الجمهورية الجزائرية الديمقراطية الشعبية وزارة التعليم العالى و البحث العلمي

NATIONAL HIGHER SCHOOL FOR HYDRAULICS

"The MujahidAbdellah ARBAOUI"

المحرسة الوطنية العليا للربي "

+\$UO#3+ | X#|\$3\$ U.IN#Y. X.OO#Y.

MEMOIRE DE FIN D'ETUDES

Pour l'obtention du diplôme d'Ingénieur d'Etat en Hydraulique

Option: IRRIGATION ET DRAINAGE

THEME:

Etude d'aménagement du périmètre de bas sebaou secteur 02 (200ha) W. Boumerdes

Présenté par :

ABDELLAOUI BILAL

Devant les membres du jury

Nom et Prénoms	Grade	Qualité
MEDDI Mohamed	Professeur	Président
SAADOUNE Samra	MCB	Examinateur
MEDJDOUB Sonia	MMA	Examinateur
KOLIAI Djaffar	Assistant	Examinateur
BENKACI Ali Tarik	MCB	Promoteur

Session Septembre 2019

Remerciements

Je remercie Allah le tout puissant le miséricordieux qui m'a donné le courage d'achever ce modeste travail.

Je tiens à remercier vivement tous ceux qui m'ont apporté un soutien pour l'élaboration de ce mémoire de fin d'études.

Mes plus vifs remerciements vont à mon promoteur M^rBENKACI Tarik pour leur effort afin de mener ce travail à terme.

Je remercie également le président et les membres du jury qui me feront L'honneur de juger mon travail.

Je tiens à présenter par l'occasion mes respects à tous les enseignants qui ont contribué à ma formation.

Je tiens ensuite à remercier ma chère MERE et mon cher PERE, mes SŒURS et frères pour le soutien inconditionnel dont ils ont fait preuve depuis que mon projet professionnel est défini. Merci pour le soutien financier, moral, psychologique et matériel. Si je suis ici aujourd'hui, c'est grâce à Allah et puis vous!

Enfin, à tous ceux qui m'ont soutenu de près ou de loin je leurs dis MERCI.

Abdellaoui Bilal

Dédicace

Je dédie ce travail ...

A ma très chère mère

Aucune dédicace ne saurait exprimer mon respect, mon amour éternel et ma considération pour les sacrifices que tu as consenti pour mon instruction et mon bien être.

Je te remercie pour tout le soutien et l'amour que tu m'as apporté depuis mon enfance et j'espère que ton invocation m'accompagne toujours.

Que ce modeste travail soit l'exaucement de tes vœux tant formulés, le fruit de tes innombrables sacrifices, bien que je ne vous en acquitterai jamais assez.

Puisse Dieu, le Très Haut, t'accorder le paradis, santé, bonheur et longue vie et faire en sorte que jamais je te déçoive

Je t'aime maman

A mon très cher père

A celui qui m'a aidé à découvrir le « savoir » le trésor inépuisable.

De tous les pères, tu es toujours le meilleur au monde, tu as su m'entourer d'attention, m'inculquer les valeurs nobles de la vie, tu m'as appris le sens de l'honnêteté et de la responsabilité. Que dieu t'accorde le paradis et une longue vie. A mes chères sœurs

A mes cher Frères

A Toute ma famille, grande et petite

A Tous mes amis Enfin, à tous ceux qui me connaissent

Abdellaoui Bilal

ملخص:

ان الهدف من إنجاز هذا المشروع الذي يندرج ضمن سياسة تسير و تطوير المساحات المسقية هو تحديد أبعاد شبكة تزويد وتوزيع المياه على مستوى المنطقة الزراعية "سباو السفلى" الواقعة في ولاية بومرداس، التي تمتد على مساحة قدرها 200هكتارا عن طريق استغلال المياه الجوفية بالمنطقة . يتضمن هذا المشروع دراسة شاملة للمنطقة من حيث المناخ و نوعية التربة إضافة إلى الموارد المائية، بغرض تقييم حاجياتها من المياه، وذلك بغية تحديد وتصميم نظام السقي المناسب من اجل تحقيق اقتصاد معتبر للمياه ورفع المردودية وعصرنة الزراعة، تم اعتماد خلال هذه المذكرة أنظمة سقي اقتصادية وفعالة، مثل السقي عن طريق الرش والسقي بالتقطير.

Résumé:

L'objectif de ce projet qui rentre dans le cadre de la politique actuelle de la gestion et du développement des périmètres irrigués est la projection d'un réseau d'irrigation à travers le périmètre de Bas Sebaou situé dans la wilaya de Boumerdes qui s'étend sur une superficie de 200 ha et qui est irrigué, à partir des forages. Ce projet comprend une étude détaillée de la région (climatologique, pédologique et ressources en eau) pour estimer les besoins des cultures afin de concevoir un réseau d'irrigation adéquat en intégrant des systèmes d'irrigation économiques et efficients tels que l'aspersion et le goutte à goutte qui assurent une préservation de la ressource en eau et des meilleurs rendements agricoles.

Abstract:

This study aims to project an irrigation network through the perimeter of Bas Sebaou located in the wilaya of Boumerdes covering an area of 200 ha wich is irrigated by mobilization of the existing underground water. This project includes a detailed study of the region (climatological, pedological and water resources) to estimate the needs of crops in order to design an adequate irrigation network by integrating economical and efficient irrigation systems such as sprinkling and drip irrigation which ensure a preservation of the water resource and better agricultural yields.

Chapitre I : Analyse des Conditions Naturelles

I.1.Introduction	2
I.2. Situation géographique de la wilaya de Boumerdes :	2
I.3 Présentation de la plaine alluviale du Sebaou	3
I.4. Présentation du périmètre d'étude	3
I.5. Etude géologique	4
I.6. Géomorphologie/Relief	5
I.7.Etude climatologique	5
I.7.1. Choix de la station de référence	5
I.7.2.Pluies mensuelles	5
I.7.3. Températures de l'air	6
I.7.4.L'évaporation	7
I.7.5. L'humidité relative :	7
I.7.6 Le vent :	7
I.7.7. Le Sirocco	8
I.7.8.La grêle et la neige	8
I.7.8.1 Calcul des indices Agro-métrologiques	8
I.7.8.2. Quotient Ombrothermique d'Emberger	8
I.7.8.3 Classification du climat selon l'indice de Bagnouls et Gaussen :	9
I.8 Etude socio-économique	10
I.8.1 Population	10
I.8.2 Agriculture	11
I.9 Argumentation du projet d'aménagement de mise valeur du périmètre de Bas Sébaou	11
I.9.1 Situation actuelle	11
I.9.2 Situation projetée	11
I.10 Conclusion	11

Chapitre II: Ressources en sol et eau

Π.	1. Ressources en sol	13
	II.1.1Introduction	13
	II.1.2. But de l'étude pédologique :	13
	II.1.3. Classification des sols de périmètre du bas sebaou :	13
	II.1.3.1 Classe des sols peu évolués	13
	II.1.3.2 Classe des vertisols	14
	II.1.4 Les profils pédologiques	14
	II.1.4.1 Description morphologique des profils :	14
	II.1.4.2 Description macro morphologique des profils :	14
	II.1.4.3 Description macro morphologique des profils :	16
	II.1.5 .Caractéristiques hydrodynamique de sol	17
	II.1.6. Aptitude culturales des sols irrigués:	17
Π.	2. Ressources en eau	18
	II.2.1 Introduction	18
	II.2.2. Ressources en eau du périmètre :	18
	II.2.2. Hydrogéologie de la zone d'étude	18
	II.2.2.3 Étude de la piézométrie :	18
	II.2.2.4 propriétés physiques et chimiques de la nappe :	19
	-L'échantillon le plus proche de site d'étude est le puit (N°:P241/BS).	20
	II.2.3 Etude de la qualité de l'eau d'irrigation :	20
	II.2.4. Classification des eaux pour l'irrigation :	20
	II.2.5.1.Choix de la station :	23
	II.2.5.2.Répartition de la pluie moyenne annuelle :	23
	II.2.5.3 Etude de l'homogénéité de la série pluviométrique (Test de Mood)	24
	II.2.5.4 Ajustement statistique des pluies	25
	II 2 5 5 Ajustament des plujes appuelles à la Loi de Gauss ou loi normale	25

II.2.5.6.Test de validité d'un ajustement :	25
II.2.5.7 Détermination de l'année de calcul	26
II.5.6 Conclusion	27
Chapitre I : besoin en eau des cultures	
III.1.Introduction	29
III.2 Besoins en eau des cultures	29
III.2.1 Calcul des besoins en eau	29
III.3 Evaluation des besoins en eau des cultures	30
III.3.1 L'évapotranspiration :	30
III.4 Les méthodes d'évaluation de L'évapotranspiration	30
III.4.1 Les méthodes directes :	30
III.4.2 Les méthodes indirectes	31
III.5 Calcul de la pluie efficace	32
III.6 Choix de cultures	35
III.7 Occupation des sols : Choix des scénarios	35
III.8 Calcul des besoins en eau des cultures	38
III.9 Calcul du débit spécifique	49
III.10 Evaluation du débit caractérestique	49
III.11Estimation des volumes d'eau d'irrigation	50
III.12 Conclusion.	50
Chapitre IV : Etude du système d'adduct	ion
IV.1.Introduction	51
IV.2 Alimentation en eau du périmètre	51
IV.3 Organisation du périmètre.	51
IV.3.1 Ilots et bornes d'irrigation	51
IV.3.2 Rôle et fonction de la borne d'irrigation	51
IV.3.3 Calcul du débit aux bornes	52

IV.3.4 Choix du diamètre et du type des bornes	52
IV.4 Description de l'aménagement du périmètre	54
IV.4.1 Choix de la variante d'aménagement	55
IV.5 Considérations Hydrogéologiques	55
IV.6 Etude du système de pompage	56
IV.6.1. Choix du type de pompe	57
IV.6.2 Choix de type et de nombre de pompe pour la station de pompage (SP)	57
IV.6.4. Calcul des pertes de charge totales	59
IV.6.5. Calcul du diamètre économique	59
IV.6.5.1 Calcul de la HMT pour différents diamètres	59
IV.6.5.2 Puissance absorbée par la pompe	60
IV.6.5.3. Energie consommée par la pompe	60
IV.6.5.4 Frais d'exploitation	60
IV.6.5.5 Frais d'amortissement	60
IV.6.5.6. Bilan total des frais.	61
IV.6.5.9. Nombre et choix des pompes	62
IV.6.6 Protection contre de la cavitation	64
IV.6.6. 1. Vérification du risque de la cavitation	64
IV.7 Dimensionnement du réservoir	65
IV.8 La desserte gravitaire :	66
IV.8.1 Tracé du réseau de distribution :	66
IV.8.2 Choix des matériaux des canalisations	66
IV.8.3 Dimensionnement hydraulique des canalisations	67
IV.9 Conclusion	76

Chapitre V : Choix des techniques d'irrigation

V.1.Introduction.	77
V.2 Choix des techniques d'irrigation	77
V.2.1 Différentes techniques d'arrosages	77
V.2.1.1 Irrigation gravitaire	77
V.2.1.2 Irrigation sou pression	80
V.3 Choix de la technique d'arrosage	82
V.3.1.Les contraintes naturelles :	82
V.4. Conclusion.	82
Chapitre VI : Dimensionnement à la parcelle	
VI.1. Introduction :	83
VI.2. Dimensionnement d'un réseau d'irrigation par aspersion	83
VI.2.2.Dimensionnement théorique	84
VI.2.3.Dimensionnement hydrauliques des rampes :	86
VI.2.4 Calcul de la pression en tête du réseau	89
VI.3. Dimensionnement d'un réseau d'irrigation Goutte à goutte	89
VI.3.1 données nécessaire pour le dimensionnement	89
VI.3.2 Besoins d'irrigation des cultures en irrigation localisée	89
VI.3.3 Calculs hydrauliques	92
VI.3.4 Dimensionnement des canalisations du réseau	93
VI.4.Conclusion	96
Chapitre VII : Calcul technico-économique	
VII.1.Introduction	97
VII.2 Différents travaux à entreprendre	97
VII.2.1 Exécution des tranchées	97
VII.2.2 Pose du lit de sable	97

VII.2.3 Pose des conduites	97
VII.2.4 Epreuve de joint et de la canalisation	97
VII.2.5 Remblayage des tranchées	97
VII.2.6 Nivellement et compactage	98
VII.3 Estimation du forage et système de pompage immergé et la conduite de refoulement	98
VII.3.1 Forge et Système de pompage	98
VII.3.1.1. Devis pour le système de pompage	98
☐ Dimensions de bâtiment	98
□ Volume des travaux	98
VII.3.1.2.Estimation du cout de la station de pompage	100
VII.3.2 Conduite de refoulement	100
VII.3.2.1. Calcul des volumes des travaux de l'adduction bution :	100
VII.3.2.2. Les volumes des travaux de l'adduction :	102
a. Calcul du volume de déblai :	102
b. Calcul du volume du lit de sable	102
c.Calcul du volume de remblai :	102
VII.3.2.3. Le cout des travaux de l'adduction :	103
VII.4 Estimation des Frais des travaux sur le réservoir	103
VII.4.1 Terrassement	104
VI.4.2 Bétonnage	105
VII.4.3 Enduit et peinture	106
VII.4.4. Le cout des travaux des réservoirs :	106
VII.5 Estimation des frais du réseau de distribution	107
VII.5 .1. Calcul des volumes des travaux de distribution :	108
VII.5.2.1. volume de déblai	108
VII.5.2.2. Pose du lit de sable	109
VII.5.3.3.Remblais compacté	109
VII.5.4. Le cout des travaux de pose de canalisation :	110

VII.5.5. Accessories du réseau de distribution	
VII.5.6 Le cout totale du réseau de distribution:	
VII.6 Estimation du coût total du projet	
VII.7 Conclusion	
Conclusion	

Liste des tableaux

CHAPITRE I : PRESENTATION DE LA ZONE D'ETUDE

Tableau I. 1 :Caractéristiques géographiques la station étudiée	5
Tableau I. 2: pluie moyenne mensuelle station de Baghlia (1983-2012).	6
Tableau I. 3: Evolution des températures mensuelles (station de Baghlia village).	6
Tableau I. 4 : L'évaporation moyenne mensuelle à la station de Dellys	7
Tableau I. 5: Humidité relative à la station de Dellys.	7
Tableau I. 6: Vitesse du vent moyenne mensuelle à la station de Dellys.	8
Tableau I. 7 : Nombre de jours moyens de sirocco à la station de Dellyse.	8
CHAPITRE II : RESSOURCES EN SOL – RESSOURCES EN EAU	
Tableau.II.1. 1: Résultats des analyses des échantillons du sol du profil 1	15
Tableau.II.1. 2: Résultats des analyses des échantillons de sol du profil 02	
Tableau.II.1. 3: Propriétés hydrodynamiques des sols	
Tableau.II.2. 4: caractéristiques des forages.	
Tableau.II.2. 5: Mesures des niveaux statiques des eaux de la nappe de bas Sébaou	20
Tableau.II.2. 6: Résultats d'analyses physico-chimique de la nappe de Bas Sebaou	20
Tableau.II.2. 7: Caractéristiques chimique de l'eau d'irrigation.	21
Tableau.II.2. 8: caractéristique principales de la station pluviométrique (ANRH Alger)	23
Tableau.II.2. 9: Répartition mensuelle des précipitations (mm).	24
Tableau.II.2. 10: Test de validité des deux ajustements	26
Tableau.II.2. 11: Ajustement à la loi de Gauss (loi normale)	26
Tableau.II.2. 12: Calcul des pluies mensuelles pour l'année sèche (f _{req} = 80%)	27
CHAPITRE III : BESOINS EN EAU DES CULTURES	
Tableau III. 1 : Calcul de l'ET0 par le logiciel CROPWAT	32
Tableau III. 2: Précipitation efficace dans la zone d'étude.	33
Tableau III. 3: Coefficients culturaux (Kc) des différentes cultures.	34
Tableau III. 4: Scénarios d'occupation du sol par l'ensemble de l'exploitation du périmètre	35
Tableau III. 5: Occupation de sol en fonction des cultures	36
Tableau III. 6: Les assolements proposés	37
Tableau III. 7: le cycle végétatif des cultures envisagées.	
Tableau III. 8: Calcul des besoins en eau du Blé.	
Tableau III. 9: Calcul des besoins en eau de la betterave.	
Tableau III. 10 : Calcul des besoins en eau de la luzerne.	40

Tableau III. 11: Calcul des besoins en eau de l'Ail /oignon.	40
Tableau III. 12: Calcul des besoins en eau de la pomme de terre (saison)	41
Tableau III. 13: Calcul des besoins en eau de la tomate.	41
Tableau III. 14: Calcul des besoins en eau du chou.	42
Tableau III. 15: Calcul des besoins en eau de la carotte.	42
Tableau III. 16: Calcul des besoins en eau de l'orge en vert	43
Tableau III. 17: Calcul des besoins en eau de l'orge grain.	43
Tableau III. 18: Calcul des besoins en eau du Blé.	44
Tableau III. 19: Calcul des besoins en eau de la tomate.	44
Tableau III. 20: Calcul des besoins en eau de l'haricot.	45
Tableau III. 21 : Calcul des besoins en eau de l'Oignon/ail.	45
Tableau III. 22: Calcul des besoins en eau des petits pois	46
Tableau III. 23: Calcul des besoins en eau de la concombre.	46
Tableau III. 24 : Calcul des besoins en eau d'olivier.	47
Tableau III. 25: Calcul des besoins en eau de la vigne.	47
Tableau III. 26: Récapitulatif des besoins pour l'assolement 1	48
Tableau III. 27: Récapitulatif des besoins pour l'assolement 2. Tableau III. 28: Besoins en eau totaux de l'assolement	
CHAPITRE IV: ETUDE DU SYSTEME D'ADDUCTION	
Tableau IV. 1: Type de bornes en fonction de superficies des ilots	52
Tableau IV. 2: Calcul des débits des ilots et choix du type de bornes.	53
Tableau IV. 3: Caractéristiques des forages.	56
Tableau IV. 4: Calcul de la HMT pour divers diamètres de la conduite	59
Tableau IV. 5: Calcul des frais d'exploitation.	60
Tableau IV. 6: Variation des frais d'investissement en fonction du diamètre	61
Tableau IV. 7: Bilan technico-économique des diamètres choisis	61
Tableau IV. 8: Calcul de la HMT pour divers diamètres de la conduite	62
Tableau IV. 9: Variantes pour le choix du nombre de pompes	63
Tableau IV. 10: Pression atmosphérique en fonction de la côte	64
Tableau IV. 11: Pression de vapeur en fonction de la température	65
Tableau IV. 12: Dimensions du réservoir de stockage projeté	66
	00
Tableau IV. 13: Paramètres de pertes de charge de la loi de Lechapt-Calmon	

Tableau VI 1 : tableau récapitulatif des données nécessaires pour le dimensionnement	83
Tableau VI 2: Calcul de diamètre de la rampe	95
Tableau VI 3:Calcul de diamètre de la porte rampe	96
Tableau VI 4:Récapitulatif des calculs hydrauliques	96
CHAPITRE VII : ETUDE TECHNICO-ECONOMIQUE	
Tableau VII 1: Estimation de cout du système de pompage	100
Tableau VII 2: Calcul du volume du déblai.	102
Tableau VII 3: Calcul du volume du lit de sable.	102
Tableau VII 4 : Calcul du volume de remblai	103
Tableau VII 5 : Estimation du cout de pose de la conduite d'adduction.	103
Tableau VII 6 : Coût des travaux de réalisation du réservoir R1	106
Tableau VII 7: Coût des travaux de réalisation du réservoir R2.	107
Tableau VII 8 : Facture des différents types de conduites du réseau de distribution	108
Tableau VII 9: volume du déblai.	108
Tableau VII 10:volume du lit de sable.	109
Tableau VII 11 : volume du remblai compacté.	109
Tableau VII 12: Estimation du cout de pose de canalisation de la partie distribution	110
Tableau VII 13: Factures des pièces du réseau distribution	

Liste des figures

CHAPITRE I : PRESENTATION DE LA ZONE D'ETUDE

Figure I. 1 : Situation géographique de la wilaya de Boumerdes	2
Figure I. 2: Situation géographique de la plaine alluviale de Sébaou.	3
Figure I. 3: Carte de situation de périmètre d'étude (secteur 1).	4
Figure I. 4: Répartition des températures moyennes (Station de Baghlia)	6
Figure I. 5: Diagramme bioclimatique d'Emberger	9
Figure I. 6: Diagramme ombrothermique de Gaussen.	10
CHAPITRE II : RESSOURCES EN SOL – RESSOURCES EN EAU ET HYDI	ROLOGIE
Figure II.2. 1:Carte piézométrique la nappe de bas Sebaou	19
Figure II.2. 2: Diagramme de classification des eaux d'irrigation.	22
Figure II.2. 3 : Ajustement à la loi de Gauss.	26
CHAPITRE IV: ETUDE DU SYSTEME D'ADDUCTION	
Figure IV. 1 : Schéma de la variante d'adduction	55
Figure IV. 2: Résultats de l'étude technico-économique (conduite 01)	61
Figure IV. 3: Résultats de l'étude technico-économique (conduite 02)	62
Figure IV. 4 : Courbe caractéristique de la pomp	64
CHAPITRE V : CHOIX DES TECHNIQUES D'IRRIGATION	
Figure V. 1 : Irrigation par ruissellement.	78
Figure V. 2: Irrigation par submersion.	78
Figure V. 3: Irrigation à la raie.	79
Figure V. 4: Irrigation par goutte à goutte.	81
CHAPITRE VI : DIMENSIONNEMENT A LA PARCELLE	
Figure VI.1 : Dispositifs d'installation des asperseurs	86
CHAPITRE VII: ETUDE TECHNICO-ECONOMIQUE	
Tableau VII .1: Schéma d'une tranchée.	101

Liste des planches

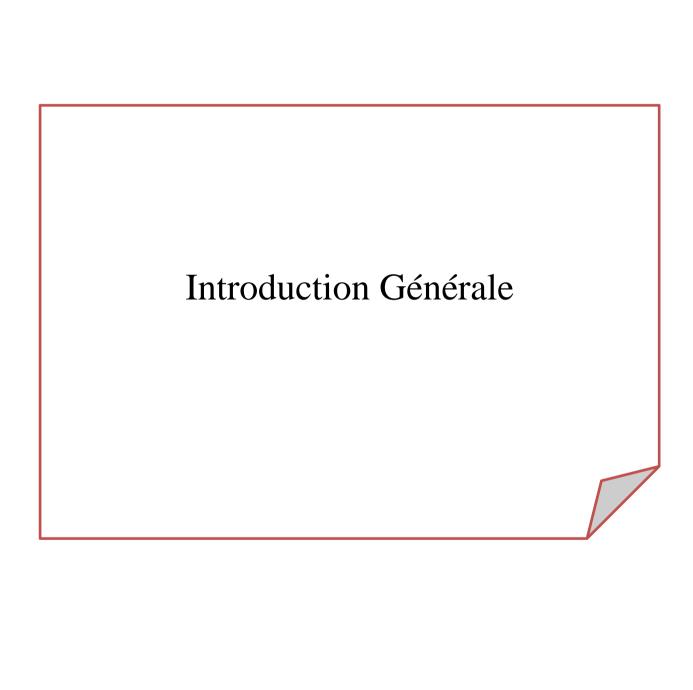

PLANCHE 01 : Plan parcellaire du périmètre.

PLANCHE 02: Plan réseau d'adduction.

PLANCHE 03 : Plan de bornage .

PLANCHE 04 : Profil en long de la conduite de distribution .

PLANCHE 05: Plan du réseau Goutte a goutte.

Introduction générale

Notre planète est recouverte de 70% d'eau (Océans, mères, fleuves....etc.), mais la plupart de cette eau est salé ou inaccessible, l'eau dont nous avons besoins pour vivre ne représente à peine 1% de toute l'eau de la terre et presque 70% de cette quantité mondiale va à l'agriculture, cette richesse si rare et si précieuse les hommes doivent donc la partager ,et face à l'augmentation de la population mondiale la gestion de cette ressource est devenue un enjeu majeur de toute la planète.

L'irrigation moderne qui est la base d'un aménagement hydro agricole est une des solutions privilégiées par notre pays face aux défis de la sécurité alimentaire et à la gestion des risques liés à l'exploitation irrationnelle de l'eau, elle est aussi considérée comme une innovation transformatrice entérinant des degrés de chargement plus profonds des systèmes de production agricole et de l'économie de l'eau.

C'est dans ce contexte que s'inscrit ce travail et qui concerne l'aménagement hydro agricole du périmètre de Bas Sebaou secteur 1.

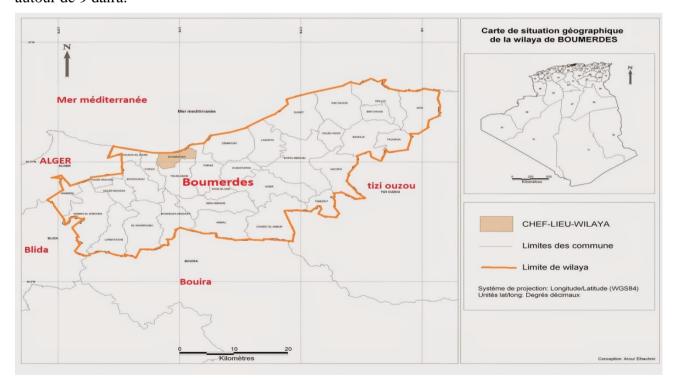
Ce périmètre qui sera alimenté à partir de deux forages présente une superficie totale du périmètre 200 ha.

Les parcelles de notre périmètre seront équipés par les modernes techniques d'irrigation (asperseur et goute a goute) qui représentent une solution d'une irrigation innovante multiplier d'avantages technico-économique.

Chapitre I : Analyse des Conditions Naturelles

Chapitre I : Analyse des Conditions Naturelles

I.1.Introduction


Ce chapitre est consacré à la description détaillée de la zone d'étude, du point de vue géographique, climatologique, socio-économique et son contexte morphologique, afin de déterminer les différents paramètres qui vont nous permettre de caractériser la zone d'étude et nous aider à connaître la nature du climat de la zone d'étude, ce qui est indispensable dans un projet d'irrigation.

I.2. Situation géographique de la wilaya de Boumerdes :

La wilaya de Boumerdes est une wilaya côtière du centre du pays avec 100 Km de profil littoral. Elle est situé dans la région Nord-centre de l'Algérie, localisée entre les longitudes 3° et 45° "Est, et les latitudes Nord "36° et 40° ", d'une superficie de 1456.16 km2, elle est délimitée par :

- Au nord, par la mère méditerranée entre Boudouaou Elbahri et Afire ;
- À l'est, par la wilaya de Tizi Ouzou(massif de la haut Kabyle);
- À l'ouest, par la wilaya d'Alger;
- Au sud-ouest, par la wilaya de Blida (plaine de la Métidja);
- Au sud, par la wilaya de Bouira(plateau de Bouira).

Administrativement la wilaya de Boumerdes compte actuellement 32 communes regroupées autour de 9 daïra.

Figure I. 1 : Situation géographique de la wilaya de Boumerdes.

I.3 Présentation de la plaine alluviale du Sebaou

Administrativement, la plaine alluviale du Sebaou chevauche entre deux wilayas : Tizi Ouzou (haut et moyen Sebaou) et Boumerdès (bas de Sebaou), et se localise à 80 Km à l'Est d'Alger voire la Figure (I-2).

La surface drainée par l'oued Sebaou et ses affluents (bassin versant) est limitée entre les latitudes 36°27' et 36°55' Nord et les longitudes 3°55' et 4°53' Est.

Cette région est caractérisée par un relief typiquement montagneux, elle se délimite:

- Au nord-ouest par la mer méditerranée ;
- Au nord et nord est par la chaîne littorale ;
- Au sud et sud est par la chaîne du Djurdjura ;
- A l'ouest par les chaînons de Naciria et Sidi-Ali-Bounab orienté ENE-WSW.

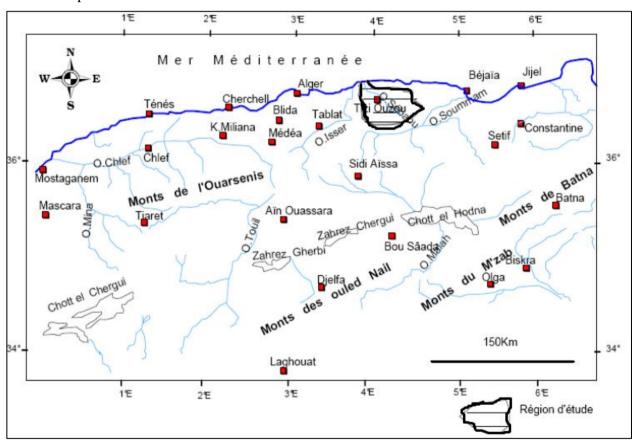


Figure I. 2: Situation géographique de la plaine alluviale de Sébaou.

