الجمهورية الجزائرية الديمقراطية الشعبية وزارة التعليم العالى والبحث العلمي

NATIONAL HIGHER SCHOOL FOR HYDRAULICS

"The Mujahid Abdellah ARBAOUI"

المحرسة الوطنية العليا للري "العجامد عبد الله عرباوي" +١+١٥٥، × ١ +١٤٤٥ اله ٢٤١٥٠، ×،٩٥٥،

MEMOIRE DE FIN D'ETUDES

Pour l'obtention du diplôme d'Ingénieur d'Etat en Hydraulique

Option: CONCEPTION DES SYSTEMES D'ASSAINISSEMENT

THEME:

Dimensionnement et conception du réseau d'assainissement da la zone d'Oued Drabla commune d'Ahmed Rachedi (Wilaya de Mila).

Présenté par :

BOUDEHOUS Roumaissa.

Devant les membres du jury

Nom et Prénoms	Grade	Qualité
AMMARI Abdelhadi	M.C.A	Président
HACHEMI Abdelkader	M.C.A	Membre
MOKRANE Wahiba	M.C.B	Membre
KADI Latifa	M.A.A	Membre
SALAH Boualem	Professeur	Promoteur

Session: 2022

REMERCIEMENT

Tout d'abord je remercie Dieu le tout puissant de m'avoir donné cette ambition, force, volonté et courage pour réaliser ce modeste travail qui a été fait avec amour, passion et honnêteté.

J'adresse mes remerciements à ma mère (rabi yahamha) pour son soutien, sa motivation et ses sacrifices afin que j'arrive là où je suis maintenant.

Ensuite, Je remercie également mon cher père qui a toute donne pour m'aider moralement et financièrement, pour ses encouragements constants et ses sages conseils.

J'adresse mes vifs remerciements à mon promoteur Mr SALAH Boualem pour ses précieux conseils et ses conseils, sa motivation et sa confiance, et je le remercie également beaucoup pour les efforts qu'il a déployés pour m'aider et m'accompagner pas à pas dans la correction et la réalisation de ce travail.

Je remercie également les membres du jury qui me feront l'honneur d'évaluer et d'apprécier mon travail.

Ainsi que toutes mes gratitudes à l'ensemble des enseignants de l'ENSH qui m'ont éclairé, orienté et aidé durant toute ma formation.

Sans oublier mes amis qui m'ont beaucoup encouragé, et toutes les personnes ayant contribué de près ou de loin à l'élaboration de ce travail.

BOUDEHOUS Roumaíssa

DÉDICACE

À travers ce modeste travail, je rends un grand hommage, en signe de respect et de reconnaissance à :

- Ma chère mère (rabí yarhamha), quí m'a encouragé à être ingénieur,
- ♣ Mon cher père, pour ces sacrifices et ces efforts et leur soutien,
- Mon cher frère Walid source d'espoir et motivation qui sont toujours été à mes côtés pour me soutenir et m'encourager,
- Mes tantes et oncles, surtout ma tant Fayrouz, qui m'ont aidé dans tous les travaux, et je n'oublie pas ma tante Nasima, qui m'a encouragé et m'a donné la force de continuer ce succès,
- ♣ Mes meilleurs amis, Nour Elhayette, Sarah , oussama , Rania , ...
- ♣ À tous mes camarades de classe, promotion 2021/2022,
- **♣** En un mot, à toute ma famille et mes amis qui ont contribué de près ou de loin à ma réussite. A toute personne utilisant ce document pour un bon usage.

BOUDEHOUS Roumaissa

ملخص

منطقة واد الدرابلة ببلدية أحمد راشدي ولاية ميلة، لا تتمتع حاليا بأي نظام اخلاء لمياه الصرف الصحي مهما كان نوعها. السكان يكتفون فقط بخزانات الصرف الصحي المرئية والغير مرئية. الهدف من دراستنا، بعد جمع البيانات اللازمة لحساب احتياجات الاخلاء هو تحديد وتصميم شبكة صرف صحي من نوع وحدوي مع تجاهل خزانات الصرف الصحي، من اجل تنظيف التكتل المذكور من مياه الصرف الصحي التي ستلحق ضرر بالسكان. كلمات مفتاحية: نظام اخلاء، مياه الصرف الصحي، خزانات الصرف الصحى.

Résumé

L'agglomération d'Oued Drabla commune Ahmed Rachedi wilaya de Mila, n'est dotée actuellement d'aucun système d'évacuation des eaux de toute nature confondue. Les habitants de ladite localité se contentent que des fosses septiques visibles et invisibles. L'objectif de notre étude consiste, après une collecte de données nécessaires , à calculer les besoins d'évacuation, à dimensionner et à projeter un système d'évacuation de type unitaire tout en faisant abstraction des fosses septiques ; afin d'assainir la dite agglomération des eaux usées qui porteront préjudice aux habitants.

Mots clés: Système d'évacuation, eaux usées, fosses septiques.

Abstract

Oued Drabla area Ahmed Rachedi municipality Mila state, it does not currently have any sewage disposal system of any kind. The population is satisfied only with visible and invisible septic tanks. The aim of our study, after collecting the necessary data to calculate the evacuation needs, is to identify and design the sewage network of a unitary type while ignoring septic tanks in order to clean the aforementioned agglomeration of sewage water that will harm the population.

<u>Keywords:</u> sewage network, waste, septic tanks.

Sommaire

Liste des tableaux. Liste des figures. Lista des planches. Introduction générale.

CHAPITRE-I-PRÉSENTATION DE LA ZONE D'ÉTUDE	2
I.1-Introduction	
I.2-Description du site de l'agglomération	2
I.2.1-Situation géographique	2
I.3- Données naturelles du site	3
I.3.1-Situation géologique	3
I.3.1.1-Présentation de la zone d'étude	4
I.3.1.2-Caractéristique principales géologiques	4
I.3.2-Situation hydrogéologique	4
I.3.3-Séismicité	5
I.3.4-Situation topographique	6
I.3.5-Situation climatique	6
I.3.5.1-Précipitations	6
I.3.5.2-Température de l'air	8
I.3.6-Situation démographique	9
I.3.6.1-Accroissement de la population	9
I.3.7-Situation hydraulique	9
I.3.7.1-Alimentation en eau potable	9
I.3.7.2-Assainissement	10
I.4-Conclusion	10
CHAPITRE-II- ÉTUDE HYDROLOGIQUE	10
II.1-Introduction	10
II.2-Cycle d'eau et bilan hydrologique	10
II.3-Généralité	11
II.3.1-Précipitation	11
II.3.2-L'intensité	12
II.4-Période de retour	12
II.4.1-Choix de la période de retour	13

	13
II.6-Analyse des données pluviométriques et choix de la loi d'ajustement	14
II.6.1-Analyse des données pluviométriques	14
II.6.1.1-Analyse des données statistiques	15
II.6.1.2-Caractéristique empirique de la série	16
II.6.2-Choix de la loi d'ajustement	17
II.6.2.1-Ajustement de la série pluviométrique	20
1) Ajustement de la série pluviométrique à la loi de Gumbel	20
2) Ajustement à la loi de Galton (Log-normale)	21
3) Ajustement a loi GEV	23
II.6.2.2-Choix de la loi d'ajustement	25
II.7-Calcul des pluies et des intensités des courtes durées	26
II.7.1-Pluie de courte durée	26
II.7.2-Intensité de courte durée	27
II.8-Conclusion	29
III.1-Introduction	
III.1-Introduction	
	30
III.2-Situation démographique	
III.2-Situation démographique III.2.1-Période envisagée pour l'étude	30
	30
III.2.1-Période envisagée pour l'étude	30 30
III.2.1-Période envisagée pour l'étude	30 30 30
III.2.1-Période envisagée pour l'étude	30 30 31 32
III.2.1-Période envisagée pour l'étude	30 30 31 32
III.2.1-Période envisagée pour l'étude	30 30 31 32 32
III.2.2-Evaluation de la population de la zone d'étude (zone Oued Drabla) III.3-Découpage de la superficie d'étude en sous bassins élémentaires III.4-Les techniques d'assainissement	30 30 31 32 32 33
III.2.1-Période envisagée pour l'étude	30 30 31 32 32 33 33
III.2.1-Période envisagée pour l'étude	30 30 31 32 32 33 33
III.2.1-Période envisagée pour l'étude	303031323233333333
III.2.1-Période envisagée pour l'étude	30303031323233333333
III.2.1-Période envisagée pour l'étude III.2.2-Evaluation de la population de la zone d'étude (zone Oued Drabla) III.3-Découpage de la superficie d'étude en sous bassins élémentaires III.4-Les techniques d'assainissement	3030313233333333333435

III.6.1-Schéma perpendiculaire	38
III.6.2-Schéma par déplacement latéral	38
III.6.3-Schéma transversal ou oblique	38
III.6.4-Schéma par zones étagées	39
III.6.5-Schéma radial	39
III.6.6-Le choix du schéma d'évacuation	39
III.7-Estimation du Coefficient de ruissellement « Cr »	40
III.8-Calcul du nombre d'habitants pour chaque sous bassin	41
III.8.1-Coefficient de ruissellement pondéré	41
III.8.2-Calcul de la densité	42
III.8.3-Calcul du nombre d'habitants de chaque sous bassin	43
III.9-Conclusion	44
CHAPITRE-IV-ESTIMATION DES DÉBITS À ÉVACUER	45
IV.1-Introduction:	45
IV.2-Généralités :	45
IV.3-Les eaux usées :	45
IV.3.1-Les eaux usées domestiques :	45
IV.3.2- Les eaux usées industrielles :	46
IV.3.3-Les eaux usées du service publique :	
IV.3.4-Les eaux parasites :	46
IV.4-Estimation des débits des eaux usées :	46
IV.4.1-Estimation des débits des eaux usées domestiques :	46
IV.4.1.1-débit moyen journalier :	47
IV.4.1.2-Débit de pointe :	47
IV.4.2-Estimation des débits des eaux usées des établissements publiques :	48
IV.4.2.1-Débit moyen journalier :	48
IV.4.2.2-Débit de pointe :	48
IV.4.3- Estimation des débits des eaux parasites :	49
IV.4.4-Débits totaux des eaux usées à évacuer :	49
IV.5-Les eaux pluviales :	50
IV.6-Estimation des débits des eaux pluviales :	50
IV.6.1-Choix de la méthode :	51
IV.6.2-la méthode rationnelle :	51
IV.6.2.1-Les hypothèses de la méthode rationnelle :	52

IV.6.2.2-Validité de la méthode rationnelle :	52
IV.6.2.3-Le temps de concentration :	52
IV.6.2.4-Le temps de réponse :	53
IV.6.2.5-Coefficient réducteur de l'intensité :	53
IV.6.2.6-Critique de la méthode rationnelle :	54
IV.7-Calcul des débits totaux pour chaque sous bassin :	55
IV.8-Conclusion:	55
CHAPITRE-V-DIMENSIONNEMENT DU RÉSEAU D'ASSAINISSEMENT ET_LES	<i>OUYRAGE</i>
ANNEXES	56
V.1-Introduction	56
V.2-Conditions d'implantation des réseaux d'assainissement	56
V.3-Condition d'écoulement et de dimensionnement	56
V.4-Conception de réseau d'assainissement	57
V.5-Dimensionnement du réseau d'assainissement	57
V.5.1-Débit	57
V.5.2-Formules d'écoulement	58
V.5.3-Mode de calcul	59
Méthodologie de dimensionnement	59
V.6-Les ouvrages annexes	62
V.6.1-Généralité	62
V.6.2-Les ouvrages normaux	63
V.6.2.1-Les branchements	63
V.6.2.2-Les ouvrages de surface et recueillis	63
Les fossés	63
Les caniveaux	64
Les bouches d'égout	64
V.6.2.3-Les ouvrages d'accès au réseau (regards)	65
Dispositions	66
Fonctions	66
Types de regard	66
V.6.3-Les ouvrages spéciaux	69
V.6.3.1-Les déversoirs d'orage	69
a-Composition des organes d'un déversoir d'orage	69
b-Emplacement des déversoirs d'orage	70

c-Les fonctions des déversoirs d'orage	70
d-l'implantation des déversoirs d'orage	
e-Les types des déversoirs	
e.1-Les ouvrages à seuil déversant	
e.2-Les ouvrages n'utilisant pas le seuil	
e.3-Déversoir du fond	
f. Choix du type de déversoir à adopter	
g. Les ouvrages annexes des déversoirs d'orage	
Les grilles et les dégrilleurs	
La chambre de tranquillisation et de dessablement	
h. Dimensionnement du déversoir d'orage	
Mode de calcul	76
V.6.3.2-Ouvrage de bassin de décantation	79
a.Définition	
b.Dimensionnement du bassin de décantation	79
V.7-Conclusion	81
CHAPITRE-VI-LES ÉLÉMENTS CONSTITUTIFS DU RÉSEAU D'ÉGOUT	82
VI.1-Introduction	
VI.2-Les ouvrages principaux	82
VI.2.1-Canalisations	82
VI.2.1.1-Formes et section de conduites	82
VI.2.1.2-Critères du choix de canalisation	83
VI.2.1.3-Type de canalisation	83
VI.2.1.4-Différentes actions supportées par la conduite	86
VI.2.1.5-Protection des conduites	86
VI.2.1.6-Les essais des conduites préfabriquées	87
VI.2.1.7-Pose de canalisation	88
VI.3-Les ouvrages annexes	88

CHAPITRE-VII-ORGANISATION DE CHANTIER ET SÉCURITÉ DU TRAVA VII.1-Introduction	
VII.2-Les étapes de réalisation du projet (organisation du chantier)	
VII.2.1-Exécution des travaux	
VII.2.1.1-Manutention et stockage des conduites	
VII.2.1.2-Décapage de la couche de végétation	
VII.2.1.3-Exécution des tranchées et des fouilles pour les regards	
VII.2.1.4-Aménagement du lit de pose	92
VII.2.1.5-Emplacement des jalons des piquets	92
VII.2.1.6-La mise en place des canalisations en tranchée	93
VII.2.1.7-Mise en place des conduites	93
VII.2.1.8-Assemblage des conduites	94
VII.2.1.9-Les essais d'étanchéité	94
VII.2.1.10-Remblaiement des tranchées	94
VII.2.1.11-Construction des regards	95
VII.2.1.12-Choix des engins	95
VII.3-Détermination des differents volumes	98
VII.3.1-Volume de la couche et terre végétale	98
VII.3.2-Volume des déblais des tranchées	98
VII.3.3-Volume du lit de sable	98
VII.3.4-Volume occupé par les conduites	98
VII.3.5-Volume du remblai	98
VII.3.6-Volume excédentaire	99
VII.4-Devis quantitatif et estimatif	99
VII.5-Sécurité de travail	101
VII.5.1-Les couses des accidents	102
VII.5.2-Liste des conditions dangereuses	102
VII.5.3-Liste des actions dangereuses	103
VII.5.4-La prévention des risques professionnels	104
VII.6-Planification du projet	104
VII.6.1-Techniques de la planification	105
VII.6.1.1-Méthodes basées sur le réseau	105
VII.6.1.2-Méthode basées sur le graphique	106
VII.6.2-Les étapes de la planification	106

VII.6.2.1-Collection des informations	106
VII.6.2.2-Décomposition du projet	106
VII.6.2.3-Relations entre les tâches	106
VII.6.2.4-Les paramètres de la méthode C.P.M	106
VII.6.2.5-Attribution des durées de chaque opération	107
VII.6.3-Symboles des différentes opérations	107
VII.7-Conclusion	108

Conclusion générale.

Références bibliographiques.

Annexe.

Liste des tableaux

CHAPITRE-I-PRÉSENTATION DE LA ZONE D'ÉTUDE	2
Tableau I-1 : Valeurs des pluies moyennes mensuelles des stations (mm)	6
Tableau I-2 : Valeurs des pluies moyennes saisonnières des stations (mm)	7
Tableau I-3: Températures moyennes sur les quatre stations d'observation (°C)	8
Tableau I-4 : Valeurs moyennes maximales et minimales de températures de l'air (°C)	8
CHAPITRE-II-ÉTUDE HYDROLOGIQUE	10
Tableau II-1 : Caractéristique hydro morpho métrique du bassin versant d'Oued Drabla	. 14
Tableau II-2 : Identification de la station pluviométrique de HAMMAM GROUZ	. 15
Tableau II-3 : La série pluviométrique de la station HAMMAM GROUZ (1992/2016)	. 15
Tableau II-4 : Caractéristique empirique de la série d'observation.	17
Tableau II-5 : Différentes lois d'ajustement	. 17
Tableau II-6 : Calcul des paramètres du test de la médiane	19
Tableau II-7 : Résultats du test de la médiane.	19
Tableau II-8 : Résultats de l'ajustement à la loi de Gumble (Hyfran)	. 20
Tableau II-9 : Caractéristique de la population (loi de Gumbel) (Hyfran)	. 21
Tableau II-10 : Résultats de l'ajustement à la loi de Galton (Log-normale) (hyfran)	. 22
Tableau II-11 : Caractéristique de la population (loi de Galton) (Hyfran)	. 22
Tableau II-12 : Résultats de l'ajustement à la loi de GEV (hyfran).	24
Tableau II-13 : Caractéristique de la population (loi de GEV) (Hyfran)	. 24
Tableau II-14: Résultats de Test d'adéquation de Khi-deux «χ2»	26
Tableau II-15 : Pluies de courte durée de différentes périodes de retour et leurs intensités	. 27
CHAPITRE -III-CALCUL DE BASE Tableau III-1: Population selon la zone d'étude, le taux d'accroissement moyen (1998-	. 30
2008)	30
Tableau III-2 : Evaluation de la population de la zone Oued Drabla	31
Tableau III-3 : Surface des sous bassins de la zone d'étude	. 32
Tableau III-4 : Les avantages et les inconvénients du système unitaire	. 34
Tableau III-5 : Les avantages et les inconvénients du système séparatif	. 36
Tableau III-6 : Les avantages et les inconvénients du système pseudo-séparatif	. 37
Tableau III-7 : Valeurs du coefficient de ruissellement en fonction de la zone d'influence	40

Tableau III-8 : Valeurs du coefficient de ruissellement en fonction de la catégorie d'urbanisation.	41
Tableau III-9 : Valeurs du coefficient de ruissellement en fonction de la densité de population	
Tableau III-10: Le coefficient de ruissellent pour chaque sous bassin	42
Tableau III-11: Nombre d'habitants pour chaque sous bassin	43
CHAPITRE-IV-ESTIMATION DES DÉBITS À ÉVACUER	45
Tableau IV-1 : Débits des eaux usées domestiques pour chaque sous bassin	48
Tableau IV-2 : Débits des eaux usées des équipements publiques pour chaque sous	s bassin 49
Tableau IV-3 : Débits des eaux parasites.	49
Tableau IV-4 : Débits totaux des eaux usées à évacuer pour chaque sous bassin	50
Tableau IV-5 : Estimation des débits pluvieux pour chaque sous bassin	54
Tableau IV-6 : Calcul des débits totaux pour chaque sous bassin	55
CHAPITRE-V-DIMENSIONNEMENT DU RÉSEAU D'ASSAINISSEMENT ET LES ANNEXES. Tableau V-1 : Coefficient de rugosité de Manning et Strickler pour divers types de	56
matériaux	
Tableau V-2 : Dimensionnement de DO N ⁰ 1	
Tableau V-3 : Les résultats des quantités de sable éliminées	
Tableau V-4 : Dimensionnement de bassin de décantation	80
CHAPITRE-VII-ORGANISATION DE CHANTIER ET SÉCURITÉ DU TRAVAIL	90
Tableau VII-1 : Coefficient de foisonnement	99
Tableau VII-2 : Volumes de travaux	
Tableau VII-3 : Détermination du devis quantitatif et estimatif du projet	99
T.I. VII.4 I	
Tableau VII-4 : Les paramètres de la méthode C.P.M	99

Liste des figures

CHAPITRE-I-PRÉSENTATION DE LA ZONE D'ÉTUDE	2
Figure I-1 : Localisation de la Wilaya de Mila	2
Figure I-2 : Localisation de la commune d'Ahmed Rachedi	3
Figure I-3 : Carte et coupe structurale schématique de la chaine des maghrébides (M. Durar Delga, 1969).	
Figure I-4 : Zones séismiques et degré de vulnérabilité des territoires en Algérie	5
Figure I-5 : Distribution des précipitations moyennes mensuelles des Quatre stations (mm).	7
Figure I-6 : Distribution des précipitations moyennes saisonnières des Quatre stations (mm)). .7
Figure I-7 : Températures moyennes sur les quatre stations d'observation (⁰ C)	8
Figure I-8 : Variations moyennes maximales et minimales de températures de l'air (°C)	9
CHAPITRE-II-ÉTUDE HYDROLOGIQUE	.10
Figure II-1 : Le cycle de l'eau.	10
Figure II-2 : Bassin Versant d'Oued Drabla.	.13
Figure II-3 : Ajustement graphique à la loi de Gumbel (Hyfran)	21
Figure II-4 : Ajustement graphique à la loi de Galton (Log-normale) (Hyfran)	23
Figure II-5 : Ajustement graphique à la loi de GEV (Hyfran)	24
Figure II-6 : Comparaison entre les différentes lois d'ajustement à l'aide de test graphique (Hyfran)	25
Figure II-7 : La courbe des pluies de courte durée	28
Figure II-8 : La courbe des intensités de courte durée	28
CHAPITRE -III-CALCUL DE BASE	.30
Figure III-1 : Système assainissement collectif	.33
Figure III-2 : Système d'assainissement non collectif	.33
Figure III-3 : Schéma représentatif des branchements dans le système unitaire	.34
Figure III-4 : Schéma représentatif des branchements dans le système séparatif	.35
Figure III-5 : Schéma représentatif des branchements dans le système pseudo-séparatif	.36
Figure III-6 : Schéma perpendiculaire	.38
Figure III-7 : Schéma par déplacement latéral	.38
Figure III-8 : Schéma à collecteur transversal ou oblique	.38

Figure III-9 : Schéma par zones étagées	39
Figure III-10 : Schéma radial	39
CHAPITRE-V- DIMENSIONNEMENT DU RÉSEAU D'ASSAINISSEMENT ET LES	
OUVRAGE ANNEXES	56
FigureV-1 : Exemple d'un branchement de service simple	63
Figure V-2 : Exemple d'une bouche d'égout	64
Figure V-3 : Exemple d'une bouche d'égout (absorption par le haut)	65
FigureV-4 : Exemple d'une bouche d'égout (absorption par le cote latéral)	65
FigureV-5 : Exemple d'un regard simple	65
FigureV-6 : Exemple d'un regard en béton armé	66
FigureV-7 : Exemple d'un regard de jonction	67
FigureV-8 : Exemple d'un regard double	67
FigureV-9 : Exemple d'un regard de chute	68
FigureV-10 : Exemple d'un regard de visite	68
FigureV-11 : Schéma type du déversoir d'orage	69
FigureV-12 : Déversoir à seuil frontal	71
FigureV-13 : Déversoir à seuil latéral	72
FigureV-14 : Déversoir à seuil double	72
CHAPITRE-VI- LES ÉLÉMENTS CONSTITUTIFS DU RÉSEAU D'ÉGOUT	82
Figure VI-1 : Conduite circulaire.	82
Figure VI-2 : Conduite ovoïde	83
Figure VI-3 : Joints sur tuyau en grès	84
Figure VI-4 : Joints sur tuyaux en béton	85
Figure VI-5 : Joint mécanique	86
Figure VI-6 : Pose de canalisation sur un terrain ordinaire	88
CHAPITRE-VII- ORGANISATION DE CHANTIER ET SÉCURITÉ DU TRAVAIL	90
Figure VII-1 : Stockage déchargement des canalisations	91
Figure VII-2 : Pipelayers	94
Figure VII-3: Les plaques d'organisation de chantier	102
Figure VII-4 : Organisation de la prévention des accidents du travail	104

Liste des planches

Planche N^0 01/04 : Plan de masse.

Planche N^0 02/04 : Trace du réseau d'assainissement.

Planche N^0 03/04 : Profil en long du collecteur principale. Planche N^0 04/04 : Les ouvrages annexes et éléments d'égout.

INTRODUCTION GÉNÉRALE

L'eau sur la terre c'est la vie. Elle est à la fois un élément majeur du patrimoine naturel et une composante essentielle du cycle de l'assainissement.

L'assainissement c'est le ensemble des moyens de collecte de transport et de traitement d'épuration des eaux usées avant leur rejet dans les rivières ou dans le sol, sans système d'assainissement les déchets humains pénètrent dans les eaux souterraines et les eaux de surface. Les fèces déposées en déféquant à l'air libre contaminent les sols. Ou- delà des gènes évidents occasionnés par les odeurs, l'absence de système d'assainissement a des conséquences sanitaires directes, le développement de maladies liées à l'eau, les maladies hydriques.

La zone d'étude (zone d'Oued Drabla) c'est une zone rurale située dans la wilaya de Mila. Elle a une superficie d'environ 52,5 ha. Cette zone qui n'avait jamais eu de réseau d'assainissement auparavant, les habitants utilisent des fosses septiques artisanales traditionnelles afin de stocker leurs eaux usées, et de plus aucun système de collecte des eaux pluviales n'est mis en place pour lutter contre les risques des inondations. La nécessité d'un système d'assainissement se pose afin d'évacuer toutes les eaux usées de différentes natures qui peuvent porter nuisance aux habitants et polluer l'environnement.

Dans le présent mémoire de fin d'étude, notre travail consiste d'abord à présenter l'agglomération du point de vue situation géographique, topographique et hydraulique notamment sur le plan assainissement et alimentation en eau potable.

Le travail qui suit vise à calculer les besoins d'évacuation pluviaux, domestiques et d'autres catégories des besoins d'évacuation. Ce travail nous servira de base pour le dimensionnement du système d'évacuation à adopter en fonction non seulement de la topographie du site mais également de l'emplacement de l'exutoire. Ce système sera équipé d'ouvrages annexes à savoir les déversoirs d'orage et un bassin de stockage et des ouvrages spéciaux qui contribuent au bon fonctionnement du réseau.

CHAPITRE-I-PRÉSENTATION DE LA ZONE D'ÉTUDE

I.1-Introduction:

Avant d'entamer n'importe quel projet d'assainissement urbain, l'étude du site est nécessaire pour connaître les caractéristiques physiques du lieu ainsi que les facteurs qui influent sur la conception d'un projet, et qui peuvent se repartir en quatre classes :

- -Les données naturelles du site, tel que le plan d'urbanisme, le tissu urbain,
- -Les données démographiques relatives à l'agglomération,
- -Les données relatives au développement futur et l'extension de l'agglomération,
- -La situation hydraulique (Assainissement, AEP).

Donc la représentation de l'agglomération est une phase importante pour procéder à l'élaboration de l'étude de conception et dimensionnement des réseaux d'assainissement.

I.2-Description du site de l'agglomération :

I.2.1-Situation géographique :

La wilaya de Mila est située dans le Nord-Est Algérien, elle est délimitée :

- Au Nord par les wilayas de Jijel et de Skikda;
- A l'Est par la wilaya de Constantine ;
- Au Sud par les wilayas de Batna et d'Oum-El-Bouaghi;
- A l'Ouest par la wilaya de Sétif.

Figure I-1: Localisation de la Wilaya de Mila.

Le territoire de la commune d'Ahmed Rachedi couvre une superficie de 92,82 km².

La commune d'Ahmed Rachedi se situe au sud de la méditerranée au nord des hautes plaines Constantinoises, à cheval entre les massifs Telliens au nord et les piémonts au sud, situé au centre de la wilaya de Mila à 4 km au sud de Oued Endja.

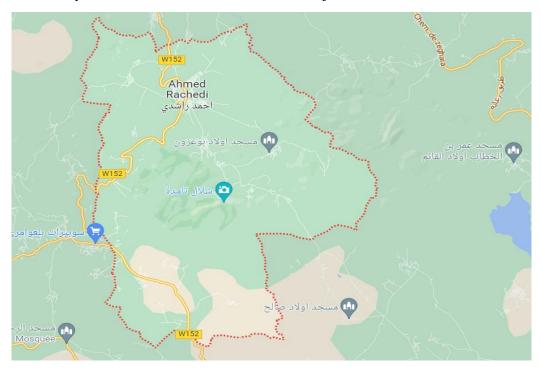


Figure I-2: Localisation de la commune d'Ahmed Rachedi.

Le territoire de la zone d'étude (Oued Drabla) couvre une superficie de 52,50 ha. La zone d'étude (zone Oued Drabla) est situé sur le chemin de wilaya CW152 Au Sud du chef-lieu de la commune d'Ahmed Rachdi elle est limitée par :

- Le chef-lieu de la commune et Tamda Au Nord.
- Ain Elkahla Au Nord-Ouest.
- La Commune d'Ain Mellouk Au Sud Est.

La zone d'Oued Drabla c'est une zone rurale que regroupe l'ensemble des petites unités urbaines (presque 06) n'appartenant pas à l'espace à dominante urbain.

Cette zone à densité intermédiaire qui abrite une population d'au moins 5000 habitants sur des cellules contiguës d'une densité d'au moins 300 habitants par km².

I.3- Données naturelles du site :

I.3.1-Situation géologique :

La région de Mila appartient au domaine tellien, segment oriental de la chaîne des maghrébides, qui représente la chaîne alpine d'Afrique du Nord (M. Durand Delga, 1969). Cette chaîne, constituée de nappes mises en place au Miocène, a été structurée par l'orogénie alpin. On y distingue trois domaines paléogéographiques, distincts qui sont du Nord vers le Sud.

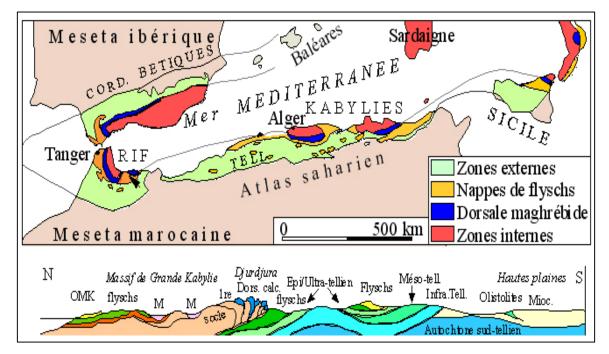


Figure I-3 : Carte et coupe structurale schématique de la chaine des maghrébides (M. Durand.Delga, 1969).

Source : DRE Mila.

I.3.1.1-Présentation de la zone d'étude :

La zone d'étude fait partie du bassin de Mila qui constitue la partie occidentale du grand bassin néogène constantinois (P.E. Coiffait, 1992), il est limité au Nord par l'arête montagneuse du M'Cid Aicha et du Sidi Driss, au Sud par le djebel Osmane et djebel Grouz, à l'Est par les massifs du djebel Akhal, Chettaba et Kheneg et à l'Ouest par les djebels Boucherf et Oukissène. Tous ces massifs représentent le substratum du bassin de Mila, qui proviennent de domaines paléogéographiques différents.

I.3.1.2-Caractéristique principales géologiques :

> Nature et fréquence des terrains :

Les terrains quaternaires sont bien développés dans la zone d'étude, ils sont représentés essentiellement par des croûtes calcaires, des alluvions récentes, des glacis polygéniques, des terrasses et des formations en pente.

Les formations du mi pliocène continental s'étendent sur de grandes surfaces.

I.3.2-Situation hydrogéologique :

Les terrains quaternaires développés dans la zone sont variables, il s'agit des alluvions récentes qui forment généralement une mince bande discontinue au fond des oueds les plus importants.

En profondeur les traces d'encroûtement sont fréquentes et présentent habituellement un aspect de croûte calcaire feuilletée très caractéristique. Les marnes du mi pliocène représentent peut être le début de ce cycle des calcaires lacustres plus au moins graveleux sont superposés aux dépôts précédents les formations d'âge ancien appartiennent aux unités structurales suivantes :

- La nappe de Djemila : Les âges vont du sénonien supérieur à l'yprésien prialonien, les formations présentent des calcaires variés, des marno-calcaires, et des marnes à boules jaunes.
- La nappe pénitellienne : Les âges vont du crétacé inférieur au sontonien et les faciès sont formés de marnes siliceuses, de calcaire épais des intercalations de marne, de micrite et des calcaires massifs.
- La nappe néritique constantinoise : Au niveau du massif de Djebel Grouz, elle présente les faciès suivants :
 - L'albien vraconien : c'est une intercalation de marne de marne- calcaires surmontées des calcaires à silex.
 - Le cénomanien et turonien : sont à l'état de calcaires massifs épais.

I.3.3-Séismicité:

Le territoire national est divisé en quatre zones de séismicité croissante (Figure I-4), selon les règles séismiques algériennes (RPA 99 version 2003) définies sur la carte des zones de séismicité et le tableau associé qui précise cette répartition par wilayas, soit :

- Zone 0 : séismicité négligeable.
- Zone I : séismicité faible.
- Zone II : séismicité moyenne.
- Zone III : séismicité élevée.

On constate que la zone d'Oued Drabla fait partie de la zone II (zone à séismicité moyenne).

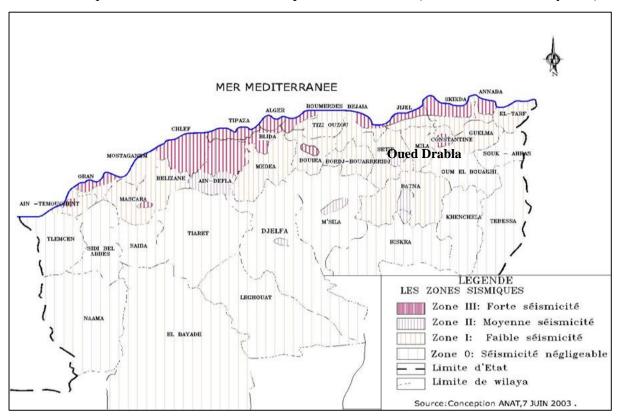


Figure I-4 : Zones séismiques et degré de vulnérabilité des territoires en Algérie.

I.3.4-Situation topographique:

Le territoire de la zone d'étude (Oued Drabla) couvre une superficie de 52,50 ha.

C'est une zone rurale. Donc, l'influence de relief sur la conception de système d'évacuation augmente considérablement. De préférence, la pente de terrain Natural dirige le sens des collecteurs pour assurer l'écoulement gravitaire.

Le site de la zone d'étude est un versant de vallée de dénivellation importante.

Les deux points côtés extrêmes, base vallée du Rhumel est de 173 m et le sommet du Djebel Sidi Driss au Nord-Est de 1283 m, ce qui nous donne une dénivelée de 1110 m sur une distance moyenne de 7 km.

L'altitude moyenne du centre d'Oued Drabla est de moyenne 1000 m, maximale 1150m.

I.3.5-Situation climatique:

Le bassin versant, compte tenu de sa petite superficie ne dispose pas directement d'une station pluviométrique. En revanche, aux alentours immédiats, nous pouvons mentionner plusieurs stations pluviométriques.

Les observations de ces stations nous fournissent d'une part les totaux mensuels utiles pour la lame d'eaux moyennes interannuelles et d'autre part les pluies maximales journalières annuelles très intéressantes pour l'étude des crues.

Les stations d'observation somme les suit :

- ✓ Station de Beni Haroun (2003-2007) : 5 ans d'observation.
- ✓ Station de Hamala Gragerm (1984-1997) : 14 ans d'observation.
- ✓ Station d'Ain El Bey. Constantine (1990-2000) : 11 ans d'observation.
- ✓ Station de Hammam Grouz (1992-2016) : 25 ans d'observation. C'est la station la plus descriptive dans notre zone d'étude, cette dernière sera utilisée pour le calcul de lame d'eau écoulée, les débits fréquentielles, les apports liquides et solides dans le bassin versant d'étude.

I.3.5.1-Précipitations:

Afin d'illustrer la pluviométrie moyenne mensuelle au niveau du bassin versant de la région d'étude, on a élaboré les graphiques de pluviométrie mensuelles et saisonnière de plusieurs stations, on remarque que les précipitations moyennes interannuelles varie entre 400 et 700 mm.

Presque la moitié de la lame reçue par le bassin versant se manifeste en hiver (44.40 %). Ces données de pluviométrie laissent apparaître que l'alimentation des cours d'eau et des nappes aquifères par les précipitations se fait principalement en hiver.

