}^{u} e^{\frac{u^2}{2}} du$$
 (II.6)

Sachant que « u » est la variable centrée réduite de Gauss :

$$u = \frac{\ln(x) - \overline{\ln(x)}}{\sigma_{\ln(x)}}$$
(II.7)

Avec:

- x: variable étudiée ($P_{max,j}$).
- $\overline{\ln(x)}$: La moyenne des logarithmes de la variable x.
- $\sigma_{\ln(x)}$: L'écart-type des logarithmes de la variable x.
- L'expression de quantile est alors :

$$\ln(x) = u \ \sigma_{\ln(x)} + \overline{\ln(x)} \ (\text{II.8})$$

• On obtient comme paramètre de la loi Galton :

$$\sigma_{\ln(x)=0.32} \qquad ; \qquad \overline{\ln(x)} = 3.54$$

• Résultats de l'ajustement à la loi Galton :

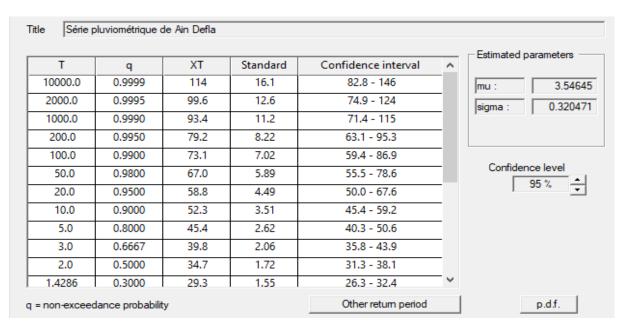


Figure IV-8: Résultat de l'ajustement à la loi de Log-normale

Donc:

Etude hydrologique

$P_{max,j,10\%} = 52.3 \text{ mm}$

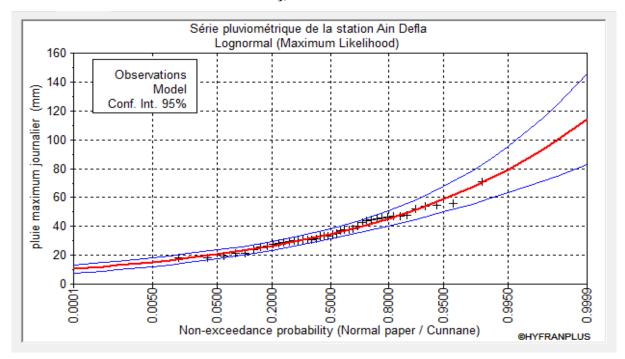


Figure IV-9: Ajustement graphique à la loi Log-normale

.IV.2.3 Ajustement à la loi de GEV

• La fonction de répartition de la loi d'extrémum généralisée :

$$F(x) = e^{-e^{-y}}(II.9)$$

Sachant que « y » est la variable réduite :

$$y = -\frac{1}{k} \ln \left[1 - \frac{k}{\alpha} (x - u) \right]$$
 (II.10)

Avec:

- x: variable étudiée ($P_{max,j}$).

- u : paramètre de position

- α : paramètre de dispersion ($\alpha > 0$).

- k : paramètre de forme appelé indice des valeurs extrêmes.

• L'expression de quantile est alors :

$$x = u + \frac{\alpha}{k} (1 - e^{-ky})$$
 (II.11)

• Les paramètre de la loi par la méthode du maximum de vraisemblance :

u=31.44mm ; $\alpha=9.75$; k=0.07

Etude hydrologique

• Résultats de l'ajustement à la loi GEV généralisé :

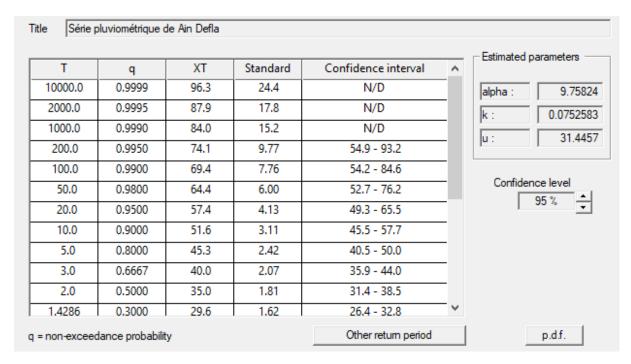


Figure IV-10: Résultat de l'ajustement à la loi de GEV

Donc:

$$P_{max,i.10\%} = 51.6 mm.$$

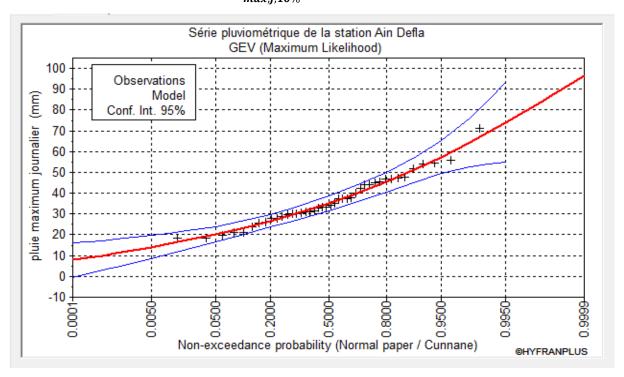


Figure II-11: Ajustement graphique à la loi de GEV

Etude hydrologique

.IV.2.4 Choix de l'ajustement à adopter

Après l'ajustement de notre série sur les déférentes lois, on doit respecter les critères de l'ajustement, Les critères de choix d'une loi sont liés à un ajustement graphique d'abord et ensuite à un test de dispersion.

La visualisation des courbes est un indicateur fiable sur le modèle à choisir, mais de Préférence et pour assurer l'information ont fait le test de Khi-deux « $\chi 2$ ».

❖ Test graphique

Ce test est basé sur une observation visuelle des graphes d'ajustement ; il consiste à examiner l'allure des points sur le papier de probabilité, et vérifier s'il s'agit d'un bon alignement sans existence de mauvaises courbures.

Interprétation des graphiques

D'après l'examen visuel des graphiques d'ajustement présentés dans les figures II-7, II-9 et II-11, on remarque que :

- La loi GEV donne un mauvais ajustement par rapport aux deux autres lois, vu que l'allure des intervalles de confiances compte quelque valeurs négatives et autres non définies donc la loi est inadéquate ; à rejeter.
- L'ajustement graphique à la loi de Galton est meilleur et mieux que celui de Gumbel; on remarque l'ajustement des points est très proches de la droite thétique avec une bonne convergence.

❖ Application du test khi-deux x2

L'intérêt du passage par le test de Khi-deux de Pearson est de juger la compatibilité d'une loi statistique sur un échantillon donné de taille N.

Pour connaître la fiabilité de ce test pour chaque ajustement, on doit d'abord utiliser le logiciel Hyfran pour obtenir la valeur de $X_{cacul\acute{e}}$, et à partir de table de Pearson on peut obtenir le $X_{theorique}$, et pour connaître que la loi est fiable, cette condition doit étre vérifiée :

$$X^2_{calcul\acute{e}} < X^2_{th\acute{e}orique}$$

Etude hydrologique

Test de la loi Galton

The underlying distribution of this sample is Lognormal The underlying distribution of this sample is not Lognormal			
sults			
Statistic	cs result :	X ² = 6.00	
p-value	e: [p = 0.3062	
Degree	s of freedom :	5	
Number of classes :		8	

Figure IV-12: les résultats du test de khi-deux x^2 de la loi de Galton

Donc

$$X_{calcul\acute{e}}^2 = 6$$
 , degré de liberté= 5 , p= 0.3062

En utilisant ces valeurs trouver dans la table de Person on trouve :

Table χ^2 : points de pourcentage supérieurs de la distribution χ^2

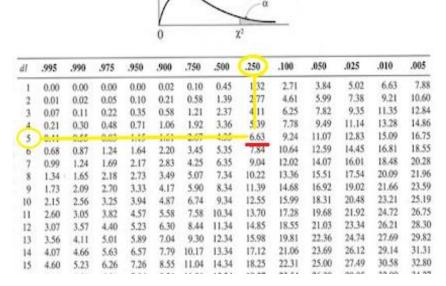


Figure IV-13: détermination de X^2 de Galton depuis la table de Pearson

Source : real-statistics.com

Etude hydrologique

O Test de la loi Gumbel

The underlying distribution of this sample is Gumbel The underlying distribution of this sample is not Gumbel		
sults		
Statistics result :	X ² = 6.00	
p-value :	p = 0.3062	
Degrees of freedom:	5	
Number of classes :	8	

Figure IV-14: les résultats du test de khi-deux x^2 de la loi de Gumbel

Donc

$$X_{calcul\acute{e}}^2 = 6$$
 , degré de liberté= 5 , p= 0.3062

En utilisant ces valeurs trouver dans la table de Person on trouve :

Table χ^2 : points de pourcentage supérieurs de la distribution χ^2

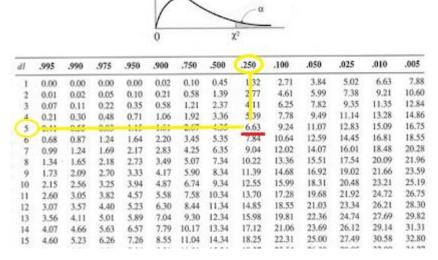


Figure IV-15: détermination de X^2 de Gumbel depuis la table de Pearson

Source: real-statistics.com

Etude hydrologique

❖ Sélection de la loi

Le test de khi-deux x2 nous a donné un résultat plus précis sur l'ajustement de la loi de Galton et Gumbel.

Les deux lois Galton et Gumbel ont vérifié les deux tests (graphique, khi-deux x2), Mais vu que plusieurs études en Hydrologie montrent que la loi log-normale est celle qui s'adapte mieux au nord d'Algérie, donc on opte pour cette loi : **Galton (log-normal).**

V Calcule des pluies et des intensités de courte durée

Pluies de courte durée

Le passage des pluies maximales journalières aux pluies de courte durée se fait au moyen de la formule de Montanari.

$$P_{t,p\%} = P_{max,j} (\frac{t}{24})^b$$
 (II.12)

Avec:

- $P_{t,p\%}$: pluies (mm) de courte durée correspondante à une fréquence de dépassement donnée (p%).
- $P_{max,j}$: pluies maximale journalière (mm) correspondante à une fréquence de dépassement donnée (h).
- t : durée de l'averse (h).
- b : exposant climatique : selon l'ANRH Blida, b=0.29 pour la région d'étude.

Intensités de courte durée :

Pour le calcul de l'intensité moyenne « $i_{t,p\%}$ » de précipitation « $P_{t,p\%}(mm)$ » de courte durée « t (h) » à une fréquence de dépassement donnée « p% », nous utilisons la formule de Montanari :

$$i_{t,p\%} = \frac{P_{t,p\%}}{t} \text{ (mm/h) (II.13)}$$

• Les calculs sont résumés dans le tableau et les graphes suivants :

Etude hydrologique

Tableau V-6: Pluies de courte durée de différentes périodes de retour et leurs intensités

T	5 ans		10	ans	20	ans	50	ans	100	0 ans
X_t	45.4	4 mm	52.3	3 mm	58.5	8 mm	67	mm	73.	1 mm
t	P_t	i_t								
(h)	(mm)	(mm/h)								
0.1	9.26	92.6	10.67	106.7	11.99	119.9	13.67	136.7	14.92	149.2
0.2	11.33	56.65	13.05	65.25	14.67	73.35	16.72	83.6	18.24	91.2
0.25	12.08	48.32	13.92	55.68	15.65	62.6	17.83	71.32	19.46	77.84
0.5	14.77	29.54	17.02	34.04	19.13	38.26	21.80	43.6	23.79	47.58
0.75	16.62	22.16	19.14	25.52	21.52	28.69	24.52	32.69	26.76	35.68
1	18.06	18.06	20.81	20.81	23.39	23.39	26.66	26.66	29.08	29.08
2	22.08	11.04	25.44	12.72	28.60	14.3	32.59	16.29	35.56	17.78
3	24.84	8.28	28.62	9.54	32.17	10.72	36.66	12.22	39.99	13.33
4	27	6.75	31.11	7.78	34.97	8.74	39.85	9.96	43.48	10.87
5	28.81	5.76	33.18	6.64	37.31	7.46	42.51	8.50	46.38	9.28
6	30.37	5.06	34.98	5.83	39.34	6.56	44.82	7.47	48.90	8.15
7	31.76	4.54	36.59	5.22	41.13	5.88	46.87	6.70	51.14	7.31
8	33.01	4.13	38.03	4.75	42.76	5.35	48.72	6.09	53.16	6.65
9	34.16	3.80	39.35	4.37	44.24	4.92	50.41	5.60	55	6.11
10	35.22	3.52	40.57	4.06	45.62	4.56	51.98	5.20	56.71	5.67
11	36.21	3.29	41.71	3.79	46.89	4.26	53.43	4.86	58.30	5.3
12	37.12	3.09	42.78	3.57	48.09	401	54.80	4.56	59.79	4.98
13	38	2.92	43.78	3.38	49.22	3.79	56.09	4.31	61.19	4.71
14	38.83	2.77	44.73	3.20	50.29	3.59	57.30	4.09	62.52	4.47
15	39.62	2.64	45.64	3.04	51.31	3.42	58.46	3.89	63.79	4.25
16	40.36	2.52	46.50	2.91	52.28	3.27	59.57	3.72	64.99	4.06
17	41.08	2.42	47.32	2.78	53.20	3.13	60.62	3.57	66.14	3.89
18	41.77	2.32	48.11	2.67	54.09	3	61.64	3.42	67.25	3.73
19	42.43	2.23	48.87	2.57	54.95	2.89	62.61	3.30	68.31	3.60
20	43.06	2.15	49.61	2.48	55.77	2.79	63.55	3.18	69.34	3.47
21	43.68	2.08	50.31	2.40	56.57	2.69	64.46	3.07	70.32	3.35

Chapitre II

Etude hydrologique

T	5	ans	10	ans	20	ans	50	ans	100) ans
X_t	45.4	4 mm	52.3	3 mm	58.3	8 mm	67	mm	73.	1 mm
t	P_t	i_t	P_t	i_t	P_t	t	P_t	i_t	P_t	i_t
(h)	(mm)	(mm/h)	(mm)	(mm/h)	(mm)	(h)	(mm)	(mm/h)	(mm)	(mm/h)
22	44.27	2.01	50.99	2.32	57.33	2.61	65.33	2.97	71.28	3.24
23	44.84	1.95	51.66	2.25	58.08	2.53	66.18	2.88	72.20	3.13

58.8

2.45

67

2.79

73.1

3.05

VI Intensités moyenne maximale

1.89

52.3

2.18

L'étude hydrologique nous a permis de déterminer l'intensité moyenne maximale et cela d'après les résultats obtenus par l'ajustement de la série pluviométrique a la loi exponentielle, on a :

$$i_{15min,10\%} = 55,68 \text{ mm/h}$$

En dois convertir du (mm/h) en (L/s/ha) en multipliant fois $(\frac{10000}{3600})$

$$i_{15min,10\%} = \frac{55..68 \times 10000}{3600} = 155 \text{ L/s/ha}$$

Conclusion:

24

45.4

Cette étude hydraulique nous a permis d'obtenir l'intensité moyenne maximale ; à l'aide des données de la station pluviométrique d'Ain Defla et en utilisant l'ajustement de notre série à la loi Log-normale, et les calculs des pluies de courte durée.

$$i_{15min,10\%} = 155 \frac{L}{s. ha}$$

CHAPITRE III:

Calcule de base

Calcule de base

Introduction

L'assainissement des agglomérations a un objectif principal de garantir que notre réseau pourra supporter et évacuer sans problème ou difficulté tous les débits de notre population du robinet vers l'exutoire, afin de pouvoir réaliser ça en passer par le calcul de base qui consiste à :

- 1. L'estimation du nombre d'habitants pour un horizon précis.
- 2. Le choix du système d'évacuation après une étude d'avantage et inconvenant de chaque un.
- 3. Le choix du schéma de collecte et d'évacuation des eaux, selon la morphologie de zone.
- 4. Le découpage en sous bassin de la zone d'étude.
- 5. La détermination du coefficient de ruissellement.

I Situation démographique

Une prédiction sur l'évolution de l'agglomération durant la durée de vie de la structure projetée doit être faite pour garantir que notre réseau va satisfaire les besoins de la population future, D'après le (RGPH 2021) la population actuelle des zones rurale (Ouled Ziri, Kebairya et Kouadha) de la ville de Bourached est de 4586 habitants démographiques à l'aide des intérêts composés :

$$P_N = P_0(1+T)^n$$

Avec:

- P_N : Population future à l'horizon 2051 (hab).
- P₀: Population de l'année de référence 2021(hab).
- T: Taux d'accroissement entre l'année de référence et l'année de l'horizon: T=1.39%.
- *N*: L'horizon 2051.

Donc:

$$P_{2051} = 4586 \left(1 + \frac{1.39}{100} \right)^{30} = 6939$$

Calcule de base

Tableau III-1: La population dans chaque zone

Année		Ph: population
	P ₀ : (2021)	projetée
Population		2051
Kouadha	150	227
Kebairya	1468	2222
Ouled Ziri	2968	4490
TOTAL	4586	6939

II Découpage de l'air d'étude en surfaces élémentaires

Cette opération doit être effectuée afin de minimiser les erreurs de calcul de coefficient de ruissèlement, et les surfaces découpées doivent être de nature homogène.

Afin d'avoir un découpage d'un site en sous-bassins élémentaires, on prend en considération ce qui suit :

- La nature du sol.
- La densité des habitants.
- Les courbes de niveau, les pentes et les contre pentes.
- Les limites naturelles (talweg, oued, etc...).
- Les routes et les voiries.
- Le réseau existant.
 - Concernant ce projet, on va découper le site en 20 sous-bassins.

III Système d'évacuation des eaux

C'est l'ensemble des ouvrages qui permettre d'assurer l'évacuation des effluents d'une agglomération à partir des édifices jusqu'à l'évacuation (oued – station d'épuration...).

.III.1 Les différents systèmes d'assainissement

Il existe au moyenne trois systèmes principaux pour effectuer une évacuation des eaux usées domestique, industrielles, pluviales, on peut citer les suivant :

Calcule de base

• Système unitaire

On dit d'un réseau d'assainissement qu'il est unitaire lorsqu'un ouvrage unique collecte et transporte les eaux pluviales, les eaux usées domestiques et éventuellement les eaux industrielles autorisées.

Dans le cas où la population est relativement dense, le système unitaire est recommandé.

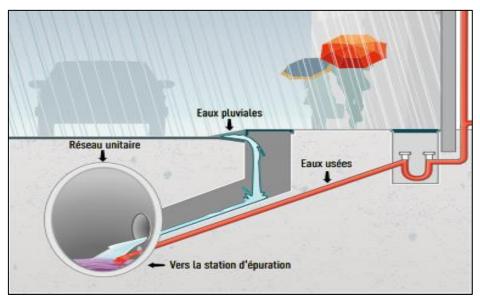


Figure III-1: schéma représentatif des branchements dans le système unitaire

Source: livre (LES BRANCHEMENTS AU RÉSEAU D'ASSAINISSEMENT)

Tableau III-2: Avantages et inconvénients du système unitaire

	- Milieu récepteur éloigné des points de collecte.
Domaine	- Topographie à faible relief.
	- Imperméabilisation importante et topographie accentuée de la
d'utilisation	commune.
	- Débit d'étiage du cours d'eau récepteur important.
	- Pas de risque d'inversion de branchement.
Avantages	- Pas de nécessité d'avoir à proximité un exutoire.
	- Investissement faible.
	- Risque de pollution des milieux élevé.
Inconvénients	- Conduite sur dimensionnées en temps sec (autocurage, odeurs).
	- Fonctionnement de la station d'épuration difficile.
Contraintes	- Entretien régulier des déversoirs d'orage et des bassins de stockage.
d'exploitation	- Difficulté d'évaluation des rejets directs vers le milieu récepteur.

Calcule de base

• Système séparatif

En système séparatif, les eaux usées et pluviales sont récupérées dans des ouvrages distincts:

- les canalisations et les collecteurs acheminent les eaux usées jusqu'à la station d'épuration;
 - les collecteurs pluviaux entraînent les eaux de pluie vers leurs exutoires naturels.

Aujourd'hui, La tendance est de limiter au maximum la sollicitation de la canalisation des eaux pluviales, en incitant les particuliers à récupérer les eaux de pluie ou en multipliant les zones végétalisées (toitures végétales, parcs, etc.) pour favoriser l'infiltration.

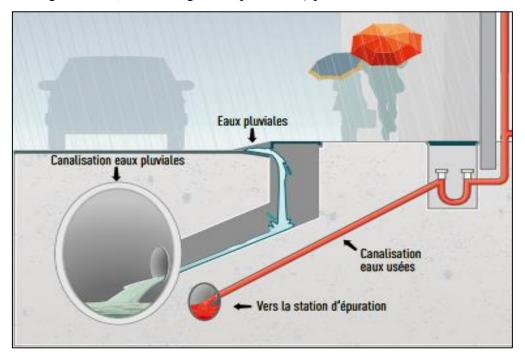


Figure III-2: schéma représentatif des branchements dans le système séparatif

Source: livre (LES BRANCHEMENTS AU RÉSEAU D'ASSAINISSEMENT)

Tableau III-3 Avantages et inconvénients du système séparatif

Domaine d'utilisation	 Petites et moyennes agglomérations. Extension des villes. Faible débit d'étiage du cours d'eau récepteur.
Avantages	 Fonctionnement de la station d'épuration maitrisé Risque de pollution des milieux faible (effluent pluvial faiblement chargé) Uniforme sous tout régime de pluviométrie

Calcule de base

	- Nécessité d'avoir à proximité un exutoire
Inconvénients	- Risque d'inversion de branchement
	- Investissement élevé
	- Surveillance accrue des branchements.
	- Entretien d'un linéaire important de collecteurs (eaux usées et
Contraintes	pluviales).
d'exploitation	- Entretien des postes de relèvement et des chambres à sables.
	- Détection et localisation des anomalies (inversion de
	branchement, arrivée d'eaux parasites).

• Système pseudo-séparatif

Il s'agit de réseaux séparatifs pour lesquels on admet un rejet des eaux des toits et des cours vers la canalisation des eaux usées. Ils peuvent avoir été mis en œuvre, à titre plus ou moins temporaire, à l'extrémité amont des réseaux ou lors de la mise en service de zones d'extension pour réaliser des chasses dans des réseaux d'eaux usées largement dimensionnés et sous-utilisés. Le plus souvent, ces réseaux n'ont pas été réalisés de façon intentionnelle, mais lorsqu'il s'est avéré difficile de séparer les effluents (pose d'un égout dans un quartier ancien équipé en individuel ou transformation en séparatif d'un égout unitaire). En termes de branchement d'un immeuble à l'égout, ce cas s'apparente donc strictement au branchement à l'égout unitaire.

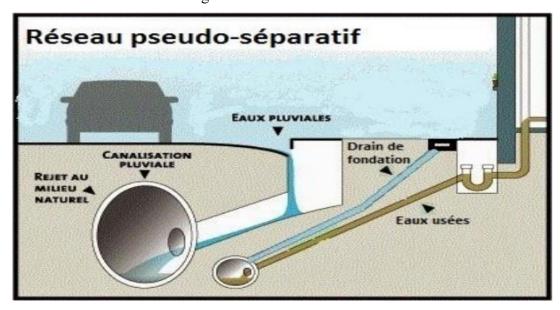


Figure III-3: schéma représentatif des branchements dans le système pseudo-séparatif

Source: www.agirmskinoge.com

Calcule de base

Domaine	- Présence d'un milieu récepteur proche.
d'utilisation	
Avantages	 Eaux usées et eaux de ruissellement des habitations combinées. Pas de risque d'erreurs de branchement.
Inconvénients	- Investissement important pour mise en place de deux réseaux.
Contraintes	- L'entretien régulier des déversoirs d'orage et de bassins de
d'exploitation	stockage.

• Système mixte

L'assainissement mixte est un type d'assainissement collectif. C'est un réseau où, sur le même espace, se trouvent des foyers desservis par un réseau unitaire (tout à l'égout : les eaux pluviales et les eaux domestiques sont mélangées) et d'autres desservis par un réseau séparatif (les eaux pluviales et les eaux domestiques sont collectées séparément).

• Système autonome

Il est également appelé assainissement non collectif (ANC) ou assainissement individuel. Il désigne le traitement des eaux usées (cuisine, salle de bain, WC) pour des habitations qui ne bénéficieraient pas d'un raccord au tout-à-l'égout, lui-même relié à une station d'épuration.

.III.2 Le choix du système d'assainissement

Pour le choix du système d'assainissement, il faut prendre en considération :

Tableau III-4: Les critères de choix d'un système d'assainissement

Les critères	L'explication
La surface de terrain disponible pour	Certaines installations sont beaucoup plus
l'installation	encombrantes, tandis que d'autres sont plus
	compactes.
L'aspect technique et les conditions	La topographie du terrain, le régime des
locales	précipitation atmosphériques, la répartition
	des masses d'habitations, ect).
Prenant en considération toutes les	Penser au frais d'installation,
contraintes technico-économique	d'exploitation et de son entretien futur.
Les contraintes relatives au terrain	Vérifier la présence de terrain priver, puits
	ou d'arbres dans les environs.

Calcule de base

- Pour notre projet, on va adopter le **système unitaire**, pour les raisons suivantes :
 - Notre zone d'étude s'agit des zones rurales, donc il y'a moins de zone imperméable (région agricole).
 - Nombre d'habitant très peu.
 - Les habitations sont perpétuées au long de la région.

IV Schéma d'évacuation des eaux

.IV.1 Les différents schémas d'assainissement

.IV.1.1 Schéma perpendiculaire

C'est souvent celui des villes ou communes rurales qui ne se préoccupent que de l'évacuation par les voies les plus économiques et les plus rapides sans avoir un souci d'un assainissement efficace des eaux rejetées.

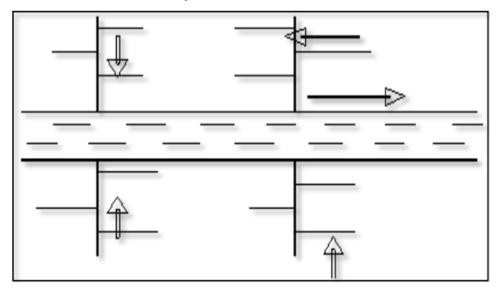


Figure IV-4: schéma perpendiculaire

.IV.1.2 Schéma par déplacement latéral

On adopte ce type de schéma quand il y'a obligation de traitement des eaux usées. Ou toutes les eaux sont acheminées vers un seul point dans la mesure du possible.

Calcule de base

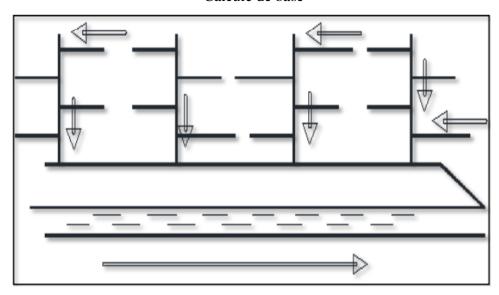


Figure IV-5: schéma déplacement latéral

.IV.1.3 Schéma transversal ou oblique

Ce schéma comporte des ramifications de collecteurs qui permettent de rapporter l'effluent à l'aval de l'agglomération. Ce type de schéma est adopté lorsque la pente du terrain est faible.

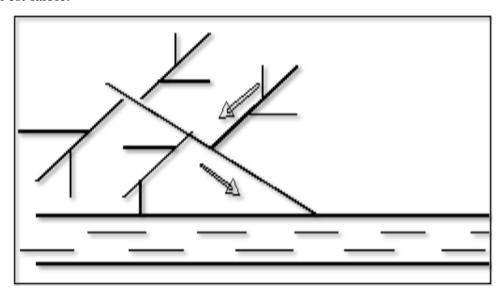


Figure IV-6: schéma transversal ou oblique

.IV.1.4 Schéma par zones étagées

Ce schéma s'apparente au schéma précédent. Le collecteur bas qui doit souvent faire l'objet de relèvement, se trouve soulagé des apports des bassins dominants qui peuvent être évacués gravitairement.

Calcule de base

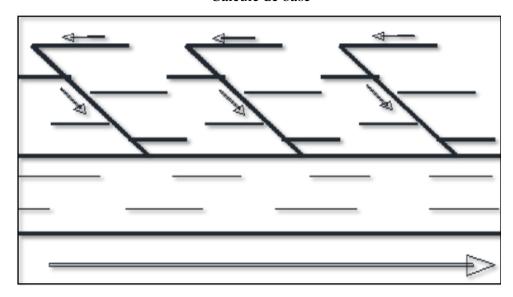


Figure IV-7: schéma zones étagées

.IV.1.5 Schéma radial

C'est un schéma adopté pour les terrains plat, ou les eaux sont collectées en un point bas, pour ensuite être relevées vers un cours d'eau récepteur, une station d'épuration ou un collecteur fonctionnant à surface libre.

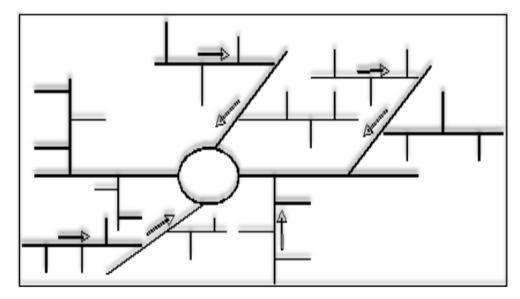


Figure IV-8: schéma radial

.IV.2 Choix du schéma d'évacuation

Le choix du schéma du réseau d'évacuation à adopter, dépend de divers paramètres :

- Les conditions techniques et locales du lieu : système existant, la topographie du terrain et la répartition géographique des habitats à desservir.

Calcule de base

- Les conditions d'environnement : nature de rejet, le milieu récepteur et l'emplacement de la station d'épuration si elle existe.
- Les conditions économiques : le cout et les frais d'investissement et d'entretien.
- > Suite aux critères précèdent, on va adopter un schéma par déplacement latérale.

V Détermination du coefficient de ruissellement

Méthodes de détermination du coefficient de ruissellement

Le coefficient de ruissellement « Cr » est définit comme étant le rapport entre le volume d'eau pluviale ruisselé « V_r » et le volume total tomber dans le bassin versant « V » considérer suivant la formule suivante :

$$C_r = \frac{V_r}{V}$$
 (III.1)

Il a un rôle important dans l'évaluation des débits de pointe pluviales qui servent au dimensionnement du réseau, pour cela que lors du découpage des sous bassins il faut que ces derniers soient aussi homogènes que possible, pour minimiser les erreurs commises sur l'évaluation du coefficient de ruissellement.

La valeur du coefficient de ruissellement varie de 0,05 à 1, elle dépend de plusieurs facteurs :

- La nature du sol.
- Le mode d'occupation du sol.
- L'inclinaison du terrain (la pente).
- La durée et l'intensité de la pluie.
- La densité de la population.
- Le degré de saturation du sol en eau.
- L'humidité de l'air.

L'estimation du coefficient de ruissellement est faite à titre empirique, d'une façon approchée vu l'hétérogénéité des surfaces, suivant différents facteurs :

Calcule de base

***** En fonction de la catégorie d'urbanisation

Tableau V-5: Valeurs du coefficient de ruissellement en fonction de la catégorie d'urbanisation

Catégorie d'urbanisation	Cr
Habitations très denses	0.90
Habitations denses	0.60 - 0.70
Habitations moins denses	0.40 - 0.50
Quartiers résidentiels	0.20 - 0.30
Square – garde – prairie	0.05 - 0.20

Source: Water Environment Federation (1970)

En fonction de la densité de la population

Tableau III-6: Valeurs du coefficient de ruissellement en fonction de la densité de la population

Densité de la population (habitant/ha)	Cr
20	0.20
30 – 80	0.20 - 0.25
60 – 150	0.25 - 0.30
150 – 200	0.30 - 0.45
200 – 300	0.45 - 0.60
300 – 400	0.60 - 0.80
>400	0.80 - 0.90

Source: Water Environment Federation (1970)

! En fonction de la nature de la surface

Tableau III-7: Valeurs du coefficient de ruissellement en fonction de la catégorie d'urbanisation

Nature de la surface	Cr
Toits en métal, tuile, ardoise	0.90-0.95
Chaussée avec peu de joints	0.85-0.90
Pavés en pierres naturelles, brique avec joints cimentés	0.75-0.85
Pavage en blocages	0.40-0.50
Surfaces goudronnées	0.25-0.60
Chemin en gravier	0.25-0.30
Gare, terrain de sport	0.10-0.30
Parcs, jardin, gazons	0.05-0.25
Forets	0.01-0.20

Calcule de base

.V.1 Estimation du coefficient de ruissellement pour chaque sous bassin

On va estimer la valeur de coefficient de ruissellement pondéré pour chaque sous bassin, en se basant sur le plan de masse de la zone d'étude.

.V.1.1 Coefficient de ruissellement pondéré

Dans le cas où la surface du bassin est formée de plusieurs aires élémentaires « Ai », Auxquelles on affecte le coefficient de ruissellement « Cri », on calcule le coefficient de ruissellement pondéré par :

$$C_{rp} = \frac{\sum Ai \times Cri}{A}$$
 (III.2)

Avec:

- Ai : surface du sous bassin (ha).

- A : surface totale en (ha)

- *Cri* : coefficient de ruissellement partielle.

- C_{rp} : coefficient de ruissellement total pondéré.

- i : numéro de sous bassin (i=1.....)

Les résultats sont dans le tableau suivant :

Tableau III-8: Valeurs du coefficient de ruissellement pour chaque sous bassin

N°SB	Surface : A(ha)	$\mathbf{C}_{\mathbf{r}}$
01	10.73	0.23
02	8.95	0.22
03	7.13	0.22
04	9.96	0.20
05	9.73	0.21
06	14.06	0.20
07	18.46	0.21
08	6.91	0.25
09	8.59	0.26
10	10.38	0.25
11	13.29	0.26

Calcule de base

N°SB	Surface : A(ha)	Cr
12	10.73	0.26
13	3.62	0.22
14	9.45	0.26
15	7.64	0.25
16	11.99	0.22
17	3.07	0.27
18	5.89	0.29
19	8.63	0.20
20	5.01	0.26
Somme :	184.2	-

VI Calcul du nombre d'habitants pour chaque sous bassin

Pour connaître le nombre exact d'habitants de chaque sous bassins, on suit les étapes suivantes afin de pouvoir estimer ce dernier :

- 1. On estime le coefficient de ruissellement de chaque sous bassin.
- 2. On calcule le coefficient de ruissellement pondéré total.
- 3. On calcule la densité partielle de chaque sous bassin.
- 4. On déduit le nombre d'habitant dans chaque sous bassins.

On a la formule suivante :

$$D_i = \frac{c_{ri} \times P_t}{c_{rpt} \times A}$$
 (III.3)

Avec:

- D_i : densité partielle pour chaque sous bassin (hab/ ha).
- C_{rpt} : coefficient de ruissellement total pondéré.
- C_{ri} : Coefficient de ruissellement partiel.
- *A* : surface totale (184.2 ha).
- P_t : nombre total d'habitation (6939 hab) à l'horizon 2051.

Le coefficient de ruissellement pondéré totale pour notre zone :

Calcule de base

$$C_{rpt} = 0.23$$

On procède par la suite au calcul du nombre d'habitants correspondant à chaque sous bassin par la relation ci-dessous :

Avec:

- Di : densité partielle pour chaque sous bassin (hab / ha).
- Ai : surface partielle pour chaque sous bassin (ha).

Les résultats de calcul du coefficient de ruissellement et nombre d'habitant de chaque sous bassins sont portés dans le tableau suivant :

Tableau VI-9: nombre d'habitants pour chaque sous bassin

N°SB	Surface : A(ha)	Cr	Di (hab/ha)	Nombre d'habitant (hab)
1	10.73	0.23	37	397
2	8.95	0.22	36	322
3	7.13	0.22	36	256
4	9.96	0.20	32	318
5	9.73	0.21	35	340
6	14.06	0.20	32	449
7	18.46	0.21	35	646
8	6.91	0.25	41	276
9	8.59	0.26	42	360
10	10.38	0.25	41	415
11	13.29	0.26	42	558
12	10.73	0.26	42	450
13	3.62	0.22	36	130
14	9.45	0.26	42	391
15	7.62	0.25	41	304
16	11.99	0.22	36	431
17	3.07	0.27	44	135
18	5.89	0.29	47	275
19	8.63	0.20	32	276
20	5.01	0.26	42	210
Somme :	184.2	/	/	6939

Calcule de base

Conclusion

Dans ce chapitre on a déterminé les paramètres de base pour notre zone d'étude pour une bonne estimation des débits d'évacuation afin de bien dimensionner nos collecteurs.

Pour notre agglomération on a fixé les choix suivants :

• On a un nombre de population de 6939 habitants à un horizon de 30ans (2051).

Répartis sur 20 sous bassin.

• Le système d'assainissement adopté pour la zone d'étude est le système unitaire avec un schéma par déplacement latérale.

CHAPITRE IV:

Estimation des débits à évacuer

Estimation des débits à évacuer

Introduction

Le système de canalisation en assainissement au niveau d'une zone rurale est appelé à assurer la collecte et l'évacuation des eaux de ruissellement des collecteurs, une évaluation des débits des eaux usées et pluviales est indispensable avant d'entamer le dimensionnement du réseau.

Pour but d'évalué les débits des eaux usées dans cette région est de connaître la quantité et les types des rejets provenant des habitations et lieux d'activités.

I Origine et nature des eaux à évacuer

J.1 Les eaux usées

On distingue, selon la nature des matières polluantes contenues dans l'effluent, quatre (04) origines :

- Les eaux usées d'origine domestique.
- Les eaux usées des services publics.
- Les eaux usées d'origine industrielle.
- Les eaux parasites.

J.1.1 Les eaux usées d'origine domestique

Ce sont les eaux de ménage qui proviennent des habitations aux contres des agglomérations. Elles sont constituées essentiellement des :

Eaux ménagères : les eaux de cuisine, de vaisselle, de lavage, de bains et de douches ; elles sont évacuées par les éviers des lavabos et des baignoires.

Eaux vannes : les eaux provenant des sanitaires.

La quantité des eaux à évacuer dépend de la consommation en eau potable qui elle-même dépend essentiellement des facteurs suivants :

- Type d'habitations et leurs degrés de confort.
- Conditions climatiques.

J.1.2 Les eaux usées des services publiques

Les effluents domestiques sont un mélange d'eaux contenant des déjections humaines. Ces eaux sont généralement constituées de matières organiques dégradables et de matières minérales, ces substances sont sous forme dissoute ou en suspension. Elles se composent essentiellement par des eaux de vanne d'évacuation de toilette. Et des eaux ménagères d'évacuation des cuisines, salles de bains. Elles proviennent essentiellement :

Estimation des débits à évacuer

- Des eaux de cuisine qui contiennent des matières minérales en suspension provenant du lavage des légumes, des substances alimentaires à base de matières organiques (glucides, lipides, protides) et des produits détergents utilisés pour le lavage de la vaisselle et ayant pour effet la solubilisation des graisses;
- Des eaux de buanderie contenant principalement des détergents ;
- Des eaux de salle de bain chargées en produits utilisés pour l'hygiène corporelle, généralement des matières grasses hydrocarbonées ;
- Des eaux de vannes qui proviennent des sanitaires (w.c), très chargées en matières organiques hydrocarbonées, en composés azotés, phosphatés et microorganisme.

.I.1.3 Les eaux usées industrielles

Les déchets et les effluents industriels définissent largement la qualité et le taux de pollution de ces eaux usées. Les établissements industrieux utilisent une quantité importante d'eau qui tout en restant nécessaire à leur bonne marche, n'est réellement consommée qu'en très faible partie le reste est rejeté. On peut néanmoins, faire un classement des principaux rejets industriels suivant la nature des inconvénients qu'ils déversent :

- Pollution due aux matières en suspension minérales (Lavage de charbon, carrière, tamisage du sable et gravier, industries productrices d'engrais phosphatés...);
- Pollution due aux matières en solution minérales (usine de décapage, galvanisation...);
- Pollution due aux matières organiques et graisses (industries agroalimentaires, équarrissages, pâte à papier...);
- Pollution due aux rejets hydrocarbonés et chimiques divers (raffineries de pétrole, porcherie, produits pharmaceutiques...);
- Pollution due aux rejets toxiques (déchets radioactifs non traités, effluents radioactifs des industrie nucléaires...). Les eaux résiduaires d'origine industrielle ont généralement une composition plus spécifique et directement liée au type d'industrie considérée. Indépendamment de la charge de la pollution organique ou minérale, de leur caractère putrescible ou non, elles peuvent présenter des caractéristiques de toxicité propres liées aux produits chimiques transportés.