I.4. Présentation du périmètre d'étude

Le périmètre d'étude est situé dans la région Nord-Ouest de la plaine alluviale du bas Sebaou, l'aire identifiée pour l'irrigation se trouve au sud-du chef- lieu de la commune de Baghlia. Elle est constituée de deux secteurs (secteur 01 et secteur 02 de Dar Baida). Dans cette étude on s'intéresse au secteur 1, Il est limité par :

- Au Nord par la commune de Baghlia;
- Au sud par les terrains agricoles ;

- à l'est par oued Sebaou;
- à l'ouest par la route qui liée entre la commune de Baghlia et Nasiria ;

Figure I. 3: Carte de situation de périmètre d'étude (secteur 1).

I.5. Etude géologique

La vallée du Sebaou est constituée, par des dépôts détritiques où sont incorporés des horizons argileux discontinus. Cette formation détritique d'âge quaternaire représente l'aquifère de la vallée, constituant le remplissage d'un synclinal à cœur miocène, on retrouve dans cette dernière un matériau hétérogène, formé de sables, galets, graviers et limons.

La lithologie et la tectonique ont imposé une grande diversité de paysages et une surface d'extension de la vallée limitée où se côtoient des reliefs parallèles d'orientation Est-ouest et des dépressions renfermant des plaines étirées, plus étendues vers l'aval.

La vallée de l'oued Sebaou est une dépression comblée d'alluvions formant un complexe de terrasses. (ANRH, 2010 Blida).

Par ailleurs, le système des terrasses est emboîté dans le bas Sebaou, d'où l'existence de relation hydraulique entre elles favorisant ainsi une alimentation latérale. Les bordures et le lit mineur de la vallée de l'oued sont formés par des marnes Imperméables ou argiles de l'Oligocène au Pliocène. A l'exception des formations perméables de la chaîne calcaire et des alluvions de l'oued Sebaou, les formations du bassin versant sont souvent "imperméables".

I.6. Géomorphologie/Relief

La géomorphologie a pour objet, l'étude des caractères et des modifications de la surface de la terre elle fait partie des facteurs permanents, leur variation influe sur les modalités des écoulements superficiels et leur analyse permettra une meilleure compréhension des causes de variation des régimes hydrogéologiques, le bassin versant de l'oued Sebaou présente une grande diversité de paysage. Il apparait comme une zone de moyenne montagne, dont l'altitude moyenne est de 497 m.

I.7. Etude climatologique

Les données météorologiques et climatologiques sont très importantes dans la planification et la gestion des projets d'irrigation. Elles permettent de délimiter une région en différentes zones agro-métrologiques spécifiques pour chaque spéculation agricole.

Dans un projet d'irrigation, les facteurs climatiques les plus déterminants sont la température de l'air, l'humidité relative, l'intensité des vents et leur direction ; ils constituent un ensemble d'éléments décisifs.

I.7.1. Choix de la station de référence

Les stations climatologiques de Dellys et de Baghlia Village sont situées sur la même altitude d'après la carte pluviométrique de l'Algérie du Nord, pour notre périmètre la station de Baghlia a été choisie pour sa proximité du périmètre d'etude :

Tableau I. 1: Caractéristiques géographiques la station étudiée

Nom de la	code	coordonnées		Altitude	Période	Nbre d'années
station		X(m)	Y(m)		d'observation	d'observer
Baghlia	0022002	603.5	390.0	30	1980-2012	32
village						

(source :ANRH d'Alger).

I.7.2.Pluies mensuelles

Pour la pluviométrie, nous avons exploré une série d'observations de 32 ans relevée à partir de la station de Baghlia.

Les pluies moyennes mensuelles représentées dans le tableau I.2 traduisent clairement les variations saisonnières et leur distribution à l'échelle annuelle.

On remarque l'existence des saisons sèches qui correspond aux mois de juillet à Août, avec des pluies moyennes mensuelles 2.9mm, 7.5mm respectivement, les autres mois sont relativement humides.

Tableau I. 2: pluie moyenne mensuelle station de Baghlia (1983-2012).

Mois	S	О	N	D	J	F	M	A	M	J	J	A	Année
P _{moy} (mm)	35.4	64.3	103.3	123.7	107.1	92.0	71.9	75.6	61.3	9.2	3.1	6.5	753.3

(source :ANRH Blida).

I.7.3. Températures de l'air

La température représente un facteur essentiel qui conditionne l'évapotranspiration des cultures et intervient dans la germination et le développement des plantes, elle se caractérise par une amplitude thermique accentuée entre le jour et la nuit. Le tableau I.3 donne la moyenne des températures mensuelles et annuelles (C°) :

Tableau I. 3: Evolution des températures mensuelles (station de Baghlia village).

T(C°)/M	Jan	Fév	Mars	Avril	Mai	Juin	Juil	Aout	Sept	Oct	Nov	Déc
Tmin°C	6.1	6.2	8.4	9.7	13.9	14	18	19	16	13.8	11.6	7
Tmoy°C	10,5	10,9	13	15	18,5	22,3	25,8	26,5	23,7	19,4	14,8	11,5
Tmax°C	15	15	18	21	26	31	33.6	34	31.4	25	18	16

Source: ONM Alger

Avec : Tmin: moyenne de tous les minima observes pour chaque mois,

Tmax: moyenne de tous les maxima observe pour chaque mois,

Tmoy: moyenne mensuelle.

Le graphe de variation des températures est présenté comme suit :

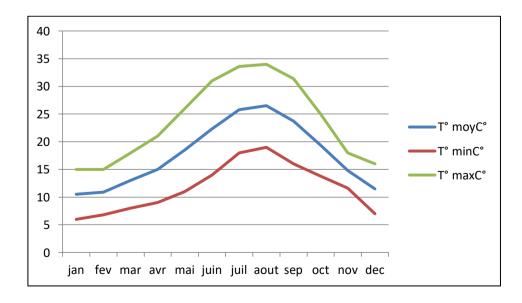


Figure I. 4: Répartition des températures moyennes (Station de Baghlia).

D'après le tableau I.3 on remarque que le mois le plus froid est janvier avec une moyenne mensuelle de $10 \, \text{C}^{\circ}$, et les mois les plus chaudes sont juillet et aout avec une moyenne de $26 \, \text{C}^{\circ}$, la température moyenne annuelle est de $17,6 \, \text{C}^{\circ}$.

I.7.4.L'évaporation

L'évaporation est un passage progressif de l'état liquide à l'état gazeux, son effet est de réduire la température de l'environnement.

Tableau I. 4 : L'évaporation movenne mensuelle à la station de Dellys .

				J				- 5				
mois	jan	fév	mars	avril	mai	juin	juil	aout	sep	oct	nov	Déc
Evaporation	53.63	55.16	80.6	95.7	123.7	147.6	161.8	149.4	118.5	85.8	64.5	55.4
(mm)												

(source : ONM Alger).

I.7.5. L'humidité relative :

C'est un élément important du cycle hydrologique contrôlant l'évaporation du sol et la couverture végétale et qui représente la quantité réelle de vapeur d'eau contenue dans l'air par rapport à celle que pourrait contenir s'il était saturé à la même température.

L'humidité relative de l'air moyenne annuelle s'élève dans la région à 59%.

Tableau I. 5: Humidité relative à la station de Dellys.

mois	jan	fév	mars	avril	mai	juin	juil	aout	sep	oct	nov	Déc
Humidité (%)	73	76	75	75	77	70	71	75	74	76	72	73

(source : ONM Alger).

L'analyse du tableau I.5 fait ressortir l'humidité moyenne annuelle qui est de 74%.

I.7.6 Le vent :

Le vent est un facteur important sur le plan d'irrigation, car il représente l'élément déterminant dans le choix de type d'irrigation (aspersion).

La région d'étude renferme peu de station de mesures du vent. Nous avons donc utilisé les données de la station de Dellys.

mois	jan	fév	mars	avril	mai	1	juil	aout	sep	oct	nov	Déc
Vmoy (m/s)	2.7	3,0	3,0	3,2	3,3	3,7	3,6	3,5	3,2	3,1	2,8	2,7
Vmax (m/s)	18	27	26	25	22	21	47	25	20	21	24	20

Tableau I. 6: Vitesse du vent moyenne mensuelle à la station de Dellys.

(source : ONM Alger).

La vitesse moyenne du vent à la station de Dellys varie de 2,7 m/s au mois d'août pour atteindre un maximum de 3,9 m/s au mois de février.

I.7.7. Le Sirocco

C'est un vent saharien, très sec et très chaud qui souffle sur l'Afrique du Nord, il a un effet négatif sur les cultures car il influe sur l'evapotranspiration des plantes. Le nombre de jours moyen de siroco (1996 – 2008), est indiqué dans le tableau I.7 :

Tableau I. 7: Nombre de jours moyens de sirocco à la station de Dellyse.

Mois	jan	Fév	mars	avril	mai	juin	juil	aout	sep	oct	nov	Déc
sirocco	0	0	0	0	0	0	0	0	0	0	0	0

(Source : ONM Alger).

I.7.8.La grêle et la neige

Ce sont des phénomènes très localisés. Nous disposons du nombre de jours de neige et de grêle à la station de Batna. Le nombre de jours de grêle est de 9 jours/an, avec un maximum au mois de Septembre (2 jours) Donc on peut considérer que la grêle est peu fréquente dans cette région.

I.7.8.1 Calcul des indices Agro-métrologiques

Pour déterminer le type du climat et l'interférence des différentes variables de ce climat et leur action sur les plantes, nous avons deux facteurs essentiels : la pluviométrie et la température. Les indices les plus connus sont ceux de De Martone et le quotient ombrothermique d'Emberger.

I.7.8.2. Quotient Ombrothermique d'Emberger

Cet indice a pour but de déterminer l'étage bioclimatique :

$$Q = \frac{1000.P}{(M+m)(M-m)/2} = \frac{2.1000.P}{M^2-m^2};$$

Avec:

Q : coefficient Ombrothermique d'Emberger.

P: précipitation moyenne annuelle (mm).

M: moyenne des températures maximales (Kelvin).

m : moyenne des températures minimales (Kelvin).

Pour : P=746.3mm; M=23.66°C et m=11.68°C

$$Q = \frac{2.1000.P}{M^2 - m^2} = \frac{2.1000.746.3}{(23.66 + 273.15)^2 - (11.68 + 273.15)^2} = 214.14$$

D'où O=214.14

En portant la valeur de Q dans le diagramme bioclimatique d'Emberger, et en fonction de la température moyenne minimale du mois le plus froid (6°C), on peut confirmer que notre région se situe dans :

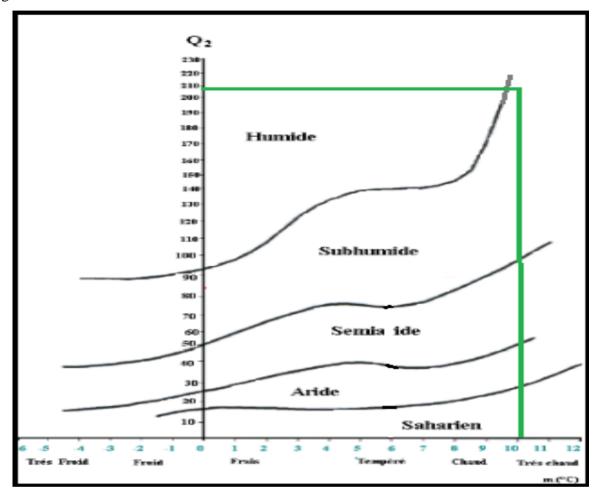


Figure I. 5: Diagramme bioclimatique d'Emberger

-l'étage bioclimatique : subhumide

I.7.8.3 Classification du climat selon l'indice de Bagnouls et Gaussen :

Pour Gaussen un mois « sec » si le quotient des précipitations mensuelles « P » exprimé en (mm), par la température moyenne « T » exprimé en (°C) est inférieur à deux (02).

La représentation sur une même graphique de la température et des précipitations moyennes mensuelle, avec en abscisse les mois, permet d'obtenir les diagrammes Ombrothermique qui mettant immédiatement en évidence les saisons sèches et les saisons pluvieuse (GERARD, 1999).

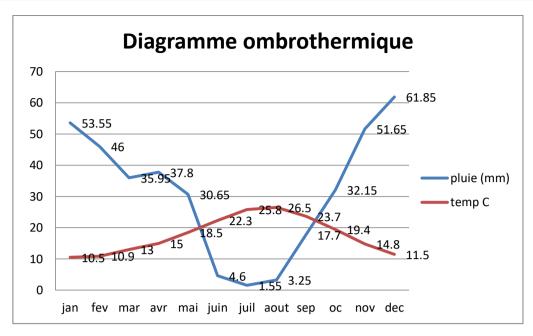


Figure I. 6: Diagramme ombrothermique de Gaussen.

Interprétation:

Les deux courbes se croisent et la surface délimitée mesure l'intensité de la saison sèche et la saison humide, la différence des abscisses nous donne la durée de la saison ; donc :

- La saison humide est de (6) mois allant du mois d'Octobre jusqu'au mois de Mai.
- La saison sèche est plus marquée, s'étalé sur Cinq (5) mois, allant du mois de mai jusqu'au fin de mois de Septembre.

I.8 Etude socio-économique

La vocation de la wilaya de Boumerdes est agricole par excellence, ce qui lui a permis de bénéficier d'un nombre important de projets d'agriculture. Elle contribue en outre, à animer la dynamique économique et commerciale tant au niveau local que national.

I.8.1 Population

La commune de Baghlia compte 18052 habitants. Le tableau suivant donne la répartition de la population par sexe et par commune.

Tableau I.10: Répartition de la population.

Commune	Superficie (km² <u>)</u>	Population totale	Densité (hab/km²)
Baghlia	61	18052	296

Source : monographie de la wilaya de Boumerdes

I.8.2 Agriculture

La S.A.U de la wilaya est estimée près de 65 738 ha (66% de la S.A.T), dont 12 400 ha sont irrigués pour la présente compagne agricole, la superficie irriguée dans la wilaya se repartie a raison de 60% pour les cultures maraichères ,17% pour l'arboriculture ,11% pour les agrumes ,10% pour les vignes, et1% por les grandes cultures, a-t-elle détaillé.

I.9 Argumentation du projet d'aménagement de mise valeur du périmètre de Bas Sébaou

I.9.1 Situation actuelle

L'analyse de la situation actuelle du périmètre d'étude montre que l'activité agricole dans la zone est restée traditionnelle. les viticultures, constituent la principale ressource des agriculteurs, les rendements à l'hectare, déjà faible, sont en régression par suite de l'appauvrissement des sols et la difficulté de maitriser l'irrigation au temps nécessaire.

Le facteur limitant de cette situation est l'eau. L'absence de systèmes d'irrigation modernes a freiné tout développement agricole dans cette zone.

I.9.2 Situation projetée

Le présent projet a une portée nationale et concerne les deux secteurs les plus importants de l'économie national; l'eau et l'agriculture, les objectifs attendus par la modernisation des réseaux d'irrigation sont :

- L'amélioration de la productivité.
- La réalisation d'économies substantielles sur les ressources en eau.
- L'amélioration de l'efficience de l'utilisation de l'eau en irrigation par :
 - -la reconversion a l'irrigation localisée.
 - -l'amélioration des rendements des rendements des réseaux d'irrigation.

I.10 Conclusion

Le périmètre du bas Sebaou situé dans la wilaya de Boumerdes, jouit d'un climat et d'une position relativement stratégique.

En effet, il bénéficie d'un climat méditerranéen de type subhumide, l'hiver est pluvieux et adouci par la présence de la mer et un été chaud.

De plus, vu ses caractéristiques climatiques, le périmètre offre des potentialités hydroagricoles importantes qui doivent être exploitées en introduisant des systèmes d'irrigation modernes afin d'améliorer le secteur d'irrigation dans cette région du pays.

Chapitre II: Ressources en sol et eau

Chapitre II: Ressources en sol et eau

II.1. Ressources en sol

II.1.1Introduction

L'étude pédologique permet de connaître les propriétés (physiques, chimiques et biologiques) du sol constituant le terrain à exploiter, c'est à partir des résultats de l'analyse effectuée qu'on peut attribuer une classe au sol concerné en prenant en compte la nature de distribution des caractéristiques et des contraintes relevant du sol.

II.1.2. But de l'étude pédologique :

L'étude pédologique du périmètre a pour buts :

- ❖ D'apprécier les potentialités des terres vis-à-vis l'irrigation, en mettant l'accent sur une hiérarchie d'aptitude des différents zones et sur l'existence des contraintes éventuelles pour l'aménagement.
- ❖ De fournir à l'ingénieur irrigateur les données fondamentales caractérisant les relations entre le sol et l'eau, à savoir la dose d'irrigation et la vitesse d'infiltration, qui conditionnent la conduite et l'organisation des arrosages.

II.1.3. Classification des sols de périmètre du bas sebaou :

La classification des sols utilisée est la classification française (CPCS, 1967), en usage à la direction de pédologie de l'ANRH.

La prospection pédologique pour la vallée de Bas Sebaou nous a permis de mettre en évidence les deux classes suivantes :

- Classe des sols peu évolués .
- Classe des vertisols.

II.1.3.1 Classe des sols peu évolués

Ce sont des sols jeunes qui se distinguent par une faible altération des minéraux et une faible teneur en matière organique, ils sont représentés par des sols d'apport alluvial et des sols d'apport colluvial.

❖ Sols d'apport alluvial :

Ce sont des sols qui se caractérisent par les dépôts récent réalisé par les rivières et les fleuves a la faveur des crues, ils sont généralement fertiles et facile à cultiver.

Sols d'apport colluvial:

Ce sont des sols de bas pente, ils sont formés a partir des matériaux arrachés par l'érosion aux pentes situées au-dessus ces sols sont le plus sauvant dépourvus de nappe d'eau souterraine.

II.1.3.2 Classe des vertisols

Ce sont des sols caractérisés par une texture lourde qui est enrichie en argile dans laquelle on trouve un grand pourcentage de minéraux argileux de types : Montmorillonite. La formation des sols est influencée par une humidité assez abondante.

II.1.4 Les profils pédologiques

Le profil pédologique permet de caractériser en temps réel de l'état d'un sol, à partir d'une observation visuelle, complétée par quelques déterminations analytiques en tenant compte de l'environnement. L'examen du profil pédologique permet de découvrir la succession des couches ou l'horizon expliquant la formation et évolution du sol, sa pédogenèse permet de classer le sol d'après son type pédologique. Les profils décrits et analysés ont été réalisés par l'ANRH (2005).

II.1.4.1 Description morphologique des profils :

1) Profil n°1:

- Lieu: baghlia (w.Boumerdes);
- Coordonnées : X= 615.535km, Y= 406.504km;
- Pente:,de 1% a 3% environ;
- Géomorphologie : colline ;
- Aspect de surface : une charge caillouteuse composé de galet et de cailloux, de 5a10cm de diamètre et occupent 50% de la surface totale des sols colluviaux.
- Drainage externe : bon ;
- Culture en place : pastèque.

Classification : sol peu évolué, non climatique, d'apport colluvial hydro-morphe, sur argile, limono-argileux.

II.1.4.2 Description macro morphologique des profils :

H1: 0 - 30 cm : frais, structure particulaire; texture L, (7,5 YR 2/2), très nombreuse racines fines et denses, bonne activité biologique, poreux, friable, présence de galets, effervescence à l'HCL est nulle..

30 - 85 cm: frais, structure particulaire, texture LA, (7,5 YR 3/1), très peu de racines fines et denses, activité biologique faible moyenne, poreux et friable, nombreuse taches de rouille de couleur 2.5 YR 6/8,effervescence à l'HCL est nulle, limite nette.

85 - 120 cm : frais, structure particulaire; texture A, (7,5 YR 3/1), aucune activité biologique, poreux, friable, effervescence à l'HCL est nulle.

L'analyse physico-chimique faite au laboratoire nous a permis de mieux apprécier les propriétés en particulier texturales et hydrodynamiques de notre sol. Les analyses physico-chimiques des sols sont résumées dans le tableau II.1 :

Profondeur (cm)		0 - 30	30 - 85	85 - 120
	Argil	e %	56	47.75	35.5
	Limo	ns fin %	18.5	17.5	32.75
Granulométrie	Limo	ns grossier %	13.35	10.77	15.8
Granulometrie	Sable	s fins %	9.67	19.51	8.48
	Sable	s grossiers %	2.48	13.47	7.47
	•	C%	1,22	0,81	0,7
Matière organiq	ue	MO%	2.3	0.83	/
		N%	0,2	0,17	/
		C/N	6.1	4.76	/
Calcaire total %			10.83	5.83	5.83
Calcaire actif %			4.12	/	/
Ph			6.31	6.86	7.04
ce dS/m			0.13	0,08	0,08
		Ca meq/100	22.5	26.5	25.5
Complexe absor	bant	Mg meq/100	4.11	1.46	2.46
		K meq/100	0.86	0.67	0.7
		Na meq/100	0.46	0.37	0.42
P2o5 assimilable	le (ppm	n)	traces	traces	5.2
K assimilable n	neq/10	0	0.48	0.25	0.17

D'après les analyses de granulométrie des échantillons de sol, et d'après le triangle texturale (**Annexe I**). On peut classer notre sol comme un sol limono-argileux.

Profil n°2:

- Lieu: baghlia (w.Boumerdes);
- Coordonnées : X= 611.671km, Y= 406.403km;
- Pente:,de 0-3% environ;
- Géomorphologie :bas de colline ;
- Drainage externe : possible ;
- Culture en place : céréales.

Classification: vertisols à drainage externe possible, a structure, sur marne argilolimoneux.

II.1.4.3 Description macro morphologique des profils :

- **H1: 0 24 cm :** Horizon noirci couleur 2.5Y3/1 texture AL structure polyédrique fine, fines radicelle abondantes, fentes de retrait important environ 50cmet 4 a 6cm de largeur, effervescence à l'HCL faible, état plastique compacte et la transition est nette.(semelle de labour).
- **24 72 cm:** Horizon noirci humide couleur 5Y3/2 texture AL structure polyédrique moyenne, présence de quelques racines morphe et accentués, effervescence à l'HCL moyenne, porosité bonne, facettes lisses, la transition est nette..
- **72 120 cm :** couleur 5YR3/2 texture A, structure polyédrique grossière, facettes lisses plus développés, morphe peu accentué avec très peu de taches de rouille.

L'analyse physico-chimique faite au laboratoire nous a permis de mieux apprécier les propriétés en particulier texturales et hydrodynamiques de notre sol. Les analyses physico-chimiques des sols sont résumées dans le tableau II.2 :

Tableau. II.1.2: Résultats des analyses des échantillons de sol du profil2.

Profondeur (cm	Profondeur (cm)			24 - 72	72 - 120
	Argil	e %	28.99	33.05	25.5
	Limo	ns fin %	14.05	14.69	15.25
Granulométrie	Limo	ns grossier %	12.93	6.94	9.83
Granulometrie	Sable	s fins %	31.19	30.5	36.81
	Sable	s grossiers %	12.84	14.82	12.61
		C%	1.22	0.73	/
Matière organiq	ue	MO%	1.56	1.2	/
		N%	0.25	0.2	/
		C/N	4.88	3.65	/
Calcaire total %			8.75	11.25	11.25
Calcaire actif %			1.62	1.5	3.25
Ph			8.41	8.4	8.07
ce dS/m			0.5	0.17	0.36
		Ca meq/100	25	26	19
		Mg meq/100	0.82	0.82	0.82
Complexe absor	bant	K meq/100	1.34	0.96	0.73
		Na meq/100	0.67	0.72	0.67
P2o5 assimilabl	e (ppm	n)	0.48	0.71	0.56
K assimilable n	neq/100	O	0.79	0.46	0.23

Interprétation : Sur la base de la démarche présentée ci-dessus, deux textures ont été définies, l'une limono-argileuse et l'autre limoneux-sableuses.

II.1.5 . Caractéristiques hydrodynamique de sol

Les paramètres hydrodynamiques, qui interviennent entre autres dans le calcul de la dose d'irrigation sont résumés dans le tableau II.3 :

Tableau II.1.3: Propriétés hydrodynamiques des sols.

Texture	Argileux-limoneux
Capacité au champ (%)	28
Point de flétrissement (%)	16
Vitesse de perméabilité	2.05
(10-5m/s)	
Densité apparente	1.4

II.1.6. Aptitude culturales des sols irrigués:

La détermination des aptitudes culturales est faite en tenant compte des exigences des divers types de cultures à l'égard des conditions du sol et du climat qui constituent le milieu cultural, en procédant par des critères de base tels que la texture et la structure du le sol, la profondeur des sols utilisables par les racines.

A cet effet, les différentes cultures qui s'adaptent aux sols de notre périmètre, et en tenant compte des conditions climatiques de la région, sont comme suite :

- ❖ Les cultures maraîchères: telles que la tomate, l'oignon et l'ail la pomme de terre, l'haricot, pastèque, melon, aubergine etc.
- **Les cultures céréalières :** blé (Triticum), orge.
- **les cultures fourragères.** Le bersim, ray-grass, le sorgho et le triticale.
- ❖ l'arboriculture fruitière : abricotier, sur le porte greffe (franc d'abricotier), l'amandier sur franc ou sur le porte greffe (pêcher x amandier), cerisier, la vigne, le pêcher sur le porte greffe, l'amandier le prunier.

II.2. Ressources en eau

II.2.1 Introduction

Dans cette partie on va présenter les ressources en eau qui vont alimenter notre périmètre, en en faisant une étude détaillé sur la localisation et la quantité des eaux nécessaires, ainsi que la leurs qualité qui conditionnent l'étude de notre projets d'aménagement hydro-agricole.

II.2.2. Ressources en eau du périmètre :

Deux forages sont destinés à l'irrigation de notre périmètre, ils sont situés auprès d'oued Sebaou le coté est du périmètre ; les différentes caractéristiques des forages sont détaillées comme suit :

Tableau II.2.1 : caractéristiques des forages.

forage	Altitude (m)	Niveau statique (m)	Niveau dynamique (m)	Débit de forage L/S
F1				
	Z =21.48	-10.80	-13.80	75
F2				
	Z=21.42	-10.70	-13.70	75

II.2.2. Hydrogéologie de la zone d'étude

Les formations aquifères de la vallée du Sébaou sont constituées par des dépôts détritiques où sont incorporés des horizons argileux discontinus. Ces formations détritiques d'âge quaternaire représentent l'aquifère de la vallée, qui constitue le remplissage d'un synclinal à cœur miocène, on retrouve dans cette dernière un matériau hétérogène, formé de sables, galets, graviers et limons.

II.2.2.3 Étude de la piézométrie :

La piézométrie de la vallée de Sébaou montre que la nappe est en relation hydraulique avec les eaux de surface drainées par l'oued et ces affluents. En basses eaux, l'oued alimente la nappe et en période des hautes eaux, il y a remontée du niveau de la nappe qui alimente ainsi le cours d'eau superficiel et ceci par endroit.

D'après l'étude de Chadrine (1972), la profondeur de la nappe à été déterminée par observation sur un réseau de point d'eau de densité variable. Dans le bas Sébaou cette profondeur des eaux souterraines augmente pour se stabiliser à la profondeur de 3 à 3.5m par rapport au sol (données pour la période d'étiage 1972) [Chadrine. Y ,1972].

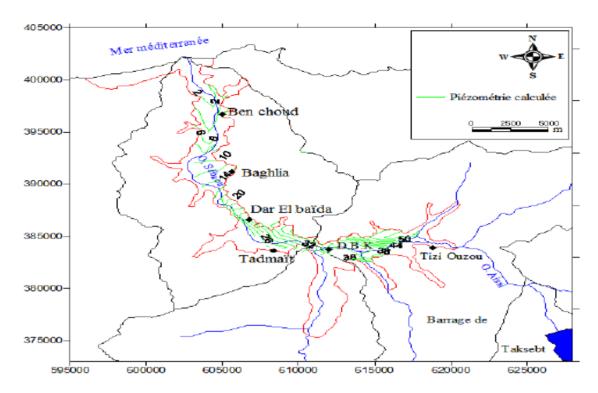


Figure II.2. 1: Carte piézométrique la nappe de bas Sebaou.