Les valeurs des pluies moyennes mensuelles de chaque station sont résumées dans ce tableau :

mois Jul Total Sep Oct Nov Dec Jan Fev Mar Avr Mai Jun Aou stations **B-Haroun** 28,22 31,35 76,40 159,87 80,02 71,42 45,83 65,16 37,86 14,66 0,46 1,50 612,75 61,67 Hamala 27,00 54,96 67,30 144,92 119,86 71,82 76,21 33,19 11,13 3,17 3,55 674,78 **A-El Bey** 35,50 36,20 65,80 75,90 64,50 54,30 46,90 55,30 44,90 22,20 4,60 10,10 516,20 41,78 27,89 43,51 49,66 54,10 40,75 37,31 43,56 39,10 23,16 6,15 12,52 419,50 **H-Grouz**

Tableau I-1: Valeurs des pluies moyennes mensuelles des stations (mm).

Source : DRE Mila.

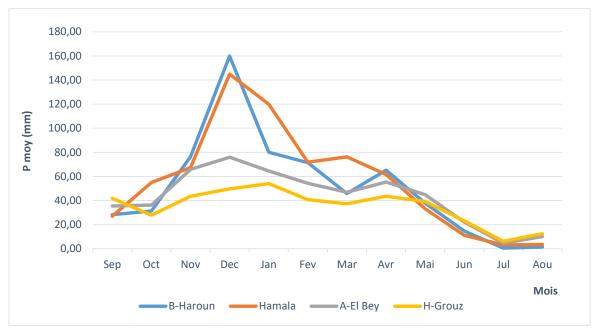


Figure I-5 : Distribution des précipitations moyennes mensuelles des Quatre stations (mm). Source : DRE Mila.

Les valeurs des pluies moyennes saisonnières de chaque station sont résumées dans ce tableau :

Saison Automne Hiver **Printemps** Eté Total 612,75 **B-Haroun** 135,97 311,31 148,85 16,62 149,26 336,60 171,07 17,85 674,78 Hamala **A-El Bey** 137,50 194,70 147,10 36,90 516,20 41,83 **H-Grouz** 113,18 144,51 119,98 419,50 133,98 246,78 146,75 28,30 555,81 Moyenne (mm) Moyenne (%) 24,11 44,40 26,40 5,09 100,00

Tableau I-2 : Valeurs des pluies moyennes saisonnières des stations (mm).

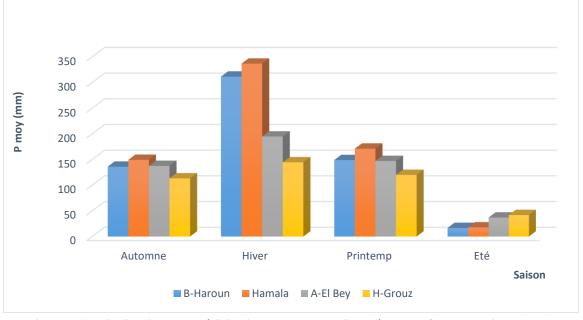


Figure I-6 : Distribution des précipitations moyennes saisonnières des Quatre stations (mm). Source : DRE Mila.

I.3.5.2-Température de l'air :

La température est définie comme l'état atmosphérique de l'air ; elle varie selon les altitudes et la latitude de chaque région.

Les données disponibles des températures moyennes mensuelles des stations précédentes donnent les valeurs suivantes :

Mois Oct Nov Mai Jul Sep Dec Jan Fev Mar Avr Jun Aou stations 8,9 **B-Haroun** 23,7 21,1 14,4 10,0 9,6 12,4 16,5 18,4 24,3 27,4 27,2 10,1 14,7 23,5 Hamala 23,1 18,8 13,3 9,0 10,7 12,7 18,5 27,6 27,4 21,9 16,7 7,8 9,9 12,1 22,4 24,8 25,9 **A-El Bey** 11,4 6,6 7,7 17,7 25,7 21,4 14,7 10,9 9,6 11,3 13,7 17,0 22,9 32,0 32,5 **H-Grouz** 28,6 Moyenne (mm) 19,5 15,1 24,7 27,9 28,2 23,6 13,4 9,7 8,5 9,8 12,2 19,4

Tableau I-3: Températures moyennes sur les quatre stations d'observation (°C).

Source: DRE Mila.

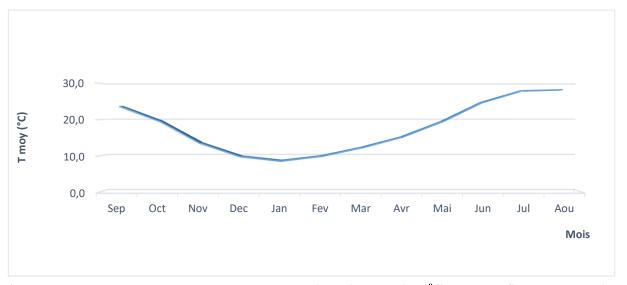


Figure I-7: Températures moyennes sur les quatre stations d'observation (⁰C). Source: DRE Mila.

Les données disponibles des températures moyennes mensuelles, moyennes des maximales, les moyennes des minimales sont représentées graphiquement par la (figure I-8) Station de Hammam Grouz durant la période (1992-2016).

Tableau I-4 : Valeurs moyennes maximales et minimales de températures de l'air (°C).

Mois	Sep	Oct	Nov	Dec	Jan	Fev	Mar	Avr	Mai	Jun	Jul	Aou
T moy (°C)	25,7	21,4	14,7	10,9	9,6	11,3	13,7	17,0	22,9	28,6	32,0	32,5
T min (°C)	22,7	17,4	10,8	7,7	5,7	4,7	8,9	12,4	17,1	23,1	27,6	28,3
T max (°C)	30,5	27,4	19,1	16,3	13,2	18,3	21,5	20,9	28,2	33,4	35,8	40,2

Source : DRE Mila.

D'après le tableau, les valeurs mensuelles de la température de l'air varient avec une certaine régularité pendant l'année, avec un maximum en Juillet (40.2°C), et un minimum en Janvier (5.7 °C).

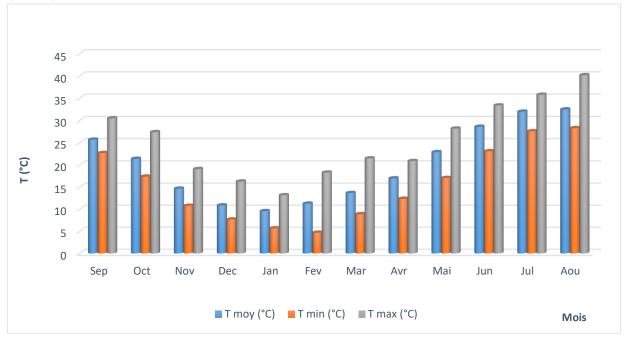


Figure I-8 : Variations moyennes maximales et minimales de températures de l'air (°C). Source : DRE Mila.

I.3.6-Situation démographique :

La population est un paramètre déterminant et statistique dans toute L'étude de planification et d'élaboration d'un projet d'assainissement, donc son exploitation ultérieure, pour les besoins en eau varient non seulement avec l'évolution démographique, le niveau de vie de la population, mais aussi avec la diversité des activités locales et les extensions.

La population de référence qui sera prise dans notre étude est celle obtenue par le RGPH 2008 et sur laquelle on se basera pour l'évaluation de la population pour les différents termes.

P₀ = 1405 habitants (données de L'A.P.C du Ahmed Rachedi).

I.3.6.1-Accroissement de la population :

La croissance démographique est la variation de la population dans le temps. Le taux d'accroissement de la zone d'étude (zone Oued Drabla) est de l'ordre de 1,60%.

I.3.7-Situation hydraulique:

I.3.7.1-Alimentation en eau potable :

La zone d'Oued Drabla est alimentée à partir de cinq (05) réservoirs repartis sur la zone. La capacité totale est de 05* 200 m³.

Il y a un forage dont le débit d'exploitation est de 10 l/s.

Le réseau de distribution est de type ramifie dont les diamètres varient entre 40 et 200 mm en fonte et en PVC. Actuellement la dotation est de 90 l/j/hab. A l'horizon de notre projet la dotation sera estimée à 150 l/j/hab.

I.3.7.2-Assainissement:

La zone d'étude, de type rural, regroupe l'ensemble des petites unités urbaines. Au début l'agglomération était dotée d'un système de fosses septique qui a été remplacé par un réseau unitaire dont les diamètres varient entre 315 et 800 mm, qui s'avère vétuste et n'arrive pas à satisfaire les besoins d'évacuation à le raison futur.

Ce réseau rejette les eaux collectées vers bassin de rétention.

I.4-Conclusion:

Les données collecte à travers ce chapitre nous permettent d'avoir une idée pour la conception du système a projeté à savoir le calcul de base et le dimensionnement.

CHAPITRE-II-ÉTUDE HYDROLOGIQUE

II.1-Introduction:

D'une façon générale, l'étude hydrologique consiste à définir les caractéristiques des crues de différentes périodes de retour (débits, durées, fréquences).son objectif est de mieux appréhender les défis liés à l'eau et d'améliorer l'utilisation des ressources. La bonne connaissance de la provenance des eaux et de son renouvellement permet de raisonner sa consommation, de procéder à des économies et de réduire le stress hydrique auquel les sociétés sont soumises.

L'hydrologie est une science qui étudie la phase du cycle de l'eau qui débit avec l'arrivée de celle-ci sur la surface de la terre .elle englobe les précipitations, les eaux de surface, l'évaporation et l'évapotranspiration, les eaux souterraines. C'est ainsi que l'on peut distinguer les eaux de surface des eaux souterraines donc l'hydrologie de surface de l'hydrologie souterraine.

Pour la conception des systèmes d'assainissement, l'étude hydrologique est un volet important dont le but est de déterminer l'intensité moyenne maximale d'après l'étude des pluies extrêmes et des averses et le choix de la période de retour, afin de protéger le réseau contre les risques des fortes crues.

II.2-Cycle d'eau et bilan hydrologique :

La notion de cycle hydrologique englobe les phénomènes du mouvement et du renouvellement des eaux sur la terre. Cette définition implique que les mécanismes régissant le cycle hydrologique surviennent conjointement.

Le cycle d'eau peut-être analyse schématiquement selon les trois éléments suivants : les précipitations, le ruissellement ou écoulement de surface et l'écoulement souterrain, l'évaporation.

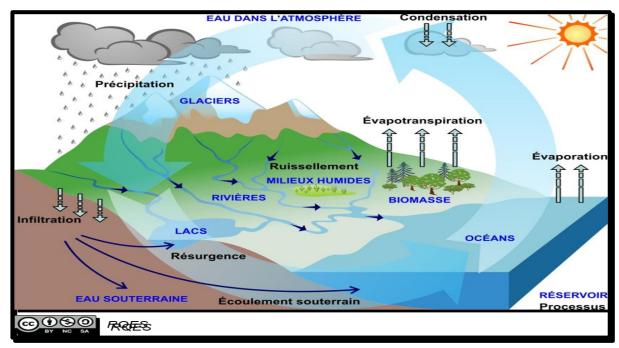


Figure II-1: Le cycle de l'eau.

La vapeur d'eau atmosphérique se condense en nuage qui engendre les précipitations **P** sous forme de pluie, de grêle ou de neige. Parvenues sur le sol, une partie des précipitations s'écoule à sa surface vers le réseau hydrographique et les étendues d'eau libre qu'elle alimente c'est le ruissellement de surface **R**. une autre quantité franchit la surface du sol, pénètre dans le sol et sous-sol alimentant ainsi les nappes souterraines. Va constituant le stock d'eau et les réserves des nappes aquifères, ce sont les eaux d'infiltration **I**. sous l'action de la température, l'eau est reprise à l'état de vapeur au cours de toutes les phases de son cycle constituant ainsi l'évaporation **E**. à cette action s'ajoute l'évaporation des plantes : c'est l'évapotranspiration **ET**. La vapeur d'eau ainsi formée retourne à l'atmosphère pour se condenser et reconstituer les nuages, qui transportes par le vent, peuvent engendrer n' importe où les précipitations et le cycle se referme.

♣ Equation du bilan hydrologique :

$$P = E + R + I \tag{II.1}$$

II.3-Généralité:

II.3.1-Précipitation:

Les précipitations constituent la principale (entrée) des principaux systèmes hydrologiques continentaux que sont les bassins versants.

Ce sont l'ensemble des eaux météoriques qui tombent sur la surface de la terre, tant sous forme liquide (bruine, pluie, averse) que sous forme solide e (neige, grésil, grêle) et les précipitations déposées ou occultes (rosée, gelée blanche, givre, ...). Elles sont provoquées par un changement de température ou de pression.

Les petites pluies :

Sont les précipitations comprises entre les bruines (hauteur d'eau très faible ne provoquant pas de ruissellement) et les averses orageuses. Les petites pluies : se définissent également selon la directive européenne de 21 mai 1991, par les eaux résiduaires urbaines, en l'occurrence les eaux de ruissellement mélangées aux eaux usées, sauf la pluie forte, dans la limite des contraintes économiques de traitement.

> Les averses :

Une averse est un ensemble de pluies associes à une même perturbation météorologique bien définie. Elle est subite et abondante. La durée de ce phénomène varie entre quelques minutes et plusieurs dizaines d'heures.

Les averses sont ressenties différemment en raison de leur soudaineté, leur intensité parfois très forte et leur caractère très éphémère. Aussi, on distingue :

- Les pluies-cycloniques que l'on observe partout en France, lus rarement dans les régions méditerranéennes et qui sont en général peut violentes, de longue durée et ne sont pas celles qui conditionnement le dimensionnement d'un réseau, mais concernant son fonctionnement.
- Les orages qui sont des perturbations locales spontanées convectives, de fortes intensités, de faible durée et qui concernent une superficie limitée avec un épicentre et une décroissance spatiale de la précipitation.

Les éléments averses considérés dans les études se caractérisées soit par :

- Une hauteur d'eau importante.
- Une forte intensité par unité de temps.
- 4 Un épicentre orageux, un déplacement du foyer et une diffusion dans l'espace.
- **♣** Une transformation pluie brute.
- **↓** Une érosion ou un apport de pollution liée au ruissellement.

La mesure de ces averses est effectuée à l'aide des appareils suivants :

- Les pluviométriques qui relèvent les hauteurs d'eau tombées en 24 heures.
- Les pluviographes qui enregistrent la hauteur d'eau d'éléments d'averses à intervalle donné toute les cinq ou six ou dix minutes.

Ces appareils effectuent des séries de mesures bien adaptées aux études hydrologie urbaine. Le volume d'eau qui tombe est déterminé sur un hydro gramme suite au dépouillement d'un pluviogramme enregistrant la variation de la lame d'eau dans le temps.

II.3.2-L'intensité:

L'intensité d'une pluie ne peut être définie qu'en faisant le rapport du volume d'eau tombé pendant une durée donnée sur une surface donnée (unités usuelles : mm/h ou de façon équivalente et souvent utilisé par les médias l\m²/h). La pluie continue gardera une intensité constante généralement faible ou modérée.

$$I_{m} = \frac{h}{t} \tag{II.2}$$

Avec:

Im: Intensité moyenne en mm/h.

h : Hauteur de pluie tombée pendant la durée t.

Pour le calcul de l'intensité, on doit :

- ♣ Analyser les données pluviométriques et faire le choix du type de la loi à laquelle il faut ajuster nos résultats.
- ♣ Calculer les paramètres de la loi choisie et vérifier son adéquation.
- **♣** Calculer la valeur de l'intensité moyenne de précipitation.

II.4-Période de retour :

La période de retour, ou temps de retour, est la durée moyenne au cours de laquelle, statistiquement un événement d'une même intensité se reproduit. Elle se caractérise le temps statistique entre deux occurrences d'un événement naturel d'une intensité donné.

La période de retour est l'inverse de la fréquence de dépassement d'une valeur particulière de la variable étudiée. Elle est donc égale au nombre moyen d'évènements, identifies par une caractéristique particulière, dépassant une valeur particulière de la variable choisie et susceptible les de ce produire pendant une période donnée.

Par la suite une période de retour c'est aussi le temps que met une averse d'une intensité donnée pour se manifester, une pluie décennale de période de retour de 10 ans qui peut se manifester une fois tous les 10 ans au moins. Cette période est prise comme base de calcul dans notre étude. En hydrologie et en assainissement on utilise la notion de la période de routeur pour qualifie un évènement observe et également pour dimensionnement un ouvrage hydraulique et concevoir.

II.4.1-Choix de la période de retour :

Le choix du temps de retour est stratégique : il conditionne le choix du dimensionnement des réseaux, le risque de saturation, la possibilité de financement des ouvrages, le niveau de détérioration de la qualité écologique de l'environnement, mais aussi le niveau de risques et de dégradation des conditions de travail liés aux inondations. Pour anticiper l'augmentation des précipitations induites par les changements climatiques, il faut prendre en compte l'augmentation des précipitations courtes, intenses et de fréquence centennale, pour le dimensionnement des dispositifs. La période de retour représente la période que met une averse d'une intensité donnée pour se manifester. Dans le domaine d'assainissement le choix de la période de retour se fait à partir des situations générales ou particulières, de degrés de protection ou de compromis dont l'évaluation appartient aux responsables locaux. Il est en effet préférable d'obtenir sur l'ensemble d'un réseau un degré de protection, par exemple T= 5 ans, plutôt que de réaliser des extensions de fréquence décennale, sachant que les collecteurs en aval seront insuffisants. En Algérie nous optons généralement pour une période de retour décennale (T=10 ans).

II.5-Bassin versant:

Le bassin versant ou bassin d'alimentation au droit d'une section de mesure est défini comme la totalité de la surface topographique drainée par ce cours d'eau et ses affluents en amont de cette section. Tous les écoulements qui prennent naissance à l'intérieur de cette surface topographique passe obligatoirement par la section de mesure pour poursuivre leur trajet à l'aval.

Les principaux caractéristiques du bassin versant sont les suivantes :

- **Superficie S :** La surface du bassin versant est obtenue par le S.I.G elle est de l'ordre de 23.51 Km².
- **Périmètre P**: Le périmètre stylisé par le S.I.G est de 23.42 Km.
- **Indice de compacité C** : L'estimation de ce paramètre permet de tirer la forme du bassin versant, il est de l'ordre de 1.36.

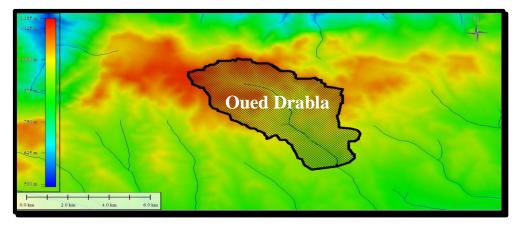


Figure II-2: Bassin Versant d'Oued Drabla.

Les caractéristiques du bassin versant d'Oued Drabla sont présentées dans le tableau suivant :

Tableau II-1: Caractéristique hydro morpho métrique du bassin versant d'Oued Drabla.

Symboles	Unités	Valeurs		
S	Km²	23.51		
Р	Km	23.42		
С	/	1.36		
L	Km	9.26		
L	Km	2.54		
H _{5%}	M	1100		
H _{95%}	M	925		
H _{moy} %	M	1018.04		
Lp	Km	6.61		
Du	M	175		
Ig	m/Km	18.89		
Ds	M	91.61		
R	/	Relief moyen		
Tc	Heure	2.83		
	S P C L L H5% H95% Hmoy% Lp Du Ig Ds R	S Km² P Km C / L Km L Km H5% M H95% M Hmoy% M Lp Km Du M Ig m/Km Ds M R /		

Source: DRE Mila.

II.6-Analyse des données pluviométriques et choix de la loi d'ajustement :

L'analyse des pluies est basée sur les relevés pluviométriques effectués dans un certain nombre de stations sur une surface topographique considérée. Elle est basée sur l'hypothèse que la pluie tombée à une station est représentative de celle tombée tout autour de cette station sur une étendue plus ou moins large selon la densité du réseau que l'on appelle zone d'influence du pluviomètre.

II.6.1-Analyse des données pluviométriques :

L'analyse des données disponibles est le premier pas à franchir dans l'étude d'un projet d'assainissement. Pour cela ; on a besoin d'une série pluviométrique qui comporte les précipitations maximales journalières pour la période la plus longue possible.

La station de Hammam Grouz (1992-2016) : 25 ans d'observation. C'est la station la plus descriptive dans notre zone d'étude, cette dernière sera utilisée pour le calcul de lame d'eau écoulée, les débits fréquentielles, les apports liquides et solides dans le bassin versant d'étude. Est prise comme station de référence, son identification est présentée dans le tableau :

Tableau II-2: Identification de la station pluviométrique de HAMMAM GROUZ.

Nom	Code	Coord	lonnées	Période d'observation			
HAMMAM GROUZ	101903	X (km)	429,95	(1002 2016)			
		Y (km)	294,45	(1992-2016)			
GROCZ		Z (km)	850	25 ans			

Source: ANRH Alger.

II.6.1.1-Analyse des données statistiques :

Pour cette station, on dispose d'une série de données comportant les totaux des précipitations mensuelles et les maxima journaliers pour 25 années d'observation. Les valeurs de cette série sont reportées dans le tableau. Les précipitations mensuelles et les maxima journaliers pour 25 années d'observation sont représentés dans le tableau suivant :

Tableau II-3: La série pluviométrique de la station HAMMAM GROUZ (1992/2016).

					_	•	_			`	,		
Années	Précipitations maximale journalières (mm).										P _j max (mm)		
	Sep	oct	nov	dec	jan	Fev	mars	avr	Mai	juin	Juil	aout	
1992	8,2	19,6	12,8	3,9	49,2	5,6	17	25,9	21,9	6,4	23,6	3,9	49,2
1993	4,2	20,9	9,2	14,3	1,8	22,1	17,8	59	24	0	0	0	59
1994	36,7	12	9,3	19,9	9,8	21	0	0	0	0	0	0	36,7
1995	23,4	9,2	1	17	27	9	20,5	27,1	22,8	6,7	0	0,4	27,1
1996	14,9	8,3	35	26,7	8,1	0	28,6	16,5	23,9	0	0	15,8	35
1997	6,8	32,5	24,2	11,7	5,3	8,2	3,6	13,4	29,9	15,6	0	21,3	32,5
1998	6	18,9	12,5	5,5	26,5	35,6	27,7	0	5,1	9,5	0	1,7	35,6
1999	20,5	8,7	10,7	31,2	0	0	4,6	14,2	8,7	0	0	7,2	31,2
2000	15,2	32,1	30,1	23,7	23,1	12,3	0,9	44,7	7,3	0	0	1,7	44,7
2001	5,9	18	20	13,3	6,6	5,2	12,5	8,9	17,1	0	0	19,4	20
2002	0	12,5	27,9	14	28	21,5	5,9	17,9	23	11,2	2,3	0	28
2003	2,6	10,3	55	19,8	16,5	16,7	12,9	16,7	23,6	2,5	9	4	55
2004	22	20,5	9,7	23,3	24	15,6	9,6	13	0,4	24,2	0	0	24,2
2005	0,4	87,5	21,4	17	23	26,2	7,9	10,1	31,2	1,1	2,7	4,6	87,5
2006	20,4	0	0	9,9	9,2	10,1	40,7	13,7	7,5	0	13,9	0,8	40,7
2007	14,2	15,8	29	6,3	14,3	6,9	15,3	2,6	13,1	19,4	11,8	0	29
2008	10	16,5	31	38,22	12,6	12,4	27,9	15,8	11,8	0,6	0	6	38,22
2009	20,9	0	9,2	50,6	15,7	18,2	20,6	13,7	3,9	1,4	0	37,6	50,6
2010	0,9	20,7	17,2	14	14,4	26,9	7,1	12,3	38	20,7	1,3	0	38
2011	0	24,7	26,7	14,8	8,7	25,8	27,2	32,6	4,8	3,6	0	0	32,6
2012	0,3	13,8	24,3	2,9	22,2	21,4	15,3	17,7	21,6	0	0	0	24,3
2013	18	2,5	3,7	7,6	3,2	16,9	18,5	9,7	10	0	0	0	18,5
2014	15,2	9,4	40,1	1,3	11,2	33,2	20,2	34,3	23	18,4	0	17,4	40,1
2015	0	0	0	0	7,1	22,3	39,4	14,3	9,7	0	4,2	0	39,4
2016	6,1	2,7	11,1	19,2	37,2	3,1	5,1	0	3,7	9,1	4,7	0,9	37,2

Source: ANRH Alger.

La série à une période de fonctionnement de 1992 à 2016 qui a été fournie par l'ANRH d'Alger. L'analyse statistique des données pluviométriques consiste à déterminer les caractéristiques empiriques d'un échantillon d'une série d'observations de précipitations mensuelles et maximales journalières, de 25 années.

Pour notre étude, nous avons travaillé avec le logiciel Hyfran dans les procédés d'ajustement selon les étapes suivantes :

- 1/ Classer la série des précipitations par ordre croissant.
- 2/ La vérification de l'homogénéité de la série.
- 3/ Choisir la formule de probabilité empirique.
- 4/ Calculer des caractéristiques de la série.
- 5/ Choix des lois d'ajustement.
- 6/ Calculer le quantile et son intervalle de confiance.
- 7/ Ajuster graphiquement les lois choisies.

II.6.1.2-Caractéristique empirique de la série :

\Lambda La moyenne $\langle \overline{P_{I,max}} \rangle$:

Avec N = 25, la moyenne interannuelle des précipitations maximales journalière :

$$\overline{P_{J,max}} = \frac{\sum_{i=1}^{N} P_{J,max}}{N} = \frac{954,32}{25} = 38,17 \text{ mm}$$
 (II. 3)

\star L'écart-type « $\sigma_{P_{L,max}}$ » :

Pour N = 25, on a:

$$\sigma_{P_{J,max}} = \sqrt{\frac{\sum_{i=1}^{N} (P_{J,max} - \overline{P_{J,max}})^2}{N}} = 14,5 \text{ mm}$$
 (II. 4)

Le coefficient de variation « Cv » :

$$C_{V} = \frac{\sigma_{P_{J,max}}}{P_{I,max}} = 0.37$$
 (II. 5)

\L'exposant climatique:

Selon les études régionales de l'agence nationale des ressources humaines d'Alger (ANRH) on a:b=0.38.

La médiane :

- ✓ Si N est impair, on prend la $\left(\frac{N+1}{2}\right)^{i \text{ème}}$ valeur.
- ✓ Si N est pair, on prend la moyenne entre la $\left(\frac{N}{2}\right)^{i \text{ème}}$ valeur et la $\left(\frac{N}{2}+1\right)^{i \text{ème}}$ valeur.

On a : N = 25, donc : $M = \frac{25+1}{2} = 13$ alors la médiane est : M=36,7 mm.

Caractéristiques Valeurs 25 Nombre d'observation (ans) 954,32 La somme des PJ. Max (mm) Maximum (mm) 87,5 Minimum (mm) 18,5 38,17 Moyenne (mm) Ecart type (mm) 14,5 Médiane (mm) 36,7 Coefficient de variation 0,37 **Exposant climatique** 0,38

Tableau II-4 : Caractéristique empirique de la série d'observation.

II.6.2-Choix de la loi d'ajustement :

Il existe plusieurs méthodes d'ajustement des séries pluviométriques. Pour notre travail, l'ajustement sera fait par les trois lois :

- La loi de Gumbel.
- ♣ La loi de Galton.
- **♣** La loi GEV.
- ✓ la série des pluies maximales journalières est homogène.

II.6.2.1-Ajustement de la série pluviométrique :

L'efficacité d'une méthode d'estimation dépend de la loi de probabilité, de la taille de l'échantillon et de ses caractéristiques. Toutefois, de nombreuses études comparatives, autant empiriques que théoriques, ont été menées afin de déterminer dans quelles circonstances une loi donnée est efficace.

Pour faciliter le travail, l'ajustement sera traité par le logiciel « Hyfran » avec les trois lois suivantes : la loi de Gumbel, la loi de Galton (Log-normal) et la loi GEV.

1) Ajustement de la série pluviométrique à la loi de Gumbel :

La fonction de répartition de la loi de Gumbel :

$$F(x) = e^{-e^{-y}}$$
 (II. 8)

❖ Sachant que « y » est la variable réduite de la loi de Gumbel :

$$y = \frac{x - x_0}{\alpha} = -\ln[-\ln(F(x))]$$
 (II. 9)

Avec:

 \boldsymbol{x} : Variable étudiée ($P_{j.max}$);

 \mathbf{x}_0 : Paramètre de position (ordonnée à l'origine).

 α : Paramètre de l'échelle ($\alpha > 0$) appelé aussi « GRADEX ».

\Leftrigor L'expression de quantile est alors :

$$x = \alpha y + x_0 \tag{II. 10}$$

Les paramètres de la loi de Gumbel, par la méthode du maximum de vraisemblance :

$$X_0 = 31,967 \text{ mm}$$
 ; $\alpha = 10,4925$.

* Résultats de l'ajustement à la loi de Gumbel :

Tableau II-5 : Résultats de l'ajustement à la loi de Gumble (Hyfran).

Période de routeur (ans)	Fréquence au non dépassement Q	Valeur théorique Xt (mm)	Ecart type	Intervalle de confiance		
100.0	0.9900	80.2	8.68	63.2 - 97.3		
50.0	0.9800	72.9	7.54	58.1 - 87.7		
20.0	0.9500	63.1	6.04	51.3 - 75.0		
10.0	0.9000	55.6	4.92	45.9 - 65.2		
5.0	0.8000	47.7	3.81	40.2 - 55.2		

Tableau II-6 : Caractéristique de la population (loi de Gumbel) (Hyfran).

Caractéristiques	Valeurs
Moyenne (mm)	38.0
Ecart- type (mm)	13.5
Médiane (mm)	35.8
Coefficient de variation Cv	0.35
Coefficient d'asymétrie Cs	1.14
Coefficient d'aplatissement Ck	2.40

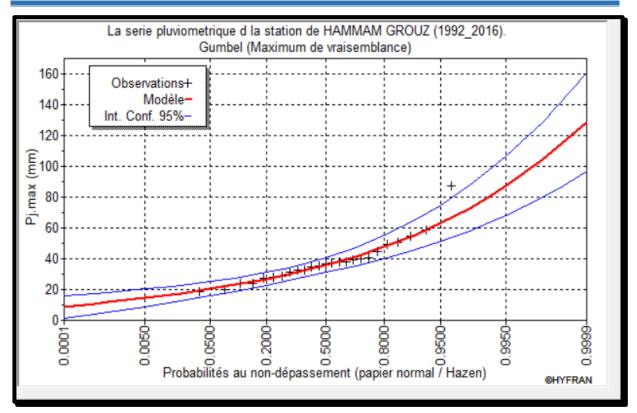


Figure II-3 : Ajustement graphique à la loi de Gumbel (Hyfran).

2) Ajustement à la loi de Galton (Log-normale) :

La fonction de répartition de la loi Log-normale :

$$F(x) = \sqrt{2\pi} \int_{-\infty}^{u} e^{\frac{u^2}{2}} du$$
 (II. 11)

Sachant que « u » est la variable centrée réduite de Gauss :

$$u = \frac{\ln(x) - \overline{\ln(x)}}{\sigma_{\ln(x)}} \tag{II. 12}$$

Avec:

x: Variable étudiée (P_{i. max}).

 $\overline{\ln(x)}$: La moyenne des logarithmes de la variable x.

 $\sigma_{ln(x)}$: L'écart-type des logarithmes de la variable x.

* L'expression de quantile est alors :

$$ln(x) = u \sigma_{ln(x)} + \overline{ln(x)}$$
 (II. 13)

Les paramètres de la loi de Galton par la méthode du maximum de vraisemblance :

$$u = 3,58283$$
 ; $\sigma_{ln(x)} = 0,344524$.

Résultats de l'ajustement à la loi de Galton :

Tableau II-7 : Résultats de l'ajustement à la loi de Galton (Log-normale) (hyfran).

Période de routeur (ans)	Fréquence au non dépassement Q	Valeur théorique Xt (mm)	Ecart type	Intervalle de Confiance
100.0	0.9900	80.2	10.8	59.0 – 101
50.0	0.9800	73.0	9.00	55.4 - 90.6
20.0	0.9500	63.4	6.78	50.1 - 76.7
10.0	0.9000	55.9	5.25	45.7 - 66.2
5.0	0.8000	48.1	3.88	40.5 - 55.7

Tableau II-8 : Caractéristique de la population (loi de Galton) (Hyfran).

Caractéristiques	Valeurs
Moyenne (mm)	38.2
Ecart- type (mm)	13.6
Médiane (mm)	36
Coefficient de variation Cv	0.35
Coefficient d'asymétrie Cs	1.11
Coefficient d'aplatissement Ck	5.27

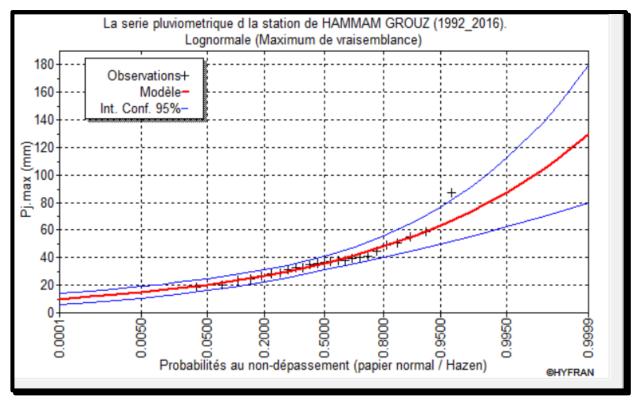


Figure II-4: Ajustement graphique à la loi de Galton (Log-normale) (Hyfran).

3) Ajustement a loi GEV:

La fonction de répartition de la loi d'extrémum généralisée :

$$F(x) = e^{-e^{-y}}$$
 (II. 14)

❖ Sachant que « y » est la variable réduite :

$$y = -\frac{1}{k} \ln \left[1 - \frac{k}{\alpha} (x - u) \right]$$
 (II. 15)

Avec:

 ${f x}$: Variable étudiée ($P_{j.\ max}$).

u : Paramètre de position.

 α : Paramètre de dispersion ($\alpha > 0$).

k : Paramètre de forme appelé indice des valeurs extrêmes.

L'expression de quantile est alors :

$$x = u + \frac{\alpha}{k} \left(1 - e^{-ky} \right) \tag{II. 16}$$

Les paramètres de la loi par la méthode du maximum de vraisemblance :

$$u=31,7483$$
; $k=-0,0684281$; $\alpha=9,90875$.

* Résultats de l'ajustement à la loi d'extrémum généralisé :

Tableau II-9: Résultats de l'ajustement à la loi de GEV (hyfran).

Période de routeur (ans)	Fréquence au non dépassement Q	Valeur théorique Xt (mm)	Ecart type	Intervalle de confiance
100.0	0.9900	85.3	19.2	N/D
50.0	0.9800	76.1	13.8	49.0 - 103
20.0	0.9500	64.4	8.55	47.6 - 81.2
10.0	0.9000	55.9	5.80	44.5 - 67.2
5.0	0.8000	47.4	3.98	39.6 - 55.2

Tableau II-10 : Caractéristique de la population (loi de GEV) (Hyfran).

Caractéristiques	Valeurs
Moyenne (mm)	38.2
Ecart type (mm)	14.0
Médiane (mm)	35.4
Coefficient de variation Cv	0.36
Coefficient d'asymétrie Cs	1.62
Coefficient d'aplatissement Ck	8.40

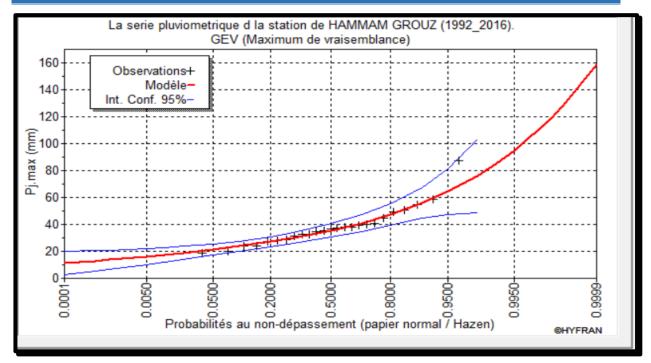


Figure II-5: Ajustement graphique à la loi de GEV (Hyfran).

II.6.2.2-Choix de la loi d'ajustement :

Lorsqu'on a procédé à un ajustement d'une loi de probabilité théorique, le problème qui se pose est de savoir si cette loi s'adapte ou non. Les critères de choix d'une loi sont liés à un ajustement graphique et un test de dispersion.

***** Test graphique:

Ce test est basé sur une observation visuelle des graphes d'ajustement ; il consiste à examiner l'allure des points sur le papier de probabilité, et vérifier s'il s'agit d'un bon alignement sans existence de mauvaises courbures.