Estimation des débits à évacuer

.I.1.4 Les eaux parasites

Les eaux claires parasites désignent, le plus souvent, l'ensemble des eaux provenant de drainage, des infiltrations après une chute de pluie de la remontée de la nappe.

Ces eaux pénètrent dans les collecteurs, généralement à travers :

Les joints mal confectionnés (mauvais raccordement) ou déboités à cause d'une mauvaise pose de canalisation.

Les fissurations dans les collecteurs à cause des tassements de la terre autour de la conduite ou bien des racines des arbres cherchant l'humidité (phénomène d'hydrotropisme).

La présence de ces eaux perturbe le bon fonctionnement de la station d'épuration.

Néanmoins leur évaluation est assez difficile, elle ne peut être faite que sur terrain ; seule la modélisation peut donner une approche d'estimation du débit de ces eaux.

En pratique et en absence des valeurs mesurées, on préconise un débit d'eau parasite compris entre 0.05 et 0.15 L/s/ha.

Dans notre étude on va prendre la valeur la plus défavorable (0.15 L/s/ha).

.I.2 Les eaux pluviales

Les eaux de pluie ne sont pas dépourvues de pollutions et peuvent constituer une cause de dégradations importantes des cours d'eau, notamment pendant les périodes orageuses. Ces eaux se chargent :

- D'impuretés, au contact de l'air (fumées industrielles, résidus de pesticides...),
- De résidus déposés, en ruisselant sur les toits et les chaussées des villes (huiles de vidange, carburants, résidus de pneus, métaux lourds...).

Lorsque le système d'assainissement est dit « unitaire », les eaux pluviales sont mêlées aux eaux usées domestiques. En cas de fortes précipitations, les contraintes de préservation des installations de dépollution peuvent imposer un déversement (délestage) de ce « mélange » très pollué dans le milieu naturel. Enfin, dans les zones urbaines, les surfaces construites rendent les sols imperméables et ajoutent le risque d'inondation à celui de la pollution. Les eaux pluviales peuvent être collectées en même temps que les eaux usées domestiques ou bien séparément. On parle alors de réseau unitaire ou séparatif.

II Evaluation des débits d'eaux usées

L'évaluation de la quantité d'eaux usées journalière à évacuer s'effectuera à partir de la consommation d'eau par habitant, l'évacuation quantitative des rejets est en fonction du type

Estimation des débits à évacuer

d'agglomération ainsi que le mode d'occupation du sol. Plus l'agglomération est urbanisée, plus la proportion d'eau rejetée est élevée.

.II.1 Evaluation des débits d'eaux usées domestiques et des E.P

Pour calculer le débit des eaux usées à évacuer, on prend comme base la dotation en eau potable, et nous considérons que 80% de l'eau consommée est rejetée dans le réseau d'évacuation.

.II.1.1 Débit moyen journalier

Pour calculer le débit des eaux usées à évacuer, on prend comme base la dotation de la consommation d'eau potable.

Le débit moyen journalier rejeté est donné par la relation suivante :

$$Q_{moy.j} = \frac{K_r \times D \times N_{hab}}{86400}$$
 (IV.1)

Avec:

- $Q_{moy.j}^{dom}$: débit moyen journalier des eaux usées domestiques en (L/s).
- N_{hab}: nombre d'habitants à l'horizon d'étude (habitant).
- K_r : Coefficient de rejet pris égal à 80% de la quantité d'eau potable consommée.
- D: dotation journalière estimée à 200 L/hab/j.
- Le terme $\frac{1}{86400}$ est pour la conversion de (L/j) en (L/s).

.II.1.2 Débit de pointe

Comme la consommation, le rejet des eaux usées est aussi variable dans la journée, d'où on est appelé à déterminer le débit de pointe. Ce dernier est donné par la formule suivante :

$$Q_P^{dom} = K_P \times Q_{moy,j}^{dom}$$
 (IV.2)

Avec:

- $-Q_P^{dom}$: débit de pointe des eaux usées domestiques (L/s).
- $Q_{moy,j}^{dom}$: débit moyen journalier rejeté (L/s).
- K_P : coefficient de pointe ; calculé à partir du débit moyen de rejet :

$$K_P = 1.5 + \frac{2.5}{\sqrt{Q_{moy,j}^{dom}}}$$
 si : $Q_{moy,j} \ge 2.81 L/s$ (IV.3)

$$K_P = 3$$
 si : $Q_{mov,j} < 2.81 L/s$ (IV.4)

Les débits des eaux usées des équipements à évacuer sont illustrés dans le tableau suivant :

Estimation des débits à évacuer

Tableau IV-1: Débits des eaux usées des équipement publiques pour chaque sous bassin

N°SB	Equipement	Unité de mesure	N_u	Dotation ^{éq} (L/j/unité)	$Q_{moy.j}^{ m \'eq}$ (L/s)	K_P	$Q_p^{ m \'eq}$ (L/s)	$Q_p^{\acute{ m e}q}$ $(m^3/{ m s})$	$Q_p^{\acute{e}q}$ total (m^3/s)
SB02	Ecole primaire	Elève	300	20	0.056	3	0.168	0.000168	0.000168
SB05	Mosquée	Fidel	250	30	0.070	3	0.210	0.000210	0.000210
SB10	Ecole primaire	Elève	300	20	0.056	3	0.168	0.000168	0.000378
	Mosquée	Fidel	250	30	0.070	3	0.210	0.000210	
SB14	Centre de soins	Malade	50	15	0.007	3	0.021	0.000210	0.000216
	Antenne APC	Employé	10	20	0.002	3	0.006	0.000006	0.000210
SB18	Ecole primaire	Elève	250	20	0.047	3	0.141	0.000141	0.000349
	Mosquée	Fidel	250	30	0.070	3	0.208	0.000208	

.II.2 Débits totaux des eaux usées à évacuer

Pour le calcul du débit total des eaux usées à évacuer, et en l'absence des renseignements précis sur la répartition dans le temps, on doit prendre en considération l'hypothèse de la superposition des débits de pointes de tout type d'eaux usées.

→ Les débits totaux des eaux à évacuer sont illustrés dans le tableau suivant :

Tableau IV-2: Débits totaux des usées à évacuer pour chaque sous bassin

N°SB	Nombre d'habitant (hab)	$Q_{moy.j}^{dom} \ ext{(L/s)}$	K_P	$Q_P^{dom} \ (\mathrm{L/s})$	$Q_P^{\acute{ m e}q}$ (L/s)	Q_t^{EU} (L/s)	Q_t^{EU} (m^3/s)
01	397	0.735	3	2.205	-	2.205	0.002205
02	322	0.596	3	1.788	0.168	1.956	0.001956
03	256	0.474	3	1.422	-	1.422	0.001422
04	318	0.589	3	1.767	-	1.767	0.001767
05	340	0.630	3	1.890	0.210	2.100	0.002100
06	449	0.831	3	2.493	-	2.493	0.002493
07	646	1.196	3	3.588	-	3.588	0.003588

Estimation des débits à évacuer

N°SB	Nombre d'habitant (hab)	$Q_{moy.j}^{dom} \ ext{(L/s)}$	K_P	$Q_P^{dom} \ (ext{L/s})$	$Q_P^{cute{e}q}$ (L/s)	Q_t^{EU} (L/s)	Q_t^{EU} (m^3/s)
08	276	0.511	3	1.533	-	1.533	0.001533
09	360	0.667	3	2.001	-	2.001	0.002001
10	415	0.769	3	2.307	0.378	2.685	0.002685
11	558	1.033	3	3.099	-	3.099	0.003099
12	450	0.833	3	2.499	-	2.499	0.002499
13	130	0.241	3	0.723	-	0.723	0.000723
14	391	0.724	3	2.172	0.216	2.388	0.002388
15	304	0.563	3	1.689	-	1.689	0.001689
16	431	0.798	3	2.394	-	2.394	0.002394
17	135	0.250	3	0.750	-	0.750	0.000750
18	275	0.509	3	1.527	0.349	1.876	0.001876
19	276	0.511	3	1.533	-	1.533	0.001533
20	210	0.389	3	1.167	-	1.167	0.001516

III Estimation des débits des eaux pluviales

La détermination des débits pluviaux est une étape essentielle dans toute étude d'un réseau d'assainissement. Les débits d'eaux pluviales seront calculés pour une précipitation de fréquence décennale et d'une durée de 15mn. Car ces eaux doivent être collectées dans les canalisations d'évacuation pour éviter les débordements (inondation).

Pour le faire deux méthodes essentielles se présentent afin d'estimé les débits pluviaux :

- La méthode superficielle
- La méthode rationnelle

.III.1 La méthode rationnelle

C'est une méthode qui consiste à estimer le débit à partir d'un découpage du bassin versant en secteurs limités par les lignes isochrones, cette méthode fut découverte en 1889, mais ce n'est qu'en 1906 qu'elle a été généralisée, elle est connue aussi par la méthode de LIOYD DAVIS, c'est une méthode qui a fait et fait ses preuves surtout pour les bassins urbains à faible surface (≤10 ha).

Estimation des débits à évacuer

Elle consiste à estimer les débits pluviaux suite à une averse d'intensité moyenne « i » supposée constante durant la chute de pluie sur de surfaces d'influence de superficie « A », caractérisée par un coefficient de ruissellement « Cr ».

Cependant, on tient compte « α » de répartition de la pluie.

La méthode rationnelle s'exprime par la formule suivante :

$$Q = \alpha \times C_r \times i \times A$$
 (IV.5)

Avec:

- Q : débit d'eau de ruissellement (L/s).
- A : surface d'apport (ha).
- Cr : coefficient de ruissellement.
- i : intensité moyenne de précipitation (L/s/ha).
- α : coefficient réducteur (correcteur) de l'intensité tenant compte de la distribution de la pluie dans l'espace.

.III.1.1 Validité de La Méthode Rationnelle

Cette méthode est efficace pour des aires relativement limitées, le résultat est meilleur pour les aires plus faibles du fait de la bonne estimation du coefficient de ruissellement, aussi, elle est applicable pour des surfaces ou le temps de concentration ne dépasse pas 30 minutes.

.III.1.2Hypothèses de la méthode rationnelle

La méthode rationnelle est fondée sur trois (03) hypothèses de base :

- Le débit de pointe « Qp » est observé à l'exutoire seulement si la durée de l'averse est supérieure au temps de concentration « te » du bassin-versant.
- Le débit de pointe « Qp » est proportionnel à l'intensité moyenne maximale « i » sur une durée égale au temps de concentration « te » du bassin-versant.
- Le débit de pointe « Qp » a la même période de retour que l'intensité « i » qui le provoque, ceci suppose que le coefficient de ruissellement « Cr » du bassin-versant est constant.
- La méthode rationnelle suppose que les surface à drainer ont des surfaces remarquables.
- L'intensité de pluie est supposée constante est homogène.

Estimation des débits à évacuer

.III.1.3Temps de concentration

Le temps de concentration relatif à un bassin versant est le temps le plus long que met l'eau qui ruisselle pour atteindre l'entrée du collecteur qui doit évacuer l'apport de l'air considérée.

- o Le temps de concentration « tc » se compose de :
- t1 (min): temps mis par l'eau pour s'écouler dans les canalisations.

$$t_1 = \frac{L}{60 \times v} \quad (IV.6)$$

Avec:

- L: longueur de canalisation (m).
- v : vitesse d'écoulement (m/s).
- Le terme $\frac{1}{60}$ pour la conversion de secondes (s) en minutes (min).
- t_2 : temps mis par l'eau pour atteindre le premier ouvrage d'engouffrement. En général, il varie de 2 à 20 min.
- t_3 (min): temps de ruissellement superficiel dans un bassin ne comportant pas de canalisations.

$$t3 = \frac{L_S}{11 \times \sqrt{I}} \text{ (IV.7)}$$

Avec:

- L_s : parcours superficiel de l'eau dans le bassin (km).
- I : pente moyenne du parcours (%).
- Donc, trois (03) cas pouvant être envisagés :
- Le bassin ne comporte pas de canalisation : $t_c = t_3$.
- Le bassin comporte un parcours superficiel puis une canalisation : $t_c = t_1 + t_3$.
- Le bassin est urbanisé et comporte une canalisation : $t_c = t_1 + t_2$.

.III.1.4 Critique de la méthode rationnelle

• La décomposition du bassin en aires élémentaires est grossièrement approchée.

Estimation des débits à évacuer

- On suppose généralement que le coefficient de ruissèlement « Cr » est constant sur tout le bassin et pendant toute la durée de l'averse ce qui est souvent loin de la réalité.
- La critique principale que l'on peut faire à cette méthode est qu'elle ne tient pas compte du stockage de l'eau de ruissellement sur le bassin.
- Cette méthode sous-estime les débits de pointes observés, probablement parce qu'on sous-estime le coefficient de ruissellement en négligent le rôle des surfaces non revêtues et sans végétation.

.III.2 La méthode superficielle

La méthode de Caquot ou la méthode superficielle est une forme globaliste de la méthode rationnelle. Ce modèle établit le bilan hydraulique du débit précipité sur le bassin versant jusqu'à l'instant à peu près égal au temps de concentration « t_c » ou on observe le débit de pointe « Q_P » à l'exutoire. L'expression générale de la formule de Caquot est suivante :

$$Q_P = K^{\frac{1}{u}} \times C_r^{\frac{1}{u}} \times I^{\frac{v}{u}} \times A^{\frac{w}{u}}$$
 (IV.8)

Avec:

- Q_P : le débit pluvial de poite ; en (m^3/s) .
- C_r : est le coefficient de ruissellement du sous bassin considéré.
- I : la pente moyenne calculée selon le plus long cheminement hydraulique (m/m).
- A : la superficie drainée du sous bassin (ha).
- K, u, v, w : coefficients d'expressions, donnés en fonction des paramètres de Caquot par les formules suivantes :

$$K = \frac{a \times \mu}{6 \times (\beta + \delta)} \text{ (IV.9)}$$

$$u = 1 - b \times f \text{ (IV.10)}$$

$$v = c \times b \text{ (IV.11)}$$

$$w = 1 - \varepsilon + d \times b \text{ (IV.12)}$$

.III.2.1 Evaluation des paramètres de Caquot

❖ Paramètres liés à la pluviométrie

 a, b : sont les coefficients de la formule de Montana (courbes IDF). Les valeurs qu'ils prennent sont issues d'un calcul purement hydrologique selon les régions, les périodes de retour et les fréquences.

Estimation des débits à évacuer

- ε : abattement spatial de la pluie;

$$\varepsilon = 0.5$$
 pour S < 100 ha.

 $\varepsilon = 0.03$ la valeur la plus adoptée.

Paramètres caractérisant la transformation de la pluie en débit

 $-\beta + \delta = 1.1$ représente l'effet de stockage et d'écrêtement, cette valeur devrait augmenter avec la taille des bassins.

❖ Paramètre concernant le bassin versant

- -c = -0.41; d = 0.51; f = -0.29.
- $-\mu$: coefficient d'ajustement de la forme du bassin, donnée par :

$$\mu = 0.28 \times M^{0.84}$$
 (IV.13)

Où:

$$M = \frac{L}{\sqrt{S_c}} \text{ (IV.14)}$$

Avec:

- M : coefficient d'allongement qui caractérise la forme du bassin-versant.
- L: le plus long chemin hydraulique (m).
- Sc : étant la surface du carré équivalent qui est égale à celle du bassin (m^2) .

Remarque

La valeur de « M » doit être supérieure à 0.8 (une valeur qui correspond à un bassin-versant en forme de demi-cercle). La formule de Caquot est donnée pour M=2. Et pour des valeurs de « M » différentes de 2, le débit de pointe « Q_P » donnée par la formule doit être corrigé par le coefficient d'influence :

$$m = (\frac{M}{2})^{0.7 \times b}$$
 (IV.15)

Temps de concentration

D'après DESBORDES, le temps de concentration (valable pour les deux méthode) est donné par l'expression suivante :

$$t_c = 0.28 \times M^{0.84} \times I^{-0.41} \times A^{0.51} \times Q_P^{-0.29}$$
 (IV.16)

Avec:

$$-t_c \text{ (min)}$$
 ; $I \text{ (m/m)}$; $A \text{ (ha)}$; $Q_P \text{ (}m^3\text{/s)}$

Estimation des débits à évacuer

.III.2.2 Validité de la méthode superficielle

Il est nécessaire de vérifier les conditions d'application de la formule de Caquot pour pouvoir l'appliquer, ces limites sont celles préconisées par l'instruction technique 1977 :

• Superficie totale : A < 200 ha.

• Coefficient de ruissellement : $0.2 < C_r < 1$.

• Pente : 0.2 % < I < 5 %.

• Coefficient d'allongement : M > 0.8.

.III.2.3Pente moyenne

Cette hypothèse étant passée, pour un bassin versant urbaniser dont le plus long cheminement hydraulique « L » constitué des tronçons successifs « L_i » et de pente sensiblement constante « Ij », l'expression de la pente moyenne exprime le temps d'écoulement le long de ce cheminement le plus hydrauliquement explicite sous la forme :

$$I_{eq} = (\frac{\sum_{i=1}^{n} Li}{\sum_{i=1}^{n} \frac{Li}{\sqrt{Ii}}})^2$$
 (IV.17)

.III.2.4Groupement des bassins en série ou en parallèle

L'application de la méthode de Caquot à un ensemble de bassins versants hétérogènes placés en série ou en parallèle est diffèrent selon la hiérarchie des sous bassins constituant le groupement, des bassins seront dits en série lorsque l'exutoire d'un des bassins constitue l'entrée de l'autre, les bassins seront dits en parallèle l'exutoire d'un des bassins constitue l'entrée de l'autre, les bassins seront dits en parallèle lorsque leurs exutoires convergent vers le même² bassin versant.

Il en en effet nécessaire de rechercher les caractéristiques du bassin équivalent. Le tableau suivant fourni le mode d'assemblage à utiliser :

Tableau III-3: Formules d'assemblage des bassins versants dans la méthode de Caquot

Paramètres équivalents	$A_{cute{e}q}$	$\mathcal{C}_{\operatorname{\acute{e}q}}$	$I_{ m \'eq}$	$M_{\mathrm{\acute{e}}q}$
Bassins en série	$\sum A_i$	$\frac{\sum (C_i \times A_i)}{\sum C_i}$	$\left[\frac{\sum L_i}{\sum \left(\frac{L_i}{\sqrt{I_i}}\right)}\right]^2$	$\frac{\sum L_i}{\sqrt{\sum A_i}}$
Bassins en parallèle	<u> </u>	$\sum A_i$	$\frac{\sum (L_i \times Q_i)}{\sum Q_i}$	$\frac{L(t_{c.max})}{\sqrt{\sum A_i}}$

Avec:

Estimation des débits à évacuer

- $-A_{\acute{e}q}, C_{\acute{e}q}, I_{\acute{e}q}, M_{\acute{e}q}$: sont les paramètres du bassin équivalent.
- $-A_{\acute{e}q}, C_{\acute{e}q}, I_{\acute{e}q}, M_{\acute{e}q}$: sont les paramètres individuels du sous bassin (i) considéré seul.
- $L_{(t_{c,max})}$: cheminement hydraulique le plus long du sous bassin ayant le temps de concentration le plus long.

.III.2.5 Critique de la méthode superficielle

- Les débits livrés par la méthode de Caquot sont sensiblement supérieurs (surestimation)
 en comparaison avec ceux de la méthode rationnelle. Ce surplus des débits donné par la
 méthode superficielle est du essentiellement aux conditions de calcul, notamment les
 tronçons disposés en parallèle, ainsi que l'effet implicite du temps de concertation et qui
 ne relève pas le comportement plus au moins réel du réseau.
- Le modèle de groupement des bassins, peut conduire à des anomalies :
- Pour les bassins en série, il peut arriver que le débit de pointe des bassins équivalent soit inférieur au maximum des débits de pointe des sous bassins. Donc on prend :

$$Q_P = \text{Max}(Q_i).$$

Pour les bassins en parallèle, il peut arriver que le débit de pointe du bassin équivalent soit supérieur à la somme des débits de pointe des sous bassins, ce qui est impossible.
 Donc on prend : Q_P =∑ Q_i.

.III.2.6 Choix de la méthode

Pour l'évaluation des débits des eaux pluviales on opte pour la méthode rationnelle. C'est vrai qu'on a quelques sous bassin un peu plus grand que 10 ha mais les pentes de notre sous bassins elles ne sont pas fortes, donc pratiquement la méthode rationnelle est faible.

.III.3 Calcul des débits pluviaux

.III.3.1 Coefficient réducteur de l'intensité

En réalité, la répartition d'une pluie au niveau d'un bassin est irrégulière surtout pour les pluies de courte durée et de forte intensité. Pour en tenir compte, on doit ajouter un paramètre de correction pour chaque surface élémentaire ; c'est un coefficient réducteur de l'intensité : $\alpha \le 1$.

Ce coefficient peut être déterminé d'après une loi de répartition de pluie :

• Pour des bassin longs (rectangles étroits, ...) ; ce coefficient sera égal à :

Chapitre IV:

Estimation des débits à évacuer

$$\alpha = 1 - 0.006 \times \sqrt{d/2}$$
 (IV.18)

• Pour des bassins ramassés (carrés, cercles, ...):

$$\alpha = 1 - 0.006 \times \sqrt{d/2}$$
 (IV.19)

Avec:

- d : longueur du milieu de l'aire élémentaire (m).

Les résultats de calcul des débits pluviaux pour chaque surface élémentaire sont reportés respectivement dans le tableau suivant :

Tableau III-4: des eaux pluviales à évacuer de chaque sous bassin

N°SB	A (ha)	C_r	α	I (L/s/ha)	$Q^{EP}(L/s)$	Q^{EP} (m ³ /s)
01	10.73	0.23	0.95	155	363.398	0.36339
02	8.95	0.22	1	155	305.195	0.30519
03	7.13	0.22	1	155	243.133	0.24313
04	9.96	0.20	1	155	308.760	0.30876
05	9.73	0.21	1	155	316.712	0.31671
06	14.06	0.20	0.96	155	418.426	0.41842
07	18.46	0.21	0.92	155	552.803	0.55280
08	6.91	0.25	1	155	267.673	0.26767
09	8.59	0.26	1	155	346.177	0.34617
10	10.38	0.25	0.99	155	398.203	0.39820
11	13.29	0.26	0.95	155	508.808	0.50880
12	10.73	0.26	0.99	155	428.095	0.42809
13	3.62	0.22	1	155	123.442	0.12344
14	9.45	0.26	1	155	380.835	0.38083
15	7.64	0.25	1	155	296.050	0.29605
16	11.99	0.22	0.98	155	400.682	0.40068
17	3.07	0.27	1	155	128.480	0.12848
18	5.89	0.29	1	155	264.756	0.26475
19	8.63	0.20	1	155	267.530	0.26753
20	5.01	0.26	1	155	201.903	0.20190

Chapitre IV:

Estimation des débits à évacuer

.III.4 Les débits totaux de chaque sous bassin

Les résultats de calcul des débits totaux pour chaque surface élémentaire sont reportés respectivement dans le tableau suivant :

Tableau III-5: Débits totaux de chaque sous bassin

N°SB	A(ha)	$Q_t^{EU}(\mathrm{L/s})$	$Q^{EP}(L/s)$	$Q_{Parasite}(L/s)$	$Q_{totale}(L/s)$	$Q_{totale}(m^3/\mathrm{s})$
01	10.73	2.205	363.398	1.61	367.213	0.36721
02	8.95	1.956	305.195	1.34	308.491	0.30849
03	7.13	1.422	243.133	1.07	245.625	0.24562
04	9.96	1.767	308.760	1.49	312.017	0.31201
05	9.73	2.100	316.712	1.46	320.272	0.32027
06	14.06	2.493	418.426	2.11	423.029	0.42302
07	18.46	3.588	552.803	2.77	559.161	0.55916
08	6.91	1.533	267.673	1.04	270.246	0.27024
09	8.59	2.001	346.177	0.99	349.168	0.34916
10	10.38	2.685	398.203	1.56	402.448	0.40244
11	13.29	3.099	508.808	1.99	513.897	0.51389
12	10.73	2.499	428.095	1.61	432.204	0.43220
13	3.62	0.723	123.442	0.54	124.705	0.12470
14	9.45	2.388	380.835	1.42	384.643	0.38464
15	7.64	1.689	296.050	1.15	298.889	0.29888
16	11.99	2.394	400.682	1.80	404.876	0.40487
17	3.07	0.750	128.480	0.46	129.690	0.12969
18	5.89	1.876	264.756	0.88	267.512	0.26751
19	8.63	1.533	267.530	1.29	270.353	0.27035
20	5.01	1.167	201.903	0.75	203.820	0.20382

Conclusion

Dans ce chapitre, on a estimé les quantités des eaux à évacuer. Notre zone d'étude s'agit des zones rurales qui ne contient aucune unité industrielle qui rejettent leurs eaux dans le réseau urbain.

On a pu remarquer que les eaux pluviales représentent la fraction la plus grande dans notre débit. La présente évaluation a une grande importance car elle va nous va nous permettre d'entamer le dimensionnement de notre système d'assainissement.

CHAPITRE V:

Chapitre V

Dimensionnement du réseau d'assainissement

Introduction

Après avoir estimé tous les débits à évacuer au niveau des sous bassins des zones rurale de la ville de Bourached, on passe au calcul hydraulique du système d'assainissement qui consiste à dimensionner les ouvrages de notre réseau (collecteurs et regards), toute en respectant les normes d'écoulement et le choix du tracé le plus efficace et le plus économique.

I Principe de conception d'un système d'assainissement

J.1 Conditions d'implantation des réseaux

- L'implantation des réseaux est étudiée en donnant aux canalisations des profondeurs qui doivent permettre le raccordement des immeubles riverains au moyen de branchement.
- L'implantation des réseaux et ouvrage d'assainissement doit se faire sous la voirie, de préférence à l'axe.
- L'implantation des réseaux est étudiée en donnant aux canalisations amont des pentes permettant l'auto curage.

J.2 Conditions d'écoulement et de dimensionnement

L'écoulement en assainissement est gravitaire, donc tributaire de la topographie du terrain naturel, en plus cet écoulement doit avoir une vitesse qui permet l'entrainement des particules de sable facilement décantables.

Lorsqu'il s'agit d'un réseau d'évacuation de type unitaire, les conditions d'auto curage qui doivent être satisfaites pour les débits minimums en période sèche sont les suivantes :

- Une vitesse minimale de 0.6 m/s pour le (1/10) du débit de pleine section.
- Une vitesse de 0.3 m/s pour le (1/100) de ce même débit.

A l'opposé des considérations relatives à l'auto curage, le souci de prévenir la dégradation des joints sur les canalisations circulaires et leur revêtement intérieur, nous conduit à poser des limites supérieures aux pentes admissibles. Donc, il est déconseillé de dépasser des vitesses de l'ordre de (4 à 5) m/s à pleine section.

.I.3 Hypothèse de calcul

Avant de procéder au calcul hydraulique d'un réseau d'assainissement, on considère les hypothèses suivantes :

• L'écoulement est uniforme à surface libre.

Dimensionnement du réseau d'assainissement

- La perte de charge engendrée est une énergie potentielle égale à la différence des côtes du plan d'eau en amont et en aval.
- Les canalisations d'égouts sont dimensionnées pour un débit en pleine section « Q_{ps} » malgré qu'en réalité, et dans la plupart du temps, elles ne débitent pas cette quantité.

II Mode de dimensionnement des canalisations

.II.1 Base de calcul

L'écoulement dans les collecteurs est un écoulement à surface libre ; dont le débit est donné par la formule de la continuité :

$$Q = v \times S_m$$
 (V.1)

Avec:

- Q : le débit capable de l'ouvrage (m^3/s) .
- S_m : section mouillée (m^2) .
- v : vitesse d'écoulement (m/s).

Les ouvrages sont calculés suivant une formule d'écoulement résultant de celle de CHEZY ; ou la vitesse d'écoulement se calcule par l'expression suivante :

$$v = C \times \sqrt{R_h \times I}$$
 (V.2)

Avec:

- v : vitesse d'écoulement (m/s).
- C : coefficient de Chézy, qui dépend des paramètres hydrauliques et géométriques de l'écoulement.
- I : pente motrice de l'écoulement (m/m).
- $-R_h$: rayon hydraulique (m), donné par :

$$R_h = \frac{S_m}{P_m} \text{ (V.3)}$$

Où:

- S_m : la surface de la section transversale mouillée de la conduite (m^2)
- P_m : le périmètre mouillé (m).

.II.2 Formule de MANNING-STRICKLER

Le coefficient de Chézy est exprimé comme suit :

Chapitre V

Dimensionnement du réseau d'assainissement

$$C = K \times R_h^{1/6}$$
 (V.4)

Avec:

 K : coefficient du rugosité (de Manning-Strickler); sa valeur dépend du type de l'ouvrage utilisé, son matériau et son état.

La vitesse d'écoulement se calcule par l'expression suivante :

$$V = K \times R_h^{2/3} \times I^{1/2}$$
 (V.5)

Et le débit capable de l'ouvrage :

$$Q = K \times R_h^{2/3} \times I^{1/2} \times S_m$$
 (V.6)

- Procédé de calcul avec les formules
- 1. Déterminer le débit et la pente pour chaque point.
- 2. Le diamètre calculé est exprimé par :

$$D_{cal} = \left[\frac{3.2 \times Q}{K \times \sqrt{I}}\right]^{3/8} \quad (V.7)$$

Avec:

$$D_{cal}(\mathbf{m})$$
 ; $Q(m^3/s)$; $I(m/m)$

- 3. Fixer le diamètre normalisé de la conduite « D_N ».
- 4. La vitesse à pleine section est calculée à partir de la relation (V.5) :

Pour un rayon hydraulique $R_h = D_n/4$; on a:

$$v_{ps} = K \times (\frac{D_N}{4})^{2/3} \times 1^{1/2}$$
 (V.8)

Avec:

$$V_{ps}(\text{m/s})$$
 ; $D_N \text{ (m)}$; I (m/m)

5. Le débit à plaine section :

$$Q_{ps} = v_{ps} \times \frac{\pi \times D_N^2}{4} \text{ (V.9)}$$

Avec:

$$Q_{ps}(m^3/\mathrm{s})$$
 ; v_{ps} (m/s) ; D_N (m)

6. Le rapport des debits:

$$r_Q = \frac{Q}{Q_{ps}} \text{ (V.10)}$$

7. Déterminer les vitesses réelles par :

Dimensionnement du réseau d'assainissement

$$v = r_v \times v_{ps}$$
 (V.11)

Avec:

- r_v : rapport des vitesses, donnée comme suit :

$$r_H = -25.63 \times r_Q^6 + 93.647 \times r_Q^5 - 134.25 \times r_Q^4 - 95.24 \times r_Q^3 + 35.151 \times r_Q^3 - 35.151 \times r_Q^2 + 7.0395 \times r_Q + 0.2263 \text{ (V.12)}$$

8. La hauteur de remplissage :

$$H = r_H \times D_N \text{ (V.13)}$$

Avec:

- r_H : rapport des hauteurs, donnée comme suit :

$$r_H = -11.423 \times r_Q^6 + 40.641 \times r_Q^5 - 55.497 \times r_Q^4 + 37.115 \times r_Q^3 - 12.857 \times r_Q^2 - 12.857 \times r_Q^2 + 2.8373 \times r_Q + 0.0359 \text{ (V.14)}$$

- Procédé de calcul (à l'aide des abaques)
- 1. A l'aide de l'abaque (1) Annexe (2)

En donnant la pente et le débit, on peut titrer le diamètre normalisé « D_N », la vitesse à pleine section « v_{ps} » et le débit à pleine section « Q_{ps} » d'où on peut déterminer le rapport des débits « r_O » en utilisant la relation

2. D'après l'abaque (2) Annexe (2)

En connaissant le rapport des débits « r_Q », on peut tirer le rapport des vitesses « r_v » et le rapport des hauteurs « r_H » ; d'où on peut déterminer la vitesses « H » par les relations (V.11) et (V.13).

Les résultats de calcul des dimensions des collecteurs et des paramètre hydrauliques (Condition d'écoulement et la vitesse d'auto curage) sont dans les tableaux suivants :

Pour la vérification de la vitesse d'auto curage on a deux conditions a vérifié :

- → Condition 1 : Vitesse d'écoulement ($V \ge 1.00 \text{ m/s}$).
- → Condition 2: $V_{min} > 0.60 \text{ m/s}$ pour $Q \approx (Q_{ps}/10)$.

III Résultats du dimensionnement

Les résultats de calcul des dimensions des collecteurs et des paramètres hydrauliques (condition d'écoulement et la vitesse d'auto curage) sont reportés dans les tableaux **Annexe 1.**

Chapitre V

Dimensionnement du réseau d'assainissement

Conclusion

Au cours de ce chapitre, nous avons étudié le coté hydraulique et le dimensionnement du réseau d'évacuation, on a choisi un tracé pour l'agglomération de tel sort qu'il vérifie les conditions d'implantation et on a dimensionné l'ensemble des canalisations respectant tous les critères de l'écoulement a surface libre et les critères économiques. La vitesse d'écoulement qui attendre le maximum 5 m/s. Pour ce qui est des vitesses d'auto curage, elles sont aussi vérifiées.

Chapitre V

	Rejet N°1													
Tronçon	Distance (m)	l (m/m)	Q_t (m^3/s)	D _{cal} (mm)	D _{nor} (mm)	R_q	R_v	R_h	V (m/s)	H (mm)	V_{ps} (m/s)	Q_{ps} (m^3/s)	V _{min} (m/s)	Autocurrage
R1-R2	15,00	3,76	0,003	60	300	0,014	0,316	0,072	0,82	22	2,59	0,183	0,62	Vérifiée
R2-R3	15,68	3,40	0,005	80	300	0,030	0,407	0,110	1,00	33	2,46	0,174	0,59	Vérifiée
R3-R4	14,32	3,63	0,008	92	300	0,042	0,468	0,136	1,19	41	2,54	0,180	0,61	Vérifiée
R4-R5	15,00	3,60	0,010	102	300	0,057	0,529	0,162	1,34	49	2,53	0,179	0,60	Vérifiée
R5-R6	15,60	3,71	0,013	111	300	0,070	0,578	0,184	1,49	55	2,57	0,182	0,61	Vérifiée
R6-R7	14,43	3,92	0,015	117	300	0,082	0,613	0,200	1,62	60	2,64	0,187	0,63	Vérifiée
R7-R8	18,00	3,78	0,018	126	300	0,100	0,661	0,223	1,71	67	2,59	0,183	0,62	Vérifiée
R8-R9	17,05	3,89	0,021	133	300	0,114	0,692	0,239	1,82	72	2,63	0,186	0,63	Vérifiée
R9-R10	17,60	3,57	0,024	142	300	0,136	0,731	0,260	1,84	78	2,52	0,178	0,60	Vérifiée
R10-R11	16,26	3,62	0,027	147	300	0,150	0,752	0,273	1,91	82	2,54	0,179	0,61	Vérifiée
R11-R12	18,41	3,49	0,030	155	300	0,171	0,777	0,289	1,93	87	2,49	0,176	0,59	Vérifiée
R12-R13	17,00	3,42	0,033	161	300	0,189	0,794	0,302	1,96	91	2,47	0,174	0,59	Vérifiée
R13-R14	19,56	3,57	0,036	165	300	0,204	0,807	0,312	2,03	94	2,52	0,178	0,60	Vérifiée
R14-R15	21,22	3,88	0,040	169	300	0,215	0,815	0,319	2,14	96	2,63	0,186	0,63	Vérifiée
RA1-RA2	17,83	2,02	0,003	72	300	0,023	0,369	0,094	0,70	28	1,89	0,134	0,45	Vérifiée
RA2-RA3	17,00	3,48	0,006	84	300	0,034	0,427	0,118	1,06	35	2,49	0,176	0,59	Vérifiée
RA3-RA4	18,18	3,73	0,009	97	300	0,050	0,499	0,149	1,29	45	2,57	0,182	0,62	Vérifiée
RA4-RA5	10,00	3,58	0,011	104	300	0,060	0,541	0,167	1,37	50	2,52	0,178	0,60	Vérifiée
RA5-RA6	10,00	3,53	0,012	111	300	0,070	0,577	0,183	1,45	55	2,51	0,177	0,60	Vérifiée
RA6-RA7	20,00	2,55	0,016	129	300	0,105	0,673	0,229	1,43	69	2,13	0,151	0,50	Vérifiée
RA7-RA8	35,00	3,82	0,022	135	300	0,118	0,700	0,243	1,83	73	2,61	0,184	0,62	Vérifiée
RA8-RA9	32,00	3,72	0,027	147	300	0,150	0,751	0,272	1,93	82	2,57	0,182	0,61	Vérifiée
RA9-RA10	21,50	3,80	0,031	154	300	0,168	0,773	0,287	2,01	86	2,60	0,184	0,62	Vérifiée
RA10-RA11	21,65	3,55	0,035	162	300	0,194	0,799	0,306	2,01	92	2,51	0,178	0,60	Vérifiée
RA11-RA12	38,82	3,62	0,041	173	300	0,229	0,825	0,329	2,09	99	2,54	0,179	0,61	Vérifiée
RA12-RA13	40,00	0,70	0,048	249	300	0,517	1,010	0,513	1,32	154	1,31	0,093	0,31	Vérifiée
RA13-RA14	20,00	0,99	0,051	239	300	0,546	1,027	0,531	1,37	159	1,33	0,094	0,31	Vérifiée

Chapitre V

Tronçon	Distance (m)	l (m/m)	Q_t (m^3/s)	D _{cal} (mm)	D _{nor} (mm)	R_q	R_v	R_h	V (m/s)	H (mm)	V_{ps} (m/s)	Q_{ps} (m^3/s)	<i>V_{min}</i> (m/s)	Autocurrage
RA14-RA15	20,00	0,63	0,055	267	300	0,503	1,001	0,505	1,54	151	1,54	0,109	0,36	Vérifiée
RA15-RA16	18,50	0,70	0,058	267	300	0,501	0,999	0,503	1,63	151	1,64	0,116	0,38	Vérifiée
RA16-R15	18,56	0,77	0,061	268	300	0,534	1,020	0,523	1,65	157	1,62	0,114	0,38	Vérifiée
R15-R16	35,52	1,70	0,107	285	300	0,869	1,111	0,722	1,93	216	1,74	0,123	0,41	Vérifiée
RA17-RA18	30,00	1,65	0,005	91	300	0,042	0,467	0,135	0,80	41	1,71	0,121	0,40	Vérifiée
RA18-RA19	30,16	1,73	0,010	118	300	0,083	0,616	0,201	1,08	60	1,75	0,124	0,41	Vérifiée
RA19-RA20	17,50	3,65	0,013	113	300	0,073	0,587	0,188	1,50	56	2,55	0,180	0,61	Vérifiée
RA20-RA21	17,67	2,94	0,016	127	300	0,100	0,662	0,223	1,51	67	2,29	0,162	0,54	Vérifiée
RA21-RA22	30,00	3,77	0,021	134	300	0,116	0,697	0,241	1,80	72	2,59	0,183	0,62	Vérifiée
RA22-R16	22,96	2,27	0,025	157	300	0,178	0,783	0,294	1,57	88	2,01	0,142	0,47	Vérifiée
R16-R17	30,00	2,77	0,132	281	300	0,842	1,108	0,700	2,46	210	2,22	0,157	0,53	Vérifiée
R17-R18	35,00	3,74	0,132	266	300	0,725	1,093	0,628	2,82	188	2,58	0,182	0,62	Vérifiée
R18-R19	35,00	3,92	0,132	264	300	0,708	1,089	0,619	2,88	186	2,64	0,187	0,63	Vérifiée
R19-R20	35,00	3,95	0,132	263	300	0,706	1,089	0,617	2,89	185	2,65	0,187	0,63	Vérifiée
R20-R21	35,00	3,79	0,132	265	300	0,721	1,092	0,625	2,83	188	2,60	0,183	0,62	Vérifiée
R21-R22	38,00	3,74	0,132	266	300	0,725	1,093	0,628	2,82	188	2,58	0,182	0,62	Vérifiée
R22-R23	23,00	2,30	0,137	295	300	0,954	1,121	0,801	2,27	240	2,02	0,143	0,48	Vérifiée
R23-R24	31,26	3,89	0,142	271	300	0,766	1,099	0,650	2,89	195	2,63	0,186	0,63	Vérifiée
R24-R25	28,74	3,77	0,148	277	300	0,808	1,104	0,676	2,86	203	2,59	0,183	0,62	Vérifiée
R25-R26	29,08	2,86	0,153	296	300	0,962	1,122	0,809	2,53	243	2,26	0,159	0,54	Vérifiée
R26-R27	22,91	3,76	0,158	284	300	0,862	1,110	0,716	2,87	215	2,59	0,183	0,62	Vérifiée
R27-R28	30,04	3,99	0,163	284	300	0,866	1,111	0,719	2,96	216	2,67	0,188	0,64	Vérifiée
R28-R29	27,79	3,88	0,168	289	300	0,907	1,116	0,754	2,93	226	2,63	0,186	0,63	Vérifiée
R29-R30	35,04	3,77	0,175	295	300	0,956	1,121	0,803	2,91	241	2,59	0,183	0,62	Vérifiée
R30-R31	29,72	3,89	0,181	297	300	0,972	1,122	0,821	2,95	246	2,63	0,186	0,63	Vérifiée
RA23-RA24	39,02	3,67	0,007	90	300	0,041	0,460	0,132	1,18	40	2,56	0,181	0,61	Vérifiée
RA24-RA25	20,00	3,74	0,011	105	300	0,061	0,544	0,169	1,40	51	2,58	0,182	0,62	Vérifiée
RA25-RA26	20,00	3,74	0,015	117	300	0,082	0,613	0,200	1,58	60	2,58	0,182	0,62	Vérifiée
RA26-RA27	30,00	0,76	0,021	178	300	0,222	0,820	0,324	1,07	97	1,31	0,092	0,30	Vérifiée
RA27-RA28	27,00	0,71	0,026	196	300	0,258	0,843	0,347	1,18	104	1,41	0,099	0,33	Vérifiée