Le niveau statique des bases et hautes eaux de la nappe

Le tableau **II.2.1** présente les mesures de niveau statique des hautes eaux de la nappe de bas Sébaou.

Tableau II.2.1 Mesures des niveaux statiques des eaux de la nappe de bas Sébaou.

Niveau de mesure	Profon	deur (m)
	Hautes aux	Bas eaux
P07	10.88	10.7
P08	13.08	11.05
P09	12.54	13.08
P10	13.48	13.31
P11	12.69	13.44

II.2.2.4 propriétés physiques et chimiques de la nappe :

Les résultats d'analyse physico-chimique de la nappe de Bas Sebaou, pendant la période de prélèvement d'avril 2017 sont donnés dans le tableau II.2.2:

Tableau II.2.2 : Résultats d'analyses physico-chimique de la nappe de Bas Sebaou.

N°de	Ca ²⁺	Mg^{2+}	Na ²⁺	K ⁺	Cl	SO ₄ ²⁻	HCO ₃	NO ₃	pН	CE	Résidu
puit	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)		(\mu s/cm)	sec(mg/l)
1	88	8	28	2	37	41	204	2	8	500	759
2	58	2	21	2	62	49	198	3	8	600	1134
3	102	8	21	2	62	49	235	2	7.9	920	475

Source: ANRH Blida.

-L'échantillon le plus proche de site d'étude est le puit (N°:P241/BS).

II.2.3 Etude de la qualité de l'eau d'irrigation :

Il est nécessaire d'étudier la qualité d'eau d'irrigation avant tout projet d'aménagement agricole .pour cela il faut vérifier certains facteurs plus importants qui sont :

- Risque de Salinité;
- Risque de Sodium (Degré d'Adsorption du Sodium ou SAR) ;
- Le pH et la toxicité.

Les données sur le tableau II.2.3 sont déterminées par l'ANRH à partir des prélèvements effectués à la station hydrométrique.

Tableau II.2.3: Caractéristiques chimique de l'eau d'irrigation.

Paramètres	valeurs
CE(\mu s/cm)	600
Ca (mg/l)	58
Cl(mg/l)	62
Na (mg/l)	21
Mg (mg/l)	2
K(mg/l)	2
SO4 (mg/l)	49
Rs105 (mg/l)	759
T(°C)	14
PH	8
HCO3 (mg/l)	198

II.2.4. Classification des eaux pour l'irrigation :

Les deux premiers critères à savoir la salinité de l'eau et l'alcalinité sont d'importance majeure, car un excès de sel augmente la pression osmotique de l'eau du sol, provoquant une sécheresse physiologique et un flétrissement des plantes.

La Conductivité électrique (CE) :

La quantité totale des sels est exprimée, généralement, par la conductivité électrique (CE), elle est une propriété associée à la mobilité des ions exprimée en mmhos/cm.

Le diagramme de Riverside (1954) permet de faire une classification basée sur la mesure de la conductivité à 25°C et exprimée en mmhos/cm:

- C1 (CE< 0.250 mmhos/cm): Eaux utilisables pour l'irrigation de la plupart des cultures sur la plupart des sols.
- C2 (CE comprise entre 0.250 et 0.750 mmhos/cm) : Eaux utilisables avec un léger lessivage. Les plantes peuvent pousser dans la plupart des cas, sans pratique spéciale de Contrôle de la salinité.
- C3 (CE comprise entre 0.750 et 2.250 mmhos/cm) : Eaux inutilisables pour les sols à drainage restreint, même avec un bon drainage, des pratiques spéciales de contrôle de la salinité sont nécessaires.
- C4 (CE 250 C > 2.250 mmhos/cm): Eaux inutilisables pour l'irrigation, exceptionnellement, elles peuvent être utilisées sur des sols très perméables avec un bon drainage. Les plantes cultivées devront être très tolérantes aux sels.

L'eau souterraine du bas Sebaou prévue pour l'irrigation du périmètre étudié a une conductivité électrique moyenne **CE=0,6 mmhos/cm**.

a) Le SAR ou risque d'alcalinité

Pour maintenir les conditions d'infiltration adéquates dans les sols irrigués, il faut veiller à empêcher les complexes d'échange du sol de se charger en Na+. On exprime le danger de sodicité d'une eau d'irrigation par le SAR (Sodium Absorption Ratio).

On distingue quatre (4) classes:

❖ Classes S1: S.A.R< 10

L'eau contenant une faible quantité de sodium, peut être utilisée pour l'irrigation de presque tous les sols sans qu'il y ait danger d'alcalinisation.

❖ Classes S2: 10<S.A.R<18

La quantité de sodium est qualifiée de moyenne. Le danger d'alcalinisation du sol est appréciable dans les sols à texture fine et à forte capacité d'échange. Ces eaux peuvent poser des problèmes d'alcanisation à long terme. Elles sont utilisables sur les sols à texture grossière ou les sols organiques ayant une bonne perméabilité.

❖ Classes S3: 18<S.A.R<26

La quantité de sodium dans ces eaux est qualifiée d'élevée, de graves difficultés peuvent apparaître sur la plupart des sols, et donc à éviter.

❖ Classes S4 : S.A.R>26

De telles eaux sont qualifiées d'impropres à l'irrigation.

Le SAR est défini par l'équation suivante :

$$S.A.R = \frac{Na^{+}}{\sqrt{\frac{Ca^{++} + Mg^{++}}{2}}} \dots (II.1)$$

$$S.A.R = \frac{2.9}{\sqrt{\frac{0.17 + 0.92}{2}}} = 3.92 < 10$$

D'après les résultats de calcul de la conductivité électrique CE = 0.6 mmhos/cm, et le rapport d'absorption du sodium SAR de l'eau d'irrigation SAR (Égal à 3.92) on pourra classer notre eau d'irrigation **C2S1**.

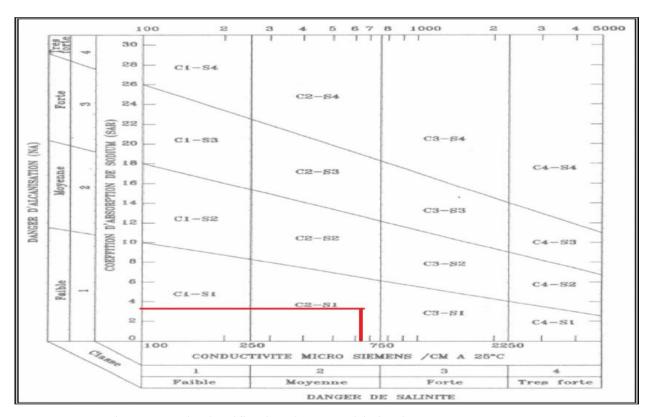


Figure II.2. 2: Diagramme de classification des eaux d'irrigation.

Qualités physiques :

-pH de l'eau d'irrigation : Le pH influence la forme et la disponibilité des éléments nutritifs, le pH de l'eau souterraine est de 8.

-La température : Elle varie de 9°C à 15°C

II.2.5 Calcul de la pluie de projet :

La pluie de projet est la pluie qui survient selon une période de retour de 4/5 soit 80%. Sa connaissance est indispensable, dans l'estimation des besoins en eau mensuels de chaque culture.

II.2.5.1.Choix de la station:

En tenant compte de la position de notre périmètre, nous avons pris en considération la station de Baghlia :

Tableau II.2.5: caractéristique principales de la station pluviométrique (ANRH Alger).

Nom de la	Code	Coordonnées		Altitude	Période	Nbre d'années		
station		X(m)	Y(m)		d'observation	d'observer		
Baghlia	0022002	603.5	390.0	30	1982-2012	30		

II.2.5.2.Répartition de la pluie moyenne annuelle :

La série des précipitations moyennes mensuelles de la station pluviométrique de Baghlia (1982-2012) est donnée dans le tableau ci-après :

Tableau II.2.6: Répartition mensuelle des précipitations (mm).

Annáa	Cont	Oat	novi	daa	iony	forr	122 0 #G	ovmi1	Mai	inin	35,21	agust	Annual
Année	Sept	Oct	nov	dec	janv	fev	mars	avril	Mai	juin	juil	aout	Annuel
													(mm)
1982	41.2	73.8	227.1	132.2	3	75.6	63.8	17.6	12.8	0	4.4	37.4	688.9
1983	3.4	31.6	71.4	71.7	82.8	123.8	38.2	28.5	88.8	10.1	0	0	550.3
1984	24	105.7	29.4	141.9	124.3	37.9	217.8	11.8	116.3	0	0	0	809.1
1985	78.3	65.9	120.2	54.7	72.9	106.4	171.1	56.9	4.6	12.8	5.9	0.4	750.1
1986	14.2	41	75.5	201.7	114.8	227.7	43	4.1	12.9	33	0	1.2	769.1
1987	97.3	45.7	118.5	48.2	65.5	46.9	66.4	58.5	24.7	21.4	3.2	0	596.3
1988	71.2	4.2	90	255.2	46.7	25.7	37.5	96.7	6	17.1	3.9	4.4	658.6
1989	33.8	24.1	100.7	49	84.2	0	35.6	61	79.6	13.8	42	0	523.8
1990	1.8	70.2	56.5	200.2	91.5	143.4	64.5	53	38.5	3	0	2.5	725.1
1991	15.8	190.3	51.9	14.2	157.3	52.5	90.2	102.6	57.9	31.4	2.3	0	766.4
1992	6	78.9	119.3	164.6	36.5	92	23.9	105.3	39.2	0	0	3.9	669.6
1993	29.4	53.3	83.4	130	94.2	64.3	0	56.6	4.8	0	0	0	516
1994	68.9	70	29.3	121.7	212.2	40.6	101.4	41.1	0.2	10.4	0	38.9	734.7
1995	11.7	18.4	17.1	80.6	166.2	221.2	46.2	143.6	34.2	12.6	6.1	9.2	767.1
1996	30.3	112.1	57.6	70.2	47.8	16	24.6	100.9	14	6.2	1.3	18.6	499.6
1997	61	71.4	160.5	144.9	56.9	91.5	62.4	110.5	269.2	1.1	0	1.8	1031.2
1998	44.1	51.5	139.4	111.6	148.3	103.2	83	32.5	21.7	0	0	2.4	737.7
1999	25.7	22.4	169.8	227.9	18.1	8.1	15.3	42.6	33.1	4.7	0	0	567.7
2000	25.2	75.7	71.5	53.8	226.7	86.7	1.5	40.3	30.9	0	0	7.8	620.1

2001	15.2	0	104.7	69.7	71.8	37	61.7	64.8	17.3	2.7	0	12	456.9
2002	18.1	40.4	228.5	234.4	267.4	105.9	41.3	118.2	42.1	0	3.5	0	1099.8
2003	46.1	39.9	59.4	151.4	115.2	54.1	112.4	79.2	177.7	0.5	0	9.9	845.8
2004	25.4	44.9	110.9	169.8	133.8	143.9	28.2	55.2	3.1	0	1.4	0	716.6
2005	54.7	51.8	102.8	108.6	112.7	154.6	20	18.5	98.3	2.2	1.9	3	729.1
2006	19.6	25.1	4.4	261	15.4	51.3	232.1	212.1	20.8	3	5.3	32.6	882.7
2007	50.1	254.9	212.6	86.1	4.8	17.6	97	39.8	84.1	8.5	15.4	0	870.9
2008	24.2	51.1	202	136.4	193.8	33	84.8	87	114.3	0	0	6.6	933.2
2009	128.9	55.5	112.3	127.1	92.3	57	108.1	103.2	46.8	27	0.6	29.6	888.4
2010	24.4	131.2	141.5	80.7	89.1	129.6	48.3	88.2	149.1	48.6	0	0	930.7
2011	6.6	36.1	200.8	109.1	59.6	318.8	84.9	188.1	35.8	3.3	0	2.3	1045.4
2012	7.1	65.1	55.6	35.2	209	168.6	114.2	67.4	173.4	2.2	0	7.8	905.6

II.2.5.3 Etude de l'homogénéité de la série pluviométrique (Test de Mood)

Pour vérifier l'homogénéité de la série pluviométrique on procède au Test de mood, la vérification de l'homogénéité d'une série pluviométrique par cette méthode repose sur le procédé ci-dessous:

-Soit la variable aléatoire x, représentant la série des pluies moyenne annuelle et N étant la taille de cette série, l'application de ce test consiste à la détermination de la médiane de cet échantillon unique et à classer ses valeurs par ordre croissant, ensuite un dénombrement des élément situe de part et d'autre de la médiane en affectant un(+) aux valeurs supérieurs a la médiane et un (-) aux valeurs inferieurs a la médiane.

Le nombre de valeurs inférieures et supérieures a la médiane est égale et représente la quantité notée N_S . La quantité T_S est égale a la taille de la plus grande suite de (+) ou de (-) dans la série chronologique.

L'hypothèse est nulle du test de la médiane pour un seuil de signification de 95% est vérifié si :

$$N_S > \! 1/2 \; (N \! + \! 1 \! - \! \mu_1 \! - \! \frac{\alpha}{2} . \sqrt{N+1} \;) \; \; \text{et} \; \; T_S \! < \! 3.3 \; (log_{10} N \! + \! 1).$$

Avec : $\mu_1 \cdot \frac{\alpha}{2} = 1.96$, elle représente la valeur de la variable centré réduite de Gauss correspondant a une probabilité de $1 \cdot \frac{\alpha}{2}$, avec $\alpha = 5\%$ (erreur de premier espèce).

Dans notre cas nous avons : la Médiane $m_e = 753.3$ mm et la taille de la série N=30.

$$N_S > 1/2 (N+1-\mu_1-\frac{\alpha}{2}.\sqrt{N+1})=10.4$$

Ns = 14 (nombre total de séries de + ou de - dans la série)

 $T_S < 3.3 (log_{10}N+1) = 8.17$ et $T_S = 7$ (maximum de + ou de - au-dessus de la médiane).

Pour Ns : On a : 14 > 10.4 et Pour Ts : On a : 7<8.17

On conclut que la série des pluies est homogène.

II.2.5.4 Ajustement statistique des pluies

Les données de pluies annuelles sont souvent ajustables à des lois statistiques nombreuses, ceci est dû à la faible variabilité interannuelle pour certaines stations. Dans notre cas, on utilise pour celle qui garantit le meilleur ajustement possible.

Les lois d'ajustement les plus communément employées dans le cas de pluies annuelles sont les Loi de Gauss ou loi normale ou la loi de Galton ou loi log-normale.

II.2.5.5 Ajustement des pluies annuelles à la Loi de Gauss ou loi normale

Le procédé de calcul consiste à:

- -Classer les valeurs de l'échantillon par ordre croissant.
- -Affecter un numéro d'ordre aux valeurs classées.
- -Calculer la fréquence expérimentale (par la formule de Hazen par exemple).

$$\frac{X-\overline{X}}{\delta}$$

- -Variable réduite de gauss : U =
- -Calcul des caractéristiques empirique de loi (\overline{X} ; δ ; Cv; CS=0).
- -Calculer le coefficient de variation : $Cv = \frac{\delta}{x}$

Le quantile de pluie pour une période de retour donnée est:

 $XP\% = \overline{X} + \delta^* Up\%$, avec : XP%: précipitation de probabilité P% et Up%: variable réduit de Gauss. \overline{X} : Moyenne arithmétique et δ : Écart type

Dans cette partie on a utilisé le logiciel à « Hyfran» pour ajuster notre série à la loi de Gauss.

II.2.5.6. Test de validité d'un ajustement :

Apres ajustement des données par la loi, Il convient de comparer l'adéquation de cette loi afin d'adopter le meilleur ajustement. Dans notre cas, nous avons a utilisé le teste de Khi carré χ^2 . **Touaibia (2004).** La loi est adéquate pour une erreur $\alpha = 0.05$ si et seulement si :

$$\chi 2_{calcul\acute{e}} < \chi 2_{th\acute{e}orique}$$
 (voir annexe 1)

Pour les calculs nous avons utilisé le logiciel HYFRAN.

Tableau II.12 : Test de validité de l'ajustement.

Loi normale	
$\chi^2_{\text{calculé}}=1.7$	
Degrés de liberté =3	
$\chi^2_{\text{th\'eorique}} = 7.815$	

Les résultats de l'ajustement de la série des pluies moyennes annuelles de la station de Baghlia sont regroupés dans le tableau II.8 et la figure II.3 :

Tableau II.2.8: Ajustement à la loi de Gauss (loi normale)

T	q	XT	Ecart-	Intervalle de
			type	confiance
2.0	0.500	753	30.9	693-814
1.25	0.200	611	36.1	540-682

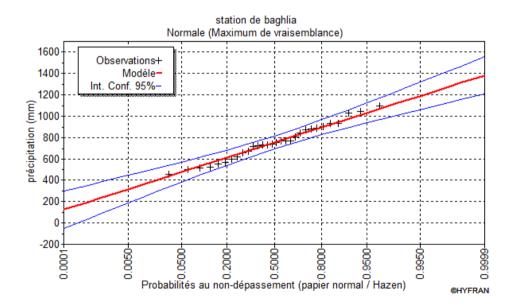


Figure II.2. 3 : Ajustement à la loi de Gauss.

II.2.5.7 Détermination de l'année de calcul

Puisque la loi normale est adéquate, alors nous la retenons pour l'estimation de la pluviométrie moyenne annuelle (fréquence 80%) représentative de la région.

La probabilité pour laquelle on assure l'irrigation est donnée souvent pour la fréquence 80 d'où :

$$Pmoy \ annuelle \ 80\% = \frac{Pannuelle \ 80\%}{P \ annuelle \ 50\%}$$
. $Pmoy \ annuelle$ (II.6)

Avec:

P annuelle 80% = 611 mm,

P_{annuelle 50}%=896 mm

Les résultats de calcule des pluies moyennes de 80% sont représentés dans le tableau ci-dessous Les pluies mensuelles de projet, sont calculées comme suit :

Tableau II.2.11: Calcul des pluies mensuelles pour l'année sèche (f_{req}= 80%).

Mois	sept	oct	nov	Dec	janv	fev	mars	avril	mai	juin	Juil	aout
P_{moy}												
(mm/mois)	35.4	64.3	103.3	123.7	107.1	92.0	71.9	75.6	61.3	9.2	3.1	6.5
P _{moy80%}												
(mm/mois)	24.1	43.7	70.2	84.1	72.8	62.6	48.9	51.4	41.7	6.3	2.1	4.4

II.5.6 Conclusion

Ce chapitre a été consacré à l'étude des ressources en sol et en eau indispensable pour un projet d'irrigation.

L'analyse agro-pédologique de la zone d'étude et les analyses physico-chimiques des sols ont mis en évidence des propriétés adéquates pour toute mise en valeur de ce périmètre.

De façon générale, l'aptitude des sols reste assez bonne pour les cultures vignobles, céréalières et fourragères ainsi que bonnes pour les cultures arboricoles, ce constitue une opportunité socio- économique pour la région.

Pour ce qui est des ressources en eau, les eaux souterraines qui alimentent notre périmètre appartiennent à la classe **C2S1**, avec une faible alcalinité, et une salinité moyenne.

Ces propriétés pédologiques et édaphiques adéquates constituent un atout pour l'irrigation des sols dans l'ensemble du périmètre.

Chapitre III: Besoin en eau des cultures

Chapitre I : besoin en eau des cultures

III.1.Introduction

La connaissance de la valeur des besoins en eau des cultures est à la base de tous projets d'irrigation, leurs déterminations nécessitent la connaissance de divers paramètres concernant, aussi bien la plante elle-même que les données climatiques ou pédologiques de la région définies auparavant.

III.2 Besoins en eau des cultures

Le besoin d'irrigation, noté (BI) est définit comme étant le volume d'eau qui devra être apporté aux cultures par irrigation en complément à la pluviométrie et éventuellement d'autres ressources telles que les remontées capillaires (FAO, 1977), la réserve en eau initiale dans le sol et la fraction de lessivage, afin de mettre celles-ci dans les meilleures conditions d'humidité requises, pour obtenir son rendement maximal.

III.2.1 Calcul des besoins en eau

Par définition les besoins en eau d'une culture donnée est la différence entre l'évapotranspiration maximale tels que déterminés par le climat et les caractéristiques végétales (ETM) et d'autre part la somme des apports effectifs des précipitations.

Le calcul des volumes d'eau à apporter par irrigation est réalisé en effectuant période pour chaque stade végétatif le bilan hydrique suivant :

 $Bi = ETM - (P_{eff} + RFU_{i-1}).$

Où:

• ETM:est l'évapotranspiration potentielle de référence en mm, elle est égale a ET_0*Kc

• Kc : le coefficient culturel de la culture considérée.

• **Peff**: est la pluie efficace.

• RU: La réserve utile.

III.3 Evaluation des besoins en eau des cultures

Il est nécessaire d'évaluer les besoins en eau d'une culture, afin de déterminer les volumes d'eau à apporter par l'irrigation au cours de la saison de croissance. Pour cela il faut utiliser des méthodes dynamiques de bilan hydrique du sol, incluant la météorologie et l'évolution du stade phénologique de la culture, et des mesures directes de l'état hydrique du sol.

Au cours de toutes ces méthodes, on retrouve le concept de l'évapotranspiration (ETP) qui vise à mieux évaluer les besoins en eau d'irrigation.

III.3.1 L'évapotranspiration :

Selon la (FAO, 1977) l'évapotranspiration est définie comme étant la quantité d'eau perdue sous forme de vapeur à partir d'une surface couverte de végétation, Cette quantité est généralement exprimée par unité de surface et par unité de temps, m3/ha/jour, en m3/ha/mois, ou en m3/ha/an.

a) L'évapotranspiration de référence :

L'évapotranspiration de référence est l'ensemble des pertes en eau d'un couvert végétal abondant, bien alimenté en eau, lorsque l'eau est le seul facteur qui limite cette évaporation, et lorsque le couvert végétal présente un développement foliaire maximum (au stade de pleine croissance) couvrant bien le sol, ce dernier étant à la capacité au champ.

b) L'évapotranspiration maximale (besoin des cultures):

Pendant une période déterminée (jour, mois, cycle végétatif complet), chaque parcelle va prendre, par transpiration et évaporation directe, une certaine quantité d'eau appelée évapotranspiration réelle ETM : celle-ci pourra bien sûr être inférieur ou égal à ETP selon que las conditions de celle-ci sont réunies ou non.

- ETM = ET $0 \times Kc$
- ET0 : evapotranspiration de reference
- Kc : correspond au coefficient cultural, fonction de type de culture et de son état végétatif.

III.4 Les méthodes d'évaluation de L'évapotranspiration

On distingue généralement deux (02) méthodes :

III.4.1 Les méthodes directes :

- L'évapotranspiration ou cuve lysimétrique
- **❖** Le bac évaporant

III.4.2 Les méthodes indirectes

Ces méthodes permettent de calcul l'ETP à partir de formules basées sur des paramètres climatiques.

Il existe des formules de calcul dont les principales sont:

- Penman
- Makkink
- Turc

- Blaney Cridle
- Thornthwaite

-Formule Modifiée de Penman_Monteith

La formule la plus employée et recommandée par la FAO est la formule de Penman-Monteith modifiée, détaillée comme suit :

$$ET0 = \frac{0.408 \, \Delta \, (Rn-G) + \gamma \, \frac{Cste}{T+273} \, u_2(e_s-e_a)}{\Delta + \gamma \, (1+0.34 \, u_2)}$$

Avec:

ETo: évapotranspiration de référence [mm jour-1],

Rn: rayonnement net à la surface de la culture [MJ m-2 jour-1],

G : densité de flux de chaleur dans le sol [MJ m-2 jour-1],

T : température journalière moyenne de l'air à une hauteur de 2 m [°C]

u2 : vitesse du vent à une hauteur de 2 m [m s-1],

es : pression de vapeur saturante [kPa],

ea : pression de vapeur réelle [kPa],

es-ea : déficit de pression de vapeur saturante [kPa],

D : pente de la courbe de pression de vapeur saturante [kPa °C-1],

g : constante psychrométrique [kPa °C-1].

Pour l'exécution des calculs, nous avons appliqué le logiciel CROPWAT, où nous avons introduit les données mensuelles de la station météorologique de Dellys:

- Température : Les températures minimales et maximales mensuelles.
- Humidité de l'air : l'humidité relative de l'air exprimée en pourcentage (%).
- Insolation journalière : donnée en heures d'insolation.
- Vitesse de vent : La vitesse du vent peut être introduite en km/jour.

Les résultats de l'évapotranspiration de référence ET₀ calculés à l'aide du logiciel CROPWAT 8.0 sont récapitulés dans le tableau ci-après.

Tableau III. 1: Calcul de l'ET0 par le logiciel CROPWAT

Country Alg	eria				Station	Dellys	
Altitude	5 m .	Li	atitude 36.5	5 °N ▼	L	ongitude 3.9	57 rE
Month	Min Temp	Мах Тетр	Humidity	Wind	Sun	Rad	ЕТо
	°C	*C	%	m/s	hours	MJ/m²/day	mm/mon
January	9.2	16.0	73	2.7	5.2	9.0	51.55
February	8.7	15.6	76	3.0	5.9	11.7	52.99
March	10.3	17.3	75	3.0	7.1	16.0	79.66
April	11.3	18.5	75	3.2	8.1	20.0	96.85
May	14.0	21.4	77	3.3	9.8	24.0	123.20
June	17.8	24.7	70	3.7	9.9	24.7	149.82
July	20.4	27.2	71	3.6	10.4	25.0	166.36
August	21.9	28.8	75	3.5	9.7	22.7	156.08
September	19.7	26.7	74	3.2	8.7	18.8	124.04
October	17.0	24.0	76	3.1	7.1	13.8	91.51
November	13.1	20.2	72	2.8	5.6	9.7	64.77
December	10.7	17.5	73	2.7	4.6	7.8	51.88
Average	14.5	21.5	74	3.1	7.7	16.9	1208.7

III.5 Calcul de la pluie efficace

Pour tenir compte des pertes, il faut calculer la précipitation efficace, définie comme étant la fraction des précipitations contribuant effectivement à la satisfaction des besoins de l'évapotranspiration de la culture après déduction des pertes par ruissellement de surface et par percolation en profondeur.

La pluie efficace, Peff, représente la fraction des précipitations qui est effectivement utilisée par la culture après déduction des pertes par ruissellement de surface et par percolation profonde. Différentes méthodes pour le choix de Peff ont été développées, chacune prenant en compte le climat de la région où doivent s'effectuer les mesures.

Dans notre cas on opte pour la formule suivante :

• Formule de pourcentage fixe :

Pluie efficace (Peff) = 80 % de la pluie moyenne mensuelle de 80%.

Les valeurs moyennes mensuelles de Peff sont regroupées dans le tableau suivant :

Tableau III. 2: Précipitation efficace dans la zone d'étude.

Mois	Sept.	Oct.	Nov.	Déc.	Jan.	Fév.	Mar.	Avr	Mai.	Jui.	Juil.	Aoû.
Pmoy80%(mm)	24.1	43.7	70.2	84.1	72.8	62.6	48.9	51.4	41.7	6.3	2.1	4.4
Peff (mm)	19.3	35.0	56.2	67.3	58.2	50.3	39.1	41.1	33.4	5.0	1.7	3.5

Estimation des coefficients culturaux (K_c)

Les valeurs du coefficient cultural (K_c) de chaque culture ont été ressorties selon les valeurs établies par Doorenbos (FAO, 2003), en fonction du stade végétatif de la plante, et du climat considéré :

Tableau III. 3: Coefficients culturaux (Kc) des différentes cultures.

	blé/avoine	Orge	Mais	Luzerne	Ail/Ognon	P.terre	Tomate	Choux	Carotte	Haricot	petits	Concombre	olivier	Pécher	pommier
						(AS)					pois				
mois	Kc	Kc	Kc	Kc	Kc	Kc	Kc	Kc	Kc	Kc	Kc	Kc	Kc	Kc	Kc
Septembre								0,50	0,40	0,90			0,85	0,55	0,70
Octobre				0,65	0,50	0,50		0,70	0,70	0,85			0,85	0,55	0,70
Novembre	0,40			0,70	0,75	0,70		0,95	0,90			0	0,75	0,55	0,70
Décembre	0,70	0,30		0,80	0,95	0,95		0,80	0,70		0,50		0,65	0,75	0,70
Janvier	0,85	0,30		0,90	0,95	0,75					0,80		0,65	0,75	0,70
Février	0,95	0,50		0,95	0,75						1,00		0,65	0,75	0,70
Mars	1,05	0,50		1,05			0,50				0,95		0,65	0,75	0,80
Avril	1,00	0,90	0,55	1,15			0,85				0,50		0,65	0,55	0,85
Mai	0,80	0,95	0,90	1,00			1,15					0,38	0,65	0,55	0,85
Juin	0,45	0,70	1,15	0,70			0,85			0,50		0,57	0,80	0,55	0,70
Juillet			0,80							0,65		0,85	0,85	0,55	0,70
Août										0,95		0,85	0,85	0,55	0,70

Calcul de la réserve en eau du sol : c'est la quantité d'eau contenue dans la tranche du sol explorée par les racines, entre le point de ressuyage et le point de flétrissement. Mais les plantes ayant d'autant plus de mal à extraire l'eau que l'humidité s'approche du point de flétrissement.