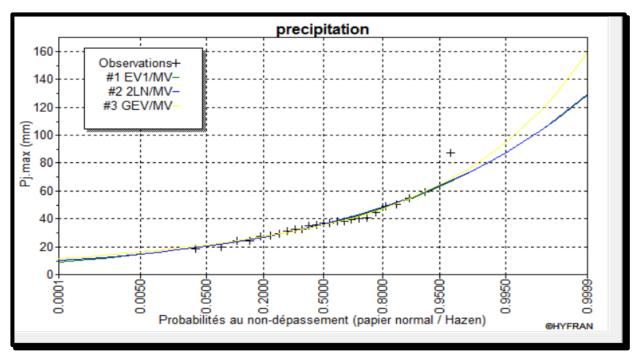


Figure II-6: Comparaison entre les différentes lois d'ajustement à l'aide de test graphique (Hyfran).

> Interprétation des graphiques :

D'après le graph de comparaison ci-dessus, Les trois lois sont adéquates, Mais il est évident que la loi de Galton pose la meilleure convergence avec le nuage des points surtout pour les probabilités de non dépassements d'ordre supérieur à 0.95%.

* Test d'adéquation de Khi-deux «χ2»:

Lorsqu'on procède un ajustement d'une loi de probabilités théorique, le problème qui se pose est de savoir si cette loi s'adapte adéquate. Ce test d'adéquation consiste à prendre une règle de décision concernant la validité de l'ajustement.

Ce test consiste à prendre une règle de décision concernant l'ajustement, en comparant entre les valeurs calculées et théoriques de $\chi 2$ (Annexe2). La variable $\chi 2$ est utilisé pour un risque $\alpha = 5\%$ et dépend du nombre de degré de liberté de la loi.

D'après le logiciel « Hyfran », les résultats du test sont donnés comme suit :

Loi d'ajustement	Nombre de paramètres m	Degré de liberté γ	P-value	χ ² calculé	χ ² théorique	Observation
Gumbel	2	4	0,9037	1,04	9,49	$\chi^2_{\text{calculé}} < \chi^2_{\text{théorique}}$ Condition vérifiée
Galton (Log-normale)	2	4	0,7064	2,16	9,49	 χ² calculé < χ² théorique → Condition vérifiée
GEV	3	3	0,7916	1,04	9,81	$\chi^2_{\text{calculé}} < \chi^2_{\text{théorique}}$ The condition vérifiée

Tableau II-11: Résultats de Test d'adéquation de Khi-deux «2».

> Interprétation des résultats du test :

D'après le tableau au-dessus, la condition du test est vérifiée pour les trois lois. Donc, le test de Khi-deux montre que les lois Log-normale et de Gumbel et GEV sont adéquates.

> Sélection de la loi :

Sachant que l'adéquation de l'ajustement par les trois lois est confirmée. Mais vu que plusieurs études en Hydrologie montrent que la loi Log-normale est celle qui s'adapte mieux au Nord d'Algérie, donc on opte pour celle-ci : la loi de **Log normal**.

II.7-Calcul des pluies et des intensités des courtes durées :

A la base des résultats de l'ajustement à la loi log- normale, on va déterminer les valeurs des pluies de courte durée et leurs intensités.

II.7.1-Pluie de courte durée :

La connaissance des pluies de courte durée est très importante dans l'assainissement. L'intensité moyenne maximale de durée de 15min, pour une période de retour de 10ans $i_{15min,10\%}$ entre dans le calcul des débits pluviaux devant passer dans le collecteur.

La détermination des pluies de courte durée (les averses) se fait à la base des pluies maximales journalières, par la relation suivante :

$$P_{t,p\%} = P_{j.max} \left(\frac{t}{24}\right)^b \tag{II. 17}$$

Avec:

- **P**_{t,p%}: Pluie (mm) de courte durée correspondante à une fréquence de dépassement donnée (p%).
- $P_{j,max}$: Pluie maximale journalière (mm) correspondante à une fréquence de dépassement donnée (p%).
- t : Durée de l'averse (h).
- **b**: Exposant climatique; selon l'ANRH Alger, b = 0.38 pour la région d'étude.

II.7.2-Intensité de courte durée :

Pour le calcul de l'intensité moyenne « $i_{t,p\%}$ » de précipitation « $P_{t,p\%}(mm)$ » de courte durée « t (h) » à une fréquence de dépassement donnée « p% », nous utilisons la formule de Montanari :

$$i_{t,p\%} = \frac{P_{t,p\%}}{t}$$
 (mm/h) (II. 18)

Les calculs sont résumés dans le tableau et les graphes suivants :

Tableau II-15: Pluies de courte durée de différentes périodes de retour et leurs intensités.

T	5a	ans	10	ans	20a	ans	50a	ans	100	ans
F	0,8	000	0,9	000	0,9	500	0,9	800	0.9	900
Xt	48	3,1	55	5,9	63	3,4	7	3	80),2
t(h)	p	i	P	i	p	I	P	i	p	I
0,1	6,33	63,30	7,35	73,57	8,34	83,44	9,60	96,08	10,55	105,55
0,2	8,18	40,90	9,50	72,54	10,78	53,92	12,41	62,08	13,64	68,20
0,25	8,88	35,54	10,32	70,9	11,71	46,84	13,48	53,94	14,81	59,26
0,5	11,48	22,96	13,34	26,69	15,13	30,27	17,42	34,85	19,14	38,29
0,75	13,34	17,79	15,50	20,67	17,58	23,44	20,24	26,99	22,24	29,66
1	14,84	14,84	17,24	17,24	19,56	19,56	22,52	22,52	24,74	24,74
2	19,17	9,58	22,29	11,14	25,28	12,64	29,10	14,55	31,97	15,98
3	22,28	7,42	25,89	8,63	29,37	9,79	33,82	11,27	37,15	12,38
4	24,78	6,19	28,80	7,20	32,67	8,16	37,61	9,40	41,32	10,33
5	26,92	5,38	31,28	6,25	35,48	7,09	40,85	8,17	44,88	8,97
6	28,79	4,79	33,46	5,57	37,96	6,32	43,70	7,28	48,01	8,00
7	30,48	4,35	35,43	5,06	40,18	5,74	46,27	6,61	50,83	7,26
8	32,03	4,00	37,22	4,65	42,22	5,27	48,61	6,07	53,41	6,67
9	33,46	3,71	38,88	4,32	44,10	4,90	50,78	5,64	55,79	6,19
10	34,79	3,47	40,43	4,04	45,85	4,58	52,80	5,28	58,00	5,80
11	36,03	3,27	41,88	3,80	47,50	4,31	54,69	4,97	60,09	5,46

12	37,21	3,10	43,25	3,60	49,05	4,08	56,48	4,70	62,05	5,17
13	38,33	2,94	44,55	3,42	50,53	3,88	58,18	4,47	63,92	4,91
14	39,40	2,81	45,79	3,27	51,93	3,70	59,80	4,27	65,69	4,69
15	40,42	2,69	46,97	3,13	53,28	3,55	61,34	4,08	67,39	4,49
16	41,39	2,58	48,11	3,00	54,56	3,41	62,83	3,92	69,02	4,31
17	42,33	2,49	49,20	2,89	55,80	3,28	64,25	3,77	70,59	4,15
18	43,24	2,40	50,25	2,79	56,99	3,16	65,62	3,64	72,10	4,00
19	44,11	2,32	51,27	2,69	58,15	3,06	66,95	3,52	73,55	3,87
20	44,96	2,24	52,25	2,61	59,26	2,96	68,23	3,41	74,96	3,74
21	45,78	2,18	53,20	2,53	60,34	2,87	69,48	3,30	76,33	3,63
22	46,57	2,11	54,12	2,46	61,39	2,79	70,68	3,21	77,65	3,52
23	47,34	2,05	55,02	2,39	62,40	2,71	71,85	3,12	78,94	3,43
24	48,1	2,00	55,9	2,32	63,4	2,64	73	3,04	80,2	3,34

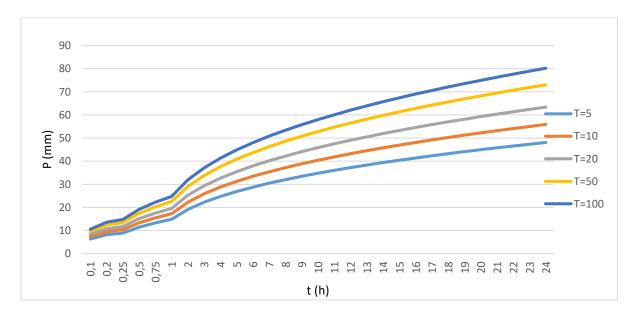


Figure II-7 : La courbe des pluies de courte durée.

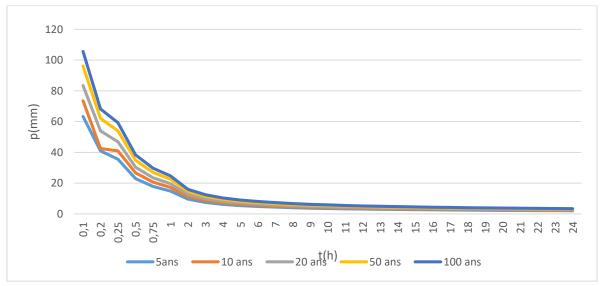


Figure II-8 : La courbe des intensités de courte durée.

> Intensité moyenne maximale :

Pour l'estimation de l'intensité moyenne maximale de précipitation, nous admettons qu'une averse ayant lieu une fois tous les 10 ans ; durant 15min, peut être la valeur optimale. Nous aurons donc :

Par la loi de Galton (Log-normale):

Pour le calcul de l'intensité moyenne de précipitation ; nous utilisons la formule suivante :

$$I_{t(p\%)} = I_{24(10\%)} \cdot \left(\frac{t}{24}\right)^{b-1}$$
 (II. 19)

Avec:

I t (p%): Intensité moyenne de précipitation pour une averse de durée t(h) et de fréquence (p%).

I 24(10%): Intensité moyenne de précipitation pour une journée de fréquence (10%) donnée.

t : Durée de l'averse en heure pour une période de retour de 10 ans.

b : Exposant climatique de la région (b=0.38).

Donc:
$$I_{0,25(10\%)} = \frac{72,9}{24} * \left(\frac{0,25}{24}\right)^{0,38-1} = 53,9 \frac{mm}{h}.$$

 $I = 53,9 * \frac{10000}{3600} = 149,7$

Alors: I= 149,7 l/s/ha.

Avec: $\frac{10000}{3600}$ est le terme de conversion du (mm/h) en (L/s/ha).

II.8-Conclusion:

L'analyse hydrologique a pour but de quantifier les pluies maximales journalières pour différentes périodes de retour pour la station la plus proche « Station de HAMMAM GROUZ», Ainsi que l'intensité moyenne maximale pour les pluies de courtes durées et cela d'après les résultats obtenus par l'ajustement de la série pluviométrique à la loi de Galton. D'après l'ajustement de la série, il a été conclu la valeur :

 $I_{0,25 (10\%)}$ =53,9 mm/h.

Pour le dimensionnement de notre réseau d'évacuation le débit spécifique d'eaux pluviales est égal à : I= 150 l/s/ha.

CHAPITRE -III-

CALCUL DE BASE

III.1-Introduction:

L'assainissement désigne l'ensemble des moyens et d'équipements de collecte, de transport, et d'épuration des eaux usées et pluviales avant leur rejet dans le milieu naturel. Cette stratégie a pour objectif la gestion de ces eaux, en vue d'une protection des biens et des personnes (sanitaire, contre les inondations, et l'environnement).

Dans ce contexte, le dimensionnement du réseau d'assainissement est indispensable, d'où nous sommes contraints de passer par certaines phases préliminaires, l'une de ces phases est : le calcul de base.

Le calcul de base est une partie où nous procédons à l'estimation du nombre d'habitants pour un horizon de calcul donné, le découpage du site en surfaces élémentaires, la détermination du coefficient de ruissellement et le choix du système d'assainissement ainsi que le schéma de collecte et d'évacuation des eaux usées.

III.2-Situation démographique :

La population est un paramètre déterminant et statistique dans toute l'étude de planification et d'élaboration d'un projet d'assainissement, donc son exploitation ultérieure, pour les besoins en eau varient non seulement avec l'évolution démographique, le niveau de vie de la population, mais aussi avec la diversité des activités locales et les extensions.

III.2.1-Période envisagée pour l'étude :

D'une part l'horizon prévu pour cette étude est l'année 2050 soit 33 ans. D'autre part Au-delà de cet horizon, l'estimation devient grossière en raison des incertitudes sur les différentes évolutions de l'agglomération.

III.2.2-Evaluation de la population de la zone d'étude (zone Oued Drabla) :

La population de référence qui sera prise dans notre étude est celle obtenue par le RGPH 2008 et sur laquelle nous nous baserons sur l'évaluation de la population pour les différents termes.

La population actuelle est de P_0 = 1405 habitants (données de L'A.P.C du Ahmed Rachedi). La croissance démographique est la variation de la population dans le temps. Le taux d'accroissement de la zone d'étude (zone Oued Drabla) est de l'ordre de 1,60%.

Tableau III-1: Population selon la zone d'étude, le taux d'accroissement moyen (1998-2008).

Zone d'étude	totale population	taux d'accroissement (%)
Oued Drabla	1405	1,60

Source RGPH(2008).

La population de la zone d'étude (zone Oued Drabla) pour l'horizon 2045 est évaluée par la formule des intérêts composés en se basant sur le nombre d'habitants recueille apuré du L'APC de Ahmed Rachdi suivant le RGPH 2008 :

$$P_n = P_0 \left(1 + \frac{\tau}{100} \right)^n \tag{III.1}$$

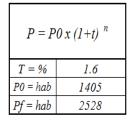
Avec:

n: Nombre d'années séparant l'année de référence et l'horizon considéré. (2008-2045) n=37.

P_n: Population à l'horizon considéré future.

P₀: Population de l'année de référence. (P₀=1405 hab RGPH 2008).

 τ : Taux d'accroissement ($\tau = 1.60\%$).


AN:
$$P_{37} = 1405 \left(1 + \frac{1,60}{100}\right)^{37} = 2528 \ hab.$$

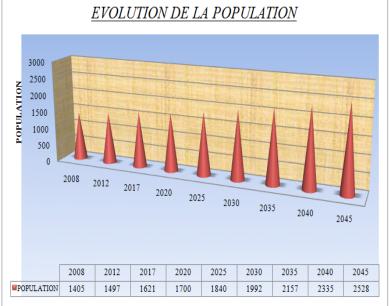

Le tableau III-2 montre l'évolution de la population :

Tableau III-2: Evaluation de la population de la zone Oued Drabla.

EVOLUTION DE LA POPULATION DE LA ZONE DE OUED DRABLA

Annee	Population	Aug
2008	1405	0
2012	1497	92
2017	1621	124
2020	1700	79
2025	1840	140
2030	1992	152
2035	2157	165
2040	2335	178
2045	2528	193

Source: APC d'Ahmed Rachedi.

III.3-Découpage de la superficie d'étude en sous bassins élémentaires :

Le bassin versant ou bassin d'alimentation au droit d'une section de mesure, représente en principe, l'unité géographique sur laquelle se base l'analyse du cycle hydrologique et de ses effets qui est limitée par les lignes de crêtes ou par les lignes de partage des eaux. Toutes les eaux qui ruissellent en surface sont recueillies par une seule ligne d'écoulement.

Le découpage du site en sous bassins élémentaires doit être fait selon :

- La nature des sols,
- La densité des habitations,
- Les courbes de niveaux,
- Les routes et voiries existantes,
- Les pentes et les contre pentes,
- Les limites naturelles (oueds, talwegs....).

Pour notre projet le découpage de la zone à étudier se fait suivant la nature du sol et la densité des habitants et les limites naturelles.

N⁰ sous bassin Surface Ai (ha) 1 10,8 2 10.6 3 2,25 4 0,76 5 1,09 6 5,78 7 5,11 8 2,8 9 1,09

Tableau III-3: Surface des sous bassins de la zone d'étude.

III.4-Les techniques d'assainissement :

Selon la nature de l'habitant et le choix de la collectivité, on distingue deux techniques d'assainissement : Assainissement collectif et assainissement non collectif.

III.4.1-Assainissement collectif:

L'assainissement collectif désigne le système d'assainissement dans lequel les eaux usées sont collectées et acheminées vers une station d'épuration pour y être traitées avant d'être rejetées dans le milieu naturel. Ce type d'assainissement comprend les réseaux de collecte et les équipements de traitement (la station d'épuration).

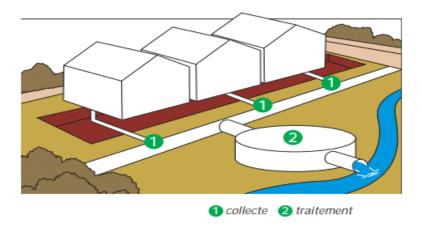


Figure III-1: Système assainissement collectif.

III.4.2- Assainissement non collectif:

L'assainissement autonome est également appelé assainissement non collectif (ANC) ou assainissement individuel. Il désigne le traitement des eaux usées (cuisine, salle de bain, WC) pour des habitations qui ne bénéficieraient pas d'un raccord au tout-à-l'égout, lui-même relié à une station d'épuration.

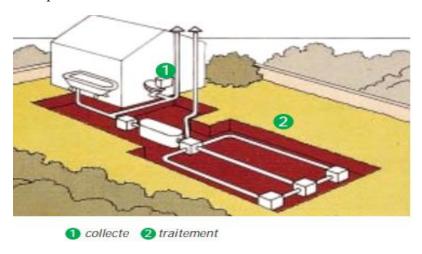


Figure III-2: Système d'assainissement non collectif.

III.5-Systèmes d'évacuation :

III.5.1-Définition de système d'évacuation :

On appelle système d'évacuation des eaux, l'ensemble des dispositifs et des produits utilisés et raccordés entre eux, et ce, afin d'évacuer les pluviales ainsi que les eaux usées d'un bâtiment individuel ou collectif.

Mis en place dans le cadre de l'assainissement, le système d'évacuation des eaux vise des objectifs :

• D'évacuer les pluviales en quantité importante, qui englobent toutes les eaux de ruissellement ;

• D'évacuer les eaux usées (eaux vannes, ménagères,..) provenant des habitations appelées également des eaux domestiques ;

Les eaux usées provenant des industries et services publics.

Les systèmes d'évacuation sont composés principalement de conduites à écoulement à surface libre, de canaux et fossé, et accessoirement de poste de pompage pour refouler les eaux vers les collecteurs.

III.5.2-Les différents systèmes d'assainissement :

L'évacuation des eaux usées domestiques, industrielles, pluviales, peut se faire au moyen de deux systèmes principaux :

- Le système unitaire ;
- Le système séparatif;
- On peut considérer également le système pseudo-séparatif.

III.5.2.1-Système unitaire :

Il correspond au « tout-à-l'égout », c'est-à-dire l'évacuation de l'ensemble des eaux usées et pluviales par un réseau unique généralement pourvu de déversoirs qui permettent, en cas d'orage, le rejet d'une partie des eaux par sur verse, directement dans le milieu naturel. Cette configuration présente l'intérêt de ne prévoir qu'un seul réseau pour les eaux usées et les eaux pluviales (de gros diamètre afin de pouvoir absorber une pluie de période de retour de dix ans).

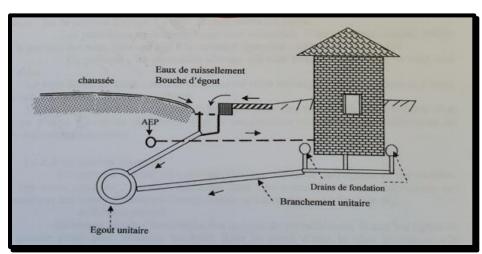


Figure III-3 : Schéma représentatif des branchements dans le système unitaire.

Les avantages et les inconvénients de système unitaire :

Tableau III-4: Les avantages et les inconvénients du système unitaire.

Les avantages	Les inconvénients
- Conception simple : un seul collecteur, un	- Débit à la station d'épuration très variable.
seul branchement par immeuble.	- Lors d'un orage, les eaux usées sont diluées
- Encombrement réduit du sous-sol.	par les eaux pluviales.

- A priori économique (dimensionnement moyen imposé par les seules eaux pluviales).
- Aspect traditionnel, dans l'évolution historique des cités.
- Pas de risque d'inversion de branchement.
- Apport de sable important à la station d'épuration.
- Acheminement d'un flot de pollution assez important lors des premières pluies après une période sèche.
- Rejet direct vers le milieu récepteur du mélange " eaux usées - Eaux pluviales " au droit des déversoirs d'orage.

Le domaine d'utilisation :

Milieu récepteur éloigné des points de collecte.

Topographie à faible relief.

Débit d'étiage du cours d'eau récepteur important.

III.5.2.2-Le système séparatif :

Dans lequel deux réseaux séparés sont mis en place :

Réseau des eaux pluviales : il est conçu pour évacuer les eaux d'origine pluviale, c'est-à-dire les pointes pluviales. Il suit la ligne de plus grande pente pour déverser les eaux dans le cours d'eau le plus proche et afin d'augmenter la vitesse d'écoulement. Son tracé dépend de l'implantation des espaces producteurs de ruissellement.

Réseau d'eaux usées : il est prévu pour l'évacuation des eaux usées d'origine domestique, publique et industrielle jusqu'à la station d'épuration avec une pente adéquate pour l'écoulement. Le tracé du réseau des eaux usées est en fonction de l'implantation des différentes entités à drainer.

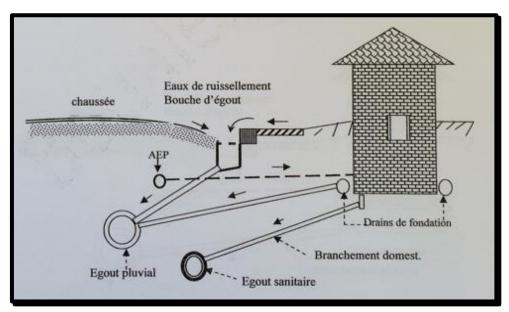


Figure III-4 : Schéma représentatif des branchements dans le système séparatif.

Les avantages et les inconvénients de système séparatif :

Tableau III-5 : Les avantages et les inconvénients du système séparatif.

Les avantages	Les inconvénients
- Diminution du diamètre moyen du réseau de	- Encombrement important du sous-sol.
collecte des eaux usées.	- Coût d'investissement élevé.
- Exploitation plus facile de la station	- Risque important d'erreur de branchement.
d'épuration.	
- Meilleure préservation de l'environnement	
des flux polluants.	
- Certains coûts d'exploitation sont limités	
(relevage des effluents,).	

Le domaine d'utilisation :

Petites et moyennes agglomérations.

Extension des villes.

Faible débit d'étiage du cours d'eau récepteur.

III.5.2.3-Le système pseudo-séparatif :

Ce système repose sur une collecte des eaux usées avec une fraction des eaux pluviales provenant généralement des toitures et des espaces privés, dans un réseau commun. L'autre fraction des eaux pluviales est transitée à travers les caniveaux et les ouvrages pluviaux, dans un autre réseau.

Il est assez comparable au système séparatif, avec un inconvénient au moins ; c'est le risque du mauvais fonctionnement de la station d'épuration, grâce à l'apport des eaux pluviales.

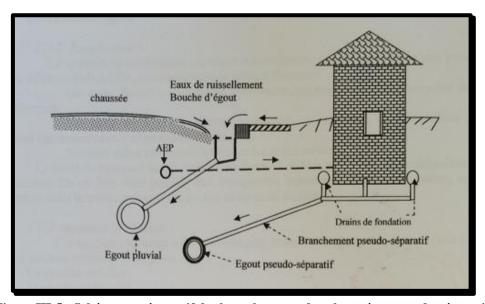


Figure III-5 : Schéma représentatif des branchements dans le système pseudo-séparatif.

Les avantages et les inconvénients de système pseudo- séparatif :

Tableau III-6: Les avantages et les inconvénients du système pseudo-séparatif.

Les avantages	Les inconvénients
- Le problème des faux branchements est	-Le fonctionnement de la station d'épuration
éliminé ;	est perturbé, la charge polluante est variable
- Le plus gros des eaux pluviales étant	en qualité et en quantité.
acheminé en d'heure de la ville, ce qui nous	
donne des collecteurs traversant la ville de	
moindre dimension;	
-Un seul branchement entre les maisons ;	
- Effet de chasse par les eaux de toiture.	

❖ Le domaine d'utilisation :

Petites et moyennes agglomération.

Présence d'un milieu récepteur proche.

III.5.3-Choix du système d'assainissement :

Les paramètres prépondérants pour le choix du système d'assainissement sont :

- L'aspect économique : Une étude comparative de plusieurs variantes est nécessaire ;
- L'impact provoqué par le milieu naturel ;
- S'il s'agit d'une extension de réseau, il faut tenir compte du système existant ;
- La topographie du terrain naturel.

Constatation:

D'après le système d'évacuation existant, nous remarquons qu'il est de type unitaire.

Pour notre projet le choix du système d'assainissement se fait suivant l'aspect économique et la topographique du terrain naturel.

III.6-Schéma d'évacuation des eaux :

Par définition, le schéma d'évacuation représente une configuration géométrique du système en fonction de divers paramètres :

- La topographie du terrain ou toute disposition étant prise.
- La répartition géographique des habitants.
- L'implantation des canalisations dans le domaine public.
- L'emplacement de la station d'épuration si elle existe.
- Les conditions des rejets.

III.6.1-Schéma perpendiculaire:

L'écoulement se fait directement dans le cours d'eau. Ce type de schéma ne permet pas la concentration des eaux vers un point unique d'épuration ; il convient lorsque l'épuration n'est pas jugée nécessaire et aussi pour l'évacuation des eaux pluviales en système séparatif.

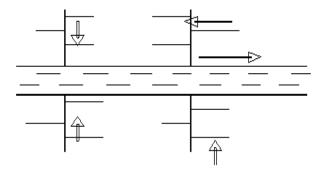


Figure III-6: Schéma perpendiculaire.

III.6.2-Schéma par déplacement latéral :

C'est le schéma le plus simple, permettant de transporter l'effluent à l'aval de l'agglomération vers un seul point. Les eaux sont recueillies dans un collecteur parallèle au cours d'eau, dans ce cas l'épuration est nécessaire.

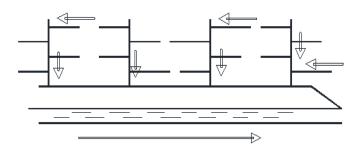


Figure III-7 : Schéma par déplacement latéral.

III.6.3-Schéma transversal ou oblique :

Ce schéma comporte des ramifications de collecteurs qui permettent de rapporter l'effluent à l'aval de l'agglomération. Ce type de schéma est adopté lorsque la pente du terrain est faible.

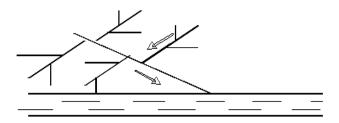


Figure III-8 : Schéma à collecteur transversal ou oblique.

III.6.4-Schéma par zones étagées :

Ce schéma est une transposition du schéma par déplacement latéral, mais avec multiplication des collecteurs longitudinaux ; ils permettent l'évacuation à plusieurs niveaux pour ne pas trop charger le collecteur.

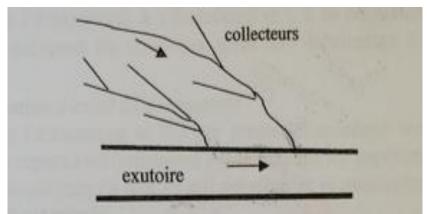


Figure III-9 : Schéma par zones étagées.

III.6.5-Schéma radial:

Le schéma radial convient pour les terrains plats. Il permet la collecte des effluents en un ou plusieurs points où ils seront évacués, par relevage, vers un point éloigné de l'agglomération (un cours d'eau récepteur ou une station d'épuration).

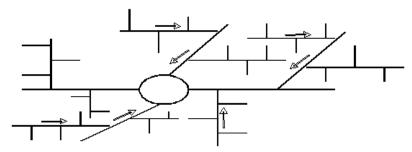


Figure III-10 : Schéma radial.

III.6.6-Le choix du schéma d'évacuation :

Le choix du schéma du réseau d'évacuation à adopter, dépend de divers paramètres :

- Les conditions techniques et locales du lieu : système existant, la topographie du terrain et la répartition géographique des habitats à desservir.
- Les conditions d'environnement : nature de rejet, le milieu récepteur et l'emplacement de la station d'épuration si elle existe.
- Les conditions économiques : le coût et les frais d'investissement et d'entretien.

Constatation : Pour notre projet, nous adoptons un schéma par déplacement latéral. C'est le schéma le plus simple, et que respectent les conditions requises en termes techniques et économiques.

III.7-Estimation du Coefficient de ruissellement « Cr » :

Le ruissellement désigne l'écoulement des eaux à la surface des sols. Conditionné par différents facteurs hydro géographiques, il se produit lorsque l'intensité des précipitations dépasse les capacités d'infiltration et de rétention à la surface d'un sol, donc Il représente la lame d'eau qui ruisselle sur la lame tombée sur la surface à drainer.

Le Coefficient de ruissellement (Cr), correspondant le rapport entre la hauteur d'eau qui a ruisselé sur une surface donnée (qu'on nomme aussi « pluie nette ») et la hauteur d'eau précipitée (« pluie brute »). Il varie énormément selon que la surface est plus ou moins imperméable, en pente, ouverte ou cloisonnée.

Ce coefficient a une grande influence sur la détermination du débit d'eau pluviale du simple au double. Il varie entre 0.05 à 1, une estimation erronée de ce coefficient peut causer un sous ou surdimensionnement du réseau.

La valeur du coefficient de ruissellement dépend de plusieurs facteurs :

- La nature du sol.
- La pente du terrain.
- Le mode d'occupation du sol.
- La densité de la population.
- La durée de pluie.
- L'humidité de l'air.

L'estimation du coefficient de ruissellement est faite à titre empirique, d'une façon approchée vu l'hétérogénéité des surfaces, suivant différents facteurs :

En fonction de la zone d'influence :

Tableau III-7: Valeurs du coefficient de ruissellement en fonction de la zone d'influence.

Zones d'influence	Cr
Surface imperméable	0.90
Pavage à larges joints	0.60
Voirie non goudronnées	0.35
Allées en gravier	0.20
Surfaces boisées	0.05

Source: Polycopie d'assainissement de Mr « SALAH. B ».

* En fonction de la catégorie d'urbanisation :

Tableau III-8 : Valeurs du coefficient de ruissellement en fonction de la catégorie d'urbanisation.

Catégorie d'urbanisation	Cr
Habitations très denses	0.90
Habitations denses	0.60 - 0.70
Habitations moins denses	0.40 - 0.50
Quartiers résidentiels	0.20 - 0.30
Square – garde – prairie	0.05 - 0.20

Source: Polycopie d'assainissement de Mr « SALAH. B ».

* En fonction de la densité de population :

Tableau III-9 : Valeurs du coefficient de ruissellement en fonction de la densité de population.

Densité de la population (habitant/ha)	Cr
20	0.20
30 – 80	0.20 - 0.25
60 - 150	0.25 - 0.30
150 – 200	0.30 - 0.45
200 – 300	0.45 - 0.60
300 – 400	0.60 - 0.80
>400	0.80 - 0.90

Source: Polycopie d'assainissement de Mr « SALAH. B ».

III.8-Calcul du nombre d'habitants pour chaque sous bassin :

Pour connaître le nombre exact d'habitants de chaque sous bassins, on suit les étapes suivantes afin de pouvoir estimer ce dernier :

- On estime le coefficient de ruissellement de chaque sous bassin ;
- On calcule le coefficient de ruissellement pondéré total ;
- On calcule la densité partielle de chaque sous bassin ;
- On déduit le nombre d'habitant dans chaque sous bassins.

III.8.1-Coefficient de ruissellement pondéré :

Le coefficient de ruissellement pondéré totale est donné par la relation suivante :

$$C_{rp} = \frac{\sum c_{ri} \times A_i}{A}$$
 (III.2)

Avec:

C_{rp} : Coefficient de ruissellement pondéré.

Cri : Coefficient de ruissellement partiel.

A_i: Surface du sous bassin en (ha).

A: Surface totale en (ha). A=40,28 ha.

Application numérique : $C_{rp} = \frac{24,148}{40,28} = 0,599$

Alors: $C_{rp} = 0,6$.

Tableau III-10: Le coefficient de ruissellent pour chaque sous bassin.

Numéro de SB	Surface A _i (ha)	C _{ri} (pour chaque SB)	Crp
1	10,80	0,75	
2	10,60	0,60	0.6
3	2,25	0,50	0,6
4	0,76	0,30	
5	1,09	0,57	
6	5,78	0,60	
7	5,11	0,50	
8	2,80	0,45	
9	1,09	0,40	

III.8.2-Calcul de la densité:

a. Densité moyenne :

La densité moyenne est exprimée par la relation :

$$D_m = \frac{p_n}{\sum A_i}$$
 (III.3)

Avec:

D_m: Densité moyenne.

P_n: Population globale à l'horizon 2045. P_n=2528 hab.

Ai : Surface partielle du sou bassin considéré (ha).

> Application numérique : D_m= 62,80

b. Densité partielle :

La densité partielle de chaque sous bassin est exprimée par la relation :

$$D_i = \frac{C_{ri} \times P_n}{C_{rp} \times A} \tag{III.4}$$

$$D_i = D_m * \frac{c_{ri}}{c_{rp}} \tag{III.5}$$

Avec:

D_i: Densité partielle du sou bassin considéré en (hab/ha).

C_{ri}: Coefficient de ruissellement de chaque sous bassin.

C_{rp} : Coefficient de ruissellement pondéré total.

III.8.3-Calcul du nombre d'habitants de chaque sous bassin :

On procède par la suite au calcul du nombre d'habitants correspondant à chaque sous bassin par la relation ci-dessous :

$$P_i = D_i * A_i \tag{III.6}$$

Avec:

P_i: Population partielle du sou bassin considéré.

Ai : Surface partielle du sou bassin considéré (ha).

Les résultats de calcul du coefficient de ruissellement et nombre d'habitants de chaque sous bassins sont portés dans le tableau suivant :

Tableau III-11: Nombre d'habitants pour chaque sous bassin.

Numéro de sous bassins	Surface A _i (ha)	C _{ri} (pour chaque SB)	D _i (hab/ha)	Nombre d'habitants P _i
1	10,80	0,75	78.50	847,80
2	10,60	0,60	62,80	665,68
3	2,25	0,50	52,33	117,75
4	0,76	0,30	31,40	23,86
5	1,09	0,57	59,66	65,03
6	5,78	0,60	62,80	362,98
7	5,11	0,50	52,33	267,40
8	2,80	0,45	47,10	131,88
9	1,09	0,40	41,86	45,63
La somme	40,28	0,6	/	2528

III.9-Conclusion:

Pour notre zone d'étude on a fixé les choix suivants :

• L'horizon de calcul sera 2045, soit une population future de 2528 habitants.

- Le système d'assainissement adopté étant du type unitaire.
- Il a été déduit (09) bassins élémentaires à la suite du découpage de la zone rurale.
- Nous avons opté pour Schéma par déplacement latéral.

CHAPITRE-IV-ESTIMATION DES DÉBITS À ÉVACUER

IV.1-Introduction:

Le réseau d'assainissement est appelé à assurer la collecte et l'évacuation des eaux de ruissellement et des eaux usées d'origines diverses.

Il doit répondre aux exigences actuelles et futures. Avant de passer au dimensionnement des collecteurs, il faut que l'évaluation des débits d'eaux usées et pluviales porte essentiellement sur l'estimation la quantité et de la qualité des rejets qui se caractérisent en fonction du type d'agglomération, le régime adoptée et la situation géographique ainsi que topographique.

Le but principal de l'estimation des débits des eaux usées est de connaître la quantité et la qualité des rejets liquides provenant des habitations et lieux d'activités. Ces rejets, qui varient d'une agglomération à une autre selon la vocation adoptée, doivent être évacués le plus rapidement possible et par le moyen le plus sûr afin d'éviter toute contamination de l'être humain ou pollution de l'environnement ; d'où ressort l'utilité de l'évaluation des quantités à traiter.

IV.2-Généralités:

Les eaux de surfaces constituent un écosystème où règne une communauté d'êtres vivants qui établissent des relations et interactions entre eux et leur milieu. Dans ce fragile équilibre, un seul facteur de l'écosystème est modifié, et c'est l'équilibre qui est perturbé.

C'est ainsi que la présence ou la surabondance d'un élément dans un écosystème dont il est normalement absent constitue une pollution. Nos eaux usées contiennent de nombreux éléments polluants. Ces polluants s'ils se retrouvent directement dans les milieux naturels, perturbent les écosystèmes.

Les eaux usées nécessitent d'être traitées avant leur évacuation dans le milieu récepteur, la protection de l'environnement en dépend.