Chapitre V

	Rejet N°2													
Tronçon	Distance (m)	l (m/m)	Q_t (m^3/s)	D _{cal} (mm)	D _{nor} (mm)	R_q	R_v	R_h	V (m/s)	H (mm)	V_{ps} (m/s)	Q_{ps} (m^3/s)	V _{min} (m/s)	Autocurrage
R301-R302	29,73	3,67	0,005	79	300	0,028	0,399	0,107	1,02	32	2,56	0,181	0,61	Vérifiée
R302-R303	35,00	2,55	0,011	113	300	0,074	0,589	0,189	1,25	57	2,13	0,150	0,50	Vérifiée
R303-R304	25,00	1,64	0,015	139	300	0,128	0,717	0,252	1,23	76	1,71	0,121	0,40	Vérifiée
R304-R305	25,00	1,68	0,020	151	300	0,161	0,766	0,282	1,32	84	1,73	0,122	0,41	Vérifiée
RA313-R305	35,02	2,02	0,006	94	300	0,045	0,480	0,141	0,91	42	1,90	0,134	0,45	Vérifiée
R305-R306	35,00	1,76	0,032	179	300	0,254	0,841	0,344	1,49	103	1,77	0,125	0,42	Vérifiée
R306-R307	38,84	3,60	0,038	169	300	0,215	0,815	0,319	2,06	96	2,53	0,179	0,60	Vérifiée
R307-R308	45,00	3,90	0,046	178	300	0,248	0,837	0,340	2,20	102	2,63	0,186	0,63	Vérifiée
R308-R309	45,00	3,80	0,054	189	300	0,293	0,863	0,369	2,24	111	2,60	0,184	0,62	Vérifiée
R309-R310	47,62	3,86	0,062	199	300	0,335	0,888	0,395	2,33	119	2,62	0,185	0,63	Vérifiée
R310-R311	45,61	3,55	0,070	211	300	0,394	0,926	0,434	2,33	130	2,51	0,178	0,60	Vérifiée
R311-R312	45,62	2,05	0,078	244	300	0,576	1,043	0,548	1,99	164	1,91	0,135	0,45	Vérifiée
R312-R313	45,63	3,98	0,086	223	300	0,455	0,968	0,474	2,58	142	2,66	0,188	0,64	Vérifiée
R312-R314	35,00	3,90	0,092	230	300	0,492	0,993	0,498	2,62	149	2,63	0,186	0,63	Vérifiée
R314-R315	40,00	3,88	0,098	237	300	0,530	1,018	0,521	2,67	156	2,63	0,186	0,63	Vérifiée
R315-R316	33,92	3,92	0,104	241	300	0,559	1,034	0,538	2,73	161	2,64	0,187	0,63	Vérifiée
RA314-RA315	32,00	3,79	0,005	81	300	0,030	0,408	0,110	1,06	33	2,60	0,183	0,62	Vérifiée
RA315-RA316	38,00	3,87	0,012	108	300	0,065	0,559	0,175	1,47	52	2,62	0,186	0,63	Vérifiée
RA316-R316	42,14	2,18	0,019	143	300	0,139	0,735	0,262	1,45	79	1,97	0,139	0,46	Vérifiée
R316-R317	34,49	4,00	0,129	261	300	0,687	1,085	0,607	2,89	182	2,67	0,188	0,64	Vérifiée
RA317-RA318	40,00	2,68	0,007	93	300	0,045	0,478	0,140	1,04	42	2,18	0,154	0,52	Vérifiée
RA318-RA319	35,00	2,56	0,051	199	300	0,337	0,889	0,396	1,90	119	2,13	0,151	0,51	Vérifiée
RA319-R317	34,24	3,38	0,057	197	300	0,327	0,884	0,390	2,17	117	2,45	0,173	0,58	Vérifiée
R317-R318	45,00	2,84	0,194	323	400	0,566	1,038	0,543	2,83	217	2,72	0,342	0,68	Vérifiée
R318-R319	45,00	1,57	0,202	367	400	0,793	1,102	0,667	2,23	267	2,02	0,254	0,49	Vérifiée
RA320-RA321	35,00	1,26	0,006	102	300	0,057	0,529	0,162	0,79	49	1,49	0,106	0,35	Vérifiée

Chapitre V

Tronçon	Distance (m)	l (m/m)	Q_t (m^3/s)	D _{cal} (mm)	D _{nor} (mm)	R_q	R_v	R_h	V (m/s)	H (mm)	V_{ps} (m/s)	Q_{ps} (m^3/s)	V _{min} (m/s)	Autocurrage
RA321-RA322	30,00	1,18	0,011	131	300	0,109	0,681	0,233	0,99	70	1,45	0,103	0,34	Vérifiée
RA322-RA323	36,00	3,77	0,017	124	300	0,095	0,649	0,217	1,68	65	2,59	0,183	0,62	Vérifiée
RA323-RA324	35,00	3,09	0,023	144	300	0,141	0,739	0,265	1,73	79	2,35	0,166	0,56	Vérifiée
RA324-RA325	35,00	3,80	0,029	151	300	0,160	0,764	0,280	1,99	84	2,60	0,184	0,62	Vérifiée
RA325-RA326	35,00	4,05	0,035	160	300	0,187	0,792	0,300	2,13	90	2,68	0,190	0,64	Vérifiée
RA326-RA327	22,50	3,56	0,039	170	300	0,221	0,819	0,323	2,06	97	2,52	0,178	0,60	Vérifiée
RA327-RA328	22,50	3,57	0,043	176	300	0,242	0,833	0,337	2,10	101	2,52	0,178	0,60	Vérifiée
RA328-RA329	45,00	3,80	0,051	185	300	0,277	0,854	0,358	2,22	108	2,60	0,184	0,62	Vérifiée
RA329-RA330	45,00	3,71	0,059	196	300	0,322	0,881	0,387	2,26	116	2,57	0,182	0,61	Vérifiée
RA330-RA331	35,00	3,72	0,065	203	300	0,355	0,901	0,408	2,32	122	2,57	0,182	0,62	Vérifiée
RA331-RA332	34,26	3,76	0,070	210	300	0,385	0,921	0,428	2,38	128	2,59	0,183	0,62	Vérifiée
RB38-RB39	22,00	1,03	0,004	89	300	0,039	0,455	0,130	0,62	39	1,35	0,096	0,32	Vérifiée
RB38-RB40	30,00	3,61	0,009	97	300	0,050	0,501	0,150	1,27	45	2,54	0,179	0,61	Vérifiée
RB38-RB41	20,00	3,55	0,012	110	300	0,070	0,575	0,182	1,45	55	2,51	0,178	0,60	Vérifiée
RB42-RA332	35,00	3,85	0,018	126	300	0,099	0,660	0,222	1,73	67	2,62	0,185	0,63	Vérifiée
RA332-RA333	34,16	3,86	0,095	233	300	0,512	1,006	0,510	2,64	153	2,62	0,185	0,63	Vérifiée
RB42-RB43	35,00	3,25	0,006	86	300	0,035	0,435	0,122	1,05	37	2,40	0,170	0,57	Vérifiée
RB42-RB44	35,00	2,55	0,012	116	300	0,080	0,608	0,197	1,29	59	2,13	0,150	0,50	Vérifiée
RB44-RA333	35,00	1,79	0,018	145	300	0,143	0,742	0,266	1,33	80	1,79	0,126	0,42	Vérifiée
RA333-RA334	44,15	3,86	0,120	255	300	0,650	1,074	0,588	2,81	176	2,62	0,185	0,63	Vérifiée
RB45-RB46	35,00	1,03	0,006	106	300	0,063	0,551	0,172	0,75	52	1,35	0,096	0,32	Vérifiée
RB46-RB47	45,00	2,32	0,014	124	300	0,096	0,651	0,218	1,32	65	2,03	0,144	0,48	Vérifiée
RB47-RA334	45,00	3,41	0,021	137	300	0,123	0,710	0,248	1,75	74	2,46	0,174	0,59	Vérifiée
RA334-R335	38,78	1,08	0,148	351	400	0,704	1,089	0,616	1,83	246	1,68	0,211	0,40	Vérifiée
RA335-R336	35,00	3,94	0,154	279	400	0,383	0,919	0,427	2,95	171	3,21	0,403	0,82	Vérifiée
RB48-RB49	69,89	1,65	0,012	126	300	0,099	0,660	0,222	1,13	67	1,71	0,121	0,40	Vérifiée
RB49-RA336	25,82	3,98	0,016	120	300	0,087	0,629	0,207	1,67	62	2,66	0,188	0,64	Vérifiée
RA336-RA337	38,10	0,86	0,177	391	400	0,941	1,120	0,788	1,68	315	1,50	0,189	0,36	Vérifiée
RA337-RA338	40,02	2,05	0,184	337	400	0,634	1,069	0,580	2,47	232	2,31	0,291	0,57	Vérifiée
RA338-RA339	40,00	3,92	0,191	303	400	0,476	0,983	0,487	3,14	195	3,20	0,402	0,81	Vérifiée

CHAPITRE VI:

Les éléments constitutifs du réseau

Introduction

Afin d'accomplir au mieux les objectifs d'un réseau d'assainissement, il a besoin des éléments constructifs qui doivent assurer la bonne performance pour notre réseau.

Ces éléments constructifs se subdivisent en deux ouvrages :

- Les ouvrages principaux qui constituent le corps du réseau, du début de ce dernier jusqu'à l'entrée des effluents dans la station d'épuration.
- Les ouvrages annexes qui permettent une bonne exploitation du réseau (bouche d'égout, regards, déversoirs d'orage... etc.).

I Les ouvrages principaux

Les ouvrages principaux sont les ouvrages d'évacuation des effluents (les tuyaux cylindriques, les tuyaux ovoïdes et les ouvrages visitables) vers le point de rejet ou la station d'épuration, ils comprennent les conduites et les joints.

.I.1 Canalisation

Elles se présentent sous plusieurs formes :

- Cylindriques préfabriquées en usine, et sont désignées par leurs diamètres intérieurs, dit diamètres nominaux exprimés en millimètre.
- Ovoïdes préfabriquées désignées par leur hauteur exprimée en centimètre.

.I.2 Type de canalisation

Il existe plusieurs types de conduites qui sont différents leurs matériaux et leurs destinations.

Conduite en fonte

La particularité de ce type de conduite, réside dans leur composition à base de fonte, ce qui les rends inoxydables et solides, et par conséquent s'imposent à titre de sécurité. Elles sont utilisées généralement au niveau des raffineries de pétrole pour évacuer les eaux usées.

.I.2.1 Conduites en béton armé

Les tuyaux en béton armé sont fabriqués mécaniquement par un procédé assurant une compacité élevée du béton (compression radiale, vibration, centrifugation). Les tuyaux comportent deux séries d'armatures, la première est formée des barres droites appelées génératrices, la deuxième est formée des spires en hélice continues d'un pas régulier maximal de 1,5 m. La longueur utile ne doit pas être supérieure à 2 m.

Joints

Afin d'assembler les conduites en béton armé ou non armé, on a cinq types de joints :

- Joint type Rocla.
- Joint torique.
- Joint à 1/2 emboitement.
- Joint à coller.
- Joint plastique.

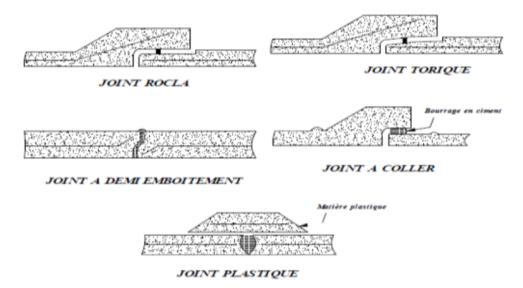


Figure I-1: Joints sur tuyaux en béton

.I.2.2 Conduite en amiante ciment

Ce sont des conduites munies d'un revêtement intérieur de la paroi à la base d'enduit antiacide. Les diamètres couramment utilisés varient de 80 à 500 mm et les longueurs utiles varient de 0.5 à 5 m.

❖ Joints

Pour assembler ces types de conduites, on utilise les joints sans emboitement. On distingue :

- Le joint « Everitube »
- Le joint « Eternit », fabriqué pour l'assemblage des conduites à bout lisses.

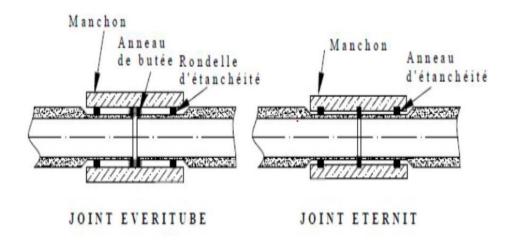


Figure VI-2: Joints sur tuyaux en amiante ciment

.I.2.3 Conduite en grés

Les conduites en grés sont caractérisées par une très grande dureté, et une excellente résistance aux agressions chimiques ou climatiques. Cette résistance est obtenue grâce à une cuisson à une température supérieure à 1200°C. Ces conduites sont livrables en longueur utile de 1.0m, 1.5m et 2.0m.

***** Joints

- L'assemblage de ces conduites s'effectue par trois sortes de joints :
- Joints au mortier de ciment.
- Joints avec corde goudronnée et mortier de ciment.
- Joints à double anneaux.

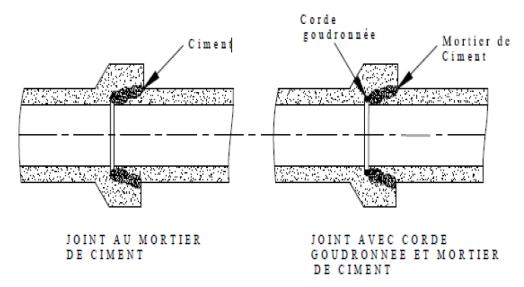


Figure VI-3: Joints sur tuyaux en grès

.I.2.4 Conduites en chlorure de polyvinyle (P.V.C) non plastifié

Les tuyaux sont sensibles à l'effet de température au-dessous de 0°C. Ils présentent une certaine sensibilité aux chocs. L'influence de la dilatation est spécialement importante et il doit en être tenu compte au moment de la pose. La longueur minimale est 6 m.

❖ Joints

Ces conduites peuvent être assemblées soit par collage, soit par bagues d'étanchéité.

.I.3 Choix du type de canalisation

Pour faire le choix des différents types de conduite on doit tenir compte :

- Des pentes du terrain.
- Des diamètres utilisés.
- De la nature du sol traversé.
- De la nature chimique des eaux usées.
- Des efforts extérieurs dus au remblai.
- Pour notre projet, on va utiliser des conduites en pvc pour des diamètres inferieur à 800mm et des conduites en béton pour des diamètres supérieurs ou égale à 800mm.

.I.4 Les essais de conduites préfabriqués

Pour assurer le bon fonctionnement des conduites préfabriquées, de nombreux essais s'imposent notamment les essais à l'écrasement, à l'étanchéité, et à la corrosion.

.I.4.1 Essai à l'écrasement

L'essai à l'écrasement se fait par presse automatique avec enregistrement des efforts, ils doivent être répartis uniformément sur la génératrice supérieure de la conduite.

Figure VI-4: L'essai à l'écrasement sur les conduites en béton

.I.4.2 Essai d'étanchéité

L'essai d'étanchéité est obligatoire à l'usine et sur chantier.

- A l'usine : La conduite est maintenue debout (béton) remplie d'eau, la diminution du niveau de ce dernier, ne doit pas dépasser 2cm en 24 heures.
- Sur chantier : Un des essais peut être envisagé :
- L'essai à l'eau.
- L'essai à la fumée.
- L'essai à l'air sous pression.

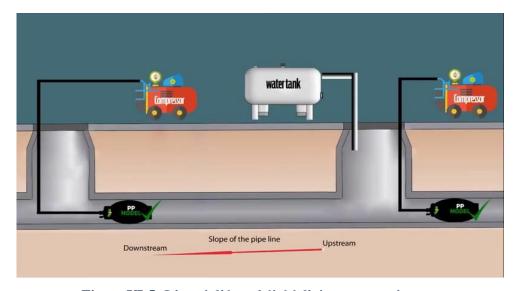


Figure VI-5: L'essai d'étanchéité à l'air sous pression

Source: www.plugco.net

.I.4.3 Essai de corrosion (chimique)

Les conduites en béton ou en amiante ciment, sont les plus gravement corrodées par l'hydrogène sulfuré (H2S) produit par les fermentations anaérobies. Le développement de la bactérie, qui amorcent la formation d'acide sulfurique, entraine une baisse du pH superficiel du béton suite au lessivage de la chaux en excès et à la carbonatation de la surface par le gaz carbonique. Celle-ci permet le développement rapide de bactéries acidophiles et s'accompagnent de la progression du processus de corrosion vers l'intérieur du béton. L'épreuve de corrosion se fait par l'addition de différents acides (acide chlorhydrique, acide nitrique, acide sulfurique ...). Après un lavage à l'eau douce et un séchage à l'étuve, on pèse l'échantillon. Les surfaces de la paroi interne ne doivent pas être altérées.

.I.5 Différentes actions supportées par la conduite

Les canalisations sont exposées à des actions extérieures et intérieures. Pour cela, ces canalisations doivent être sélectionnées pour lutter contre ces actions qui sont : Les actions mécaniques, les actions statiques et les actions chimiques.

.I.5.1 Actions mécaniques

Ce type d'action résulte de l'agressivité des particules de sable et de gravier qui forment le remblai et le radier des canalisations.

.I.5.2 Actions chimiques

Nous nous intéressons surtout aux réactions à l'intérieur de la conduite, Une baisse du pH favorise le développement des bactéries acidophiles qui peuvent à leur favoriser la formation de l'acide sulfurique (H2s) corrosif et nuisible pour les conduites.

.I.5.3 Action statique

Les actions statiques sont dues aux surcharges fixes ou mobiles comme le remblai, le mouvement de l'eau dans les canalisations et celles des charges dues au trafic routier.

J.6 Protection des conduites

.I.6.1 Protection contre les effets érosifs du sable

Le sable et les gravillons dus aux eaux pluviales arrivé par les voiries et autre à travers les bouches d'égout, pour éviter qu'ils ne soient véhiculés le long des conduites il faut prévoir des décanteurs (dessableur) à la tête du réseau ou au niveau des bouches d'égout.

.I.6.2 Protection contre les effets corrosifs de l'H2S

Pour protéger les conduites et éviter la formation de l'H2S dans les conduites, il y'a deux types de remèdes : remèdes chimiques et remèdes hydrauliques.

• Remède hydraulique

- Rinçage périodique des conduites gravitaires et l'élimination régulière des dépôts.
- Assurer une bonne aération pour réduire la teneur en H2S.

Remède chimique

- Addition des réactifs chimique.
- L'oxygène liquide.
- Peroxyde d'hydrogène.

.I.7 La pose de canalisation

.I.7.1 Les conditions de pose

Les principales conditions exigées lors de la pose des canalisations, sont les suivantes :

- La canalisation doit être enterrée sous une couverture d'au moins 70 cm au départ.
- Il ne faut pas en effet que la conduite soit déformée par la surcharge de terre ou le passage de charges.
- Les canalisations d'eau usée et pluviale sont souvent posées en parallèle dans la même tranchée, mais elles sont décalées de 30 à 40 cm.
- Il est conseillé de placer le réseau d'eau pluviale au-dessus du réseau d'eaux vannes dans le cas où ils sont voisins.

.I.7.2 Les modes de pose

Le mode de pose des canalisations diffère selon la nature du terrain.

❖ Terrain ordinaire

Dans ce type de terrain, la canalisation doit être posée sur un lit de sable réalisé sur un fond exempt de massifs durs, avec des joints confectionnés avec soins conformément aux prescriptions des fabricants des conduites.

❖ Mauvais terrain

Dans les terrains peu consistants, la canalisation doit reposer sur deux briques posées au fond et le vide sera rempli de sable.

***** Terrain très mauvais

Dans ce type de terrain une dalle en béton préfabriqué doit être envisagé au fond de la tranchée.

II Les ouvrages annexes

Les ouvrages annexes participent au réseau au même titre que les canalisations et notamment dans l'exploitation. Les ouvrages Annexes sont à considérés selon deux types distincts :

- Les ouvrages normaux.
- Les ouvrages spéciaux.

.II.1 Les ouvrages normaux

Les ouvrages normaux, sont les ouvrages courants, qui sont indispensable en amont ou au cours des réseaux, ils assurent généralement la fonction recette des effluents.

On les divise en trois catégories :

.II.1.1 Les branchements particuliers

Ce sont des ouvrages qui doivent assurer une meilleure hygiène pour l'habitation. Ces branchements doivent être équipés de dispositifs étanches et de canalisation capable de résister à la pression, résultant de la dénivellation mesurée depuis le niveau de la voie publique.

.II.1.2 Les caniveaux

Les caniveaux sont destinés à recueillir des eaux pluviales ruisselantes sur le profil transversal de la chaussée et des trottoirs et au transport de ces jusqu'aux bouches d'égout.

.II.1.3 Les bouches d'égout

Elle se positionnent en général à proximité d'un tampon (pour favoriser leur entretien), on trouve donc au minimum tous les 50m en environ. Les bouches d'égout sans puisard doivent être pentées 15% pour les eaux usées. On évitera de placer des bouches d'égout sur des emplacements sensibles aux odeurs (terrasses de café, fenêtre, etc...)

Elles peuvent être classées selon deux critères :

- Le mode de recueil des eaux : bouches à accès latéraux et bouches à accès sur le dessus.
- Le mode de retenue des déchets solides c'est-à-dire sans ou avec décantation.

.II.1.4 Les regards

Les regards d'accès au réseau permettent d'accéder au réseau d'assainissement afin d'y pénétrer si sa dimension est suffisante (ouvrage visitable), ou simplement de l'inspecter et d'assurer sa maintenance et son entretien.

On peut donc répertorier les regards :

- D'accès pour visite.
- D'entretien pour curage ou descente de matériel.
- D'aération (qui peuvent être de dimension inférieure).

Ils se composent d'un tampon, d'une cheminée et d'un branchement d'accès. Ils sont le plus souvent matérialisés en surface par un tampon et sont le lieu principal ou les caractéristiques du réseau sont modifiées (changement de pente, de direction et du diamètre).

.II.1.5 Les types de regards

Les types de regards varient en fonction de l'encombrement et de la pente du terrain ainsi que du système d'évacuation, on distingue :

- **Regard de visite :** Ces regards sont destinés à l'entretien courant, et le curage régulier des canalisations, tout en assurant une bonne ventilation de ces dernières. L'intervalle d'espacement est de 35 à 80m.
- **Regard de ventilation :** La présence d'air dans les égouts, est la meilleure garantie contre la fermentation et la production du sulfure d'hydrogène.
- Regard de jonction: Ils servent à unir deux collecteurs de même ou de différentes sections, ils sont construits de telle manière à avoir: une bonne aération des collecteurs en jonction (regard), les dénivelées entre les radiers des collecteurs. Une absence de reflux d'eau par temps sec.
- **Regard de chute :** Il permet d'obtenir une dissipation d'énergie en partie localisée, il est très utilisé dans le cas où le terrain d'une agglomération est trop accidenté.

.II.2 Les ouvrages spéciaux

Ces ouvrages ne sont pas systématiquement obligatoires dans le concept général du réseau. Mais dans certains cas, leur présence s'avère indispensable tel le déversoir d'orage.

.II.2.1 Les déversoirs d'orage

Un déversoir d'orage est un ouvrage de contrôle permettant une régulation hydraulique des effluents en réseau d'assainissement (Figure 1). Il dérive une partie des effluents lorsque le débit à l'amont dépasse une certaine valeur que l'on appelle "débit de référence". Le débit dérivé peut sortir complètement du système d'assainissement, soit être réinjecté après stockage dans le bassin. Les déversoirs sont appelés à jouer un rôle essentiel notamment dans la conception des réseaux en système unitaire.

Un déversoir doit assurer trois fonctions essentielles :

- Evacuer sans surverse et sans remous le débit d'eaux usées de temps sec.
- Surverse le débit excédentaire de pluie sans mise en remous nuisible du réseau amont et sans surcharge excessive en débit du réseau aval.
- Assurer le partage du flux polluant entre milieu naturel et collecteur aval.

.II.2.1.1 Composition d'un déversoir d'orage

Dans tous les cas de figure, le déversoir d'orage comprend :

• Un ouvrage de dérivation,

• Un canal ou collecteur de décharge conduisant l'eau déversée à un émissaire naturel (Ruisseau, rivière), y compris l'ouvrage de rejet lui-même au droit de l'émissaire.

Le déversoir d'orage est raccordé:

- A l'amont : au collecteur d'arrivée amenant les eaux unitaires.
- A l'aval : au collecteur de départ qui transporte vers la station d'épuration les eaux à épurer.
- Le collecteur de décharge peut être très court (cas d'égouts longeant le ruisseau).
- Un ouvrage ou un système de stockage (bassin d'orage) peut être adjoint l'ouvrage de dérivation pour stocker temporairement une partie du flot (premier flot d'orage notamment).

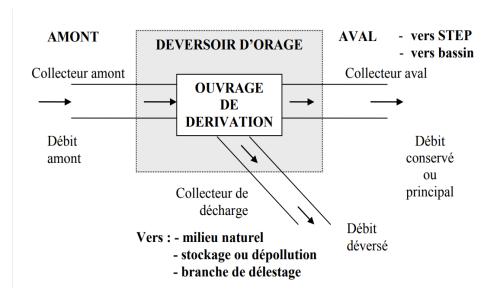


Figure II-6: Schéma de principe du déversoir d'orage

Source : livre (guide technique sur le fonctionnement des déversoirs d'orage "ENGEES")

.II.2.1.2 Les ouvrages annexes du déversoir d'orage

• Les grilles et les dérailleurs

Leurs rôles sont de contrôler les gros solide (d > 6mm) aux déversoirs pour éviter leur envoi au milieu naturel, ils sont placés à l'amont des déversoirs, et caractérisées par :

- Epaisseur des barreaux des grilles : 10 à 12mm.
- Espacement des barreaux des grilles : 10 à 15mm.
- Rendement des grilles : 50%.

• La chambre de tranquillisation et de dessablement

Cette chambre est située à l'amont du déversoir, a pour but en réduisant la vitesse du flux, d'assurer une décantation des matières en suspension les plus lourdes.

.II.2.1.3 Types des déversoirs

On distingue plusieurs types de déversoirs on peut citer quelqu'une les plus utiliser :

• Déversoirs à seuil latéral

Dans le cas du déversoir à seuil latéral pur, le seuil est rectiligne et strictement parallèle à l'écoulement.

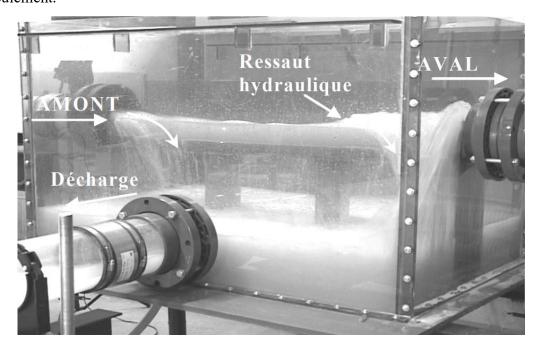


Figure II-7: fonctionnement d'un déversoir d'orage latéral

Source : livre (guide technique sur le fonctionnement des déversoirs d'orage "ENGEES")

Déversoirs à seuil frontal

Le seuil est alors rectiligne et perpendiculaire à l'écoulement. Parmi les déversoirs à seuils frontaux, on peut encore établir une sous-catégorie selon la présence ou non d'une contraction au niveau du seuil, selon la mise en charge de la conduite aval et selon l'orientation de cette même conduite par rapport à la crête.

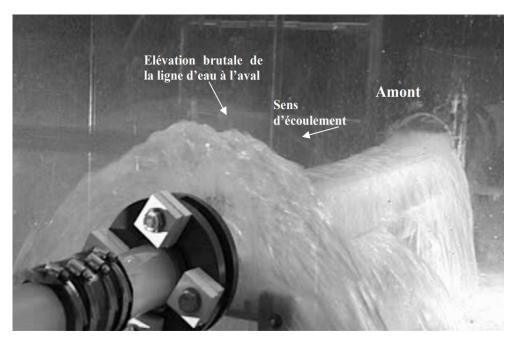


Figure II-8: fonctionnement d'un déversoir d'orage frontal

Source : livre (guide technique sur le fonctionnement des déversoirs d'orage "ENGEES")

.II.2.1.4 Dimensionnement des déversoirs d'orage

- **!** Les étapes de calcul :
- Déterminer le débit total Qt :

Le débit total de dimensionnement qui est égal à la somme des débits en temps $\sec{(Q_{eu})}$ et du débit pluvial (Q_{Pl})

$$Q_{cr} = Q_{Pl} + Q_{eu}$$
 (VI.1)

Déterminer le débit critique Q_{cr}

$$Q_{cr} = Q_T \times (1 - \frac{t_c}{100})$$
 (VI.2)

Avec:

- T_c : temps de concentration (min).

$$Q_{cr} = Q_{dev} + Q_{step} \text{ (VI.3)}$$

Avec:

- Q_{dev} : débit déverser.

- Q_{stp} : débit allant vers la step.

$$Q_{dev} = Q_{cr} - Q_{sten}$$
 (VI.4)

$$Q_{step} = \text{dilution} \times Q_{eu} \text{ (VI.5)}$$

Avec:

- Q_{eu} : débit de point d'eau usée.

Détermination des hauteurs d'eau correspondant aux débits a l'amont du déversoir

$$R_Q$$
 et R_h

On tire h_{step} , h_{cr}

$$h_{dev} = h_{cr} - h_{step} \text{ (VI.6)}$$

On détermine la longueur du seuil (L).

On applique la formule de BAZIN

$$Q_{dev} = mLh_{dev}\sqrt{2gh_{dev}}$$
 (VI.7)

Dans notre projet on a un déversoir de type latérale.

.II.2.1.5 Dimensionnement du premier déversoir d'orage latérale

Les données de base sont les suivantes

Diamètre d'entrée : De = 1200mm.

Débit total à l'entrée : $Q_{tot} = 4,166 \, m^3/s$

Débit à pleine section : $Q_{ns} = 5,472 \text{ m}^3/\text{s}$

On choisit un débit allant vers le bassin de retenu : on propose 25% de débit critique à l'entrée (pour éviter la contamination de bassin de retenue).

Temps de concentrations

C'est le temps écoulé entre le début d'une précipitation d'une goute et son arrivée à l'exutoire du bassin ou déversoir d'orage, il se compose de trois temps différents :

$$T_C = t_1 + t_2 + t_3$$
 (VI.8)

Notre cas on prend:

$$T_{C1}=t_1$$

Tel que:

$$t_1 = L/60.V$$
 (VI.9)

Avec:

- t_1 : varie entre (2 à 20 min).
- L: le cheminement le plus long en (m).
- V : la vitesse moyenne du cheminement le plus long (m/s).

On prend t_2 =9 min

Pour plus de précession on calcule t_1 pour chaque sous bassin transversé par ce collecteur :

– Pour Sous bassin 14 : L=380,50 m et V_{mou} =2,17 m/s donc : t_1 =2.92 min

- Pour Sous bassin 15 : L=450,71 m et V_{mou} =3,03 m/s donc : t_1 =2.48 min

- Pour le reste du collecteur jusqu'à le 1^{er} déversoir : t_1 =21.55 min

Donc on fait la somme on trouve t_1 =26.95 min

$$T_{C1} = t_1 + t_2 = 13.55 + 9 = 35.95 \text{ min}$$

• Calcul du coefficient de retardement

Le coefficient de retardement a pour but la diminution des débit pluviaux, cette diminution peut être prise en considération dans le dimensionnement des déversoirs d'orage.

$$Z = (1 - \frac{t_c}{100})$$
 (VI.10)

Donc:

$$Z = \left(1 - \frac{t_c}{100}\right) = 0.64$$

Calcule du débit critique

$$Q_{cr} = Q_t \times Z$$

$$Q_{cr} = 4.166 \times 0.64 = 2.67 \, m^3/s$$

On a le débit critique se compose : du débit déversé (Q_{dev}) et du débit allant vers la STEP (Q_{step}) .

$$Q_{cr} = Q_{dev} + Q_{step}$$

Calcule du débit déversé

$$Q_{dev} = Q_{cr} - Q_{step}$$

• Détermination du débit de la STEP :

$$Q_{step} = Q_{pte} \times (1+2)$$

Donc : $Q_{step} = 0.075 \, m^3/s$

$$Q_{dev} = 2.67 - 0.075 = 2.60 \, m^3/s$$

Calcul de la hauteur d'eau demandée par la station d'épuration H_{step}

On utilise l'abaque de variation des débits et des vitesses en fonction Rh

De = 1200 mm

$$R_{Qstep} = Q_{step}/Q_{ps} = \frac{0.075}{5.472} = 0.013 \implies R_h = 0.025$$

$$H_{step} = R_h \times D_e = 30 \text{ mm}$$

Calcul de la hauteur d'eau déversée H_{dev}

De =1200 mm

$$R_{Qcr} = \frac{Q_{cr}}{Q_{ps}} = \frac{2.41}{5.472} = 0.49 \implies R_h = 0.49$$

$$H_{cr} = R_h \times D_e = 588 \text{ mm}$$

Calcul de la hauteur déversant

$$H_{dev} = H_{cr} - H_{seuil}$$

$$H_{dev} = (588 - 30) = 558 \text{ mm}$$

Calcul de la longueur du déversoir

$$L = \frac{Q_{dev}}{m\sqrt{2g}H_{dev}^{\frac{3}{2}}}$$

On a : $m = (2/3) \times \mu$ tel que :

$$\mu = 0.6075 \left(1 + \frac{0.074}{h} \right) \left[1 + 0.55 \left(\frac{h}{h+P} \right)^2 \right]$$

Avec:

- $h=H_{dev}$.
- P= hauteur de seuil.

Donc $\mu = 0.6$ donc m=0.39

$$L = \frac{2.60}{0.39\sqrt{2g} \times 0.588^{\frac{3}{2}}} = 3.57 \ m \approx 3.6 \ \mathbf{m}$$

.II.2.1.6 Dimensionnement du deuxième déversoir d'orage latérale

Diamètre d'entrée : De = 1000mm.

Débit total à l'entrée : $Q_{tot} = 2.563$

Débit à pleine section : $Q_{ps} = 4.537$

Débit du temps sec : $Q_{ts} = 0.025$

On a : $T_{C1} = 7.7 \text{ min}$

Calcule du débit critique

$$Q_{cr} = Q_t \times Z$$

$$Q_{cr} = 2.563 \times 0.923 = 2.37 \, m^3/s$$

Calcule du débit déversé

On propose 25% de débit critique à l'entrée.

$$Q_{dev} = 0.25 \times 2.37 = 0.59 \, m^3/s$$

Calcul de la hauteur d'eau amont

$$Q_{aval} = Q_{cr} - Q_{dev} = 1.78 \, m^3/s$$

Calcul de la hauteur d'eau amont

On utilise l'abaque de variation des débits et des vitesses en fonction Rh

$$De = 1000 \text{ mm}$$

$$R_q = Q_{cr}/Q_{ps} = \frac{2.37}{4.537} = 0.52 \implies R_h = 0.51$$

$$H_{amont} (H_{cr}) = R_h \times D_e = 510 \text{ mm}$$

Calcul de la hauteur du seuil

$$De = 1000 \text{ mm}$$

$$R_q = \frac{Q_{aval}}{Q_{ps}} = \frac{1.78}{4.537} = 0.39 \Rightarrow R_h = 0.42$$

$$H_{aval} = R_h \times D_e = 420 \text{ mm}$$

Calcul de la hauteur déversant

$$H_{dev} = H_{cr} - H_{seuil}$$

$$H_{dev} = (510 - 420) = 90 \text{ mm}$$

Calcul de la longueur du déversoir

$$L = \frac{Q_{dev}}{m\sqrt{2g}H_{dev}^{\frac{3}{2}}}$$

On a : $m = (2/3) \times \mu$ tel que :

$$\mu = 0.6075 \left(1 + \frac{0.074}{h} \right) \left[1 + 0.55 \left(\frac{h}{h+P} \right)^2 \right]$$

Avec:

- $h=H_{dev}$.
- P= hauteur de seuil.

Donc $\mu = 0.6$ donc m=0.4

$$L = \frac{0.59}{0.4\sqrt{2g} \times 0.280^{\frac{3}{2}}} = 2.24 \text{ m}$$

Bassin de décantation

Les procédés les plus employés en épuration des eaux sont des procédés biologiques, dont le principe consiste à utiliser les micro-organismes pour décomposer et minéralisation la pollution de l'eau.'

Il existe un grand nombre de procédés d'épuration biologique des eaux à épurer et du degré d'épuration désiré.

Les procédés d'épuration les plus répandus sont :

- L'épandage.
- Le lagunage.
- Les disques biologiques.

- Les lits bactériens.
- Les boues activées.

Pour le bassin de décantation c'est en considère comme un décanteur primaire, il est utilisé généralement dans les stations d'épuration pour éliminer les matières en suspension.

.II.2.2 Dimensionnement du bassin de décantation

- Débit d'eau usée diluée

Q d = 31.06 l/s

D'après les analyses on a :

γs= 1.19 t/m3 : densité d'eau usée

d = 0.08 mm : diamètre des particules , $Vs = f(\gamma s, d)$ de l'abaque densité diamètre on obtient (voir le tableau).

Vs = 0.05 cm/s = 0.0005 m/s

Calcul de surface du bassin

 $So = Qd / Vs = 0.03 / 0.0005 = 60 \text{ m}^2$

Donc $So = 60 \text{ m}^2$

Volume du bassin

V = Qd * ta ta = temps de rétention (s)

$$V = 0.03 * 2 * 3600 = 216 \text{ m}$$

On prend V = 216 m3

Hauteur du bassin

$$H \le V / So$$
 $h \le 216 / 60 = 3.6 m$

On prend
$$h = 3.6m$$

On a:

$$L/1 = 5$$

$$L*l=60 => l=5m \text{ et } L=12m$$

Longueur	Largeur	surface	volume
12 m	5 m	60 m2	216 m3

VI.1 Amélioration du bassin de décantation :

L'aménagement réalisé selon les indications ci-dessus peut être amélioré de la façon suivante:

- A l'entrée, faites passer l'eau sur un large bord, proche de la surface du bassin, afin de réduire au minimum les turbulences.
- Veillez à ce que l'eau s'écoule à travers le bassin de manière calme et uniforme.
- A la sortie, étalez de manière analogue le courant d'eau sur un large bord placé à proximité de la surface.
- Evitez de choisir un emplacement exposé aux vents latéraux, qui pourraient agiter l'eau et remettre les particules en suspension.
- A l'intérieur du bassin, ajoutez quelques déflecteurs destinés à ralentir davantage l'écoulement et à lui faire suivre un itinéraire plus long en zigzag. L'installation de ces déflecteurs permet de raccourcir d'un tiers la longueur du bassin.
- Veillez à ce que l'eau s'écoule à travers le bassin de manière calme et uniforme.

Remarque : Vous devez procéder régulièrement au nettoyage du bassin de décantation en enlevant les accumulés au fond.

Conclusion

Dans ce chapitre, on a défini les différents éléments constitutifs du réseau d'assainissement, et dimensionner les ouvrages de notre projet, deux déversoirs d'orage type latéral, et aussi le bassin décantation de (12m. 5m. 3.6m) pour diminuer la charge polluante de rejet dans l'oued.

CHAPITRE VII:

Organisation de chantier

Chapitre VII

Organisation de chantier

Introduction

Dans le but de rechercher la rapidité, la qualité, et l'économie dans la réalisation de notre projet, on s'est principalement basé sur l'organisation de chantier qui ordonne le déroulement de nos travaux et nous dirige dans l'exécution; en imposant un bon rythme de travail, et en précisant le temps nécessaire de réalisation, la main d'œuvre nécessaire et les moyens matériels (matériaux de constructions, engins, ...).