On nomme réserve facilement utilisable (RFU), la quantité d'eau égale à (1/3) ou (2/3) de la réserve utile (RU), tel que :

RFU = (hcc-hpf)/100 *y*Z*da

hcc: humidité à la capacité au champ

hpf: humidité au point de flétrissement

Z: profondeur racinaire

Y : coefficient qui dépend de la nature du sol

Da : densité apparente du sol

III.6 Choix de cultures

Le choix des cultures à mettre en place doit concilier entre les critères suivants :

- ❖ Les conditions climatiques de la région étudiée.
- ❖ La qualité et disponibilité de l'eau d'irrigation.
- ❖ L'aptitude culturale des sols basée sur l'étude pédologique.
- Des disponibilités des moyens de production.
- ❖ De la demande commerciale traduisant les profils des agriculteurs

III.7 Occupation des sols : Choix des scénarios

L'occupation et la répartition culturale dans le périmètre doit être définit avant l'évaluation des besoins en eau des cultures de la zone d'étude , en tenant compte des différentes contraintes d'ordre climatique, social, Agro-pédologique.

Les scénarios d'occupation des sols retenus pour le projet sont donnés par le tableau suivant :

Tableau III. 4: Scénarios d'occupation du sol par l'ensemble de l'exploitation du périmètre

Scénario	Céréales	Fourrages	Maraichage	Arboriculture	Total
	%	%	%	%	%
1	45	15	30	10	100
2	30	10	35	25	100
3	20	10	35	35	100

On propose d'élaborer un modèle d'occupation selon le scénario 3 qui est une occupation équilibrée entre les céréales et les cultures maraichères et cela vu les modèles d'exploitation et les vocations agricoles de la région.

Les cultures maraichères et l'arboriculture (telle que la vigne) dominent très largement l'occupation des sols au niveau du périmètre avec près de 70% de la superficie totale, dont 35% pour la vigne, 35% pour le maraîchage, le reste (30%) étant partagé par des systèmes combinant plusieurs types de cultures (céréales, et fourrageres)

Les cultures proposées :

La gamme des cultures proposée relatives aux cultures envisageable dans notre scénario est indiquée dans le tableau ci-dessous.

Tableau III. 5: Occupation de sol en fonction des cultures

Les cultures	Surface occupé en %	Surface occupé en Ha
La céréaliculture :	20	35
 Blé Avoine 		
■ Blé		
Orge grain		
Les cultures fourragères :	10	15
Orge en vert		
Luzerne		
Le maraîchage :	35	50
Pomme de terre		
■ Ail /Oignon vert		
betterave		
■ Tomate		
Carotte		
Petit pois		
Choux		
Concombre		
Haricot		
L'arboriculture :	35	50
■ Vigne		
olivier		
Total	100	150

Identification des principaux types d'assolement :

La pratique des assolements a pour but principal de maximiser les revenus et minimiser les risques de fluctuation de la fertilité de sol, d'une année à l'autre, elle permet l'association et la combinaison des grandes classes de cultures, à savoir : les maraîchages, arboriculture, céréaliculture, fourragères suivant la taille des exploitations, les moyens financiers, les capacités techniques et de la gestion des agriculteurs.

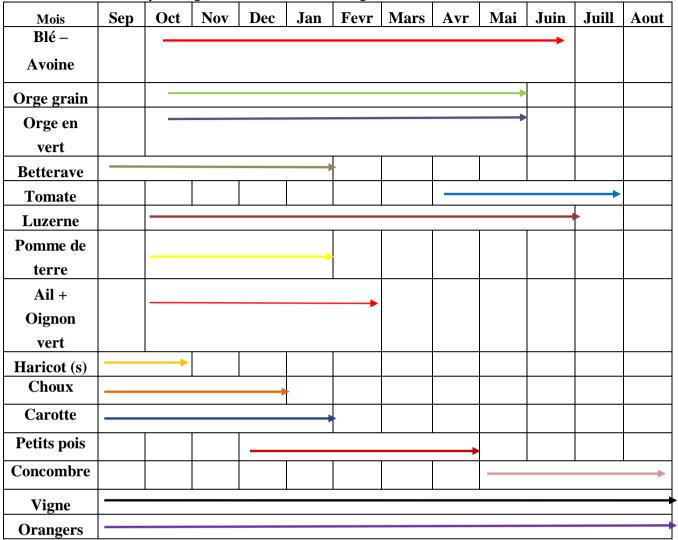

L'assolement proposé est détaillé dans le tableau IV.4:

Tableau III. 6: Les assolements proposés

Assolement 1	Assolement 2
Blé – Avoine	Orge en vert
Betterave	Orge grain
Luzerne	Blé
Ail + Oignon vert	Tomate
Pomme de terre	Haricot (s)
Tomate	Ail + Oignon vert
Choux	Petits pois
Carotte	Concombre
Arboriculture:	Arboriculture :
Vigne, et olivier	Vigne, et olivier

Le cycle végétatif des cultures envisagées est détaillé dans le tableau suivant.

Tableau III. 7: le cycle végétatif des cultures envisagées.

III.8 Calcul des besoins en eau des cultures

Assolement I

Estimation des besoins en eau des céréales

Pour chaque culture on calcule les besoins suivant le stade végétatif :

Tableau III. 8: Calcul des besoins en eau du Blé.

Mois	P moy	Peff	ETP	Z (m)	RFU_T	RFU_RE	KC	ETM	B (mm)
	(mm)	(mm)	(mm/moi)		HEO	EL			
Septembre	24.1	19.3	124.72	-	-	-	-	-	-
Octobre	43.7	35.0	91.51	-	-	-	-	-	-
Novembre	70.2	56.2	69.63	0,30	32.4	10.8	0,40	25.91	-
Décembre	84,1	67,3	59.69	0,50	54	54	0,70	36.32	-
Janvier	72.8	58.2	57.95	0,50	54	54	0,85	43.82	-
Février	62.6	50.3	54.35	0,60	64.8	64.8	0,95	50.34	-
Mars	48.9	39.1	82.74	0,60	64.8	64.8	1,05	83.64	-
Avril	51.4	41.1	97.67	0,60	64.8	21.6	1,00	96.85	34.15
Mai	41.7	33.4	123.02	0,60	64.8	-	0,80	98.56	65.16
Juin	6.3	5	146.66	0,60	64.8	-	0,45	67.42	62.42
Juillet	2.1	1.7	161.36	1	-	-	-	-	-
Août	4.4	3.5	151.41	-	-	-	-	-	-

Tableau III. 9: Calcul des besoins en eau de la betterave.

Mois	P moy (mm)	Peff (mm)	ETP (mm/mois)	Z (m)	RFU_THEO	RFU_REEL	KC	ETM	B (mm)
Septembre	24.1	19.3	124.72	0,60	64.80	-	0,65	81.07	61.77
Octobre	43.7	35.0	91.51	0,60	64.80	21.60	1,00	91.51	69,03
Novembre	70.2	56.2	69.63	0,60	64.80	21.60	0,60	41.78	ı
Décembre	84,1	67,3	59.69	-	-	-	-	-	-
Janvier	72.8	58.2	57.95	-	-	-	-	-	i
Février	62.6	50.3	54.35	-	-	-	-	-	-
Mars	48.9	39.1	82.74	-	-	-	-	-	-
Avril	51.4	41.1	97.67	-	-	-	-	-	-
Mai	41.7	33.4	123.02	-	-	-	-	-	-
Juin	6.3	5	146.66	-	-	-	-	-	-
Juillet	2.1	1.7	161.36	-	-	-	-	-	-
Août	4.4	3.5	151.41	0,40	43.2		0,45	68.13	64.63

Tableau III. 10 : Calcul des besoins en eau de la luzerne.

Mois	P moy (mm)	Peff (mm)	ETP (mm/mois)	Z (m)	RFU_THEO	RFU_REEL	KC	ETM	B (mm)
Septembre	24.1	19.3	124.72	-	-	-	-	-	-
Octobre	43.7	35.0	91.51	0,40	39,60	14.40	0,65	59.48	10.08
Novembre	70.2	56.2	69.63	0,70	69,30	25.2	0,70	48.74	-
Décembre	84,1	67,3	59.69	0,90	89,10	97.2	0,80	47.75	-
Janvier	72.8	58.2	57.95	1,00	99,00	108	0,90	52.16	-
Février	62.6	50.3	54.35	1,20	118,80	129.6	0,95	51.63	-
Mars	48.9	39.1	82.74	1,20	118,80	129.6	1,05	86.88	-
Avril	51.4	41.1	97.67	1,20	118,80	43.2	1,05	102.55	18.25
Mai	41.7	33.4	123.02	1,20	118,80	-	1,15	141.47	108.07
Juin	6.3	5	146.66	1,20	118,80	-	1,25	183.33	178.33
Juillet	2.1	1.7	161.36	-	-	-	-	-	-
Août	4.4	3.5	151.41	-	-	-	=	-	-

Tableau III. 11: Calcul des besoins en eau de l'Ail /oignon.

Mois	P moy (mm)	Peff (mm)	ETP (mm/mois)	Z (m)	RFU_THEO	RFU_REEL	KC	ETM	B (mm)
Septembre	24.1	19.3	122.7	-	-	-	-	-	-
Octobre	43.7	35.0	90.84	0.40	39,60	13,20	0.50	32.39	-
Novembre	70.2	56.2	69.63	0.40	39,60	13,20	0.75	38.91	-
Décembre	84,1	67,3	59.69	0.40	39,60	39,60	0.95	48.97	-
Janvier	72.8	58.2	57.95	0.40	39,60	39,60	0.95	50.34	-
Février	62.6	50.3	54.35	0.40	39,60	39,60	0.75	59.75	-
Mars	48.9	39.1	82.74	-	-	1	-	-	-
Avril	51.4	41.1	97.67	-	1	1	-	-	-
Mai	41.7	33.4	123.02	-	1	1	-	-	-
Juin	6.3	5	146.66	-	-	-	-	-	-
Juillet	2.1	1.7	161.36	-	-	-	-	-	-
Août	4.4	3.5	151.41	-	-	-	-	-	-

Tableau III. 12: Calcul des besoins en eau de la pomme de terre (saison).

Mois	P moy (mm)	Peff (mm)	ETP (mm/mois)	Z (m)	RFU_THEO	RFU_REEL	KC	ETM	B (mm)
Septembre	24.1	19.3	124.72	-	-	-	-	-	-
Octobre	43.7	35.0	91.51	-	-	-	-	-	-
Novembre	70.2	56.2	69.63	-	-	-	-	-	-
Décembre	84,1	67,3	59.69	-	-	-	-	-	-
Janvier	72.8	58.2	57.95	-	-	-	=	-	-
Février	62.6	50.3	54.35	0,30	64.8	64.8	0,45	23.85	-
Mars	48.9	39.1	82.74	0,60	64.8	64.8	0,80	63.73	-
Avril	51.4	41.1	97.67	0,60	64.8	21.6	1,05	101.69	38.99
Mai	41.7	33.4	123.02	0,60	64.8	-	0,70	86.24	52.84
Juin	6.3	5	146.66	-	-	-	-	-	-
Juillet	2.1	1.7	161.36	-	-	-	-	-	-
Août	4.4	3.5	151.41	-	-	-	-	-	-

Tableau III. 13: Calcul des besoins en eau de la tomate.

Mois	P moy (mm)	Peff (mm)	ETP	Z (m)	RFU_THEO	RFU_REEL	KC	ETM	B (mm)
			(mm/mois)						
Septembre	24.1	19.3	124.72	0,90	89,10	-	0,90	112.25	92.95
Octobre	43.7	35.0	91.51	1,20	118,80	39,60	1,15	105.24	27.04
Novembre	70.2	56.2	69.63	1,20	118,80	39,60	0,80	54,32	-
Décembre	84,1	67,3	59.69	-	-	-	-	-	-
Janvier	72.8	58.2	57.95	-	-	-	-	-	-
Février	62.6	50.3	54.35	-	-	-	-	-	-
Mars	48.9	39.1	82.74	-	-	-	-	-	-
Avril	51.4	41.1	97.67	-	-	-	-	-	-
Mai	41.7	33.4	123.02	-	-	-	-	-	-
Juin	6.3	5	146.66	-	-	-	-	-	-
Juillet	2.1	1.7	161.36	-	-	-	-	-	-

Tableau III. 14: Calcul des besoins en eau du chou.

Mois	P moy (mm)	Peff (mm)	ETP (mm/mois)	Z (m)	RFU_THEO	RFU_REEL	KC	ETM	B (mm)
Septembre	24.1	19.3	124.72	0.3	32.4	0.00	0.5	62.02	42.72
Octobre	43.7	35.0	91.51	0.4	43.2	14.40	0.7	36.06	-
Novembre	70.2	56.2	69.63	0.5	54	18	0.95	61.53	-
Décembre	84,1	67,3	59.69	0.6	64.8	64.8	0.8	41.50	-
Janvier	72.8	58.2	57.95	-	-	-	-	-	-
Février	62.6	50.3	54.35	-	-	-	ı	-	-
Mars	48.9	39.1	82.74	-	-	-	-	-	-
Avril	51.4	41.1	97.67	-	-	-	-	-	-
Mai	41.7	33.4	123.02	-	-	-	-	-	-
Juin	6.3	5	146.66	-	-	-	-	-	-
Juillet	2.1	1.7	161.36	-	-	-	-	-	-
Août	4.4	3.5	151.41	-	-	-	-	-	-

Tableau III. 15: Calcul des besoins en eau de la carotte.

Mois	P moy (mm)	Peff (mm)	ETP (mm/mois)	Z (m)	RFU_THEO	RFU_REEL	KC	ETM	B (mm)
Septembre	24.1	19.3	124.72	0,30	32.4	-	0,40	49.89	30.59
Octobre	43.7	35.0	91.51	0,40	43.2	14.40	0,70	64.06	14.66
Novembre	70.2	56.2	69.63	0,50	54	18	0,90	62.67	-
Décembre	84,1	67,3	59.69	0,70	75.6	75.6	0,70	41.78	-
Janvier	72.8	58.2	57.95	-	-	-	-	-	-
Février	62.6	50.3	54.35	-	-	-	-	-	-
Mars	48.9	39.1	82.74	-	-	-	-	-	-
Avril	51.4	41.1	97.67	-	-	-	-	-	-
Mai	41.7	33.4	123.02	-	-	-	-	-	-
Juin	6.3	5	146.66	-	-	-	-	-	-
Juillet	2.1	1.7	161.36	-	-	-	-	-	-
Août	4.4	3.5	151.41	-	-	-	-	-	-

Assolement II

Estimation des besoins en eau des céréales

Tableau III. 16: Calcul des besoins en eau de l'orge en vert.

Mois	P moy (mm)	Peff (mm)	ETP (mm/mois)	Z (m)	RFU_THEO	RFU_REEL	KC	ETM	B (mm)
Septembre	24.1	19.3	124.72	-	-	-	-	-	-
Octobre	43.7	35.0	91.51	-	-	-	-	-	-
Novembre	70.2	56.2	69.63	-	-	-	-	-	-
Décembre	84,1	67,3	59.69	0,30	29,70	29,70	0,30	21,06	-
Janvier	72.8	58.2	57.95	0,50	49,50	49,50	0,30	20,67	-
Février	62.6	50.3	54.35	0,50	49,50	49,50	0,50	34,93	-
Mars	48.9	39.1	82.74	0,60	59,40	59,40	0,50	49,78	-
Avril	51.4	41.1	97.67	0,60	59,40	19,80	0,90	107,16	58.48
Mai	41.7	33.4	123.02	0,60	59,40	19,80	-	-	-
Juin	6.3	5	146.66	-	-	-	-	-	
Juillet	2.1	1.7	161.36	-	-	-	-	-	-
Août	4.4	3.5	151.41	-	-	-	-	-	-

Tableau III. 17: Calcul des besoins en eau de l'orge grain.

Mois	P moy (mm)	Peff (mm)	ETP (mm/mois)	Z (m)	RFU_THEO	RFU_REEL	KC	ETM	B (mm)
Septembre	24.1	19.3	124.72	-	-	-	-	-	-
Octobre	43.7	35.0	91.51	-	-	-	-	1	ı
Novembre	70.2	56.2	69.63	0,30	32.4	10.8	0,40	27,16	ı
Décembre	84,1	67,3	59.69	0,50	54	54	0,70	49,15	-
Janvier	72.8	58.2	57.95	0,50	54	54	0,85	58,57	-
Février	62.6	50.3	54.35	0,60	64.8	64.8	0,95	66,37	1
Mars	48.9	39.1	82.74	0,60	64.8	64.8	0,90	89,60	1
Avril	51.4	41.1	97.67	0,60	64.8	21.6	0,90	107,16	24.47
Mai	41.7	33.4	123.02	0,60	64.8	-	0,80	108,76	65.16
Juin	6.3	5	146.66	0,60	64.8	-	0,45	68,09	62.42
Juillet	2.1	1.7	161.36	-	-	-	-	-	1
Août	4.4	3.5	151.41	-	-	-	-	-	-

Tableau III. 18: Calcul des besoins en eau du Blé.

Mois	P moy	Peff	ETP	Z (m)	RFU_T	RFU_RE	KC	ETM	B (mm)
	(mm)	(mm)	(mm/moi)		HEO	EL			
Septembre	24.1	19.3	124.72	-	-	-	-	-	-
Octobre	43.7	35.0	91.51	-	-	-	-	-	-
Novembre	70.2	56.2	69.63	0,30	32.4	10.8	0,40	25.91	-
Décembre	84,1	67,3	59.69	0,50	54	54	0,70	36.32	-
Janvier	72.8	58.2	57.95	0,50	54	54	0,85	43.82	-
Février	62.6	50.3	54.35	0,60	64.8	64.8	0,95	50.34	-
Mars	48.9	39.1	82.74	0,60	64.8	64.8	1,05	83.64	-
Avril	51.4	41.1	97.67	0,60	64.8	21.6	1,00	96.85	34.15
Mai	41.7	33.4	123.02	0,60	64.8	-	0,80	98.56	65.16
Juin	6.3	5	146.66	0,60	64.8	-	0,45	67.42	62.42
Juillet	2.1	1.7	161.36	-	-	-	1	-	-
Août	4.4	3.5	151.41	-	-	-	-	-	-

Tableau III. 19: Calcul des besoins en eau de la tomate.

Mois	P moy (mm)	Peff (mm)	ETP	Z (m)	RFU_THEO	RFU_REEL	KC	ETM	B (mm)
			(mm/mois)						
Septembre	24.1	19.3	124.72	0,90	89,10	-	0,90	112.25	92.95
Octobre	43.7	35.0	91.51	1,20	118,80	39,60	1,15	105.24	27.04
Novembre	70.2	56.2	69.63	1,20	118,80	39,60	0,80	54,32	-
Décembre	84,1	67,3	59.69	-	-	-	-	-	-
Janvier	72.8	58.2	57.95	-	-	-	-	-	-
Février	62.6	50.3	54.35	-	-	-	-	-	-
Mars	48.9	39.1	82.74	-	-	-	-	-	-
Avril	51.4	41.1	97.67	-	-	-	-	-	-
Mai	41.7	33.4	123.02	-	-	-	-	-	-
Juin	6.3	5	146.66	-	-	-	-	-	-
Juillet	2.1	1.7	161.36	-	-	-	-	-	-

Tableau III. 20: Calcul des besoins en eau de l'haricot.

Mois	P moy	Peff	ETP	Z (m)	RFU_TH	RFU_RE	KC	ETM	B (mm)
	(mm)	(mm)	(mm/mois)		EO	EL			
Septembre	24.1	19.3	124.72	0,70	75.6	0.00	0,90	112.25	92.95
Octobre	43.7	35.0	91.51	0,70	75.6	25.20	0,85	77.78	17.58
Novembre	70.2	56.2	69.63	-	-	-	-	-	-
Décembre	84,1	67,3	59.69	-	-	-	-	-	-
Janvier	72.8	58.2	57.95	-	-	-	-	-	-
Février	62.6	50.3	54.35	-	-	-	-	-	-
Mars	48.9	39.1	82.74	-	-	-	-	-	-
Avril	51.4	41.1	97.67	-	-	-	-	-	-
Mai	41.7	33.4	123.02	=	-	-	-	-	-
Juin	6.3	5	146.66	0,50	54	-	0,50	73.33	68.33
Juillet	2.1	1.7	161.36	0,50	54	-	0,65	104.88	103.18
Août	4.4	3.5	151.41	0,70	75.6	-	1,00	151.41	147.91

Tableau III. 21 : Calcul des besoins en eau de l'Oignon/ail.

Mois	P moy(mm)	Peff (mm)	ETP (mm/mois)	Z (m)	RFU_TH	RFU_REE	KC	ETM	B (mm)
					EO	L			
Septembre	24.1	19.3	124.72	-	-	-	-	-	-
Octobre	43.7	35.0	91.51	0.40	39,60	13,20	0.50	32.39	-
Novembre	70.2	56.2	69.63	0.40	39,60	13,20	0.75	38.91	-
Décembre	84,1	67,3	59.69	0.40	39,60	39,60	0.95	48.97	-
Janvier	72.8	58.2	57.95	0.40	39,60	39,60	0.95	50.34	-
Février	62.6	50.3	54.35	0.40	39,60	39,60	0.75	59.75	-
Mars	48.9	39.1	82.74	-	-	-	-	-	-
Avril	51.4	41.1	97.67	-	-	1	-	-	-
Mai	41.7	33.4	123.02	-	-	-	-	-	-
Juin	6.3	5	146.66	-	-	-	-	-	-
Juillet	2.1	1.7	161.36	-	-	-	-	-	-
Août	4.4	3.5	151.41	-	-	-	-	-	-

Tableau III. 22: Calcul des besoins en eau des petits pois

Mois	P moy (mm)	Peff (mm)	ETP (mm/mois)	Z (m)	RFU_THEO	RFU_REEL	KC	ETM	B (mm)
Septembre	24.1	19.3	124.72	-	-	-	-	-	-
Octobre	43.7	35.0	91.51	ı	-	-	-	-	-
Novembre	70.2	56.2	69.63	-	-	-	-	-	-
Décembre	84,1	67,3	59.69	0,40	39,60	39,60	0,50	29.85	ı
Janvier	72.8	58.2	57.95	0,70	69,30	69,30	0,80	46.36	ı
Février	62.6	50.3	54.35	0,70	69,30	69,30	1,00	54.35	ı
Mars	48.9	39.1	82.74	0,70	69,30	69,30	0,95	78.60	1
Avril	51.4	41.1	97.67	0,70	69,30	-	0,50	48.84	-
Mai	41.7	33.4	123.02	-	-	-	-	-	1
Juin	6.3	5	146.66	-	-	-	-	-	-
Juillet	2.1	1.7	161.36	-	-	-	-	-	-
Août	4.4	3.5	151.41	-	-	-	-	-	-

Tableau III. 23: Calcul des besoins en eau de la concombre.

Mois	P moy (mm)	Peff (mm)	ETP (mm/mois)	Z (m)	RFU_THEO	RFU_REEL	KC	ETM	B (mm)
Septembre	24.1	19.3	124.72	-	-	-	_	-	-
Octobre	43.7	35.0	91.51	-	-	-	_	-	-
Novembre	70.2	56.2	69.63	-	-	-	-	-	1
Décembre	84,1	67,3	59.69	-	-	-	-	-	ı
Janvier	72.8	58.2	57.95	-	-	-	-	-	1
Février	62.6	50.3	54.35	-	-	-	-	-	1
Mars	48.9	39.1	82.74	-	-	-	-	-	ı
Avril	51.4	41.1	97.67	-	-	-	-	-	1
Mai	41.7	33.4	123.02	0.4	43.20	-	0.38	46.75	13.35
Juin	6.3	5	146.66	0.45	48.60	-	0.57	83.60	78.60
Juillet	2.1	1.7	161.36	0.5	54.00	-	0.85	137.16	135.46
Août	4.4	3.5	151.41	0.6	64.80	-	0.85	128.70	125.20

Estimation des besoins en eau de l'Arboriculture :

Tableau III. 24: Calcul des besoins en eau d'olivier.

Mois	P moy (mm)	Peff (mm)	ETP (mm/mois)	Z (m)	RFU_THEO	RFU_REEL	KC	ETM	B (mm)
Septembre	24.1	19.3	124.72	1,50	162	-	0,55	67,28	49.30
Octobre	43.7	35.0	91.51	1,50	162	54.00	0,55	55,24	-
Novembre	70.2	56.2	69.63	1,50	162	54	0,55	37,35	-
Décembre	84,1	67,3	59.69	1,50	162	162	0,75	52,66	-
Janvier	72.8	58.2	57.95	1,50	162	162	0,75	51,68	-
Février	62.6	50.3	54.35	1,50	162	162	0,75	52,40	-
Mars	48.9	39.1	82.74	1,50	162	162	0,75	74,67	-
Avril	51.4	41.1	97.67	1,50	162	54	0,55	65,49	-
Mai	41.7	33.4	123.02	1,50	162	-	0,55	74,77	34.26
Juin	6.3	5	146.66	1,50	162	-	0,55	83,23	75.66
Juillet	2.1	1.7	161.36	1,50	162	-	0,55	92,10	87.05
Août	4.4	3.5	151.41	1,50	162	-	0,55	88,08	79.78

Tableau III. 25: Calcul des besoins en eau de la vigne.

Mois	P moy (mm)	Peff (mm)	ETP (mm/mois)	Z (m)	RFU_THEO	RFU_REEL	KC	ETM	B (mm)
Septembre	24.1	19.3	124.72	1.20	129.60	-	0.45	56.12	36.82
Octobre	43.7	35.0	91.51	1.20	129.60	43.20	-	0.00	-
Novembre	70.2	56.2	69.63	1.20	129.60	43.20	-	0.00	-
Décembre	84,1	67,3	59.69	1.20	129.60	129.60	-	0.00	-
Janvier	72.8	58.2	57.95	1.20	129.60	129.60	-	0.00	-
Février	62.6	50.3	54.35	1.20	129.60	129.60	-	0.00	-
Mars	48.9	39.1	82.74	1.20	129.60	129.60	0.25	20.69	-
Avril	51.4	41.1	97.67	1.20	129.60	43.20	0.45	43.95	-
Mai	41.7	33.4	123.02	1.20	129.60	-	0.60	73.81	40.41
Juin	6.3	5	146.66	1.20	129.60	-	0.75	110.00	105.00
Juillet	2.1	1.7	161.36	1.20	129.60	-	0.70	112.95	111.25
Août	4.4	3.5	151.41	1.20	129.60	-	0.65	98.42	94.92

Tableau III. 26: Récapitulatif des besoins pour l'assolement 1

Mois	Blé	Betterve	Luzerne	Oignon vert	Pomme de terre	Tomate	Chou	Carotte	Olivier	vigne		Total
Septembre	-	61.77	-	ı	-	92.95	42.72	30.59	49.30	36.82		407.1
Octobre	-	34.91	10.08	1	-	27.04	-	14.66	-	-		121.6
Novembre	-	-	-	-	-	-	-	-	-	-		0
Décembre	-	-	-	-	-	-	-	-	-	-		0
Janvier	-	-	-	-	-	-	-	-	-	-		0
Février	-	-	-	_	-	-	-	-	-	-		0
Mars	-	-	-	-	-	-	-	-	-	-		0
Avril	34.15	-	18.25	-	38.99	-	-	-	-	-		130.38
Mai	65.16	-	108.07	-	52.84	-	-	-	34.26	40.41		408.81
Juin	62.42	-	178.33	-	-	-	-	-	75.66	105.00		599.74
Juillet	-	1	-	1	-	ı	-	-	87.05	111.25		309.55
Août	-	64.63	-	-	-	64.63	-	-	79.78	94.92		398.88
									total	al 2		2376.06

Tableau III. 27: Récapitulatif des besoins pour l'assolement 2.