IV.3-Les eaux usées :

On distingue, selon la nature des matières polluantes contenues dans l'effluent, quatre (04) origines :

- Les eaux usées des services publiques.
- ♣ Les eaux usées d'origine industrielle.
- **♣** Les eaux parasites.

IV.3.1-Les eaux usées domestiques :

Les eaux usées domestiques proviennent des différents usages domestiques de l'eau. Elles sont composées de deux groupes selon leur origine et leurs caractéristiques :

• Les eaux vannes : provenant des eaux de chasse, des W.C. elles ont une charge bactériologique importante ;

• Les eaux ménagères : eaux de cuisine, vaisselle, bain, ligne. On retrouve dans ces eaux des détergents, graisses, débris organiques, etc.

IV.3.2- Les eaux usées industrielles :

Ces eaux proviennent des diverses usines de fabrication (brasserie, tanneries...) elles contiennent des substances chimiques, souvent toxiques suivant leur origine. Ces eaux peuvent contenir des substances acides, alcalines, corrosives ou entartrâtes à température élevée souvent odorantes et colorées.

Les eaux usées industrielles sont différentes des eaux usées domestiques car leur degré de pollution varie d'une industrie à une autre. En effet, la majeure partie d'entre elles, en plus des matières organiques azotées ou phosphorées, présentent des produits toxiques, des métaux lourds, des hydrocarbures, etc. c'est pour cela qu'un prétraitement doit être effectué avant tout rejet vers le réseau des eaux usées.

IV.3.3-Les eaux usées du service publique :

Ce sont les eaux usées provenant des établissements ou des équipements publiques : administratifs, éducatifs, touristiques, sanitaires et autres services d'utilité publique.

L'estimation de ces eaux tient compte de la dotation en eau potable requise pour chaque activité; cette dotation est basée sur la notion d'équivalent habitant qui représente une unité de compte homogène pour tous usagers.

IV.3.4-Les eaux parasites :

Ce sont le plus souvent des eaux provenant des infiltrations après une chute de pluie ou de la remontée de la nappe ces eaux pénètrent dans le collecteurs à travers les joints mal confectionnes ou déboites ; ou bien à travers les fissures. Le débit de ces eaux est difficilement détermine, seule la modélisation qui peut donner une approche d'estimation. En pratique, nous estimons ce débit à environ 0,151/s/ha. La présence de ces eaux perturbe le fonctionnement de la station d'épuration.

Constatation:

Notre projet ne comporte pas d'industrie, les eaux usées provenant de la zone d'étude sont d'origine domestique et du service publique.

IV.4-Estimation des débits des eaux usées :

L'évaluation de la quantité journalière des eaux usées à évacuer s'effectue à partir de la consommation d'eau potable. L'évacuation quantitative des rejets est en fonction du type et de la nature de l'agglomération et les diverses catégories d'urbanisation (établissements publics et privés, industries, usines). Plus l'agglomération est urbanisée, plus la quantité d'eau rejetée est élevée.

IV.4.1-Estimation des débits des eaux usées domestiques :

La qualité d'eaux usées rejetées est tributaire de la dotation d'eau potable à consommer ; donc pour calculer le débit des eaux usées à évacuer, nous prendrons comme base une dotation d'eau potable de 150 l/j/hab (Source A.P.C d'Ahmed Rachedi).Il est admis qui l'eau évacuée n'est que les 70 à 80% de l'eau consommée.

Le calcul des débits d'eaux usées domestiques nécessite la détermination de la consommation moyenne journalière qui est égale au produit de la dotation (norme) moyenne journalière par le nombre de consommateurs.

IV.4.1.1-débit moyen journalier :

Le débit moyen journalier rejeté est calculé par la relation suivante :

$$Q_{\text{moy,j}}^{\text{dom}} = \frac{c_{rej} \times D \times N_{\text{hab}}}{86400}$$
 (IV. 1)

Avec:

 $\mathbf{Q_{moy,j}^{dom}}$: Débit moyen journalier rejeté des eaux usées domestiques en (L/s).

Nhah: Nombre d'habitants à l'horizon d'étude (habitant).

Crej: Coefficient de rejet pris égal à 80% de la quantité moyen d'eau potable consommée.

D: Dotation moyen journalière estimée à 150 l/j/hab.

Le terme $\frac{1}{86400}$ est pour la conversion de (L/j) en (L/s).

IV.4.1.2-Débit de pointe :

Comme la consommation, le rejet des eaux usées est aussi variable dans la journée, d'où on est appelé à déterminer le débit de pointe. Ce dernier est donné par la formule suivante :

$$Q_{pt}^{dom} = K_p \times Q_{moy,j}^{dom}$$
 (IV. 2)

Avec:

Q^{dom}_{pt}: Débit de pointe des eaux usées domestiques (L/s).

 \mathbf{K}_p : Coefficient de pointe ; calculé à partir du débit moyen de rejet.

Ou le coefficient de pointe peut être estimé par rapport au débit moyen de rejet par les deux relations suivant :

$$K_{\rm p} = 1.5 + \frac{2.5}{\sqrt{Q_{\rm moy,j}^{\rm dom}}}$$
 Si: $Q_{\rm moy,j}^{\rm dom} > 2.8 {\rm l/s}.$ (IV. 3)

$$K_p = 3$$
 Si: $Q_{moy,j}^{dom} \le 2.81/s$. (IV. 4)

Pour notre étude le coefficient de pointe Kp est calculé à partir du débit moyen journalier.

Les débits des eaux usées domestique à évacuer sont illustres dans le tableau suivant :

N ⁰ SB	Nhab	D (L/j/hab)	Qcon(l/s)	Crej	$Q_{moy,j}^{dom}(l/s)$	$\mathbf{K}_{\mathbf{p}}$	Q _{pt} ^{dom} (l/s)
1	847,80	150	1,472	0,8	1,178	3	3,534
2	665,68	150	1,156	0,8	0,925	3	2,775
3	117,75	150	0,204	0,8	0,163	3	0,489
4	23,86	150	0,041	0,8	0,033	3	0,099
5	65,03	150	0,113	0,8	0,090	3	0,270
6	362,98	150	0,630	0,8	0,504	3	1,512
7	267,40	150	0,464	0,8	0,371	3	1,113
8	131,88	150	0,229	0,8	0,1832	3	0,549
9	45,63	150	0,072	0,8	0,0576	3	0,173

Tableau IV-1 : Débits des eaux usées domestiques pour chaque sous bassin.

IV.4.2-Estimation des débits des eaux usées des établissements publiques :

L'évaluation de ces débits se fait de la même manière que les eaux domestiques, en se basant sur la consommation d'eau potable pour chaque type d'usager.

IV.4.2.1-Débit moyen journalier :

Le débit moyen journalier des eaux usées des services publiques est donné par la relation suivante :

$$Q_{\text{moy,j}}^{\text{\'eq}} = \frac{c_{rej} \times D_{\acute{e}q} \times N_u}{86400}$$
 (IV. 5)

Avec:

 $\mathbf{Q}_{\mathbf{moy,j}}^{\mathrm{\acute{e}q}}$: Débit moyen journalier des eaux usées publiques en (L/s).

 \mathbf{N}_{u} : Nombre des usagers (des unités), forment la catégorie de consommation.

 $\mathbf{D}_{\acute{e}q}$: Dotation moyen de la consommation journalière d'eau potable (L/j/unité) ; une donnée qui diffère d'un type d'usager à un autre.

IV.4.2.2-Débit de pointe :

On est appelé à déterminer le débit de pointe des eaux usées des équipements publiques. Il est donné par la formule suivante :

$$Q_{pt}^{\text{éq}} = K_p \times Q_{\text{moy,j}}^{\text{éq}}$$
 (IV. 6)

Avec:

 $\mathbf{Q}_{\mathbf{pt}}^{\mathbf{\acute{e}q}}$: Débit de pointe des eaux usées publiques (L/s).

Les débits des eaux usées des équipements publics à évacuer sont illustrés dans le tableau suivant :

3

3

3

0,222

0,011

0,027

0,038

 N^0

SB

1

2

 $Q_{pt}^{\acute{e}q}$ total Unité de Deq $Q_{moy,j}^{\acute{e}q}(l/s)$ $Q_{pt}^{\acute{e}q}$ (l/s) **Equipements** N_u Crej Kp (l/j/unité) mesure (1/s) $9,25.10^{-3}$ 100 0,8 **GLD** Personne 10 3 0,027 **Ecole** Elevé 350 10 0,032 0,096 0,8 3 0,568 Mosquée Fidèle 400 20 0,8 0,074 3 0,222

0,8

0,8

0,8

Tableau IV-2 : Débits des eaux usées des équipements publiques pour chaque sous bassin.

20

10

20

IV.4.3- Estimation des débits des eaux parasites :

Le débit des eaux parasites est calculé par la relation suivante :

400

40

50

$$Q_{ep} = A_i.D_p (IV.7)$$

0.074

 $3,703.10^{-3}$

 $9,25.10^{-3}$

Avec:

Stade

Clinique

médicale

Poste

Qep: Débit Débits des eaux parasites (l/s).

 m^2

Malade

Employé

D_p : Quantité d'infiltrations après une chute de pluie (l/s/ha).

Ai: Surface de chaque sous bassin (ha).

Tableau IV-3 : Débits des eaux parasites.

	ubicau I v - 5 : Debit	•	
N ⁰ SB	A _i (ha)	D _p (l/s/ha)	Q _{ep} (l/s)
1	10,8	0,15	1,62
2	10,6	0,15	1,59
3	2,25	0,15	0,337
4	0,76	0,15	0,114
5	1,09	0,15	0,164
6	5,78	0,15	0,867
7	5,11	0,15	0,766
8	2,8	0,15	0,42
9	1,09	0,15	0,163

IV.4.4-Débits totaux des eaux usées à évacuer :

Les débits totaux des eaux usées à évacuer sont illustres dans le tableau suivant :

 $Q_{pt}^{\acute{e}q}$ (l/s) $Q_{pt}^{dom}(l/s)$ Q_teu (l/s) $N^0 SB$ A_i (ha) $Q_{ep}(l/s)$ 1 10,8 3,534 0,568 1,62 5,722 2 10.6 0.038 1.59 2.775 4,403 3 / 2,25 0,489 0,337 0,826 4 0,76 0,099 / 0,114 0,213 / 5 1,09 0,270 0,164 0,434 / 6 5,78 0,867 2,379 1,512 7 5,11 1,113 / 0,766 1,879 / 8 2,8 0,549 0,42 0,969 9 1,09 0,173 0,163 0,336

Tableau IV-4 : Débits totaux des eaux usées à évacuer pour chaque sous bassin.

Avec:

Q^{eu}: Débit d'eau total.

IV.5-Les eaux pluviales :

L'eau pluviale est le nom que l'on donne à l'eau de pluie après qu'elle a touché le sol, une surface construite ou naturelle susceptible de l'intercepter ou de la récupérer (toiture, terrasse, ect).

L'eau de ruissellement, provenant de la pluie de la fonte des neiges ou d'autres sources, s'écoule à la surface du sol et constitue un composant majeur cycle de l'eau.

Dans les premières minutes d'une chute de pluie, la teneur en matières organiques est plus importante surtout pour des agglomérations à dominance industrielle ; du fait du balayage des surfaces par les eaux de ruissellement et de lavage.

Ces eaux aussi transportent du sable qui peut se déposer dans la canalisation à la moindre chute de vitesse d'écoulement.

IV.6-Estimation des débits des eaux pluviales :

Le calcul de base pour le dimensionnement d'un réseau pluvial est la pluie la plus forte susceptible de survenir dans une période de 10 ans (débit décennal).

Lors d'une chute de pluie, seule la fraction d'eau ruisselée intéresse le dimensionnement d'un ouvrage appelé à évacuer dans les conditions suffisantes le débit d'eau de cette fraction du bassin considéré.

En fonction de l'étendue du bassin et de son urbanisation, on considère différentes méthodes pour l'évaluation du débit pluvial, dont nous citons :

- La méthode rationnelle.
- **♣** La méthode superficielle.

IV.6.1-Choix de la méthode :

En tenant compte des caractéristiques de notre agglomération du point de vu surface, pente, et coefficient de ruissellement la méthode rationnelle est la plus approprie à ce cas.

IV.6.2-la méthode rationnelle :

C'est une méthode qui consiste à estimer le débit à partir d'un découpage du bassin versant en secteurs limités par les lignes isochrones, cette méthode fut découverte en 1889, mais ce n'est qu'en 1906 qu'elle a été généralisé, elle est connue aussi par la méthode de LIOYD DAVIS, elle consiste à évaluer, à mesure de l'avancement du calcul, les temps de concentration aux divers points caractéristiques du parcours d'un réseau. Elle est utilisée pour des surfaces limitées (généralement inférieure à dix (10) hectares). Le résultat est meilleur pour des aires encore plus faibles, du fait de la bonne estimation du coefficient de ruissellement.

Aussi elle consiste à estimer les débits pluviaux suite à une averse d'intensité moyenne « I » supposée constante durant la chute de pluie sur des surfaces d'influence de superficie « A », caractérisée par un coefficient de ruissellement « C_r ».

La méthode rationnelle s'exprime par la formule suivante :

$$Q_p = C_r. I. A (IV. 8)$$

Cependant, on tient compte que l'intensité n'est pas uniforme (ça veut dire que l'averse a un épicentre et se diffuse dans l'espace). Pour cela, il convient d'appliquer un coefficient « α » de répartition de la pluie.

La méthode rationnelle s'exprime par la formule suivante :

$$Q_n = \alpha. C_r. I. A \tag{IV. 9}$$

Avec:

Q_p: Débit à évacuer (1/s).

C_r : Coefficient de ruissellement pondère.

I : Intensité moyenne de précipitation (l/s/ha).

A: Surface (ha).

 α : Coefficient correcteur de l'intensité tenant compte de la distribution de la pluie dans l'espace, dont la détermination est en fonction de la forme du bassin.

Le débit déterminée est proportionnel à l'intensité moyenne maximale, au coefficient de ruissellement et l'aire l'aboyée.

IV.6.2.1-Les hypothèses de la méthode rationnelle :

Trois hypothèses qui fondent la méthode rationnelle :

- ✓ Le débit de pointe Q_p est observé à l'exutoire seulement si la durée de l'averse est supérieure au temps de la concentration de la surface totale.
- \checkmark Le débit Q_p est proportionnel à l'intensité moyenne maximale sur une durée égale au temps t_c de la surface totale.
- ✓ L'intensité I et le débit Q qui en résulte ont le même période de retour T ceci suppose donc que le coefficient de ruissellement est constant.

IV.6.2.2-Validité de la méthode rationnelle :

Cette méthode est utilisée pour des surfaces limitées (généralement inférieures à 10 ha) le résultat est encore plus fiable du fait de la bonne estimation du coefficient de ruissellement, ainsi elle est applicable pour des zones ou le temps de concentration ne dépasse pas 30 minutes. Par contre, elle n'est pas susceptible d'être utilisée que pour les zones étendues, car les calculs deviendraient fastidieux.

IV.6.2.3-Le temps de concentration :

C'est une caractéristique d'une surface à draines définie comme étant le temps mis par la pluie tombée au point le plus éloigne, en durée d'écoulement, pour atteindre l'entrée du collecteur qu'doit évacuer l'apport de la surface considère.

Le temps de concentration t_c se compose :

♣ Du temps t₁ en minutes mis par l'eau pour s'écouler dans les canalisations de longueur « L » avec une vitesse « v ».

$$t_1 = \frac{L}{60 \times v}$$
 (IV. 10)

Avec:

t₁: Temps mis par l'eau pour s'écouler dans les canalisations (min).

L: Longueur de canalisation (m).

v: Vitesse d'écoulement (m/s).

Le terme $\frac{1}{60}$ pour la conversion de secondes (s) en minutes (min).

- ♣ Du temps t₂ de ruissellement mis par l'eau pour atteindre le premier ouvrage d'engouffrement ce temps varie 2 à 20 min.
- ♣ Du temps t₃ de ruissèlement dans une surface de son I en % ne comportant pas de canalisation autrement c'est le parcourt superficiel de longueur L_s en km.

$$t_3 = \frac{L_s}{11 \times \sqrt{I}} \tag{IV. 11}$$

Avec:

t₃: Temps de ruissellement superficiel dans un bassin ne comportant pas de canalisations (min).

L_s: Parcours superficiel de l'eau dans le bassin (km).

I: Pente moyenne du parcours (%).

- Donc trois (03) cas peuvent être envisagés :
- Le bassin ne comporte pas de canalisation : $t_c = t_3$.
- **↓** Le bassin comporte un parcours superficiel puis une canalisation : $t_c = t_1 + t_3$.
- **↓** Le bassin est urbanisé et comporte une canalisation : $t_c = t_1 + t_2$.
- ➤ Dans le cas général, pour les zones peu allongées, le temps de concentration « t_c (min) » est donné par la relation suivante :

$$t_{c} = 3.98 \times \left[\frac{L}{\sqrt{I}}\right]^{0.77}$$
 (IV. 12)

Avec:

L : Cheminement hydraulique le plus long (km).

I : Pente moyenne du chemin parcouru (%).

IV.6.2.4-Le temps de réponse :

Le temps de réponse « tr » d'un surface ce temps le décalage entre le centre de gravité du hyetogramme entrant (représentant la pluie nette a ruisselle) et celui de l'hydrogramme sortant (débit à l'exutoire).

Ce temps mesure le décalage entre le centre de gravité du hyetrogramme entrant (représentant la pluie nette à ruisseler) et relui l'hyetrogramme sortant (représentant le débit à l'exutoire).

- ➤ Il ne pas confondre la notion de temps de réponse et le temps de concentration, ces deux notion sont diffèrent à tracer l'hypothèse :
- Le hyetogramme entrant est rectangulaire. Il correspond à celui pris en compte dans l'hypothèse de la formule rationnelle : l'intensité est prise constante et égale à l'intensité moyenne maximale sur le temps de concentration.
- La surface active doit linéairement en fonction du temps jusqu' à la surface totale dans ces conditions, l'hydrogramme obtenu à l'exutoire est un triangle isocèle et l'on montre aisément que le temps de réponse est égale dans ce cas à la matie du temps de concentration.

IV.6.2.5-Coefficient réducteur de l'intensité :

C'est un coefficient déterminé expérimentalement qui tient compte de la répartition irrégulière des pluies courtes de forte intensité. La répartition d'une pluie au niveau d'un bassin est irrégulière surtout pour les pluies de courte durée et de forte intensité. Pour en tenir compte, on doit ajouter un paramètre de correction pour chaque surface élémentaire ; c'est un coefficient réducteur de l'intensité : $\alpha \le 1$

Ce coefficient peut être déterminé d'après une loi de répartition de pluie :

➤ Pour des bassins longs (rectangles étroits....):

$$\alpha = 1 - 0.006 * \sqrt{\frac{d}{2}}$$
 (IV. 13)

➤ Pour des bassins ramasses (carres, cercles....):

$$\alpha = 1 - 0.005 * \sqrt{\frac{d}{2}}$$
 (IV. 14)

Avec:

d: Longueur du milieu de l'aire élémentaire (m).

IV.6.2.6-Critique de la méthode rationnelle :

- La décomposition du bassin en aires élémentaires est toujours assez grossièrement approchée en raison de la difficulté de déterminer avec une précision suffisante la durée du ruissèlement entre ces diverses zones et l'exutoire.
- On suppose généralement que le coefficient de ruissèlement « Cr » est constant sur tout le bassin et pendant toute la durée de l'averse ce qui est souvent loin de la réalité.
- La critique principale que l'on peut faire à cette méthode est qu'elle ne tient pas compte du stockage de l'eau de ruissellement sur le bassin.
- Il a été montré qu'en règle générale, cette méthode sous-estime les débits de pointes observés, probablement parce qu'on sous-estime le coefficient de ruissellement en négligent le rôle des surfaces non revêtues et sans végétation.

On appliquant la méthode rationnelle :

Tableau IV-5 : Estimation des débits pluvieux pour chaque sous bassin.

N ⁰ SB	Surface (ha)	$\mathbf{C_r}$	I (l/s/ha)	A	Q _p (l/s)
1	10,80	0,75	150	0,75	911,25
2	10,60	0,60	150	0,91	1085,18
3	2,25	0,50	150	1	168,75
4	0,76	0,30	150	1	34,2
5	1,09	0,57	150	1	93,20
6	5,78	0,60	150	1	520,2
7	5,11	0,50	150	1	383,25
8	2,80	0,45	150	1	189
9	1,09	0,40	150	1	228,9

IV.7-Calcul des débits totaux pour chaque sous bassin :

Tableau IV-6 : Calcul des débits totaux pour chaque sous bassin.

N ⁰ SB	Surface (ha)	Q ^{eu} _t (l/s)	Q _p (l /s)	Qi total (l/s)
1	10,80	5,722	911,25	917
2	10,60	4,403	1085,18	1089,58
3	2,25	0,826	168,75	169,58
4	0,76	0,213	34,2	34,413
5	1,09	0,434	93,20	93,63
6	5,78	2,379	520,2	522,58
7	5,11	1,879	383,25	385,13
8	2,80	0,969	189	189,97
9	1,09	0,336	228,9	229,24

Avec:

Q_i: Débits totaux de chaque sous bassin.

IV.8-Conclusion:

Dans ce chapitre nous avons calculé les débits de rejet de cette agglomération de différentes natures (domestique, d'équipement et pluviale).

D'après les résultats obtenus dans cette phase, on peut dire que zone d'étude n'est pas une zone industrielle et l'équipement public est très peu.

D'après les valeurs des débits obtenues, on constate que les débits d'eaux usées ne représentent qu'une faible fraction des débits pluviaux. Le choix du système d'assainissement doit être judicieux afin d'assurer l'auto curage dans le cas de débits minimum.

CHAPITRE-V-DIMENSIONNEMENT DU RÉSEAU D'ASSAINISSEMENT ET LES OUVRAGE ANNEXES

V.1-Introduction:

Dans le cadre de l'assainissement, le dimensionnement du réseau d'assainissement du type unitaire doit dans la mesure du possible permettre l'entraînement des sables par les débits pluviaux pour empêcher leur décantation et éviter les dépôts, sans provoquer l'érosion de la paroi de la conduite.

Le calcul hydraulique du réseau d'assainissement c'est la phase qui vient après avoir évaluer les différents débits à évacuer dans le réseau, ce calcul hydraulique doit respecter certaines normes d'écoulement et conditions d'implantation des réseaux d'assainissement. L'implantation en profondeur se fait d'une manière à satisfaire les conditions de résistance mécanique aux charges extérieures, tout en définissant le meilleur tracé possible.

Dans ce chapitre, nous procédons au dimensionnement du réseau d'assainissement du type unitaire et sa conception, tout en définissant les ouvrages annexes qui constituent le système d'assainissement adopté (bouches d'égout, regards, déversoirs d'orage.....).

V.2-Conditions d'implantation des réseaux d'assainissement :

La profondeur des ouvrages doit permettre le raccordement des immeubles riverains au moyen de branchements. En général, le drainage des caves et sous-sols est exclus, dans la mesure où cette position entraînerait un approfondissement excessif du réseau, les effluents éventuels en provenance devraient être relèves vers ce dernier.

Par ailleurs, cette profondeur doit être faite de façon à ce que le recouvrement soit compatible avec le type d'ouvrage envisagé et la nature des charges à supporter.

V.3-Condition d'écoulement et de dimensionnement :

L'écoulement en assainissement est gravitaire dans la mesure du possible, donc il est tributaire de la topographie du terrain naturel, la vitesse de cet écoulement ne doit pas être érosive, au même temps il doit assurer l'auto-curage.

Pour l'auto-curage if faut assurer :

- une vitesse minimale de 0,3 m/s pour le (1/100) du débit de pleine section avec un diamètre minimal de 300 mm;
- ♣ Une vitesse de 0,6 m/s pour le (1/10) de ce même débit.

Si les conditions d'auto-curage ne sont pas satisfaites il faut prévoir soit la mise en place de chasses automatique, soit l'utilisation périodique des engins du curage. A l'opposé des considérations relatives à l'auto curage, le souci de prévenir la dégradation des joints sur les canalisations circulaires et leur revêtement intérieur, nous a conduits à poser des limites supérieures aux vitesses admissibles. Donc, il est déconseillé de dépasser des vitesses de l'ordre de (4 à 5) m/s.

Si la pente du terrain est trop forte, il y aura lieu de ménager du décrochement dans le profil en long des ouvrages par l'introduction des regards de chute.

V.4-Conception de réseau d'assainissement :

La conception d'un réseau d'assainissement est la concrétisation de tous les éléments constituant les branches du réseau sur un schéma :

- Les collecteurs : doivent pouvoir transporter en tout temps la totalité des débits apportés par les conduites qu'ils desservent. Ils sont définis par leurs :
- **4** Emplacements.
- Profondeurs.
- **↓** Dimensions (diamètres intérieur et extérieur, ...).
- Pentes.
- ♣ Leur joints et confection.
- Les regards : de différents types (de visite, de jonction, ...). Ils sont également définis par leurs :
- **♣** Emplacements.
- Profondeurs.
- Côtes.

La conception d'un réseau d'assainissement de type unitaire doit répondre à certaines normes d'écoulement :

- ✓ L'évacuation rapide des matières fécales hors de l'habitation.
- ✓ Le transport des eaux usées dans des conditions d'hygiène satisfaisantes.
- ✓ Les ouvrages d'évacuation (collecteurs et regards), doivent respecter certaines normes d'écoulement. L'implantation en profondeur se fait d'une manière à satisfaire aux conditions de résistance mécanique due aux charges extérieures et avec un meilleur choix du tracé des collecteurs.
- ✓ Lorsqu'il s'agit de réseau d'évacuation des eaux pluviales et des eaux usées dans une même conduite, les conditions d'auto curage doivent être satisfaites.

V.5-Dimensionnement du réseau d'assainissement :

Connaissant en chaque point, les débits à évacuer et la pente du tracé, le choix des sections se déduira de la formule d'écoulement adoptée. Il convient toutefois de remarquer que, sauf pour les très grands ouvrages, les dimensions des canalisations varient d'une manière discontinue compte tenu des diamètres courants de fabrication et qu'il en résultera le plus souvent, de ce fait, une capacité supplémentaire d'écoulement.

V.5.1-Débit:

Apres avoir évalué le débit total (voir chapitre IV) pour chaque surface élémentaire, on le repartira proportionnellement au développement du réseau pour chaque conduite.

V.5.1.1-Calcul du débit pour chaque surface élémentaire :

Le débit unitaire est donné par la formule suivant :

$$Q_{moy\,un} = \frac{Q_t}{\sum L} \tag{V.1}$$

Avec:

Q_{moy un}: Débit moyen unitaire en (l/s/ml).

 \mathbf{Q}_t : Débit total rejet par chaque sous bassin en (l/s).

L : Longueurs de tronçon de chaque sous bassin en (m).

V.5.1.2-Calcul du débit pour chaque tronçon :

Le débit de route est donné par la formule suivante :

$$Q_{mov t} = Q_{mov un} * L (V.2)$$

Avec:

 $\mathbf{Q}_{\text{moy t}}$: Débit moyen de chaque tronçon en (l/s).

Q_{moy un}: Débit moyen unitaire (l/s/m).

L: Longueur du tronçon en (m).

V.5.2-Formules d'écoulement :

Il y a plusieurs formules qui ont été développées pour exprimer l'écoulement :

a)Formule de CHEZY:

$$V = C\sqrt{R_h.I} \tag{V.3}$$

Avec:

I: Pente du collecteur (m/m).

R_h: Rayon hydraulique (m).

C: Coefficient de CHEZY, il dépond des paramètres hydrauliques et géométriques de l'écoulement. Le coefficient « C »est donné à son tour par la formule de BAZIN :

$$C = \frac{87}{1 + \frac{\gamma}{\sqrt{R_h}}} \tag{V.4}$$

 γ : Coefficient de BAZIN qui varie suivant les matériaux employés et la nature des eaux transportée. Nous avons :

 $\gamma = 0.06$ pour les collecteurs d'eaux pluviales.

 $\gamma = 0.16$ pour les collecteurs d'eaux usées.

b) Formule de MANNIG STRICKLER:

$$V = K_s \times R_h^{\frac{2}{3}} \times \sqrt{I}$$
 (V.5)

Avec:

Ks: Coefficient de rugosité de Manning-Strickler, sa valeur dépend du type de collecteur utilisé, son matériau et son état.

$$K_s = 26 \left[\frac{1}{d_{65}} \right]^{\frac{1}{6}}$$
 (V. 6)

Avec:

d₆₅: est le diamètre en mètre correspondant à 65% passant en poids.

V.5.3-Mode de calcul:

Avant de procéder au calcul hydraulique du réseau d'assainissement gravitaire, on considère les l'hypothèse suivantes :

- ✓ L'écoulement est uniforme à surface libre, le gradient hydraulique de perte de charge est égal à la pente du radier.
- ✓ La perte de charge engendrée est une énergie potentielle égale à la différence des côtes du plan d'eau en amont et en aval.
- ✓ Un régime transitoire ou variable c'est le cas réel ou les apports sont fonction du temps.

Avant de procéder au calcul hydraulique du réseau on définit les paramètres suivants :

- ♣ Périmètre mouillé (P) : c'est la longueur du périmètre de la conduite qui est au contact de l'eau (m).
- ♣ Section mouillée (S) : c'est la section transversale de la conduite occupée par l'eau (m²).
- ♣ Rayon hydraulique (Rh): c'est le rapport entre la section mouillée et le périmètre mouillé.
 (m).
- ♣ Vitesse moyenne (v) : c'est le rapport entre le débit volumique (m³/s) et la section (m²).
- Méthodologie de dimensionnement :

1/Détermination du débit :

L'écoulement dans les collecteurs est un écoulement à surface libre dont le débit est donné par la formule de la continuité :

$$Q = V * S \tag{V.7}$$

Avec:

 \mathbf{Q} : Débit (m³/s).

S: Section mouillée (m²).

V: Vitesse d'écoulement (m/s) (cette vitesse calcul par diffèrent expression).

Pour le dimensionnement de notre réseau, on utilise la formule qui nous donne la vitesse moyenne. Les collecteurs sont calculés suivant une formule d'écoulement résultant de celle de CHEZY, où la vitesse d'écoulement est calculée par l'expression suivante :

$$V = C\sqrt{R_h.I} \tag{V.8}$$

Avec:

R_h: Rayon hydraulique (m).

$$R_h = \frac{S}{P} \tag{V.9}$$

S: La surface de la section transversale mouillée de la conduite (m²).

P: Le périmètre mouillé.

I : Pente motrice de l'écoulement (m/m).

Le coefficient de CHEZY « C » est exprimé comme suit :

Formule de Manning : Manning propose quant à lui une autre formule pour lier le coefficient de la rugosité n au rayon hydraulique, de façon plus simple que la formule de Bazin.

$$C = \frac{1}{n} * R^{\frac{1}{6}}$$
 (V. 10)

Tel que:

n : étant un coefficient d'écoulement qui varie suivant les matériaux employés et la nature des eaux transportées. Ce coefficient d'écoulement des eaux d'égouts différent évidemment de celui utilisé pour les eaux potables.

Tableau V-1 : Coefficient de rugosité de Manning et Strickler pour divers types de matériaux.

Matériaux	n	$\mathbf{K}_{\mathbf{s}}$
-Fosse a parois en herbe.	0,003	33
-Fosse a parois en terre.	0,025	40
-Canal en maçonnerie.	0,016	63
-Conduite en béton.	0,013	75
-Conduite en fibre-ciment.	0,012	83
-Conduite en fonte ou en	0,011	90
grès.		
-Conduite en PVC.	0,011	90

Pour notre réseau d'assainissement, Les collecteurs utilisés sont en PVC (φ315, 400, 500 mm) et en CAO (φ 500, 600,800).

❖ La vitesse d'écoulement se calcule par l'expression suivant :

$$V = K_s \times R_h^{\frac{2}{3}} \times \sqrt{I}$$
 (V. 11)

❖ Le débit capable du collecteur se calcule par l'expression suivant :

$$Q = K_S \times R_h^{\frac{2}{3}} \times \sqrt{I} \times S \tag{V.12}$$

2/Détermination du diamètre :

Avec la pente et le débit on déduit le diamètre calcule est exprimé par :

$$D_{cal} = \frac{3.2 \times n \times Q}{\sqrt{I}}$$
 (V. 13)

Avec:

D_{cal}: Diamètre de la conduite en (m).

Q: Débit de chaque tronçon du collecteur en (m³/s).

I: Pente de chaque tronçon en (m/m).

n : Coefficient de rugosité de Manning dépend de la nature de matériaux employés d'après le tableau (V-1) de valeur de n :

n = 0.011 (conduite en PVC).

n = 0.013 (conduite en béton).

3/Fixer le diamètre normalisé de la conduite (Dnor) :

Apres calcul de diamètre on doit le normaliser :

ightharpoonup Si : **Dcal** =< 300 alors **Dnor** = 300 ;

ightharpoonup Si: 300 < **Dcal** =< 400 alors **Dnor** = 400;

ightharpoonup Si: 400 < Dcal = < 500 alors Dnor = 500 ;

- ightharpoonup Si: 500 < **Dcal**=< 600 alors **Dnor** = 600;
- ightharpoonup Si: 600 < Dcal = < 800 alors Dnor = 800;
- ightharpoonup Si: 800 < **Dcal**=< 1000 alors **Dnor** = 1000;
- ightharpoonup Si: 1000 < **Dcal**=< 1200 alors **Dnor** = 1200;
- ightharpoonup Si: 1200 < **Dcal**=< 1500 alors **Dnor** = 1500;
- ightharpoonup Si: 1500 < **Dcal**=< 1800 alors **Dnor** = 1800;
- ightharpoonup Si: 1800 < **Dcal**=< 2000 alors **Dnor** = 2000;
- > Si : **Dcal** > 2000 alors n doit doubler les conduites.

4/Détermination de la vitesse à pleine section :

Le calcul de vitesse à pleine section se fait en fonction du diamètre normalisé (D_{nor}), la pente (I) de chaque tronçon et la nature du matériau de conduite (n) en utilisant la formule suivante :

$$V_{ps} = \frac{1}{n.(\frac{D_{nor}}{4})^{\frac{2}{5}}.\sqrt{I}}$$
 (V. 14)

5/Détermination du débit à plein section :

Apres le calcul de vitesse pleine section, il nous reste seulement le calcul de débit plein section, en utilisant la formule suivante :

$$Q_{ps} = \frac{\pi D^2}{4} . V_{ps} {(V.15)}$$

Alors, on peut déterminer la vitesse d'écoulement et la hauteur de remplissage dans la canalisation, et ça à partir de paramètres hydraulique :

> Les paramètres hydrauliques :

a. Rapport des débits :
$$R_Q = \frac{Q_t}{Q_{ps}}$$
 (V. 16)

b. Rapport des vitesses :
$$R_V = \frac{V}{V_{ps}}$$
 (V. 17)

c. Rapport des hauteurs :
$$R_H = \frac{H}{H_{ns}}$$
 (V. 18)

Avec:

 \mathbf{Q}_t : Débit véhiculé par la conduite circulaire. (m3/s).

V : Vitesse d'écoulement de l'eau m/s.

H: Hauteur de remplissage dans la conduite (m).

Q_{ps}: Débit de pleine section (m3/s).

 V_{ps} : Vitesse à pleine section (m/s).

D : Diamètre normalisé de la conduite (mm).

5/Déterminer les vitesses réelles :

$$V = R_V * V_{ps} \tag{V.19}$$

6/Déterminer la hauteur de remplissage :

$$H = R_H * D \tag{V.20}$$

Le dimensionnement de tous les collecteurs et la détermination de leurs paramètres hydrauliques sont calculé à l'aide de logiciel COVADIS et illustrées dans (Annexe 6).

V.6-Les ouvrages annexes :

V.6.1-Généralité:

Un réseau d'assainissement est un ensemble constitué d'organes dont chacun est le complémentaire des autres en fonction du rôle qu'il joue. En matière d'assainissement, les éléments constitutifs d'un réseau d'égout devront assurer :

- Une évacuation correcte et rapide sans stagnation des eaux de pluie ;
- Le transport des eaux usées susceptibles de provoquer une pétrification, (odeur) dans les conditions d'hygiène favorable.

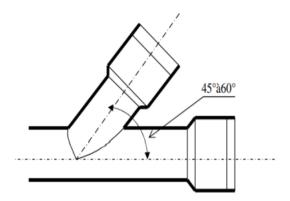
Pour assurer le bon fonctionnement de notre réseau, il est nécessairement utile de dimensionner certains ouvrages indispensables.