I Les étapes de réalisation du projet

Pour la pose de canalisation, on doit exécuter dans un ordre précis certaines opérations.

.I.1 Manutention et stockage des conduites

J.1.1 Manutention

Afin de préserver les conduites pendant le transport, il faut éviter les chocs en particulier sur les extrémités, et éviter le déchargement brutal sur le sol.

.I.1.2 Stockage

Pour le stockage du matériel, il faut absolument respecter ces consignes :

- L'aire de stockage doit être plane et nivelée.
- Les accessoires et les conduites doivent être à l'abri du soleil.
- Préserver les conduites des produits chimiques, des solvants et des huiles.
- Les accessoires ne doivent être déballés qu'au moment de leur utilisation.
- Le stockage des tubes doit assurer leur protection mécanique et contre la chaleur.

.I.2 Décapage de la terre végétale

C'est une opération préliminaire, qui consiste à éliminer la couche superficielle du sol (les dix (10) premiers centimètres de la surface) constituée principalement de matière végétale.

.I.3 Exécution des tranchées et des fouilles des regards

La largeur de la tranchée dépend essentiellement des dimensions extérieures et du type d'emboîtement des tuyaux, et la profondeur en doit pas être inférieur à 0.7m de la surface du terrain et la génératrice supérieure de la canalisation.

.I.4 La profondeur de la tranchée

La profondeur est donnée par la formule suivante :

$$H = e + d + h$$
 (VII.1)

Avec:

- H : profondeur de la tranchée en (m).
- e : épaisseur de lit de sable en (m), e = 10 cm.

Organisation de chantier

- d : diamètre de la conduite en (m).
- h: la hauteur du remblai au-dessus de la conduite en (m).

.I.5 Largeur de la tranchée

La largeur d'ouverture de tranchée est donnée par la formule :

$$B = d + (2 \times 0.3)$$
 (VII.2)

Avec:

- B : largeur de la tranchée en (m).
- d : diamètre de la conduite en (m).

.I.6 Aménagement du lit de pose

Les conduites seront posées sur un lit de pose de sable d'épaisseur égale au moins à 10 cm.

Ce dernier sera bien nivelé suivant les côtes du profil en long. Le lit de pose doit être constitué de sable contenant au moins 12% de particules inférieures à 0.1mm.

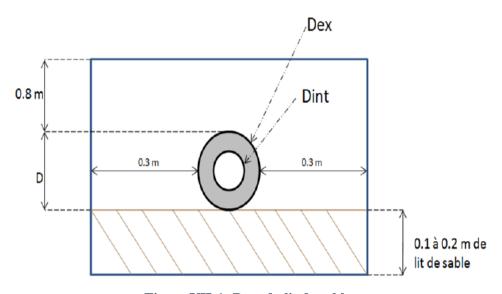


Figure VII-1: Pose du lit de sable

Source: strpepp.org

.I.7 Emplacement des jalons des piquets (piquetage)

Suivant les tracés du plan de masse, les jalons des piquets doivent être placés dans chaque point d'emplacement d'un regard, à chaque changement de direction ou de pente, et à chaque branchement ou jonction de canalisation.

J.8 Pose des canalisations

Durant la pose de canalisation, il faut vérifier que :

Chapitre VII

Organisation de chantier

- La décente du tuyau se fait dans une fouille blindée.
- Les surfaces des abouts doivent être débarrassés.
- Les joints doivent être vérifiés et nettoyés.

.I.9 Assemblage des tuyaux

On commence par emboiter l'embout male dans le manchon du tuyau précédent. L'extrémité du tuyau est légèrement insérée dans l'ouverture. On meut ensuite emboiter les tuyaux par poussée.

.I.10 Essai d'étanchéité

Une fois les conduites posées au fond des tranchées, un essai d'étanchéité est effectué en utilisant de l'eau, de l'air ou de la fumée.

.I.11 Construction des regards

Les regards sont généralement de forme carrée. Leurs dimensions varient en fonction des collecteurs, la profondeur et l'épaisseur varient d'un regard à un autre, la réalisation de ces regards s'effectue sur la place avec le béton armé, on peut avoir des regards préfabriqués.

La construction des regards passe par plusieurs étapes :

- Réglage du fond du regard.
- Exécution de la couche du béton de propreté.
- Ferraillage du radier de regard.
- Bétonnage du radier.
- Ferraillage des parois.
- Coffrage des parois.
- Bétonnage des parois.
- Décoffrage des parois.
- Ferraillage de la dalle.
- Coffrage de la dalle.
- Bétonnage de la dalle.
- Décoffrage de la dalle.
- Remblaiement et compactage des tranchés.

II Choix des engins

Pour réaliser ces travaux, on doit utiliser différents types d'engins, car chaque opération nécessite un engin précis. Ces engins sont répartis en trois grandes familles :

• Les engins de chargement

Chapitre VII

Organisation de chantier

- Les chargeuses.
- Les pelles hydrauliques.
- Les pelles mécaniques.

• Les engins de transport

- Les brouettes.
- Les camions bennes.
- Dumpers.
- Les motos basculeurs.
- Les véhicules utilitaires.

• Les engins de mise en place des matériaux

- Les niveleuses.
- Les compacteurs.
- Les finisseurs.
- Concernant notre projet, on a utilisé les engins suivants :

• Pour le décapage

Pour le décapage de la terre végétale on utilise la « niveleuse » sur les terrains faciles à décapé, elle est constituée d'un tracteur à quatre roues dans deux prolongé vers l'avant, une lame montée sur une couronne. Dans terrains difficiles on utilise le « Bulldozer »

Pour l'excavation des tranchées

On utilise une pelle équipée en rétro. Les Pelles sont des engins dont le rôle est l'exécution des déblais et leur chargement. Dans les terrains difficiles on doit utiliser une pelle à chenille.

• Pour le remblaiement des tranchées

Le remblayage a été fait en utilisant une chargeuse, qui comporte un corps automoteur articulé, et une benne de grande taille à l'avant.

• Pour le compactage

Le compactage de la terre après remblayage a été fait avec un compacteur a rouleaux lisses, qui est un engin lourd, qui tasse la terre sous lui grâce à un ou plusieurs rouleaux en fonte.

III Détermination des différents volumes des travaux

.III.1 Volume du décapage de la couche végétale

$$V_{d\acute{e}c} = H_{vc} \times L \times B_{cv}$$
 (VII.3)

Tel que:

Chapitre VII

Organisation de chantier

- $V_{d\acute{e}c}$: volume de la couche végétale décapée (m^3) .
- H_{vc} : profondeur de la couche végétale (0.1 m).
- L : longueur totale de la tranchée (m).
- B_{cv} : largeur de la couche végétale (m).

.III.2 Volume occupé par le lit de sable

$$V_{ls} = e \times L \times B$$
 (VII.4)

Avec:

- V_{ls} : volume du lit de sable (m³).
- e : épaisseur de la couche de sable (0.15m).
- B: largeur de la tranchée (m).
- L : longueur totale de la tranchée (m).

.III.3 Volume occupé par les conduites

$$V_{cond} = (\pi \times D_{ext}^2/4) \times L \text{ (VII.5)}$$

Avec:

- V_{cond}: volume occupé par les conduites (m³).
- D_{ext} : diamètre extérieur de la conduite (m).
- L: longueur totale de la tranchée (m).

.III.4 Volume de la couche de tout-venant

$$V_t = (H_t \times L \times B)((\pi \times D_{ext}^2/4) \times 0.3)$$
 (VII.6)

Avec:

- H_t : hauteur de la couche.
- B: Largeur de la tranchée (m).
- *L* : longueur de la couche (30cm pour chaque cote).
- D_{ext} : diamètre extérieur de la conduite (m).

.III.5 Volume du remblai de protection

$$V_{rem} = V_d - (V_{cond} + V_{d\acute{e}c} + V_{ls} + V_t)$$
 (VII.7)

Avec:

- V_{rem} : volume du remblai (m³).
- V_d : volume du déblai (m³).
- V_{ls} : volume du lit de sable (m³).
- $V_{d\acute{e}c}$: volume de la couche végétale décapée (m³).

Chapitre VII

Organisation de chantier

 $-V_t$: volume de la couche du tout-venant.

.III.6 Volume excédentaire

$$V_{\text{exc}} = V_f - V_{rem}$$
 (VII.8)

Tel que:

- V_{exc} : Volume du sol excédentaire (m³).

– V_f : Volume du sol foisonné (m³).

- V_{rem} : Volume du remblai (m³).

Sachant que:

Avec:

- K_f : Coefficient de foisonnement dépend de la nature de sol (1.25).

Tableau III-1: le coefficient de foisonnement selon la nature du sol.

Nature du matériau	Ff	Fc
Sols meubles :		
Argiles, limons		
Sables argileux, Arène Teneur en eau proche de l'optimum	1,25	0,9
reneur en eau proene de r openium		0,5
Sables et graves sableuses	1,1	1
Sols meubles consolidés		
Argiles et marnes se débitant en mottes	1,35	1,1
Sols rocheux défoncés au ripper roche		
altérée - Plaquettes	1,30	1,15
Matériaux rocheux de carrière		
(extraits à l'explosif)	1,40	1,20

Source: www.wikigeotech.com

Devis quantitatif et estimatif

Tableau III-2: Devis estimatif des couts de projets

Désignation des travaux	U	Quantité	Prix unitaire (DA)	Montant (DA)
	Τ	ravaux de terrassem	nent	
Tout-venant	m^3	1875.73	350.00	656505.50
Pose de lit de sable	m^3	8724.33	1500.00	13086495
Décapage de la terre végétale	m ³	5816.22	250.00	1454055
Remblai de la tranché	m^3	52102.69	300.00	15630807
		Canalisation en PV	С	
300	ml	22503.49	1829.50	41170134.96
400	ml	3471.21	2500.50	8679760.61
500	ml	2392.86	3612.00	8643010.32

Chapitre VII

Organisation de chantier

600	ml	2197.24	4275.00	9393201								
		Canalisation en béte	on									
800	ml	5912.38	5640.00	33345823.20								
1000	ml	2201.37	7245.00	15948925.65								
1200	1200 ml 96.23 9100.00 875693											
Construction												
Regard	u	1197	30000	35910000								
Déversoir d'orage	u	2	300000	600000								
Bassin de décantation	и	1	500000	500000								
	TI	HT		153075411.20								
TVA 19% 29179328.13												
TTC 182254739.30												

TTC = cent quatre-vingt-deux millions deux cent cinquante-quatre mille sept cent trenteneuf dinard

Conclusion

On a conclu que l'organisation de chantier est une étape essentielle pour la réalisation d'un système d'assainissement, diriger les travaux et éviter les différents problèmes du rendement de travail dans le chantier.

L'étude estimative des volumes des travaux nous permet d'établir une estimation du cout total du projet, qui est de **182254739.30** milliards de centimes.

Conclusion générale

L'objectif de notre étude est d'apporter des solutions pour les problèmes des inondations et de la pollution de l'environnement dans les zones rurale de la ville de Bourached (W.Ain Defla), c'est pour ça on a construit un système d'évacuation avec des ouvrages annexes développé, pour l'évacuation de la totalité des débits des eaux usées et des eaux pluviales afin d'éviter les problèmes qui menacent la santé publique et le milieu naturel.

Au début on a rassemblé toutes les informations sur notre zone d'étude pour une bonne connaissance de ses caractéristiques, puis grâce à les lois de l'ajustement on a utilisé la loi de Galton pour avoir une intensité moyenne maximale de 155 l/s/ha.

On a découpé notre zone d'étude en 20 sous bassins et adopté le système unitaire pour sa simple conception et pour éviter les faux branchements et un schéma par déplacement latérale pour installer une station d'épuration.

Pour l'évaluation des eaux à évacuer on a choisi le coefficient de ruissèlement selon les habitations et opté pour la méthode rationnelle. Et notre zone d'étude ne comporte aucune unité industrielle qui rejettent leurs eaux dans le réseau urbain.

Pour les ouvrages principaux, notre choix est tombé sur les canalisations et en PVC pour le diamètre inferieure à 800mm et en béton armé pour les diamètres supérieurs ou égale à 800mm pour supporter la charge, et on a introduit des ouvrages annexes à la mode pour améliorer notre réseau.

D'après l'étude d'organisation de chantier nous avons estimé le cout du projet à **182254739.30** milliards de centimes.

Finalement, nous espérons que cette étude pourra laisser un effet positif sur les études d'assainissements et que les erreurs fatales existent aujourd'hui dans nos réseaux va disparaitre et que nos réseaux en Algérie peuvent toucher l'échelle.

Références bibliographiques

- [1]. **AZARI Seif El-Islam,** Dimensionnement d'un réseau d'assainissement de la nouvelle ville de BOUINAN Lot : B et D (W.Blida), ENSH 2019.
- [2]. **BAYOU Amine,** L'étude du réseau d'assainissement de la ville d'Adjlana (W.Médéa), ENSH 2020.
- [3]. **José V,** 2013. « Hydrologie et hydraulique urbaine en réseau d'assainissement ». ENGEES, Strasbourg.
- [4]. **Salah B,** 2014. « Assainissement des eaux usées et pluviales des agglomérations : A l'usage des étudiants de l'option Assainissement ». ENSH, Blida.
- [5]. Dr. R. SALGHI, Dimensionnement d'une STEP par boues activées, ENSA AGHAD
- [6]. Touaibia B, 2004. « Manuel pratique d'hydrologie ». Madani Frères, Blida.
- [7]. Guide technique sur le fonctionnement des déversoirs d'orage. ENGEES, Strasbourg.

Annexes

Rejet N°1														
Tronçon	Distance (m)	l (m/m)	Q_t (m^3/s)	D _{cal} (mm)	D _{nor} (mm)	R_q	R_v	R_h	V (m/s)	H (mm)	V_{ps} (m/s)	Q_{ps} (m^3/s)	V _{min} (m/s)	Autocurrage
R1-R2	15,00	3,76	0,003	60	300	0,014	0,316	0,072	0,82	22	2,59	0,183	0,62	Vérifiée
R2-R3	15,68	3,40	0,005	80	300	0,030	0,407	0,110	1,00	33	2,46	0,174	0,59	Vérifiée
R3-R4	14,32	3,63	0,008	92	300	0,042	0,468	0,136	1,19	41	2,54	0,180	0,61	Vérifiée
R4-R5	15,00	3,60	0,010	102	300	0,057	0,529	0,162	1,34	49	2,53	0,179	0,60	Vérifiée
R5-R6	15,60	3,71	0,013	111	300	0,070	0,578	0,184	1,49	55	2,57	0,182	0,61	Vérifiée
R6-R7	14,43	3,92	0,015	117	300	0,082	0,613	0,200	1,62	60	2,64	0,187	0,63	Vérifiée
R7-R8	18,00	3,78	0,018	126	300	0,100	0,661	0,223	1,71	67	2,59	0,183	0,62	Vérifiée
R8-R9	17,05	3,89	0,021	133	300	0,114	0,692	0,239	1,82	72	2,63	0,186	0,63	Vérifiée
R9-R10	17,60	3,57	0,024	142	300	0,136	0,731	0,260	1,84	78	2,52	0,178	0,60	Vérifiée
R10-R11	16,26	3,62	0,027	147	300	0,150	0,752	0,273	1,91	82	2,54	0,179	0,61	Vérifiée
R11-R12	18,41	3,49	0,030	155	300	0,171	0,777	0,289	1,93	87	2,49	0,176	0,59	Vérifiée
R12-R13	17,00	3,42	0,033	161	300	0,189	0,794	0,302	1,96	91	2,47	0,174	0,59	Vérifiée
R13-R14	19,56	3,57	0,036	165	300	0,204	0,807	0,312	2,03	94	2,52	0,178	0,60	Vérifiée
R14-R15	21,22	3,88	0,040	169	300	0,215	0,815	0,319	2,14	96	2,63	0,186	0,63	Vérifiée
RA1-RA2	17,83	2,02	0,003	72	300	0,023	0,369	0,094	0,70	28	1,89	0,134	0,45	Vérifiée
RA2-RA3	17,00	3,48	0,006	84	300	0,034	0,427	0,118	1,06	35	2,49	0,176	0,59	Vérifiée
RA3-RA4	18,18	3,73	0,009	97	300	0,050	0,499	0,149	1,29	45	2,57	0,182	0,62	Vérifiée
RA4-RA5	10,00	3,58	0,011	104	300	0,060	0,541	0,167	1,37	50	2,52	0,178	0,60	Vérifiée
RA5-RA6	10,00	3,53	0,012	111	300	0,070	0,577	0,183	1,45	55	2,51	0,177	0,60	Vérifiée
RA6-RA7	20,00	2,55	0,016	129	300	0,105	0,673	0,229	1,43	69	2,13	0,151	0,50	Vérifiée
RA7-RA8	35,00	3,82	0,022	135	300	0,118	0,700	0,243	1,83	73	2,61	0,184	0,62	Vérifiée
RA8-RA9	32,00	3,72	0,027	147	300	0,150	0,751	0,272	1,93	82	2,57	0,182	0,61	Vérifiée
RA9-RA10	21,50	3,80	0,031	154	300	0,168	0,773	0,287	2,01	86	2,60	0,184	0,62	Vérifiée
RA10-RA11	21,65	3,55	0,035	162	300	0,194	0,799	0,306	2,01	92	2,51	0,178	0,60	Vérifiée
RA11-RA12	38,82	3,62	0,041	173	300	0,229	0,825	0,329	2,09	99	2,54	0,179	0,61	Vérifiée
RA12-RA13	40,00	0,70	0,048	249	300	0,517	1,010	0,513	1,32	154	1,31	0,093	0,31	Vérifiée
RA13-RA14	20,00	0,99	0,051	239	300	0,546	1,027	0,531	1,37	159	1,33	0,094	0,31	Vérifiée
RA14-RA15	20,00	0,63	0,055	267	300	0,503	1,001	0,505	1,54	151	1,54	0,109	0,36	Vérifiée
RA15-RA16	18,50	0,70	0,058	267	300	0,501	0,999	0,503	1,63	151	1,64	0,116	0,38	Vérifiée

Tronçon	Distance (m)	l (m/m)	Q_t (m^3/s)	D _{cal} (mm)	D _{nor} (mm)	R_q	R_v	R_h	V (m/s)	H (mm)	V_{ps} (m/s)	Q_{ps} (m^3/s)	V _{min} (m/s)	Autocurrage
RA16-R15	18,56	0,77	0,061	268	300	0,534	1,020	0,523	1,65	157	1,62	0,114	0,38	Vérifiée
R15-R16	35,52	1,70	0,107	285	300	0,869	1,111	0,722	1,93	216	1,74	0,123	0,41	Vérifiée
RA17-RA18	30,00	1,65	0,005	91	300	0,042	0,467	0,135	0,80	41	1,71	0,121	0,40	Vérifiée
RA18-RA19	30,16	1,73	0,010	118	300	0,083	0,616	0,201	1,08	60	1,75	0,124	0,41	Vérifiée
RA19-RA20	17,50	3,65	0,013	113	300	0,073	0,587	0,188	1,50	56	2,55	0,180	0,61	Vérifiée
RA20-RA21	17,67	2,94	0,016	127	300	0,100	0,662	0,223	1,51	67	2,29	0,162	0,54	Vérifiée
RA21-RA22	30,00	3,77	0,021	134	300	0,116	0,697	0,241	1,80	72	2,59	0,183	0,62	Vérifiée
RA22-R16	22,96	2,27	0,025	157	300	0,178	0,783	0,294	1,57	88	2,01	0,142	0,47	Vérifiée
R16-R17	30,00	2,77	0,132	281	300	0,842	1,108	0,700	2,46	210	2,22	0,157	0,53	Vérifiée
R17-R18	35,00	3,74	0,132	266	300	0,725	1,093	0,628	2,82	188	2,58	0,182	0,62	Vérifiée
R18-R19	35,00	3,92	0,132	264	300	0,708	1,089	0,619	2,88	186	2,64	0,187	0,63	Vérifiée
R19-R20	35,00	3,95	0,132	263	300	0,706	1,089	0,617	2,89	185	2,65	0,187	0,63	Vérifiée
R20-R21	35,00	3,79	0,132	265	300	0,721	1,092	0,625	2,83	188	2,60	0,183	0,62	Vérifiée
R21-R22	38,00	3,74	0,132	266	300	0,725	1,093	0,628	2,82	188	2,58	0,182	0,62	Vérifiée
R22-R23	23,00	2,30	0,137	295	300	0,954	1,121	0,801	2,27	240	2,02	0,143	0,48	Vérifiée
R23-R24	31,26	3,89	0,142	271	300	0,766	1,099	0,650	2,89	195	2,63	0,186	0,63	Vérifiée
R24-R25	28,74	3,77	0,148	277	300	0,808	1,104	0,676	2,86	203	2,59	0,183	0,62	Vérifiée
R25-R26	29,08	2,86	0,153	296	300	0,962	1,122	0,809	2,53	243	2,26	0,159	0,54	Vérifiée
R26-R27	22,91	3,76	0,158	284	300	0,862	1,110	0,716	2,87	215	2,59	0,183	0,62	Vérifiée
R27-R28	30,04	3,99	0,163	284	300	0,866	1,111	0,719	2,96	216	2,67	0,188	0,64	Vérifiée
R28-R29	27,79	3,88	0,168	289	300	0,907	1,116	0,754	2,93	226	2,63	0,186	0,63	Vérifiée
R29-R30	35,04	3,77	0,175	295	300	0,956	1,121	0,803	2,91	241	2,59	0,183	0,62	Vérifiée
R30-R31	29,72	3,89	0,181	297	300	0,972	1,122	0,821	2,95	246	2,63	0,186	0,63	Vérifiée
RA23-RA24	39,02	3,67	0,007	90	300	0,041	0,460	0,132	1,18	40	2,56	0,181	0,61	Vérifiée
RA24-RA25	20,00	3,74	0,011	105	300	0,061	0,544	0,169	1,40	51	2,58	0,182	0,62	Vérifiée
RA25-RA26	20,00	3,74	0,015	117	300	0,082	0,613	0,200	1,58	60	2,58	0,182	0,62	Vérifiée
RA26-RA27	30,00	0,76	0,021	178	300	0,222	0,820	0,324	1,07	97	1,31	0,092	0,30	Vérifiée
RA27-RA28	27,00	0,71	0,026	196	300	0,258	0,843	0,347	1,18	104	1,41	0,099	0,33	Vérifiée
RA28-RA29	30,00	3,81	0,031	154	300	0,170	0,775	0,288	2,02	86	2,60	0,184	0,62	Vérifiée
RA29-RA30	30,00	1,41	0,037	198	300	0,330	0,885	0,392	1,40	118	1,58	0,112	0,37	Vérifiée

Tronçon	Distance (m)	l (m/m)	Q_t (m^3/s)	D _{cal} (mm)	D _{nor} (mm)	R_q	R_v	R_h	V (m/s)	H (mm)	V_{ps} (m/s)	Q_{ps} (m^3/s)	V _{min} (m/s)	Autocurrage
RA30-RA31	30,00	1,55	0,043	205	300	0,362	0,906	0,413	1,50	124	1,66	0,117	0,39	Vérifiée
RA31-R31	29,95	0,53	0,048	263	300	0,480	0,986	0,490	1,40	147	1,42	0,100	0,33	Vérifiée
R31-R32	30,32	0,79	0,235	441	600	0,439	0,958	0,464	1,81	278	1,89	0,534	0,50	Vérifiée
R32-R33	35,00	1,05	0,241	422	600	0,392	0,925	0,433	2,01	260	2,17	0,615	0,58	Vérifiée
R33-R34	45,00	0,47	0,250	497	600	0,607	1,058	0,565	1,54	339	1,45	0,411	0,37	Vérifiée
R34-R35	39,96	3,64	0,257	343	600	0,225	0,822	0,326	3,32	196	4,04	1,143	1,22	Vérifiée
R35-R36	21,87	0,51	0,261	499	600	0,611	1,060	0,567	1,60	340	1,51	0,428	0,39	Vérifiée
R36-R37	20,03	0,43	0,265	517	600	0,674	1,081	0,601	1,50	360	1,39	0,393	0,35	Vérifiée
R37-R38	20,37	0,47	0,269	512	600	0,655	1,076	0,591	1,56	354	1,45	0,411	0,37	Vérifiée
R38-R39	20,28	0,53	0,273	503	600	0,626	1,066	0,576	1,64	345	1,54	0,435	0,39	Vérifiée
R39-R40	19,63	0,44	0,276	523	600	0,694	1,087	0,611	1,53	367	1,41	0,398	0,36	Vérifiée
R40-R41	18,28	0,35	0,280	550	600	0,792	1,102	0,666	1,38	400	1,25	0,353	0,31	Vérifiée
RA32-RA33	35,13	2,29	0,007	95	300	0,046	0,486	0,143	0,98	43	2,02	0,143	0,48	Vérifiée
RA33-RA34	40,00	1,13	0,014	144	300	0,141	0,739	0,265	1,05	79	1,42	0,100	0,33	Vérifiée
RA34-RA35	35,00	3,25	0,021	136	300	0,122	0,707	0,247	1,70	74	2,41	0,170	0,57	Vérifiée
RA35-RA36	35,00	1,18	0,027	183	300	0,267	0,848	0,352	1,23	106	1,45	0,102	0,34	Vérifiée
RA36-RA37	35,00	1,42	0,034	192	300	0,302	0,869	0,374	1,38	112	1,59	0,112	0,37	Vérifiée
RA37-RA38	30,00	1,32	0,040	206	300	0,365	0,908	0,415	1,39	124	1,53	0,108	0,36	Vérifiée
RA38-RA39	28,00	0,58	0,045	251	300	0,480	0,985	0,490	1,30	147	1,32	0,093	0,31	Vérifiée
RA39-RA40	35,00	0,78	0,051	250	300	0,501	0,999	0,503	1,45	151	1,45	0,103	0,34	Vérifiée
RA40-RA41	30,00	0,80	0,057	259	300	0,551	1,030	0,534	1,51	160	1,46	0,103	0,34	Vérifiée
RA41-RA42	25,00	3,51	0,062	202	300	0,349	0,897	0,405	2,24	121	2,50	0,177	0,60	Vérifiée
RA42-RA43	44,78	0,93	0,070	272	300	0,435	0,954	0,461	2,18	138	2,28	0,161	0,54	Vérifiée
RB1-RB2	40,00	2,82	0,008	96	300	0,048	0,491	0,145	1,10	44	2,24	0,158	0,53	Vérifiée
RB2-RB3	20,00	3,50	0,011	107	300	0,064	0,556	0,174	1,39	52	2,50	0,176	0,60	Vérifiée
RB3-RB4	20,00	2,62	0,015	126	300	0,099	0,658	0,222	1,42	66	2,16	0,152	0,51	Vérifiée
RB4-RB5	35,00	0,68	0,022	186	300	0,231	0,826	0,330	1,09	99	1,32	0,094	0,31	Vérifiée
RB5-RB6	39,62	0,89	0,029	197	300	0,310	0,873	0,379	1,16	114	1,33	0,094	0,31	Vérifiée
RB6-RA43	40,04	3,96	0,037	163	300	0,195	0,800	0,306	2,12	92	2,65	0,188	0,64	Vérifiée
RA43-RA44	25,05	3,99	0,112	246	300	0,592	1,051	0,557	2,80	167	2,67	0,188	0,64	Vérifiée

Tronçon	Distance (m)	l (m/m)	Q_t (m^3/s)	D _{cal} (mm)	D _{nor} (mm)	R_q	R_v	R_h	V (m/s)	H (mm)	V_{ps} (m/s)	Q_{ps} (m^3/s)	V _{min} (m/s)	Autocurrage
RA44-RA45	18,50	2,61	0,115	270	300	0,754	1,097	0,644	2,37	193	2,16	0,152	0,51	Vérifiée
RA45-R41	26,20	3,85	0,120	255	300	0,648	1,074	0,587	2,81	176	2,62	0,185	0,63	Vérifiée
R41-R42	21,16	0,38	0,400	617	800	0,500	0,999	0,503	1,59	402	1,59	0,799	0,45	Vérifiée
R42-R43	20,48	0,43	0,400	603	800	0,471	0,980	0,484	1,65	388	1,69	0,848	0,48	Vérifiée
R43-R44	39,93	0,59	0,400	569	800	0,403	0,932	0,440	1,84	352	1,97	0,992	0,58	Vérifiée
R44-R45	39,85	0,44	0,400	601	800	0,466	0,976	0,481	1,67	385	1,71	0,858	0,49	Vérifiée
R45-R46	20,00	0,46	0,400	596	800	0,456	0,969	0,475	1,69	380	1,74	0,876	0,50	Vérifiée
R46-R47	20,45	0,40	0,400	612	800	0,489	0,992	0,496	1,61	397	1,62	0,817	0,46	Vérifiée
R47-R48	19,55	0,35	0,400	627	800	0,522	1,012	0,516	1,54	413	1,52	0,766	0,42	Vérifiée
R48-R49	20,00	0,49	0,400	590	800	0,445	0,961	0,467	1,72	374	1,79	0,899	0,51	Vérifiée
R49-R50	20,00	0,97	0,400	519	800	0,315	0,876	0,383	2,21	306	2,52	1,268	0,78	Vérifiée
R50-R51	20,00	3,45	0,400	409	800	0,167	0,772	0,286	3,68	229	4,77	2,396	1,79	Vérifiée
R61-R52	20,00	3,69	0,400	404	800	0,161	0,766	0,282	3,77	225	4,92	2,475	1,87	Vérifiée
R52-R53	20,00	3,66	0,400	404	800	0,162	0,767	0,282	3,76	226	4,91	2,466	1,86	Vérifiée
R53-R54	20,00	3,75	0,400	402	800	0,160	0,764	0,281	3,80	224	4,97	2,497	1,90	Vérifiée
R54-R55	20,00	3,62	0,400	405	800	0,163	0,768	0,283	3,75	226	4,88	2,452	1,85	Vérifiée
R55-R56	20,00	3,92	0,400	399	800	0,157	0,760	0,278	3,86	222	5,08	2,551	1,95	Vérifiée
R56-R57	20,00	3,75	0,400	402	800	0,160	0,764	0,281	3,80	224	4,97	2,497	1,90	Vérifiée
R57-R58	20,00	3,49	0,400	408	800	0,166	0,771	0,285	3,70	228	4,79	2,409	1,81	Vérifiée
R58-R59	20,00	3,78	0,400	402	800	0,159	0,764	0,280	3,81	224	4,99	2,506	1,91	Vérifiée
R59-R60	20,00	3,95	0,400	399	800	0,156	0,759	0,277	3,87	222	5,10	2,562	1,96	Vérifiée
R60-R61	20,00	3,61	0,400	405	800	0,163	0,768	0,283	3,74	226	4,88	2,451	1,85	Vérifiée
R61-R62	20,00	3,53	0,400	407	800	0,165	0,770	0,284	3,71	227	4,82	2,423	1,82	Vérifiée
R62-R63	20,00	3,83	0,400	401	800	0,159	0,762	0,279	3,83	223	5,02	2,522	1,92	Vérifiée
R63-R64	20,00	3,77	0,400	402	800	0,160	0,764	0,280	3,80	224	4,98	2,502	1,90	Vérifiée
R64-R65	20,00	3,78	0,400	402	800	0,160	0,764	0,280	3,81	224	4,98	2,505	1,90	Vérifiée
R115-R116	24,83	3,40	0,006	87	300	0,036	0,440	0,124	1,08	37	2,46	0,174	0,59	Vérifiée
R116-R117	23,25	3,15	0,012	112	300	0,073	0,587	0,188	1,39	56	2,37	0,167	0,56	Vérifiée
R117-R118	25,00	2,32	0,019	139	300	0,130	0,721	0,254	1,46	76	2,03	0,144	0,48	Vérifiée
R118-R119	25,00	3,84	0,025	142	300	0,135	0,730	0,259	1,91	78	2,61	0,185	0,62	Vérifiée

Tronçon	Distance (m)	l (m/m)	Q_t (m^3/s)	D _{cal} (mm)	D _{nor} (mm)	R_q	R_v	R_h	V (m/s)	H (mm)	V_{ps} (m/s)	Q_{ps} (m^3/s)	V _{min} (m/s)	Autocurrage
R119-R120	40,00	0,53	0,035	233	300	0,324	0,882	0,388	1,35	116	1,53	0,108	0,36	Vérifiée
R120-R121	40,00	0,96	0,045	229	300	0,489	0,992	0,496	1,30	149	1,31	0,093	0,30	Vérifiée
R121-R122	25,00	0,80	0,052	249	300	0,500	0,998	0,502	1,46	151	1,46	0,103	0,34	Vérifiée
R122-R123	22,42	0,77	0,057	261	300	0,540	1,023	0,527	1,54	158	1,50	0,106	0,35	Vérifiée
R123-R124	25,00	0,57	0,064	287	300	0,599	1,054	0,561	1,59	168	1,51	0,106	0,35	Vérifiée
R124-R125	25,00	0,81	0,070	279	300	0,700	1,088	0,614	1,54	184	1,42	0,100	0,33	Vérifiée
R125-R126	35,00	1,48	0,079	261	300	0,689	1,085	0,609	1,76	183	1,62	0,115	0,38	Vérifiée
R126-R127	30,00	3,73	0,087	227	300	0,476	0,983	0,487	2,53	146	2,57	0,182	0,62	Vérifiée
R127-R128	45,00	3,73	0,098	238	300	0,538	1,023	0,526	2,64	158	2,58	0,182	0,62	Vérifiée
RA46-R128	30,75	0,87	0,008	121	300	0,071	0,579	0,184	0,91	55	1,56	0,111	0,37	Vérifiée
R128-R129	25,00	3,77	0,112	250	300	0,613	1,060	0,569	2,75	171	2,59	0,183	0,62	Vérifiée
R129-R130	25,00	3,67	0,119	256	300	0,657	1,077	0,592	2,75	178	2,55	0,181	0,61	Vérifiée
R130-R131	25,00	3,83	0,125	259	300	0,677	1,082	0,602	2,83	181	2,61	0,185	0,62	Vérifiée
R131-R132	35,00	3,80	0,134	266	300	0,729	1,093	0,630	2,84	189	2,60	0,184	0,62	Vérifiée
R132-R133	31,00	4,18	0,142	267	300	0,736	1,094	0,633	2,98	190	2,73	0,193	0,65	Vérifiée
RA47-RA48	25,00	3,86	0,006	85	300	0,034	0,430	0,120	1,13	36	2,62	0,185	0,63	Vérifiée
RA48-RA49	25,00	3,67	0,013	111	300	0,070	0,578	0,184	1,48	55	2,56	0,181	0,61	Vérifiée
RA49-RA50	25,00	3,87	0,019	128	300	0,103	0,668	0,226	1,75	68	2,62	0,185	0,63	Vérifiée
RA50-RA51	30,00	3,80	0,027	146	300	0,145	0,745	0,268	1,94	81	2,60	0,184	0,62	Vérifiée
RA51-RA52	34,00	3,82	0,035	162	300	0,192	0,797	0,304	2,08	91	2,61	0,184	0,62	Vérifiée
RA52-RA53	40,00	3,92	0,046	177	300	0,244	0,834	0,338	2,20	101	2,64	0,187	0,63	Vérifiée
RA53-RA54	40,00	3,83	0,056	191	300	0,302	0,869	0,374	2,27	112	2,61	0,184	0,62	Vérifiée
RA54-RA55	40,00	3,77	0,066	205	300	0,360	0,904	0,411	2,34	123	2,59	0,183	0,62	Vérifiée
RA55-RA56	22,00	2,22	0,071	233	300	0,509	1,004	0,508	2,00	152	1,99	0,141	0,47	Vérifiée
RA56-RA57	40,00	3,91	0,082	220	300	0,438	0,957	0,463	2,52	139	2,64	0,186	0,63	Vérifiée
RA57-RA58	30,00	3,86	0,089	228	300	0,482	0,987	0,491	2,59	147	2,62	0,185	0,63	Vérifiée
RA58-R133	36,54	3,96	0,099	236	300	0,526	1,015	0,519	2,69	156	2,65	0,188	0,64	Vérifiée
R133-R134	40,00	3,28	0,251	346	400	0,682	1,083	0,605	3,17	242	2,92	0,368	0,74	Vérifiée
RA59-RA60	40,00	3,59	0,010	102	300	0,057	0,529	0,162	1,34	49	2,53	0,179	0,60	Vérifiée
RA60-R134	30,00	4,00	0,018	124	300	0,094	0,648	0,216	1,73	65	2,67	0,189	0,64	Vérifiée

Tronçon	Distance (m)	l (m/m)	Q_t (m^3/s)	D _{cal} (mm)	D _{nor} (mm)	R_q	R_v	R_h	V (m/s)	H (mm)	V_{ps} (m/s)	Q_{ps} (m^3/s)	V _{min} (m/s)	Autocurrage
R134-R135	40,00	3,91	0,279	349	400	0,694	1,086	0,611	3,47	244	3,19	0,401	0,81	Vérifiée
R135-R136	40,00	2,22	0,289	393	400	0,954	1,121	0,801	2,70	320	2,41	0,303	0,60	Vérifiée
R136-R137	40,00	3,83	0,299	359	400	0,752	1,097	0,643	3,47	257	3,16	0,397	0,80	Vérifiée
R137-R138	39,73	3,81	0,309	364	400	0,780	1,100	0,659	3,47	263	3,15	0,396	0,80	Vérifiée
R138-R139	40,71	3,23	0,319	381	400	0,876	1,112	0,727	3,23	291	2,90	0,365	0,73	Vérifiée
R139-R140	39,57	3,72	0,329	375	400	0,841	1,108	0,700	3,45	280	3,12	0,392	0,79	Vérifiée
RA61-RA62	30,00	0,44	0,008	136	300	0,083	0,618	0,202	0,80	61	1,29	0,091	0,30	Vérifiée
RA62-RA63	25,00	0,69	0,014	157	300	0,133	0,727	0,258	1,08	77	1,49	0,105	0,35	Vérifiée
RA63-RA64	33,00	0,48	0,022	201	300	0,210	0,811	0,316	1,22	95	1,51	0,107	0,35	Vérifiée
RA64-RA65	30,00	0,50	0,030	223	300	0,269	0,850	0,354	1,34	106	1,58	0,112	0,37	Vérifiée
RA65-RA66	25,00	1,85	0,036	187	300	0,284	0,858	0,363	1,56	109	1,81	0,128	0,43	Vérifiée
RA66-RA67	27,16	3,56	0,043	177	300	0,243	0,834	0,337	2,10	101	2,52	0,178	0,60	Vérifiée
RA67-RA68	16,52	3,75	0,047	181	300	0,260	0,844	0,348	2,18	104	2,58	0,183	0,62	Vérifiée
RA68-RA69	25,00	3,82	0,054	189	300	0,292	0,863	0,368	2,25	110	2,61	0,184	0,62	Vérifiée
RA69-RA70	25,00	3,68	0,060	199	300	0,333	0,887	0,394	2,27	118	2,56	0,181	0,61	Vérifiée
RA70-RA71	21,50	3,96	0,066	202	300	0,350	0,898	0,405	2,38	121	2,66	0,188	0,64	Vérifiée
RA71-R140	38,47	0,86	0,075	284	300	0,587	1,049	0,554	1,91	166	1,82	0,129	0,43	Vérifiée
R140-R141	40,68	3,83	0,405	403	600	0,345	0,895	0,402	3,71	241	4,15	1,172	1,26	Vérifiée
R141-R66	49,98	3,84	1,134	592	600	0,966	1,122	0,814	4,66	489	4,15	1,174	1,26	Vérifiée
R66-R67	45,04	3,78	1,134	594	600	0,974	1,122	0,823	4,62	494	4,12	1,165	1,25	Vérifiée
R67-R68	45,00	3,77	1,134	595	600	0,976	1,122	0,825	4,61	495	4,11	1,162	1,25	Vérifiée
R68-R69	45,00	3,76	1,134	595	600	0,977	1,122	0,826	4,61	496	4,10	1,160	1,25	Vérifiée
R69-R70	45,00	3,86	1,134	592	600	0,964	1,122	0,812	4,67	487	4,16	1,176	1,27	Vérifiée
R70-R71	45,00	2,49	1,134	642	600	1,200	0,744	1,002	2,49	601	3,34	0,945	0,97	Vérifiée
R71-R72	45,00	3,05	1,134	619	600	1,085	1,079	0,949	3,99	569	3,70	1,045	1,09	Vérifiée
R72-R73	45,00	3,90	1,134	591	600	0,959	1,122	0,806	4,69	484	4,18	1,183	1,28	Vérifiée
R73-R74	35,00	2,39	1,134	647	600	1,224	0,591	0,983	1,94	590	3,28	0,926	0,95	Vérifiée
R142-R143	42,00	3,12	0,008	98	300	0,051	0,506	0,152	1,19	46	2,36	0,167	0,56	Vérifiée
R143-R144	25,00	2,89	0,014	119	300	0,085	0,621	0,204	1,41	61	2,27	0,160	0,54	Vérifiée
R144-R145	24,31	2,17	0,018	141	300	0,133	0,726	0,257	1,43	77	1,97	0,139	0,46	Vérifiée