Mois	Orge en vert	Orge en grain	Blé	Tomate	Haricot	Oignon vert	Petits pois	Concombre	Olivier	vigne	Total
Septembre	-	-	-	92.95	92.95	-	-	-	49.30	36.82	272.02
Octobre	-	-	-	27.04	17.58	-	-	-	-	-	44.62
Novembre	-	-	-	-	-	-	-	-	-	-	0
Décembre	-	-	-	-	-	-	-	-	-	-	0
Janvier	-	-	-	-	-	-	-	-	-	-	0
Février	-	-	-	-	-	-	-	-	-	-	0
Mars	-	-	-	-	-	-	-	-	-	-	0
Avril	58.48	24.47	34.15	-	-	-	-	-	-	_	117.1
Mai	-	65.16	65.16	1	-	-	-	13.35	34.26	40.41	218.34
Juin	-	62.42	62.42	1	68.33	ı	-	78.60	75.66	105.00	452.43
Juillet	1	ı	-	ı	103.18	1	-	135.46	87.05	111.25	436.94
Août	-	-	-	64.63	147.91	-	-	125.20	79.78	94.92	512.44
								tota	ı	2053.89	

III.9 Calcul du débit spécifique

Les débits spécifiques sont définis d'après les besoins en eau de chaque culture évaluée précédemment à partir de la répartition culturale. La dose d'arrosage de la consommation de pointe est donnée sous forme de débit permanent fourni 24 heures sur 24 afin d'assurer les besoins de la consommation mensuelle.

$$qs = \frac{Bnet*10*1000}{Nj*Ni*3600*Ei} l/s/ha$$

Bnet: besoin net du mois de pointe en mm/mois.

Ni: nombre des heures d'irrigation=24h

Nj: nombre de jours du mois de pointe =30 jours

Ei: Efficience d'irrigation=75%

On calcule les besoins en eau pour l'assolement le plus exigent (Assolement I)

D'où les besoins de pointe correspondent au mois de Juin,

Bnet = 599.74 mm/mois.

 \Rightarrow qs=3.09 l/s/ha > 1.5 l/s/ha

Et comme e débit spécifique obtenu est supérieur à 1.5.Donc on prend le débit spécifique de la culture la plus exigeante pour le mois de pointe (juin) qui est : la luzerne avec un besoin de 178.33mm/mois.

→ Donc le débit spécifique pris en considération pour notre périmètre est de :

$$qs = 0.92 l/s /ha$$

→ Alors on prend qs =1 l/s /ha

III.10 Evaluation du débit caractérestique

Le calcul du débit caractéristique permet de définir le débit maximum que le système de desserte aura à fournir pour l'irrigation de chaque parcelle, déterminé en multipliant le débit de pointe par la surface agricole utile, voir la formule suivante :

Qcar= qs. S

qs: débit spécifique de mois de pointe en (l/s/ha)

S: la superficie nette à irriguer = 150 ha

ightharpoonup Qcar = qs. S =1*150=150l/s

III.11Estimation des volumes d'eau d'irrigation

La connaissance des volumes totaux d'irrigation est indispensable, elle permet de prévoir les volumes d'eau stockés dans la retenue et d'effectuer un meilleur calendrier d'arrosage. Étant donné, que nous avons pris en considération un assolement biennal, nous avons calculé les besoins en eau pour l'assolement le plus exigent.

Tableau III. 28: Besoins en eau totaux de l'assolement I.

Culture	Surface	Besoins nets	Efficience	Besoins	Besoins en
	(ha)	(m³/ha)		bruts	eau (m³)
				(m ³ /ha)	
Blé – Avoine	35	1617.30	0,75	2156.40	107820
Betterave	8	1264.00	0,75	1685.33	13482.67
Luzerne	15	3147.3	0,75	4196.40	83928
Ail + Oignon vert	10	_	0,75	-	-
Pomme de terre	10	918.3	0,75	1224.40	24488
Tomate	8	1199.2	0,75	1599.87	19198.4
Choux	6	427.2	0,75	569.60	4556.8
Carotte	8	452.5	0,75	603.33	6033.3
Olivier	25	3260.5	0,75	4347.33	130420
Vigne	25	3884.0	0,75	5178.67	155360.1
Total	150	16170.3	/	21561.33	408965.5

Le volume nécessaire pour les cultures durant toute leur période végétative est de 408965.5 m³.

III.12 Conclusion

Dans ce chapitre, nous avons déterminé les besoins en eau des cultures ainsi que le volume nécessaire pour le mois de pointe et pour l'ensemble de l'année sur la surface d'étude de **200ha**. Etant donné la vocation agricole de la région d'étude, nous avons choisi deux assolements qui prennent en considération les cultures céréalières.

Les besoins nets en eau réservés à l'irrigation de la surface d'étude sont de l'ordre de 545287.3 m³, prélevés à partir de deux forages.

De ces résultats on conclue qu'un débit caractéristique de (Q _{Car}=2001/s) suffit largement à alimenter la surface d'étude.

Chapitre IV: Etude du système d'adduction

Chapitre IV: Etude du système d'adduction

IV.1.Introduction

L'aménagement d'un périmètre nécessite l'acheminement de l'eau d'irrigation depuis sa source (forage, barrage) jusqu'aux différentes parcelles par un réseau d'adduction et de distribution, à travers un réseau de conduites ou d'ouvrages hydrauliques.

Le choix des variantes d'aménagement, du tracé des conduites et de leurs matériaux permettra le bon fonctionnement du réseau d'irrigation à court et a long terme.

IV.2 Alimentation en eau du périmètre

Malgré la présence d'eaux superficielles dans la wilaya de Boumerdes, on note le manque de mobilisation de ressources en eaux (Retenues collinaires) dans la zone d'étude.

Dans ce cas, le réseau d'irrigation du périmètre Bas Sebaou sera alimenté exclusivement à partir des eaux souterraines, qui repose sur un captage de l'eau d'irrigation a partir de deux forages.

IV.3 Organisation du périmètre

Le périmètre du bas Sebaou est divisé en 23 ilots, il est composé de 61 parcelles dont la superficie varie de 1.3 à 7.7 ha.

IV.3.1 Ilots et bornes d'irrigation

Un ilot d'irrigation est une unité hydro-agricole alimenté par une borne d'irrigation. L'organisation d'un périmètre en ilots résulte d'un compromis de plusieurs facteurs topographiques, technico-économique, taille et nombre de parcelle, etc.

On admet généralement que l'implantation des bornes doit répondre aux critères suivant :

- ♣ Une prise par îlot d'exploitation.
- Quatre (4) prises maximum sur une même borne pour les grandes exploitations, la borne sera implantée de préférence au centre de la zone et à la limite pour les petites exploitations.
- ♣ Dénivelée maximum de cinq (5) mètres entre les points les plus hauts et les plus bas du bloc d'îlot.

IV.3.2 Rôle et fonction de la borne d'irrigation

Un ouvrage de desserte appelé borne d'irrigation est nécessaire pour chaque ilot, cet organe présente une ou plusieurs sorties < prises > suivant le nombre d'arrosages qu'elle doit assurer simultanément, chaque sortie de la borne doit assurer tous les fonctions :

- ♣ Réglage et limitation du débit de l'ilot.
- Réglage du la pression et encaissement des suppressions accidentelles.
- Comptage des volumes distribués par la prise.

IV.3.3 Calcul du débit aux bornes

Le débit de chaque borne desservant un ilot est calculé comme suit :

$$Q_b = q_s$$
. Si

Avec:

Q_b: Débit de chaque ilot (l/s)

q_s: Débit spécifique (l/s/ha)

Si : Superficie de l'ilot (ha)

IV.3.4 Choix du diamètre et du type des bornes

Le choix du type de borne dépend de la surface de l'ilot et du nombre de parcelles. Généralement on admet :

- ♣ Pour les ilots qui ont un nombre de parcelles entre [4 -8], et dont la superficie est inférieure à 15 ha, on prend la borne à quatre prises (Borne de type A4).
- ♣ Pour les ilots qui ont deux parcelles et dont la superficie est inférieure à 15 ha, on prend la borne à deux prises (borne de type A2).
- ♣ Pour les ilots qui ont deux parcelles et dont la superficie dépasse 15 ha, on prend la borne à deux prises (Borne de type B).
- → Pour les grands ilots (S>50 ha) on prévoit des bornes de type C. La borne se situe au centre de l'ilot.
- → 4 prises sur la même borne.

Tableau IV.1: Type de bornes en fonction de superficies des ilots

Type	Débit fourni	Entrée	Sortie (prise)
Type A2	Q<40 m3/h (11.11) l/s	1 Entrée Φ80,100	2 Entrée Φ65
Type A4	Q<40 m3/h (11.11) l/s	2 Entrée Φ80,100	4 Entrée Φ65
Type B	40 m3/h (11.11l/s) <q<80 (22.22="" h="" l="" m3="" s)<="" td=""><td>2 Entrée Φ80,100,125</td><td>2 Entrée Φ100</td></q<80>	2 Entrée Φ80,100,125	2 Entrée Φ100
Type C	Q>80 m3/h (33.33 l/s)	2 Entrée Φ80,100,125	1 Entrée Φ150

Tableau IV.2: Calcul des débits des ilots et choix du type de bornes.

îlots	superficies (ha)	parcelles	superficies	Q (l/s/ha)	Q _b (l/s)	Materiel	Corp de regulation	Borne type
	(na)			(I/S/Hu)			regulation	
I 1	11.5	1	7.7	7.7	11.5	fonte	100	TypeA2
	11.5	2	3.8	3.8	11.5		100	
I 2	6.4	3	3.2	3.2	6.4	fonte	65	Tuna A2
12	0.4	4	3.2	3.2	0.4	Tonte	03	Type A2
		5	3.2	3.2				Type A4
I 3	8.4	6	3.2	3.2	8.4	fonte	65	Турс Ач
		17	2	2				
		7	2.2	2.2				Т
I 4	7.45	8	1.65	1.65	7.45	fonte	65	Type A4
		9	2.6	2.6				
I 5	7.6	10	2.6	2.6	7.6	fonte	80	Type A2
	7.0	11	5	5	, , ,			
		12	3	3				Type A4
I 6	5.75	15	1.35	1.35	5.75	fonte	65	1 ype A4
		16	1.4	1.4				
I 7	4.45	13	2.15	2.15	4.45	fonte	65	Type A2
1 /	1.15	14	2.3	2.3	1.15	Tonce	05	
I 8	7.4	18	7.4	7.4	7.4	fonte	65	Type A2
		19	1.8	1.8				T A 4
I 9	6.7	20	1.8	1.8	6.7	fonte	65	Type A4
		21	3.1	3.1				
I 10	4.5	22	2.5	2.5	4.5	fonte	65	Type A2
		23	2	2				
I		26	2.3	2.3				Type A4
11	6.6	27	2.1	2.1	6.6	fonte	80	1 Jpc 111
		30	2.2	2.2				
I		28	2	2				Type A4
12	6.9	31	2	2	6.9	fonte	80	1 ype A4
12		32	2.9	2.9				
I 13	4.1	39	2.1	2.1	4.1	fonte	65	Type A2
113	7.1	40	2	2	7.1	TOILE	0.5	

		41	3.1	3.2				Type A4
I 14	7.6	42	3.1	3.2	7.6	fonte	65	1 урс 714
		45	1.4	2				
		35	2	2				Type A4
I 15	7.6	36	2.5	2.5	7.6	fonte	65	1 урс 714
		37	3.1	3.1				
I 16	9.1	24	4.6	4.6	9.1	fonte	80	Type A2
110	7.1	25	4.5	4.5	7.1	Tonte		
I 17	6.2	33	3	3	6.2	fonte	65	Type A2
11/	0.2	34	3.2	3.2	0.2	Tonte	03	
I 18	4.3	54	2.1	2.1	4.3	fonte	65	Type A2
110	4.3	55	2.2	2.2	4.3	Tonte	03	
		56	2	2				
I 19	I 19 6.5	57	1.8	1.8	6.5	fonte	65	Type A4
		58	1.3	1.3				
		59	1.4	1.4				
I 20	5.1	60	2.5	2.5	5.1	fonte	fonte 65	Type A2
1 20	3.1	61	2.6	2.6	3.1	Tonce	03	
I		47	1.4	1.4				Type A4
21	4.6	48	1.4	1.4	4.6	fonte	80	1 ypc A4
		49	1.8	1.8				
_		46	3	3				
I	6.5	52	2	2	6.5	fonte	80	Type A4
22		53	1.5	1.5				
		43	1.7	1.7				
123	I 23 6.65	44	1.6	1.6	6.65	fonte	65	Type A4
123		50	1.75	1.75		fonte	e 65	
		51	1.6	1.6				

IV.4 Description de l'aménagement du périmètre

L'ensemble du périmètre bas Sebaou couvre une superficie d'environ 400ha, il est réparti en deux secteurs avec une superficie moyenne de 200 ha pour chaque secteur.

Les deux secteurs sont indépendants l'un de l'autre et leurs systèmes de conduites de distribution seront par conséquent réalisés séparément.

Le système principal des conduites de distribution prend toujours son départ à partir du forage vers un réservoir pour se ramifier ensuite en fonction de la disposition des parcelles dans la zone d'irrigation.

Dans notre étude, on s'intéresse uniquement au secteur 1, sa superficie totale est de 200ha, la superficie cultivée est de l'ordre de 150ha.

IV.4.1 Choix de la variante d'aménagement

Les variantes proposées sont :

- -Première variante : à partir de deux forages, les eaux seront acheminées vers deux réservoirs qui vont alimenter tout le périmètre ;
- -Deuxième variante : à partir de deux forages, les eaux seront acheminées vers un seul réservoir sur un point culminant après en introduit un réservoir brise charge ce qui permettra d'alimenter l'ensemble périmètre avec une charge acceptable.

Après analyse des deux variantes nous avons écartés la première variante vue les variétés des pressions obtenues qui sont due aux différences d'altitude. Donc on a choisi la plus adéquate c'est-à-dire un système a un seul réservoir avec un brise charge afin d'assurer des pressions suffisantes, la variante est détaillée comme suit :

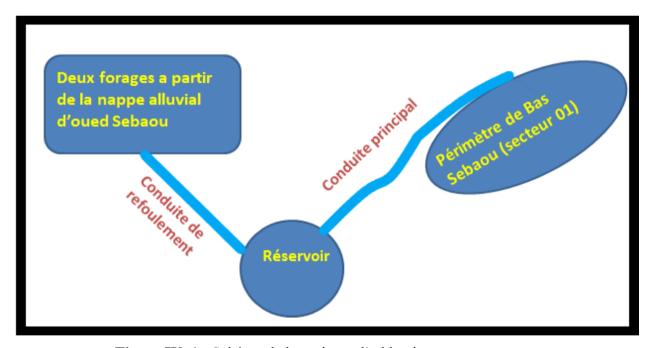


Figure IV. 1 : Schéma de la variante d'adduction.

IV.5 Considérations Hydrogéologiques

Avant de détailler les caractéristiques des forages, il y a lieu d'expliquer certains paramètres hydrogéologiques liés aux forages tels que les paramètres hydrodynamiques de l'aquifère de la zone d'étude:

• Niveau statique : Le niveau statique (Ns) d'un puits ou d'un forage est la distance du sol

à la surface de l'eau avant pompage.

- Niveau dynamique: Le niveau dynamique (Nd) d'un puits ou d'un forage est la distance du sol à la surface de l'eau pour un pompage à un débit donné. Pour le calcul de la HMT, le niveau dynamique est calculé pour un débit moyen. La différence entre le niveau dynamique et le niveau statique est appelée rabattement. Rm est le rabattement maximal acceptable avant de stopper la pompe.
- La transmissivité: ce paramètre qui s'exprime en m²/s permet d'évaluer le débit que peut capter un forage. C'est un paramètre qui régit le débit d'eau qui s'écoule par unité de largeur de l'aquifère, sous l'effet de du gradient hydraulique, incluant l'épaisseur de l'aquifère.

Manuel de cours (professeur Michael chbot).

Caractéristiques des forages :

Les différentes caractéristiques hydrauliques et hydrodynamiques des forages d'irrigation sont détaillées comme suit :

Tableau IV.3 : Caractéristiques des forages.

forage	Coordonnées	Altitude	Niveau	Niveau	Débit de	Réservoir
	(km)	(m)	statique	dynamique	forage	Cote (m)
			(m)	(m)	L/S	
	X = 603.572					
(f1)	Y = 389.505	Z =21.48	-10.80	-13.80	75	126.50
	X = 389.610					
(f2)	Y = 603.398	$\mathbf{Z} = 21.42$	-10.70	-13.70	75	

(Source INSID)

IV.6 Etude du système de pompage

Une pompe est un dispositif permettant d'aspirer et de refouler un fluide. Il existe deux grands types de pompes: les pompes volumétriques qui sont utilisées pour pomper les eaux usées et les turbopompes

> Les turbopompes (pompes centrifuge)

- Les pompes à écoulement radial

Elles permettent de relever des faibles débits sur de fortes hauteurs. La hauteur de refoulement croit avec le diamètre extérieur de la roue. Dans ce cas, l'écoulement est radial et les aubages sont des surfaces planes.

- Les pompes axiales :

Ce sont les pompes hélices où les pales sont constituées par des surfaces gauches. Ces pompes conviennent pour relever de forts débits sur de faibles hauteurs.

- Les pompes semi axiales:

Pour relever de forts débits sur de faibles hauteurs on montre que les vitesses d'entrée doivent être faibles. La hauteur de refoulement étant faible le diamètre de sortie est relativement faible d'où la construction d'une pompe hélico-centrifuge avec des dimensions importantes.

IV.6.1. Choix du type de pompe

Le choix du type de pompe se base sur plusieurs critères à savoir :

- ✓ Assurer le débit appelé Q app et la hauteur HMT
- ✓ Meilleur rendement
- ✓ Vérifier la condition de non cavitation
- ✓ Encombrement et poids les plus faibles
- ✓ Vitesse de rotation la plus élevée
- ✓ Puissance absorbée minimale
- ✓ (NPSH)_r minimal
- ✓ Etre fabriquée en série.

IV.6.2 Choix de type et de nombre de pompe pour la station de pompage (SP)

a) Détermination de la hauteur d'élévation calculée :

```
La hauteur d'élévation se calcule comme suivant :
```

```
HMT = H_g + \sum h_p(asp) + \sum h_p (ref) + P_{exh}.....VI.1
```

Avec:

hg: Hauteur géométrique (m);

 $\sum h_p(asp)$: Pertes de charges à l'aspiration (m);

 $\sum h_p$ (ref): Pertes de charges au refoulement (m);

 P_{exh} : Pression nécessaire à l'exhaure (sortie du collecteur), $P_{\text{exh}} = (1,0 \div 1,5)$ m;

On prend $P_{exh} = 1 \text{ m}$

b) Hauteur manométrique totale:

La hauteur manométrique est donnée par la formule

$$HMT = Hg + \Delta hp$$

Avec:

HMT: Hauteur Manométrique Totale en (m).

 H_g : Hauteur géométrique en (m). $H_g = h_a-h_r$

Avec:

ha: hauteur d'aspiration

hr: cote du réservoir = 126.50m

Pour les deux forages (f1,f2):

La pompe sera placée au-dessous du niveau dynamique du forage à une hauteur de : pour le

forage 1 à -13.80m,

forage 2 à 13.70 m.

Calcul de la hauteur géométrique :

La hauteur géométrique Hg est la différence d'altitude entre la cote d'arrivée (Réservoir) et celle de départ (niveau de pompage).

Pour le forage 1 :

$$Hg_1=C_R-C_{SP}=126.50-(21.50-13.80)$$
(IV.2)
 $Hg_1=126.5+13.8=140.2$ m

Pour le forage 2 :

$$Hg_2=C_R-C_{SP}=126.50-(21.40-13.70)...$$
 (IV.3)
 $Hg=126.5+13.8=$ **140.3 m**

Donc la hauteur géométrique entre le réservoir et le forage:

$$Hg_1 = 140.3m$$
.

$$Hg_2 = 140.2m$$
.

Calcul pour le forage 1

c) La longueur de refoulement :

La longueur de refoulement pour le premier forge est de $L_{ref} = 2460 \text{m}$.

donc :Le débit à refouler se calcule comme suit :

$$Q_{rf} = Qc*(1.05-1.1);$$

 $Q_{rf} = 1.05*Qc = 1581/s = 0.158m^3/s$

Nous avons le débit de refoulement de 150l/s reparti équitablement pour les deux forages, donc

Pour chaque forageon Q= 75l/s

Pour dimensionner la conduite de refoulement, on applique la formule de Bonin pour une première approximation :

$$D = \sqrt{Q}_{r1}$$

Avec: D : Diamètre intérieur de la conduite en m

Donc nous avons : D = 281 mm = 0.281 m

Ce diamètre est approximatif, on doit établir une analyse technico-économique pour

choisir le meilleur diamètre économique.

IV.6.4. Calcul des pertes de charge totales a)Pertes de charges linéaires H_L

Pour déterminer les pertes des charges linéaires on utilise la formule de Hazen-Williams

$$\Delta H_1 = \left(\frac{3.592}{C}\right)^{1.852} * \frac{L}{D^{4.87}} * Q^{1.852}$$

Avec:

ΔH_L: perte de charge linéaire

• L : Longueur de conduite, en m

• Q : Débit, en m3/s

• D : Diamètre, en m

• C : Coefficient de Hazen-Williams

Dans notre cas, les conduites de refoulement seront en fonte donc le coefficient de Hazen-Williams est de C=14.

b)Pertes de charges singulières

Elles sont occasionnées par les singularités des différents accessoires de la conduite (Coude, vannes, clapets,.....) Elles sont estimées à 10 % des pertes de charge linéaires pour une adduction ou conduite longe.

$$\Delta H_s = 0.1 * \Delta H_I$$

IV.6.5. Calcul du diamètre économique

Le calcul du diamètre économique se fait en faisant un bilan technico-économique sur les frais d'exploitation et d'investissement.

IV.6.5.1 Calcul de la HMT pour différents diamètres

Tableau IV.4 : Calcul de la HMT pour divers diamètres de la conduite.

D	T ()	Q	V	C	ΔH_l	ΔH_t	Hg	Hmt
(mm)	L(m)	(m3/s)	(m/s)	C_{HW}	(m)	(m)	(m)	(m)
250	2460	0.079	1.60	140	21.51	23.663	140.3	163.9
300	2460	0.079	1.11	140	8.85	9.738	140.3	149.9
350	2460	0.079	0.82	140	4.18	4.596	140.3	144.8
400	2460	0.079	0.63	140	2.18	2.399	140.3	142.6

IV.6.5.2 Puissance absorbée par la pompe

La puissance absorbée par la pompe est donnée par la formule suivante :

$$P_{abs} = \frac{g * Q * HMT}{n} \qquad(IV.4)$$

 η : Rendement de la pompe en (%) (n=80%)

Q : Débit refoulé par la pompe en (m³/s)

IV.6.5.3. Energie consommée par la pompe

L'énergie consommée par la station de pompage est donnée par la formule suivante :

$$E = P * T * 365 [KWh]$$

P: Puissance de la pompe en(KW).

T; C'est le temps de pompage en (heure), dans notre cas T=22h.

IV.6.5.4 Frais d'exploitation

Les frais d'exploitation sont définis par la formule suivante :

$$F_{ex} = E * e [DA] \qquad(IV.5)$$

E : L'énergie consommée par la pompe en (KWh)

e : Prix unitaire d'un KWh imposé par la SONELGAZ (e=4.69DA)

Tableau IV.5: Calcul des frais d'exploitation.

D (mm)	Q (m3/s)	HMT (m)	P (KWatt)	E (KWh)	Prix du KWh (DA)	F _{EX}
250	0.079	163.9	158.2	1 270 650.2		5 933 936.6
	0.079	103.9	136.2	1 270 030.2	4.60	3 333 330.0
300	0.077	149.9	144.8	1 162 668.8	4,69	5 429 663.3
350	0.079	144.8	139.8	1 122 802.0		5 243 485.1
400	0.079	142.6	137.7	1 105 760.8		5 163 902.9

IV.6.5.5 Frais d'amortissement

Les frais d'amortissement sont donnés par la formule suivante :

$$F_{am} = Prc * A[DA] \qquad(IV.6)$$

Prc: Prix de la conduite en (DA)

A : Amortissement annuel. Il est donné par la formule suivante :

$$A = \frac{i}{(i+1)^n} + i$$
(IV.7)

i : Taux d'annuité annuel. i= 8%.

n : nombre d'année d'amortissement. n=30ans.

Tableau IV.6: Variation des frais d'investissement en fonction du diamètre.

Diamètre en (mm)	•		L (m) Prix total (Da)		A	Frais invest (DA)
250	400.0	5000.0	2460	13284000.0	0.0888	1179983.6
300	620.0	7100.0	2460	18991200.0	0.0888	1686939.6
350	630.0	8750.0	2460	23074800.0	0.0888	2049675.3
400	810.0	11200.0	2460	29544600.0	0.0888	2624371.0

IV.6.5.6. Bilan total des frais

Le bilan des frais d'exploitation et d'amortissement permet de déterminer le diamètre économique de la conduite de refoulement

Tableau IV.7 : Bilan technico-économique des diamètres choisis.

Diamètre en (mm)	I (DA)	E (DA)	BILAN (DA)	
250	1179983.6	5933936.6	7113920.2	
300	1686939.6	5429663.3	7116602.8	
350	2049675.3	5243485.1	7293160.4	
400	2624371.0	5163902.9	7788273.9	

Avec: I: frais investissement. E: frais d'exploitation.

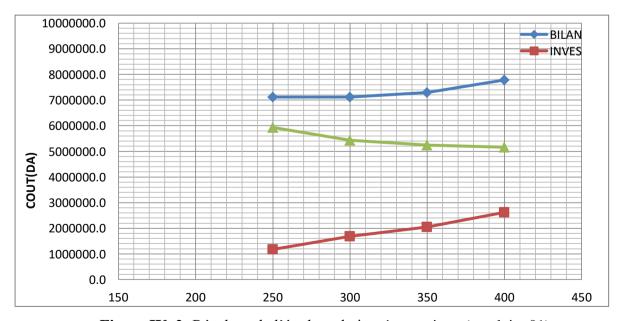


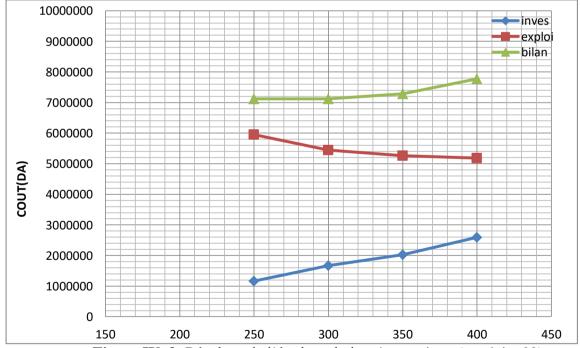
Figure IV. 2: Résultats de l'étude technico-économique (conduite 01)

D'après le graphe précédent **figureIV.2**, on s'aperçoit que le diamètre optimal est de **D=250 mm**. On prend donc ce diamètre pour la conduite de refoulement du forage (f1).

Calcul pour le forage 2

Nous avons la même procédure de calcul pour la deuxième conduite de refoulement avec :

$$Or_2 = 158/2 = 791/s$$


$$Qr_2 = 0.079 \text{ m}^3/\text{s}.$$

$$L_{2 \text{ ref}} = 2430 \text{m}.$$

Tableau IV.9 : Calcul de la HMT pour divers diamètres de la conduite.

D	I ()	Q	V	C	ΔH_1	ΔH_t	Hg	Hmt
(mm)	L(m)	(m3/s)	(m/s)	C _{HW}	(m)	(m)	(m)	(m)
250	2430	0.079	1.60	140	21.38	23.5	140.2	163.8
300	2430	0.079	1.11	140	8.80	9.7	140.2	150.0
350	2430	0.079	0.82	140	4.15	4.6	140.2	144.9
400	2430	0.079	0.63	140	2.17	2.4	140.2	142.7

Le bilan des frais d'exploitation et d'amortissement permet de déterminer le diamètre économique de la conduite de refoulement sont représentés sur le graph suivant :

Figure IV. 3: Résultats de l'étude technico-économique (conduite 02)

D'après le graphe précédent, on s'aperçoit que le diamètre optimal est de **D=250 mm**. On prend donc ce diamètre pour la conduite de refoulement du forage (f2).