Les ouvrages annexes ont une importance considérable dans l'exploitation rationnelle des réseaux d'égout. Ils sont nombreux et obéissent à une hiérarchie de fonction très diversifiée : fonction de recette des effluents, de fenêtres ouvertes sur le réseau pour en faciliter l'entretien, du système en raison de leur rôle économique en agissant sur les surdimensionnements et en permettant l'optimisation des coûts.

Les ouvrages annexes sont considérés selon deux groupes :

- Les ouvrages spéciaux.

V.6.2-Les ouvrages normaux :


Les ouvrages normaux sont les ouvrages courants indispensables en amont ou sur le cours des réseaux. Ils assurent généralement la fonction de recette des effluents ou d'accès au réseau. On les divise en trois types des ouvrages :

- Les branchements.
- Les ouvrages de surface et recueillis.
- ↓ Les ouvrages d'accès au réseau (regards).

V.6.2.1-Les branchements :

Leur rôle est de collecter les eaux usées et les eaux pluviales d'immeubles. Un branchement comprend trois parties essentielles :

- ✓ Un regard de façade qui doit être disposé en bordure de la voie publique et au plus près de la façade de la propriété raccordée pour permettre un accès facile aux personnels chargés de l'exploitation et du contrôle du bon fonctionnement.
- ✓ Des canalisations de branchement qui sont de préférence raccordées suivant une oblique inclinée à 45° ou. 60° par rapport à l'axe général du réseau public.
- ✓ Les dispositifs de raccordement de la canalisation de branchement sont liés à la nature et aux dimensions du réseau public.
- ✓ Le tracé de la conduite de branchement de service doit avoir une pente d'environ 3% pour favoriser un écoulement avec rinçage interne de la conduite.

FigureV-1: Exemple d'un branchement de service simple.

V.6.2.2-Les ouvrages de surface et recueillis :

Ces ouvrages sont destinés en général, à la collecte des eaux pluviales, nous distinguos :

- Les ouvrages de collecte et de transport : les fossés, les caniveaux ;
- Les ouvrages de collecte proprement dite, en tête et sur les cours du réseau principal : les bouches d'égout.

Les fossés :

Les fossés sont destinés au transport des eaux provenant des chaussées Ils sont soumis à un entretien périodique.

❖ Les caniveaux :

Les caniveaux sont destinés à la recueillie des eaux pluviales ruisselant suivant le profil transversal de la chaussée et des trottoirs et au transport de ces eaux jusqu'aux bouches d'égout.

Les bouches d'égout :

Les bouches d'égout sont destinées à collecter les eaux en surface (pluviale et lavage des chaussées) Elles sont généralement disposées au point bas des caniveaux, soit sous le trottoir. La distance entre deux bouches d'égout est en moyenne de 50m, la section entrée est en fonction de l'écartement entre les deux bouches afin d'absorber le flot d'orage venant de l'amont.

On peut classer les bouches d'égout selon le recueille des eaux, en cinq types :

> Les bouches d'égout avec grille et couronnement métallique :

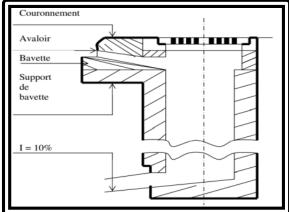
Ce type de bouche d'égout, permet l'entrée des eaux dans le réseau, soit au moyen d'un siphon, soit directement par sur verse au-dessus du seuil du puisard de décantation.

Les bouches d'égout avec bavette en pierre ou en béton et couronnement métallique :

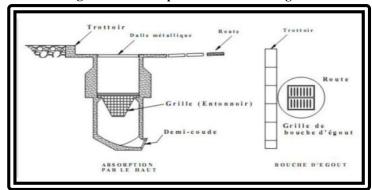
Afin d'évacuer l'eau, un entonnoir est prolongé par une jupe dont la base doit plonger au moins à 0,05 m au-dessous du niveau permanent du puisard de décantation.

Les bouches d'égout avec bavette et couronnement en pierres ou en béton :

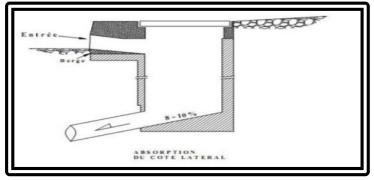
Ce type est une variante applicable aux deux types précédents.


> Les bouches d'égout à avaloir métallique grille et couronnement combiné :

Elles sont comme les précédentes, la seule particularité repose dans le fait que le dispositif métallique supérieur s'emboîte directement sur l'arase supérieure de la cheminée.

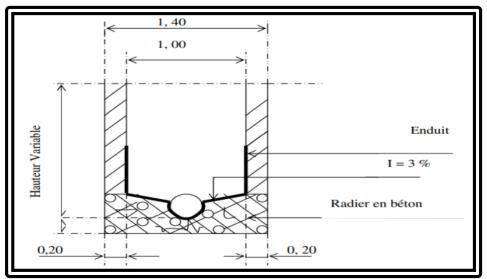

La bouche d'égout à grille seule :

Les bouches d'égout à grille seule, s'emboîtent directement sur l'arase supérieure de la cheminée.

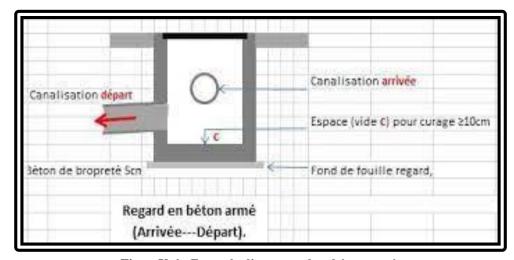


FigureV-2: Exemple d'une bouche d'égout.

FigureV-3: Exemple d'une bouche d'égout (absorption par le haut).



FigureV-4: Exemple d'une bouche d'égout (absorption par le cote latéral).


V.6.2.3-Les ouvrages d'accès au réseau (regards) :

Les regards sont en fait des fenêtres par lesquelles le personnel d'entretien pénètre pour assurer le service et la surveillance du réseau.

Leur rôle est de permettre l'accès aux ouvrages visitable, pour le débourbage, le nettoyage des canaux, et l'aération des canaux.

FigureV-5: Exemple d'un regard simple.

FigureV-6: Exemple d'un regard en béton armé.

Dispositions :

La fonction doit respecter la forme du canal. L'emplacement et la distance entre deux regards varient avec la topographie du site et la nature des ouvrages.

Un regard doit être installe sur les canalisations :

- A tous les points de jonction
- Au changement de direction
- ➤ Au changement de pente de canaux
- Aux points de chute

➤ Pour les canalisations plus petites et non praticables.

Fonctions:

Dans le système d'assainissement le regard a quatre fonctions principales, il permet de :

- ✓ Réaliser des coudes de 90 degrés (au niveau de la canalisation).
- ✓ Insérer des accessoires de nettoyage à tout moment.
- ✓ Contrôler toutes les parties composantes du dispositif d'assainissement.
- ✓ Surveiller et entretenir l'ensemble du système d'assainissement.

Types de regard :

Les types de regards varient en fonction de l'encombrement et de la pente du terrain, ainsi que du système d'évacuation, donc on distingue :

1) Regards de jonction :

Ces regards forment le point d'unification (nœud) de deux collecteurs de même diamètre ou non. Ils sont construits de telle manière à avoir :

- Une bonne aération des collecteurs en jonction (regards).
- Les dénivelées entre les radiers des collecteurs.
- Une absence de reflux d'eau par temps sec.
- Des niveaux d'eau dans les collecteurs en jonction à la même hauteur.

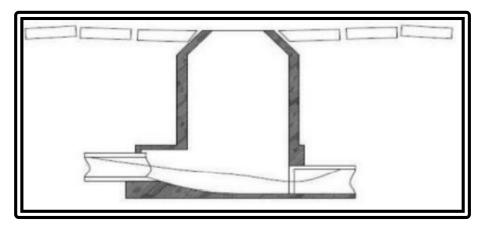
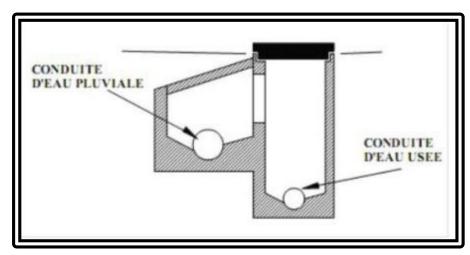
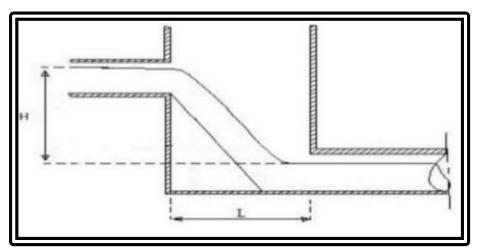



Figure V-7: Exemple d'un regard de jonction.

2) Regards doubles:

Dans certaines agglomérations exigeant un système séparatif et plus précisément dans les quartiers ou le trace est commun pour les deux canalisations véhiculant les eaux des différentes natures (eau pluviale dans une canalisation, eaux usées domestiques et industrielles dans une autre).

Il serait plus avantageux de prévoir un regard commun aux deux canalisations. On devra prendre la précaution à ce que la conduite d'eau pluviale doit être à un niveau supérieur à celui delà conduite des eaux usées. Ceci facilitera le passage des branchements au niveau de la deuxième conduite et évitera la contamination .il est préférable que cet ouvrage soit visitable.

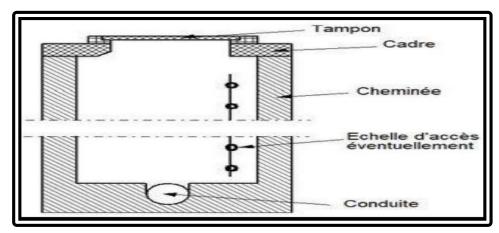

FigureV-8: Exemple d'un regard double.

3) Regard de chute:

C'est l'ouvrage le plus répondu en assainissement, il permet d'obtenir une dissipation d'énergie en partie localisée, il est très utilisé dans le cas où le terrain d'une agglomération est trop accidenté. Ils sont généralement utilisés pour la chute verticale et la chute toboggan.

Ils sont généralement utilisés pour deux différents types de chutes :

- La chute verticale profonde : Utilisée pour un diamètre faible et un débit important ; leur but et de réduire la vitesse.
- La chute toboggan : Cette chute est utilisée pour des diamètres assez importants, elle assure la continuité d'écoulement et permet d'éviter le remous.


FigureV-9: Exemple d'un regard de chute.

4) Regards de visite:

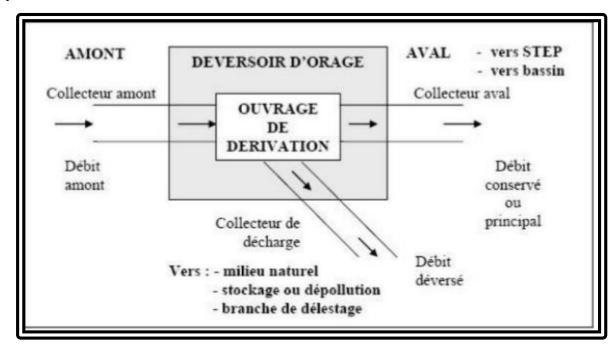
Les regards de visite à construire sur canalisations pourront être, soit construits à partir d'éléments préfabriqués, soit coulés sur place.

Les éléments de regard préfabriqués ainsi que les regards de visite coulés en place. Ils seront en béton armé pour toutes les profondeurs ; la maçonnerie de blocs est interdite. L'épaisseur minimale des parois est de 15 cm.

Ces regards sont destinés à l'entretien courant et le curage régulier des canalisations tout en assurant une bonne ventilation de ces dernières ; l'intervalle d'espacement est de 35 ml à 80 ml.

FigureV-10: Exemple d'un regard de visite.

Constatation:


Dans notre projet, nous utilisons nécessairement des regards simples de visite également pour le raccordement des collecteurs de même ou différents diamètres.

V.6.3-Les ouvrages spéciaux :

V.6.3.1-Les déversoirs d'orage :

En hydraulique urbaine, un déversoir est un dispositif dont la fonction réelle est d'évacuer par les voies les plus directes, les pointes exceptionnelles des débits d'orage vers le milieu récepteur. Par conséquent, un déversoir est un ouvrage destiné à décharger le réseau d'une certaine quantité d'eaux pluviales de manière à réagir sur l'économie d'un projet en réduction du réseau aval.

Les déversoirs sont appelés à jouer un rôle essentiel notamment dans la conception des réseaux en système unitaire.

FigureV-11 : Schéma type du déversoir d'orage.

a- Composition des organes d'un déversoir d'orage :

Dans tous les cas de figure, le déversoir d'orage comprend :

- Un ouvrage de dérivation.
- ♣ Un canal ou collecteur de décharge conduisant l'eau déversée à un émissaire naturel (oueds), y compris l'ouvrage de rejet lui-même au droit de l'émissaire.

Le déversoir d'orage est raccordé :

- À l'amont : au collecteur d'arrivée amenant les eaux unitaires.
- À l'aval : au collecteur de départ qui transporte vers la station d'épuration les eaux à épurer.

L'ouvrage de dérivation peut être constitué de tout autre organe qu'un déversoir au sens hydraulique du terme.

Le collecteur de décharge peut être très court (cas d'égouts longeant l'exutoire). Un ouvrage ou un système de stockage (bassin d'orage) peut être adjoint à l'ouvrage de dérivation pour stocker temporairement une partie du flot (premier flot d'orage notamment).

b- Emplacement des déversoirs d'orage :

Avant l'emplacement des déversoirs d'orage il faut voir :

- Le milieu récepteur et son équilibre après le rejet des effluents dont il faut établir un degré de dilution en fonction du pouvoir auto épurateur du milieu récepteur.
- La capacité et les surfaces des ouvrages récepteurs (bassin de décantation) pour éviter les surcharges et le mauvais fonctionnement.
- Le régime d'écoulement de niveau d'eau dans la canalisation amont et aval
- Topographie du site et variations des pentes.

c- Les fonctions des déversoirs d'orage :

Quel que soit le type de déversoir :

- ✓ Evacuer sans surverse et sans remous le débit des eaux usées du temps sec.
- ✓ Evacuer sans surverse le débit critique (débit des eaux usées et pluviales).
- ✓ Surverse le débit excédentaire de pluie et d'orage sans mise en remous nuisible du réseau amont et sans surcharge excessive en débit du réseau aval.
- ✓ Assurer le partage du flux polluant entre milieu naturel et collecteur aval.
- ✓ Assurer la fonction du By-pass ou ouvrage d'échange (pour distribuer vers la gauche et vers la droite).
- ✓ By-pass séparateur : prélever les eaux de temps sec pour les envoyer vers un égout d'eaux usées.

d- l'implantation des déversoirs d'orage :

La construction d'un déversoir d'orage résulte théoriquement d'une étude économique, en plus de considérations techniques.

Il ne peut y avoir de déversoir que s'il y a un émissaire pouvant recevoir les eaux d'un collecteur de décharge, aussi bien sous l'angle débit que sous l'angle pollution.

Quand c'est le cas, le nombre de la position des déversoirs résultent de comparaisons économiques. Chaque fois que l'on met un déversoir, on crée un ouvrage coûteux, mais on réduit le diamètre du collecteur aval.

Il n'y a donc pas de règle générale.

Les déversoirs d'orage pourront être placés :

- Sur des collecteurs secondaires afin de limiter les débits d'apport aux collecteurs principaux;
- ➤ A l'entrée d'ouvrages tels que les bassins d'orage, les siphons, etc...;
- > A l'entrée des stations d'épuration.

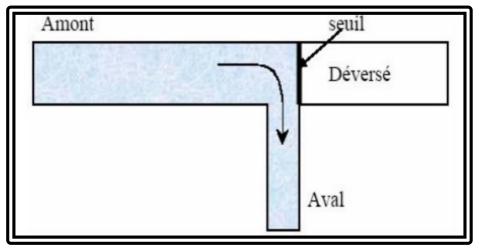
e- Les types des déversoirs :

On distingue différents types des déversoirs d'orage Solon :

♣ la pente, l'écoulement, la position de la STEP (station d'épuration).

e.1-Les ouvrages à seuil déversant :

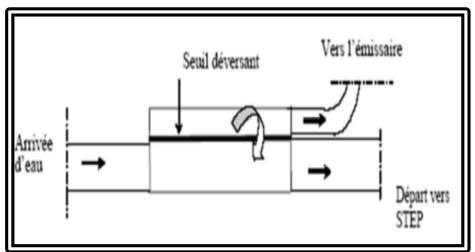
1) Les déversoirs à seuil haut :


Le seuil haut est un déversoir classique dont le fonctionnement est un peu perturbé par une vitesse d'approche de l'eau parallèle au seuil, dans le cas du déversoir latéral. Mais cette vitesse est faible et on peut sans inconvénient utiliser les formules classiques. Ce type de déversoir est caractérisé par la présence d'un étranglement, son diamètre est calculé pour faire passer juste de débit demandé pour la STEP, au-delà il se déverse.

2) Les déversoirs à seuil bas :

À l'opposé, le déversoir à seuil bas est en quelque sorte une ouverture faite latéralement dans un collecteur. Suivant la pente du radier, les conditions hydrauliques d'écoulement à l'amont et à l'aval, la fraction de débit déversée, etc., la ligne d'eau au droit du déversoir peut présenter différentes configurations (hauteur d'eau plus faible en tête du déversoir qu'en extrémité, ou le contraire, ressaut à l'amont, à l'aval, au milieu). Il y a donc de très nombreux cas de fonctionnement possibles, plus ou moins bien connus, ce qui explique en partie le nombre de formules proposées par différents auteurs, parfois contradictoires. Du point de vue hydraulique, le fonctionnement des déversoirs à seuil haut est beaucoup mieux connu que celui des déversoirs à seuil bas.

3) Les déversoirs à seuil frontal :


Le seuil est alors rectiligne et perpendiculaire à l'écoulement. Parmi les déversoirs à seuils frontaux, on peut encore établir une sous-catégorie selon la présence ou non d'une contraction au niveau du seuil, selon la mise en charge de la conduite aval et selon l'orientation de cette même conduite par rapport à la crête.

FigureV-12: Déversoir à seuil frontal.

4) Les déversoirs à seuil latéral :

Dans le cas du déversoir à seuil latéral, le seuil est rectiligne et strictement parallèle à l'écoulement. Le seuil déversant latérale peut être placé sur un coté de l'ouvrage ou de chaque côté.

FigureV-13 : Déversoir à seuil latéral.

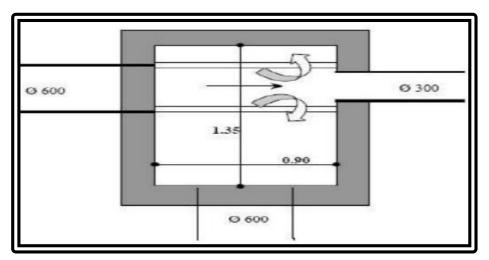
• Déversoir à seuil latéral à conduite aval étranglée :

Pour que le calcul de tel ouvrage soit possible, il faut que l'écoulement amont soit fluvial, ou que la présence de seuil élevé conduise à un ressaut dans la conduite d'amenée.

Les seuils élevés empêchent en général la pénétration des eaux de l'émissaire dans le réseau d'assainissement dans de nombreux cas. Les plus hautes eaux du cours d'eau émissaire ont lieu en hiver, alors que les orages sont des évènements estivaux.

L'avantage de la conduite étranglée est de contrôler le débit, et de permettre de donner le débit demandé par la STEP (limiter le débit dirigé vers la STEP).

• Déversoir à seuil latéral à conduite aval libre :


Ce type de déversoir diffère du précèdent essentiellement par le fait que la conduite aval est à écoulement libre. Si pour le débit maximum d'orage, la charge sur la crête aval est nulle, ce type d'ouvrage assurera un débit aval constant quel que soit le débit surverse.

5) Déversoir à seuil double :

Dans ce type de déversoir d'orage, la cunette transitant le débit de temps sec et de petite pluie est suspendue dans la longueur de la chambre.

Il s'agit de cas bien particuliers, au niveau d'une chute dans le collecteur ou lies à de très fortes pentes.

Le seuil est placé de chaque côté de l'ouvrage. Ce type de déversoirs représente environ 15% des déversoirs à seuil. Ce sont des déversoirs suspendus.

FigureV-14: Déversoir à seuil double.

6) Avantages et inconvénients des ouvrages à seuil déversant :

Le déversoir à seuil haut :

- -Vitesses d'approche plus faibles.
- -Tranquillisation de l'écoulement.
- -Meilleure connaissances des conditions hydrauliques.
- -Calcul aise.
- -Système à retenir lorsque le régime dans le collecteur d'arrivée est fluvial ou si le ressaut peut être admis à l'amont de l'ouvrage.
- -Envoyer une plus forte fraction des flux vers la STEP notamment grâce à la reprise des dépôts amont.

Le déversoir à seuil bas :

- -Conditions d'écoulement hydraulique de l'amont à l'aval et de déversement très variés suivant la pente du radier du collecteur.
- -Différentes configurations de la ligne d'eau au droit du déversoir d'orage : ce qui explique les différentes formules proposées par les auteurs.
- -Pollution déversée plus importante pendant la reprise des dépôts.

e.2-Les ouvrages n'utilisant pas le seuil :

On trouve dans cette catégorie toute une série de dispositifs, parfois appelés de régulation qui font intervenir différents principes de fonctionnement.

Mais si on se limite aux ouvrages habituellement utilises, on trouve essentiellement :

- **♣** Ouvrage a ouverture de radier,
- **♣** Ouvrages avec les trous dans le mur,
- **♣** Ouvrage avec siphon,
- ♣ Ouvrage avec orifice,
- ♣ Ouvrage à vortex,
- Ouvrage avec vannes.

e.3-Déversoir du fond :

Il est utilisé pour des pentes de 8 à 10 %. Ce type de déversoir est rarement utilisé à cause de son rendement médiocre (55%). Il est caractérisé par :

Un rendement faible.

- Le problème d'obturation par des corps volumineux (le cas d'un grand débit). Comme précaution, ce déversoir nécessite des grilles à l'amont placées au niveau des regards.

f. Choix du type de déversoir à adopter :

Le choix du type de déversoir ne se fera pas en fonction de la plus au moins grande connaissance qu'on a de son mode de calcul mais en tenant compte des régimes d'écoulement, des niveaux d'eau de l'émissaire.

En zone relativement plate, les déversoirs à crête latérale prédominent.

Le choix d'un déversoir à seuil bas sera exceptionnel car les risques de surverse même par temps sec à cause des remous dus à des dépôts sont importants.

De plus il ne faut pas oublier que les seuils hauts permettent de solliciter la capacité de stockage des canalisations.

Constatation:

Dans notre projet, nous avons un déversoir d'orage de type à seuil frontal vu l'emplacement de l'exutoire et la STEP qui sera projetée prochainement.

g. Les ouvrages annexes des déversoirs d'orage :

Les grilles et les dégrilleurs :

Leur rôle est de contrôler les gros solides (d > 6mm) aux déversoirs pour éviter leur envoi au milieu naturel.

Ils sont places à l'amont des déversoirs d'orage .l'épaisseur des barreaux des grilles est de 10 à 12mm. L'espacement des barreaux est de 10 à 15mm. Le rendement des grilles est de 50%.

La chambre de tranquillisation et de dessablement :

Cette chambre située à l'amont du déversoir d'orage, a pour but en réduisant la vitesse du flux d'assurer une décantation des matières en suspension les plus lourdes et de faire remonter en surface les flottants.

Pour éviter l'envasement, on recommande :

$$D_{min} = 0.815 * Q^{0.4} (v.21)$$

(D : diamètre du collecteur d'entrée).avec Q en m³/s, débit de pointe de 2 à 5 ans période de retour. On conseille une pente minimale de 4/1000 sur une longueur de 25D à l'amont du déversoir d'orage pour assurer la reprise des dépôts et des flottants à la décrue.

h. Dimensionnement du déversoir d'orage :

Le dimensionnement d'un tel ouvrage commence par le choix du débit de référence et du débit amont maximal en fonction des objectifs de protection (du milieu naturel, de la ville contre l'inondation....) qui doivent être assures par le réseau d'assainissement.

Au débit de révérence, on dimensionne la géométrie de l'ouvrage de telle sorte qu'il n'y ait pas de déversement. Ce calcul se fait en fonction des pentes er des formes des sections des canalisations en amont, en aval et au niveau du déversoir. Dans le cas des déversoirs a seuil, on dimensionne la hauteur de crête. Si le déversoir dispose d'un entonnement, celui-ci va influencer la hauteur de crête. Au débit amont maximal, on dimensionne la partie déversant.

Dans le cas des déversoirs à seuil, c'est la longueur de la crête et le nombre de crêtes que l'on évalue de telle sorte que l'augmentation du débit aval soit au maximum de 20 à 40% du débit de référence.

Dans le cas où l'on a une diminution de sections entre les conduites amont et aval, la longueur du déversoir influence l'angle d'entonnement.

On constate donc que l'entonnement, la longueur et le nombre de crêtes sont les variables à choisir pour le dimensionnement d'un déversoir latéral, la hauteur de crête entent quant à elle fixée par le débit de référence en relation avec les conditions d'écoulement dans la conduite aval.

De plus, il arrive que l'on mette en place un dispositif limitant le débit passant vers le collecteur aval.

Dans ce cas, l'objectif est de pouvoir modifier facilement par la suite le débit de référence. Ce dispositif peut être fixe (section réduite, masque...) ou mobile (vanne, seuil gonflable....).

1) Calcul du temps de concentration t_c :

$$t_c = \frac{L}{60V} \quad \text{(min)} \tag{v.22}$$

Avec:

L: Longueur totale du collecteur le plus long (m).

V: Vitesse moyenne égale à la somme des vitesses de chaque tronçon sur le nombre des tronçons (m/s).

2) Calcul du coefficient de retardement :

Le coefficient de retardement a pour but la diminution des débits pluviaux, cette diminution peut être prise en considération dans le dimensionnement des déversoirs d'orage.

$$Z = 1 - \frac{t_c}{100} \tag{v.23}$$

Il faut disposer des données suivantes :

Qt: Débit total du collecteur principal.

Q_{ts}: Débit en temps sec du collecteur principal.

3) Calcul le débit de dimensionnement (débit critique) :

$$Q_{cr} = Z.Q_t (\mathbf{v.24})$$

4) Calcul du débit de la STEP:

$$Q_{step} = C_{dilution} . Q_{ts}$$
 (v.25)

5) Calcul du débit déversant :

$$Q_{cr} = Q_{dev} + Q_{step} \longrightarrow Q_{dev} = Q_{cr} - Q_{step}$$
 (v.26)

6) Détermination des hauteurs d'eau correspondant aux débits à l'amont du déversoir :

Pour calculer on utilise l'abaque de BAZIN (Annexe 5).

• Hauteur d'eau demandée par la STEP :

 \mathbf{H}_{step} : Correspond à la hauteur du seuil du déversoir, appelée à envoyer le débit \mathbf{Q}_{step} vers la station d'épuration ou vers un autre collecteur.

On utilise l'abaque de variation des débits et des vitesses en fonction de la hauteur de remplissage (Annexe 4).

$$R_Q = \frac{Q_{step}}{Q_{ps}}$$
 \longrightarrow Abaque \longrightarrow $R_H = \frac{H_{step}}{D}$ \longrightarrow $H_{step} = R_H * D$ (v.27)

7) Détermination de la hauteur déversant :

H_{dev} : Correspond à la hauteur d'eau déversée par le déversoir vers le milieu naturel au vers un autre collecteur.

$$H_{\text{dev}} = H - H_{\text{step}} \tag{v.28}$$

Avec : H : Hauteur de remplissage de débit de dimensionnement.

• Détermination de H :

$$R_{Qcr} = \frac{Q_{cr}}{Q_{Ds}}$$
 Abaque \longrightarrow $R_{Hcr} = \frac{H}{D}$ alors : $H = R_H \cdot D$ (v.29)

8) Détermination de la longueur du seuil du déversoir b :

On applique la formule de BAZIN :

$$Q_{dev} = m.b.H_{dev}\sqrt{2g.H_{dev}}$$
 (v.30)

Avec:

m : Coefficient de débit en fonction de type de déversoir.

m = 0.45 déversoir frontal.

m < 0,4 déversoir latéral.

b : Longueur du seuil.

Hdev: Hauteur d'eau déversée par le déversoir.

 $g = 9.81 \text{ m/s}^2$ (pesanteur).

Donc:
$$b = \frac{Q_{dev}}{m \cdot H_{dev}^{3/2} \sqrt{2g}}$$
 (v.31)

> Mode de calcul :

Dimensionnement du déversoir d'orage (DO) :

Après avoir calculé le débit au temps de pluie drainé par les sous bassin de la localité Oued Drabla par la méthode rationnelle :

- Débit total véhiculé par le collecteur projeté (Ø500mm) est de 254,842 l/s.
- Débit par temps sec véhiculé par le collecteur projeté (Ø500mm) est de 10,505l/s.
- Débit usée qui restera acheminé vers le regard R39.

$$Q_c = 3Q_{US} = (10,505 \text{ x } 3) = 31,5151/s.$$

a) A l'entrée du déversoir :

Dans notre cas on utilisera un déversoir de seuil frontal :

- Diamètre d'entrée D_e = 500 mm.
- Hauteur d'eau à l'entrée H_e = 209,76 mm.
- La pente égale à 0,033 m/ml.
- Débit total à l'entrée $Q_t = 0.255 \text{ m}^3/\text{s}$.
- Vitesse d'écoulement V_r= 3,25m/s.
- Débit à plain section Q_{ps} = 0,686 m³/s.
- Vitesse à plain section $V_{ps} = 3,50 \text{m/s}$.
- Débit par temps sec $Q_{ts} = 0.0105 \text{m}^3/\text{s}$.
- Débit de pointe allant vers le regard R39 $Q_c = 0.053 \text{ m}^3/\text{s}$.
- La pente égale à 0,033 m/ml.
- Vitesse d'écoulement V_r= 3,28m/s.
- Hauteur réelle H_r = 0.213m soit 73% (donc en opte pour une pelle P = 0.25m).
- Débit à plain section $Q_{ps} = 0.053 \text{ m}^3/\text{s}$.
- Vitesse à plain section $V_{ps} = 0.75 \text{m/s}$.

b) Après le seuil déversant :

- Débit déversé vers l'exutoire $Q_{ex} = Q_t Q_{ts} = 0.255 0.0105 = 0.245 \text{m}^3/\text{s}$.
- Débit spécifique $Q_{sp} = 0.514 \text{m}^3/\text{s/ml}$.
- $Q_{cr} = 0.239 \text{ m}^3/\text{s}.$
- $Q_{\text{step}}=0,140 \text{ m}^3/\text{s}.$
- $H_{\text{step}}= 160 \text{ mm}.$
- H_{cr}= 225 mm.
- $H_{dev} = 65 \text{ mm}$.
- $Q_{dev}=0.099 \text{ m}^3/\text{s}.$
- Vitesse d'écoulement V = 0.72 m/s.
- Charge hydraulique h = 0.73m.
- Longueur d'amortissement L=1.71m.
- La largeur du seuil déversant est donnée par la formule suivante :

$$Q_{dev} = m.b.H_{dev}\sqrt{2g.H_{dev}}$$

$$b = \frac{Q_{dev}}{m.H_{dev}^{3/2} \cdot \sqrt{2g}}$$

AN: b=2, 99 **Alors:** b=3m.

c) Collecteur de sortie (vers l'oued) :

- Débit déversé vers l'exutoire $Q_{ex} = 0.245 \text{m}^3/\text{s}$.
- Vitesse d'écoulement V=3.86m/s.
- Débit à plain section $Q_{ps} = 1.227 \text{m}^3/\text{s}$.
- Vitesse à plain section $V_{ps} = 3.73 \text{m/s}$.
- Le débit destiné au stockage (débit déversé) par le DO est : Q_{dev} = 0,099m3 /s.
- La pente du collecteur de décharge est : i = 3 %.
- Donc d'après l'abaque (annexe 3) de Manning-Strickler, on trouve que le diamètre de la conduite de décharge du déversoir vers le bassin piège est D=400 mm.

Tableau v-2 : Dimensionnement de DO.

	Débit Déversé	Pelle	Largeur du Bassin	Débit Sp Déversé	Lame d'eau Déversé	Vitesse	Charge Hyd	Contrainte Normale	Contrainte Critique	Charge Normale en plus	Charge Critique en plus	Longue Critique en plus	Charge Hyd	Hauteur Max	Vitesse D'écoulement	longueur Normale	longueur Total
	Qdév	P	b	Qsp	Н	$\mathbf{V_0}$	$\mathbf{E_0}$	τ'c	τ"c	h'c	h''c	L_{B}	$\mathbf{h_0}$	$\mathbf{H_r}$	V	Lp	Ldév
	l/s	M	M	m ³ /s/ml	M	m/s						m	m	m	m/s	m	M
DO N°01	99	0,250	3	0,514	0,406	3,28	0,690	0,053	0,401	0,037	0,276	0,829	0,714	0,682	0,754	0,887	1,716

V.6.3.2-Ouvrage de bassin de décantation :

Avant l'arrivée au rejet final, les collecteurs des eaux usées charrient des matières très hétérogènes, et souvent grossières. Les eaux qui arrivent vont subir en premier lieu des traitements de dégrossissage nommés prétraitements. Ceux-ci vont permettre d'extraire la plus grande quantité des éléments dont la taille (détritus grossiers), le pouvoir abrasif (sables, argiles) et la masse spécifique (graisses flottantes) risquent de perturber et polluer le milieu naturel en premier lieu.

Ces prétraitements ou préépuration constituent une première étape très importante pour minimiser les matières en suspension, ce qui concerne le sable et les déchets solides.

a. Définition:

Le bassin de décantation permet d'éliminer les graviers, sables ou particules minérales grâce à des pièges à sédiments, afin d'éviter le dépôt de ces particules dans les installations et de protéger le milieu naturel contre la pollution et les déchets solides à stagner dans les cours d'eau.

b. Dimensionnement du bassin de décantation :

Le bassin est équipé d'un domaine de décantation sur lequel sont suspendue les sables et les déchets solides contenants dans les eaux usées entrant dans le bassin de décantation.

Pour qu'il y ait sédimentation des particules il faut que l'inégalité suivante soit vérifiée :

$$\frac{L}{H} \le \frac{V_e}{V_s} \tag{V.32}$$

Où:

V_e: Vitesse horizontale (vitesse d'écoulement est 0.2 < Ve < 0.5 (m/s).

 V_s : Vitesse de sédimentation. (vitesse est : $40 < V_s < 70 \quad (m^3/m^2/h)$.

L: Longueur de bassin.

H: Profondeur de bassin.

L/H = (5-10).

Le temps de séjour et compris entre 5 à 20 minute au débit de pointe (de bassin de décantation).

$$\mathbf{H} = (1 - 2.5) \text{ m}$$

On prend:

✓ $V_e = 0.5 \text{ m/s}.$

 \checkmark V_s=50 (m³/m²/h) =0.014m /s.

✓ H=1.5 m

 \checkmark t_s=10 minute

• Le volume :

$$V = Q_{ptp} \times t_s \tag{V.33}$$

Avec:

 \mathbf{Q}_{ptp} : Le débit de conservé dans le bassin. (10% du Q.Totatl rejet).

Donc: Optp = $10\% \times 839,315 \text{ L/s} = 83,93 \text{ L/s} = 0.084 \text{m}^3/\text{s}$

 $V = 0.084 \times 10 \times 60 = 50,4 \text{m}^3$

V = 50.40

• La surface horizontale

On a: H=1,5m.

La surface horizontale S_h sera :

$$S_h = \frac{V}{H} = \frac{50.4}{1.5} = 33.6 \text{ m}^2$$

 $S_h = 33.6 \text{ m}^2$

• La longueur :

$$L/H = 7$$
 \Rightarrow $L = 7 \times 1.5 = 10.50 \text{ m}$

L=10.50 m

• Largeur:

$$S_h=L \times l = 26.67 \text{ m}^2 \implies l = \frac{S_h}{L} = \frac{33.6}{10.50} = 2.54 \text{ m}$$

I = 3,20m

• Volume de sable dépose :

Le volume du sable par habitant et par jour est donné par la relation :

$$Ws = Eq. p. T (V. 34)$$

Avec:

P: norme d'évacuation des sables par habitant et par jour prise égale à 12 l/hab/an.

T: temps égale à un (01) jour.

Eq : Equivalent habitant.

Tableau V-3 : Les résultats des quantités de sable éliminées.

Teneur en sable (l/hab/an)	12
Equivalent habitants	2528
Ws : volume de sable déposé (m3/j)	0,083
Ws : volume de sable déposé (m3/an)	30,33
D : Densité de sable (tonne/m3)	1,70
poids annuel de sable (tonne/an)	51,57

Tableau V-4 : Dimensionnement de bassin de décantation.