Tronçon	Distance (m)	l (m/m)	Q_t (m^3/s)	D _{cal} (mm)	D _{nor} (mm)	R_q	R_v	R_h	V (m/s)	H (mm)	V_{ps} (m/s)	Q_{ps} (m^3/s)	V _{min} (m/s)	Autocurrage
R145-R146	35,00	0,38	0,026	220	300	0,267	0,848	0,352	1,15	106	1,36	0,096	0,32	Vérifiée
R146-R147	35,00	0,43	0,033	236	300	0,312	0,874	0,380	1,29	114	1,48	0,105	0,35	Vérifiée
R147-R148	22,00	0,41	0,037	250	300	0,383	0,919	0,427	1,26	128	1,37	0,097	0,32	Vérifiée
RA72-RA73	35,00	3,87	0,007	88	300	0,038	0,449	0,127	1,18	38	2,62	0,186	0,63	Vérifiée
RA73-RA74	35,00	3,77	0,014	115	300	0,077	0,600	0,194	1,55	58	2,59	0,183	0,62	Vérifiée
RA74-RA75	30,00	3,89	0,020	131	300	0,109	0,681	0,233	1,79	70	2,63	0,186	0,63	Vérifiée
RA75-RA76	25,00	3,63	0,025	144	300	0,141	0,739	0,264	1,88	79	2,54	0,180	0,61	Vérifiée
RA76-RA77	25,00	3,85	0,030	152	300	0,164	0,769	0,284	2,01	85	2,62	0,185	0,63	Vérifiée
RA77-R148	25,00	3,72	0,035	162	300	0,195	0,799	0,306	2,06	92	2,57	0,182	0,61	Vérifiée
R148-R149	25,00	0,37	0,078	337	400	0,327	0,883	0,390	1,67	156	1,89	0,237	0,46	Vérifiée
R149-R150	22,50	0,46	0,082	330	400	0,335	0,888	0,395	1,73	158	1,95	0,245	0,47	Vérifiée
R150-R151	20,97	0,51	0,086	329	400	0,386	0,921	0,429	1,64	171	1,78	0,224	0,43	Vérifiée
R151-R152	30,00	0,39	0,092	354	400	0,385	0,921	0,428	1,76	171	1,91	0,240	0,46	Vérifiée
RA78-RA79	25,00	2,59	0,005	84	300	0,033	0,425	0,117	0,91	35	2,15	0,152	0,51	Vérifiée
RA79-RA80	25,00	1,06	0,010	128	300	0,104	0,671	0,228	0,92	68	1,37	0,097	0,32	Vérifiée
RA80-RA81	25,00	0,78	0,015	158	300	0,121	0,705	0,245	1,25	74	1,78	0,126	0,42	Vérifiée
RA81-RA82	25,00	0,79	0,020	176	300	0,161	0,765	0,281	1,36	84	1,78	0,126	0,42	Vérifiée
RA82-RA83	29,99	3,73	0,026	145	300	0,144	0,744	0,268	1,92	80	2,58	0,182	0,62	Vérifiée
RA83-RA84	25,02	3,70	0,031	155	300	0,173	0,779	0,290	2,00	87	2,57	0,181	0,61	Vérifiée
RA84-RA85	25,00	0,81	0,036	219	300	0,287	0,860	0,365	1,54	109	1,79	0,127	0,42	Vérifiée
RB7-RA85	35,00	0,75	0,007	120	300	0,057	0,528	0,162	0,93	49	1,77	0,125	0,42	Vérifiée
RA85-RA86	35,00	1,81	0,051	212	300	0,398	0,929	0,437	1,67	131	1,80	0,127	0,42	Vérifiée
RA86-RA87	30,00	1,47	0,057	230	300	0,495	0,995	0,500	1,61	150	1,62	0,114	0,38	Vérifiée
RA87-RA88	20,00	3,61	0,061	200	300	0,339	0,891	0,398	2,26	119	2,53	0,179	0,60	Vérifiée
RA88-RA89	20,00	3,51	0,065	206	300	0,366	0,908	0,416	2,27	125	2,50	0,177	0,60	Vérifiée
RA89-RA90	28,00	1,23	0,070	259	300	0,673	1,081	0,600	1,60	180	1,48	0,105	0,35	Vérifiée
RA90-RA91	15,00	3,54	0,073	215	300	0,414	0,940	0,447	2,36	134	2,51	0,177	0,60	Vérifiée
RA91-RA92	21,14	3,91	0,078	216	300	0,417	0,942	0,449	2,48	135	2,64	0,186	0,63	Vérifiée
RB8-RB9	20,00	2,75	0,004	76	300	0,026	0,386	0,101	0,86	30	2,21	0,156	0,52	Vérifiée
RB9-RB10	20,00	3,68	0,008	94	300	0,045	0,479	0,140	1,23	42	2,56	0,181	0,61	Vérifiée

Tronçon	Distance (m)	l (m/m)	Q_t (m^3/s)	D _{cal} (mm)	D _{nor} (mm)	R_q	R_v	R_h	V (m/s)	H (mm)	V_{ps} (m/s)	Q_{ps} (m^3/s)	V _{min} (m/s)	Autocurrage
RB10-RB11	20,00	2,41	0,012	118	300	0,083	0,617	0,201	1,28	60	2,07	0,146	0,49	Vérifiée
RB11-RA92	25,00	3,63	0,017	124	300	0,096	0,651	0,218	1,65	65	2,54	0,180	0,61	Vérifiée
RA92-RA93	18,85	3,86	0,099	237	300	0,533	1,019	0,523	2,67	157	2,62	0,185	0,63	Vérifiée
RA93-RA94	30,00	3,00	0,105	254	300	0,641	1,071	0,584	2,48	175	2,31	0,163	0,55	Vérifiée
RA94-RA95	19,77	3,58	0,109	249	300	0,610	1,059	0,567	2,67	170	2,52	0,178	0,60	Vérifiée
RA95-RA96	9,00	3,02	0,111	259	300	0,675	1,082	0,601	2,51	180	2,32	0,164	0,55	Vérifiée
RA96-R152	9,67	3,78	0,113	250	300	0,614	1,061	0,569	2,75	171	2,59	0,183	0,62	Vérifiée
R152-R153	33,79	0,40	0,099	363	400	0,492	0,994	0,498	1,59	199	1,60	0,201	0,39	Vérifiée
R153-R154	31,19	0,42	0,106	368	400	0,436	0,955	0,461	1,84	185	1,93	0,242	0,47	Vérifiée
R154-R155	29,40	0,43	0,111	374	400	0,458	0,971	0,476	1,88	190	1,93	0,243	0,47	Vérifiée
RA97-RA98	16,50	3,69	0,003	67	300	0,018	0,345	0,084	0,88	25	2,56	0,181	0,61	Vérifiée
RA98-R155	16,50	3,86	0,007	86	300	0,036	0,439	0,123	1,15	37	2,62	0,185	0,63	Vérifiée
R155-R156	25,00	0,45	0,123	385	400	0,565	1,038	0,542	1,80	217	1,73	0,218	0,42	Vérifiée
R156-R157	31,51	0,56	0,130	377	400	0,511	1,006	0,509	2,03	204	2,02	0,254	0,49	Vérifiée
RA99-RA100	44,00	3,72	0,009	97	300	0,049	0,497	0,148	1,28	44	2,57	0,182	0,61	Vérifiée
RA100-R157	35,00	3,98	0,016	119	300	0,085	0,623	0,204	1,66	61	2,66	0,188	0,64	Vérifiée
R157-R158	28,29	0,57	0,151	398	400	0,594	1,052	0,558	2,13	223	2,03	0,255	0,49	Vérifiée
RA101-R158	32,00	3,84	0,006	85	300	0,035	0,434	0,121	1,13	36	2,62	0,185	0,63	Vérifiée
R158-R159	43,90	0,41	0,167	439	400	0,692	1,086	0,610	2,08	244	1.92	0,424	0,47	Vérifiée
RA102-R159	35,00	3,77	0,007	89	300	0,039	0,451	0,128	1,17	39	2,59	0,183	0,62	Vérifiée
R159-R160	50,92	0,33	0,184	475	400	0,787	1,101	0,663	2,05	265	1.86	0,234	0,45	Vérifiée
RA103-RA104	33,00	2,14	0,007	96	300	0,048	0,495	0,147	0,97	44	1,95	0,138	0,46	Vérifiée
RA104-RA105	35,00	3,96	0,014	113	300	0,073	0,587	0,188	1,56	56	2,65	0,188	0,64	Vérifiée
RA105-RA106	25,00	2,91	0,019	134	300	0,117	0,698	0,242	1,59	73	2,27	0,161	0,54	Vérifiée
RA106-RA107	19,00	3,51	0,023	139	300	0,128	0,719	0,253	1,80	76	2,50	0,177	0,60	Vérifiée
RA107-RA108	36,00	3,73	0,030	152	300	0,164	0,770	0,284	1,98	85	2,57	0,182	0,62	Vérifiée
RA108-RA109	25,00	3,83	0,035	161	300	0,190	0,795	0,302	2,07	91	2,61	0,184	0,62	Vérifiée
RA109-RA110	25,00	3,88	0,040	169	300	0,216	0,815	0,320	2,14	96	2,63	0,186	0,63	Vérifiée
RA110-RA111	25,00	3,88	0,045	176	300	0,243	0,834	0,337	2,19	101	2,63	0,186	0,63	Vérifiée
RA111-RA112	36,50	3,82	0,052	187	300	0,285	0,859	0,363	2,24	109	2,61	0,184	0,62	Vérifiée

Tronçon	Distance (m)	l (m/m)	Q_t (m^3/s)	D _{cal} (mm)	D _{nor} (mm)	R_q	R_v	R_h	V (m/s)	H (mm)	<i>V_{ps}</i> (m/s)	Q_{ps} (m^3/s)	V _{min} (m/s)	Autocurrage
RA112-RA113	35,00	3,75	0,060	197	300	0,326	0,883	0,390	2,28	117	2,58	0,183	0,62	Vérifiée
RA113-RA114	25,00	3,89	0,065	202	300	0,347	0,896	0,403	2,36	121	2,63	0,186	0,63	Vérifiée
RA114-RA115	28,00	3,77	0,070	209	300	0,384	0,920	0,427	2,38	128	2,59	0,183	0,62	Vérifiée
RA115-R160	33,00	3,89	0,077	215	300	0,414	0,940	0,447	2,47	134	2,63	0,186	0,63	Vérifiée
R160-R161	34,98	2,47	0,268	375	400	0,840	1,107	0,699	2,81	280	2,54	0,319	0,63	Vérifiée
RA116-RA117	20,00	0,77	0,004	97	300	0,032	0,420	0,115	0,74	35	1,77	0,125	0,42	Vérifiée
RA117-RA118	21,50	1,67	0,008	110	300	0,068	0,571	0,181	0,98	54	1,72	0,122	0,40	Vérifiée
RA118-RA119	21,45	3,60	0,013	111	300	0,070	0,578	0,184	1,46	55	2,53	0,179	0,60	Vérifiée
RB12-RA119	25,00	3,80	0,005	77	300	0,027	0,393	0,104	1,02	31	2,60	0,184	0,62	Vérifiée
RA119-RA120	20,00	3,86	0,022	134	300	0,116	0,697	0,241	1,83	72	2,62	0,185	0,63	Vérifiée
RA120-RA121	30,00	3,81	0,027	147	300	0,149	0,751	0,272	1,96	82	2,60	0,184	0,62	Vérifiée
RA121-RA122	40,00	3,78	0,035	162	300	0,193	0,798	0,305	2,07	91	2,59	0,183	0,62	Vérifiée
RA122-RA123	40,00	1,52	0,043	207	300	0,374	0,913	0,420	1,50	126	1,64	0,116	0,39	Vérifiée
RB13-RA123	33,00	1,05	0,007	109	300	0,068	0,569	0,180	0,78	54	1,37	0,097	0,32	Vérifiée
RA123-RA124	30,00	0,46	0,056	286	300	0,491	0,993	0,497	1,60	149	1,61	0,114	0,38	Vérifiée
RB14-RB15	25,00	3,64	0,005	78	300	0,028	0,396	0,105	1,01	32	2,54	0,180	0,61	Vérifiée
RB15-RB16	25,00	3,72	0,010	101	300	0,055	0,520	0,158	1,34	47	2,57	0,182	0,61	Vérifiée
RB16-RB17	25,00	2,83	0,015	124	300	0,094	0,647	0,216	1,45	65	2,24	0,159	0,53	Vérifiée
RB17-RB18	30,00	0,77	0,021	179	300	0,166	0,772	0,285	1,37	86	1,77	0,125	0,42	Vérifiée
RB18-RB19	30,00	0,57	0,027	208	300	0,227	0,824	0,327	1,38	98	1,67	0,118	0,39	Vérifiée
RB19-RA124	35,00	0,42	0,034	241	300	0,301	0,868	0,374	1,38	112	1,59	0,112	0,37	Vérifiée
RA124-RA125	28,38	1,88	0,095	268	300	0,738	1,095	0,635	2,00	190	1,83	0,129	0,43	Vérifiée
RA125-R161	28,39	3,86	0,101	239	300	0,545	1,027	0,530	2,69	159	2,62	0,185	0,63	Vérifiée
R161-R162	35,01	3,72	0,376	394	500	0,530	1,018	0,521	3,68	261	3,61	0,710	0,99	Vérifiée
R162-R163	35,00	3,75	0,383	396	500	0,537	1,022	0,526	3,71	263	3,63	0,713	1,00	Vérifiée
R163-R164	35,00	2,31	0,390	437	500	0,697	1,087	0,613	3,10	306	2,85	0,559	0,75	Vérifiée
R164-R165	20,72	1,70	0,394	464	500	0,821	1,105	0,686	2,70	343	2,44	0,480	0,63	Vérifiée
RA126-RA127	40,05	3,89	0,008	92	300	0,043	0,470	0,137	1,24	41	2,63	0,186	0,63	Vérifiée
RA127-RA128	40,00	3,07	0,016	125	300	0,096	0,653	0,219	1,52	66	2,34	0,165	0,56	Vérifiée
RA128-RA165	30,00	3,86	0,022	135	300	0,118	0,700	0,243	1,84	73	2,62	0,185	0,63	Vérifiée

Tronçon	Distance (m)	l (m/m)	Q_t (m ³ /s)	D _{cal} (mm)	D _{nor} (mm)	R_q	R _v	R _h	V (m/s)	H (mm)	V _{ps} (m/s)	Q _{ps} (m ³ /s)	V _{min} (m/s)	Autocurrage
R165-R166	45,00	3,93	0,425	408	500	0,582	1,046	0,552	3,89	276	3,72	0,730	1,03	Vérifiée
R166-R167	45,00	2,35	0,434	453	500	0,769	1,099	0,652	3,16	326	2,87	0,564	0,76	Vérifiée
RA129-RA130	36,00	0,33	0,007	140	300	0,066	0,562	0,176	0,86	53	1,54	0,109	0,36	Vérifiée
RA130-RA131	35,00	0,43	0,014	173	300	0,135	0,730	0,259	1,08	78	1,48	0,104	0,34	Vérifiée
RA131-RA132	38,88	3,67	0,022	136	300	0,121	0,706	0,246	1,80	74	2,56	0,181	0,61	Vérifiée
RA132-RA133	35,00	3,85	0,029	149	300	0,156	0,759	0,277	1,99	83	2,62	0,185	0,63	Vérifiée
RA133-RA134	25,00	3,93	0,034	158	300	0,181	0,787	0,296	2,08	89	2,64	0,187	0,63	Vérifiée
RA134-RA135	25,00	3,45	0,039	170	300	0,221	0,820	0,324	2,03	97	2,48	0,175	0,59	Vérifiée
RA135-R167	25,00	3,85	0,044	175	300	0,236	0,830	0,333	2,17	100	2,62	0,185	0,63	Vérifiée
R167-R168	25,00	0,60	0,483	609	800	0,484	0,988	0,493	1,96	394	1,98	0,997	0,58	Vérifiée
R168-R169	39,74	3,87	0,490	432	800	0,193	0,798	0,305	4,03	244	5,04	2,536	1,94	Vérifiée
R169-R170	30,26	0,64	0,496	608	800	0,482	0,987	0,491	2,02	393	2,05	1,031	0,61	Vérifiée
RA136-RA137	35,00	3,41	0,007	90	300	0,040	0,457	0,131	1,13	39	2,46	0,174	0,59	Vérifiée
RA137-RA138	35,00	3,96	0,014	113	300	0,074	0,590	0,189	1,57	57	2,65	0,188	0,64	Vérifiée
RA138-RA139	25,00	3,89	0,019	127	300	0,102	0,665	0,225	1,75	67	2,63	0,186	0,63	Vérifiée
RA139-R170	25,00	0,54	0,024	201	300	0,204	0,807	0,312	1,33	94	1,65	0,117	0,39	Vérifiée
R170-R171	35,00	0,92	0,527	581	800	0,426	0,948	0,455	2,33	364	2,46	1,237	0,76	Vérifiée
R171-R172	35,00	3,90	0,534	446	800	0,210	0,811	0,316	4,11	253	5,06	2,545	1,95	Vérifiée
R172-R173	35,00	0,48	0,541	663	800	0,605	1,057	0,564	1,88	452	1,78	0,894	0,51	Vérifiée
RA140-RA141	30,57	3,90	0,006	83	300	0,033	0,422	0,116	1,11	35	2,63	0,186	0,63	Vérifiée
RA141-RA142	42,13	1,16	0,014	144	300	0,142	0,741	0,266	1,07	80	1,44	0,102	0,34	Vérifiée
RA142-RA143	38,97	3,93	0,022	135	300	0,119	0,701	0,244	1,86	73	2,65	0,187	0,63	Vérifiée
RA143-R173	38,28	3,87	0,030	151	300	0,161	0,765	0,281	2,01	84	2,62	0,185	0,63	Vérifiée
R173-R174	37,08	3,96	0,571	455	800	0,222	0,820	0,324	4,19	259	5,11	2,567	1,97	Vérifiée
R174-R175	24,14	0,59	0,571	650	800	0,576	1,043	0,548	2,06	438	1,97	0,992	0,58	Vérifiée
R175-R176	24,11	0,90	0,571	601	800	0,466	0,976	0,481	2,38	385	2,44	1,224	0,75	Vérifiée
R176-R177	26,37	3,37	0,571	469	800	0,241	0,833	0,336	3,92	269	4,71	2,365	1,76	Vérifiée
R177-R178	27,86	3,97	0,571	455	800	0,222	0,820	0,324	4,19	259	5,11	2,569	1,97	Vérifiée
R178-R179	26,38	3,91	0,571	457	800	0,224	0,821	0,325	4,16	260	5,07	2,548	1,95	Vérifiée
R179-R180	25,82	2,13	0,571	512	800	0,304	0,870	0,375	3,25	300	3,74	1,880	1,30	Vérifiée

Tronçon	Distance (m)	l (m/m)	Q_t (m ³ /s)	D _{cal} (mm)	D _{nor} (mm)	R_{q}	R _v	R _h	V (m/s)	H (mm)	V _{ps} (m/s)	Q _{ps} (m ³ /s)	V _{min} (m/s)	Autocurrage
R180-R181	21,23	3,78	0,571	459	800	0,228	0,824	0,328	4,11	262	4,99	2,508	1,91	Vérifiée
R181-R182	37,28	3,82	0,571	459	800	0,227	0,823	0,327	4,13	262	5,01	2,519	1,92	Vérifiée
R182-R183	39,96	3,85	0,571	458	800	0,226	0,823	0,326	4,14	261	5,03	2,529	1,93	Vérifiée
R183-R184	35,52	3,88	0,571	457	800	0,225	0,822	0,326	4,15	261	5,05	2,539	1,94	Vérifiée
R184-R185	35,30	0,79	0,571	617	800	0,500	0,999	0,503	2,27	402	2,27	1,143	0,69	Vérifiée
R185-R186	25,97	3,86	0,571	458	800	0,225	0,822	0,326	4,14	261	5,04	2,532	1,93	Vérifiée
R186-R74	27,09	3,72	1,705	694	800	0,686	1,084	0,607	4,36	485	4,95	2,487	1,88	Vérifiée
R74-R75	45,00	3,09	1,705	719	800	0,752	1,097	0,642	4,95	514	4,51	2,268	1,66	Vérifiée
R75-R76	45,00	1,78	1,705	797	800	0,991	1,122	0,842	3,84	673	3,42	1,721	1,16	Vérifiée
R76-R77	45,00	2,59	1,705	743	800	0,822	1,105	0,686	4,56	549	4,13	2,074	1,48	Vérifiée
R77-R78	45,00	2,63	1,705	741	800	0,815	1,105	0,681	4,60	545	4,16	2,092	1,49	Vérifiée
R78-R79	45,00	1,98	1,705	781	800	0,939	1,120	0,786	4,04	628	3,61	1,816	1,24	Vérifiée
R79-R80	45,00	3,16	1,705	716	800	0,744	1,096	0,638	4,00	510	4,56	2,293	1,69	Vérifiée
R80-R81	30,00	3,93	1,705	687	800	0,667	1,079	0,597	4,49	478	5,09	2,557	1,96	Vérifiée
R81-R82	45,00	3,87	1,705	689	800	0,672	1,081	0,600	4,46	480	5,05	2,537	1,94	Vérifiée
R82-R83	45,00	1,83	1,705	793	800	0,978	1,123	0,828	3,89	662	3,47	1,743	1,17	Vérifiée
R83-R84	45,00	1,91	1,705	787	800	0,958	1,122	0,805	3,97	644	3,54	1,780	1,21	Vérifiée
R84-R85	45,90	3,18	1,705	715	800	0,741	1,095	0,636	4,01	509	4,58	2,300	1,70	Vérifiée
R85-R86	39,10	1,95	1,705	784	800	0,948	1,121	0,795	4,01	636	3,58	1,799	1,22	Vérifiée
R86-R87	45,00	2,69	1,705	738	800	0,807	1,104	0,676	4,64	541	4,20	2,113	1,51	Vérifiée
R87-R88	45,00	1,82	1,705	794	800	0,981	1,123	0,831	3,88	664	3,46	1,738	1,17	Vérifiée
R88-R89	45,00	3,95	1,705	687	800	0,665	1,079	0,596	4,50	477	5,10	2,563	1,96	Vérifiée
R89-R90	45,00	3,84	1,705	690	800	0,675	1,082	0,601	4,44	481	5,03	2,528	1,93	Vérifiée
R90-R91	45,00	3,70	1,705	695	800	0,687	1,085	0,608	4,35	486	4,93	2,481	1,88	Vérifiée
R91-R92	45,00	3,93	1,705	687	800	0,667	1,080	0,597	4,49	478	5,08	2,555	1,96	Vérifiée
R92-R93	45,00	3,91	1,705	688	800	0,669	1,080	0,598	4,48	478	5,07	2,549	1,95	Vérifiée
R93-R94	45,00	3,86	1,705	690	800	0,673	1,081	0,600	4,45	480	5,04	2,534	1,93	Vérifiée
R94-R95	45,00	3,80	1,705	692	800	0,678	1,083	0,603	3,42	482	5,00	2,515	1,91	Vérifiée
R95-R96	45,00	3,93	1,705	687	800	0,667	1,080	0,597	4,49	478	5,08	2,556	1,96	Vérifiée
R96-R97	45,00	3,52	1,705	702	800	0,705	1,089	0,617	4,24	494	4,81	2,419	1,82	Vérifiée

Tronçon	Distance (m)	l (m/m)	Q_t (m ³ /s)	D _{cal} (mm)	D _{nor} (mm)	Rq	R_{v}	R _h	V (m/s)	H (mm)	V _{ps} (m/s)	Q _{ps} (m ³ /s)	V _{min} (m/s)	Autocurrage
R97-R98	45,00	1,78	1,705	798	800	0,992	1,122	0,843	3,84	675	3,42	1,718	1,15	Vérifiée
R98-R99	45,00	2,71	1,705	737	800	0,804	1,103	0,674	3,66	539	4,22	2,121	1,52	Vérifiée
R99-R100	45,00	1,80	1,705	796	800	0,985	1,123	0,835	3,86	668	3,44	1,731	1,16	Vérifiée
R100-R101	45,00	2,33	1,705	758	800	0,866	1,110	0,719	4,35	575	3,92	1,969	1,38	Vérifiée
R101-R102	45,00	3,39	1,705	707	800	0,719	1,091	0,624	4,15	499	4,72	2,373	1,77	Vérifiée
R102-R103	45,00	3,05	1,705	721	800	0,757	1,098	0,645	4,12	516	4,48	2,251	1,65	Vérifiée
R103-R104	45,00	1,79	1,705	796	800	0,988	1,122	0,839	3,85	671	3,43	1,725	1,16	Vérifiée
R104-R105	45,00	1,97	1,705	782	800	0,941	1,120	0,788	4,04	630	3,60	1,811	1,24	Vérifiée
R105-R106	45,00	2,02	1,705	779	800	0,930	1,119	0,777	4,08	621	3,65	1,833	1,25	Vérifiée
R106-R107	45,00	2,21	1,705	766	800	0,889	1,113	0,738	4,25	591	3,81	1,918	1,33	Vérifiée
R107-R108	45,00	3,82	1,705	691	800	0,677	1,082	0,602	4,42	482	5,01	2,520	1,92	Vérifiée
R108-R109	45,00	2,83	1,705	731	800	0,786	1,101	0,663	3,75	530	4,31	2,168	1,57	Vérifiée
R109-R110	45,00	3,51	1,705	702	800	0,706	1,089	0,617	4,23	494	4,80	2,415	1,81	Vérifiée
R110-R111	45,00	3,11	1,705	718	800	0,750	1,097	0,641	4,36	513	4,52	2,274	1,67	Vérifiée
R111-R112	45,00	2,45	1,705	751	800	0,845	1,108	0,703	4,45	562	4,01	2,017	1,42	Vérifiée
R112-R113	45,00	1,98	1,705	782	800	0,941	1,120	0,787	4,04	630	3,61	1,813	1,24	Vérifiée
R187-R188	25,00	3,71	0,004	72	300	0,022	0,365	0,092	0,94	28	2,57	0,182	0,61	Vérifiée
R188-R189	30,00	3,75	0,009	96	300	0,048	0,493	0,146	1,27	44	2,58	0,183	0,62	Vérifiée
R189-R190	30,00	3,72	0,014	113	300	0,075	0,591	0,190	1,52	57	2,57	0,182	0,61	Vérifiée
R190-R191	30,00	3,74	0,018	127	300	0,101	0,663	0,224	1,71	67	2,58	0,182	0,62	Vérifiée
R191-R192	37,00	3,82	0,024	140	300	0,132	0,724	0,256	1,89	77	2,61	0,184	0,62	Vérifiée
R192-R193	30,72	3,95	0,029	149	300	0,156	0,759	0,277	2,01	83	2,65	0,187	0,63	Vérifiée
RA144-R193	42,99	2,17	0,007	97	300	0,049	0,499	0,149	0,98	45	1,97	0,139	0,46	Vérifiée
R193-R194	25,00	0,48	0,040	250	300	0,349	0,897	0,404	1,46	121	1,62	0,115	0,38	Vérifiée
R194-R195	27,00	0,44	0,044	264	300	0,392	0,925	0,432	1,48	130	1,60	0,113	0,37	Vérifiée
RA145-RA146	44,83	3,95	0,007	88	300	0,038	0,449	0,127	1,19	38	2,65	0,187	0,63	Vérifiée
RA146-R195	35,00	3,98	0,013	109	300	0,068	0,569	0,179	1,51	54	2,66	0,188	0,64	Vérifiée
R195-R196	30,00	0,57	0,062	284	400	0,232	0,827	0,330	1,76	132	2,12	0,267	0,52	Vérifiée
R196-R197	30,00	0,54	0,067	296	400	0,264	0,847	0,351	1,70	140	2,00	0,252	0,49	Vérifiée
R197-R198	40,87	0,35	0,073	333	400	0,321	0,880	0,386	1,60	154	1,81	0,228	0,44	Vérifiée

Tronçon	Distance (m)	l (m/m)	Q_t (m ³ /s)	D _{cal} (mm)	D _{nor} (mm)	Rq	R _v	R _h	V (m/s)	H (mm)	V _{ps} (m/s)	Q _{ps} (m ³ /s)	V _{min} (m/s)	Autocurrage
R198-R199	40,00	0,36	0,080	340	400	0,328	0,884	0,391	1,71	156	1,93	0,242	0,47	Vérifiée
R199-R200	35,00	0,53	0,085	325	400	0,339	0,891	0,398	1,78	159	2,00	0,251	0,49	Vérifiée
R200-R201	35,00	0,51	0,091	335	400	0,308	0,872	0,378	2,04	151	2,34	0,295	0,58	Vérifiée
RA147-RA148	29,99	3,93	0,005	76	300	0,026	0,385	0,101	1,02	30	2,64	0,187	0,63	Vérifiée
RA148-RA149	35,00	3,99	0,010	101	300	0,055	0,522	0,159	1,39	48	2,66	0,188	0,64	Vérifiée
RA149-RA150	15,00	3,73	0,013	111	300	0,070	0,577	0,183	1,48	55	2,57	0,182	0,62	Vérifiée
RA150-RA151	7,00	2,91	0,014	120	300	0,086	0,626	0,206	1,43	62	2,28	0,161	0,54	Vérifiée
RA151-R201	8,00	2,94	0,015	123	300	0,094	0,646	0,215	1,48	65	2,29	0,162	0,54	Vérifiée
R201-R202	35,72	0,35	0,112	389	400	0,393	0,926	0,433	2,09	173	2,26	0,284	0,56	Vérifiée
R202-R203	30,00	0,62	0,116	355	400	0,727	1,093	0,628	1,39	251	1,27	0,160	0,30	Vérifiée
R203-R204	29,98	0,65	0,121	357	400	0,739	1,095	0,635	1,43	254	1,30	0,164	0,31	Vérifiée
RA152-RA153	20,00	3,96	0,003	65	300	0,017	0,336	0,081	0,89	24	2,65	0,188	0,64	Vérifiée
RA153-RA154	20,00	3,99	0,006	84	300	0,034	0,428	0,119	1,14	36	2,66	0,188	0,64	Vérifiée
RA154-RA155	35,00	3,76	0,012	108	300	0,065	0,561	0,176	1,45	53	2,59	0,183	0,62	Vérifiée
RA155-RA156	35,00	3,75	0,018	125	300	0,096	0,652	0,218	1,68	65	2,58	0,183	0,62	Vérifiée
RA156-RA157	17,00	3,94	0,020	130	300	0,108	0,680	0,232	1,80	70	2,65	0,187	0,63	Vérifiée
RA157-RA158	8,00	3,35	0,022	137	300	0,125	0,713	0,250	1,74	75	2,44	0,172	0,58	Vérifiée
RA158-RA204	10,00	3,66	0,023	139	300	0,128	0,719	0,253	1,83	76	2,55	0,180	0,61	Vérifiée
R204-R205	40,00	0,64	0,151	388	400	0,925	1,118	0,771	1,45	309	1,30	0,163	0,31	Vérifiée
R205-R206	44,28	0,69	0,158	390	400	0,934	1,119	0,780	1,50	312	1,34	0,169	0,32	Vérifiée
RA159-RA160	23,00	3,98	0,004	69	300	0,020	0,351	0,087	0,93	26	2,66	0,188	0,64	Vérifiée
RA160-RA161	30,00	3,85	0,008	94	300	0,046	0,483	0,142	1,26	43	2,62	0,185	0,63	Vérifiée
RA161-RA162	30,00	3,78	0,013	112	300	0,072	0,584	0,186	1,51	56	2,59	0,183	0,62	Vérifiée
RA162-RA163	10,00	3,56	0,015	118	300	0,083	0,618	0,202	1,56	61	2,52	0,178	0,60	Vérifiée
RA163-R206	10,00	3,39	0,016	124	300	0,095	0,648	0,217	1,59	65	2,46	0,174	0,59	Vérifiée
R206-R207	25,50	0,49	0,178	435	500	0,689	1,085	0,609	1,43	304	1,32	0,258	0,32	Vérifiée
RA164-RA165	30,00	3,93	0,005	76	300	0,026	0,385	0,101	1,02	30	2,64	0,187	0,63	Vérifiée
RA165-RA166	35,00	3,77	0,010	102	300	0,057	0,528	0,162	1,37	48	2,59	0,183	0,62	Vérifiée
RA166-RA167	17,50	3,88	0,013	111	300	0,071	0,579	0,184	1,52	55	2,63	0,186	0,63	Vérifiée
RA167-RA168	8,00	2,80	0,014	122	300	0,092	0,640	0,213	1,43	64	2,23	0,158	0,53	Vérifiée

Tronçon	Distance (m)	l (m/m)	Q_t (m^3/s)	D _{cal} (mm)	D _{nor} (mm)	R_q	R_v	R_h	V (m/s)	H (mm)	V_{ps} (m/s)	Q_{ps} (m^3/s)	<i>V_{min}</i> (m/s)	Autocurrage
RA167-R207	9,50	3,93	0,016	119	300	0,085	0,624	0,205	1,65	61	2,64	0,187	0,63	Vérifiée
R207-R208	30,00	0,34	0,199	487	500	0,467	0,977	0,482	2,12	241	2,17	0,426	0,55	Vérifiée
R208-R209	31,59	0,53	0,204	452	500	0,764	1,098	0,649	1,49	325	1,36	0,267	0,33	Vérifiée
R209-R210	38,63	0,53	0,210	457	500	0,785	1,101	0,662	1,50	331	1,36	0,268	0,33	Vérifiée
R210-R211	39,53	0,53	0,216	462	500	0,810	1,104	0,678	1,50	339	1,36	0,267	0,33	Vérifiée
RA169-RA170	30,00	3,84	0,005	76	300	0,026	0,387	0,101	1,01	30	2,61	0,185	0,63	Vérifiée
RA170-RA171	31,29	3,99	0,010	99	300	0,052	0,509	0,153	1,36	46	2,67	0,188	0,64	Vérifiée
RA171-RA172	38,71	3,82	0,016	120	300	0,087	0,627	0,206	1,63	62	2,61	0,184	0,62	Vérifiée
RA172-RA173	17,00	3,82	0,019	127	300	0,101	0,664	0,224	1,73	67	2,61	0,184	0,62	Vérifiée
RA173-R211	18,00	3,66	0,022	135	300	0,119	0,703	0,244	1,79	73	2,55	0,180	0,61	Vérifiée
R211-R212	40,00	0,88	0,244	439	500	0,709	1,090	0,619	1,91	309	1,76	0,345	0,44	Vérifiée
R212-R213	40,00	0,69	0,251	464	500	0,821	1,105	0,685	1,72	343	1,55	0,305	0,38	Vérifiée
R213-R214	35,00	0,65	0,256	473	500	0,864	1,110	0,717	1,68	359	1,51	0,297	0,37	Vérifiée
R214-R215	40,20	3,79	0,263	343	500	0,366	0,908	0,416	3,32	208	3,65	0,717	1,00	Vérifiée
R215-R216	47,36	3,77	0,270	347	500	0,378	0,916	0,423	3,33	212	3,64	0,715	1,00	Vérifiée
RA174-RA175	32,00	3,93	0,006	83	300	0,032	0,420	0,115	1,11	35	2,64	0,187	0,63	Vérifiée
RA174-RA176	35,00	3,08	0,013	114	300	0,076	0,597	0,192	1,40	58	2,34	0,165	0,56	Vérifiée
RA174-RA177	35,31	3,86	0,019	128	300	0,104	0,671	0,228	1,76	68	2,62	0,185	0,63	Vérifiée
RA174-RA178	34,69	2,12	0,026	160	300	0,188	0,794	0,301	1,54	90	1,94	0,137	0,46	Vérifiée
RA174-RA179	35,00	0,50	0,032	229	300	0,281	0,856	0,361	1,40	108	1,63	0,116	0,38	Vérifiée
RA179-R216	35,00	0,45	0,039	250	300	0,344	0,894	0,401	1,44	120	1,61	0,114	0,38	Vérifiée
R216-R217	35,00	0,54	0,316	530	600	0,719	1,092	0,624	1,70	375	1,55	0,439	0,40	Vérifiée
R217-R218	29,98	0,38	0,322	569	600	0,870	1,111	0,722	1,45	433	1,31	0,370	0,33	Vérifiée
RA180-RA181	25,61	3,74	0,005	77	300	0,026	0,390	0,103	1,01	31	2,58	0,182	0,62	Vérifiée
RB20-RA181	39,01	1,49	0,007	107	300	0,064	0,556	0,174	0,90	52	1,63	0,115	0,38	Vérifiée
RA181-R218	35,00	1,49	0,019	152	300	0,163	0,768	0,283	1,25	85	1,63	0,115	0,38	Vérifiée
RB21-R218	30,00	2,30	0,006	89	300	0,040	0,455	0,130	0,92	39	2,02	0,143	0,48	Vérifiée
R218-R219	44,16	2,75	0,354	408	600	0,357	0,902	0,409	3,17	246	3,51	0,992	1,03	Vérifiée
RA182-RA183	25,00	0,47	0,005	113	300	0,041	0,463	0,134	0,75	40	1,62	0,114	0,38	Vérifiée
RA183-RA184	25,00	0,61	0,009	139	300	0,079	0,605	0,196	1,02	59	1,69	0,119	0,40	Vérifiée

Tronçon	Distance (m)	l (m/m)	Q_t (m^3/s)	D _{cal} (mm)	D _{nor} (mm)	R_q	R_v	R_h	V (m/s)	H (mm)	V_{ps} (m/s)	Q_{ps} (m^3/s)	V _{min} (m/s)	Autocurrage
RA184-RA185	40,00	0,49	0,017	180	300	0,148	0,748	0,270	1,22	81	1,63	0,115	0,38	Vérifiée
RA185-R219	35,00	0,52	0,024	202	300	0,203	0,806	0,311	1,33	93	1,64	0,116	0,39	Vérifiée
R219-R220	40,83	0,55	0,386	569	600	0,867	1,111	0,720	1,75	432	1,57	0,445	0,40	Vérifiée
R220-R221	30,00	0,80	0,391	534	600	0,732	1,094	0,631	2,07	379	1,89	0,535	0,50	Vérifiée
R221-R222	25,00	1,54	0,396	474	600	0,532	1,019	0,523	2,68	314	2,63	0,744	0,73	Vérifiée
RA186-RA187	30,02	0,85	0,006	108	300	0,044	0,476	0,139	0,86	42	1,82	0,128	0,43	Vérifiée
RA187-RA188	29,93	0,61	0,011	149	300	0,074	0,590	0,189	1,27	57	2,16	0,152	0,51	Vérifiée
RA188-R222	34,99	0,45	0,018	187	300	0,194	0,799	0,306	1,04	92	1,30	0,092	0,30	Vérifiée
R222-R223	30,08	0,67	0,420	566	600	0,856	1,109	0,711	1,92	426	1,73	0,490	0,45	Vérifiée
R223-R224	26,92	0,64	0,425	574	600	0,888	1,113	0,737	1,88	442	1,69	0,478	0,44	Vérifiée
RA189-RA190	35,00	0,58	0,007	123	300	0,056	0,524	0,160	0,88	48	1,68	0,119	0,39	Vérifiée
RA190-R224	35,00	0,51	0,013	163	300	0,114	0,692	0,239	1,13	72	1,64	0,116	0,38	Vérifiée
R224-R225	31,93	0,83	0,444	556	600	0,814	1,104	0,681	2,13	409	1,93	0,545	0,51	Vérifiée
R225-R226	30,00	0,59	0,450	594	600	0,974	1,122	0,823	1,83	494	1,63	0,461	0,42	Vérifiée
R226-R227	35,00	0,59	0,456	598	600	0,992	1,122	0,843	1,82	506	1,63	0,460	0,42	Vérifiée
R227-R228	35,00	0,70	0,463	583	600	0,927	1,118	0,774	1,97	464	1,77	0,499	0,46	Vérifiée
R228-R229	35,00	3,22	0,469	440	600	0,437	0,956	0,462	3,63	277	3,80	1,073	1,13	Vérifiée
R229-R230	40,00	2,61	0,477	460	600	0,493	0,994	0,498	3,40	299	3,42	0,968	1,00	Vérifiée
R230-R231	39,97	2,50	0,484	467	600	0,512	1,006	0,510	3,37	306	3,35	0,946	0,97	Vérifiée
R231-R232	35,00	3,78	0,491	434	600	0,422	0,946	0,452	3,89	271	4,11	1,163	1,25	Vérifiée
R232-R233	35,00	3,28	0,498	448	600	0,459	0,971	0,476	3,72	286	3,84	1,084	1,15	Vérifiée
R233-R234	35,00	2,91	0,504	460	600	0,493	0,994	0,498	3,59	299	3,61	1,022	1,07	Vérifiée
R234-R235	23,99	1,37	0,509	532	600	0,726	1,093	0,628	2,71	377	2,48	0,701	0,68	Vérifiée
R235-R236	30,01	0,82	0,514	588	600	0,949	1,121	0,796	2,15	478	1,92	0,542	0,50	Vérifiée
R236-R237	20,00	1,20	0,518	549	600	0,791	1,102	0,666	2,55	399	2,32	0,655	0,63	Vérifiée
R237-R238	25,00	1,33	0,523	541	600	0,757	1,098	0,645	2,68	387	2,44	0,691	0,67	Vérifiée
R238-R239	30,00	1,83	0,529	511	600	0,652	1,075	0,589	3,08	354	2,87	0,811	0,81	Vérifiée
RA191-RA192	36,94	0,71	0,007	120	300	0,057	0,528	0,161	0,92	48	1,74	0,123	0,41	Vérifiée
RA192-R239	45,99	0,74	0,016	162	300	0,100	0,662	0,223	1,46	67	2,21	0,156	0,52	Vérifiée
R239-R240	27,00	1,24	0,549	558	800	0,382	0,919	0,426	2,63	341	2,86	1,437	0,92	Vérifiée