IV.6.5.9. Nombre et choix des pompes

Le choix de nombre de pompes se fait sur la base du plusieurs critères, qui sont :

- ✓ Nombre de pompes minimal
- ✓ Meilleur rendement
- ✓ Charge nette d'aspiration requise (NPSH) r minimale
- ✓ Nombre d'étage minimal
- ✓ Puissance absorbée minimale
- ✓ Encombrement et poids les plus faibles

Dans notre cas, nous avons utilisé le logiciel CAPRARI pour le choix du type et du nombre des pompes. Le tableau IV.4 englobe le type, le nombre et les caractéristiques de chaque pompe choisie.

Les caractéristiques de la pompe sont représentées dans le tableau suivant :

Tableau IV.9: Variantes pour le choix du nombre de pompes.

N	Q (l/s)	HMT(m)	Type de la Pompe	η (%)	N (tr/min)	P abs (KW)	NPSHr (m)	Ó mm
1	79	165	E12S58-12/5M + M12230	79.5	2900	157	7.95	150
2	39.5*2	164	E9S55/10A + MC8125	77.1	2900	164.6	6.71	206
3	26.7*3	167	E9S50/8A + MC870	78.7	2900	174.9	4.42	206

Conclusion:

Le choix des pompes est porté sur la variante n°1 avec une pompe pour les raisons technicoéconomiques suivantes :

- 1. Nombre de pompes minimal
- 2. Meilleure Rendement 79.5%
- 3. Puissance absorbée minimal 157 Kw
- 4. NPSHr est de 7.95

Les courbes caractéristiques des pompes choisies sont représentées dans la figure suivante :

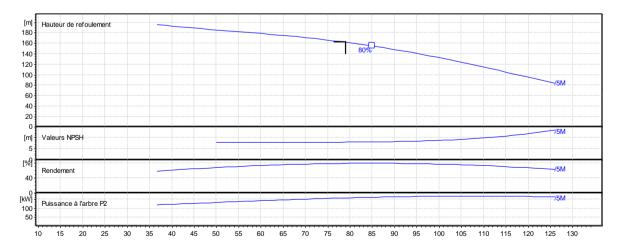


Figure IV. 4 : Courbe caractéristique de la pomp

IV.6.6 Protection contre de la cavitation

IV.6.6. 1. Vérification du risque de la cavitation

La cavitation est la perturbation du courant liquide juste à l'entrée de la pompe en fonctionnement, cela se produit pour à une température constante, la pression absolue est inférieure ou égale à la tension de vapeur d'eau.

La condition suivante doit être vérifiée : (NPSH)r< (NPSH)d

(NPSH) r : Charge nette d'aspiration requise, elle est fournie par le constructeur.

(NPSH) d : Charge nette d'aspiration disponible, elle est fournie par l'installateur.

$$(NPSH)_d = (NPSH)_r + r$$

r : marge de sécurité, r = (0.3 - 0.5) m. On prend : r = 0.5m.

$$(NPSH)d = \frac{p_{at}}{\bar{w}} - \frac{P_v}{\bar{w}} - \sum h_p^{asp} - \frac{V_{asp}^2}{2g} - h_{adm}^{asp} = (NPSH)r + 0.5 \dots (IV.8)$$

$$h_{adm}^{asp} = \frac{p_{at}}{\overline{w}} - \frac{P_v}{\overline{w}} - \sum h_p^{asp} - \frac{V_{asp}^2}{2g} - (NPSH)r - 0.5$$

V (m/s): vitesse d'écoulement dans la conduite d'aspiration;

(NPSHr): Déterminé d'après le (Tableau)

 $\frac{p_{at}}{\overline{w}}$: Dépend de l'altitude d'implantation de la station de pompage (voir tableau)

 $\frac{P_v}{\overline{w}}$: dépend de la température du liquide pompé (voir tableau)

Tableau IV.10 : Pression atmosphérique en fonction de la côte.

H (m)	- 50	0	100	300	500	1500	2000
$\frac{p_{at}}{\overline{w}}(m)$	10.86	10.33	10.2	10.06	9.7	8.6	8.4

Tableau IV.11: Pression de vapeur en fonction de la température.

T (°C)	5	10	20	30	40	50	80	100
$\frac{P_{v}}{\bar{w}}(m)$	0.09	0.12	0.24	0.43	0.75	1.25	4.82	10.33

On a:

- (NPSHr): Déterminé graphiquement égal à 7.95 m
- La côte de la station de pompage est de 21.42m.
- $-\frac{p_{at}}{\bar{w}} = 10.21 \text{ m}.$
- La température ambiante est considérée égale à 20° C donc = 0.24 m.

Avec:

$$V_{asp} = \frac{4.Q}{\pi . D_a^2} = \frac{4.0.0790}{3,14.0,264^2} = 1.44 m / s$$

$$\Delta H_{m/100m} = 1.23 \times 10^{12} \times \left((Q^{1.85}/C_{wh})/D^{4.87} \right) = 0,000719 \qquad (IV.9)$$

$$h_{adm}^{asp} = \ \frac{p_{at}}{\overline{w}} - \frac{P_v}{\overline{w}} - \sum h_p^{asp} - \frac{V_{asp}^2}{2g} - (NPSH)r - 0.5$$

$$h_{adm}^{asp} = 10.21 - 0.24 - 0.105 - 0.000719 - 7.95 - 0.5 = -1.42m.$$

Pour éviter tout risque de cavitation il suffit de respectée l'inégalité suivante: (NPSH)d>(NPSH)r

Alors:

$$(NPSH)d = 10.21 - 0.24 - 0.000719 - 0.105 - (1.42) = 8.45m$$

On remarque que : $(NPSH)_d = 8.45 \text{ m} > 7.95 = (NPSH)_r$

Donc notre pompe est bien protégée contre le risque de cavitation.

Conclusion:

Donc notre système de pompage est composé de deux pompes pour chaque forages de type E12S58-12/5M + M12230 dont une pompe de secoure sera mise en place pour chaque forages.

IV.7 Dimensionnement du réservoir

Le réservoir est dimensionné selon les besoins en eau des cultures au mois de pointe a fin d'assurer une bonne continuité d'irrigation.

Le volume du réservoir est calculé comme suit :

$$V = Q. Tf$$

Q : est le besoin maximum du mois du pointe= 540 m³/h

Tf: l'intervalle de temps, il correspond au temps de non fonctionnement de la pompe, puisqu'on a le temps de pompage est de 22h/j, donc Tf=2h

$$V = 540*2=1080 \text{ m}^3$$

Le volume d'incendie 120m³

On prend un volume total de $V = 1200 \text{m}^3$

La forme géométrique de notre réservoir est soit :

• Réservoir circulaire

Les dimensions finales du bassin sont : 4.80*18 = 1270 m3.

Tableau V-12: Dimensions du réservoir de stockage projeté

Volume (m3)	1270
Hauteur (m)	4.80
Diamètre (m)	18
Côte du radier du réservoir (m)	126.49
Côte trop plein du réservoir (m)	131.29

IV.8 La desserte gravitaire:

IV.8.1 Tracé du réseau de distribution :

Pour le choix du tracé du réseau de distribution, il est impératif de s'assurer de certaines considérations, qu'on résume en :

- ➤ Il est important de chercher un profil en long aussi régulier que possible pour éliminer les contres pentes ;
- Dans le but d'économie du projet, le tracé doit être le plus court possible ;
- ➤ Éviter le phénomène de cavitation qui peut engendrer les éclatements et vibration de la canalisation au cours de la phase de surpression ;
- Èviter les forêts, bois et zones marécageuses, ainsi que la traversée des obstacles (routes, voies ferrées, canaux, oueds,).

Le tracé escompté est un réseau ramifié qui conduit à un coût d'investissement optimum.

IV.8.2 Choix des matériaux des canalisations

De nombreux types de matériaux sont disponibles pour constituer une conduite. On peut classer en fonction des matériaux avec lesquels ils sont fabriqués : fonte, PEHD, PRV, .etc.Le choix des tuyaux utilisés est fonction de la pression et de la nature du terrain, des coûts de fourniture et de mise en œuvre, mais aussi de la facilité à réaliser les raccordements, les prises de branchement et les réparations en cas de fuite.

> Fonte

La fonte est un matériau noble apte à prendre en charge les grandes pressions, il n'est pas sensible à la corrosion et sa pose se fait sans grande contrainte. Néanmoins elle nécessite beaucoup de pièces spéciales ainsi son prix devient onéreux mais acceptable par rapport à la longévité de la conduite.

> PEHD (polyéthylène)

Les tuyaux en matière plastique sont les plus légers de tous les tuyaux. Ils sont faciles à couper, à poser et à assembler si certaines précautions sont prises. Ils ont de très bonnes propriétés hydrauliques et ne sont pas sujets à la corrosion. Toutefois leur résistance mécanique présente une limitation plus sévère que les autres matériaux (Casse pour le PVC, écrasement pour le PEHD).

> PRV (polyester renforcé verre) :

C'est un matériau composite constitué d'une matrice polymère (appelée résine) renforcée par des fibres ou parfois par des microsphères de verre, Ses propriétés de résistance (mécanique, chimique) et sa densité sont très favorables, comparé aux métaux.et sa résistance à la corrosion.

IV.8.3 Dimensionnement hydraulique des canalisations

Calcul des diamètres :

Le calcul des diamètres est réalisé sur la base des débits véhiculés par le tronçon de conduite, et les vitesses. La formule de « LABYE "nous donne une approche du diamètre économique qu'on normalise :

$$D = \sqrt{\frac{4 \times Q \times 0.001}{\pi \times V}} \times 1000 \dots \text{IV.}10$$

Avec:

Q: débit, exprimé en m³/s;

D: diamètre exprimé en mm

V : vitesse d'écoulement dans les conduites.

➤ Vitesse admissible : La vitesse admissible varie entre 0.5 m/s, comme vitesse inférieure, et 2.5 m/s comme vitesse maximum. Dans notre étude, on prend une vitesse moyenne dans la conduite égale à 1.2 m/s.

> Calcul des pertes de charge :

Les pertes de charge unitaires, ont été définies par la formule de LECHAPT et CALMON, qui est donnée par la formule suivante :

$$h_{Pu} = \frac{L \times Q^{M}}{D^{N}} \times C \qquad(IV.11)$$

Avec:

h_{Pu}: Pertes de charge unitaire en mm/ml

Q: Débit en m3/s

D : Diamètre de la conduite considérée. L, M et N : Paramètres en fonction de la rugosité absolue (Ks) des canalisations

C : coefficient compris une majoration de 10 % pour les pertes de charge singulière :

$$J=L\times Q^{M}/D^{N} \qquad \qquad (IV12$$

Tableau IV.13: Paramètres de pertes de charge de la loi de Lechapt-Calmon

K (mm)	L	M	N
0,1	1,15	1,89	5,01
0,5	1,4	1,96	5,19
1	1,6	1,975	5,25

La rugosité équivalente : K=0.1 mm, donc : L=1.15 M=1.89 N=5.01.

Dans notre cas, les conduites seront en fonte si leur diamètre est supérieur ou égal à 315mm et en PEHD dans le cas contraire. Pour une conduite en fonte/PEHD, nous a les caractéristiques suivantes :

Les pertes de charge singulières sont estimées à 10% des pertes de charge linéaires. Les calculs hydrauliques sont détaillés dans le tableau qui suivra.

L'estimation des pressions est basée sur le principe de Bernoulli entre le point A et le point B:

$$Z_1 + h_1 + V_1^2 / 2g = Z_2 + h_2 + V_2^2 / 2g + \Delta h$$
(IV.13)

Où h₁ et h₂ sont les hauteurs de pressions

V₁ et V₂ sont les vitesses d'écoulement dans A et B

 Z_1 et Z_2 sont les côtes du terrain naturel.

 ΔH : sont les pertes de charge entre A et B.

Remarque:

Comme notre réseau présente des point dont la pression dépasse les 8 bar, on a décidé de briser la charge avec un réservoir au niveau de tronçon **V4-V05** dont le dimensionnement est comme suite :

Le volume du réservoir est calculé comme suit :

$$V = Q. Tf$$

Q : est le besoin de la partie bas= 417.6 m³/h

Tf: l'intervalle de temps, il correspond au temps de non fonctionnement de la pompe, puisqu'on a le temps de pompage est de 22h/j, donc Tf=2h

$$V = 417.6*2 = 835 \text{ m}^3$$

On prend un volume total de $V = 900 \text{m}^3$

La forme géométrique de notre réservoir est soit :

• Réservoir circulaire

Les dimensions finales du bassin sont : 4*17 = 900 m3.

Tableau V-14: Dimensions du réservoir de stockage projeté

Volume (m3)	900
Hauteur (m)	4
Diamètre (m)	17
Côte du radier du réservoir (m)	90.64
Côte trop plein du réservoir (m)	94.64

Les calculs sont détaillés dans le tableau IV.6

Tableau IV.14 : Calculs hydrauliques du réseau de distribution

N° du trnçon	Longueur du trnçon L(m)	Longueur du trnçon L(km)	Superfici e (ha)		débit Q(M3/S)	Diametre calculé	Dian_ Norm		Vitesse V reelle(m /s)	Perte de charge linéaire ∆ Ht (m)	Perte de charge total ∆ Ht (m)	Cote terrain aval Z (m)	cote peiezometrique (m)	Pression au point P(m)	P(bars)
R-V01	722	0.722	150	150	0.150	399.043	400	fonte	1.19	3.142	3.456	92.11	123.034	30.93	3.09
V01-V11	445	0.455	16.2	16.2	0.0162	131.139	160	PEHD	0.81	4.614	5.075	41.5	121.415	79.93	7.99
V11-BG21	100	0.100	4.6	4.6	0.0046	69.880	75	PEHD	1.04	19.022	20.924	35.22	105.566	70.36	7.04
V11-V12	90	0.090	11.6	11.6	0.0116	110.969	160	PEHD	0.58	2.454	2.699	46.23	123.791	77.57	7.76
V12-BG22	30	0.030	6.5	6.5	0.0065	83.068	90	PEHD	1.02	14.667	16.134	30.85	110.356	79.52	7.95
V12-BG23	226	0.226	6.65	6.65	0.00665	84.021	90	PEHD	1.05	15.314	16.845	30.22	109.645	79.44	7.94

V01-V02	28.65	0.02865	132.25	132.25	0.1323	374.761	400	fonte	1.05	2.478	2.726	91.08	123.764	32.69	3.27
V02-BG20	70.25	0.0703	6.1	6.1	0.0061	80.471	90	PEHD	0.96	13.008	14.309	81.5	112.181	30.69	3.07
V02-V03	97.34	0.0973	126.75	126.75	0.127	367.178	400	PEHD	1.01	2.294	2.523	85.15	123.967	38.83	3.88
V03-BG19	125	0.125	6.5	6.5	0.0065	83.068	90	PEHD	1.02	14.667	16.134	63.7	110.356	46.67	4.67
V03-V04	85.4	0.0854	119.6	119.6	0.120	356.915	400	fonte	0.96	2.061	2.267	84.12	124.223	40.11	4.01
V04-BG18	120	0.120	4.3	4.3	0.0043	67.563	75	PEHD	0.97	16.745	18.420	65.5	108.07	42.58	4.26
V04-R02	70	0.070	115.35	115.35	0.116	350.916	400	fonte	0.92	1.933	2.126	90.64	124.364	30.44	3.04
R02-V05	181	0.181	115.35	115.35	0.166	350.916	400	fonte	0.92	3.805	4.186	78.3	122.304	8.15	0.82

V05-V13	164	0.164	22.9	22.9	0.023	156.257	160	PEHD	1.14	8.948	9.843	70.8	116.647	10	1
V13-BG15	91	0.091	7.6	7.6	0.0076	89.822	110	PEHD	0.80	7.212	7.933	48.12	118.557	34.59	3.46
V13-V14	181	0.181	15.3	15.3	0.0153	127.444	160	PEHD	0.76	4.141	4.555	51.1	121.935	34.98	3.5
V14-BG16	40	0.040	9.1	9.1	0.0091	98.287	110	PEHD	0.96	10.137	11.151	49.3	115.339	30.19	3.02
V14-BG17	104	0.104	6.2	6.2	0.0062	81.128	90	PEHD	0.98	13.414	14.756	44.3	111.734	31.58	3.16
V05-V06	490	0.490	92.45	92.45	0.093	314.207	400	fonte	0.74	1.273	1.400	23.7	125.09	65.54	6.55
V06-BG01	233	0.233	11.5	11.5	0.0115	110.490	160	PEHD	0.57	2.414	2.656	22.68	123.834	65.3	6.53
V06-V07	90	0.090	80.95	80.95	0.081	293.236	315	fonte	1.04	3.245	3.569	23	122.921	64.07	6.41

V07-BG02	112	0.112	6.4	6.4	0.0064	82.426	90	PEHD	1.01	14.244	15.668	22.5	110.822	52.47	5.25
V07-V08	267	0.267	74.55	74.55	0.0754	282.918	315	fonte	0.97	2.834	3.117	22.98	123.373	64.54	6.45
V08-V15	46	0.046	29.2	29.2	0.0292	176.062	250	PEHD	0.60	1.502	1.652	22	124.838	66.99	6.7
V15-BG06	87	0.087	5.75	5.75	0.0078	90.996	110	PEHD	0.82	7.575	8.332	22	118.158	60.31	6.03
V15-V16	43	0.043	23.45	23.45	0.0235	157.946	160	PEHD	1.17	9.319	10.251	21.7	116.239	58.69	5.87
V16-BG03	90	0.090	8.4	8.4	0.0084	94.431	110	PEHD	0.88	8.714	9.585	21.8	116.905	59.25	5.93
V16-BG05	328	0.328	7.8	7.8	0.0078	90.996	110	PEHD	0.82	7.575	8.332	20.48	118.158	61.83	6.18
V16-BG04	308	0.308	7.45	7.45	0.00745	88.931	90	PEHD	1.17	18.981	20.879	20.43	105.611	49.33	4.93

V08-V09	211.5	0.2115	43.5	43.5	0.0435	214.891	250	PEHD	0.89	3.190	3.509	22.43	122.981	64.7	6.47
V09-V17	165	0.165	33.5	33.5	0.0335	188.581	200	PEHD	1.07	5.955	6.550	23.39	119.94	60.7	6.07
V17-BG09	194	0.194	6.7	6.7	0.0067	84.336	90	PEHD	1.05	15.532	17.085	23.2	109.405	50.35	5.04
V17-BG10	90	0.090	4.9	4.9	0.0049	72.123	75	PEHD	1.11	21.434	23.578	23.68	102.912	43.38	4.34
V17-V18	134	0.134	22.3	22.3	0.0223	153.860	200	PEHD	0.71	2.760	3.035	23.97	123.455	63.63	6.36
V18-BG11	102	0.102	6.6	6.6	0.0066	83.704	90	PEHD	1.04	15.097	16.606	23.6	109.884	50.43	5.04
V18-BG12	104	0.104	6.9	6.9	0.0069	85.585	90	PEHD	1.09	16.420	18.062	24.3	108.428	48.28	4.83

α 1	• ,	TT 7
Cha	pitre	Iν
Onu	piuc	

Etude du système d'adduction

V18-V19	200	0.200	8.8	8.8	0.0088	96.653	110	PEHD	0.93	9.515	10.466	24.63	116.024	55.54	5.55
V19-BG13	60	0.060	4.1	4.1	0.0041	65.973	75	PEHD	0.93	15.304	16.834	25.02	109.656	48.79	4.88
V19-BG14	250	0.250	77	7.7	0.0077	90.411	110	PEHD	0.81	7.392	8.132	26.03	118.358	56.48	5.65

IV.9 Conclusion

Les dimensions de notre système d'adduction disposent d'une variété de valeurs des pressions aux bornes ce qui offre des multiples choix concernant le système d'irrigation choisit au niveau de parcellaire.

Chapitre V: Choix des techniques d'irrigation

Chapitre V: Choix des techniques d'irrigation

V.1.Introduction

L'optimisation devient de plus en plus un objectif prioritaire dans tous les domaines de dont l'eau prend l'extrême place vue l'importance incroyable de cette dernière, et pour cella plusieurs techniques moderne d'irrigation ont été développées afin d'augmenter l'efficience de l'eau d'irrigation.

Dans ce chapitre on va détailler ces techniques en choisissant par la suite celles qui s'adaptent mieux à l'agriculture de notre zone d'étude.

V.2 Choix des techniques d'irrigation

Afin de choisir la technique d'irrigation la plus convenable plusieurs facteurs sont à prendre considération et en particulier :

- ➤ La topographie de terrain
- L'emplacement des ressources en eau
- > Type de la culture et du sol
- > Les facteurs climatiques
- > Facteurs économiques.

V.2.1 Différentes techniques d'arrosages

Il existe deux grandes classes des techniques, qui sont :

- L'irrigation gravitaire ou de surface.
- > L'irrigation sous pression :
 - par aspersion.
 - par micro-irrigation.

V.2.1.1 Irrigation gravitaire

L'irrigation gravitaire est une technique dont l'écoulement de l'eau se fait selon la pente naturelle du sol. S'il peut être fait appel à des ouvrages pour contrôler la desserte.

(Tiercelin. 1998)

On retrouve donc les techniques les plus anciennement mises en œuvre, sur l'ensemble de la planète, qu'il s'agisse de ruissellement ou de submersion (ou d'une combinaison de ces deux principes).

a) Irrigation par ruissellement

Cette méthode consiste à un apport par ruissellement à partir des fossés du champ. Cette façon de

faire est souvent comparée à une inondation sauvage. Bien que ces méthodes soient intéressantes pour leur faible coût initial et pour le travail demandé, elles ne le sont pas pour leur faible efficience et leur faible uniformité.

Figure V. 1: Irrigation par ruissellement.

a) Irrigation par bassins (submersion)

Les bassins sont généralement de forme rectangulaire, nivelés et entourés par une digue pour éviter le ruissellement. La mise en eau des bassins est généralement ni dirigée, ni contrôlée et elle peut être efficiente si un débit important est disponible pour recouvrir rapidement la parcelle (Schwab et al, 1993). Le nivellement du terrain est très important pour obtenir une uniformité et une efficience élevées pour toutes les techniques d'irrigation de surface.

(Tiercelin. 1998)

Figure V. 2: Irrigation par submersion.

b) Irrigation à la raie (sillons)

Les sillons sont des petites rigoles en terre, aménagées dans le sens de la pente du terrain, pour transporter l'eau entre les rangées de cultures.

L'eau s'infiltre dans le sol, principalement par les côtés du sillon, tout le long de son trajet dans le sens de la pente du terrain.

Cette technique est valable pour l'irrigation de toutes les cultures en lignes et pour toutes les cultures qui ne tolèrent pas la submersion par les eaux de leur feuillage ou de leur collet pour une longue durée.

Les sillons sont alimentés par des prises d'eau aménagées sur les berges du canal d'amenée.

Figure V. 3: Irrigation à la raie.

c) Irrigation en planches

Les planches sont des bandes de terrain, aménagées en pente douce et séparées par des diguettes. L'alimentation en eau des planches est faite de plusieurs façons: soit à l'aide de prises d'eau aménagées sur le canal d'amenée et équipées d'une vannette, soit par des siphons, ou bien par des tuyaux d'alimentation passant à travers les berges du canal d'amenée.

Avantages et les inconvénients de l'irrigation par gravité

✓ Avantages :

- Techniques anciennes, bien connues;
- Coût d'investissement faible à la parcelle pour l'agriculteur ;
- Pas d'apport énergétique extérieur ;
- Alimentation des nappes phréatiques ;
- Augmentation de la biodiversité;

✓ Inconvénients

- Temps de main d'œuvre pour la répartition important ;
- faible efficience hydraulique;
- « pertes » d'eau importantes dans les canaux selon la nature du sol : nécessité d'étanché les lits des branches principales ;
- nécessite un nivellement du terrain ;
- Estimation du volume réellement consommé difficile ;

V.2.1.2 Irrigation sou pression

V.2.1.2.1 Irrigation par aspersion

C'est une méthode qui consiste à fournir l'eau nécessaire aux cultures sous forme de pluie naturelle. L'eau est mise sous pression, généralement par pompage, pour être ensuite distribuée au moyen d'un réseau de canalisations. La distribution d'eau est faite au moyen de rampes d'arrosage équipées d'asperseurs. L'eau sort sous la forme d'un jet et se répartit en gouttelettes d'eau qui tombent sur le sol.

Le choix du dispositif de pompage, des asperseurs et la bonne gestion de l'eau doivent garantir la distribution uniforme de l'eau d'irrigation.

Avantages et inconvénients de l'irrigation par aspersion

✓ Avantages

- Elle s'adapte à n'importe quel type de terrain (accidenté, pente nulle...etc);
- Elle peut être employée quelque soit la nature du sol (cas d'un sol perméable) ;
- Elle permet une oxygénation de l'eau ;
- Elle présente une économie de l'eau, qui peut atteindre 50%;
- Elle met à la disposition des exploitations des conditions d'arrosage très souples.

✓ Inconvénients

- Investissements initiaux élevés (manuel de la FAO, 2008)
- Développement des mauvaises herbes ;
- Elle favorise l'évaporation qui est d'autant plus intense que les gouttelettes sont fines.
- Eau chargée provoque l'abrasion très rapide des buses d'aspersion.
- Un minimum de précaution doit être pris pour éviter le colmatage surtout avec la buse de petit diamètre.

❖ Différentes installations à la parcelle

En pratique, deux solutions extrêmes peuvent être envisagées : L'installation totalement fixée, et l'installation totalement mobile.

Dans l'installation fixée, l'ensemble des équipements (pompe, canalisation, asperseur) sont fixés de façon, permanente, ce qui limite une main d'œuvre, mais un cout d'investissements très élevés.

V.2.1.2.2. Irrigation localisée (Goutte à goutte)

Il consiste à apporter l'eau sous faible pression jusqu'aux racines de chacune des plantes et à la distribuer au goutte à goutte, en surface ou en souterraine à l'aide de petits tuyaux, posés sur le sol ou enterrée.

Bien menée, cette technique permet de notablement diminuer la consommation d'eau; elle n'humidifie que la portion de sol située au voisinage immédiat des racines et elle limite les pertes par évaporation, ruissellement ou infiltration profonde.

Figure V. 4: Irrigation par goutte à goutte.

Avantages et les inconvénients de l'irrigation localisée

✓ Avantages

- Grande économie d'eau
- Parfait équilibre en apport d'eau, d'engrais et d'oxygène
- Forte réduction du risque d'apparition des maladies cryptogamiques et des mauvaises herbes.
- Ce type de système peut fonctionner parfaitement sur une culture à petite échelle comme à très grande échelle (polyvalence importante).

✓ Inconvénients

- Il est important de prendre le temps de choisir le bon système, qu'il soit bien conçut, fiable et pourvu de bons filtres afin de ne pas obturer les goutteurs
- Obstruction des goutteurs : l'entretien rigoureux de ce type de système est fondamental pour imiter l'obstruction des goutteurs.

V.3 Choix de la technique d'arrosage

Avant de choisir la technique d'irrigation convenable, il faut d'abord visualiser toutes les contraintes de chaque type d'arrosage. Une analyse multicritères des techniques d'arrosage basée sur différentes contraintes est nécessaire pour aboutir au choix de la technique d'irrigation la plus adéquate pour la zone considérée.

V.3.1.Les contraintes naturelles :

a-Le vent

Le facteur vent ne présente aucune contrainte dans le choix de technique d'irrigations pour notre zone d'étude, il est caractérisé par des vitesses faibles avec une moyenne de 3.1m/s.

b-Le sol

Les textures caractérisent les sols de notre périmètres sont limono-argileuse et argilo-sableuses, la perméabilité est moyenne à bonne, d'où l'irrigation de surface doit être prudente afin d'éviter l'asphyxie des plantes, dans ce cas l'irrigation par aspersion et l'irrigation localisé ont des avantages du fait qu'on peut donner des faibles doses.

c- La pente du terrain

Notre périmètre à une pente qui ne dépasse pas les 2 % en général, donc cette dernière ne présente aucune contrainte particulière.

d-Les contraintes agronomiques

Notre périmètre sera cultivé par des différentes cultures fourragères, céréale, maraîchage, et arboriculture, et en se basant sur une économie d'eau essentiellement on retient l'irrigation par aspersion pour les cultures fourragères et maraîchages, et l'irrigation localisée pour l'arboriculture (oliviers et vignes)

V.4. Conclusion

Le choix d'un système d'irrigation doit répondre à des certains critères technicoéconomiques qui permettent à la fois une valorisation des ressources en eau et une augmentation des rendements et pour ceci les techniques modernes ont bien fait preuve.