Désignation	Unités	Quantité
Surface horizontale (Sh)	m^2	33,6
Volume (V)	m^3	50,40
Hauteur (H)	M	1,5
Largeur	M	3,20
Longueur	M	10,5
Temps de séjour par temps de pluie	Min	10
Ws : volume de sable déposé	(m ³ /an)	30,33
poids annuel de sable	(t/an)	51,57

En termes de cette phase, les bassins de décantation projetés nécessitent des travaux de nettoyage et d'entretien périodiques chargés par les agents de l'APC ou les services gestionnaires, pour assurer le bon fonctionnement des bassins, et la continuité d'élimination des matières en suspension et les déchets solides se trouvant dès les réseaux d'assainissement. A fin, de protéger le milieu récepteur des eaux usées rejetées contre la pollution avancée et la stagnation des déchets et grains de sable dans les cours d'eau de la région.

V.7-Conclusion:

Dans ce chapitre, on a calculé les caractéristiques dimensionnelles des collecteurs qui sont résumé dans le tableau du calcul hydraulique que l'on a mentionné précédemment on a calculé les diamètres et on a vérifié la vitesse d'auto curage et la vitesse d'écoulement en respectant les normes et les exigences de dimensionnement du réseau d'assainissement. Citer tous les ouvrages annexes pour bien choisir les éléments les plus adéquats et qui assurent le bon fonctionnement du notre système d'évacuation.

CHAPITRE-VI-LES ÉLÉMENTS CONSTITUTIFS DU RÉSEAU D'ÉGOUT

VI.1-Introduction:

Le réseau d'assainissement a pour but la collecte des eaux usées et pluviales, et par conséquent la protection du milieu naturel.

Les éléments constitutifs d'un réseau d'égout doivent assurer le bon fonctionnement de ce dernier. Les ouvrages peuvent être classés en Les ouvrages principaux qui constituent le corps du réseau et Les ouvrages annexes qui permettent une bonne exploitation du réseau.

VI.2-Les ouvrages principaux :

Ils contribuent au développement de l'ensemble du réseau jusqu'à l'évacuation à l'exutoire et l'entrée des effluents dans la station d'épuration si elle existe.

VI.2.1-Canalisations:

La canalisation d'assainissement est une conduite faisant partie d'un **réseau** d'assainissement et permettant de faire circuler des fluides (eaux usées, eaux pluviales ...) entre deux lieux de desserte.

Ce sont les éléments principaux du système d'évacuation, présentés sous diverses formes :

- Les conduites circulaires : définies par leurs diamètres nominaux en mm.
- Les conduites ovoïdes : désignées par leurs hauteurs intérieures en cm.

VI.2.1.1-Formes et section de conduites :

Conduites circulaires : Les conduites circulaires sont utilisées pour les faibles sections par rapport aux autres formes.

Figure VI-1: Conduite circulaire.

Conduites ovoïdes : Ces conduites sont utilisées pour remplacer les conduites circulaires de diamètre supérieur à 800 mm généralement, et cela afin d'éviter le problème d'auto curage.

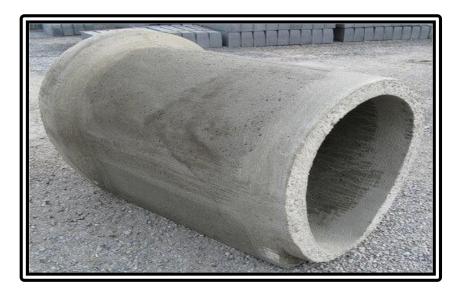


Figure VI-2: Conduite ovoïde.

Dans notre projet nous optons pour les canalisations de forme circulaire.

VI.2.1.2-Critères du choix de canalisation :

Pour faire le choix des différents types de conduite, on doit tenir compte :

- Des pentes du terrain.
- Des diamètres utilisés.
- De la nature du sol traversé.
- De la nature chimique des eaux usées.
- Des efforts extérieurs dus au remblai.

VI.2.1.3-Type de canalisation :

1) Conduite en fonte :

La particularité de ce type de conduite, réside dans leur composition à base de fonte, ce qui les rends inoxydables et solides, et par conséquent s'imposent à titre de sécurité. Elles sont utilisées généralement au niveau des raffineries de pétrole pour évacuer les eaux usées industrielles.

2) Conduite en grés :

Les conduites en grés sont caractérisées par une très grande dureté, et une excellente résistance aux agressions chimiques ou climatiques. Cette résistance est obtenue grâce à une cuisson à une température supérieure à 1 200 °C. Ces conduites sont livrables en longueur utiles de 1.0m, 1.5m et 2.0m.

> Joints:

L'assemblage de ces conduites s'effectue par trois sortes de joints :

- Joints au mortier de ciment.
- Joints avec corde goudronnée et mortier de ciment

Joints à double anneaux.

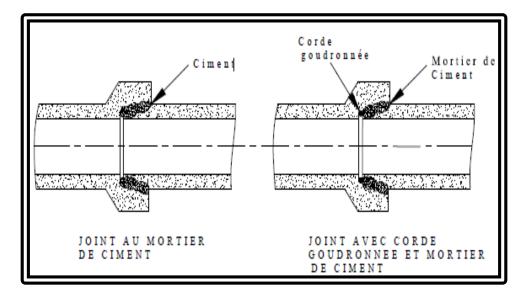


Figure VI-3 : Joints sur tuyau en grès.

3) Conduite en matière plastique :

Les conduites en plastique sont résistantes à la corrosion, inerte et stable vis-à-vis de nombreux réactifs chimiques. On peut distinguer :

- Les conduites en matières thermodurcissables.
- Les conduites en matières thermoplastiques.
- ➤ **Joints**: Ces conduites peuvent être assemblées soit par collage, soit par bagues d'étanchéité.

4) Conduite en béton armé :

Nature du matériau :

L'armature formant la conduite en béton armé se compose de :

- Génératrices disposées en parallèle le long de la canalisation.
- Cercles disposés de telle façon à former les grilles avec les génératrices.
- > Fabrication:

On dispose de trois procédés de fabrication :

• La vibration :

Les conduites vibrées sont fabriquées à l'aide de trois dispositifs :

Vibrateurs fixe ou mobiles.

Table vibrante.

Noyau vibrant.

• La centrifugation :

Permet le coulage du béton en présence d'armatures, dans un moule animé d'une vitesse de rotation variable.

• Le compactage :

Les conduites compactées ne sont généralement pas armées, pour un diamètre de 100 à 1200 mm.

Les joints des conduites :

Afin d'assembler les conduites en béton armé ou non armé, on a diffèrent des joints à utiliser :

• Joint type Rocla:

Ce type assure une très bonne étanchéité pour les eaux transitées et les eaux extérieures, ce joint est valable pour tous les diamètres.

• Joint torique:

S'adapte bien pour les sols faibles, il représente une bonne étanchéité si la pression n'est pas élevée, il est utilisé pour des diamètres 700-900 mm.

• Joint à demi- emboitement :

Avec cordon de bourrage en mortier de ciment, ce joint est utilisé dans les terrains stables. Il y a risque de suintement si la pression est trop élevée. Il est à éviter pour les terrains à forte pente.

• Joint à coller :

Le bourrage se fait au mortier de ciment, il n'est que dans les bons sols, à pente faible.

• Joint plastique:

Joint étanche et résistant même s'il est en charge, la présence de la butée en bitume et la bague ou manchon en matière plastique contribuent à la bonne étanchéité, s'adapte à presque tous les sols si la confection est bien faite.

• Joint mécanique :

Le joint mécanique est destiné à réunir le bout uni d'une conduite avec un manchon de scellement, ou avec un raccord dans le cas de conduite en pression.

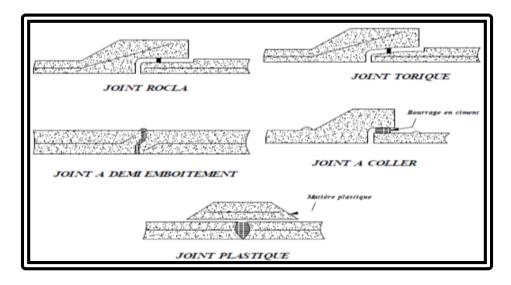


Figure VI-4: Joints sur tuyaux en béton.

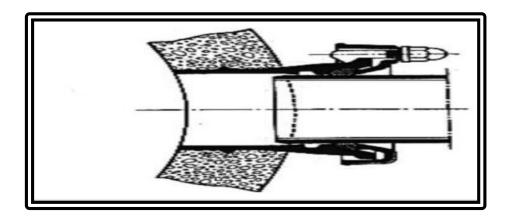


Figure VI-5 : Joint mécanique.

Dans notre projet nous allons utiliser les conduites de type PVC (ϕ 315, 400,500) et CAO (ϕ 500, 600,800) de profil circulaire, cela est dû au fait que la zone est rurale et aussi à la présence de cultures agricoles et également grâce à leurs nombreux avantages qu'elles présentent tel que la résistance, l'étanchéité, la pose et l'assemblage facileect.

VI.2.1.4-Différentes actions supportées par la conduite :

Les canalisations sont exposées à des actions extérieures et intérieures ; pour cela, elles doivent être sélectionnées pour lutter contre ces actions qui sont :

Actions mécaniques :

Ces actions sont le résultat de l'agressivité et les frottements des particules (sable, gravier) présentes dans l'eau évacuée et qui forment du remblai et du radier des canalisations. Ces actions engendrent le phénomène d'érosion du essentiellement à des grandes vitesses et qui peut provoquer la détérioration des parois.

Actions statiques :

Ces actions sont dues aux surcharges fixes ou mobiles comme : le remblai, les trafics routiers, les mouvements de l'eau dans les canalisations.

Actions chimiques :

Ces actions sont dues à la présence des agents chimiques dans les eaux d'origine industrielle. Elles se passent généralement à l'intérieur des canalisations.

VI.2.1.5-Protection des conduites :

Le béton utilisé pour la fabrication des tuyaux et ouvrages d'assainissement subit des formes d'agression ; sous l'aspect de corrosion chimique qui entraîne la destruction des canalisations ; sous l'aspect d'abrasion qui est une action physique non négligée du fait de faible résistance du matériau et compte tenu de la vitesse limite maximale des écoulements dans le réseau.

Pour cela les moyens de lutte peuvent se résumer comme suit :

✓ Le temps de rétention des eaux usées dans les canalisations doit être réduit au maximum.

- ✓ L'élimination des dépôts doit s'opérer régulièrement, car ces derniers favorisent le développement des fermentations anaérobies génératrices d'hydrogène sulfuré (H₂S).
- ✓ Une bonne aération permet d'éviter les condensations d'humidité sur les parois et de réduire ainsi la teneur en H2S.
- ✓ Revêtement intérieur des conduites par du ciment limoneux ou du ciment sulfaté avec un dosage suffisant dans le béton (300 à 350 kg/m³de béton).

VI.2.1.6-Les essais des conduites préfabriquées :

Avant d'entamer la pose des canalisations et assurer ces bon fonctionnements il est obligatoire de faire quelques assois notamment :

- **Essai à l'écrasement.**
- ♣ Essai à l'étanchéité.
- Essai à la corrosion.

1) Essai à l'écrasement :

Les ouvrages doivent résister aux charges permanentes des remblais d'une part, aux surcharges dans les zones accessibles aux charges mobiles d'autre part. Ce qui rend l'essai à l'écrasement nécessaire. L'épreuve à l'écrasement se fait par presse automatique avec enregistrement des efforts. Ils doivent être répartis uniformément sur la génératrice supérieure de tuyau. La mise en marche est effectuée jusqu'à la rupture par écrasement. À une vitesse de 1000 daN/m de longueur et par minute. Cet essai permet de déterminer la charge de rupture.

2) Essai à l'étanchéité :

L'essai à l'étanchéité est obligatoire à l'usine et sur le chantier :

- A l'usine : la conduite est maintenue debout, remplie d'eau, la diminution du niveau d'eau ne doit pas dépasser 2cm en 24 heures ;
- Sur le chantier : l'un des trois essais suivants peut être envisagé.
- **a.** L'essai à l'eau : effectué pendant 30mn pour les faibles diamètres ; ainsi que pour les joints, la pression est augmentée jusqu'à 3 bars ;
- **b.** L'essai à la fumée : cet essai ne peut être effectué qu'en absence de vent et que si la conduite n'est pas humide ;
- **c.** L'essai à l'air : Sous pression de 1 bar pendant 30 minutes, et sous une pression de 0,5 bar durant 3 minutes, Pour les conduites circulaires.

3) Essai à la corrosion :

Les conduites en béton sont les plus utilisées et les plus gravement corrodées par l'hydrogène sulfuré. La corrosion du béton commence par la baisse du PH superficiel suite au lessivage de la chaux en excès et à la carbonatation de la surface par le gaz carbonique.

L'épreuve de corrosion se fait par l'addition de différents acides (acide chlorhydrique, acide nitrique, acide sulfurique). Après le lavage à l'eau douce et le séchage à l'étuve, on pèse l'échantillon. Les surfaces de la paroi interne ne doivent pas être altérées.

VI.2.1.7-Pose de canalisation :

a. Les conditions de pose :

Les principales conditions exigées lors de la pose des canalisations, sont les suivantes :

- ✓ La canalisation doit être enterrée sous une couverture d'au moins 80 cm au départ.
- ✓ Il ne faut pas en effet que la conduite soit déformée par la surcharge de terre ou le passage de charges.
- ✓ Les canalisations d'eau usée et pluviale sont souvent posées en parallèles dans la même tranchée, mais elles sont décalées de 30 à 40 cm.
- ✓ Il est conseillé de placer le réseau d'eau pluviale au-dessus du réseau d'eaux vannes dans le cas où ils sont voisins.

b. Les modes de pose :

Le mode de pose des canalisations diffère selon la nature du terrain.

> Terrain ordinaire:

Dans notre cas le terrain est de type ordinaire selon notre visite sur site. Dans ce type de terrain, la canalisation doit être posée sur un lit de sable réalisé sur un fond exempt de massifs durs, avec des joints confectionnés avec soins conformément aux prescriptions des Fabricants de conduite. Dans les terrains peu consistants, la canalisation doit reposer sur deux briques posées au fond et le vide sera rempli de sable.

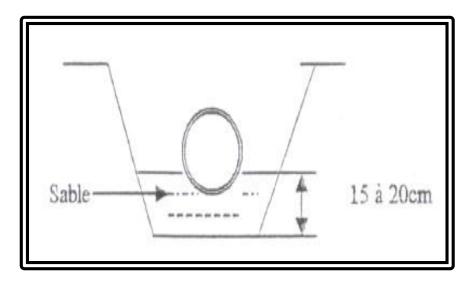


Figure VI-6 : Pose de canalisation sur un terrain ordinaire.

VI.3-Les ouvrages annexes :

Les ouvrages annexes contribuent au bon fonctionnement du système d'évacuation au même titre que les canalisations.

Les ouvrages annexes sont considérés selon deux groupes distincts :

- Les ouvrages normaux.
- Les ouvrages spéciaux.

(J'ai étudié en détail dans chapitre v).

VI.4-Conclusion:

Le but de ce chapitre est de citer tous les éléments constitutifs du réseau d'assainissement que ce soit les ouvrages principaux ou les ouvrages annexes pour bien choisir les éléments les plus adéquats et qui assurent le bon fonctionnement du notre système d'évacuation.

Donc, il est nécessaire de faire un bon choix des conduites qui le constituent et ceci la forme et le matériau par lesquels elles sont construites et la pose de canalisation.

CHAPITRE-VII-ORGANISATION DE CHANTIER ET SÉCURITÉ DU TRAVAIL

VII.1-Introduction:

L'organisation d'un chantier consiste à prévoir toutes les ressource nécessaire en moyens humains, matériels et matériaux, et demande et impose un rythme de travail pour une bonne utilisation de ses moyens dans le but de rechercher : la rapidité, la qualité et l'économie.

Sante et sécurité au travail désigne diverses disciplines visant à supprimer ou à limiter certains effets nuisibles du travail sur l'être humain.

La réalisation d'un système d'assainissement est régie par les lois auxquelles sont soumis tous chantiers se trouvant dans la nature, en milieu urbain soient ils ou en milieu rural.

Pour une réalisation optimale il faut suivre les règles de l'organisation du chantier en général. La méthode la plus utilisée est la méthode CPM « critical path méthode », c'est une méthode qui consiste à réduire les temps de réalisation, les coûts, et augmenter le rendement du travail. Elle se base sur l'établissement d'un réseau qui traduit la succession des opérations constituant le projet en question. A la fin on obtient ce qu'on appelle le chemin critique.

VII.2-Les étapes de réalisation du projet (organisation du chantier) :

VII.2.1-Exécution des travaux :

Les principales opérations à exécuter pour la pose des canalisations sont :

- Manutention et stockage des conduites ;
- ♣ Décapage de la couche de végétation ;
- Liver des tranchées et des fouilles pour les regards ;
- Aménagement du lit de pose ;
- ♣ Emplacement des jalons des piquets ;
- ♣ La mise en place des canalisations en tranchée ;
- Mise en place des conduites ;
- Assemblage des conduites ;
- Faire les essais d'étanchéité pour les conduites et les joints ;
- ♣ Remblaiement des tranchées ;
- **♣** Construction des regards en béton armé.

VII.2.1.1-Manutention et stockage des conduites :

a. Chargement et transport :

Le chargement des véhicules doit être effectué de façon à ce qu'aucune détérioration ou déformation des tubes et des accessoires ne se produise pendant le transport. Il faut éviter :

- ✓ Les manutentions brutales, les flèches importantes, les ballants.
- ✓ Tout contact des tubes et des raccords avec des pièces métalliques saillantes. les tubes avec emboîture doivent être alternés. les emboîtures doivent dépasser la pile.

b. Déchargement :

Déchargement Le déchargement brutal des tubes et des raccords sur le sol est à proscrire.

c. Stockage:

Dans tous les cas, il est nécessaire de préparer un lieu de stockage situé le plus près possible du lieu de travail. L'aire destinée à recevoir les tubes doit être nivelée et plane afin d'éviter la déformation des tubes.

- L'aire destinée à recevoir les tubes et les raccords doit être nivelée et plane. L'empilement doit se faire en alternant les emboîtures et en laissant celles-ci dépasser la pile.
- La hauteur de gerbage doit être limitée à 1.50m
- Les tubes et les accessoires doivent être stockés à l'abri du soleil. (La décoloration du tube n'affecte en rien ses caractéristiques mécaniques).
- Les accessoires ne doivent être déballés qu'au moment de leur utilisation
- Eviter le contact avec l'huile les solvants et autres substances chimiques.
- Le stockage des tubes doit assurer leur protection mécanique et contre la chaleur.

Figure VII-1 : Stockage déchargement des canalisations.

VII.2.1.2-Décapage de la couche de végétation :

Si la tranchée est ouverte sous les voies publiques, le décapage est fait avec soin sans dégradation des parties voisines. Le décapage de cette couche se fait par un bulldozer sur une couche de 10cm.

Le volume de la couche décape (m³) est :

$$V = B.h.L (VII.1)$$

Avec:

B: Largeur de la couche végétale (m).

h: Hauteur de la couche (m).

L: Longueur totale des tranchées (m).

VII.2.1.3-Exécution des tranchées et des fouilles pour les regards :

La largeur de la tranchée, doit être au moins égale au diamètre extérieur de la conduite avec des sur largeurs de 30 cm de part et d'autre.

Largeur de la tranchée :

La largeur d'ouverture de tranchée est donnée par la formule :

$$B = d + (2 \times 0, 3)$$
 (VII.2)

Avec:

B : Largeur de la tranchée en (m) ; **D** : Diamètre de la conduite en (m).

Profondeur de la tranchée :

La profondeur est donnée par la formule suivante :

$$H=e+d+h (VII.3)$$

Avec:

H: Profondeur de la tranchée en (m);

e: Epaisseur de lit de sable en (m), e = 20 cm;

d : Diamètre de la conduite en (m) ;

h: La hauteur du remblai au-dessus de la conduite en (m).

> Fond de la tranchée :

Le fond de la tranchée doit être débarrassé des roches de grosse granulométrie, des vestiges de maçonnerie et des affleurements de points durs, puis convenablement dressé suivant la pente prévue au projet.

VII.2.1.4-Aménagement du lit de pose :

Les conduites seront posées sur un lit de pose de sable d'épaisseur égale au moins à 10 cm. Ce dernier sera bien nivelé suivant les côtes du profil en long.

Le lit de pose doit être constitué de sable contenant au moins 12% de particules inférieures 0,1mm.

Si le terrain est instable, des travaux spéciaux se révèlent nécessaire : exécution d'un béton de propreté, de berceaux ou même de dalles de répétition.

Le volume du sable est calculé par la formule suivante :

$$Vs = L. B. e (VII.4)$$

Avec:

Vs: Volume du sable en (m³);

L: Longueur de la tranchée en (m);

B: Largeur de la tranchée en (m);

e: Epaisseur du sable, e = 20 cm.

VII.2.1.5-Emplacement des jalons des piquets :

Suivant les tracés du plan de masse, les jalons des piquets doivent être placés dans chaque point d'emplacement d'un regard à chaque changement de direction ou de pente et à chaque branchement ou jonction de canalisation.

VII.2.1.6-La mise en place des canalisations en tranchée :

> Serpentage:

La rectitude de la conduite ne doit pas être recherchée systématiquement.

> butées et ancrages :

Les assemblages avec bague ne peuvent s'opposer au recul du à la pression qui s'exerce sur les bouts d'extrémité et aux changements de direction.

Il est donc indispensable de prévoir des massifs en béton pour répartir sur la paroi de la tranchée la charge de poussée correspondant à la pression d'épreuve.

La poussée a pour valeur :

$$F=K.P.S$$
 (VII.5)

Où:

K=1 pour les bouts d'extrémité ;

K=1 pour les tés à 90°;

K=1.414 pour les coudes à 90° ;

K=0.766 pour les coudes à 45° ;

P (en bars): La pression interne;

 $S(cm^2)$: La section interne du tube ;

S (cm²): La section de la dérivation pour tés réduits ;

S (cm²): La différence des sections pour les réductions.

Les forces de poussée sur les réductions ne seront prises en compte que si la réduction en diamètre est importante.

La butée du terrain (résistance des terres) s'exprime par :

$$B=K_1.H.S_1 (VII.6)$$

Où:

K₁ dépend de la nature du sol :

-Sable argileux: 3000;

-Terre à culture : 5000 ;

-Sable et gravier : 6000 ;

H (en m): La profondeur d'enfouissement du tube ;

S₁ (en m): La section d'appui (l*h).

Faut réaliser B>1.5F.

VII.2.1.7-Mise en place des conduites :

Généralement, la mise en place des conduites se fait par des engins appropriés « pipelayers ».

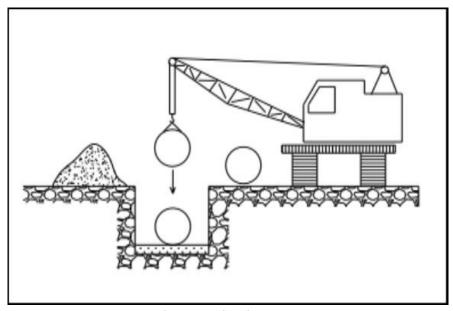


Figure VII-2: Pipelayers.

VII.2.1.8-Assemblage des conduites :

Pour garantir un haut niveau d'étanchéité et la sécurité des installations en présence de température de fonctionnement élevées de fortes pressions et de liquides agressifs, il faut faire l'assemblage des tuyaux. Les joints s'avèrent indispensables pour le bon fonctionnement des conduites d'assainissement. Pour effectuer la jointure de ces conduites, on doit prendre en considération la section, la forme et la nature du matériau de la conduite. Les joints des conduites circulaires sont effectués à l'aide d'une bague renforcée d'une armature et coulé sur place à l'intérieur d'une moule.

VII.2.1.9-Les essais d'étanchéité :

L'essai de l'étanchéité permet de décider si la réception des travaux peut être effectuée, si l'ouvrage réalisé est considéré comme suffisamment étanche, la réception est alors effectuée. Après la pose de canalisation au fond de la tranchée, l'essai d'étanchéité est effectué en utilisant de l'eau, de l'air ou de la fumée.

VII.2.1.10-Remblaiement des tranchées :

Après avoir effectué la pose des canalisations dans les tranchées, un remblayage de qualité est nécessaire sur une certaine hauteur au-dessus de la génératrice supérieure pour assurer, d'une part la transmission régulière des charges agissant sur la canalisation et, d'autre part, sa protection contre tout dégât lors de l'exécution du remblai supérieur.

Remblayer les tranchées se fait aujourd'hui avec différentes techniques. La plus commune reste l'utilisation de matériaux classiques, dits granulaires. Le remblayage se fait avec des outils traditionnels et nécessite l'emploi de compacteurs ou de pilonneurs, du matériel bien souvent fabriqué par des entreprises étrangères. La deuxième technique est l'utilisation de sols améliorés avec des limons chaulés. Pour cela, il faut utiliser des matériaux argilo-calcaire auxquels sont ajoutés de la chaux afin de lui donner du liant.

VII.2.1.11-Construction des regards :

Les regards sont généralement de forme carrée dont les dimensions varient en fonction des collecteurs. La profondeur et l'épaisseur varient d'un regard à un autre. Les différentes opérations pour l'exécution d'un regard sont les suivantes :

- Réglage du fond du regard ;
- Exécution de la couche du béton de propreté ;
- Ferraillage du radier de regard ;
- **♣** Bétonnage du radier ;
- Ferraillage des parois ;
- Coffrage des parois ;
- ♣ Bétonnage des parois ;
- Décoffrage des parois ;
- ♣ Ferraillage de la dalle ;
- Coffrage de la dalle ;
- ♣ Bétonnage de la dalle ;
- Décoffrage de la dalle.

VII.2.1.12-Choix des engins :

Le choix des engins de terrassement est important car les travaux de terrassement sont une étape cruciale de tout chantier. Ils consistent à modifier le relief d'un terrain en déplaçant des quantités importantes de matériaux (généralement de la terre), en créant des ouvrages en remblai (ajout de matière) ou en déblai (enlèvement de matière).

Ils se composent généralement de 3 actions principales :

- ♣ L'extraction ;
- **Le transport**;
- ♣ La mise en œuvre.

Pour notre cas, les engins utilisés sont :

a. Le bulldozer ou bouteur :

La principale fonction de cet engin de terrassement est de pousser des matériaux par raclage du sol, par exemple pour niveler un terrain. Il est également utilisé pour pousser une décapeuse (scraper) qui permet d'extraire les matériaux du sol.

Le bulldozer est un tracteur monté sur chenilles ou sur pneus. Il est constitué d'une lame frontale qui peut être abaissée ou levée grâce à deux bras articulés (position basse pour le terrassement et position haute pour le transport). Cette lame est parfois inclinable par pivotement autour d'articulations horizontales.

Utilisation:

Le bulldozer permet les travaux :

- de transport jusqu'à 50 m
- de défrichage, déboisement, dessouchage
- de refoulement de terre, de roches désagrégées
- d'exécution d'un profil
- de construction de remblai sur plaine et creusement de fossé
- d'excavation en ligne droite, d'étalement en couches et de compactage superficiel, de remblayage;
- de mise au tas ;
- de remorquage de force.

Les services d'entretien routier utilisent les bouteurs essentiellement au débroussaillement et au décapage des emprunts ainsi qu'au foisonnement des matériaux ;

Le modèle angledozer est recommandé pour le foisonnement des emprunts ;

Le tiltdozer facilite la découverte des emprunts.

b. La chargeuse:

C'est un engin qui est sur pneus ou sur chenilles. Les chargeuses à chenilles sont utilisées sur des terrains ou les conditions du sol sont très mauvaises. Les chargeuses sur pneus sont employées de plus en plus à cause de leur grande mobilité (rapidité de manœuvre, plus grande facilité de déplacement).

La chargeuse se compose d'un tracteur équipé d'un godet ou benne relevable au moyen de deux bras latéraux articulés. Le godet est basculant. La commande du levage et du basculement du godet est hydraulique.

4 Utilisation:

La chargeuse est utilisée pour :

- Le chargement de tous matériaux ;
- L'excavation en plat de matériaux meubles ou désagrégés ;
- L'excavation en butte de matériaux tendres ;
- L'épandage et le nivellement de matériaux routiers.

c. Le compacteur :

C'est l'un des engins de compactage après le remblayage, qui est un engin lourd, qui tasse sous lui grâce à un ou plusieurs rouleaux en fonte.

Utilisation:

L'utilisation du compacteur dépendra des résultats donnés par l'essai Proctor du terrain. Le compactage sera fait par couches et chaque couche sera avant compactage soit humidifiée, soit exposée à l'air suivant la teneur en eau. Les terres seront régalées au bulldozer ou à la niveleuse, sur une épaisseur variant suivant le type de compacteur dont on dispose :

- pieds de mouton : e = 25 cm en 15 passes ;
- rouleaux à pneus 15 T : e = 10 cm en 6 passes ;
- rouleaux à pneus 50 T e = 30 cm en 6 passes ;
- rouleaux à pneus 50 T e = 50 cm en 10 passes.

On a souvent intérêt à augmenter plutôt le nombre de passes que le calibre de l'engin. Le type de compacteur sera choisi également en fonction de la granulométrie du sol :

- cylindres vibrants : sols granulaires ou rocheux ;
- pieds de mouton : sols plastiques un peu pauvres en eau, argile, revêtements de chaussée ;
- pneus : argile, revêtements de chaussée ;
- cylindres lisses : tous terrains, surtout graviers et concassés, sauf sols sableux ou terreux.

d. La pelle hydraulique:

C'est la reine du chantier et des engins de terrassement.

Elle est essentiellement utilisée pour l'excavation, mais également servir pour des travaux de manutention. Elle est appelée aussi pelle mécanique hydraulique ou excavatrice, est constituée d'un châssis sur chenilles ou pneus, d'une tourelle pivotante à 360°, d'un moteur hydraulique ainsi que d'un bras constitué de 3 équipements : une flèche, un balancier et un godet.

Utilisation:

La pelle est prévue pour plusieurs types de travaux :

- en butte;
- en rétro ;
- en dragline ;
- en benne preneuse ;
- avec équipements divers.

e. Décapeuse (ou scraper) :

La décapeuse possède une benne avec tiroir éjecteur, qui se baisse plus bas que le niveau du sol, pour extraire la matière en arasant le sol.

La décapeuse permet de réaliser des volumes supérieurs aux pelleteuses classiques qui chargent des tombereaux et d'imprimer un rythme plus soutenu. Mais, elle ne peut être utilisée que pour du terrassement de masse et pour des chantiers pour lesquels la distance entre l'emprunt et le dépôt est réduite (vitesse de déplacement limitée).

4 Utilisation :

Le scraper est un engin qui sert à l'extraction de la terre, à son chargement et à son déversement. Avec cet engin, on peut faire le travail du bulldozer, du chargeur, du camion de transporteur. Les limites d'emploi des scrapers sont les suivantes :

- scraper à chenilles : 30 à 300 m;
- scraper à pneus : 300 à 2000 m.

VII.3-Détermination des différents volumes :

VII.3.1-volume de la couche et terre végétale :

$$V_{dcv} = H_v. L. B (VII. 7)$$

Avec:

V_{dev}: Volume de la couche de terre végétale décapée en (m³).

Hy: Profondeur de la couche de terre végétale en(m).

L: Longueur total de la tranchée en (m).

B: Largeur de la couche de terre végétale en (m). B=0,6m

VII.3.2-Volume des déblais des tranchées :

$$V_{d} = B.L.H (VII.8)$$

Avec:

 V_d : Volume des déblais des tranchées en (m^3) .

B : Largeur de la couche du tronçon en(m).

L : Longueur totale de la tranchée en(m).

H: Profondeur de la tranchée en(m).

VII.3.3-Volume du lit de sable :

$$V_{ls} = e.L.B (VII.9)$$

Avec:

 V_{ls} : Volume du lit du sable en (m^3) .

e : Épaisseur de la couche de sable en (m).

L : Longueur totale de la tranchée en (m).

VII.3.4-Volume occupé par les conduites :

$$V_{cond} = L.\frac{\pi D^2}{4}$$
 (VII.10)

Avec:

V_{cond}: Volume occupé par les conduites en (m³).

L : Longueur totale de la tranchée en (m).

D : Diamètre de la conduite en(m).

VII.3.5-Volume du remblai :

$$V_r = V_{deb} - [V_{cond} + V_{ls}]$$
 (VII.11)

Avec:

 V_r : Volume du remblai en (m^3) .

VII.3.6-Volume excédentaire :

$$V_{\text{exc}} = V_{\text{f}} - V_{\text{rem}} \tag{VII.12}$$

Avec:

 V_{exc} : Volume du sol excédentaire en (m^3) .

 V_f : Volume du sol foisonné en (m^3) tel que $(V_f = V_{deb}.K_f)$.

K_f: Coefficient de foisonnement dépend de la nature du sol, présenté dans le tableau suivant :

Tableau VII-1: Coefficient de foisonnement.

Terrain	Foisonnement
Argile, limon, sable argileux	1.25
Grave et sable graveleux	1.10
Sols rocheux altérés	1.30
Sol meuble	1.35

❖ Notre coefficient de foisonnement est de 1.30.

Les différents volumes sont représentés dans le tableau suivant :

Tableau VII-2: Volumes de travaux.

Les volumes	V_d (m^3)	V_{cond} (m^3)	V_{ls} (m^3)	V_{rem} (m^3)	V _{exc} (m ³)
La somme	30500	1325.55	6749.43	39063.67	82359.64

VII.4-Devis quantitatif et estimatif :

Tableau VII-3: Détermination du devis quantitatif et estimatif du projet.

Tubleuu + 11 0 + Determination and ac+15 quantitation of estimatin an project										
N° de prix	Désignation des travaux	Unité	Quantité	Prix Unitaire	Prix Total					
A Terrassement										
A.1	Déblai exécute mécaniquement	\mathbf{M}^3	4300.00	500.00	2150000					
A.2	Déblai en terrain rocheux	\mathbf{M}^3	17200.00	6000.00	103200000					
A.3	Le remblai dans les tranchées des conduites	M^3	15900.00	2800.00	44520000					
A.4	Lit de sable	M^3	1600.00	2800.00	4480000					

A. 5	Rémunère l'opération de déblai	M^3	500.00	7000.00	3500000
	Four	niture et	B pose des con	duites	
B.1	Pose de conduite en PVC PN6bar D315	ML	9300.00	8000.00	74400000
B.2	Pose de conduite en PVC PN6bar D400	ML	1300.00	10000.00	13000000
B.3	Pose de conduite en PVC PN6bar D500	ML	400.00	11000.00	4400000
B.4	Pose de conduite en CAO DN500	ML	450.00	7500.00	3375000
B.5	Pose de conduite en CAO DN600	ML	1200.00	3500.00	4200000
B.6	Pose de conduite en CAO DN800	ML	350.00	2500.00	875000
		Con	C struction		
C.1	regard de visite en double nappe EP=20cm de hauteur $(1.00 > h > 2.00)_{m}$ et de dimensions (1.30 int x1.30 int) x h m	U	350.00	10000.00	3500000
C.2	regard de visite en double nappe EP=20cm de hauteur $(2.00 > h > 3.00)_{m}$ et de dimensions (1.30 int x1.30 int) x h m	U	120.00	11000.00	1320000
C.3	regard de visite en double nappe EP=20cm de hauteur $(3.00 > h > 5.50)_{m \text{ et de}}$ dimensions (1.30 int x1.30 int) x h m	U	70.00	12000.00	840000
C.4	déversoir d'orage en double nappe EP=20cm de hauteur $(2.00 > h > 4.00)_{\text{m}}$ avec un seuil déversant et de dimensions (suivant plan)	U	01.00	50000.00	50000

C.5	Confection du béton armé dosé à 350kg/m3	U	100.00	5000.00	500000		
C.6	traversé de route par Découpage de la couche bitumineuse	ML 20.00		8000.00	160000		
D Canalisation							
D.1	Traverse aérienne (longueur total : 3229 m)	U	01.00	5000.00	500000		

TOTAL EN HORS TAXES	261140000 DA
T.V.A 19 %	49616600 DA
TOTAL EN T.T.C.	310756600 DA

VII.5-Sécurité de travail :

La sécurité du travail repose sur un système sociotechnique, ensemble géré par des mesures de prévention des risques collectives et individuelles plus ou moins développées en fonction de la culture de prévention et de protection des travailleurs contre les accidents du travail et les maladies professionnelles.

Le but est avant tout de protéger les travailleurs qui prennent des risques, quel que soit l'emploi occupé, sur un plan physique ou psychologique. Mais la sécurité au travail a des objectifs et des enjeux qui ont l'avantage d'avoir des bénéfiques pour les employeurs, certes, mais également pour les entreprises.