Tronçon	Distance (m)	l (m/m)	Q_t (m^3/s)	D _{cal} (mm)	D _{nor} (mm)	R_q	R_v	R_h	V (m/s)	H (mm)	V_{ps} (m/s)	Q_{ps} (m^3/s)	V _{min} (m/s)	Autocurrage
R240-R241	40,00	1,98	0,557	514	800	0,307	0,871	0,377	3,15	302	3,61	1,815	1,24	Vérifiée
R241-R242	30,01	0,84	0,562	606	800	0,476	0,983	0,488	2,31	390	2,35	1,181	0,72	Vérifiée
R242-R243	44,98	0,49	0,571	673	800	0,632	1,068	0,579	1,92	463	1,80	0,904	0,52	Vérifiée
RA193-RA194	28,00	2,73	0,005	84	300	0,034	0,428	0,119	0,94	36	2,20	0,156	0,52	Vérifiée
RA194-RA195	35,00	0,99	0,012	138	300	0,126	0,715	0,251	0,95	75	1,33	0,094	0,31	Vérifiée
RA195-RA196	35,00	3,34	0,018	130	300	0,107	0,678	0,231	1,65	69	2,44	0,172	0,58	Vérifiée
RA196-RA197	40,00	3,81	0,026	144	300	0,141	0,740	0,265	1,93	79	2,60	0,184	0,62	Vérifiée
RA197-RA198	35,00	1,72	0,033	182	300	0,264	0,847	0,351	1,48	105	1,75	0,124	0,41	Vérifiée
RB22-RA198	40,00	3,89	0,008	90	300	0,041	0,460	0,132	1,21	40	2,63	0,186	0,63	Vérifiée
RA198-RA199	35,00	1,30	0,047	219	300	0,435	0,954	0,460	1,45	138	1,52	0,108	0,36	Vérifiée
RA199-RA200	35,01	1,09	0,053	239	300	0,543	1,025	0,529	1,43	159	1,39	0,098	0,32	Vérifiée
RB23-RB24	30,00	0,74	0,006	111	300	0,046	0,483	0,142	0,85	43	1,76	0,124	0,41	Vérifiée
RB24-RA200	30,00	1,57	0,011	125	300	0,096	0,652	0,218	1,09	65	1,67	0,118	0,39	Vérifiée
RA200-RA201	34,99	0,75	0,071	285	300	0,456	0,969	0,475	2,14	142	2,21	0,156	0,52	Vérifiée
RA201-R243	35,01	3,87	0,078	217	300	0,420	0,944	0,451	2,48	135	2,62	0,185	0,63	Vérifiée
R243-R244	40,00	0,53	0,659	700	800	0,702	1,088	0,615	2,03	492	1,87	0,940	0,54	Vérifiée
R244-R245	51,29	3,94	0,673	485	800	0,263	0,846	0,350	4,31	280	5,09	2,558	1,96	Vérifiée
C1-C2	34,85	3,73	0,006	83	300	0,033	0,422	0,116	1,09	35	2,58	0,182	0,62	Vérifiée
C2-C3	20,00	3,84	0,009	98	300	0,051	0,505	0,151	1,32	45	2,61	0,185	0,63	Vérifiée
C3-C4	20,00	3,73	0,013	111	300	0,070	0,578	0,183	1,49	55	2,58	0,182	0,62	Vérifiée
C4-C5	25,00	3,82	0,017	123	300	0,093	0,643	0,214	1,68	64	2,61	0,184	0,62	Vérifiée
C5-C6	25,00	3,95	0,021	133	300	0,114	0,692	0,239	1,84	72	2,65	0,187	0,63	Vérifiée
C6-C7	35,01	3,78	0,027	147	300	0,149	0,751	0,272	1,95	82	2,59	0,183	0,62	Vérifiée
C7-C8	29,99	3,11	0,032	163	300	0,196	0,800	0,306	1,88	92	2,35	0,166	0,56	Vérifiée
C8-C9	34,99	3,36	0,038	171	300	0,223	0,820	0,324	2,01	97	2,45	0,173	0,58	Vérifiée
C9-C10	30,01	3,93	0,044	174	300	0,233	0,828	0,331	2,19	99	2,64	0,187	0,63	Vérifiée
CA2-CA3	29,33	3,81	0,005	78	300	0,027	0,394	0,104	1,03	31	2,60	0,184	0,62	Vérifiée
CA3-CA4	26,67	3,99	0,010	98	300	0,051	0,505	0,151	1,35	45	2,67	0,188	0,64	Vérifiée
CA4-CA5	17,00	3,55	0,012	111	300	0,070	0,578	0,183	1,45	55	2,51	0,178	0,60	Vérifiée
CA5-CA6	18,00	3,56	0,016	120	300	0,088	0,630	0,208	1,58	62	2,52	0,178	0,60	Vérifiée

Tronçon	Distance (m)	l (m/m)	Q_t (m^3/s)	D _{cal} (mm)	D _{nor} (mm)	R_q	R_v	R_h	V (m/s)	H (mm)	V_{ps} (m/s)	Q_{ps} (m^3/s)	V _{min} (m/s)	Autocurrage
CA6-CA7	17,00	3,99	0,018	126	300	0,098	0,657	0,221	1,75	66	2,66	0,188	0,64	Vérifiée
CA7-C10	18,00	3,66	0,022	135	300	0,119	0,703	0,244	1,79	73	2,55	0,180	0,61	Vérifiée
C10-C11	40,00	2,16	0,072	235	300	0,520	1,011	0,515	1,98	154	1,96	0,139	0,46	Vérifiée
C11-C12	35,00	0,67	0,044	244	300	0,365	0,907	0,415	1,56	124	1,72	0,122	0,40	Vérifiée
CA8-CA9	35,00	3,82	0,006	83	300	0,033	0,421	0,116	1,10	35	2,61	0,184	0,62	Vérifiée
CA8-CA10	17,89	3,53	0,009	98	300	0,051	0,506	0,152	1,27	46	2,50	0,177	0,60	Vérifiée
CA8-CA11	20,11	3,60	0,012	111	300	0,070	0,576	0,183	1,46	55	2,53	0,179	0,60	Vérifiée
CA8-CA12	40,00	4,00	0,019	128	300	0,103	0,668	0,226	1,78	68	2,67	0,189	0,64	Vérifiée
CA8-CA13	17,00	3,72	0,022	136	300	0,122	0,708	0,247	1,82	74	2,57	0,182	0,61	Vérifiée
CA13-C12	18,00	3,71	0,025	143	300	0,139	0,737	0,263	1,89	79	2,57	0,182	0,61	Vérifiée
C12-C13	35,00	0,72	0,076	294	300	0,614	1,061	0,569	1,85	171	1,75	0,124	0,41	Vérifiée
C13-C14	35,00	3,73	0,082	222	300	0,449	0,964	0,470	2,48	141	2,58	0,182	0,62	Vérifiée
C14-C15	35,00	3,90	0,078	217	300	0,419	0,944	0,450	2,48	135	2,63	0,186	0,63	Vérifiée
C15-C16	26,75	2,26	0,083	245	300	0,583	1,047	0,552	2,10	166	2,01	0,142	0,47	Vérifiée
C16-C17	45,26	0,97	0,090	297	300	0,974	1,122	0,823	1,47	247	1,31	0,093	0,31	Vérifiée
C17-C18	35,00	2,41	0,096	256	300	0,658	1,077	0,592	2,23	178	2,07	0,146	0,49	Vérifiée
C18-C19	37,99	1,36	0,103	292	300	0,934	1,119	0,781	1,74	234	1,56	0,110	0,36	Vérifiée
CA15-CA16	35,00	3,47	0,006	85	300	0,034	0,429	0,119	1,07	36	2,48	0,176	0,59	Vérifiée
CA16-CA17	25,00	3,76	0,010	102	300	0,056	0,526	0,161	1,36	48	2,59	0,183	0,62	Vérifiée
CA17-CA18	30,00	3,97	0,015	117	300	0,082	0,614	0,200	1,63	60	2,66	0,188	0,64	Vérifiée
CA18-CA19	27,00	0,81	0,020	175	300	0,127	0,716	0,252	1,60	75	2,23	0,158	0,53	Vérifiée
CA19-CA20	25,00	3,71	0,024	141	300	0,134	0,728	0,258	1,87	77	2,57	0,182	0,61	Vérifiée
CA20-CA21	35,00	3,93	0,030	152	300	0,162	0,767	0,282	2,03	85	2,64	0,187	0,63	Vérifiée
CA21-CA22	35,00	3,78	0,036	163	300	0,198	0,802	0,308	2,08	92	2,59	0,183	0,62	Vérifiée
CA22-CA23	35,00	3,79	0,042	173	300	0,230	0,826	0,329	2,14	99	2,60	0,184	0,62	Vérifiée
CA23-CA24	35,00	3,88	0,048	181	300	0,260	0,844	0,348	2,22	104	2,63	0,186	0,63	Vérifiée
CA24-CA25	35,00	3,83	0,054	190	300	0,294	0,864	0,369	2,25	111	2,61	0,184	0,62	Vérifiée
CA25-CA26	35,00	3,92	0,060	196	300	0,323	0,881	0,387	2,33	116	2,64	0,187	0,63	Vérifiée
CA26-CA27	35,00	4,20	0,066	201	300	0,343	0,893	0,400	2,44	120	2,73	0,193	0,66	Vérifiée
CA27-CA28	20,00	0,70	0,070	287	300	0,567	1,039	0,543	1,81	163	1,74	0,123	0,41	Vérifiée

Tronçon	Distance (m)	l (m/m)	Q_t (m^3/s)	D _{cal} (mm)	D _{nor} (mm)	R_q	R_v	R_h	V (m/s)	H (mm)	V_{ps} (m/s)	Q_{ps} (m^3/s)	V _{min} (m/s)	Autocurrage
CB1-CB2	25,00	3,67	0,004	74	300	0,024	0,375	0,096	0,96	29	2,55	0,181	0,61	Vérifiée
CB2-CB3	35,00	2,68	0,010	109	300	0,067	0,565	0,178	1,23	53	2,18	0,154	0,52	Vérifiée
CB3-CA28	25,00	0,37	0,015	180	300	0,255	0,841	0,345	0,68	103	0,81	0,057	0,19	Vérifiée
CA28-CA29	15,00	3,51	0,087	230	300	0,491	0,993	0,497	2,48	149	2,50	0,177	0,60	Vérifiée
CA29-CA30	15,00	3,97	0,089	227	300	0,476	0,983	0,487	2,61	146	2,66	0,188	0,64	Vérifiée
CA30-C19	30,45	3,93	0,095	232	300	0,506	1,003	0,506	2,65	152	2,64	0,187	0,63	Vérifiée
C19-C20	40,00	3,97	0,204	310	400	0,505	1,002	0,506	3,22	202	3,22	0,405	0,82	Vérifiée
C20-C21	33,03	3,71	0,210	317	400	0,537	1,022	0,525	3,18	210	3,11	0,391	0,79	Vérifiée
C21-C22	25,74	1,46	0,214	380	400	0,873	1,111	0,725	2,17	290	1,95	0,245	0,48	Vérifiée
CA31-CA32	30,09	3,75	0,005	79	300	0,028	0,399	0,106	1,03	32	2,58	0,183	0,62	Vérifiée
CA31-CA33	35,00	3,95	0,011	104	300	0,059	0,539	0,166	1,43	50	2,65	0,187	0,63	Vérifiée
CA31-CA34	35,00	0,37	0,017	191	300	0,118	0,700	0,243	1,44	73	2,05	0,145	0,49	Vérifiée
CB24-CB25	22,00	0,42	0,004	105	300	0,034	0,426	0,118	0,68	35	1,59	0,112	0,37	Vérifiée
CB25-CA34	28,00	0,58	0,009	135	300	0,072	0,584	0,186	0,98	56	1,68	0,118	0,39	Vérifiée
CA34-CA35	35,00	0,45	0,032	231	300	0,279	0,855	0,360	1,37	108	1,61	0,114	0,38	Vérifiée
CB26-CB27	28,00	3,95	0,005	76	300	0,026	0,385	0,101	1,02	30	2,65	0,187	0,63	Vérifiée
CB27-CA35	35,00	3,77	0,011	104	300	0,059	0,537	0,165	1,39	50	2,59	0,183	0,62	Vérifiée
CA35-CA36	30,63	0,50	0,048	264	300	0,412	0,939	0,446	1,54	134	1,64	0,116	0,38	Vérifiée
CB28-CB29	24,84	3,98	0,004	72	300	0,023	0,369	0,094	0,98	28	2,66	0,188	0,64	Vérifiée
CB29-CB30	25,15	3,69	0,009	95	300	0,047	0,490	0,145	1,25	43	2,56	0,181	0,61	Vérifiée
CB30-CB31	15,00	0,75	0,011	142	300	0,089	0,634	0,210	1,12	63	1,76	0,125	0,41	Vérifiée
CB31-CB32	37,00	0,54	0,017	179	300	0,116	0,696	0,241	1,48	72	2,13	0,150	0,50	Vérifiée
CB32-CA36	26,88	0,32	0,022	215	300	0,203	0,806	0,312	1,24	94	1,53	0,108	0,36	Vérifiée
CA36-CA37	31,47	0,79	0,075	288	300	0,595	1,053	0,559	1,88	168	1,79	0,126	0,42	Vérifiée
CB33-CB34	30,00	3,74	0,005	79	300	0,028	0,399	0,106	1,03	32	2,58	0,182	0,62	Vérifiée
CB34-CB35	22,00	3,89	0,009	96	300	0,048	0,493	0,146	1,30	44	2,63	0,186	0,63	Vérifiée
CB35-CB36	20,00	3,75	0,012	109	300	0,067	0,568	0,179	1,47	54	2,58	0,183	0,62	Vérifiée
CB36-CB37	20,00	3,66	0,016	120	300	0,087	0,629	0,207	1,60	62	2,55	0,180	0,61	Vérifiée
CB37-CA37	29,95	3,79	0,021	133	300	0,114	0,692	0,238	1,80	71	2,60	0,184	0,62	Vérifiée
CA37-CA38	14,59	1,21	0,099	294	300	0,949	1,121	0,796	1,65	239	1,47	0,104	0,34	Vérifiée

Tronçon	Distance (m)	l (m/m)	Q_t (m^3/s)	D _{cal} (mm)	D _{nor} (mm)	R_q	R_v	R_h	V (m/s)	H (mm)	V_{ps} (m/s)	Q_{ps} (m^3/s)	V _{min} (m/s)	Autocurrage
CB38-CB39	24,82	3,73	0,004	73	300	0,023	0,373	0,096	0,96	29	2,58	0,182	0,62	Vérifiée
CB39-CB40	23,00	3,78	0,008	94	300	0,045	0,479	0,140	1,24	42	2,59	0,183	0,62	Vérifiée
CB40-CA38	23,66	3,95	0,012	108	300	0,065	0,560	0,176	1,48	53	2,65	0,187	0,63	Vérifiée
CA38-CA39	25,00	3,23	0,115	259	300	0,679	1,083	0,603	2,60	181	2,40	0,169	0,57	Vérifiée
CA39-CA40	29,00	3,71	0,120	257	300	0,661	1,078	0,594	2,77	178	2,57	0,182	0,61	Vérifiée
CA40-CA41	25,00	3,36	0,124	265	300	0,719	1,092	0,625	2,67	187	2,44	0,173	0,58	Vérifiée
CA41-CA42	22,00	1,92	0,128	298	300	0,980	1,123	0,829	2,08	249	1,85	0,131	0,44	Vérifiée
CB41-CA42	25,00	3,71	0,004	74	300	0,024	0,374	0,096	0,96	29	2,57	0,182	0,61	Vérifiée
CA42-CA43	25,00	2,34	0,137	294	300	0,947	1,121	0,794	2,29	238	2,04	0,144	0,48	Vérifiée
CB42-CB43	25,00	3,70	0,004	74	300	0,024	0,374	0,096	0,96	29	2,56	0,181	0,61	Vérifiée
CB43-CA43	31,59	3,90	0,010	99	300	0,052	0,510	0,153	1,34	46	2,64	0,186	0,63	Vérifiée
CA43-CA44	25,00	3,96	0,151	276	300	0,803	1,103	0,673	2,93	202	2,65	0,188	0,64	Vérifiée
CB44-CA44	30,00	2,83	0,005	83	300	0,032	0,420	0,115	0,94	35	2,25	0,159	0,53	Vérifiée
CA44-CA45	38,00	3,85	0,162	286	300	0,877	1,112	0,728	2,91	218	2,62	0,185	0,63	Vérifiée
CA45-CA46	39,94	3,99	0,169	288	300	0,898	1,115	0,746	2,97	224	2,66	0,188	0,64	Vérifiée
CB45-CB46	31,00	3,83	0,005	79	300	0,029	0,402	0,108	1,05	32	2,61	0,184	0,62	Vérifiée
CB46-CB47	25,00	3,68	0,010	100	300	0,053	0,514	0,155	1,31	47	2,56	0,181	0,61	Vérifiée
CB47-CA46	25,00	1,40	0,014	137	300	0,124	0,712	0,249	1,12	75	1,58	0,111	0,37	Vérifiée
CA46-CA47	25,00	3,46	0,187	307	400	0,496	0,996	0,500	2,99	200	3,00	0,377	0,76	Vérifiée
CA47-CA48	35,00	3,72	0,193	307	400	0,494	0,994	0,499	3,10	199	3,11	0,391	0,79	Vérifiée
CB48-CB49	34,92	3,95	0,006	82	300	0,032	0,418	0,114	1,11	34	2,65	0,187	0,63	Vérifiée
CB49-CB50	31,35	3,22	0,011	109	300	0,067	0,566	0,178	1,36	54	2,39	0,169	0,57	Vérifiée
CB50-CB51	33,00	2,31	0,017	135	300	0,119	0,701	0,243	1,42	73	2,03	0,143	0,48	Vérifiée
CB51-CA48	42,78	0,53	0,024	203	300	0,162	0,767	0,282	1,63	85	2,12	0,150	0,50	Vérifiée
CA48-CA49	37,00	3,01	0,224	337	400	0,635	1,069	0,580	3,00	232	2,80	0,352	0,70	Vérifiée
CB54-CB55	28,00	3,96	0,005	76	300	0,026	0,385	0,101	1,02	30	2,65	0,188	0,64	Vérifiée
CB55-CA49	30,00	0,32	0,010	160	300	0,094	0,647	0,216	0,96	65	1,49	0,105	0,35	Vérifiée
CA49-CA50	40,00	2,80	0,241	351	400	0,708	1,090	0,619	2,94	247	2,70	0,340	0,68	Vérifiée
CA50-C22	40,06	3,25	0,247	345	400	0,676	1,082	0,602	3,15	241	2,91	0,366	0,73	Vérifiée
C22-C23	51,70	0,90	0,471	559	600	0,830	1,106	0,691	2,22	415	2,01	0,567	0,53	Vérifiée

Tronçon	Distance (m)	l (m/m)	Q_t (m^3/s)	D _{cal} (mm)	D _{nor} (mm)	R_q	R_v	R_h	V (m/s)	H (mm)	V_{ps} (m/s)	Q_{ps} (m^3/s)	V _{min} (m/s)	Autocurrage
CA51-CA52	24,42	2,13	0,006	94	300	0,045	0,479	0,140	0,93	42	1,95	0,138	0,46	Vérifiée
CA52-CA53	25,00	0,49	0,012	161	300	0,108	0,681	0,233	1,11	70	1,63	0,115	0,38	Vérifiée
CA53-CA54	12,50	3,76	0,016	119	300	0,086	0,624	0,205	1,61	62	2,59	0,183	0,62	Vérifiée
CA54-CA55	12,51	3,66	0,019	128	300	0,104	0,671	0,228	1,71	68	2,55	0,180	0,61	Vérifiée
CA55-CA56	24,99	0,54	0,025	205	300	0,167	0,772	0,286	1,64	86	2,13	0,150	0,50	Vérifiée
CA56-CA57	33,93	0,55	0,034	228	300	0,224	0,821	0,325	1,75	98	2,13	0,151	0,50	Vérifiée
CA57-CA58	44,49	3,94	0,045	176	300	0,240	0,832	0,335	2,20	101	2,65	0,187	0,63	Vérifiée
CA58-CA59	32,00	0,78	0,053	253	300	0,421	0,945	0,452	1,68	135	1,78	0,126	0,42	Vérifiée
CB4-CB5	23,22	3,92	0,006	82	300	0,031	0,416	0,113	1,10	34	2,64	0,187	0,63	Vérifiée
CB5-CB6	30,00	3,88	0,013	112	300	0,072	0,584	0,187	1,53	56	2,63	0,186	0,63	Vérifiée
CB6-CB7	30,00	3,67	0,021	134	300	0,116	0,697	0,241	1,78	72	2,56	0,181	0,61	Vérifiée
CB7-CB8	22,00	2,65	0,027	155	300	0,173	0,779	0,290	1,69	87	2,17	0,153	0,51	Vérifiée
CB8-CA59	21,71	3,69	0,032	157	300	0,177	0,783	0,293	2,01	88	2,56	0,181	0,61	Vérifiée
CA59-CA60	32,06	3,97	0,093	231	300	0,496	0,996	0,500	2,65	150	2,66	0,188	0,64	Vérifiée
CB9-CB10	25,00	3,99	0,006	84	300	0,034	0,426	0,118	1,14	35	2,66	0,188	0,64	Vérifiée
CB10-CB11	46,80	0,36	0,018	196	300	0,165	0,770	0,284	1,20	85	1,55	0,110	0,36	Vérifiée
CB11-CA60	48,00	0,35	0,030	238	300	0,276	0,853	0,358	1,32	107	1,55	0,110	0,36	Vérifiée
CA60-CA61	34,90	2,38	0,132	289	300	0,908	1,116	0,755	2,30	227	2,06	0,146	0,49	Vérifiée
CA61-CA62	25,10	2,27	0,139	297	300	0,975	1,122	0,823	2,26	247	2,01	0,142	0,48	Vérifiée
CB12-CA62	31,00	0,55	0,008	132	300	0,067	0,565	0,178	0,94	53	1,66	0,117	0,39	Vérifiée
CA62-CA63	34,85	3,76	0,155	282	400	0,394	0,927	0,434	2,90	174	3,13	0,394	0,79	Vérifiée
CA63-CA64	34,85	3,89	0,164	286	400	0,410	0,937	0,444	2,99	178	3,19	0,400	0,81	Vérifiée
CA64-CA65	30,29	3,69	0,172	294	400	0,440	0,958	0,464	2,97	186	3,10	0,390	0,79	Vérifiée
CB13-CA65	35,00	1,59	0,180	351	400	0,704	1,089	0,617	2,22	247	2,04	0,256	0,50	Vérifiée
CA65-CA66	25,00	3,91	0,187	300	400	0,465	0,975	0,481	3,12	192	3,19	0,401	0,81	Vérifiée
CA66-CA67	25,00	3,86	0,193	305	400	0,484	0,988	0,493	3,14	197	3,17	0,399	0,81	Vérifiée
CB14-CB15	25,00	0,51	0,006	124	300	0,055	0,520	0,158	0,85	47	1,64	0,116	0,38	Vérifiée
CB15-CA67	44,81	0,33	0,018	197	300	0,123	0,709	0,247	1,44	74	2,03	0,144	0,48	Vérifiée
CA67-CA68	32,00	1,42	0,219	385	400	0,904	1,115	0,752	2,15	301	1,93	0,242	0,47	Vérifiée
CA68-CA69	31,00	3,90	0,227	323	400	0,565	1,038	0,542	3,31	217	3,19	0,401	0,81	Vérifiée

Tronçon	Distance (m)	l (m/m)	Q_t (m^3/s)	D _{cal} (mm)	D _{nor} (mm)	R_q	R_v	R_h	V (m/s)	H (mm)	V_{ps} (m/s)	Q_{ps} (m^3/s)	V _{min} (m/s)	Autocurrage
CA69-CA70	25,79	1,64	0,233	384	400	0,895	1,114	0,744	2,31	297	2,07	0,260	0,51	Vérifiée
CA70-CA71	23,91	1,53	0,239	393	400	0,953	1,121	0,801	2,24	320	2,00	0,251	0,49	Vérifiée
CA71-CA72	30,00	3,69	0,247	337	400	0,633	1,068	0,579	3,32	232	3,10	0,390	0,79	Vérifiée
CA72-CA73	30,00	3,99	0,254	336	400	0,627	1,066	0,576	3,44	231	3,23	0,405	0,82	Vérifiée
CA73-CA74	35,00	3,67	0,263	345	400	0,676	1,082	0,602	3,35	241	3,10	0,389	0,78	Vérifiée
CA74-CA75	35,00	3,93	0,272	345	400	0,676	1,082	0,602	3,47	241	3,20	0,403	0,81	Vérifiée
CA75-CA76	27,62	3,84	0,279	350	400	0,701	1,088	0,615	3,44	246	3,17	0,398	0,80	Vérifiée
CB16-CB17	30,00	3,71	0,008	91	300	0,042	0,465	0,134	1,19	40	2,57	0,181	0,61	Vérifiée
CB17-CB18	20,00	3,54	0,013	111	300	0,071	0,580	0,185	1,46	55	2,51	0,177	0,60	Vérifiée
CB18-CB19	35,00	3,96	0,021	133	300	0,114	0,693	0,239	1,84	72	2,65	0,188	0,64	Vérifiée
CB19-CB20	35,00	3,88	0,030	152	300	0,163	0,768	0,283	2,02	85	2,63	0,186	0,63	Vérifiée
CB20-CB21	35,20	3,88	0,039	167	300	0,211	0,812	0,317	2,13	95	2,63	0,186	0,63	Vérifiée
CB21-CB22	31,67	3,88	0,047	179	300	0,254	0,841	0,344	2,21	103	2,63	0,186	0,63	Vérifiée
CB22-CB23	25,00	3,71	0,053	190	300	0,294	0,864	0,369	2,22	111	2,57	0,182	0,61	Vérifiée
CB23-CA76	25,00	3,68	0,060	198	300	0,331	0,886	0,392	2,27	118	2,56	0,181	0,61	Vérifiée
CA76-C23	41,19	2,56	0,349	411	500	0,593	1,051	0,557	3,16	279	3,00	0,589	0,80	Vérifiée
C23-C24	35,00	3,75	0,820	527	800	0,328	0,884	0,391	4,39	313	4,96	2,495	1,89	Vérifiée
C24-C25	35,00	1,75	0,820	608	800	0,481	0,986	0,491	3,34	392	3,39	1,705	1,14	Vérifiée
C25-C26	30,00	1,37	0,820	636	800	0,542	1,025	0,528	3,08	423	3,01	1,512	0,98	Vérifiée
C26-C27	38,00	0,98	0,820	678	800	0,643	1,072	0,585	2,72	468	2,53	1,274	0,79	Vérifiée
C27-C28	38,00	2,03	0,820	591	800	0,446	0,962	0,468	3,52	375	3,65	1,836	1,26	Vérifiée
C28-C29	38,00	3,27	0,820	540	800	0,351	0,899	0,406	4,17	325	4,64	2,333	1,73	Vérifiée
C29-C30	37,95	3,92	0,820	522	800	0,321	0,880	0,386	4,47	309	5,08	2,554	1,95	Vérifiée
C30-C31	29,00	3,96	0,827	523	800	0,322	0,881	0,387	4,50	310	5,11	2,567	1,97	Vérifiée
C31-C32	50,00	3,40	0,841	542	800	0,354	0,900	0,407	4,26	326	4,73	2,378	1,77	Vérifiée
C32-C33	25,00	3,04	0,847	555	800	0,377	0,915	0,423	4,09	338	4,47	2,247	1,64	Vérifiée
C33-C34	22,00	2,19	0,853	592	800	0,447	0,963	0,469	3,65	375	3,79	1,907	1,32	Vérifiée
C34-C35	40,00	3,03	0,864	559	800	0,385	0,920	0,428	4,11	342	4,46	2,243	1,64	Vérifiée
C35-C36	40,00	3,88	0,874	536	800	0,344	0,894	0,401	4,52	321	5,05	2,538	1,94	Vérifiée
C36-C37	35,00	3,96	0,883	536	800	0,344	0,894	0,401	4,56	321	5,10	2,565	1,97	Vérifiée

Tronçon	Distance (m)	l (m/m)	Q_t (m^3/s)	D _{cal} (mm)	D _{nor} (mm)	R_q	R_v	R_h	V (m/s)	H (mm)	V_{ps} (m/s)	Q_{ps} (m^3/s)	V _{min} (m/s)	Autocurrage
C37-R245	49,99	3,21	1,569	692	800	0,679	1,083	0,604	3,98	483	4,60	2,310	1,71	Vérifiée
R245-R246	35,00	3,93	1,579	668	800	0,617	1,062	0,571	4,40	457	5,09	2,557	1,96	Vérifiée
R246-R247	25,00	3,89	1,585	670	800	0,623	1,065	0,574	4,39	459	5,06	2,543	1,94	Vérifiée
R247-R248	30,00	2,35	1,593	738	800	0,807	1,104	0,676	4,34	540	3,93	1,975	1,38	Vérifiée
R248-R249	30,00	1,71	1,601	784	800	0,949	1,121	0,796	3,76	636	3,36	1,688	1,13	Vérifiée
R249-R250	25,00	1,80	1,608	778	800	0,929	1,119	0,776	3,85	621	3,44	1,730	1,16	Vérifiée
R250-R251	30,00	1,64	1,616	794	800	0,979	1,123	0,829	3,68	663	3,28	1,649	1,09	Vérifiée
RA202-RA203	16,00	1,02	0,004	93	300	0,044	0,477	0,139	0,64	42	1,35	0,095	0,31	Vérifiée
RA203-RA204	15,00	2,71	0,008	99	300	0,053	0,513	0,155	1,12	46	2,19	0,155	0,52	Vérifiée
RA204-RA205	30,00	3,82	0,016	120	300	0,087	0,629	0,207	1,64	62	2,61	0,184	0,62	Vérifiée
RA205-R251	25,00	3,94	0,023	136	300	0,121	0,706	0,246	1,87	74	2,65	0,187	0,63	Vérifiée
R251-R252	25,00	1,67	1,645	796	800	0,987	1,122	0,837	3,72	670	3,32	1,667	1,11	Vérifiée
R252-R253	30,00	1,70	1,653	795	800	0,983	1,123	0,833	3,75	666	3,34	1,681	1,12	Vérifiée
RA206-RA207	30,00	2,59	0,008	99	300	0,052	0,510	0,154	1,10	46	2,15	0,152	0,51	Vérifiée
RA206-RA208	20,00	3,96	0,013	111	300	0,070	0,577	0,183	1,53	55	2,65	0,188	0,64	Vérifiée
RA206-RA209	35,00	3,83	0,022	136	300	0,122	0,707	0,246	1,84	74	2,61	0,184	0,62	Vérifiée
RA209-R253	35,00	3,90	0,032	154	300	0,170	0,776	0,288	2,04	86	2,63	0,186	0,63	Vérifiée
R253-R254	33,00	1,91	1,693	785	800	0,951	1,121	0,798	3,97	638	3,54	1,781	1,21	Vérifiée
R254-R255	43,00	3,86	1,704	690	800	0,673	1,081	0,600	4,45	480	5,04	2,533	1,93	Vérifiée
RA210-RA211	35,00	3,71	0,009	98	300	0,051	0,505	0,151	1,30	45	2,57	0,182	0,61	Vérifiée
RA211-RA212	40,00	3,92	0,020	129	300	0,106	0,675	0,230	1,78	69	2,64	0,187	0,63	Vérifiée
RA212-R255	35,00	3,23	0,029	155	300	0,171	0,777	0,289	1,86	87	2,40	0,170	0,57	Vérifiée
R255-R256	35,00	3,40	1,743	712	800	0,733	1,094	0,632	4,18	506	4,73	2,378	1,77	Vérifiée
RA213-R256	42,99	3,84	0,011	105	300	0,061	0,546	0,169	1,43	51	2,61	0,185	0,62	Vérifiée
R256-R257	35,94	3,38	1,763	716	800	0,744	1,096	0,638	3,17	510	4,72	2,370	1,77	Vérifiée
R257-R258	40,84	2,95	1,774	736	800	0,801	1,103	0,672	3,86	538	4,41	2,215	1,61	Vérifiée
RA214-RA215	18,00	0,80	0,005	102	300	0,030	0,409	0,111	0,91	33	2,23	0,158	0,53	Vérifiée
RA215-RA216	25,00	2,09	0,011	118	300	0,083	0,617	0,202	1,19	61	1,93	0,136	0,45	Vérifiée
RA216-RA217	30,00	3,04	0,019	134	300	0,117	0,698	0,242	1,62	73	2,33	0,165	0,55	Vérifiée
RA217-RA218	35,00	1,72	0,028	173	300	0,230	0,826	0,329	1,45	99	1,75	0,124	0,41	Vérifiée

Tronçon	Distance (m)	l (m/m)	Q_t (m^3/s)	D _{cal} (mm)	D _{nor} (mm)	R_q	R_v	R_h	V (m/s)	H (mm)	V_{ps} (m/s)	Q_{ps} (m^3/s)	<i>V_{min}</i> (m/s)	Autocurrage
RA218-RA219	35,00	3,75	0,038	166	300	0,207	0,809	0,314	2,09	94	2,58	0,183	0,62	Vérifiée
RA219-RA220	30,00	3,82	0,046	178	300	0,248	0,837	0,340	2,18	102	2,61	0,184	0,62	Vérifiée
RB25-RB26	40,00	1,26	0,011	126	300	0,099	0,660	0,222	0,99	67	1,50	0,106	0,35	Vérifiée
RB25-RB27	40,65	1,99	0,021	151	300	0,160	0,764	0,280	1,44	84	1,88	0,133	0,44	Vérifiée
RB27-RA220	32,92	3,88	0,030	151	300	0,161	0,766	0,281	2,01	84	2,63	0,186	0,63	Vérifiée
RA220-RA221	39,73	1,09	0,086	285	300	0,876	1,112	0,727	1,54	218	1,39	0,098	0,32	Vérifiée
RA220-RA222	40,00	1,64	0,097	276	300	0,801	1,103	0,672	1,88	202	1,71	0,121	0,40	Vérifiée
RA220-RA223	40,00	3,88	0,107	244	300	0,577	1,044	0,548	2,74	165	2,63	0,186	0,63	Vérifiée
RA220-RA224	40,00	3,87	0,118	253	300	0,635	1,069	0,580	2,80	174	2,62	0,185	0,63	Vérifiée
RA224-R258	33,83	3,73	0,127	262	300	0,695	1,087	0,612	2,80	184	2,58	0,182	0,62	Vérifiée
R258-R259	35,00	3,75	1,906	723	800	0,764	1,099	0,649	4,45	520	4,96	2,495	1,89	Vérifiée
R259-R260	35,00	3,76	1,912	724	800	0,765	1,099	0,650	4,46	520	4,97	2,499	1,90	Vérifiée
RA225-RA226	40,00	0,89	0,006	112	300	0,034	0,429	0,119	1,14	36	2,65	0,187	0,63	Vérifiée
RA225-RA227	38,00	3,78	0,012	109	300	0,079	0,605	0,196	1,35	59	2,22	0,157	0,53	Vérifiée
RB28-RA227	30,00	0,42	0,005	115	300	0,043	0,469	0,136	0,75	41	1,59	0,112	0,37	Vérifiée
RA227-RA228	30,00	3,92	0,022	135	300	0,117	0,697	0,241	1,86	72	2,67	0,189	0,64	Vérifiée
RA228-RA229	30,00	3,58	0,027	147	300	0,150	0,752	0,272	1,90	82	2,52	0,178	0,60	Vérifiée
RA229-RA230	40,00	2,66	0,033	169	300	0,216	0,816	0,320	1,77	96	2,18	0,154	0,52	Vérifiée
RA230-RA231	25,00	0,58	0,037	234	300	0,314	0,875	0,382	1,47	114	1,68	0,118	0,39	Vérifiée
RA231-RA232	35,00	0,75	0,043	235	300	0,342	0,893	0,400	1,58	120	1,77	0,125	0,42	Vérifiée
RA232-RA233	30,00	0,49	0,048	265	300	0,413	0,939	0,446	1,53	134	1,63	0,115	0,38	Vérifiée
RA233-RA234	44,00	3,82	0,055	190	300	0,296	0,865	0,370	2,26	111	2,61	0,184	0,62	Vérifiée
RA234-RA235	42,74	0,68	0,061	275	300	0,397	0,929	0,436	2,03	131	2,18	0,154	0,52	Vérifiée
RA235-RA236	37,26	0,64	0,067	288	300	0,439	0,957	0,464	2,07	139	2,17	0,153	0,51	Vérifiée
RA236-RA237	25,00	3,38	0,071	215	300	0,411	0,938	0,445	2,30	133	2,45	0,173	0,58	Vérifiée
RA237-RA238	30,00	0,71	0,076	295	300	0,616	1,062	0,570	1,85	171	1,74	0,123	0,41	Vérifiée
RA238-RA239	35,00	0,78	0,082	298	300	0,648	1,074	0,587	1,91	176	1,78	0,126	0,42	Vérifiée
RB29-RB30	25,00	3,84	0,004	71	300	0,022	0,363	0,091	0,95	27	2,62	0,185	0,63	Vérifiée
RB30-RA239	30,00	3,75	0,009	96	300	0,048	0,493	0,146	1,27	44	2,58	0,183	0,62	Vérifiée
RA239-RA240	41,08	3,63	0,097	238	300	0,540	1,023	0,527	2,60	158	2,54	0,180	0,61	Vérifiée