Chapitre VI: Dimensionnement à la parcelle

Chapitre VI : Dimensionnement à la parcelle

VI.1. Introduction:

Dans le but d'économiser le maximum d'eau et d'avoir une haute performance du réseau d'irrigation, nos parcelles seront dimensionnées par les deux techniques les plus efficientes des systèmes d'irrigation à savoir l'aspersion et le goutte à goutte et cela, vu leurs économie d'eau et leurs avantages sur les rendements des cultures.

VI.2. Dimensionnement d'un réseau d'irrigation par aspersion

Le dimensionnement par aspersion, nécessite au préalable de quantifier certains paramètres nécessaires à la mise en œuvre de cette technique :

-Choix de la culture : Dans notre cas nous avons choisi l'irrigation la luzerne, Pour laquelle la totalité des canalisations et des asperseurs est mise en place sur la parcelle, durant toute la compagne d'irrigation.

On va choisir la parcelle n° 35 de l'ilot n°15 dont :

- ✓ La culture mise en place est la luzarne sur une surface de 1.5ha.
- ✓ La pression du service de la borne **BG15** est de **3.5 bar.**

Tableau VI 1 : tableau récapitulatif des données nécessaires pour le dimensionnement.

Caractéristiqu	e du périmètre	Caractéristique du sol et de la culture		
Longueur	120	Besoins en de pointe	178.3 mm/mois	
Largeur	120	Perméabilité du sol	7.5 mm/h.	
Temps de travail	26jours/mois	Temps de travail	22 h/jr	

• Calcul de la done pratique : la RFU elle est calculée comme suit :

 $RFU = Y * (H_{cc} - H_{pf})*Da*Z$

Y: degré de tarissement : égal à 2/3;

Da: densité apparente : égale à 1.35

Z: profondeur d'enracinement mm (1m)

Hcc: humidité à la capacité au champ (28%)

Hpf: humidité au point de flétrissement (16%).

RFU= $(28-16)/100 \times 1.35 \times 1000 \times 2/3 = 108$ mm

VI.2.2.Dimensionnement théorique

Calcul du diamètre de l'ajutage

La perméabilité du sol K= 7.5 mm/h; On pose p≤k tel que p : pluviométrie de la buse.

Le diamètre de la buse se calcule par la formule suivante :

$$p = \frac{1.5 \cdot d}{1.04}$$
(VI.1)

D'où:
$$d = \frac{7.5 \cdot 1,04}{1,5} = 5.10 mm$$

D'après la fiche technique d'un arroseur de type PERROT type **PR24** (**Annexe 4**), le diamètre de la buse normalisé le plus proche est de 4.8 mm.

Calcul de la portée du jet (L)

La portée du jet est la distance de l'appareil au point du rayon arrrosé, permet de définir la surface circulaire arrosée par l'appareil, se calcule par l'équation suivante :

$$L = 3 \cdot d^{0.5} \cdot h^{0.25} \qquad(VI.2)$$

Avec : d : le diamètre de la buse (mm)

h: pression à la buse (m), dans notre cas P= 3 bars, hauteur d'eau =25m.

$$L = 3 \cdot (4.80)^{0.5} \cdot 25^{0.25} = 14.70$$

Théoriquement, cette formule est valable, mais demande encore plus de précisions en fonction du diamétre choisi et recommandé par le fournisseur.

D'après le catalogue (annexe 4), pour le diamètre de la buse de 4,80mm à une pression minimale de 2.5 bars, la portée calculée est de 15.0m.

Ecartements entre les rampes et arroseurs

En fonction de la vitesse du vent, les normes américaines recommandent l'écartement maximum suivant :

- El entre les lignes d'arrosage : 1,25L (vent faible) à 1,02 L (vent fort).
- Ea entre les arroseurs sur la rampe : 0,8 L (vent faible) à 0,5 L (vent fort).

Les valeurs maximales correspondent à des conditions de vent peu violent (<10Km/h).

Notre zone d'étude présente des vitesses maximales de vents de l'ordre de 3.7 m/s=13Km/h, donc on prend les valeurs suivantes :

$$E_1 = 1,25 \cdot 15.0 = 18.7m$$

$$E_a = 0.8 \cdot 15.0 = 12.0 m$$

Les valeurs normalisées des écartements sont comme suit :

 $E_1=18m$, $E_a=12m$, soit donc un ecartement 18x12.

❖ Débit de l'asperseur

Le débit d'un asperseur se calcule, par la relation suivante :

$$q = 0.95 \cdot \frac{\pi \cdot d^{2}}{4} \sqrt{2 \cdot g \cdot h}.$$

$$q = 0.95 \cdot \frac{3.14 \cdot (4.8 \cdot 10^{-3})^{2}}{4} \sqrt{2 \cdot 9.81 \cdot 25}$$

$$q = 1.35m3/h$$
(VI.3)

Avec q débit de l'asperseur (m3/h).

Vérification de la pluviométrie de la buse

Si on admet que l'écartement est proportionnel à la portée, la pluviométrie horaire p en (mm/h) peut être appréciée via la relation :

$$p = \frac{q}{E_l \cdot E_a} \qquad \dots \dots (VI.4)$$

Q : est le débit de l'asperseur choisi, q=1.37 m³/h

D'où
$$p = \frac{1,35}{18.12} = 6.2 mm/h$$

Donc le diamètre de la buse (4.8mm) choisi, assurera une pluviométrie P≤K=7.5 mm/h.

❖ Calcul du tour d'eau :

La durée du tour d'eau correpond à la durée nécesaire à l'arrosage de l'ensemble des parcelles.

$$T_{eau} = \frac{Dose_{RFU}.N_J}{B_{mn}}$$
(VI.5)

Teau= (108.26)/178.3 = 15.78 jours.

On prend un tour d'eau de 15 jours.

Donc on irrigue deux fois par mois.

La dose réelle :

Dr = Teau. les besoins journalies = 15.(178.3/30)=89.15

Dr = 89.15 mm.

Calcul de la dose brute :

Db = La dose réelle /0,75 = 148.58 /0,75 = 118.86 mm

❖ Temps d'arrosage :

Le temps T pour donner une dose par un asperseur sans dépasser la capacité d'infiltration se calcule d'après la relation suivante :

$$T = \frac{dose_brute}{pluviometrie} = 198.11 / 7.5 = 15.84 \text{ h}$$

T = 16 h avec une dose brute de de 118.86 mm

Donc on pourra adopter 1 post par jour pour un asperseur.

❖ Calcul du débit d'équipement (Qeq) :

$$Qeq = \frac{S(ha).B(mm).10}{T.n.Nj} = \frac{1.5.1783.10}{16.1.26} = 6.42m3/h$$

Calcul de l'unité d'arrosage (SU) :

La surface unitaire arrosée :
$$SU = \frac{S}{Teau.n} = \frac{1.5}{16.1} = 0.094ha$$

❖ Nombre d'asperseur requis (Nasp) :

$$Nasp = \frac{SU.10000}{El.Ea} = \frac{0.094.10000}{18.12} = 4.35asp$$

Donc on prend 5 asperseur.

VI.2.3.Dimensionnement hydrauliques des rampes :

A. Longueur de la rampe

Cette étape de dimensionnement diffère d'une parcelle à une autre car elle basée sur les dimensions de la parcelle ainsi que la façon dont on projette le réseau d'aspersion. Il est envisagé deux dispositifs d'installation des asperseurs sur la rampe :

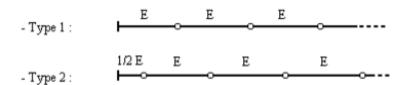


Figure VI.1: Dispositifs d'installation des asperseurs.

La longueur de la rampe est donc :

Pour le type 1 : L = n*E

Pour le type 2 : L = (n-0.5)*E

d'où:

on installe selon le type 1 : L = n.E

d'où:

L= largeur de terrain $\frac{1}{2}$ - Ea $\frac{1}{2}$ = $\frac{120}{2}$ - $\frac{12}{2}$ = 54 m

B. Nbre asperseur/rampe (N):

N= largeur/Ea= Lr/Ea = 54/12 = 5.5 asperseurs = 6 apsr

C. Nombre de rampes(Nr):

Nr = N asp / (nbr asp/ rampe) = 2rampes.

On travaille avec deux rampes.

D. Calcul du débit de la rampe(Qr) :

 $Qr = le débit de l'asperseur \times le nombre d'asperseur/rampe$

Le débit de la rampe : $Qr=1,37*6=8.22m^3/h = 0.00288 m^3/s$

Nombre de position des rampes :

$$N_r = \frac{lr}{E_l} = \frac{120}{18} \approx 7$$

Lr: longeur du terrain = 120 m, El: espacement entre les rampes (=18m).

Le nombre de poste égale à 7 postes.

E. Calcul du Diamètre de la rampe

Diamètre de la rampe : $D_R = \sqrt{\frac{4Q_R}{\pi N}}$

Avec V: vitesse de l'écoulement à travers la rampe

Ou:
$$V \le V_{ADM}$$
; $V_{adm} \in [0.5 \div 2.5] m/s$

On suppose que V= 1.5 m/s et on calcule D_R

$$D_R = \sqrt{\frac{4 \cdot .2.88.10^{-3}}{\pi .1.5}} = 0,0494m = 49mm$$

Les conduites en PEHD disponibles sur le marché ont les diamètres suivants:

Le diamètre normalisé (D_r=50 mm).

La nouvelle vitesse sera:

$$v = \frac{4*Q}{\pi*d^2} = \frac{4*2.88*10^{-3}}{\pi*(50*10^{-3})^2} = 1.46m/s$$

Ce qui est conforme.

ENSH 2019

F. Dimensionnement de la porte-rampe

La longueur de la porte-rampe est calculée par :

$$Lpr=120-18/2=111 m$$

On recalcule avec le porte-rampe

$$Q_{p_rampe} = Q_{asp} * n_{asp} / rampe * N_rampe = 02.88 * 10^{-3} * 11 * 1 Q = 0.0317 m^{3} / s$$

Ou:
$$V \le V_{ADM}$$
; $V_{adm} \in [0.5 \div 2.5] m/s$

On suppose que V = 1.5 m/s et on calcule D_R

$$Dpr = \sqrt{\frac{4.31.7.10^{-3}}{\pi.1,5}} = 0,164m = 164mm,$$

Si on prend le diamètre normalisé (Dpr₌160 mm) , les pertes de charges vont dépassent les normes de Christiansen (4.13).

On prend donc un diamètre de la porte rampe de 160mm.

La nouvelle vitesse sera:

$$v = \frac{4*Q}{\pi*d^2} = \frac{4*31.7*10^{-3}}{\pi*(160*10^{-3})^2} = 1.25m/s$$
 Ce qui est conforme.

G. Calcul des pertes de charge :

L'expression générale des pertes de charges linéaire dans les conduites est calculée généralement par une formule de type Hazen Williams :

$$\Delta H = \left(\frac{3.592}{C_H}\right)^{1.852} \frac{Q^{1.852}}{D^{4.87}}$$

Ou ΔH = Perte de charge unitaires (m/m)

Q: Debit de la conduite en m3/s

CH: coeffcient equivaut à140.

Pour la rampe on a : L=51m, D= 0.050 m, Q= 0.00288 m3/s

 Δ Hrampe= 2.2 m.

Pour la porte rampe on a : L=111m, D=0.160m, Q=0.0317m3/s

 ΔH porte-rampe = 1.27 m.

Les pertes de charges totales pour les rampes sont de 1.48m et 1.44m pour la porte rampe.

Donc:

ΔH_t=2.2+1.27=2.47 m de perte de charge, la règle de Christiansen est donc respectée.

VI.2.4 Calcul de la pression en tête du réseau

C'est la pression nécessaire pour le bon fonctionnement du dernier asperseur.

$$H = H_1 + H_2 + H_3$$

H: pression à la tête de la parcelle.

H1: pression nécessaire pour le bon fonctionnement d'un asperseur (3bar).

H2: perte de charge totale de la rampe

H3: la dénivelée. (0 m. terrain relativement plat)

H=30+2.47+0=32.47m.

P=3,3 bar, ce qui est largement suffisant vu la pression aux bornes qui est de 3.5 bars.

VI.3. Dimensionnement d'un réseau d'irrigation Goutte à goutte

VI.3.1 données nécessaire pour le dimensionnement

On va choisir la parcelle n° 35 de l'ilot n°20 dont :

- ✓ la pression du service de la borne **BG15** est de **3 bar.**
- ✓ La culture mise en place est **le vigne**, dont :
 - Besoins en de pointe 112 mm/mois
 - surface de 1ha
 - Longueur: 120 m.
 - largeur: 80 m.
 - avec un écartement de 2*2,2m
 - un espacement des goutteurs 2 m:

Caractéristique du goutteur

➤ Débit nominal : 1 l/h

> Pression nominale : 10 m.c.e

> Espacement des goutteurs :1 m

Le nombre de goutteurs par arbre : 2

VI.3.2 Besoins d'irrigation des cultures en irrigation localisée

a) Influence du taux de couverture du sol

En micro-irrigation, les apports d'eau étant localisés sur une portion très faible de la surface du

sol située au voisinage des plantes, donc à l'ombre du feuillage, la part d'évaporation directe à partir du sol est réduite On applique alors à L'ETM un coefficient de réduction :

 K_r dépend du taux de couverture du sol (C_s =60%) pour les plantes adultes. Kr peut être calculé par diverses formules proposées ci-après

• KELLER et KARMELI (1974) :

$$Kr = \frac{Cs}{0.85}$$
(VI.1)

• La formule de Freeman et Garzoli:

$$Kr = Cs + 0.5(1 - Cs)$$
(VI.2)

• La formule de Decroix (CTGREF):

$$Kr = 0.1 + Cs$$
(VI.3)

Pour notre cas on considère un taux de couverture égale à 60% (pour les arbres adultes) donc :

Kr =0.80 selon Freeman et Garzoli

Kr =0.70 selon Decroix (CTGREF)

On prendra un coefficient Kr = 0.80

$$B_{jl}=B_{j}*K_{r}$$
(VI.4)

 $B_i = ETM_c = 3.71*0.8 = 2.97 \text{ mm/j}$

a) Dose nette pratique

La deuxième étape en micro-irrigation, est la détermination d'une fraction ou pourcentage d'humidification du bulbe humide dans la zone racinaire. La différence par rapport aux autres systèmes (gravitaire ou par aspersion) est qu'il ne s'agit plus d'humidifier uniformément la totalité du sol sur une même profondeur h :

La dose (RFU) étant définie par la hauteur d'eau P :

$$Dp = (Hcc-Hpf).Y.Z.P\% = RFU*P\%$$

Tel que : Hcc : (28%), Hpf : (16%); Y : (2/3); Z : profondeur des racines (1200 mm)

P: Pourcentage du sol humidifié

$$P\% = \frac{\text{n.Spd.Sh}}{\text{Sa.Sr}}$$
(VI.5)

P: Volume du sol humidifié

N : Nombre de point (goutteurs) de distribution par arbre =2

 S_{pd} : Distance entre deux points de distribution voisins du même arbre = 1

 S_h : Largeur de la bande humidifiée = 0.5m

 S_r : Ecartement entre rangs d'arbre =2.20

 S_a : espacement des arbres sur les rangs= 2

$$P\% = \frac{2.2.0.5}{2.2.2} = 41\%$$

$$D_p = (28-16) / 100 \times 1200 \times 2/3 \times 1.35 \times 0.41$$

> Fréquence des arrosages (Fr_jours)

La fréquence d'arrosage est donnée par la formule suivante :

$$Tr = \frac{Dose \ nette}{ETMC} = \frac{53.14}{2.97} = 17.6 \ jours$$
(VI.6)

Donc on prend Tr = 17 jours.

> Calcul de la dose réelle

On recalcule la nouvelle dose réelle (dose brute):

Cu : coefficient d'uniformité Cu=90%

Eff: efficience du réseau d'irrigation Eff=90%

Dbrute =
$$\frac{Dr}{Cu*eff} = \frac{2.97x \, 17}{0.9*0.9} = 63mm$$
(VI.7)

Avec : Dr=Bj*fr

> Durée de fonctionnement par d'arrosage (h)

$$\theta = \frac{Dbr*Sd*Sr}{n*qq} \qquad(VI.8)$$

Sr et Sd espacement entre rang et distributeur, n et Qg nombre et débit du goutteur.

$$\theta = \frac{63 * 1 * 2.2}{1 * 2} = 69.3 heures \approx 70 heures$$

> Durée d'arrosage journalier

$$Dj = \frac{dur\acute{e}e\ d'arrosage}{Fr} = \frac{70}{17} = 4.11\ heures/jour$$

> Nombre de poste

Le nombre de poste par jour est défini comme suit :

$$N = \frac{Temps de traveil}{Dur\'ee d'arrosage journalier} = \frac{20}{4.11} = 4.86.$$
 (VI.9)

On prend 04postes.

> Surface du poste

$$Sp = \frac{Surface\ totale}{Nombre\ de\ poste} = \frac{1}{4} = 0.25\ ha$$
(VI.10)

VI.3.3 Calculs hydrauliques

Les calculs hydrauliques consistent à déterminer les paramètres suivants :

- · Les débits au niveau de chaque tronçon et à la tête du réseau.
- · Les diamètres des conduites.
- · Les vitesses d'écoulement de l'eau dans les conduites.
- · Les pertes de charges totales.

La variation maximale du débit entre goutteur ne doit pas dépasser 10% selon la règle de Christiansen :

$$\frac{\Delta q}{q} = 10\%(V.5)$$

La variation maximale de la pression

q = K.H^x avec x=0.5 (caractéristique du goutteur)

Avec : q(g) : débit nominal du goutteur

H(n) pression nominal x=0.5 pour les goutteurs (circuit court) et H(n) = 10 mce (1 bar)

$$0.1 = 0.5 \frac{\Delta H(\text{max.})}{10}$$

 $\Delta H(\text{max}) = 1/0.5 = 2 \text{ mce.}$

Donc selon la règle de Christainsen 10% ΔH singulières = 0.2 m

Le reste $1.8 \Delta H$ linéaire = 1.8 m

Donc pour les rampes 2/3. 1.8 = 1.2 m

Pour le porte rampe = 1/3. 1.8 = 0.6 m

VI.3.4 Dimensionnement des canalisations du réseau

Pour le calcul des dimensions des canalisations (rampe et porte rampe), on propose que les rampes soient en PEBD ou PEHD.

> Les rampes

Qui sont toujours en PEBD (polyéthylène basse densité), à l'exception de quelques installations ou l'on a utilisé du PVC rigide de petit diamètre.

> Porte-rampes

C'est la conduite qui alimente les rampes d'un seul côté ou des deux côtés. Ils peuvent être soit en polyéthylène moyenne densité (PE), soit en chlorure de polyvinyle rigide (PVC).

Le diamètre de rampes ainsi que des portes rampes est calculé d'après les formules suivantes :

$$\emptyset r(cal) = \left[\frac{P.d.c(r)*2.75}{0.478*Q(r)^{1.75}L(r)}\right]^{-\frac{1}{4.75}} \qquad(VI.12)$$

$$\emptyset pr(cal) = \left[\frac{P.d.c (pr)*2.75}{0.478*Q(pr)^{1.75} L(pr)}\right]^{-\frac{1}{4.75}}$$
 (VI.13)

Avec:

• Pdc(r): la perte de charge dans la rampe

• Q(r) : le débit de la rampe en l/h

• L(r): la longueur de la rampe en m

• Ør (cal) : le diamètre de rampes

• Øpr (cal) : le diamètre de porte rampe

1. Pour les rampes : L=80 m

. Qr : Débit de rampe.

. Qg: Débit du goutteur

. Ng/r : Nombre des goutteurs par rampe

. Nr : Nombre des rampes

Qpr: Débit de porte rampe

Le nombre d'arbres par rampe

N arbres = Lr/Ea = 80/2 = > 40 arbres

Nombre des goutteurs par rampe

$$N=N_{arbres}*n = 40*2 = 80$$
 goutteurs

Débit de la rampe

$$Qr=Ng*Qg$$
 $Qr=1*80=80 l/h$

Diametre de la rampe

$$\emptyset r(cal) = \left[\frac{P.d.c(r)*2.75}{0.478*Q(r)^{1.75}L(r)}\right]^{-\frac{1}{4.75}} = 8.41$$
mm

 $D_rampe= 8.41 \text{ mm}$, on prend DN = 16 mm

2- Pour le porte rampe : L=120 m

Le nombre des rampes

Nr=Lpr/Er= 120/2.2=54 rampes.

Débit du porte rampe

Nombre de porte rampe

Npr=1 (1 seul porte rampe)

3. diamètre de porte rampe

Qcsl=Qpr*Npr = 4320*1 = 46201/h = 0.0012 m3/s

$$\emptyset pr(cal) = \left[\frac{P.d.c(pr)*2.75}{0.478*Q(pr)^{1.75}L(pr)}\right]^{-\frac{1}{4.75}} = 46.11$$
mm

Donc on prend $\emptyset pr = 63mm$

V érification des pertes de charges

Pour la détermination des pertes de charges des différents tronçons de la canalisation après choix du diamètre, on applique la formule de « Tison ».

La perte de charge unitaire : $i=0.478.D^{-4.75}.Q^{1.75}$

$$i=0.478.D^{-4.75}.O^{1.75}$$

La perte de charge le long de la conduite en (m):

Avec : 1 : la longueur de la conduite (m) et Q : débit (l/h) ;

D : diamètre intérieur de la canalisation (mm).

Où:

Pour la rampe

L: la longueur de la conduite ;=80 m

Q : débit (m3/s) = 80 l/h

D : diamètre intérieur de la canalisation (m) =16 mm

Cw= 140 PEBD,

 ΔH _rampe= 0.165 m <1.2m

Pour porte rampe on a:

L : la longueur de la conduite ;=120m

Q: débit (m3/s)=4620l/h

D : diamètre intérieur de la canalisation (m) =63mm

Cw= 140 PEBD,

 ΔH rampe= 0.421 m < 0.6m

Tableau VI 2: Calcul de diamètre de la rampe

Cultura	Surface	Lr	Na	Qr	AII (m)	Dcal	Dn	Vitesse	лНcal
Culture	(m ²)	(m)	Ng	(l/h)	$\Delta \mathbf{H_r}(\mathbf{m})$ (mm)	(mm)	(m/s)	(m)	
vigne	10000	80	80	80	1.2	8.41	16	0.13	0.35 < 1.2

Culture	Surfac e m2	Lpr (m)	N Rampe	Qpr (l/h)	Δ Hp.r (m)	Dcal (mm)	Dn (mm)	Vitesse (m/s)	hcal(m)
vigne	10000	120	54	4320	0.6	46.11	63	0.39	0.421< 0.6

Tableau VI 3: Calcul de diamètre de la porte rampe

On remarque que le choix des diamètres normalisés des rampes et porte rompes est fait de telle manière à respecter la limite des pertes de charges totales imposée par la règle de Christiansen.

Calcul de la pression d'eau à la borne de distribution

Les pertes de charge de la borne jusqu'au goutteur le plus défavorable :

Tableau VI 4: Récapitulatif des calculs hydrauliques.

Conduites	La rampe	Porte rampe	C.tertiare
Longueur(m)	80	120	10
Diamètre(m)	16	63	63
Débit (m³/s)	0.0000022	0.00120	0.0012
Pertes de charge(m)	0.35	0.42	0.044

A partir du tableau on peut déterminer la perte de charge totale entre la borne d'irrigation jusqu'au goutteur le plus défavorable ;

Donc la pression demandée à la borne égale à la pression nominale plus la somme des pertes de charges.

$$P(m) = 10+0.35+0.42+0.044 = 10.80m$$
.

VI.4.Conclusion

A travers ce chapitre, une application du dimensionnement de deux systèmes d'irrigations a été réalisée afin de permettre une augmentation des rendements des cultures et une économie d'eau. Un système goutte à goutte pour la culture vignoble et l'aspersion pour la luzerne, les pressions nécessaires au fonctionnement ont été bien vérifie.

Chapitre VII: Calcul technico-économique

Chapitre VII: Calcul technico-économique

VII.1.Introduction

Dans ce chapitre on va procéder à un calcul détaillé qui consiste à déterminer toutes les quantités des matériaux ainsi que le cout global du projet de l'aménagement du notre périmètre, pour se faire il est important d'estimer toutes les opérations nécessaires à la réalisation d'ouvrage hydro-agricole des lots suivants :

- lot n°1 : Le forage avec la conduite de refoulement.
- lot n°2 : Le réservoir de stockage.
- lot n°3 : Le système d'adduction.

VII.2 Différents travaux à entreprendre

VII.2.1 Exécution des tranchées

C'est une opération de terrassement (déblais) qui consiste à faire des excavations. Ces excavations seront faites par une pelle hydraulique et les déblais seront posés à côté de la tranchée, l'autre côté étant réservé au bardage des conduites.

VII.2.2 Pose du lit de sable

Cette opération consiste à poser un lit de sable au fond de la tranchée, ce lit aura une épaisseur de 20cm dans notre cas.

VII.2.3 Pose des conduites

Avant la pose des conduites dans chaque fouille, on procède à un tri des conduites de façon à écarter celles qui ont subies des chocs ; et on les descend lentement à l'aide d'un engin de levage, dans le fond de la fouille. Au cours de pose, on vérifie régulièrement l'alignement des tuyaux pour n'avoir pas des difficultés au raccordement des conduites.

VII.2.4 Epreuve de joint et de la canalisation

Pour plus de sécurité, l'essai de pression des conduites et des joints se fait avant le remblaiement, on l'effectue à l'aide d'une pompe d'essai qui consiste au remplissage en eau de la conduite sous une pression de 1,8 fois la pression de service à laquelle sera soumise la conduite lors du fonctionnement. Cette épreuve doit durer 30 minutes environ où la variation ne doit pas excéder 0.2 bar.

VII.2.5 Remblavage des tranchées

C'est une opération de terrassement qui consiste à enterrer la conduite, en utilisant le remblai résultant de l'excavation.

Page 98

VII.2.6 Nivellement et compactage

Le nivellement consiste à étaler les terres qui sont en monticule, ensuite au compactage pour augmenter la densité des terres et éviter le tassement par la suite.

VII.3 Estimation du forage et système de pompage immergé et la conduite de refoulement

VII.3.1 Forge et Système de pompage

Notre système de pompage est composé de deux petits forages à équipements identiques :

- ✓ des groupes électropompes immergé.
- ✓ petit bâtiment de protection.

VII.3.1.1. Devis pour le système de pompage

- groupes électropompes
- deux pompes immergées (pompe pour chaque forage) et deux pompes de secours.