Lorsqu'on évoque les accidents du travail, on a souvent plus ou moins tendance à penser qu'une seule cause serait à l'origine de la situation. S'agissant de l'accident de travail, on peut l'attribuer soit à la machine, soit à l'homme. Dans l'autre cas, on tente de faire ressortir la part de l'homme et la part de la machine. Ainsi les préoccupations concernant les risques professionnels, ne doivent pas être séparées de l'analyse du travail et les conditions dans lesquelles le travailleur est amené à exécuter son travail. L'analyse des causes d'accident n'a intérêt que si elle met celle-ci en relation avec le travail des opérateurs et on prend place dans un diagnostic général de la situation de travail et de ses effets sur la charge de travail, les risques pour la santé et la sécurité.

Figure VII-3: Les plaques d'organisation de chantier.

VII.5.1-Les couses des accidents :

Ces causes sont la somme de différents éléments ou facteurs classés en deux catégories distinctes :

- Facteur matériel.
- Facteur humain.

Le facteur matériel concerne les conditions dangereuses susceptibles d'évoluer au cours de travail.

Les causes d'accidents d'origine matérielle proviennent soit :

- De la profession en général et du poste de travail en particulier ;
- De la nature et de la forme des matériaux mis en œuvre :
- Des outils et machines utilisés : implantation, entretien ;
- De l'exécution du travail : difficultés particulières ;
- Du lieu de travail : éclairage, conditions climatiques, etc.
- Des conditions d'hygiène et de sécurité : ventilation, protection ; etc.

Par opposition aux conditions dangereuses techniquement et pratiquement décelables, les actions dangereuses dans le travail sont imputables au facteur humain et nécessitent parfois l'intervention de psychologues avertis.

Certaines actions dangereuses sont des réactions psychiques difficilement prévisibles, car chaque être humain est un cas particulier qui réagit différemment selon les circonstances, ou selon son humeur personnelle.

VII.5.2-Liste des conditions dangereuses :

CD n°1 : Installation non protégée,

Ex : absence de carters sur les lames et volant des scies à rubans ;

CD n° 2: Installation mal protégée,

Ex: ancien interrupteur à couteaux;

CD n° **3** : Protection individuelle inexistence,

Ex : absence tabouret isolé dans une cabine haute tension ;

CD n° 4 : Outillage, engin, équipement en mauvais état,

Ex : échelle dont les barreaux cassés ont été remplacés par des planches clouées ;

CD n° 5: Défaut dans la conception, dans la construction,

Ex : installation électrique en fil souple ;

CD n° 6: Matière défectueuse,

Ex : nœud dans une planche à toupiller

CD n° **7**: stockage irrationnel,

Ex : empilage des couronnes de « fil machine » sur une grande hauteur ;

CD n° **8** : Mauvaise disposition des lieux,

Ex : escalier trop étroit ;

CD n° 9: Eclairage défectueux,

Ex : éclairage individuel du poste de travail sans éclairage générale ;

CD n° 10: Facteurs d'ambiance impropres,

Ex : vapeur dans les blanchisseries ;

CD n° **11** : Condition climatiques défavorables,

Ex : pose d'une antenne de télévision sur un toit givré.

VII.5.3-Liste des actions dangereuses :

AD n°1: Intervenir sans précaution sur des machines en mouvement,

Ex : graissé en marche ;

AD n° 2: Intervenir sans précaution sur des installations sous tension, sous pression ou contenant des substances inflammables ou toxiques,

Ex : ramasser un outil à proximité d'un conducteur sous tension ;

AD n°3: Agir sans prévenir ou sans autorisation,

Ex : pénétrer dans un silo sans avertir ;

AD n° 4: Neutraliser les dispositifs de sécurité,

Ex: travaux d'entretien dans un malaxeur sans cadenasser l'interrupteur;

AD n° 5 : Ne pas utiliser l'équipement de protection individuelle,

Ex: meulé sans lunettes;

AD n° 6: Mauvaise utilisation d'un outillage, engin,

Ex : tiré un wagonnet au lieu de le pousser ;

AD n° 7: Imprudence durant les opérations de stockage et manutention,

Ex : passer sous une charge suspendue ;

AD n°8: Adopter une position peu sûre,

Ex : transport de personnel sur la plate – forme d'un camion chargé de gros matériel ;

AD n°9: Travailler dans une attitude inappropriée,

Ex : utiliser une caisse pour atteindre un objet hors de portée ;

AD n° 10: Suivre un rythme de travail inadapté,

Ex : cadence de travail trop rapide ;

AD n° 11 : Plaisanter ou se querelle ;

VII.5.4-La prévention des risques professionnels :

La prévention est souvent perçue comme une contrainte supplémentaire et une perte de temps. De plus, elle coûte cher et exige trop de moyens. Le principal obstacle est cependant une mauvaise appréciation des bénéfices liés à la prévention, en termes de réduction des accidents et de protection de la santé au travail, mais aussi de réduction des coûts.

Il semble souhaitable de sensibiliser non seulement le personnel, mais aussi les employeurs, aux enjeux de la prévention. Ce n'est qu'en intégrant la prévention aux processus de l'entreprise et en faisant prendre conscience de son importance à la direction de l'entreprise que l'on obtiendra qu'une meilleure place lui soit accordée.

Il s'agit ainsi d'investir dans la prévention car non seulement l'entreprise s'acquitte des obligations légales, en tire le meilleur partie, anticipe les changements et aussi réduit le nombre et le coût des accidents de travail et des maladies professionnelles

L'organisation de la prévention se présente à travers les activités professionnelles du pays comme une immense chaîne de solidarité, composée de multiples maillons, correspondant chacun aux différents services ou personnes intéressées figurés dans l'organigramme ci-après :

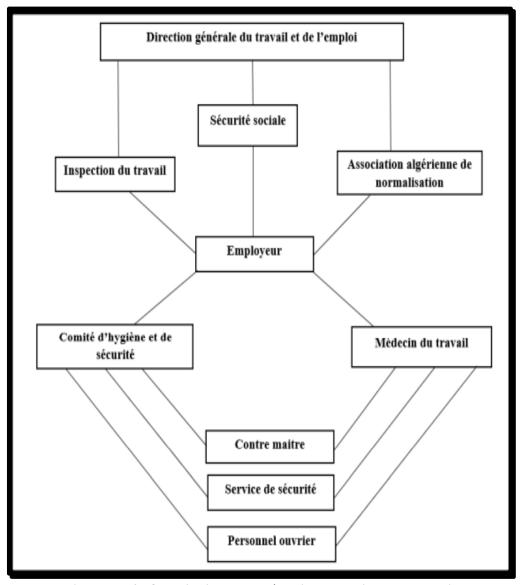


Figure VII-4 : Organisation de la prévention des accidents du travail.

VII.6-Planification du projet :

La planification de projet correspond à l'organisation des tâches à réaliser sur une période donnée. L'objectif de la planification est de déterminer le coût, les ressources mobilisées et la meilleure manière d'ordonnancer toutes les tâches à effectuer.

Elle consiste à chercher constamment la meilleure façon d'utiliser avec économie la main d'œuvre et les autres moyens de mise en œuvre pour assurer l'efficacité de l'action à entreprendre, elle consiste en :

- Installation des postes de travail ;
- Observations instantanées :
- Analyse des tâches ;
- Le chronométrage ;
- Définition des objectifs et des attributions ;
- Simplification des méthodes ;
- Stabilisation des postes de travail.

VII.6.1-Techniques de la planification :

Il existe deux principales méthodes de planification à savoir :

- Méthodes basées sur le graphique.

VII.6.1.1-Méthodes basées sur le réseau :

❖ Définition du réseau :

Le réseau est une représentation graphique d'un projet qui permet d'indiquer la relation entre les différentes opérations qui peuvent être successives, simultanées, convergentes et la durée de réalisation.

On distingue deux types de réseaux :

a. Réseau à flèches :

L'opération est représentée par une flèche et la succession des opérations par des nœuds.

L'opération A précède l'opération B.

b. Réseau à nœuds :

L'opération est représentée par un nœud et la succession des opérations par des flèches

L'opération (B) ne peut commencer que si l'opération (A) est complètement achevée.

* Construction du réseau :

Pour construire un réseau il convient d'effectuer les six (6) opérations suivantes :

✓ Etablissement d'une liste des tâches ;

- ✓ Détermination des tâches antérieures ;
- ✓ Construction des graphes partiels ;
- ✓ Regroupement des graphes partiels ;
- ✓ Détermination des tâches de début de l'ouvrage et de fin de l'ouvrage ;
- ✓ Construction du réseau.

VII.6.1.2-Méthode basées sur le graphique :

Méthode C.P.M (méthode du chemin critique) :

L'objectif de cette méthode est de réduire les temps de réalisation d'un ouvrage en tenant compte de trois phases :

1ère phase : l'effectif nécessaire pour effectuer le travail considéré ;

2ème phase : analyser systématiquement le réseau, heure par heure, jour pour jour, selon l'unité de temps retenue ;

3ème phase : adapter le réseau aux conditions ou contraintes fixées par l'entreprise.

VII.6.2-Les étapes de la planification :

La planification est le processus de la ligne de conduite des travaux à réaliser, elle comprend des étapes suivantes :

VII.6.2.1-Collection des informations :

L'établissement d'une synthèse d'analyse des informations acquises par des études comparatives permet l'usage correct du plan de réalisation de notre projet.

VII.6.2.2-Décomposition du projet :

C'est une partie importante car chaque projet peut être analysé de diverses manières ; nous attribuons à chaque tâche un responsable et ses besoins en matériels

VII.6.2.3-Relations entre les tâches :

Il existe deux relations essentielles entre les tâches lors de la réalisation ; l'une porte sur un enchaînement logique et l'autre sur un enchaînement préférentiel.

VII.6.2.4-Les paramètres de la méthode C.P.M:

Les paramètres indispensables dans l'exécution de cette méthode sont les suivants :

Tableau VII-4: Les paramètres de la méthode C.P.M.

DCP	TR
DFP	DCPP
DFPP	MT

Avec:

TR : Temps de réalisation ;

DCP: Date de commencement au plus tôt ; **DCPP**: Date de commencement au plus tard ;

DFP: Date de finition au plus tôt; **DFPP**: Date de finition au plus tard;

MT: Marge totale.

$$Et: \begin{cases} DFP = DCP + TR \\ DCPP = DFPP - TR \end{cases}$$

❖ Chemin critique (C.C) : C'est le chemin qui donne la durée totale du projet (DTR) reliant les opérations possédant la marge totale nulle (0).

Donc pour retrouver un chemin critique il suffit de vérifier la double condition suivante :

$$cc \Leftrightarrow \begin{cases} MT = 0 \\ \sum TR_{C.C} = D.T.P \end{cases}$$

VII.6.2.5-Attribution des durées de chaque opération :

Pour l'attribution du temps, il est nécessaire de se baser sur deux points :

- ✓ Le nombre de ressources (moyens humains et matériels) ;
- ✓ Dimensions du projet.

En utilisant les normes C.N.A.T, on pourra appliquer la formule suivante :

$$T = \frac{Q.N}{n}$$
 (VII.13)

Avec:

Q : Quantité de travail.

N: Rendement.

n: Nombre d'équipes.

VII.6.3-Symboles des différentes opérations :

Les principales opérations à exécuter sont :

- A. Décapage de la couche de terre végétale.
- **B.** Piquetage
- C. Exécution des tranchées et des fouilles pour les regards.
- **D.** Aménagement du lit de pose.
- **E.** La mise en place des canalisations en tranchée.
- **F.** Assemblage des tuyaux.
- G. Faire les essais d'étanchéité pour les conduites et joints.
- H. Remblai des tranchées.
- I. construction des regards.
- J. remblai des tranchées.
- **K.** Travaux de finition.

Détermination des délais par la méthode de tableau :

OPERATION	TD/iours)	TP(iours) DP		DI	МТ	
OPERATION	TR(jours)	DCP	DFP	DCPP	DFPP	IVI I
Α	15	0	15	0	15	0
В	20	15	35	15	35	0
С	90	35	125	35	125	0
D	20	125	145	145	165	20
E	40	125	165	125	165	0
F	20	125	145	145	165	20
G	30	125	155	135	165	10
Н	15	165	180	165	180	0
I	15	180	195	180	195	0
J	30	195	225	195	225	0
K	20	225	245	225	245	0

Tableau VII-5 : Détermination de délais.

$$\sum TR = 245$$
 jours

• Le chemin critique :

A-B-C-E-H-I-J-K

VII.7-Conclusion:

Ce chapitre nous permet d'estimer le devis estimatif et qualitatif de notre projet.

L'organisation de chantier est nécessaire pour la réalisation d'un système d'assainissement, et cela afin d'économiser le cout, l'énergie et le temps sans oublier l'amélioration du rendement de travail.

L'étude estimative des volumes des travaux nous permet d'établir une estimation du coût total du projet, qui est de 310756600 DA, avec une durée de réalisation de 245 jours.

CONCLUSION GÉNÉRALE

En conclusion, nous pouvons dire que dans ce mémoire, nous avons conçu un système d'évacuation des eaux usées et pluviales de la zone d'Oued Drabla (wilaya de Mila) vers un exutoire afin de protéger la santé publique et l'environnement.

Nous avons commencé par la présentation de la zone d'étude et ses caractéristiques. Par la suite, l'étude hydrologique s'impose pour déterminer l'intensité moyenne maximale qui est de 150 L/s/ha, en utilisant les résultats obtenus par l'ajustement de la série pluviométrique à la loi Log-normale.

Le réseau que nous avons projeté, est de type unitaire, avec un schéma d'évacuation par déplacement latéral, les eaux usées évacuées sont acheminées vers le point de rejet de la zone. Pour l'évaluation des débits des eaux usées, nous avons pris en considération les débits domestiques et publics vu qu'il n'y a pas des industries au niveau de la zone d'étude. Pour l'estimation des débits pluviaux, nous avons découpé la zone en 09 sous-bassins, et opté pour la méthode rationnelle. Les collecteurs utilisés sont en PVC (φ315, 400, 500 mm) et en CAO (φ 500, 600,800) qui ont une excellente étanchéité, très grande facilité de pose, très bonne caractéristique hydraulique, bonne résistance mécanique.

Et pour faciliter les opérations de curage et assurer une meilleure sécurité à notre réseau, nous avons procédé à l'implantation et au dimensionnement d'un déversoir d'orages de type à seuil frontal.

Pour les éléments du réseau d'égout ; des regards simples de visite ont été projetés ainsi que ceux de chute.

D'après l'étude d'organisation de chantier nous avons estimé le coût du projet à 310756600 D.A avec une durée de réalisation du projet de 245jours.

RÉFÉRENCES BIBLIOGRAPHIQUES

Ouvrage:

- ♣ Bourrier R. (2008). Les réseaux d'assainissement: calcule .application .perspectives (5e EDITION).
- ♣ Bourrier R., Satin M., Selmi B., 2010, Guide technique de l'assainissement, Ed. Le Moniteur, - 775 pages.
- ♣ Bourrier, R., Satin, M., & Selmi, B. (2017). Guide technique de l'assainissement : Collecte, épuration, conception, exploitation (5e éd). Éditions « Le Moniteur ».
- ♣ Guide technique de l'assainissement de Mr SALAH.B.
- Gomella C. et Guerree H., 1967. « Les eaux usées dans les agglomérations urbaines ». Eyrolles, Paris.
- ♣ Gomella, C., Guerree, H., 1986 « Guide d'assainissement dans les agglomérations urbaines et rurales (tome 1), Eyrolles, Paris.
- **KAHLERRAS.D.** Cours d'assainissement, 4^{éme} année, ENSH2020.
- **♣** KAHLERRAS.D. Cours organisation de chantier, 4^{éme} année, ENSH2020.
- **♣** KAHLERRAS.D. Cours Sécurité de travail, 5^{éme} année, ENSH2021.
- ♣ SALAH. B. « polycops d'assainissement », école nationale supérieure de l'hydraulique, BLIDA.
- ♣ SALAH.B. Cours d'assainissement, 5^{eme} année, ENSH2021.
- **↓** TOUAIBIA, B. « Manuel pratique d'hydrologie » 2004.

Mémoires de fin d'étude :

- ♣ Azari, S.2019. Dimensionnement d'un réseau d'assainissement de la nouvelle ville de BOUINAN-Lot : B et D-(W.Blida). Mémoire fin d'étude d'assainissement, école nationale supérieure d'Hydraulique de Blida, Algérie.
- → LAROUCI, F 2021. Etude de conception du réseau d'assainissement du Douar Slamnia de la Commune Bourached (W.Ain Defla). Mémoire fin d'étude d'assainissement, école nationale supérieure d'Hydraulique de Blida, Algérie.

ANNEXES

Annexes 1 : La série pluviométrique (précipitations maximales journalières) de la station de Hammam Grouz :

n	Années	P _{J max}
1	1992	49.2
2	1993	59.0
3	1994	36,7
4	1995	27,1
5	1996	35.0
6	1997	32,5
7	1998	35,6
8	1999	31,2
9	2000	44,7
10	2001	20.0
11	2002	28.0
12	2003	55.0
13	2004	24,2
14	2005	87,5
15	2006	40,7
16	2007	29.0
17	2008	38,22
18	2009	50,6
19	2010	38.0
20	2011	32,6
21	2012	24,3
22	2013	18,5
23	2014	40,1
24	2015	39,4
25	2016	37,2

Annexes 2: Table du X^2 :

TABLE DU X2

La table donne la probabilité α pour que χ^2 égale ou dépasse une valeur donnée, en fonction du nombre de degrés de liberté v. Exemple : avec $\nu=3$, pour $\chi^2=0,11$ la probabilité $\alpha=0,99$.

α	0,99	0,975	0,95	0,90	0,10	0.05	0,025	0,01	0,00
٧			Park of the	***************************************					
1	0,0002	0,001	0,004	0,016	2,71	3,84	5,02	6,63	10,8
2	0.02	0,05	0,10	0,21	4,61	5,99	7,38	9,21	13,8
3	0,11	0,22	0,35	0,58	6,25	7,81	9,35	11,34	16,2
4	0,30	0,48	0,71	1,06	7,78	9,49	11,14	13,28	18,4
5	0,55	0,83	1,15	1,61	9,24	11,07	12,83	15,09	20,5
6	0,87	1,24	1,64	2,20	10,64	12,59	14,45	16,81	22,4
7	1,24	1,69	2,17	2,83	12,02	14,07	16,01	18,48	24,3
8	1,65	2,18	2,73	3,49	13,36	15,51	17,53	20,09	26,1
9	2,09	2,70	3,33	4,17	14,68	16,92	19,02	21,67	27,8
10	2,56	3,25	3,94	4,87	15,99	18,31	20,48	23,21	29,5
11	3,05	3,82	4,57	5,58	17,28	19,68	21,92	24,73	31,2
12	3,57	4,40	5,23	6,30	18,55	21,03	23,34	26,22	32,9
13	4,11	5,01	5,89	7,04	19,81	22,36	24,74	27,69	34,5
14	4,66	5,63	6,57	7,79	21,06	23,68	26,12	29,14	36,1
15	5,23	6,26	7,26	8,55	22,31	25,00	27,49	30,58	37,7
16	5,81	6,91	7,96	9,31	23,54	26,30	28,85	32,00	39,2
17	6,41	7,56	8,67	10,09	24,77	27,59	30,19	33,41	40,7
18	7,01	8,23	9,39	10,86	25,99	28,87	31,53	34,81	42,3
19	7,63	8,91	10,12	11,65	27,20	30,14	32,85	36,19	43,8
20	8,26	9,59	10,85	12,44	28,41	31,41	34,17	37,57	45,3
21	8,90	10,28	11,59	13,24	29,62	32,67	35,48	38,93	46,8
22	9,54	10,98	12,34	14,04	30,81	33,92	36,78	40,29	48,2
23	10,20	11,69	13,09	14,85	32,01	35,17	38,08	41,64	49,7
24	10,86	12,40	13,85	15,66	33,20	36,42	39,36	42,98	51,1
25	11,52	13,12	14,61	16,47	34,38	37,65	40,65	44,31	52,6
26	12,20	13,84	15,38	17,29	35,56	38,89	41,92	45,64	54,0
27	12,88	14,57	16,15	18,11	36,74	40,11	43,19	46,96	55,4
28	13,56	15,31	16,93	18,94	37,92	41,34	44,46	48,28	56,8
29	14,26	16,05	17,71	19,77	39,09	42,56	45,72	49,59	58,3
30	14,95	16,79	18,49	20,60	40,26	43,77	46,98	50,89	59,7

Annexes 3:

Abaque N^01 : réseaux pluviaux en système unitaire ou séparatif (canalisation circulaire).

Ab. 4a

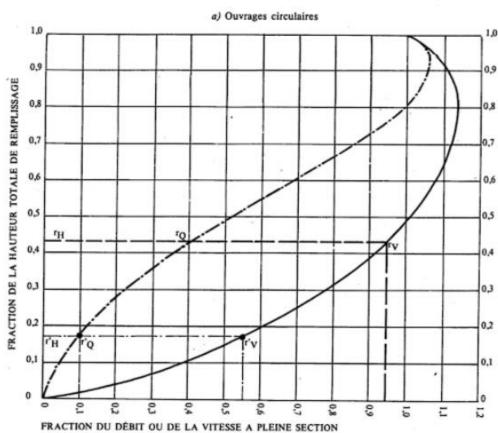
RÉSEAUX PLUVIAUX EN SYSTÈME UNITAIRE OU SÉPARATIF

(Canalisations circulaires) 0,03 14 12 10 5 3 DÉBITS EN MÉTRES CURES PAR SECONDE METRES CURES PAR SECONDE 2 0,9 0,8 0,7 0,6 0,5 0,4 0.3 0,3 0,2 0,09 0.09 80,0 0,08 0,07 0,07 0,06 0,05

Nota. – La valeur du coefficient de Bazin a été prise égale à 0.46. Lorsque la pose des canalisations aura été particulièrement soignée, et surtout si le réseau est bien entretenu, les débits pourront être majorés de 20 % (V = 0.30). A débit égal, les pentes pourront être réduites d'un tiers.

Pentes en mêtres par mêtre

0,002


Annexes 4:

Abaque 2 : variations des débits et des vitesses en fonction du remplissage.

ABAQUE Ab. 5

Ab. 5 (a)

VARIATIONS DES DÉBITS ET DES VITESSES EN FONCTION DU REMPLISSAGE

MODE D'EMPLOL

Les abaques Ab. 3 et Ab. 4 (a et b) utilisés pour le choix des sections d'ouvrages, compte tenu de la pente et du débit, permettent d'évaluer la vitesse d'écoulement à pleine section.

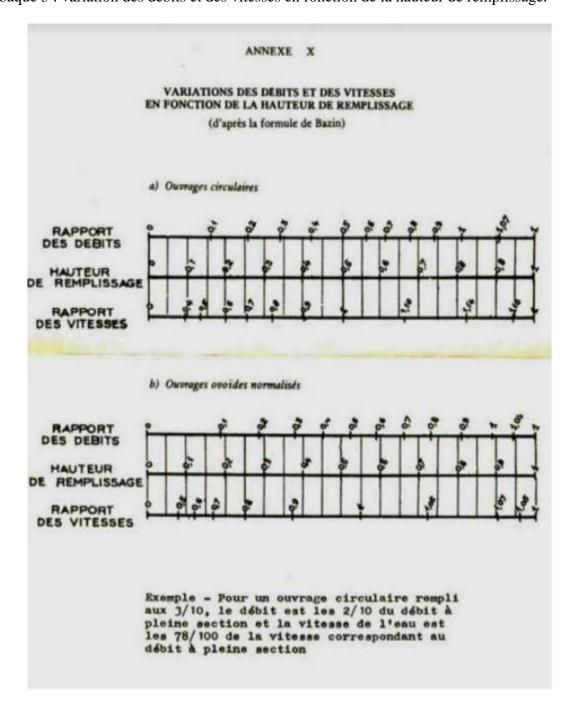
Pour l'évaluation des caractéristiques capacitaires des conduites, ou pour apprécier les possibilités d'autocurage, le nomogramme ci-dessus permet de connaître la vitesse atteinte en régime uniforme pour un débit inférieur à celui déterminé à pleine section.

Les correspondances s'établissent, soit en fonction de la fraction du débit à pleine section, soit en fonction de la hauteur de remplissage de l'ouvrage.

Exemples:

Pour $r_Q = 0.40$, on obtient $r_V = 0.95$ et $r_H = 0.43$.

Pour Qps/10, on obtient $r'_V = 0.55$ et $r'_H = 0.17$ (autocurage).


Nota. – Pour un débit égal au débit à pleine section, la valeur du rapport $r_Q = 1,00$ est obtenue avec $r_H = 0,80$.

Le débit maximum ($r_Q = 1,07$) est obtenu avec $r_H = 0.95$.

La vitesse maximum (r_V = 1,14) est obtenue avec r_H = 0,80.

Ces dernières conditions d'écoulement à caractère assez théorique ne peuvent être obtenues que dans des conditions très particulières d'expérimentation.

Annexes 5 : Abaque 3 : variation des débits et des vitesses en fonction de la hauteur de remplissage.

Annexes 6 : Calcul hydraulique des collecteurs d'assainissement.

Tableau 1 : Estimation des débits des eaux usées.

Tableau 1 : Estimation des debits des eaux usees.										
Collecteur	Reg.Amont	Reg.Aval	Distance	Pente	Q spe	Q propre	Q tronsit	Q cumul		
	R01	R02	30,00	0,043	0,001187346	0,036	2,443	2,478		
	R02	R03	30,00	0,047	0,001187346	0,036	2,478	2,514		
COLI	R03	R04	21,30	0,023	0,001187346	0,025	2,514	2,539		
COLL 01A	R04	R05	30,00	0,020	0,001187346	0,036	2,539	2,575		
UIA	R05	R06	30,00	0,010	0,001187346	0,036	2,575	2,610		
	R06	R07	38,00	0,037	0,001187346	0,045	2,610	2,655		
	R07	R244	38,00	0,020	0,001187346	0,045	2,655	2,701		
Collecteur	Reg.Amont	Reg.Aval	Distance	Pente	Q spe	Q propre	Q tronsit	Q cumul		
	R12	R13	30,00	0,015	0,001187346	0,036	0,558	0,593		
	R13	R14	30,00	0,027	0,001187346	0,036	0,593	0,629		
	R14	R15	33,25	0,024	0,001187346	0,039	0,629	0,669		
	R15	R16	30,00	0,023	0,001187346	0,036	0,669	0,704		
	R16	R17	20,80	0,030	0,001187346	0,025	0,704	0,729		
	R17	R18	23,20	0,026	0,001187346	0,028	0,729	0,756		
	R18	R19	30,00	0,030	0,001187346	0,036	0,756	0,792		
COLL 01	R19	R20	30,00	0,007	0,001187346	0,036	0,792	0,828		
	R20	R21	20,00	0,007	0,001187346	0,024	0,828	0,851		
	R21	R22	21,45	0,007	0,001187346	0,025	0,851	0,877		
	R22	R23	35,70	0,007	0,001187346	0,042	0,978	1,021		
	R23	R24	39,50	0,025	0,001187346	0,047	1,021	1,067		
	R24	R25	11,50	0,017	0,001187346	0,014	1,067	1,081		
	R25	R26	36,05	0,014	0,001187346	0,043	1,148	1,191		
	R26	R27	30,00	0,013	0,001187346	0,036	1,191	1,226		

	R27	R28	30,00	0,025	0,001187346	0,036	1,226	1,262
	R28	R29	30,00	0,020	0,001187346	0,036	1,262	1,297
	R29	R30	32,60	0,012	0,001187346	0,039	1,297	1,336
	R30	R31	30,00	0,010	0,001187346	0,036	1,336	1,372
	R31	R32	30,00	0,010	0,001187346	0,036	1,372	1,407
	R32	R33	38,40	0,025	0,001187346	0,046	1,407	1,453
	R33	R34	30,00	0,025	0,001187346	0,036	1,453	1,489
	R34	R35	33,35	0,025	0,001187346	0,040	1,489	1,528
	R35	R36	30,00	0,010	0,001187346	0,036	1,528	1,564
	R36	R37	30,00	0,010	0,001187346	0,036	1,564	1,599
	R37	R38	30,00	0,010	0,001187346	0,036	1,599	1,635
	R38	DO	10,70	0,010	0,001187346	0,013	10,492	10,505
	DO	R39	13,45	0,023	0,001187346	0,016	10,505	10,521
	R39	R40	23,90	0,084	0,001187346	0,028	10,521	10,549
	R40	R41	25,00	0,012	0,001187346	0,030	10,549	10,579
	R41	R42	16,75	0,048	0,001187346	0,020	10,579	10,599
	R42	R43	29,90	0,009	0,001187346	0,036	10,599	10,634
	R43	R44	9,90	0,009	0,001187346	0,012	10,634	10,646
	R44	R45	38,85	0,009	0,001187346	0,046	10,646	10,692
COLL 01	R45	R46	33,90	0,024	0,001187346	0,040	10,692	10,732
	R46	R47	30,00	0,020	0,001187346	0,036	10,732	10,768
	R47	R48	30,05	0,047	0,001187346	0,036	10,768	10,804
	R48	R49	30,05	0,037	0,001187346	0,036	10,804	10,839
	R49	R50	30,00	0,010	0,001187346	0,036	10,839	10,875
	R50	R51	30,00	0,053	0,001187346	0,036	10,875	10,910
	R51	R52	30,00	0,007	0,001187346	0,036	10,910	10,946
	R52	R53	30,05	0,033	0,001187346	0,036	10,946	10,982
	R53	R54	27,45	0,010	0,001187346	0,033	10,982	11,014

			I	I			T T	
	R54	R55	20,80	0,010	0,001187346	0,025	11,014	11,039
	R55	R56	35,00	0,026	0,001187346	0,042	11,039	11,081
	R56	R57	35,25	0,054	0,001187346	0,042	11,081	11,122
	R57	R58	20,00	0,050	0,001187346	0,024	11,122	11,146
	R58	R59	29,70	0,050	0,001187346	0,035	11,146	11,181
	R59	R60	40,00	0,030	0,001187346	0,047	11,181	11,229
	R60	R61	34,00	0,007	0,001187346	0,040	11,229	11,269
	R61	R62	22,50	0,007	0,001187346	0,027	11,269	11,296
	R62	R63	20,00	0,007	0,001187346	0,024	11,296	11,320
	R63	R64	40,00	0,030	0,001187346	0,047	11,320	11,367
	R64	R65	40,00	0,028	0,001187346	0,047	11,367	11,415
	R65	R66	39,00	0,015	0,001187346	0,046	11,415	11,461
	R66	R67	36,95	0,030	0,001187346	0,044	11,461	11,505
	R67	R68	40,00	0,015	0,001187346	0,047	11,505	11,552
	R68	R69	40,00	0,030	0,001187346	0,047	11,552	11,600
	R69	R70	40,00	0,023	0,001187346	0,047	11,600	11,647
	R70	R71	20,00	0,015	0,001187346	0,024	11,647	11,671
	R71	BP	25,00	0,020	0,001187346	0,030	11,671	11,701
Collecteur	Reg.Amont	Reg.Aval	Distance	Pente	Q spe	Q propre	Q tronsit	Q cumul
	R75	R76	30,00	0,023	0,001187346	0,036	0,000	0,036
	R76	R77	30,00	0,020	0,001187346	0,036	0,036	0,071
	R77	R78	30,00	0,020	0,001187346	0,036	0,071	0,107
COLL 02	R78	R79	21,35	0,016	0,001187346	0,025	0,107	0,132
COLL 02	R79	R80	22,70	0,016	0,001187346	0,027	0,132	0,159
	R80	R81	30,00	0,027	0,001187346	0,036	0,159	0,195
	R81	R82	26,40	0,038	0,001187346	0,031	0,195	0,226
	R82	R83	30,00	0,027	0,001187346	0,036	0,226	0,262

	R83	R84	30,00	0,013	0,001187346	0,036	0,262	0,297
	R84	R01	39,05	0,008	0,001187346	0,046	0,297	0,344
Collecteur	Reg.Amont	Reg.Aval	Distance	Pente	Q spe	Q propre	Q tronsit	Q cumul
	R85	R86	21,85	0,011	0,001187346	0,026	0,000	0,026
	R86	R87	25,50	0,011	0,001187346	0,030	0,026	0,056
	R87	R88	29,15	0,021	0,001187346	0,035	0,125	0,160
	R88	R89	32,20	0,006	0,001187346	0,038	0,205	0,243
	R89	R90	16,85	0,030	0,001187346	0,020	0,316	0,336
	R90	R91	25,00	0,052	0,001187346	0,030	0,449	0,479
	R91	R92	22,35	0,063	0,001187346	0,027	0,479	0,506
	R92	R93	20,00	0,045	0,001187346	0,024	0,506	0,529
	R93	R94	20,00	0,015	0,001187346	0,024	0,529	0,553
	R94	R95	24,00	0,096	0,001187346	0,028	0,768	0,797
	R95	R96	24,75	0,032	0,001187346	0,029	0,962	0,992
COLL 03	R96	R97	31,35	0,041	0,001187346	0,037	1,052	1,090
COLL 03	R97	R98	30,00	0,067	0,001187346	0,036	1,179	1,215
	R98	R99	28,10	0,070	0,001187346	0,033	1,215	1,248
	R99	100	30,00	0,070	0,001187346	0,036	1,305	1,340
	100	101	30,00	0,063	0,001187346	0,036	1,340	1,376
	101	101	16,00	0,028	0,001187346	0,019	1,376	1,395
	101	102	17,55	0,046	0,001187346	0,021	1,466	1,487
	102	103	30,80	0,065	0,001187346	0,037	1,487	1,524
	103	104	26,45	0,065	0,001187346	0,031	1,571	1,602
	104	105	25,45	0,063	0,001187346	0,030	1,602	1,632
	105	106	12,15	0,033	0,001187346	0,014	1,695	1,709
	106	107	17,10	0,023	0,001187346	0,020	2,067	2,087
	107	RO1	10,00	0,020	0,001187346	0,012	2,087	2,099

Collecteur	Reg.Amont	Reg.Aval	Distance	Pente	Q spe	Q propre	Q tronsit	Q cumul
COLL 04	108	109	30,00	0,077	0,001187346	0,036	0,000	0,036
COLL 04	109	R87	28,30	0,042	0,001187346	0,034	0,036	0,069
Collecteur	Reg.Amont	Reg.Aval	Distance	Pente	Q spe	Q propre	Q tronsit	Q cumul
COLL 05	110	111	20,00	0,048	0,001187346	0,024	0,000	0,024
COLL 03	111	R88	17,60	0,063	0,001187346	0,021	0,024	0,045
Collecteur	Reg.Amont	Reg.Aval	Distance	Pente	Q spe	Q propre	Q tronsit	Q cumul
COLL 06	112	113	30,00	0,043	0,001187346	0,036	0,000	0,036
COLL 00	113	R89	31,45	0,057	0,001187346	0,037	0,036	0,073
Collecteur	Reg.Amont	Reg.Aval	Distance	Pente	Q spe	Q propre	Q tronsit	Q cumul
	114	115	30,00	0,057	0,001187346	0,036	0,000	0,036
COLL 07	115	116	30,00	0,083	0,001187346	0,036	0,036	0,071
COLL 07	116	117	20,00	0,060	0,001187346	0,024	0,071	0,095
	117	R90	15,60	0,032	0,001187346	0,019	0,095	0,114
Collecteur	Reg.Amont	Reg.Aval	Distance	Pente	Q spe	Q propre	Q tronsit	Q cumul
	118	119	32,00	0,038	0,001187346	0,038	0,000	0,038
COLL 08	119	120	30,00	0,043	0,001187346	0,036	0,125	0,160
COLL 08	120	121	30,00	0,063	0,001187346	0,036	0,160	0,196
	121	R94	16,35	0,024	0,001187346	0,019	0,196	0,215
Collecteur	Reg.Amont	Reg.Aval	Distance	Pente	Q spe	Q propre	Q tronsit	Q cumul
	122	123	20,00	0,070	0,001187346	0,024	0,000	0,024
COLL 09	123	124	26,70	0,045	0,001187346	0,032	0,024	0,055
	124	119	26,30	0,076	0,001187346	0,031	0,055	0,087