Tronçon	Distance (m)	l (m/m)	Q_t (m^3/s)	D _{cal} (mm)	D _{nor} (mm)	R_q	R_v	R_h	V (m/s)	H (mm)	<i>V_{ps}</i> (m/s)	Q_{ps} (m^3/s)	V _{min} (m/s)	Autocurrage
RA240-RA241	39,25	1,30	0,103	295	300	0,960	1,122	0,808	1,70	242	1,52	0,107	0,36	Vérifiée
RA241-RA242	35,00	3,77	0,109	247	300	0,594	1,052	0,558	2,73	167	2,59	0,183	0,62	Vérifiée
RA242-R260	29,96	2,02	0,114	282	300	0,847	1,108	0,704	2,10	211	1,90	0,134	0,45	Vérifiée
R260-R261	35,00	3,91	2,026	734	800	0,795	1,102	0,668	3,59	535	5,07	2,548	1,95	Vérifiée
R261-R262	35,00	3,84	2,026	736	800	0,802	1,103	0,673	3,54	538	5,03	2,526	1,93	Vérifiée
R262-R263	52,00	3,51	2,026	749	800	0,839	1,107	0,698	3,32	559	4,80	2,414	1,81	Vérifiée
R263-R264	40,00	2,52	2,026	797	800	0,990	1,122	0,841	4,57	673	4,07	2,046	1,45	Vérifiée
RA243-RA244	22,00	0,60	0,004	101	300	0,033	0,426	0,118	0,72	35	1,69	0,119	0,40	Vérifiée
RA244-RA245	25,00	0,53	0,009	137	300	0,073	0,586	0,188	0,97	56	1,65	0,117	0,39	Vérifiée
RA245-RA246	40,00	0,55	0,016	171	300	0,134	0,729	0,259	1,21	78	1,66	0,118	0,39	Vérifiée
RA246-RA247	40,00	0,46	0,023	205	300	0,202	0,805	0,311	1,30	93	1,61	0,114	0,38	Vérifiée
RA247-RA248	40,00	0,48	0,030	225	300	0,264	0,846	0,350	1,38	105	1,62	0,115	0,38	Vérifiée
RA248-RA249	47,65	0,55	0,039	241	300	0,332	0,886	0,393	1,47	118	1,66	0,117	0,39	Vérifiée
RB31-RA2449	40,00	0,63	0,007	125	300	0,047	0,491	0,145	1,06	44	2,16	0,153	0,51	Vérifiée
RA249-RA250	32,37	0,60	0,013	157	300	0,110	0,684	0,234	1,15	70	1,69	0,119	0,40	Vérifiée
RA250-RA251	40,00	0,65	0,020	183	300	0,168	0,773	0,287	1,33	86	1,72	0,121	0,40	Vérifiée
RA251-RA252	40,00	3,92	0,028	147	300	0,148	0,749	0,271	1,98	81	2,64	0,187	0,63	Vérifiée
RA252-RA253	40,00	3,87	0,035	160	300	0,188	0,793	0,301	2,08	90	2,62	0,186	0,63	Vérifiée
RA253-RA254	29,81	3,95	0,040	169	300	0,215	0,815	0,320	2,16	96	2,65	0,187	0,63	Vérifiée
RA254-RA255	30,20	3,92	0,046	177	300	0,245	0,835	0,339	2,21	102	2,64	0,187	0,63	Vérifiée
RA255-R264	40,45	3,96	0,053	187	300	0,283	0,858	0,362	2,28	109	2,65	0,188	0,64	Vérifiée
R264-R265	40,00	3,30	2,086	766	800	0,891	1,114	0,740	4,19	592	4,66	2,342	1,74	Vérifiée
R265-R266	40,00	2,87	2,093	787	800	0,959	1,122	0,806	3,87	645	4,34	2,183	1,58	Vérifiée
R266-R267	40,00	3,33	2,100	767	800	0,893	1,114	0,742	4,21	594	4,68	2,351	1,75	Vérifiée
R267-R268	38,67	3,47	2,107	762	800	0,878	1,112	0,729	4,31	583	4,78	2,401	1,80	Vérifiée
R268-R269	41,33	2,91	2,115	788	800	0,961	1,122	0,809	3,91	647	4,38	2,200	1,60	Vérifiée
RA256-RA257	30,00	1,03	0,005	102	300	0,057	0,529	0,162	0,72	49	1,36	0,096	0,32	Vérifiée
RA257-RA258	30,00	1,41	0,011	125	300	0,097	0,655	0,220	1,04	66	1,58	0,112	0,37	Vérifiée
RA258-RA259	30,00	1,42	0,016	145	300	0,145	0,745	0,268	1,19	80	1,59	0,112	0,37	Vérifiée
RA259-RA260	30,00	3,77	0,022	135	300	0,119	0,702	0,244	1,82	73	2,59	0,183	0,62	Vérifiée

Tronçon	Distance (m)	l (m/m)	Q_t (m^3/s)	D _{cal} (mm)	D _{nor} (mm)	R_q	R_v	R_h	V (m/s)	H (mm)	V_{ps} (m/s)	Q_{ps} (m^3/s)	V _{min} (m/s)	Autocurrage
RA260-RA261	30,00	2,93	0,027	154	300	0,169	0,774	0,287	1,77	86	2,28	0,161	0,54	Vérifiée
RA261-RA262	35,00	3,95	0,034	157	300	0,179	0,785	0,295	2,08	88	2,65	0,187	0,63	Vérifiée
RB32-RA262	35,00	0,44	0,006	127	300	0,043	0,472	0,137	0,98	41	2,08	0,147	0,49	Vérifiée
RA262-RA263	35,00	3,75	0,046	179	300	0,253	0,840	0,344	2,17	103	2,58	0,183	0,62	Vérifiée
RA263-RA264	25,00	3,65	0,051	187	300	0,282	0,857	0,362	2,18	108	2,55	0,180	0,61	Vérifiée
RA264-R269	29,96	3,97	0,056	191	300	0,299	0,867	0,373	2,30	112	2,66	0,188	0,64	Vérifiée
R269-R270	40,00	2,92	2,178	797	800	0,989	1,122	0,840	3,92	672	4,38	2,202	1,60	Vérifiée
RA265-RA266	35,00	3,74	0,006	85	300	0,035	0,433	0,121	1,12	36	2,58	0,182	0,62	Vérifiée
RA266-RA267	40,00	3,87	0,014	113	300	0,073	0,587	0,188	1,54	56	2,63	0,186	0,63	Vérifiée
RA267-R270	40,00	3,81	0,021	133	300	0,113	0,691	0,238	1,80	71	2,60	0,184	0,62	Vérifiée
R270-R271	40,00	3,92	0,007	89	300	0,039	0,452	0,129	1,19	39	2,64	0,187	0,63	Vérifiée
RA268-RA269	39,03	0,75	0,035	219	300	0,225	0,822	0,326	1,82	98	2,21	0,156	0,53	Vérifiée
RA269-RA270	18,08	0,50	0,038	244	300	0,333	0,887	0,394	1,45	118	1,63	0,116	0,38	Vérifiée
RA270-RA271	13,57	0,63	0,041	239	300	0,340	0,891	0,398	1,52	120	1,70	0,120	0,40	Vérifiée
RA271-RA272	25,01	0,68	0,045	245	300	0,372	0,912	0,419	1,58	126	1,73	0,122	0,41	Vérifiée
RA272-RA273	40,00	2,36	0,053	205	300	0,364	0,907	0,414	1,86	124	2,05	0,145	0,48	Vérifiée
RA273-RA274	40,00	3,81	0,060	197	300	0,326	0,883	0,389	2,30	117	2,60	0,184	0,62	Vérifiée
RA274-RA275	40,00	3,80	0,067	206	300	0,366	0,908	0,415	2,36	125	2,60	0,184	0,62	Vérifiée
RA275-RA276	40,00	3,95	0,074	212	300	0,397	0,929	0,436	2,46	131	2,65	0,187	0,63	Vérifiée
RA276-RA277	10,00	3,83	0,076	215	300	0,414	0,940	0,447	2,45	134	2,61	0,185	0,62	Vérifiée
RA277-R271	12,34	4,37	0,079	212	300	0,399	0,929	0,437	2,59	131	2,79	0,197	0,67	Vérifiée
R271-R272	40,00	1,07	2,257	974	1000	0,932	1,119	0,778	3,45	778	3,08	2,422	1,16	Vérifiée
R272-R273	40,00	3,80	2,257	768	1000	0,495	0,995	0,500	3,78	500	5,80	4,559	2,80	Vérifiée
R273-R274	30,00	3,85	2,257	767	1000	0,492	0,994	0,498	3,80	498	5,84	4,585	2,82	Vérifiée
R274-R275	40,00	3,77	2,257	770	1000	0,497	0,997	0,501	3,76	501	5,78	4,537	2,78	Vérifiée
R275-R276	40,00	2,84	2,257	811	1000	0,573	1,042	0,546	3,23	546	5,02	3,942	2,28	Vérifiée
R276-R277	40,00	1,26	2,257	945	1000	0,861	1,110	0,715	3,71	715	3,34	2,622	1,30	Vérifiée
R277-R278	40,00	0,96	2,257	995	1000	0,987	1,122	0,838	3,27	838	2,91	2,286	1,08	Vérifiée
R278-R279	40,00	1,29	2,257	941	1000	0,851	1,109	0,707	3,75	707	3,38	2,653	1,32	Vérifiée
R279-R280	40,00	0,96	2,257	994	1000	0,985	1,123	0,835	3,27	835	2,92	2,291	1,08	Vérifiée

Tronçon	Distance (m)	l (m/m)	Q_t (m^3/s)	D _{cal} (mm)	D _{nor} (mm)	R_q	R_v	R_h	V (m/s)	H (mm)	V_{ps} (m/s)	Q_{ps} (m^3/s)	V_{min} (m/s)	Autocurrage
R280-R281	40,00	1,28	2,257	942	1000	0,852	1,109	0,708	3,74	708	3,37	2,649	1,31	Vérifiée
R281-R282	40,00	2,53	2,257	829	1000	0,607	1,058	0,565	3,01	565	4,73	3,718	2,10	Vérifiée
R282-R283	40,00	3,75	2,257	770	1000	0,499	0,998	0,502	3,75	502	5,76	4,527	2,77	Vérifiée
R283-R284	40,00	3,77	2,257	770	1000	0,497	0,997	0,501	3,76	501	5,78	4,539	2,78	Vérifiée
R284-R285	40,00	3,65	2,257	774	1000	0,505	1,002	0,506	3,70	506	5,69	4,467	2,72	Vérifiée
R285-R286	40,00	3,85	2,257	766	1000	0,492	0,993	0,498	3,80	498	5,84	4,587	2,83	Vérifiée
R286-R287	40,00	3,94	2,257	763	1000	0,487	0,990	0,494	3,84	494	5,90	4,638	2,87	Vérifiée
R287-R288	40,00	3,92	2,257	764	1000	0,487	0,990	0,495	3,84	495	5,90	4,631	2,86	Vérifiée
R288-R289	40,00	3,97	2,257	762	1000	0,484	0,988	0,493	3,86	493	5,93	4,660	2,89	Vérifiée
R289-R290	40,00	3,71	2,257	772	1000	0,501	0,999	0,503	3,73	503	5,74	4,505	2,75	Vérifiée
R290-R291	40,00	3,56	2,257	778	1000	0,512	1,006	0,510	3,65	510	5,61	4,410	2,67	Vérifiée
R291-R292	40,00	2,81	2,257	813	1000	0,575	1,043	0,548	3,21	548	4,99	3,922	2,27	Vérifiée
R292-R293	40,00	3,91	2,257	764	1000	0,488	0,991	0,495	3,83	495	5,88	4,621	2,86	Vérifiée
R293-R294	40,00	2,99	2,257	804	1000	0,559	1,034	0,538	3,32	538	5,14	4,041	2,36	Vérifiée
R294-R295	40,00	2,19	2,257	852	1000	0,652	1,075	0,589	3,74	589	4,41	3,462	1,90	Vérifiée
R295-R296	40,00	0,97	2,257	993	1000	0,983	1,123	0,832	3,28	832	2,92	2,297	1,08	Vérifiée
RA278-RA279	40,53	0,51	0,009	141	300	0,078	0,603	0,195	0,99	59	1,64	0,116	0,38	Vérifiée
RA279-RA280	39,96	2,45	0,018	136	300	0,122	0,708	0,247	1,48	74	2,09	0,148	0,49	Vérifiée
RA280-RA281	42,00	2,84	0,027	155	300	0,173	0,779	0,290	1,75	87	2,25	0,159	0,53	Vérifiée
RA281-RA282	35,00	1,54	0,035	191	300	0,302	0,869	0,374	1,44	112	1,65	0,117	0,39	Vérifiée
RA282-RA283	35,00	2,77	0,043	185	300	0,275	0,853	0,357	1,89	107	2,22	0,157	0,53	Vérifiée
RA283-RA284	41,05	1,12	0,052	235	300	0,523	1,013	0,517	1,43	155	1,41	0,100	0,33	Vérifiée
RA284-RA285	25,00	3,86	0,058	194	300	0,313	0,875	0,381	2,29	114	2,62	0,185	0,63	Vérifiée
RA285-RA286	26,59	1,98	0,064	228	300	0,482	0,986	0,491	1,85	147	1,88	0,133	0,44	Vérifiée
RB33-RB34	43,00	0,84	0,010	132	300	0,075	0,594	0,191	1,07	57	1,81	0,128	0,43	Vérifiée
RB34-RB35	40,00	2,70	0,019	135	300	0,120	0,704	0,245	1,54	73	2,19	0,155	0,52	Vérifiée
RB35-RB36	35,00	2,73	0,026	154	300	0,170	0,775	0,288	1,71	86	2,20	0,156	0,52	Vérifiée
RB36-RB37	35,00	3,74	0,034	160	300	0,188	0,793	0,301	2,05	90	2,58	0,182	0,62	Vérifiée
RB37-RA286	32,74	3,53	0,042	174	300	0,235	0,829	0,332	2,08	100	2,51	0,177	0,60	Vérifiée
RA286-RA287	31,97	0,96	0,113	323	400	0,567	1,039	0,543	1,64	217	1,58	0,199	0,38	Vérifiée

Tronçon	Distance (m)	l (m/m)	Q_t (m^3/s)	D _{cal} (mm)	D _{nor} (mm)	R_q	R_v	R_h	V (m/s)	H (mm)	V_{ps} (m/s)	Q_{ps} (m^3/s)	V _{min} (m/s)	Autocurrage
RA287-RA288	32,00	0,63	0,120	358	400	0,746	1,096	0,639	1,40	256	1,28	0,161	0,30	Vérifiée
RA288-RA289	37,08	2,86	0,128	276	400	0,373	0,913	0,420	2,49	168	2,73	0,343	0,68	Vérifiée
RA289-RA290	37,98	3,61	0,137	271	400	0,354	0,900	0,408	2,76	163	3,07	0,386	0,78	Vérifiée
RA290-RA291	29,88	2,97	0,143	286	400	0,409	0,937	0,444	2,61	178	2,79	0,350	0,70	Vérifiée
RA291-RA292	30,00	1,48	0,150	332	400	0,607	1,058	0,566	2,08	226	1,97	0,247	0,48	Vérifiée
RA292-RA293	40,00	1,77	0,159	328	400	0,589	1,050	0,555	2,26	222	2,15	0,270	0,53	Vérifiée
RA293-RA294	40,00	1,74	0,168	336	400	0,627	1,066	0,576	2,27	230	2,13	0,268	0,52	Vérifiée
RA294-RA295	40,00	2,31	0,177	325	400	0,573	1,042	0,546	2,56	219	2,46	0,309	0,61	Vérifiée
RA295-RA296	41,00	3,06	0,186	314	400	0,524	1,014	0,517	2,87	207	2,83	0,355	0,71	Vérifiée
RA296-RA297	39,01	2,60	0,195	329	400	0,596	1,053	0,559	2,74	224	2,60	0,327	0,65	Vérifiée
RA297-RA298	40,00	3,73	0,204	313	400	0,519	1,011	0,515	3,16	206	3,12	0,392	0,79	Vérifiée
RA298-RA299	45,20	1,58	0,204	368	400	0,800	1,103	0,671	2,24	268	2,03	0,255	0,49	Vérifiée
RA299-RA300	22,50	3,88	0,204	311	400	0,510	1,005	0,509	3,20	203	3,18	0,400	0,81	Vérifiée
RA300-RA301	22,51	3,76	0,204	312	400	0,517	1,010	0,513	3,17	205	3,13	0,394	0,79	Vérifiée
RA301-RA302	22,50	3,84	0,204	311	400	0,513	1,007	0,510	3,19	204	3,16	0,398	0,80	Vérifiée
RA302-RA303	22,50	3,85	0,204	311	400	0,512	1,006	0,510	3,19	204	3,17	0,398	0,80	Vérifiée
RA303-RA304	22,50	3,95	0,204	310	400	0,505	1,002	0,506	3,22	202	3,21	0,403	0,82	Vérifiée
RA304-RA305	22,50	3,69	0,204	314	400	0,523	1,013	0,517	3,14	207	3,10	0,390	0,79	Vérifiée
RA305-RA306	22,50	3,98	0,204	309	400	0,503	1,001	0,505	3,23	202	3,22	0,405	0,82	Vérifiée
RA306-RA307	22,50	3,41	0,204	318	400	0,543	1,025	0,529	3,06	212	2,99	0,375	0,75	Vérifiée
RA307-RA308	22,50	3,40	0,204	318	400	0,544	1,026	0,530	3,06	212	2,98	0,375	0,75	Vérifiée
RA308-RA309	22,50	3,58	0,204	315	400	0,530	1,018	0,521	3,11	209	3,06	0,384	0,77	Vérifiée
RA309-RA310	22,50	3,02	0,204	325	400	0,577	1,044	0,549	2,93	219	2,81	0,353	0,70	Vérifiée
RA310-RA311	22,50	3,84	0,204	311	400	0,512	1,007	0,510	3,19	204	3,16	0,398	0,80	Vérifiée
RA311-RA312	22,50	3,20	2,461	820	1000	0,588	1,049	0,555	3,59	555	5,33	4,183	2,48	Vérifiée
RA312-R296	17,26	2,88	2,461	836	1000	0,620	1,063	0,572	3,38	572	5,06	3,970	2,31	Vérifiée
R296-R297	45,00	1,53	2,461	941	1000	0,850	1,109	0,706	4,09	706	3,69	2,895	1,49	Vérifiée
R297-R298	45,00	2,73	2,461	844	1000	0,637	1,070	0,581	3,26	581	4,92	3,864	2,22	Vérifiée
R298-R299	45,00	3,80	2,461	794	1000	0,540	1,023	0,527	3,94	527	5,80	4,559	2,80	Vérifiée
R299-R300	35,00	3,82	2,461	793	1000	0,539	1,023	0,526	3,95	526	5,82	4,568	2,81	Vérifiée

R300-R113	36,23	2,38	4,166	1055	1200	0,710	1,090	0,619	3,66	743	5,19	5,869	2,78	Vérifiée
R113-DVO N°1	30,00	2,09	4,166	1081	1200	0,758	1,098	0,646	3,34	775	4,86	5,497	2,54	Vérifiée
DVO N°1-STEP	30.00	2.07	4,166	1083	1200	0,761	1,098	0,648	3,31	777	4.48	5.47	2.52	Vérifiée
							Rejet l	N°2						
Tronçon	Distance (m)	l (m/m)	Q_t (m^3/s)	D _{cal} (mm)	D _{nor} (mm)	R_q	R_v	R_h	V (m/s)	H (mm)	V_{ps} (m/s)	Q_{ps} (m^3/s)	<i>V_{min}</i> (m/s)	Autocurrage
R301-R302	29,73	3,67	0,005	79	300	0,028	0,399	0,107	1,02	32	2,56	0,181	0,61	Vérifiée
R302-R303	35,00	2,55	0,011	113	300	0,074	0,589	0,189	1,25	57	2,13	0,150	0,50	Vérifiée
R303-R304	25,00	1,64	0,015	139	300	0,128	0,717	0,252	1,23	76	1,71	0,121	0,40	Vérifiée
R304-R305	25,00	1,68	0,020	151	300	0,161	0,766	0,282	1,32	84	1,73	0,122	0,41	Vérifiée
RA313-R305	35,02	2,02	0,006	94	300	0,045	0,480	0,141	0,91	42	1,90	0,134	0,45	Vérifiée
R305-R306	35,00	1,76	0,032	179	300	0,254	0,841	0,344	1,49	103	1,77	0,125	0,42	Vérifiée
R306-R307	38,84	3,60	0,038	169	300	0,215	0,815	0,319	2,06	96	2,53	0,179	0,60	Vérifiée
R307-R308	45,00	3,90	0,046	178	300	0,248	0,837	0,340	2,20	102	2,63	0,186	0,63	Vérifiée
R308-R309	45,00	3,80	0,054	189	300	0,293	0,863	0,369	2,24	111	2,60	0,184	0,62	Vérifiée
R309-R310	47,62	3,86	0,062	199	300	0,335	0,888	0,395	2,33	119	2,62	0,185	0,63	Vérifiée
R310-R311	45,61	3,55	0,070	211	300	0,394	0,926	0,434	2,33	130	2,51	0,178	0,60	Vérifiée
R311-R312	45,62	2,05	0,078	244	300	0,576	1,043	0,548	1,99	164	1,91	0,135	0,45	Vérifiée
R312-R313	45,63	3,98	0,086	223	300	0,455	0,968	0,474	2,58	142	2,66	0,188	0,64	Vérifiée
R312-R314	35,00	3,90	0,092	230	300	0,492	0,993	0,498	2,62	149	2,63	0,186	0,63	Vérifiée
R314-R315	40,00	3,88	0,098	237	300	0,530	1,018	0,521	2,67	156	2,63	0,186	0,63	Vérifiée
R315-R316	33,92	3,92	0,104	241	300	0,559	1,034	0,538	2,73	161	2,64	0,187	0,63	Vérifiée
RA314-RA315	32,00	3,79	0,005	81	300	0,030	0,408	0,110	1,06	33	2,60	0,183	0,62	Vérifiée
RA315-RA316	38,00	3,87	0,012	108	300	0,065	0,559	0,175	1,47	52	2,62	0,186	0,63	Vérifiée
RA316-R316	42,14	2,18	0,019	143	300	0,139	0,735	0,262	1,45	79	1,97	0,139	0,46	Vérifiée
R316-R317	34,49	4,00	0,129	261	300	0,687	1,085	0,607	2,89	182	2,67	0,188	0,64	Vérifiée
RA317-RA318	40,00	2,68	0,007	93	300	0,045	0,478	0,140	1,04	42	2,18	0,154	0,52	Vérifiée
RA318-RA319	35,00	2,56	0,051	199	300	0,337	0,889	0,396	1,90	119	2,13	0,151	0,51	Vérifiée
RA319-R317	34,24	3,38	0,057	197	300	0,327	0,884	0,390	2,17	117	2,45	0,173	0,58	Vérifiée
R317-R318	45,00	2,84	0,194	323	400	0,566	1,038	0,543	2,83	217	2,72	0,342	0,68	Vérifiée
R318-R319	45,00	1,57	0,202	367	400	0,793	1,102	0,667	2,23	267	2,02	0,254	0,49	Vérifiée
RA320-RA321	35,00	1,26	0,006	102	300	0,057	0,529	0,162	0,79	49	1,49	0,106	0,35	Vérifiée

Tronçon	Distance (m)	l (m/m)	Q_t (m^3/s)	D _{cal} (mm)	D _{nor} (mm)	R_q	R_v	R_h	V (m/s)	H (mm)	V_{ps} (m/s)	Q_{ps} (m^3/s)	<i>V_{min}</i> (m/s)	Autocurrage
RA321-RA322	30,00	1,18	0,011	131	300	0,109	0,681	0,233	0,99	70	1,45	0,103	0,34	Vérifiée
RA322-RA323	36,00	3,77	0,017	124	300	0,095	0,649	0,217	1,68	65	2,59	0,183	0,62	Vérifiée
RA323-RA324	35,00	3,09	0,023	144	300	0,141	0,739	0,265	1,73	79	2,35	0,166	0,56	Vérifiée
RA324-RA325	35,00	3,80	0,029	151	300	0,160	0,764	0,280	1,99	84	2,60	0,184	0,62	Vérifiée
RA325-RA326	35,00	4,05	0,035	160	300	0,187	0,792	0,300	2,13	90	2,68	0,190	0,64	Vérifiée
RA326-RA327	22,50	3,56	0,039	170	300	0,221	0,819	0,323	2,06	97	2,52	0,178	0,60	Vérifiée
RA327-RA328	22,50	3,57	0,043	176	300	0,242	0,833	0,337	2,10	101	2,52	0,178	0,60	Vérifiée
RA328-RA329	45,00	3,80	0,051	185	300	0,277	0,854	0,358	2,22	108	2,60	0,184	0,62	Vérifiée
RA329-RA330	45,00	3,71	0,059	196	300	0,322	0,881	0,387	2,26	116	2,57	0,182	0,61	Vérifiée
RA330-RA331	35,00	3,72	0,065	203	300	0,355	0,901	0,408	2,32	122	2,57	0,182	0,62	Vérifiée
RA331-RA332	34,26	3,76	0,070	210	300	0,385	0,921	0,428	2,38	128	2,59	0,183	0,62	Vérifiée
RB38-RB39	22,00	1,03	0,004	89	300	0,039	0,455	0,130	0,62	39	1,35	0,096	0,32	Vérifiée
RB38-RB40	30,00	3,61	0,009	97	300	0,050	0,501	0,150	1,27	45	2,54	0,179	0,61	Vérifiée
RB38-RB41	20,00	3,55	0,012	110	300	0,070	0,575	0,182	1,45	55	2,51	0,178	0,60	Vérifiée
RB42-RA332	35,00	3,85	0,018	126	300	0,099	0,660	0,222	1,73	67	2,62	0,185	0,63	Vérifiée
RA332-RA333	34,16	3,86	0,095	233	300	0,512	1,006	0,510	2,64	153	2,62	0,185	0,63	Vérifiée
RB42-RB43	35,00	3,25	0,006	86	300	0,035	0,435	0,122	1,05	37	2,40	0,170	0,57	Vérifiée
RB42-RB44	35,00	2,55	0,012	116	300	0,080	0,608	0,197	1,29	59	2,13	0,150	0,50	Vérifiée
RB44-RA333	35,00	1,79	0,018	145	300	0,143	0,742	0,266	1,33	80	1,79	0,126	0,42	Vérifiée
RA333-RA334	44,15	3,86	0,120	255	300	0,650	1,074	0,588	2,81	176	2,62	0,185	0,63	Vérifiée
RB45-RB46	35,00	1,03	0,006	106	300	0,063	0,551	0,172	0,75	52	1,35	0,096	0,32	Vérifiée
RB46-RB47	45,00	2,32	0,014	124	300	0,096	0,651	0,218	1,32	65	2,03	0,144	0,48	Vérifiée
RB47-RA334	45,00	3,41	0,021	137	300	0,123	0,710	0,248	1,75	74	2,46	0,174	0,59	Vérifiée
RA334-R335	38,78	1,08	0,148	351	400	0,704	1,089	0,616	1,83	246	1,68	0,211	0,40	Vérifiée
RA335-R336	35,00	3,94	0,154	279	400	0,383	0,919	0,427	2,95	171	3,21	0,403	0,82	Vérifiée
RB48-RB49	69,89	1,65	0,012	126	300	0,099	0,660	0,222	1,13	67	1,71	0,121	0,40	Vérifiée
RB49-RA336	25,82	3,98	0,016	120	300	0,087	0,629	0,207	1,67	62	2,66	0,188	0,64	Vérifiée
RA336-RA337	38,10	0,86	0,177	391	400	0,941	1,120	0,788	1,68	315	1,50	0,189	0,36	Vérifiée
RA337-RA338	40,02	2,05	0,184	337	400	0,634	1,069	0,580	2,47	232	2,31	0,291	0,57	Vérifiée
RA338-RA339	40,00	3,92	0,191	303	400	0,476	0,983	0,487	3,14	195	3,20	0,402	0,81	Vérifiée

Tronçon	Distance (m)	l (m/m)	Q_t (m^3/s)	D _{cal} (mm)	D _{nor} (mm)	R_q	R_v	R_h	V (m/s)	H (mm)	V_{ps} (m/s)	Q_{ps} (m^3/s)	<i>V_{min}</i> (m/s)	Autocurrage
RA339-RA340	40,00	3,70	0,198	310	400	0,507	1,003	0,507	3,12	203	3,11	0,391	0,79	Vérifiée
RA340-R319	31,59	3,71	0,204	313	400	0,520	1,012	0,515	3,15	206	3,11	0,391	0,79	Vérifiée
R319-R320	45,00	2,42	0,405	439	500	0,708	1,089	0,618	3,18	309	2,92	0,573	0,77	Vérifiée
R320-R321	45,00	2,95	0,405	423	500	0,640	1,071	0,583	3,45	292	3,22	0,633	0,87	Vérifiée
R321-R322	46,00	3,72	0,405	405	500	0,570	1,040	0,545	3,76	272	3,62	0,710	0,99	Vérifiée
R322-R323	46,00	3,89	0,405	402	500	0,558	1,034	0,538	3,82	269	3,70	0,726	1,02	Vérifiée
R323-R324	46,00	3,61	0,405	407	500	0,579	1,045	0,550	3,72	275	3,56	0,699	0,98	Vérifiée
R324-R325	46,00	3,96	0,405	400	500	0,553	1,031	0,535	3,85	268	3,73	0,732	1,03	Vérifiée
R325-R326	47,08	3,94	0,405	401	500	0,554	1,032	0,536	3,84	268	3,72	0,731	1,03	Vérifiée
R326-R327	45,00	3,91	0,405	401	500	0,557	1,033	0,537	3,83	269	3,71	0,728	1,02	Vérifiée
R327-R328	45,00	3,80	0,405	404	500	0,565	1,037	0,542	3,79	271	3,65	0,718	1,01	Vérifiée
R328-R329	45,00	3,89	0,405	402	500	0,558	1,034	0,538	3,82	269	3,70	0,726	1,02	Vérifiée
R329-R330	45,00	3,99	0,405	400	500	0,551	1,030	0,533	3,86	267	3,75	0,736	1,04	Vérifiée
R330-R331	45,00	3,95	0,405	401	500	0,554	1,032	0,535	3,84	268	3,72	0,731	1,03	Vérifiée
R331-R332	30,00	3,91	0,405	401	500	0,557	1,033	0,537	3,83	268	3,71	0,728	1,02	Vérifiée
R332-R333	45,00	3,33	0,405	414	500	0,603	1,056	0,563	3,62	282	3,42	0,672	0,93	Vérifiée
R333-R334	45,00	1,51	0,405	480	500	0,897	1,114	0,745	2,56	372	2,30	0,452	0,59	Vérifiée
R334-R335	29,54	3,61	0,405	407	500	0,579	1,045	0,550	3,72	275	3,56	0,699	0,98	Vérifiée
R338-R339	30,00	2,45	0,412	441	600	0,439	0,957	0,463	3,18	278	3,32	0,938	0,96	Vérifiée
R339-R340	27,03	2,23	0,417	451	600	0,467	0,977	0,482	3,09	289	3,16	0,894	0,91	Vérifiée
R340-R341	40,01	3,90	0,426	409	600	0,361	0,904	0,412	3,78	247	4,18	1,182	1,27	Vérifiée
R341-R342	35,00	0,68	0,434	571	600	0,877	1,112	0,728	1,94	437	1,75	0,494	0,46	Vérifiée
R342-R343	35,00	0,81	0,441	557	600	0,819	1,105	0,684	2,10	410	1,90	0,539	0,50	Vérifiée
R343-R344	24,20	1,31	0,446	511	600	0,652	1,075	0,589	2,60	353	2,42	0,685	0,66	Vérifiée
RA341-R344	46,12	3,91	0,010	100	300	0,053	0,515	0,156	1,36	47	2,64	0,186	0,63	Vérifiée
R344-R345	27,90	0,44	0,462	635	800	0,541	1,024	0,528	1,74	422	1,70	0,855	0,48	Vérifiée
R345-R346	27,90	0,78	0,468	574	800	0,412	0,939	0,446	2,12	357	2,26	1,137	0,68	Vérifiée
R346-R347	20,35	0,60	0,473	604	800	0,472	0,980	0,485	1,95	388	1,99	1,001	0,58	Vérifiée
RA342-RA343	38,00	2,72	0,008	99	300	0,053	0,512	0,155	1,13	46	2,20	0,156	0,52	Vérifiée
RA343-RA344	22,10	3,39	0,013	113	300	0,075	0,592	0,190	1,45	57	2,46	0,174	0,59	Vérifiée

Tronçon	Distance (m)	l (m/m)	Q_t (m^3/s)	D _{cal} (mm)	D _{nor} (mm)	R_q	R_v	R_h	V (m/s)	H (mm)	V_{ps} (m/s)	Q_{ps} (m^3/s)	<i>V_{min}</i> (m/s)	Autocurrage
RA344-RA345	22,90	3,71	0,018	126	300	0,099	0,658	0,221	1,69	66	2,57	0,182	0,61	Vérifiée
RA345-RA346	38,00	3,80	0,026	144	300	0,142	0,740	0,265	1,93	80	2,60	0,184	0,62	Vérifiée
RA346-RA347	40,00	3,92	0,035	160	300	0,186	0,791	0,300	2,09	90	2,64	0,187	0,63	Vérifiée
RA347-R347	20,37	2,26	0,039	185	300	0,276	0,854	0,358	1,71	107	2,00	0,142	0,47	Vérifiée
R347-R348	17,19	0,74	0,516	600	800	0,465	0,975	0,480	2,15	384	2,21	1,109	0,66	Vérifiée
R348-R349	27,00	3,53	0,521	450	800	0,215	0,815	0,320	3,93	256	4,82	2,422	1,82	Vérifiée
R349-R350	25,00	0,62	0,527	625	800	0,518	1,010	0,514	2,04	411	2,02	1,018	0,60	Vérifiée
R350-R351	27,18	0,50	0,533	653	800	0,582	1,046	0,551	1,91	441	1,82	0,916	0,52	Vérifiée
R351-R352	35,00	1,53	0,540	533	800	0,339	0,891	0,398	2,83	318	3,17	1,596	1,05	Vérifiée
R352-R353	45,00	3,81	0,550	452	800	0,218	0,818	0,322	4,10	257	5,01	2,518	1,92	Vérifiée
R356-R354	45,00	3,87	0,560	454	800	0,221	0,819	0,323	4,13	259	5,04	2,535	1,94	Vérifiée
R354-R355	35,00	3,94	0,567	455	800	0,221	0,820	0,324	4,18	259	5,09	2,561	1,96	Vérifiée
R355-R356	39,30	3,98	0,576	456	800	0,224	0,821	0,325	4,20	260	5,12	2,572	1,97	Vérifiée
RA348-RA349	35,00	3,82	0,008	91	300	0,041	0,462	0,133	1,20	40	2,61	0,184	0,62	Vérifiée
RA349-RA350	28,00	3,85	0,014	113	300	0,073	0,588	0,188	1,54	56	2,62	0,185	0,63	Vérifiée
RA350-RA351	20,77	3,56	0,018	127	300	0,102	0,665	0,225	1,67	67	2,52	0,178	0,60	Vérifiée
RA351-RA352	30,00	3,93	0,025	140	300	0,131	0,724	0,256	1,91	77	2,65	0,187	0,63	Vérifiée
RA352-RA353	30,00	3,76	0,031	154	300	0,170	0,775	0,288	2,00	86	2,58	0,183	0,62	Vérifiée
RA353-RA354	30,00	3,88	0,037	165	300	0,202	0,805	0,311	2,11	93	2,63	0,186	0,63	Vérifiée
RA354-RA355	29,31	3,60	0,044	177	300	0,245	0,835	0,338	2,11	102	2,53	0,179	0,60	Vérifiée
RA355-RA356	25,00	1,56	0,049	216	300	0,417	0,942	0,449	1,57	135	1,67	0,118	0,39	Vérifiée
RA356-RA357	35,00	3,81	0,057	193	300	0,308	0,872	0,378	2,27	113	2,60	0,184	0,62	Vérifiée
RA357-RA358	35,00	3,76	0,064	203	300	0,352	0,899	0,406	2,32	122	2,59	0,183	0,62	Vérifiée
RA358-R359	35,00	3,81	0,072	211	300	0,390	0,924	0,431	2,41	129	2,60	0,184	0,62	Vérifiée
R356-R357	45,00	2,23	0,657	535	800	0,341	0,892	0,399	3,42	320	3,83	1,924	1,34	Vérifiée
R357-R358	45,00	0,89	0,667	638	800	0,547	1,028	0,532	2,49	425	2,42	1,218	0,74	Vérifiée
R358-R359	45,00	2,16	0,677	544	800	0,357	0,902	0,409	3,40	327	3,77	1,896	1,31	Vérifiée
R359-R360	45,00	1,78	0,686	567	800	0,399	0,930	0,437	3,18	350	3,42	1,720	1,15	Vérifiée
R360-R361	37,13	0,73	0,694	673	800	0,631	1,067	0,578	2,34	462	2,19	1,101	0,66	Vérifiée
R361-R362	45,00	1,27	0,704	609	800	0,484	0,988	0,492	2,86	394	2,89	1,455	0,93	Vérifiée

Tronçon	Distance (m)	l (m/m)	Q_t (m^3/s)	D _{cal} (mm)	D _{nor} (mm)	R_q	R_v	R_h	V (m/s)	H (mm)	V_{ps} (m/s)	Q_{ps} (m^3/s)	V _{min} (m/s)	Autocurrage
R362-R363	45,00	0,84	0,714	662	800	0,603	1,056	0,563	2,49	451	2,35	1,183	0,72	Vérifiée
RA359-RA360	40,25	3,97	0,010	101	300	0,055	0,522	0,159	1,39	48	2,66	0,188	0,64	Vérifiée
RA360-RA361	33,83	1,76	0,019	148	300	0,152	0,754	0,274	1,34	82	1,77	0,125	0,42	Vérifiée
RA361-RA362	49,13	1,59	0,032	183	300	0,267	0,848	0,352	1,43	106	1,68	0,119	0,39	Vérifiée
RB52-RB53	35,00	3,57	0,009	98	300	0,050	0,503	0,151	1,27	45	2,52	0,178	0,60	Vérifiée
RB52-RB54	20,00	3,82	0,014	115	300	0,077	0,598	0,193	1,56	58	2,61	0,184	0,62	Vérifiée
RB54-RA362	44,25	3,89	0,026	142	300	0,137	0,733	0,261	1,93	78	2,63	0,186	0,63	Vérifiée
RA362-RA363	50,58	2,57	0,070	225	300	0,465	0,975	0,480	2,08	144	2,14	0,151	0,51	Vérifiée
RB55-RB56	40,00	3,75	0,010	102	300	0,056	0,527	0,161	1,36	48	2,58	0,183	0,62	Vérifiée
RB56-RB57	40,00	3,76	0,021	132	300	0,112	0,689	0,237	1,78	71	2,59	0,183	0,62	Vérifiée
RB57-RA363	44,00	3,91	0,032	155	300	0,171	0,777	0,289	2,05	87	2,64	0,186	0,63	Vérifiée
RA363-RA364	22,67	1,55	0,108	291	300	0,919	1,117	0,766	1,86	230	1,66	0,117	0,39	Vérifiée
RA364-RA365	45,00	3,25	0,119	263	300	0,703	1,088	0,616	2,62	185	2,40	0,170	0,57	Vérifiée
RA365-RA366	45,00	3,85	0,131	264	300	0,708	1,089	0,618	2,85	186	2,62	0,185	0,63	Vérifiée
RA366-RA367	45,00	3,79	0,143	273	300	0,777	1,100	0,657	2,86	197	2,60	0,183	0,62	Vérifiée
RA367-RA368	40,00	2,89	0,153	295	300	0,953	1,121	0,800	2,54	240	2,27	0,160	0,54	Vérifiée
RA368-RA369	40,00	3,78	0,163	287	300	0,889	1,113	0,739	2,89	222	2,59	0,183	0,62	Vérifiée
RA369-RA370	35,00	3,77	0,172	293	300	0,940	1,120	0,787	2,90	236	2,59	0,183	0,62	Vérifiée
RA370-RA371	35,98	3,86	0,181	298	300	0,979	1,123	0,828	2,94	248	2,62	0,185	0,63	Vérifiée
RB58-RB59	40,00	1,68	0,010	119	300	0,084	0,620	0,203	1,07	61	1,73	0,122	0,41	Vérifiée
RB59-RB60	35,00	2,64	0,019	138	300	0,126	0,714	0,251	1,55	75	2,17	0,153	0,51	Vérifiée
RB60-RA371	35,00	2,85	0,028	157	300	0,178	0,783	0,294	1,77	88	2,25	0,159	0,53	Vérifiée
RA371-RA372	45,00	3,98	0,221	319	400	0,546	1,027	0,531	3,31	212	3,22	0,405	0,82	Vérifiée
RA372-RA373	40,00	3,87	0,232	326	400	0,579	1,045	0,550	3,32	220	3,18	0,400	0,81	Vérifiée
RA373-RA374	45,00	3,26	0,243	343	400	0,663	1,078	0,595	3,15	238	2,92	0,367	0,73	Vérifiée
RB61-RB62	35,00	1,04	0,009	123	300	0,094	0,646	0,215	0,88	65	1,36	0,096	0,32	Vérifiée
RB62-RB63	35,00	1,65	0,018	147	300	0,149	0,750	0,271	1,28	81	1,71	0,121	0,40	Vérifiée
RB63-RA374	35,00	2,14	0,027	163	300	0,196	0,800	0,307	1,56	92	1,95	0,138	0,46	Vérifiée
RA374-RA375	45,00	3,08	0,282	366	400	0,790	1,102	0,665	3,13	266	2,84	0,357	0,71	Vérifiée
RA374-RA376	45,00	2,74	0,293	380	400	0,872	1,111	0,724	2,97	290	2,68	0,336	0,67	Vérifiée