Dimensions de bâtiment

- La hauteur H=3.5m
- La longueur L=5.5 m
- La largeur l = 5.5 m
- H: hauteur de poteau = 3.5 m
- Poteaux : $b \times b = 30 \times 30$ cm
- Poutres: $b \times b = [(40 \grave{a} 50) \times 30]$ cm
- Brique $30 \times 20 \times 15$ cm

$$(L = 4.9 \text{ m}; l = 4.9 \text{ m}; n_p = 4)$$

Volume des travaux

• **Décapage :** $V_d = L \times 1 \times e_d$

$$V_d = 5 \times 5 \times 0.1 = 2.5 \text{ m}^3$$

• Excavation : $V_{ex} = 1 \times 1 \times 0.9 \times n_{p}$

$$V_{ex} = 0.9 \times 4 = 3.6 \text{ m}^3$$

- **Déblai :** $V_D = 2.5 + 3.6 = 6.1 \text{ m}^3$
- **Béton de propreté :** $V_{b,p} = 10 \text{ cm} * 1 \text{ m} * 1 \text{ m} * n_p$

$$V_{b,p} = 0.1 * 1 * 1 * 4 = 0.4 m^3$$

• Béton ordinaire (Béton armé 350 kg/m³) semelle

$$V_{B,A,S} = 1 \times 1 \times 0.3 \times n_p$$

ENSH 2019

Page 99

$$V_{BAS} = 1 \times 1 \times 0.3 \times 4 = 1.2 \text{ m}^3$$

• **Demi-Poteaux :** $V_{D.P} = (0.6 \times 0.3 \times 0.3) \times n_p = 0.216 \text{ m}^3$

Remblai fouilles

$$\begin{split} V_{\text{R}} &= n_{\text{p}} \left[V_{\text{deblai/excav}} - V_{\text{b.p}} - V_{\text{B.A.S}} - \left[\left(V_{\text{D.P}} \left(0.3 \times 0.3 \times 0.1 \right) \right) \right] \\ V_{\text{R}} &= 4 \left(6.1 - 0.4 - 1.2 - \left(0.216 \left(0.3 \times 0.3 \times \ 0.1 \right) \right) \right) = \textbf{18 m}^{3} \end{split}$$

• Volume béton de propreté au-dessous de la ceinture

$$V_{B.P.C} = (2 \times (L+1)) \times 0.1 \times 0.3$$

 $V_{B.P.C} = (2 \times (4.9+4.9)) \times 0.1 \times 0.3 = 0.504 \text{ m}^3$

• Béton armé Longrines

$$V_{B.A.Longrine} = ((2 \times (L+1)) + (n_p \times 0.3)) \times e \times 0.3$$
 $e = 50 \text{ cm}$
 $V_{B.A.Longrine} = ((2 \times (4.9+4.9)) + (4 \times 0.3)) \times 0.5 \times 0.3 = 1.062 \text{ m}^3$

• Nombre de Brique

Vtotql_{brique} =
$$4.9*3.5*2*4*0.15 = 20.58$$
m³
 $N_{brique} = \frac{920.58}{0.15*0.2*0.3} = 2087$ pièces

- Chape (Plate-forme)
 - ➤ Graviers (épaisseur = 3 cm)

$$V_{\text{graviers}} = (L \times 1) \times 0, 3 = 4.9*4.9*0.03 = 7.862 \text{m}^3$$

> Chape de béton armé = 7 cm

$$V_{B.A.chape} = (L \times 1) \times 0, 07 = 4.9*4.9 \times 0.07 = 1.6807 m^3$$

• Poteaux (Béton armé)

$$V_p = n_p \times (0.3 \times 0.3 \times H)$$

 $tq : (H= 3 \text{ à 4}) \text{ On prend } H= 3.5 \text{ m}$
 $V_p = 4 \times (0.3 \times 0.3 \times 3.5) = 1.26 \text{ m}^3$

- **Dalle** $V_{dalle} = V_{B.A.chape} = 1.6807 m^3$
- **Poutre** $V_P = 0.2 V_{dalle} = 0.337 m^3$
- Maçonnerie extérieur

$$S_{Brique} = 0.2*0.3 = 0.06 \text{ m}^2$$
 (1 pièce)

ENSH 2019

N_{TOTAL.Brique} =3200pièces

VII.3.1.2. Estimation du cout de la station de pompage

On va multiplier chaque grandeur fois deux (deux petite bâtiment)

Tableau VII 1: Estimation de cout du système de pompage.

Désignation des travaux	unités	Quantité	Prix unitaire	Montant (Da)
Décapage	m³	5	250	1250
Excavation	m³	7.2	400	2880
Béton de propreté	m³	1.8	12000	21600
	В	éton armé		
Semelles	m³	2.4	25000	60000
Demi-poteaux	m^3	0.432	25000	10800
Poutre	m³	0.672	25000	16800
Chape	m³	3.2	25000	80000
Poteaux	m³	2.54	25000	63500
longrine	m³	2.12	25000	53000
gravier	m³	7.862	5000	39310
]	Remblai		
Fouille	m³	36	450	16200
la dalle	m³	28	450	12600
	M	açonnerie		
Briques	U	3200	20	63000
Pompes type	U	4	200000	8000000
E12S58-12/5M + M12230				
Total (DA)			8348390.00	
TVA (19%)			1586194.10	
PRIX TOTAL (DA)			9934584.10	

VII.3.2 Conduite de refoulement

VII.3.2.1. Calcul des volumes des travaux de l'adduction bution :

- a- Calcul du volume de terrassement :
 - Largeur du fond de la tranchée

La largeur de la tranchée sera calculée en fonction du diamètre de la conduite on laisse 30 cm

d'espace de chaque côté de la conduite, la largeur d'ouverture de la tranchée est obtenue par la formule :

$$B = d + 0.6$$
 (m)

Avec:

B: largeur de la tranchée (m)

d : diamètre de la conduite (m)

• Profondeur de la tranchée

La profondeur de la conduite doit permettre la réalisation correcte des branchements particuliers, et d'empêcher toute intercommunication avec les autres conduites.

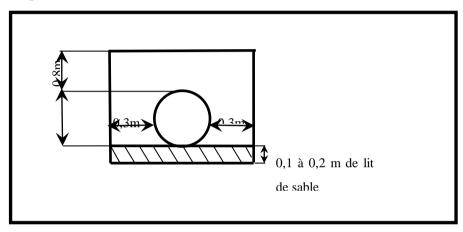


Tableau VII .1: Schéma d'une tranchée.

$$H_{tr} = e + d + h$$
 (m)

Avec:

 H_{tr} : Profondeur de la tranchée. (m)

e : hauteur du lit de pose. (m)

d : diamètre de la conduite. (m)

h: la hauteur du remblai au-dessus de la conduite.

• Section de la tranchée:

Les sections des tranchées sont :

$$S_{tr} = B \times H_{tr}$$

H_{tr}: Profondeur total de la tranchée (m)

B: Largeur du fond de la tranchée (m)

• Volume à excaver :

Le volume d'excavation est :

$$V_d = S_{tr} \times L = (B \times H_{tr}) \times L$$

 V_d : Volume du déblai (m3)

 S_{tr} : La section de la tranchée (m2).

L : Longueur de la tranchée (m).

B: Largeur de la tranchée (m).

 H_{tr} : La hauteur de la tranchée (m).

VII.3.2.2. Les volumes des travaux de l'adduction :

Les calculs sont détaillés dans les tableaux suivant:

a. Calcul du volume de déblai :

Tableau VII 2: Calcul du volume du déblai.

				Longueur de la conduite (m)			de déblai
Conduite n°01	de	ref	250	2460	1.25	0.85	2613.75
Conduite n°02	de	ref	250	2430	1.25	0.85	2581.87

b. Calcul du volume du lit de sable

Ce lit correspond à une couche de sable de 12cm sur le fond de la tranché, donc c'est une surface constante le long de la tranchée, on calcule cette surface en utilisant la formule suivante : $V=e^*b^*L$

Tableau VII 3: Calcul du volume du lit de sable.

			Hauteur (m)	Longueur (m)	Largeur (m)	Volume (m ³)
Conduite	de	ref	0.2	2460	0.85	418.2
n°01						
Conduite	de	ref	0.2	2430	0.85	413.1
n°02						

c.Calcul du volume de remblai :

Ce volume est déduit à partir du volume du déblai, c'est le volume qu'occupe la conduite et le volume occupé par le lit de sable ;

 $V_r = V_d - (V + V_s)$ tq : V_r : Volume du remblai compacté (m³)

V_d: Volume du déblai (m³)

V_s: Volume du sable

V : Volume occupé par la conduite (m³)

Donc les volumes des travaux pour la conduite sont représentés dans le tableau suivant :

Tableau VII 4 : Calcul du volume de remblai.

			Diamètre (mm)	Déblai (m³)	Volume de la Conduite (m³)		Volume du remblai (m³)
Conduite n°01	de	ref	250	2613.75	120.7	418.2	2074.84
Conduite n°02	de	ref	250	2581.87	119.2	413.1	2049.57

VII.3.2.3. Le cout des travaux de l'adduction :

Les calculs sont dans le tableau VII.8:

Tableau VII 5 : Estimation du cout de pose de la conduite d'adduction.

Désignation des travaux	Unité	Quantité	Prix unitaire DA	Montant DA
Déblai et remblai	m^3	9320,00	200,00	1 864 000,00
Lit de sable	m^3	831.3	800,00	665 040,00
Tube Ø 250	ml	4890	5000,00	24 450 000,00
			Total 1 (HT)	26 979 040,00
			TVA (19%)	5 126 017,6
			Montant TTC	32 105 057,60

VII.4 Estimation des Frais des travaux sur le réservoir

Les opérations à suivre pour la réalisation :

> Terrassements:

- Décapage des terres végétales.
- Fouille en grande masse jusqu'au bon sol.
- Remblai en terre épierrée.
- Transport des terres excédentaires.

➤ Coffrage:

- Radier.
- Voile.
- Coupole.

Béton:

- Béton de propreté dosé a 150kg/m³.
- Béton : radier, voile (400kg/m³) ; coupole (350kg/m³)

VII.4.1 Terrassement

Décapage

$$S_{dec} = A*B$$

$$S_{\text{dec }n01} = (18+0.3*2+2) (18+0.3*2+2) = 424.36 \text{ m}^2$$

$$S_{\text{dec }n02} = (17+0.3*2+2) (17+0.3*2+2) = 384.16 \text{ m}^2$$

$$V_{\text{dec } n01} = S_{\text{dec}} * e = 424.36 * 0.1$$

$$V_{\text{dec } n02} = S_{\text{dec}} * e = 384.16 * 0.1$$

Avec: e = 10 cm

$$\rightarrow$$
 $V_{\text{dec n01}}=42.436 \text{ m}^3$

$$\rightarrow$$
 V_{dec n02}=38.416 m³

> Les fouilles en grand masse

$$D = Dext + 2 m$$

$$D1 = 18.6 + 2 = 20.6 \text{ m}$$

$$S_{f1} = \frac{\pi D^2}{4} = \frac{\pi * 20.6^2}{4} = 333.13 \text{ m}^2$$

$$V_{f1}=S_f*h_{bs}=333.13*2.2$$

$$D2 = 17.6 + 2 = 19.6 \text{ m}$$

$$S_{f2} = \frac{\pi D^2}{4} = \frac{\pi * 19.6^2}{4} = 301.56 \text{ m}^2$$

$$V_{f2}=S_f*h_{bs} = 301.56 *2.2$$

h_{bs}: hauteur du bon sol c'est 2.2m.

→
$$V_{f1}=733 \text{ m}^3$$

→
$$V_{12}=664 \text{ m}^3$$

> Volume des terres

$$V_{t1} = V_{f1} * C_f = 733 * 1.3$$

$$V_{t2} = V_{t2} * C_{t} = 664 * 1.3$$

→
$$V_{t1} = 953 \text{ m}^3$$

$$\rightarrow$$
 V_{t2}=863.2 m³

> Les remblais des fouilles

$$V_{rfl}=S*h_{bs}-v_{bp}$$

$$V_{rf} = \frac{\pi \left(Dfext^2 - Dext^2 \right)}{4} * hbn - 2$$

$$V_{rf1}=3.14*(22.6^2-20.6^2)/4*2.2-2$$

$$V_{rf2}=3.14*(19.6^2-17.6^2)/4*2.2-2$$

→
$$V_{rf1} = 148m^3$$

→
$$V_{rf2} = 127m^3$$

Volume du déblai a transporté

VI.4.2 Bétonnage

Volume de béton de propreté

$$V_{bp} = S_{bp} * e_{bp}$$

$$S_{bp} = \frac{\pi (Dext + 0.1)^2}{4} = \frac{\pi 18.7^2}{4} = 247.5 m^2$$

$$V_{bp} = 247.5*0.2$$

→
$$V_{bp1} = 54.9 \text{ m}^3$$

→
$$V_{bp2} = 49.2 \text{ m}^3$$

> Volume de radier

$$V_{rad} = S_{rad} *e_r$$

$$S_{rl} = \frac{\pi D^2}{4} = \frac{\pi 18.6^2}{4} 271.57 \text{ m}^2$$

$$V_{r1} = 271.57*0.35$$

$$S_{r2} = \frac{\pi D^2}{4} = \frac{\pi 17.6^2}{4} 243.16 \text{ m}^2$$

$$V_{r2} = 243.16*0.35$$

$$V_{r1} = 95.05 \text{ m}^3$$

→
$$V_{r2}$$
= 85.10 m³

volume des voiles

$$V_{bv1} = \frac{\pi (Dex^2 - Dint^2)}{4} * H_{rad} = 68.95$$

$$\rightarrow$$
 $V_{bv1}=69m^3$

$$V_{bv2} = \frac{\pi (Dex^2 - Dint^2)}{4} * H_{rad} = 65.18$$

→
$$9V_{bv2}=65.18m^3$$

> Le volume de la coupole

$$S_c=2\pi Rmoy * f$$

$$R_{moy1} = (R_{ext}^2 + f^2)/2f = (9.3^2 + 1.2^2)/(2*1.2) = 36.63m$$

$$R_{\text{moy2}} = (R_{\text{ext}}^2 + f^2)/2f = (8.8^2 + 1.2^2)/(2*1.2) = 32.86m$$

$$V_c=S*ef$$

→
$$V_{c1} = 27.61 \text{m}^3$$

→
$$V_{c2} = 24.76 \text{m}^3$$

ENSH 2019

VII.4.3 Enduit et peinture

$$S_{end} = \frac{\pi Dint^2}{4} + \pi Dint * Hr$$

→ $S1_{\text{end}=} 476.3 \text{m}^2$

→ $S2_{end=} 440.38 \text{m}^2$

VII.4.4. Le cout des travaux des réservoirs :

Les calculs sont dans le tableau VII.5 et le tableau VII.6:

Tableau VII 6 : Coût des travaux de réalisation du réservoir R1.

Désignation des travaux	U	Qté	Prix	Montant en
			Unitaire	НТ
Travaux de terrassement	M3	2829	200,00	565 800,00
béton de propreté dosé à 200kg/m3	m3	55	12 000,00	660 000,00
béton armé dosé à 400kg/m3 pour	М3	161	55 000,00	8 855 000,00
radier et paroi du réservoir, y compris				
le ferraillage.				
f/p de béton armé dosé à 350kg/m3	М3	27.61	48 000,00	1 325 280,00
pour poutre et coupole du réservoir,				
selon plan remis y compris le				
ferraillage				
enduit et peinture	M2	476.3	1 400,00	879 200,00
une chambre de vanne de dimension	M2	16	45 000,00	666 820,00
intérieure de 4 m* 4 m y compris				
maçonnerie, enduit tous les				
équipements.				
fourniture et pose de fontainerie	ENS	1	1 000	1 000 000,00
comprenant conduite d'adduction, de			000,00	
distribution, trop plein, vanne de				
vidange, ventouse sur conduite de				
distribution, vanne de distribution				
TOTAL EN HT			13,35	2,100,00
TOTAL EN TTC			14,35	2,100.00

Tableau VII 7: Coût des travaux de réalisation du réservoir R2

Désignation des travaux de realis	U	Qté	Prix	Montant en	
		-	Unitaire	НТ	
Travaux de terrassement	M3	2813	200,00	562 600,00	
béton de propreté dosé à 200kg/m3	m3	49.2	12 000,00	590 400,00	
béton armé dosé à 400kg/m3 pour	M3	150.3	55 000,00	8 265 500,00	
radier et paroi du réservoir, y					
compris le ferraillage.					
f/p de béton armé dosé à 350kg/m3	М3	24.76	48 000,00	1 188 440,00	
pour poutre et coupole du réservoir,					
selon plan remis y compris le					
ferraillage					
enduit et peinture	M2	440.38	1 400,00	616 532,00	
une chambre de vanne de dimension	M2	16	45 000,00	666 820,00	
intérieure de 4 m* 4 m y compris					
maçonnerie, enduit tous les					
équipements.					
fourniture et pose de fontainerie	ENS	1	1 000	1 000 000,00	
comprenant conduite d'adduction, de			000,00		
distribution, trop plein, vanne de					
vidange, ventouse sur conduite de					
distribution, vanne de distribution					
TOTAL EN HT			12,89	0,292,00	
TOTAL EN TTC	TOTAL EN TTC				

VII.5 Estimation des frais du réseau de distribution

Les prix des conduites sont détaillés comme suit :

Tableau VII 8 : Facture des différents types de conduites du réseau de distribution.

Conduites	Type de conduite	Unités de mesure	Quantité (m)	Prix unitaire (DA/m)	Montant (DA)
Ø 75	PEHD	ml	370	193,61	71 635,00
Ø 90	PEHD	ml	1376	278,35	383 010,00
Ø 110	PEHD	ml	836	416,10	347 860,00
Ø160	PEHD	ml	1156	868,30	1 003 755,00
Ø 200	PEHD	ml	299	1 358,50	406 192,00
Ø 250	PEHD	ml	258	2 109,00	544 122,00
Ø 315	Fonte	ml	357	3 363,00	1 200 591,00
Ø 400	Fonte	ml	1675	5 396,00	9 038 300,00
				Total (HT)	

Total (HT)

12 995 464,20

TVA (19%)

2 469 138,20

Total (TTC)

15 464 602,40

VII.5 .1. Calcul des volumes des travaux de distribution :

Pour les valeurs de (h, m) sont identiques à celles de l'adduction, il suffit juste de calculer les valeurs de b, pour les différentes gammes de diamètre, on fixe **H=1.2 m**

VII.5.2.1. volume de déblai

Tableau VII 9: volume du déblai.

Tableau VII 9: volu				
Déblai H=1,2m2m				
Diamètre (mm)	B (m)	S (m2)	Longueur (m)	Volume du
				déblai (m3)
Ø 75	0.675	0.81	370	299.7
Ø 90	0.69	0.828	1376	1138.707
Ø 110	0.71	0.852	836	712.272
Ø160	0.76	0.912	1156	1054.272
Ø 200	0.8	0.96	299	287.04
Ø 250	0.85	1.02	258	262.65
Ø 315	0.915	1.098	357	391.986
Ø 400	1	1.2	1675	2010
			Somme	6 155.895

VII.5.2.2. Pose du lit de sable

Le tableau VII.10.récapitule les résultats de calculs de volume de lit de sable pour les différents diamètres du réseau.

Tableau VII 10:volume du lit de sable.

Lit de sable h=0,2n	n2m			
Diamètre (mm)	B (m)	S (m2)	Longueur (m)	Volume du sable
				(m3)
Ø 75	0.675	0.135	370	49.95
Ø 90	0.69	0.138	1376	189.7845
Ø 110	0.71	0.142	836	118.712
Ø160	0.76	0.152	1156	175.712
Ø 200	0.8	0.16	299	47.84
Ø 250	0.85	0.17	258	43.775
Ø 315	0.915	0.183	357	65.331
Ø 400	1	0.2	1675	335
			Somme	1 026.105

VII.5.3.3.Remblais compacté

D'après les résultats des deux tableaux précédents on conclue le volume du remblai compacté Pour chaque diamètre du réseau,

Le tableau VII.11 récapitule les résultats de calculs de volume du remblai compacté pour les différents diamètres du réseau

Tableau VII 11: volume du remblai compacté.

Diamètre (mm)	Section du Conduit (m²)	Longueur (m)	Volume de la conduite (m3)	Volume du lit de sable (m3)	Volume du déblai (m3)	Volume du remblai compacté (m3)
Ø 75	0.00442	370	1.634	49.95	299.7	248.116
Ø 90	0.00636	1376	8.749	189.7845	1138.707	940.173
Ø 110	0.00950	836	7.941	118.712	712.272	585.619
Ø160	0.02010	1156	23.231	175.712	1054.272	855.329
Ø 200	0.03140	299	9.389	47.84	287.04	229.811
Ø 250	0.04906	258	12.658	43.775	262.65	206.217
Ø 315	0.07789	357	27.807	65.331	391.986	298.848
Ø 400	0.12560	1675	210.380	335	2010	1464.620
					Somme	4828.734

VII.5.4. Le cout des travaux de pose de canalisation :

Tableau VII 12: Estimation du cout de pose de canalisation de la partie distribution

Désignation des	Unité	Quantité	Prix unitaire	Montant DA
travaux		M3	DA	
1) déblai	m^3	6 155.895	200	1 231 179,00
2) lit de sable	m^3	1 026.105	800	820 884,00
3) remblai	m ³	4 828.734	300	1 448 620,2
			Total 1 (HT)	3 500 683,2
			TVA (19%)	665 129,808
			Montant TTC	4 165 813 ,01

VII.5.5. Accessories du réseau de distribution

Tableau VII 13: Factures des pièces du réseau distribution

Pièces	Unité de mesure	Quantité	Prix unitaire (DA)	Montant (DA)
bornes d'irrigation 100 mm	U	23	52 000 ,00	1 196 000,00
filtres à sable	U	1	23 000,00	23 000,00
Vanne Ø110	U	10	11 000,00	110 000,00
Vanne Ø160	U	6	13 000,00	78 000,00
Vanne Ø315	U	2	15 000,00	30 000,00
			Total 1 (HT)	1 437 000 ,00
			TVA (19%)	273 030,00
			Montant TTC	1 710 030,00

VII.5.6 Le cout totale du réseau de distribution:

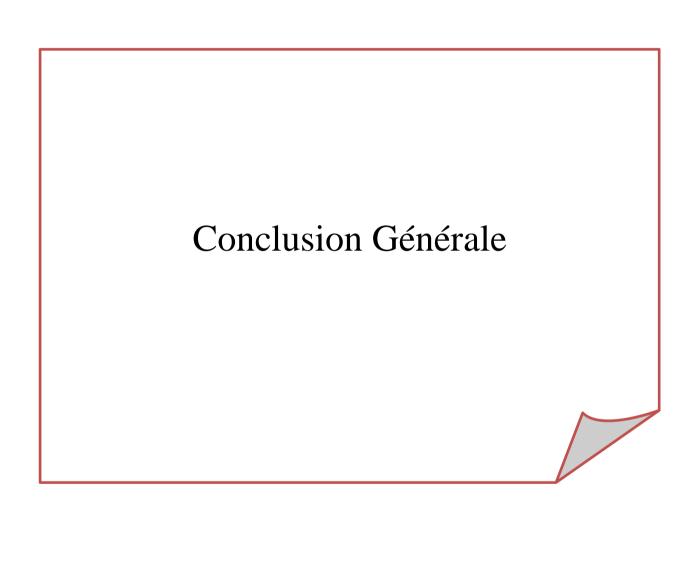
Tableau VII 14:Devis estimatif total

		Montant DA
Cout de conduites du réseau de distribution		15 464 602,40
Cout des travaux de pose de canalisation		4 165 813 ,01
		1 710 030,00
Cout des Accessoires du réseau de distribution		
	Total	21 340 445,41

VII.6 Estimation du coût total du projet

Le devis des différentes opérations sont comme suit :

Devis de la partie adduction (système de pompage, conduite de refoulement)


42 039 641,74 DA

- > Devis du réservoir 29 691 547,00DA
- > Devis de la partie distribution 21 340 445,41DA

Donc le devis total du projet est estimé à : 93 071 634,00DA

VII.7 Conclusion

L'estimation du coût total du projet a donné un montant global de **Quatre-vingt-treize** million soixante et onze mille six cent trente-quatre dinars.

Conclusion générale

L'un des facteurs limitant des productions agricoles au Maghreb et plus particulièrement en Algérie est l'eau, cette dernière connait des sérieux problèmes, liés essentiellement à la rareté, la mauvaise gestion, et la détérioration des ouvrages agricoles, pour ceci des plans de développement agricoles ont été mis en place ; ayant des objectifs sur le moyen et long terme. Alors pour y arriver il a fallu tout d'abord construire des ouvrages de mobilisation et d'exploitation raisonnable des eaux tel que des réseaux d'irrigation performants et surtout économiques vue la pénurie d'eau.

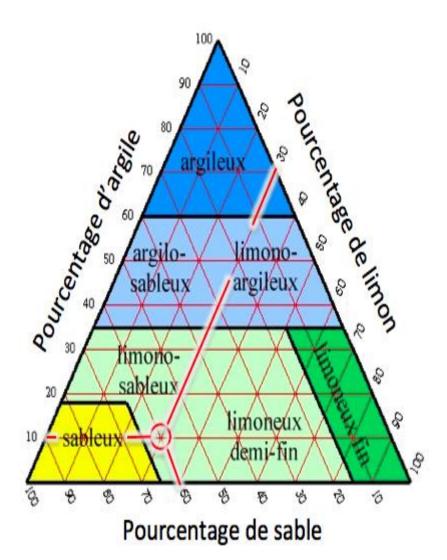
L'objectif principal de cette étude est un aménagement hydro agricole d'une partie de périmètre de bas Sebaou (Wilaya de Boumerdes) qui s'étend sur une superficie nette d'environ 200ha irrigué à partir de deux forages.

L'étude du climat a indiqué que la région bénéficie d'un climat méditerranéen de type subhumide, l'hiver est pluvieux et adouci par la présence de la mer et un été chaud.

Le choix des cultures a été élaboré en se basant sur les caractéristiques climatiques et pédologiques de notre périmètre en faisant deux assolements afin de préserver la fertilité de sol.

Pour Le système d'adduction qui est l'épine dorsale de l'aménagent puisque c'est grâce au bon dimensionnement de ses divers ouvrages que l'opération d'acheminer l'eau au périmètre se fera de manière optimale est constitué de conduites en PEHD, équipé de bornes d'irrigation dont la majorité a une pression satisfaisante.

Pour le système d'irrigation, nous avons opté pour la technique de goutte à goutte et celle de l'aspersion étant donné les multiples avantages qu'elles offrent.


Apres avoir terminé avec tous ce qui est dimensionnement, l'estimation du coût total du projet a donné un montant global de Quatre-vingt-treize million soixante et onze mille six cent trente-quatre dinars.

REFERENCES BIBLIOGRAPHIQUES

- [1] Touaibia, B., (2004) Manuel pratique d'hydrologie. Presse Madani Frères. Blida. Algérie.
- [2] Zella L, (2010) Micro irrigation .Office des Publications Universitaire. Algérie.
- [3] FAO. Irrigation and Drainage Paper no, 2007, Manuel des techniques d'irrigation sous pression.
- [4] TIERCELIN. Traité d'irrigation, Lavoisier tec & doc, paris 1998 .1011p
- [5] Site sur internet https://agriculture-de-conservation.com.
- [6] Site sur internet https://agronomie.info.
- [7] Site sur internet http://irrigazette.com.

ANNEXES

Annexe 1 Triangle des textures

Annexe 2 Caractéristiques hydriques de quelques sols

	Humidités p	Réserve utile			
Texture	à la rétention HCC	du flétrissement	disponible HCC-HPF	volumétrique en mm/m	
Sableuse	9 (6 à 12)*	(2 à 6)*	5 (4 à 6)*	85 (70 à 100)*	
Sablo-limoneuse	14	6	8	120	
	(10 à 18)	(4 à 8)	(6 à 10)	(90 à 150)	
Limoneuse	22	10	12	170	
	(18 à 26)	(8 à 12)	(10 à 14)	(140 à 190)	
Limono-argileuse	27	13	14	190	
	(25 à 31)	(11 à 15)	(12 à 16)	(170 à 220)	
Argilo-limoneuse	31 (27 à 35)	(13 à 17)	(14 à 18)	210 (180 à 230)	
Argileuse	35	17	18	230	
	(31 à 39)	(15 à 19)	(16 à 20)	(220 à 250)	

Annexe 3

Perte de charge Lechapt_Calmom

A/ NOTATIONS - EXPLOITATION DE LA TABLE

Formule utilisée

$$J = L Q^{M}/D^{N}$$

où Q est en m3/s ; D en mètre ; J en mm/m valable pour une eau à 10° centigrades.

1	-	K = 2	L = 1,863	M = 2	N = 5,33
2	-	K = 1	L = 1,601	M = 1,975	N = 5, 25
3	-	K = 0, 5	L = 1,40	M = 1,96	N = 5, 19
4	-	K = 0, 25	L = 1,160	M = 1,93	N = 5, 11
5	-	K = 0, 1	L = 1,100	M = 1,89	N = 5,01
6	-	K = 0, 05	L = 1,049	M = 1,86	N = 4,93
7	-	K = 0,025	L = 1,01	M = 1,84	N = 4,88
8	_	K = 0			

Annexe 4 Caractéristiques de l'asperseur circulaire PERROT ZF 30

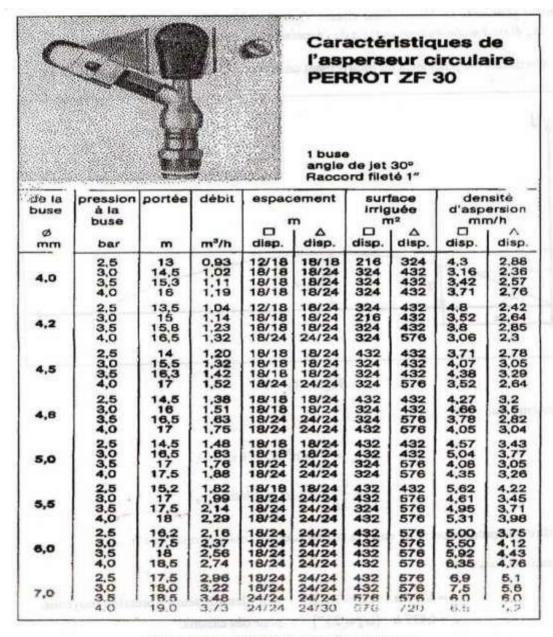


Figure IV.48: fiche technique d'un arroseur

Débit de l'asperseur

On le calcule par la relation (IV.9)