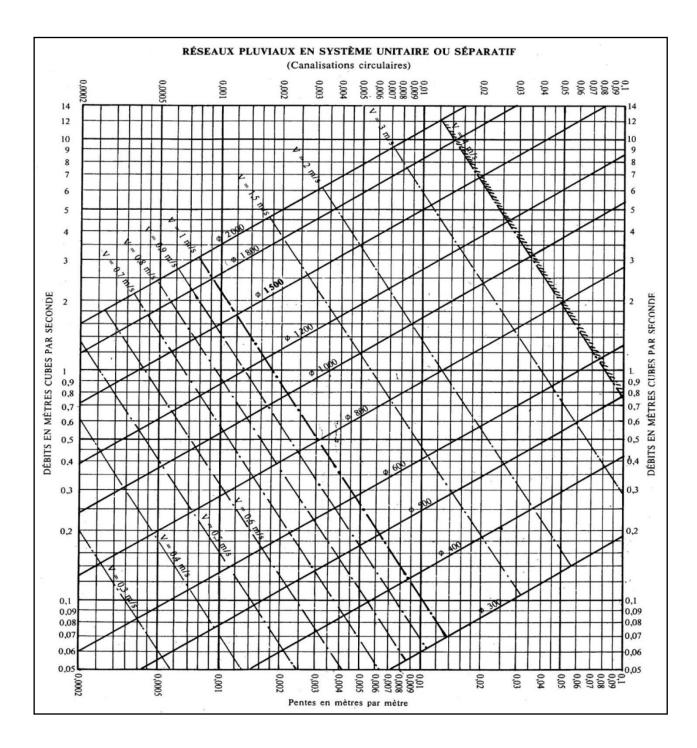
Tronçon	Distance (m)	l (m/m)	Q_t (m^3/s)	D _{cal} (mm)	D _{nor} (mm)	R_q	R_v	R_h	V (m/s)	H (mm)	<i>V_{ps}</i> (m/s)	Q_{ps} (m^3/s)	V _{min} (m/s)	Autocurrage
RA374-RA377	35,00	2,78	0,302	383	400	0,892	1,114	0,741	3,00	296	2,69	0,339	0,67	Vérifiée
RA377-R363	38,20	3,35	0,312	375	400	0,840	1,107	0,699	3,27	280	2,96	0,371	0,74	Vérifiée
R363-R364	35,00	3,99	1,033	568	600	0,864	1,110	0,718	3,69	431	4,23	1,195	1,29	Vérifiée
R364-R365	35,00	3,86	1,040	573	600	0,885	1,113	0,735	3,63	441	4,16	1,175	1,27	Vérifiée
R365-R366	35,00	3,81	1,048	576	600	0,897	1,114	0,745	3,60	447	4,13	1,168	1,26	Vérifiée
R366-R367	45,00	3,79	1,057	578	600	0,907	1,116	0,755	3,60	453	4,12	1,166	1,25	Vérifiée
R367-R368	45,04	3,80	1,067	580	600	0,914	1,117	0,761	3,61	456	4,13	1,168	1,25	Vérifiée
R368-R369	44,95	3,99	1,076	577	600	0,900	1,115	0,748	3,71	449	4,23	1,196	1,29	Vérifiée
RA378-RA379	35,00	3,96	0,007	89	300	0,039	0,454	0,130	1,21	39	2,65	0,188	0,64	Vérifiée
RA379-RA380	45,67	3,85	0,017	123	300	0,092	0,641	0,213	1,68	64	2,62	0,185	0,63	Vérifiée
RA380-RA381	44,04	1,42	0,026	174	300	0,234	0,828	0,331	1,32	99	1,59	0,113	0,37	Vérifiée
RA381-RA382	35,00	3,76	0,034	159	300	0,184	0,790	0,298	2,04	90	2,59	0,183	0,62	Vérifiée
RA383-R369	34,90	3,63	0,041	172	300	0,228	0,824	0,328	2,09	98	2,54	0,180	0,61	Vérifiée
R369-R370	45,00	3,92	1,127	589	600	0,950	1,121	0,797	3,70	478	4,19	1,186	1,28	Vérifiée
R370-R371	40,04	3,93	1,135	590	600	0,956	1,121	0,803	3,71	482	4,20	1,188	1,28	Vérifiée
RA383-RA384	35,00	3,76	0,007	90	300	0,040	0,459	0,132	1,19	40	2,58	0,183	0,62	Vérifiée
RA384-RA385	35,00	3,84	0,015	116	300	0,080	0,608	0,197	1,59	59	2,61	0,185	0,62	Vérifiée
RA385-RA386	35,00	3,23	0,022	140	300	0,131	0,723	0,255	1,73	77	2,40	0,169	0,57	Vérifiée
RA386-RA387	35,00	3,32	0,029	155	300	0,172	0,777	0,289	1,89	87	2,43	0,172	0,58	Vérifiée
RA387-RA388	46,00	3,68	0,039	169	300	0,217	0,816	0,321	2,09	96	2,56	0,181	0,61	Vérifiée
RB64-RB65	35,00	3,55	0,007	91	300	0,041	0,464	0,134	1,17	40	2,51	0,178	0,60	Vérifiée
RB65-RB66	30,00	3,66	0,014	114	300	0,076	0,596	0,192	1,52	58	2,55	0,180	0,61	Vérifiée
RB66-RB67	35,00	3,87	0,021	133	300	0,114	0,691	0,238	1,81	71	2,62	0,186	0,63	Vérifiée
RB67-RA388	25,00	3,73	0,026	145	300	0,145	0,744	0,268	1,92	80	2,58	0,182	0,62	Vérifiée
RA388-RA389	30,00	3,56	0,072	213	300	0,404	0,933	0,440	2,35	132	2,52	0,178	0,60	Vérifiée
RA389-RA390	24,77	3,99	0,077	215	300	0,409	0,937	0,444	2,50	133	2,67	0,188	0,64	Vérifiée
RA390-RA391	35,00	3,84	0,084	224	300	0,457	0,970	0,475	2,54	143	2,61	0,185	0,63	Vérifiée
RA391-RA392	35,00	3,49	0,092	235	300	0,521	1,012	0,516	2,52	155	2,49	0,176	0,59	Vérifiée
RA392-RA393	35,00	2,68	0,099	254	300	0,643	1,072	0,584	2,34	175	2,18	0,154	0,52	Vérifiée
RA393-RA394	34,36	3,69	0,106	246	300	0,588	1,049	0,555	2,69	166	2,56	0,181	0,61	Vérifiée

Tronçon	Distance (m)	l (m/m)	Q_t (m^3/s)	D _{cal} (mm)	D _{nor} (mm)	R_q	R_v	R_h	V (m/s)	H (mm)	V_{ps} (m/s)	Q_{ps} (m^3/s)	V _{min} (m/s)	Autocurrage
RB68-RA394	23,09	3,86	0,005	77	300	0,026	0,389	0,102	1,02	31	2,62	0,185	0,63	Vérifiée
RA394-RA395	30,94	1,58	0,118	299	300	0,993	1,122	0,844	1,88	253	1,68	0,119	0,39	Vérifiée
RA395-RA396	42,00	3,07	0,127	272	300	0,767	1,099	0,651	2,57	195	2,34	0,165	0,56	Vérifiée
RA396-R371	45,00	2,58	0,136	288	300	0,899	1,115	0,747	2,39	224	2,14	0,151	0,51	Vérifiée
R371-R372	35,00	3,98	1,271	614	800	0,494	0,995	0,499	4,09	399	5,12	2,572	1,97	Vérifiée
R372-R373	45,00	3,92	1,271	616	800	0,498	0,997	0,501	4,07	401	5,08	2,553	1,95	Vérifiée
R373-R374	45,00	3,81	1,271	619	800	0,505	1,002	0,506	4,02	405	5,01	2,516	1,92	Vérifiée
R374-R375	45,00	3,81	1,271	619	800	0,505	1,002	0,506	4,02	405	5,01	2,517	1,92	Vérifiée
R375-R376	45,00	3,19	1,271	640	800	0,552	1,031	0,534	4,32	427	4,58	2,302	1,70	Vérifiée
R376-R377	45,00	2,65	1,271	663	800	0,605	1,057	0,564	4,42	452	4,18	2,100	1,50	Vérifiée
R377-R378	44,92	1,52	1,271	736	800	0,800	1,103	0,671	3,49	537	3,16	1,589	1,04	Vérifiée
R378-R379	45,00	3,18	1,271	641	800	0,553	1,031	0,535	4,21	428	4,57	2,297	1,69	Vérifiée
R379-R380	45,00	1,64	1,271	726	800	0,771	1,099	0,653	3,61	523	3,28	1,649	1,09	Vérifiée
R381-R382	35,00	3,88	0,008	94	300	0,045	0,481	0,141	1,26	42	2,63	0,186	0,63	Vérifiée
R382-R383	29,03	2,44	0,015	129	300	0,104	0,671	0,228	1,40	68	2,08	0,147	0,49	Vérifiée
R383-R384	30,00	1,34	0,023	166	300	0,207	0,809	0,314	1,25	94	1,54	0,109	0,36	Vérifiée
RA397-RA398	25,00	3,76	0,006	83	300	0,033	0,423	0,116	1,09	35	2,59	0,183	0,62	Vérifiée
RA398-RA399	20,00	0,95	0,011	134	300	0,118	0,699	0,242	0,91	73	1,30	0,092	0,30	Vérifiée
RA399-R384	28,00	1,45	0,018	149	300	0,154	0,757	0,276	1,21	83	1,60	0,113	0,38	Vérifiée
R384-R385	35,00	1,66	0,042	201	300	0,344	0,894	0,401	1,54	120	1,11	0,077	0,40	Vérifiée
R385-R386	17,50	3,48	0,046	181	300	0,261	0,845	0,349	2,10	105	2,10	0,176	0,59	Vérifiée
R386-R387	17,50	3,89	0,050	183	300	0,270	0,850	0,354	2,24	106	2,24	0,186	0,63	Vérifiée
R387-R388	34,79	3,94	0,058	194	300	0,313	0,875	0,381	2,32	114	2,32	0,187	0,63	Vérifiée
RA400-RA401	25,00	3,68	0,006	84	300	0,033	0,424	0,117	1,11	35	2,56	0,181	0,61	Vérifiée
RA401-RA402	25,00	3,97	0,012	107	300	0,064	0,555	0,173	1,47	52	2,66	0,188	0,64	Vérifiée
RA402-RA403	25,00	3,66	0,018	126	300	0,100	0,661	0,223	1,69	67	2,55	0,180	0,61	Vérifiée
RA403-RA404	23,00	3,63	0,024	140	300	0,131	0,723	0,255	1,84	77	2,54	0,180	0,61	Vérifiée
RA404-RA405	30,00	3,76	0,031	154	300	0,168	0,773	0,287	2,00	86	2,59	0,183	0,62	Vérifiée
RA405-R388	25,49	3,96	0,037	163	300	0,196	0,801	0,307	2,12	92	2,65	0,188	0,64	Vérifiée
R388-R389	36,49	3,47	0,104	247	300	0,593	1,052	0,558	2,61	167	2,48	0,176	0,59	Vérifiée

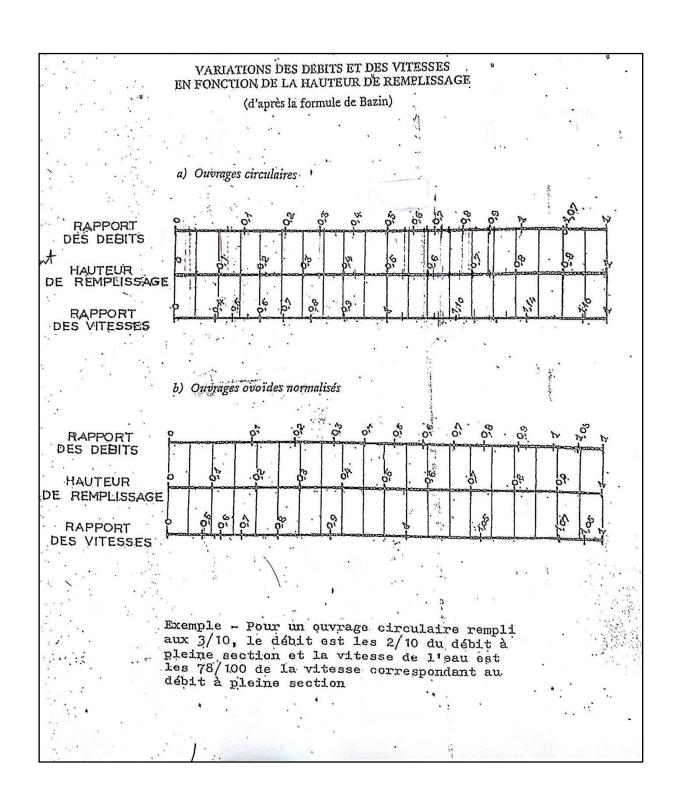
Tronçon	Distance (m)	l (m/m)	Q_t (m^3/s)	D _{cal} (mm)	D _{nor} (mm)	R_q	R_v	R_h	V (m/s)	H (mm)	<i>V_{ps}</i> (m/s)	Q_{ps} (m^3/s)	V _{min} (m/s)	Autocurrage
R389-R390	35,00	3,80	0,112	250	300	0,612	1,060	0,568	2,76	170	2,60	0,184	0,62	Vérifiée
RA406-RA407	35,00	2,12	0,008	105	300	0,061	0,546	0,169	1,06	51	1,94	0,137	0,46	Vérifiée
RA407-RA408	35,00	3,54	0,017	124	300	0,095	0,648	0,217	1,63	65	2,51	0,177	0,60	Vérifiée
RA408-RA409	35,00	1,10	0,025	180	300	0,255	0,841	0,345	1,18	103	1,40	0,099	0,33	Vérifiée
RA409-RA410	35,00	1,42	0,034	191	300	0,299	0,867	0,372	1,38	112	1,59	0,112	0,37	Vérifiée
RA410-RA411	35,00	3,29	0,042	177	300	0,245	0,835	0,339	2,02	102	2,42	0,171	0,58	Vérifiée
RA411-RA412	35,00	3,52	0,050	187	300	0,285	0,859	0,363	2,15	109	2,50	0,177	0,60	Vérifiée
RA412-RA413	8,50	3,89	0,052	187	300	0,282	0,857	0,362	2,25	108	2,63	0,186	0,63	Vérifiée
RA413-RA414	9,00	3,48	0,055	193	300	0,310	0,873	0,379	2,17	114	2,49	0,176	0,59	Vérifiée
RA414-RA415	17,50	1,84	0,059	224	300	0,460	0,972	0,477	1,76	143	1,81	0,128	0,43	Vérifiée
RA415-RA416	35,00	1,71	0,067	239	300	0,545	1,026	0,530	1,79	159	1,74	0,123	0,41	Vérifiée
RA416-RA417	35,00	1,57	0,076	254	300	0,639	1,071	0,582	1,79	175	1,67	0,118	0,39	Vérifiée
RA417-RA418	35,00	1,91	0,084	254	300	0,644	1,072	0,585	1,98	176	1,84	0,130	0,43	Vérifiée
RB69-RA418	45,00	1,56	0,011	122	300	0,092	0,641	0,213	1,07	64	1,66	0,118	0,39	Vérifiée
RA418-R390	28,60	1,56	0,102	284	400	0,401	0,931	0,439	1,88	175	2,02	0,253	0,49	Vérifiée
R390-R391	22,28	0,52	0,219	465	500	0,825	1,106	0,688	1,50	344	1,35	0,266	0,33	Vérifiée
R391-R392	20,23	0,53	0,224	468	500	0,837	1,107	0,696	1,51	348	1,37	0,268	0,33	Vérifiée
RA419-RA420	37,20	3,86	0,009	96	300	0,048	0,494	0,147	1,29	44	2,62	0,185	0,63	Vérifiée
RA420-RA421	33,59	3,82	0,017	123	300	0,092	0,642	0,213	1,67	64	2,61	0,184	0,62	Vérifiée
RA421-RA422	20,70	1,66	0,022	158	300	0,181	0,787	0,296	1,35	89	1,72	0,121	0,40	Vérifiée
RA422-RA423	19,62	3,27	0,027	150	300	0,156	0,760	0,278	1,83	83	2,41	0,170	0,57	Vérifiée
RB70-RB71	35,00	3,81	0,008	94	300	0,046	0,483	0,142	1,26	43	2,60	0,184	0,62	Vérifiée
RB71-RB72	35,00	3,98	0,017	121	300	0,089	0,634	0,210	1,69	63	2,66	0,188	0,64	Vérifiée
RB72-RA423	38,60	3,59	0,026	146	300	0,146	0,746	0,269	1,88	81	2,53	0,179	0,60	Vérifiée
RA423-RA324	40,00	3,97	0,062	198	300	0,332	0,886	0,393	2,36	118	2,66	0,188	0,64	Vérifiée
RA424-RA325	31,00	3,80	0,070	209	300	0,380	0,917	0,424	2,38	127	2,60	0,184	0,62	Vérifiée
RA425-RA326	25,00	3,88	0,076	214	300	0,408	0,936	0,443	2,46	133	2,63	0,186	0,63	Vérifiée
RA426-RA327	30,00	2,02	0,083	251	300	0,619	1,063	0,572	2,01	172	1,89	0,134	0,45	Vérifiée
RA427-R392	26,57	2,23	0,089	253	300	0,634	1,069	0,580	2,13	174	1,99	0,141	0,47	Vérifiée
R392-R393	25,00	4,00	0,319	366	500	0,434	0,954	0,460	3,57	230	3,75	0,736	1,04	Vérifiée

Tronçon	Distance (m)	l (m/m)	Q_t (m^3/s)	D _{cal} (mm)	D _{nor} (mm)	R_q	R_v	R_h	V (m/s)	H (mm)	V_{ps} (m/s)	Q_{ps} (m^3/s)	V _{min} (m/s)	Autocurrage
R393-R394	35,00	3,99	0,327	369	500	0,444	0,961	0,467	3,60	233	3,75	0,736	1,04	Vérifiée
R394-R395	35,00	3,95	0,335	373	500	0,457	0,970	0,475	3,62	238	3,73	0,732	1,03	Vérifiée
R395-R396	34,89	3,84	0,343	378	500	0,475	0,982	0,487	3,61	243	3,67	0,721	1,01	Vérifiée
R396-R397	35,00	3,91	0,351	381	500	0,483	0,987	0,492	3,66	246	3,71	0,728	1,02	Vérifiée
R397-R398	34,91	1,80	0,360	444	500	0,730	1,093	0,630	2,75	315	2,52	0,494	0,65	Vérifiée
R398-R399	35,09	2,76	0,369	414	500	0,604	1,057	0,564	3,29	282	3,11	0,611	0,83	Vérifiée
R399-R400	35,00	1,75	0,378	455	500	0,778	1,100	0,658	2,73	329	2,48	0,486	0,64	Vérifiée
RA428-RA429	45,00	3,97	0,012	105	300	0,062	0,547	0,170	1,45	230	2,66	0,188	0,64	Vérifiée
RA429-R400	45,19	3,97	0,023	137	300	0,123	0,710	0,248	1,89	74	2,66	0,188	0,64	Vérifiée
R400-R401	35,00	3,61	0,411	409	500	0,587	1,049	0,554	3,74	277	3,56	0,700	0,98	Vérifiée
R401-R402	35,00	3,49	0,420	415	500	0,610	1,059	0,567	3,71	283	3,50	0,688	0,96	Vérifiée
R402-R403	35,01	3,34	0,429	422	500	0,637	1,070	0,582	3,66	291	3,42	0,672	0,93	Vérifiée
RA430-RA431	32,00	2,66	0,008	100	300	0,053	0,516	0,156	1,12	47	2,18	0,154	0,52	Vérifiée
RA431-RA432	33,00	2,68	0,017	130	300	0,108	0,680	0,232	1,49	70	2,18	0,154	0,52	Vérifiée
RA432-RA433	45,00	3,84	0,028	148	300	0,153	0,756	0,275	1,97	82	2,61	0,185	0,62	Vérifiée
RA433-R403	39,98	2,13	0,039	186	300	0,280	0,856	0,360	1,67	108	1,95	0,138	0,46	Vérifiée
R403-R404	34,99	3,55	0,476	434	500	0,687	1,085	0,607	3,83	304	3,53	0,693	0,97	Vérifiée
R404-R405	35,00	3,84	0,485	431	500	0,672	1,081	0,600	3,97	300	3,68	0,722	1,01	Vérifiée
R405-R406	35,00	1,95	0,494	563	500	0,960	1,122	0,808	2,94	404	2,62	0,515	0,69	Vérifiée
R406-R407	35,00	2,12	0,503	488	500	0,939	1,120	0,786	3,05	393	2,73	0,536	0,72	Vérifiée
RA434-RA435	25,00	3,25	0,006	88	300	0,038	0,447	0,127	1,08	38	2,41	0,170	0,57	Vérifiée
RA435-R407	34,74	1,67	0,015	138	300	0,126	0,715	0,251	1,23	75	1,72	0,122	0,40	Vérifiée
R407-R408	35,00	3,54	0,528	452	600	0,469	0,978	0,483	3,89	290	3,98	1,126	1,20	Vérifiée
R408-R409	35,00	1,10	0,537	566	600	0,855	1,109	0,710	2,46	426	2,22	0,627	0,60	Vérifiée
R409-R410	35,00	1,42	0,546	542	600	0,764	1,099	0,649	2,77	390	2,53	0,714	0,69	Vérifiée
R410-R411	35,00	3,29	0,554	466	600	0,511	1,006	0,509	3,86	306	3,84	1,086	1,15	Vérifiée
RA436-RA437	30,00	1,68	0,008	106	300	0,063	0,553	0,172	0,95	52	1,73	0,122	0,41	Vérifiée
RA437-R411	44,90	1,95	0,019	146	300	0,146	0,747	0,269	1,39	81	1,86	0,132	0,44	Vérifiée
R411-R412	35,00	3,52	0,583	469	600	0,519	1,011	0,514	4,01	309	3.97	1.123	1.20	Vérifiée
RA438-R412	35,00	1,28	0,009	119	300	0,084	0,620	0,203	0,94	61	1,51	0,107	0,35	Vérifiée

Tronçon	Distance (m)	l (m/m)	Q_t (m^3/s)	D _{cal} (mm)	D _{nor} (mm)	R_q	R_v	R_h	V (m/s)	H (mm)	V_{ps} (m/s)	Q_{ps} (m^3/s)	V _{min} (m/s)	Autocurrage
R412-R413	8,50	3,89	0,594	464	800	0,234	0,828	0,331	4,19	265	5,06	2,543	1,94	Vérifiée
R413-R414	9,00	3,48	0,596	474	800	0,248	0,837	0,340	4,01	272	4,79	2,406	1,80	Vérifiée
R414-R415	17,50	0,84	0,601	621	800	0,509	1,004	0,508	2,36	406	2,35	1,181	0,72	Vérifiée
R415-R416	35,00	0,45	0,610	701	800	0,704	1,089	0,617	1,88	493	1,72	0,866	0,49	Vérifiée
R416-R417	35,00	1,57	0,619	558	800	0,383	0,919	0,426	2,96	341	3,22	1,617	1,07	Vérifiée
R417-R418	35,00	0,41	0,628	721	800	0,758	1,098	0,646	1,81	517	1,65	0,828	0,46	Vérifiée
RA439-RA440	35,00	3,71	0,009	97	300	0,050	0,500	0,149	1,28	45	2,57	0,182	0,61	Vérifiée
RA440-RA441	25,00	3,71	0,015	119	300	0,085	0,622	0,204	1,60	61	2,57	0,182	0,61	Vérifiée
RA441-R418	42,28	1,86	0,026	165	300	0,204	0,807	0,312	1,47	94	1,82	0,129	0,43	Vérifiée
R418-R419	35,00	0,70	0,663	667	800	0,615	1,061	0,570	2,28	456	2,14	1,078	0,64	Vérifiée
R419-R420	35,00	0,66	0,672	677	800	0,641	1,071	0,584	2,23	467	2,08	1,048	0,62	Vérifiée
R420-R421	35,00	0,95	0,681	636	800	0,541	1,024	0,528	2,56	422	2,50	1,258	0,77	Vérifiée
R421-R422	35,00	0,71	0,690	675	800	0,636	1,070	0,581	2,31	465	2,16	1,085	0,64	Vérifiée
R422-R423	40,00	0,62	0,700	696	800	0,691	1,086	0,609	2,19	488	2,02	1,014	0,59	Vérifiée
R423-R424	35,00	0,33	0,709	785	800	0,951	1,121	0,798	1,66	638	1,48	0,746	0,41	Vérifiée
R424-R425	45,00	0,47	0,721	741	800	0,816	1,105	0,682	1,94	546	1,76	0,883	0,50	Vérifiée
R425-R426	44,04	0,35	0,732	787	800	0,958	1,121	0,805	1,71	644	1,52	0,765	0,42	Vérifiée
RA442-RA443	35,00	1,63	0,007	105	300	0,060	0,542	0,168	0,92	50	1,71	0,121	0,40	Vérifiée
RA443-RA444	35,00	1,64	0,015	136	300	0,120	0,705	0,245	1,20	74	1,71	0,121	0,40	Vérifiée
RA444-RA445	40,92	1,88	0,023	157	300	0,178	0,784	0,294	1,43	88	1,83	0,129	0,43	Vérifiée
RA445-RA446	24,86	3,85	0,028	148	300	0,152	0,755	0,274	1,98	82	2,62	0,185	0,63	Vérifiée
RA446-RA447	35,00	3,28	0,035	166	300	0,207	0,810	0,314	1,96	94	2,42	0,171	0,58	Vérifiée
RA447-RA448	35,00	3,25	0,043	179	300	0,251	0,839	0,342	2,02	103	2,40	0,170	0,57	Vérifiée
RA448-RA449	30,49	3,79	0,049	183	300	0,267	0,848	0,352	2,20	106	2,60	0,183	0,62	Vérifiée
RA449-RA450	45,00	2,54	0,058	210	300	0,388	0,923	0,430	1,96	129	2,13	0,150	0,50	Vérifiée
RB73-RB74	35,00	1,62	0,007	105	300	0,061	0,543	0,168	0,92	50	1,70	0,120	0,40	Vérifiée
RB74-RB75	20,00	2,58	0,011	114	300	0,075	0,594	0,191	1,27	57	2,14	0,152	0,51	Vérifiée
RB75-RB76	30,00	1,93	0,018	141	300	0,135	0,729	0,259	1,35	78	1,85	0,131	0,44	Vérifiée
RB76-RB77	25,00	3,23	0,023	141	300	0,135	0,729	0,259	1,75	78	2,40	0,169	0,57	Vérifiée
RB77-RA450	25,00	3,13	0,028	154	300	0,168	0,773	0,287	1,83	86	2,36	0,167	0,56	Vérifiée


Tronçon	Distance (m)	l (m/m)	Q_t (m^3/s)	D _{cal} (mm)	D _{nor} (mm)	R_q	R_v	R_h	V (m/s)	H (mm)	V_{ps} (m/s)	Q_{ps} (m^3/s)	<i>V_{min}</i> (m/s)	Autocurrage
RA450-RA451	37,00	1,68	0,094	272	300	0,769	1,099	0,652	1,90	196	1,73	0,122	0,41	Vérifiée
RB78-RB79	35,00	1,69	0,007	104	300	0,059	0,538	0,166	0,93	50	1,73	0,123	0,41	Vérifiée
RB79-RA451	37,00	1,00	0,015	150	300	0,158	0,762	0,279	1,02	84	1,33	0,094	0,31	Vérifiée
RA451-RA452	37,00	3,56	0,117	256	300	0,655	1,076	0,591	2,71	177	2,52	0,178	0,60	Vérifiée
RB80-RB81	35,00	1,95	0,007	101	300	0,055	0,522	0,159	0,97	48	1,86	0,132	0,44	Vérifiée
RB81-RB82	38,00	1,58	0,015	139	300	0,128	0,718	0,252	1,20	76	1,68	0,119	0,39	Vérifiée
RB82-RA452	38,00	3,06	0,023	143	300	0,140	0,737	0,263	1,72	79	2,33	0,165	0,56	Vérifiée
RA452-RA453	35,00	3,27	0,147	284	300	0,862	1,110	0,716	2,68	215	2,41	0,170	0,57	Vérifiée
RA453-RA454	35,00	3,97	0,154	279	300	0,821	1,105	0,685	2,94	206	2,66	0,188	0,64	Vérifiée
RA454-RA455	35,00	3,88	0,161	285	300	0,869	1,111	0,722	2,92	217	2,63	0,186	0,63	Vérifiée
RA455-RA456	17,01	3,14	0,165	299	300	0,988	1,122	0,838	2,65	251	2,36	0,167	0,56	Vérifiée
RA456-RA457	18,38	3,89	0,169	289	300	0,907	1,116	0,755	2,94	226	2,63	0,186	0,63	Vérifiée
RB83-RB84	35,00	2,54	0,007	96	300	0,048	0,495	0,147	1,05	44	2,12	0,150	0,50	Vérifiée
RB83-RB85	35,00	1,16	0,015	145	300	0,143	0,742	0,266	1,07	80	1,44	0,102	0,34	Vérifiée
RB83-RB86	35,00	1,70	0,022	157	300	0,177	0,783	0,294	1,36	88	1,74	0,123	0,41	Vérifiée
RB83-RB87	35,00	1,59	0,029	177	300	0,245	0,835	0,338	1,40	102	1,68	0,119	0,39	Vérifiée
RB87-RA457	35,00	2,44	0,036	177	300	0,246	0,836	0,339	1,74	102	2,08	0,147	0,49	Vérifiée
RA457-RA458	40,57	3,84	0,214	317	400	0,537	1,022	0,525	3,23	210	3,17	0,398	0,80	Vérifiée
RB88-RB89	30,00	1,89	0,006	96	300	0,048	0,493	0,146	0,90	44	1,83	0,130	0,43	Vérifiée
RB89-RB90	30,00	2,65	0,012	117	300	0,081	0,611	0,199	1,33	60	2,17	0,154	0,51	Vérifiée
RB90-RA458	30,00	3,45	0,019	130	300	0,107	0,676	0,231	1,68	69	2,48	0,175	0,59	Vérifiée
RA458-RA459	31,00	3,88	0,239	330	400	0,597	1,053	0,560	3,35	224	3,18	0,400	0,81	Vérifiée
RB91-RB92	40,00	1,90	0,008	107	300	0,064	0,555	0,173	1,02	52	1,84	0,130	0,43	Vérifiée
RB91-RB93	30,00	1,49	0,015	138	300	0,126	0,715	0,251	1,16	75	1,63	0,115	0,38	Vérifiée
RB91-RB94	30,00	1,49	0,021	158	300	0,180	0,786	0,296	1,28	89	1,63	0,115	0,38	Vérifiée
RB94-RA459	30,00	1,45	0,027	175	300	0,237	0,830	0,334	1,33	100	1,61	0,114	0,38	Vérifiée
RA459-RA460	40,70	0,93	0,274	454	500	0,773	1,100	0,655	1,99	327	1,81	0,355	0,45	Vérifiée
RB95-RA460	38,00	1,15	0,008	115	300	0,078	0,602	0,195	0,86	58	1,43	0,101	0,33	Vérifiée
RA460-RA461	40,70	3,93	0,290	354	500	0,398	0,929	0,436	3,45	218	3,72	0,730	1,02	Vérifiée
RA461-RA462	45,82	3,98	0,300	357	500	0,408	0,936	0,443	3,50	221	3,74	0,735	1,03	Vérifiée

Tronçon	Distance (m)	l (m/m)	Q_t (m^3/s)	D _{cal} (mm)	D _{nor} (mm)	R_q	R_v	R_h	V (m/s)	H (mm)	<i>V_{ps}</i> (m/s)	Q_{ps} (m^3/s)	V _{min} (m/s)	Autocurrage
RA462-RA463	33,00	2,84	0,307	384	500	0,495	0,995	0,499	3,14	250	3,16	0,620	0,85	Vérifiée
RA463-RA464	30,00	3,46	0,313	373	500	0,457	0,969	0,475	3,38	237	3,49	0,685	0,95	Vérifiée
RA464-RA465	35,00	3,89	0,320	368	500	0,441	0,958	0,465	3,55	232	3,70	0,727	1,02	Vérifiée
RA465-RA466	35,00	2,17	0,327	414	500	0,603	1,056	0,563	2,92	282	2,77	0,543	0,73	Vérifiée
RA466-RA467	35,00	2,85	0,335	397	500	0,539	1,023	0,526	3,24	263	3,16	0,621	0,85	Vérifiée
RA467-RA468	35,00	1,25	0,342	466	500	0,831	1,106	0,692	2,32	346	2,10	0,412	0,53	Vérifiée
RA468-RA469	27,97	2,13	0,348	425	500	0,647	1,073	0,586	2,94	293	2,74	0,538	0,72	Vérifiée
RB96-RB97	30,00	1,68	0,006	98	300	0,051	0,505	0,152	0,87	45	1,73	0,122	0,41	Vérifiée
RB97-RA469	30,00	3,82	0,012	109	300	0,068	0,568	0,179	1,48	54	2,61	0,184	0,62	Vérifiée
RA469-RA470	35,00	1,76	0,367	449	500	0,752	1,097	0,642	2,73	321	2,49	0,489	0,65	Vérifiée
RA469-RA471	30,00	3,94	0,374	389	500	0,512	1,006	0,510	3,74	255	3,72	0,730	1,03	Vérifiée
RA469-RA472	25,00	3,67	0,379	396	500	0,537	1,022	0,525	3,67	263	3,59	0,706	0,99	Vérifiée
RA469-RA473	39,00	3,95	0,387	394	500	0,529	1,017	0,520	3,79	260	3,73	0,732	1,03	Vérifiée
RB98-RB99	35,00	1,55	0,007	106	300	0,062	0,548	0,170	0,91	51	1,66	0,117	0,39	Vérifiée
RB99-RB100	35,00	1,61	0,015	136	300	0,121	0,707	0,246	1,20	74	1,69	0,120	0,40	Vérifiée
RB100-RB101	35,00	1,13	0,022	169	300	0,218	0,817	0,321	1,16	96	1,42	0,100	0,33	Vérifiée
RB101-RB102	40,00	3,02	0,030	159	300	0,184	0,789	0,298	1,83	89	2,32	0,164	0,55	Vérifiée
RB102-RB103	30,92	3,45	0,036	167	300	0,208	0,810	0,315	2,01	95	2,48	0,175	0,59	Vérifiée
RB103-RB104	35,01	3,12	0,044	182	300	0,263	0,846	0,350	1,99	105	2,36	0,167	0,56	Vérifiée
RB104-RB105	49,94	2,12	0,054	212	300	0,394	0,927	0,434	1,80	130	1,94	0,137	0,46	Vérifiée
RB105-RB106	45,00	1,83	0,063	231	300	0,498	0,997	0,501	1,80	150	1,80	0,127	0,42	Vérifiée
RB106-RB107	44,81	0,94	0,073	275	300	0,796	1,102	0,669	1,43	201	1,29	0,091	0,30	Vérifiée
RB107-RB108	54,99	1,72	0,084	260	300	0,680	1,083	0,604	1,89	181	1,75	0,124	0,41	Vérifiée
RB108-RB109	40,00	1,76	0,092	268	300	0,740	1,095	0,636	1,94	191	1,77	0,125	0,42	Vérifiée
RB109-RB110	40,00	2,04	0,101	269	300	0,749	1,096	0,641	2,09	192	1,90	0,135	0,45	Vérifiée
RB110-RB111	40,00	2,09	0,109	276	300	0,799	1,103	0,671	2,13	201	1,93	0,136	0,46	Vérifiée
RB111-RB112	55,81	1,59	0,121	302	400	0,471	0,979	0,484	2,00	194	2,04	0,256	0,50	Vérifiée
RB112-RB113	30,00	1,57	0,127	308	400	0,498	0,997	0,501	2,02	201	2,03	0,255	0,49	Vérifiée
RB113-RB114	35,00	0,73	0,134	363	400	0,773	1,100	0,654	1,52	262	1,38	0,174	0,33	Vérifiée
RB114-RB115	35,00	0,73	0,141	370	400	0,814	1,104	0,681	1,53	272	1,38	0,174	0,33	Vérifiée


Tronçon	Distance (m)	l (m/m)	Q_t (m^3/s)	D _{cal} (mm)	D _{nor} (mm)	R_q	R_v	R_h	V (m/s)	H (mm)	V_{ps} (m/s)	Q_{ps} (m^3/s)	V _{min} (m/s)	Autocurrage
RB115-RA473	33,66	0,80	0,148	370	400	0,815	1,104	0,681	1,60	272	1,45	0,182	0,35	Vérifiée
RA473-R426	28,00	3,87	0,541	448	500	0,747	1,096	0,639	4,05	320	3,69	0,725	1,02	Vérifiée
R426-R427	22,00	0,81	1,278	829	1000	0,606	1,057	0,565	2,84	565	2,69	2,109	0,97	Vérifiée
RA474-RA475	35,00	3,72	0,007	90	300	0,040	0,457	0,131	1,18	39	2,57	0,182	0,61	Vérifiée
RA475-R427	30,00	3,95	0,013	112	300	0,072	0,583	0,186	1,54	56	2,65	0,187	0,63	Vérifiée
R427-R428	30,02	0,60	1,291	882	1000	0,715	1,091	0,622	2,51	622	2,30	1,806	0,79	Vérifiée
R428-R429	29,61	0,34	1,291	978	1000	0,941	1,120	0,788	1,96	788	1,75	1,372	0,55	Vérifiée
R429-R430	28,09	3,77	1,291	624	1000	0,285	0,858	0,363	3,96	363	5,78	4,538	2,78	Vérifiée
R430-R431	27,86	3,95	1,291	619	1000	0,278	0,855	0,359	4,06	359	5,91	4,645	2,88	Vérifiée
R431-R432	26,54	3,81	1,291	623	1000	0,283	0,858	0,362	3,98	362	5,81	4,563	2,80	Vérifiée
R432-R433	22,94	3,67	1,291	627	1000	0,288	0,861	0,366	3,91	366	5,71	4,481	2,73	Vérifiée
R433-R434	23,28	3,71	1,291	626	1000	0,287	0,860	0,365	3,93	365	5,73	4,500	2,75	Vérifiée
R434-R435	30,64	1,06	1,291	792	1000	0,536	1,021	0,525	3,13	525	3,07	2,407	1,15	Vérifiée
R435-R436	35,20	0,62	1,291	876	1000	0,703	1,088	0,616	2,55	616	2,34	1,838	0,81	Vérifiée
R436-R437	40,15	0,52	1,291	904	1000	0,764	1,099	0,649	2,36	649	2,15	1,690	0,72	Vérifiée
R437-R438	34,18	0,50	1,291	911	1000	0,780	1,101	0,659	2,32	659	2,11	1,654	0,70	Vérifiée
R438-R439	33,71	0,48	1,291	920	1000	0,800	1,103	0,671	2,27	671	2,06	1,615	0,68	Vérifiée
R439-R440	37,89	0,52	1,291	904	1000	0,764	1,098	0,649	2,37	649	2,15	1,691	0,72	Vérifiée
R440-R441	35,00	0,45	1,291	931	1000	0,827	1,106	0,689	2,20	689	1,99	1,562	0,65	Vérifiée
R441-R442	34,02	0,51	1,291	908	1000	0,773	1,100	0,655	2,34	655	2,13	1,669	0,71	Vérifiée
R442-R443	35,00	0,42	1,291	941	1000	0,849	1,108	0,706	2,15	706	1,94	1,521	0,63	Vérifiée
R443-R444	35,00	0,87	1,291	822	1000	0,594	1,052	0,558	2,91	558	2,77	2,176	1,01	Vérifiée
R444-R445	35,00	2,32	1,291	684	1000	0,363	0,906	0,413	4,10	413	4,53	3,557	1,98	Vérifiée
R445-R446	35,07	2,88	1,291	657	1000	0,326	0,883	0,389	4,46	389	5,05	3,966	2,30	Vérifiée
R446-R447	35,04	3,89	1,291	621	1000	0,280	0,856	0,361	4,02	361	5,87	4,609	2,85	Vérifiée
R447-R448	35,00	3,90	1,291	620	1000	0,280	0,856	0,360	4,03	360	5,88	4,617	2,85	Vérifiée
R448-R449	33,62	3,85	1,291	622	1000	0,281	0,857	0,361	4,01	361	5,84	4,590	2,83	Vérifiée
R449-R450	34,82	3,79	1,291	623	1000	0,284	0,858	0,363	4,97	363	5,79	4,551	2,79	Vérifiée
R450-R451	37,14	3,97	1,291	618	1000	0,277	0,854	0,359	4,06	359	5,93	4,656	2,89	Vérifiée
R451-R452	47,29	4,10	1,291	614	1000	0,273	0,852	0,356	4,13	356	6,03	4,732	2,95	Vérifiée

Tronçon	Distance (m)	l (m/m)	Q_t (m^3/s)	D _{cal} (mm)	D _{nor} (mm)	R_q	R_v	R_h	V (m/s)	H (mm)	V_{ps} (m/s)	$Q_{ps} \ (m^3/{ m s})$	V_{min} (m/s)	Autocurrage
R452-R453	35,00	3,84	1,291	622	1000	0,282	0,857	0,362	4,00	362	5,83	4,579	2,82	Vérifiée
R453-R380	32,13	3,65	2,563	812	1000	0,574	1,042	0,547	3,92	547	5,68	4,464	2,72	Vérifiée
R380-R335	35,98	3,77	2,563	807	1000	0,564	1,037	0,541	4,00	541	5,78	4,540	2,78	Vérifiée
R335-DVO N°2	33,38	3,77	2,563	807	1000	0,565	1,037	0,542	3,99	542	5,78	4,537	2,78	Vérifiée
DVO N°2-B.D	33,02	2,30	2,563	885	1000	0,722	1,092	0,626	3,93	626	4,52	3,549	1,97	Vérifiée

Annexe 2

Abaque $N^{\circ}1$: Dimensionnement du réseau d'assainissement

Abaque N°2 : Variation de la vitesse en fonction de la hauteur de remplissage