Collecteur	Reg.Amont	Reg.Aval	Distance	Pente	Q spe	Q propre	Q tronsit	Q cumul
	125	126	20,00	0,040	0,001187346	0,024	0,000	0,024
	126	127	20,65	0,019	0,001187346	0,025	0,024	0,048
COLL 10	127	128	21,85	0,037	0,001187346	0,026	0,048	0,074
COLL 10	128	129	23,35	0,009	0,001187346	0,028	0,074	0,102
	129	130	20,00	0,070	0,001187346	0,024	0,102	0,126
	130	R95	33,55	0,036	0,001187346	0,040	0,126	0,166
Collecteur	Reg.Amont	Reg.Aval	Distance	Pente	Q spe	Q propre	Q tronsit	Q cumul
COLL 11	131	132	30,00	0,070	0,001187346	0,036	0,000	0,036
COLL 11	132	R96	21,00	0,029	0,001187346	0,025	0,036	0,061
Collecteur	Reg.Amont	Reg.Aval	Distance	Pente	Q spe	Q propre	Q tronsit	Q cumul
	133	134	19,35	0,052	0,001187346	0,023	0,000	0,023
COLL 12	134	135	30,00	0,043	0,001187346	0,036	0,023	0,059
	135	R97	26,30	0,008	0,001187346	0,031	0,059	0,090
Collecteur	Reg.Amont	Reg.Aval	Distance	Pente	Q spe	Q propre	Q tronsit	Q cumul
COLL 13	136	137	30,00	0,097	0,001187346	0,036	0,000	0,036
COLL 13	137	R99	17,40	0,075	0,001187346	0,021	0,036	0,056
Collecteur	Reg.Amont	Reg.Aval	Distance	Pente	Q spe	Q propre	Q tronsit	Q cumul
	138	139	13,50	0,067	0,001187346	0,016	0,000	0,016
COLL 14	139	140	9,70	0,036	0,001187346	0,012	0,016	0,028
COLL 14	140	141	18,10	0,235	0,001187346	0,021	0,028	0,049
	141	101	18,65	0,239	0,001187346	0,022	0,049	0,071
Collecteur	Reg.Amont	Reg.Aval	Distance	Pente	Q spe	Q propre	Q tronsit	Q cumul

COLT 15	142	143	20,00	0,030	0,001187346	0,024	0,000	0,024
COLL 15	143	103	19,55	0,082	0,001187346	0,023	0,024	0,047
Collecteur	Reg.Amont	Reg.Aval	Distance	Pente	Q spe	Q propre	Q tronsit	Q cumul
COLL 16	142	143	24,30	0,132	0,001187346	0,029	0,000	0,029
COLL 10	143	105	28,50	0,049	0,001187346	0,034	0,029	0,063
Collecteur	Reg.Amont	Reg.Aval	Distance	Pente	Q spe	Q propre	Q tronsit	Q cumul
	145	146	25,40	0,063	0,001187346	0,030	0,000	0,030
	146	147	30,00	0,040	0,001187346	0,036	0,082	0,117
COLL 17	147	148	20,25	0,054	0,001187346	0,024	0,117	0,141
COLL 17	148	149	26,70	0,006	0,001187346	0,032	0,173	0,205
	149	150	37,00	0,006	0,001187346	0,044	0,268	0,312
	150	106	38,65	0,021	0,001187346	0,046	0,312	0,357
						,		
Collecteur	Reg.Amont	Reg.Aval	Distance	Pente	Q spe	Q propre	Q tronsit	Q cumul
	Reg.Amont	Reg.Aval	Distance 20,20	Pente 0,223	Q spe 0,001187346	_	Q tronsit	Q cumul 0,024
COLL 18	Ü					propre		_
	151	152	20,20	0,223	0,001187346	propre 0,024	0,000	0,024
COLL 18	151 152	152 146	20,20 23,25	0,223	0,001187346 0,001187346	propre 0,024 0,028 Q	0,000	0,024 0,052
COLL 18 Collecteur	151 152 Reg.Amont	152 146 Reg.Aval	20,20 23,25 Distance	0,223 0,065 Pente	0,001187346 0,001187346 Q spe	propre 0,024 0,028 Q propre	0,000 0,024 Q tronsit	0,024 0,052 Q cumul
COLL 18 Collecteur COLL 19 Collecteur	151 152 Reg.Amont 153	152 146 Reg.Aval 148	20,20 23,25 Distance 26,45	0,223 0,065 Pente 0,178	0,001187346 0,001187346 Q spe 0,001187346	0,024 0,028 Q propre 0,031 Q	0,000 0,024 Q tronsit 0,000	0,024 0,052 Q cumul 0,031
COLL 18 Collecteur COLL 19	151 152 Reg.Amont 153 Reg.Amont	152 146 Reg.Aval 148 Reg.Aval	20,20 23,25 Distance 26,45 Distance	0,223 0,065 Pente 0,178 Pente	0,001187346 0,001187346 Q spe 0,001187346 Q spe	0,024 0,028 Q propre 0,031 Q propre	0,000 0,024 Q tronsit 0,000 Q tronsit	0,024 0,052 Q cumul 0,031 Q cumul
COLL 18 Collecteur COLL 19 Collecteur	151 152 Reg.Amont 153 Reg.Amont	152 146 Reg.Aval 148 Reg.Aval	20,20 23,25 Distance 26,45 Distance 30,00	0,223 0,065 Pente 0,178 Pente 0,150	0,001187346 0,001187346 Q spe 0,001187346 Q spe 0,001187346	0,024 0,028 Q propre 0,031 Q propre 0,036	0,000 0,024 Q tronsit 0,000 Q tronsit 0,000	0,024 0,052 Q cumul 0,031 Q cumul 0,036
COLL 18 Collecteur COLL 19 Collecteur COLL 20	151 152 Reg.Amont 153 Reg.Amont 154 155	152 146 Reg.Aval 148 Reg.Aval 155 149	20,20 23,25 Distance 26,45 Distance 30,00 23,10	0,223 0,065 Pente 0,178 Pente 0,150 0,108	0,001187346 0,001187346 Q spe 0,001187346 Q spe 0,001187346 0,001187346	0,024 0,028 Q propre 0,031 Q propre 0,036 0,027 Q	0,000 0,024 Q tronsit 0,000 Q tronsit 0,000 0,036	0,024 0,052 Q cumul 0,031 Q cumul 0,036 0,063

	161 162	162 163	21,20 22,35	0,137	0,001187346 0,001187346	0,025	0,220	0,245 0,272
	162	163	31,10	0,049	0,001187346	0,027	0,245	0,272
	164	165	48,00	0,038	0,001187346	0,057	0,448	0,505
	165	166	30,00	0,127	0,001187346	0,036	0,505	0,540
	166	R12	14,80	0,142	0,001187346	0,038	0,540	0,558
Collecteur	Reg.Amont	Reg.Aval	Distance	Pente	Q spe	Q propre	Q tronsit	Q cumul
COLL 22	167	168	20,00	0,040	0,001187346	0,024	0,000	0,024
COLL 22	168	158	21,65	0,092	0,001187346	0,026	0,024	0,049
Collecteur	Reg.Amont	Reg.Aval	Distance	Pente	Q spe	Q propre	Q tronsit	Q cumul
COLL 23	167	159	27,35	0,022	0,001187346	0,032	0,000	0,032
Collecteur	Reg.Amont	Reg.Aval	Distance	Pente	Q spe	Q propre	Q tronsit	Q cumul
	170	171	30,00	0,157	0,001187346	0,036	0,000	0,036
	170	1 / 1	/	0,10,	0,001107510	-,	-,	0,020
COLL 24	170	172	25,00	0,148	0,001187346	0,030	0,036	0,065
COLL 24					ŕ	*		
COLL 24	171	172	25,00	0,148	0,001187346	0,030 0,036 0,038	0,036	0,065
COLL 24 Collecteur	171 172	172 173	25,00 30,00	0,148 0,008	0,001187346 0,001187346	0,030 0,036	0,036 0,065	0,065 0,101
	171 172 173	172 173 164	25,00 30,00 32,00	0,148 0,008 0,008	0,001187346 0,001187346 0,001187346	0,030 0,036 0,038 Q	0,036 0,065 0,101	0,065 0,101 0,139
Collecteur	171 172 173 Reg.Amont	172 173 164 Reg.Aval	25,00 30,00 32,00 Distance	0,148 0,008 0,008 Pente	0,001187346 0,001187346 0,001187346 Q spe	0,030 0,036 0,038 Q propre	0,036 0,065 0,101 Q tronsit	0,065 0,101 0,139 Q cumul
	171 172 173 Reg.Amont 175	172 173 164 Reg.Aval 176	25,00 30,00 32,00 Distance 20,00	0,148 0,008 0,008 Pente 0,145	0,001187346 0,001187346 0,001187346 Q spe 0,001187346	0,030 0,036 0,038 Q propre 0,024	0,036 0,065 0,101 Q tronsit 0,000	0,065 0,101 0,139 Q cumul 0,024
Collecteur	171 172 173 Reg.Amont 175 176	172 173 164 Reg.Aval 176 177	25,00 30,00 32,00 Distance 20,00 20,00	0,148 0,008 0,008 Pente 0,145 0,170	0,001187346 0,001187346 0,001187346 Q spe 0,001187346 0,001187346	0,030 0,036 0,038 Q propre 0,024 0,024	0,036 0,065 0,101 Q tronsit 0,000 0,024	0,065 0,101 0,139 Q cumul 0,024 0,047

	180	181	27,00	0,052	0,001187346	0,032	0,000	0,032
COLL 26	181	182	20,00	0,095	0,001187346	0,024	0,032	0,056
	182	R25	9,10	0,066	0,001187346	0,011	0,056	0,067
Collecteur	Reg.Amont	Reg.Aval	Distance	Pente	Q spe	Q propre	Q tronsit	Q cumul
	185	186	28,10	0,014	0,001187346	0,033	0,000	0,033
	186	187	25,75	0,132	0,001187346	0,031	0,033	0,064
	187	188	22,65	0,137	0,001187346	0,027	0,064	0,091
	188	189	28,75	0,021	0,001187346	0,034	0,091	0,125
	189	190	21,00	0,067	0,001187346	0,025	0,125	0,150
	190	191	30,80	0,032	0,001187346	0,037	0,150	0,186
	191	192	30,80	0,007	0,001187346	0,037	0,186	0,223
	192	193	15,00	0,007	0,001187346	0,018	0,223	0,241
COLL 27	193	194	22,55	0,015	0,001187346	0,027	0,843	0,870
	194	195	28,35	0,018	0,001187346	0,034	0,870	0,904
	195	196	30,00	0,015	0,001187346	0,036	0,904	0,939
	196	197	30,00	0,027	0,001187346	0,036	0,939	0,975
	197	198	30,00	0,070	0,001187346	0,036	0,975	1,011
	198	199	30,00	0,030	0,001187346	0,036	1,011	1,046
	199	200	14,00	0,057	0,001187346	0,017	1,243	1,260
	200	201	20,00	0,070	0,001187346	0,024	1,260	1,284
	201	R65	21,00	0,070	0,001187346	0,025	1,284	1,309
Collecteur	Reg.Amont	Reg.Aval	Distance	Pente	Q spe	Q propre	Q tronsit	Q cumul
	202	203	24,65	0,008	0,001187346	0,029	0,000	0,029
COLL 28	203	204	30,00	0,007	0,001187346	0,036	0,029	0,065
COLL 28	204	205	20,00	0,115	0,001187346	0,024	0,065	0,089
	205	206	26,50	0,147	0,001187346	0,031	0,089	0,120

	206	193	18,15	0,083	0,001187346	0,022	0,581	0,602
Collecteur	Reg.Amont	Reg.Aval	Distance	Pente	Q spe	Q propre	Q tronsit	Q cumul
	207	208	20,00	0,105	0,001187346	0,024	0,000	0,024
	208	209	26,55	0,072	0,001187346	0,032	0,024	0,055
	209	210	31,35	0,128	0,001187346	0,037	0,126	0,163
	210	211	17,45	0,069	0,001187346	0,021	0,163	0,183
COLL 29	211	212	28,85	0,038	0,001187346	0,034	0,183	0,218
COLL 29	212	213	39,10	0,046	0,001187346	0,046	0,262	0,308
	213	214	39,20	0,036	0,001187346	0,047	0,308	0,355
	214	215	29,20	0,021	0,001187346	0,035	0,355	0,389
	215	216	29,40	0,017	0,001187346	0,035	0,389	0,424
	216	206	30,75	0,029	0,001187346	0,037	0,424	0,461
Collecteur	Reg.Amont	Reg.Aval	Distance	Pente	Q spe	Q propre	Q tronsit	Q cumul
COLL 20	220	221	27,25	0,015	0,001187346	0,032	0,000	0,032
COLL 30	221	209	31,90	0,006	0,001187346	0,038	0,032	0,070
Collecteur	Reg.Amont	Reg.Aval	Distance	Pente	Q spe	Q propre	Q tronsit	Q cumul
COLL 31	222	212	37,10	0,075	0,001187346	0,044	0,000	0,044
Collecteur	Reg.Amont	Reg.Aval	Distance	Pente	Q spe	Q propre	Q tronsit	Q cumul
	225	226	30,00	0,097	0,001187346	0,036	0,000	0,036
	226	227	30,00	0,083	0,001187346	0,036	0,036	0,071
COLL 22	227	228	30,45	0,089	0,001187346	0,036	0,071	0,107
COLL 32	228	229	24,30	0,033	0,001187346	0,029	0,107	0,136
	229	230	30,00	0,017	0,001187346	0,036	0,136	0,172
	230	199	21,30	0,028	0,001187346	0,025	0,172	0,197

Collecteur	Reg.Amont	Reg.Aval	Distance	Pente	Q spe	Q propre	Q tronsit	Q cumul
	235	236	30,00	0,060	0,001187346	0,036	1,825	1,861
	236	237	20,00	0,030	0,001187346	0,024	1,861	1,885
	237	238	30,00	0,023	0,001187346	0,036	1,885	1,920
	238	239	30,00	0,030	0,001187346	0,036	1,920	1,956
	239	240	19,35	0,052	0,001187346	0,023	1,956	1,979
	240	241	30,25	0,033	0,001187346	0,036	2,244	2,280
	241	242	30,00	0,008	0,001187346	0,036	2,280	2,315
	242	243	30,00	0,033	0,001187346	0,036	2,315	2,351
	243	244	30,25	0,030	0,001187346	0,036	2,351	2,387
COLL 33	244	245	30,00	0,037	0,001187346	0,036	5,550	5,585
COLL 33	245	246	20,00	0,015	0,001187346	0,024	5,585	5,609
	246	247	22,00	0,023	0,001187346	0,026	5,609	5,635
	247	248	30,00	0,013	0,001187346	0,036	5,635	5,671
	248	249	30,00	0,020	0,001187346	0,036	5,671	5,707
	249	250	30,00	0,037	0,001187346	0,036	5,707	5,742
	250	251	30,00	0,013	0,001187346	0,036	5,742	5,778
	251	252	30,40	0,016	0,001187346	0,036	5,778	5,814
	252	253	30,15	0,020	0,001187346	0,036	5,814	5,850
	253	254	12,65	0,024	0,001187346	0,015	5,850	5,865
	254	255	35,40	0,028	0,001187346	0,042	5,973	6,015
	255	256	30,00	0,010	0,001187346	0,036	6,103	6,139
	256	257	30,00	0,067	0,001187346	0,036	6,139	6,174
COLL 33	257	258	30,25	0,010	0,001187346	0,036	6,174	6,210
COLL 33	258	259	28,60	0,035	0,001187346	0,034	6,210	6,244
	259	260	30,00	0,030	0,001187346	0,036	6,244	6,280
	260	261	37,00	0,022	0,001187346	0,044	6,280	6,324

	261	262	13,80	0,006	0,001187346	0,016	6,324	6,340
	262	263	15,15	0,015	0,001187346	0,018	8,179	8,197
	263	264	22,50	0,015	0,001187346	0,027	8,197	8,223
	264	265	30,00	0,015	0,001187346	0,036	8,223	8,259
	265	266	16,15	0,015	0,001187346	0,019	8,259	8,278
	266	267	27,10	0,030	0,001187346	0,032	8,278	8,310
	267	268	29,00	0,015	0,001187346	0,034	8,310	8,345
	268	269	30,00	0,015	0,001187346	0,036	8,497	8,532
	269	270	11,85	0,025	0,001187346	0,014	8,532	8,546
	270	271	30,00	0,031	0,001187346	0,036	8,546	8,582
	271	272	19,35	0,020	0,001187346	0,023	8,582	8,605
	272	273	15,20	0,020	0,001187346	0,018	8,605	8,623
	273	274	28,60	0,020	0,001187346	0,034	8,752	8,786
	274	275	57,65	0,020	0,001187346	0,068	8,786	8,854
		<u> </u>	0.,00	0,0_0	0,00000	-,	0,.00	-,
	275	R38	13,70	0,020	0,001187346	0,016	8,854	8,870
Collecteur			·	,	· ·		· ·	-
Collecteur	275	R38	13,70	0,020	0,001187346	0,016 Q	8,854	8,870
Collecteur	275 Reg.Amont	R38 Reg.Aval	13,70 Distance	0,020 Pente	0,001187346 Q spe	0,016 Q propre	8,854 Q tronsit	8,870 Q cumul
Collecteur	275 Reg.Amont 280	R38 Reg.Aval 281	13,70 Distance 17,00	0,020 Pente 0,194	0,001187346 Q spe 0,001187346	0,016 Q propre 0,020	8,854 Q tronsit 0,000	8,870 Q cumul 0,020
Collecteur	275 Reg.Amont 280 281	R38 Reg.Aval 281 282	13,70 Distance 17,00 30,00	0,020 Pente 0,194 0,100	0,001187346 Q spe 0,001187346 0,001187346	0,016 Q propre 0,020 0,036	8,854 Q tronsit 0,000 0,020	8,870 Q cumul 0,020 0,056
Collecteur	275 Reg.Amont 280 281 282	R38 Reg.Aval 281 282 283	13,70 Distance 17,00 30,00 30,00	0,020 Pente 0,194 0,100 0,043	0,001187346 Q spe 0,001187346 0,001187346 0,001187346	0,016 Q propre 0,020 0,036 0,036	8,854 Q tronsit 0,000 0,020 0,056	8,870 Q cumul 0,020 0,056 0,091
Collecteur Coll 34	275 Reg.Amont 280 281 282 283	R38 Reg.Aval 281 282 283 284	13,70 Distance 17,00 30,00 30,00 30,00	0,020 Pente 0,194 0,100 0,043 0,057	0,001187346 Q spe 0,001187346 0,001187346 0,001187346 0,001187346	0,016 Q propre 0,020 0,036 0,036 0,036	8,854 Q tronsit 0,000 0,020 0,056 0,091	8,870 Q cumul 0,020 0,056 0,091 0,127
	275 Reg.Amont 280 281 282 283 284	R38 Reg.Aval 281 282 283 284 285	13,70 Distance 17,00 30,00 30,00 30,00 30,00 30,00	0,020 Pente 0,194 0,100 0,043 0,057 0,043	0,001187346 Q spe 0,001187346 0,001187346 0,001187346 0,001187346 0,001187346	0,016 Q propre 0,020 0,036 0,036 0,036 0,036	8,854 Q tronsit 0,000 0,020 0,056 0,091 0,127	8,870 Q cumul 0,020 0,056 0,091 0,127 0,163
	275 Reg.Amont 280 281 282 283 284 285	R38 Reg.Aval 281 282 283 284 285 286	13,70 Distance 17,00 30,00 30,00 30,00 30,00 23,20	0,020 Pente 0,194 0,100 0,043 0,057 0,043 0,030	0,001187346 Q spe 0,001187346 0,001187346 0,001187346 0,001187346 0,001187346	0,016 Q propre 0,020 0,036 0,036 0,036 0,036 0,036	8,854 Q tronsit 0,000 0,020 0,056 0,091 0,127 0,163	8,870 Q cumul 0,020 0,056 0,091 0,127 0,163 0,190
	275 Reg.Amont 280 281 282 283 284 285 286	R38 Reg.Aval 281 282 283 284 285 286 287	13,70 Distance 17,00 30,00 30,00 30,00 30,00 23,20 30,00	0,020 Pente 0,194 0,100 0,043 0,057 0,043 0,030 0,020	0,001187346 Q spe 0,001187346 0,001187346 0,001187346 0,001187346 0,001187346 0,001187346	0,016 Q propre 0,020 0,036 0,036 0,036 0,036 0,036 0,036	8,854 Q tronsit 0,000 0,020 0,056 0,091 0,127 0,163 0,190	8,870 Q cumul 0,020 0,056 0,091 0,127 0,163 0,190 0,226
	275 Reg.Amont 280 281 282 283 284 285 286 287	R38 Reg.Aval 281 282 283 284 285 286 287 288	13,70 Distance 17,00 30,00 30,00 30,00 30,00 23,20 30,00 30,00 30,00	0,020 Pente 0,194 0,100 0,043 0,057 0,043 0,030 0,020 0,023	0,001187346 Q spe 0,001187346 0,001187346 0,001187346 0,001187346 0,001187346 0,001187346 0,001187346	0,016 Q propre 0,020 0,036 0,036 0,036 0,036 0,028 0,036 0,036	8,854 Q tronsit 0,000 0,020 0,056 0,091 0,127 0,163 0,190 0,226	8,870 Q cumul 0,020 0,056 0,091 0,127 0,163 0,190 0,226 0,261

291 292 40,30 0,047 0,001187346 0,048 0,368 0,416 292 293 30,00 0,050 0,001187346 0,036 0,416 0,452 293 294 30,00 0,047 0,001187346 0,036 0,452 0,487 294 295 40,00 0,030 0,001187346 0,036 0,525 0,557 295 296 30,55 0,052 0,001187346 0,036 0,555 0,571 296 297 30,00 0,050 0,001187346 0,036 0,571 0,607 297 298 28,15 0,004 0,001187346 0,033 0,607 0,640 298 235 20,00 0,004 0,001187346 0,033 0,607 0,640 298 235 20,00 0,004 0,001187346 0,034 0,640 0,664 Reg.Amont Reg.Aval Distance Pente Q spe Q propre 300 301 32,75 0,070 0,001187346 0,039 0,000 0,039 301 302 15,50 0,039 0,001187346 0,018 0,039 0,057 302 303 30,00 0,110 0,001187346 0,036 0,057 0,093 303 304 12,35 0,089 0,001187346 0,036 0,057 0,093 304 305 30,00 0,073 0,001187346 0,036 0,108 0,143 305 306 30,00 0,073 0,001187346 0,036 0,108 0,143 305 306 30,00 0,073 0,001187346 0,036 0,108 0,143 307 308 30,00 0,072 0,001187346 0,036 0,198 0,233 308 309 20,00 0,030 0,001187346 0,036 0,198 0,233 309 310 30,00 0,072 0,001187346 0,036 0,198 0,233 310 311 312 23,80 0,130 0,001187346 0,036 0,523 0,559 313 314 30,00 0,068 0,001187346 0,036 0,523 0,559 313 314 30,00 0,068 0,001187346 0,036 0,523 0,559 315 316 20,00 0,045 0,001187346 0,036 0,559 0,594 316 317 34,00 0,065 0,001187346 0,040 0,642 0,642 316 317 34,00 0,065 0,001187346 0,040 0,642 0,642 316 317 34,00 0,065 0,001187346 0,040 0,642 0,642 316 317 34,00 0,065 0,001187346 0,040 0,642 0,642 316 317 34,00 0,065 0,001187346 0,040 0,642 0,642 316 317 34,00 0,065 0,001187346 0,040 0,642 0,642 316									
293 294 30,00 0,047 0,001187346 0,036 0,452 0,487		291	292	40,30	0,047	0,001187346	0,048	0,368	0,416
294 295		292	293	30,00	0,050	0,001187346	0,036	0,416	0,452
Collecteur Reg.Amont Reg.Aval Distance Pente Q spe Q tronsit Q cumul 300 30,00 0,001187346 0,036 0,571 0,607 0,640 297 298 28,15 0,004 0,001187346 0,033 0,607 0,640 298 235 20,00 0,004 0,001187346 0,024 0,640 0,664 Collecteur Reg.Amont Reg.Aval Distance Pente Q spe Q tronsit Q cumul 300 301 32,75 0,070 0,001187346 0,039 0,000 0,039 301 302 303 30,00 0,110 0,001187346 0,018 0,039 0,057 302 303 30,00 0,110 0,001187346 0,015 0,093 0,018 304 305 30,00 0,073 0,001187346 0,015 0,093 0,108 305 306 30,00 0,073 0,001187346 0,036		293	294	30,00	0,047	0,001187346	0,036	0,452	0,487
296		294	295	40,00	0,030	0,001187346	0,047	0,487	0,535
Collecteur Reg.Amont Reg.Aval Distance Pente Q spe Q tronsit Q cumul		295	296	30,55	0,052	0,001187346	0,036	0,535	0,571
Collecteur Reg.Amont Reg.Aval Distance Pente Q spe Q propre propre Q tronsit Q cumul 300 301 32,75 0,070 0,001187346 0,039 0,000 0,039 301 302 15,50 0,039 0,001187346 0,018 0,039 0,057 302 303 30,00 0,110 0,001187346 0,036 0,057 0,093 303 304 12,35 0,089 0,001187346 0,015 0,093 0,108 304 305 30,00 0,073 0,001187346 0,036 0,108 0,143 305 306 30,00 0,073 0,001187346 0,036 0,143 0,179 306 307 16,00 0,072 0,001187346 0,036 0,143 0,179 307 308 30,00 0,072 0,001187346 0,036 0,143 0,179 307 308 30,00 0,072 0,001187346 0,036 <td></td> <td>296</td> <td>297</td> <td>30,00</td> <td>0,050</td> <td>0,001187346</td> <td>0,036</td> <td>0,571</td> <td>0,607</td>		296	297	30,00	0,050	0,001187346	0,036	0,571	0,607
Collecteur Reg.Amont Reg.Aval Distance Pente Q spe Q propre propre propre Q tronsit Q cumul 300 301 32,75 0,070 0,001187346 0,039 0,000 0,039 301 302 15,50 0,039 0,001187346 0,018 0,039 0,057 302 303 30,00 0,110 0,001187346 0,036 0,057 0,093 303 304 12,35 0,089 0,001187346 0,015 0,093 0,108 304 305 30,00 0,073 0,001187346 0,036 0,108 0,143 305 306 30,00 0,043 0,001187346 0,036 0,143 0,179 306 307 16,00 0,072 0,001187346 0,019 0,179 0,198 307 308 30,00 0,072 0,001187346 0,036 0,198 0,233 308 309 20,00 0,030 0,001187346 0,		297	298	28,15	0,004	0,001187346	0,033	0,607	0,640
300 301 32,75 0,070 0,001187346 0,039 0,000 0,039 301 302 15,50 0,039 0,001187346 0,018 0,039 0,057 302 303 30,00 0,110 0,001187346 0,036 0,057 0,093 304 12,35 0,089 0,001187346 0,015 0,093 0,108 304 305 30,00 0,073 0,001187346 0,036 0,108 0,143 305 306 30,00 0,043 0,001187346 0,036 0,143 0,179 306 307 16,00 0,072 0,001187346 0,036 0,143 0,179 306 307 308 30,00 0,072 0,001187346 0,036 0,198 0,233 308 309 20,00 0,030 0,001187346 0,036 0,198 0,233 308 309 310 30,00 0,077 0,001187346 0,036 0,257 0,293 310 311 32,00 0,053 0,001187346 0,038 0,293 0,331 311 312 23,80 0,130 0,001187346 0,028 0,495 0,523 312 313 314 30,00 0,058 0,001187346 0,036 0,559 0,594 314 315 20,00 0,045 0,001187346 0,024 0,594 0,618 315 316 20,00 0,065 0,001187346 0,024 0,618 0,642 316 317 34,00 0,056 0,001187346 0,040 0,642 0,682		298	235	20,00	0,004	0,001187346	0,024	0,640	0,664
COLL 35 301 302 15,50 0,039 0,001187346 0,018 0,039 0,057 302 303 30,000 0,110 0,001187346 0,036 0,057 0,093 303 304 12,35 0,089 0,001187346 0,015 0,093 0,108 304 305 30,00 0,073 0,001187346 0,036 0,143 0,179 306 307 16,00 0,072 0,001187346 0,019 0,179 0,198 307 308 30,00 0,072 0,001187346 0,036 0,198 0,233 308 309 20,00 0,030 0,01187346 0,036 0,198 0,233 309 310 30,00 0,077 0,001187346 0,024 0,233 0,257 310 311 32,00 0,053 0,001187346 0,036 0,257 0,293 312 313 30,00 0,058 0,001187346 0,036 0,523	Collecteur	Reg.Amont	Reg.Aval	Distance	Pente	Q spe	_	Q tronsit	Q cumul
COLL 35 302 303 30,00 0,110 0,001187346 0,036 0,057 0,093 303 304 12,35 0,089 0,001187346 0,015 0,093 0,108 304 305 30,00 0,073 0,001187346 0,036 0,108 0,143 305 306 30,00 0,043 0,001187346 0,036 0,143 0,179 306 307 16,00 0,072 0,001187346 0,036 0,149 0,179 0,198 307 308 30,00 0,072 0,001187346 0,036 0,198 0,233 308 309 20,00 0,030 0,001187346 0,036 0,257 0,293 310 311 32,00 0,053 0,001187346 0,036 0,257 0,293 311 312 23,80 0,130 0,001187346 0,038 0,293 0,331 311 312 23,80 0,130 0,001187346 0,036 0,523 0,559 313 314 30,00 0,068 0,001187346 0,036 0,523 0,559 314 315 20,00 0,045 0,001187346 0,024 0,594 0,618 315 316 20,00 0,065 0,001187346 0,024 0,618 0,642 316 317 34,00 0,056 0,001187346 0,040 0,642 0,682		300	301	32,75	0,070	0,001187346		0,000	0,039
COLL 35 303 304 12,35 0,089 0,001187346 0,015 0,093 0,108		301	302	15,50	0,039	0,001187346	0,018	0,039	0,057
COLL 35 304 305 30,00 0,073 0,001187346 0,036 0,108 0,143 305 306 30,00 0,043 0,001187346 0,036 0,143 0,179 306 307 16,00 0,072 0,001187346 0,019 0,179 0,198 307 308 30,00 0,072 0,001187346 0,036 0,198 0,233 308 309 20,00 0,030 0,001187346 0,024 0,233 0,257 309 310 30,00 0,077 0,001187346 0,036 0,257 0,293 310 311 32,00 0,053 0,001187346 0,038 0,293 0,331 311 312 23,80 0,130 0,001187346 0,038 0,495 0,523 312 313 30,00 0,058 0,001187346 0,036 0,523 0,559 313 314 30,00 0,068 0,001187346 0,036 0,559 0,594 314 315 20,00 0,045 0,001187346 0,024 0,594 0,618 315 316 20,00 0,065 0,001187346 0,024 0,618 0,642 316 317 34,00 0,056 0,001187346 0,040 0,642 0,682		302	303	30,00	0,110	0,001187346	0,036	0,057	0,093
COLL 35 305 306 30,00 0,043 0,001187346 0,036 0,143 0,179 306 307 16,00 0,072 0,001187346 0,019 0,179 0,198 307 308 30,00 0,072 0,001187346 0,036 0,198 0,233 308 309 20,00 0,030 0,001187346 0,024 0,233 0,257 309 310 30,00 0,077 0,001187346 0,036 0,257 0,293 310 311 32,00 0,053 0,001187346 0,038 0,293 0,331 311 312 23,80 0,130 0,001187346 0,038 0,495 0,523 312 313 30,00 0,058 0,001187346 0,036 0,523 0,559 313 314 30,00 0,068 0,001187346 0,036 0,559 0,594 314 315 20,00 0,045 0,001187346 0,024 0,594 0,618 315 316 20,00 0,065 0,001187346 0,024 0,618 0,642 316 317 34,00 0,056 0,001187346 0,040 0,642 0,682		303	304	12,35	0,089	0,001187346	0,015	0,093	0,108
COLL 35 306 307 16,00 0,072 0,001187346 0,019 0,179 0,198 307 308 30,00 0,072 0,001187346 0,036 0,198 0,233 308 309 20,00 0,030 0,001187346 0,024 0,233 0,257 309 310 30,00 0,077 0,001187346 0,036 0,257 0,293 310 311 32,00 0,053 0,001187346 0,038 0,293 0,331 311 312 23,80 0,130 0,001187346 0,028 0,495 0,523 312 313 30,00 0,058 0,001187346 0,036 0,523 0,559 313 314 30,00 0,068 0,001187346 0,036 0,559 0,594 314 315 20,00 0,045 0,001187346 0,024 0,594 0,618 315 316 20,00 0,065 0,001187346 0,024 0,618 0,642 316 317 34,00 0,056 0,001187346 0,040 0,642 0,682		304	305	30,00	0,073	0,001187346	0,036	0,108	0,143
COLL 35 307 308 30,00 0,072 0,001187346 0,036 0,198 0,233 308 309 20,00 0,030 0,001187346 0,024 0,233 0,257 309 310 30,00 0,077 0,001187346 0,036 0,257 0,293 310 311 32,00 0,053 0,001187346 0,038 0,293 0,331 311 312 23,80 0,130 0,001187346 0,028 0,495 0,523 312 313 30,00 0,058 0,001187346 0,036 0,523 0,559 313 314 30,00 0,068 0,001187346 0,036 0,559 0,594 314 315 20,00 0,045 0,001187346 0,024 0,594 0,618 315 316 20,00 0,065 0,001187346 0,024 0,618 0,642 316 317 34,00 0,056 0,001187346 0,040 0,642 0,682		305	306	30,00	0,043	0,001187346	0,036	0,143	0,179
COLL 35 308 309 20,00 0,030 0,001187346 0,024 0,233 0,257 309 310 30,00 0,077 0,001187346 0,036 0,257 0,293 310 311 32,00 0,053 0,001187346 0,038 0,293 0,331 311 312 23,80 0,130 0,001187346 0,028 0,495 0,523 312 313 30,00 0,058 0,001187346 0,036 0,523 0,559 313 314 30,00 0,068 0,001187346 0,036 0,559 0,594 314 315 20,00 0,045 0,001187346 0,024 0,594 0,618 315 316 20,00 0,065 0,001187346 0,040 0,642 0,682 316 317 34,00 0,056 0,001187346 0,040 0,642 0,682		306	307	16,00	0,072	0,001187346	0,019	0,179	0,198
309 310 30,00 0,077 0,001187346 0,036 0,257 0,293 310 311 32,00 0,053 0,001187346 0,038 0,293 0,331 311 312 23,80 0,130 0,001187346 0,028 0,495 0,523 312 313 30,00 0,058 0,001187346 0,036 0,523 0,559 313 314 30,00 0,068 0,001187346 0,036 0,559 0,594 314 315 20,00 0,045 0,001187346 0,024 0,594 0,618 315 316 20,00 0,065 0,001187346 0,024 0,618 0,642 316 317 34,00 0,056 0,001187346 0,040 0,642 0,682		307	308	30,00	0,072	0,001187346	0,036	0,198	0,233
309 310 30,00 0,077 0,001187346 0,036 0,257 0,293 310 311 32,00 0,053 0,001187346 0,038 0,293 0,331 311 312 23,80 0,130 0,001187346 0,028 0,495 0,523 312 313 30,00 0,058 0,001187346 0,036 0,523 0,559 313 314 30,00 0,068 0,001187346 0,036 0,559 0,594 314 315 20,00 0,045 0,001187346 0,024 0,594 0,618 315 316 20,00 0,065 0,001187346 0,024 0,618 0,642 316 317 34,00 0,056 0,001187346 0,040 0,642 0,682	COLL 25	308	309	20,00	0,030	0,001187346	0,024	0,233	0,257
311 312 23,80 0,130 0,001187346 0,028 0,495 0,523 312 313 30,00 0,058 0,001187346 0,036 0,523 0,559 313 314 30,00 0,068 0,001187346 0,036 0,559 0,594 314 315 20,00 0,045 0,001187346 0,024 0,594 0,618 315 316 20,00 0,065 0,001187346 0,024 0,618 0,642 316 317 34,00 0,056 0,001187346 0,040 0,642 0,682	COLL 35	309	310	30,00	0,077	0,001187346	0,036	0,257	0,293
312 313 30,00 0,058 0,001187346 0,036 0,523 0,559 313 314 30,00 0,068 0,001187346 0,036 0,559 0,594 314 315 20,00 0,045 0,001187346 0,024 0,594 0,618 315 316 20,00 0,065 0,001187346 0,024 0,618 0,642 316 317 34,00 0,056 0,001187346 0,040 0,642 0,682		310	311	32,00	0,053	0,001187346	0,038	0,293	0,331
313 314 30,00 0,068 0,001187346 0,036 0,559 0,594 314 315 20,00 0,045 0,001187346 0,024 0,594 0,618 315 316 20,00 0,065 0,001187346 0,024 0,618 0,642 316 317 34,00 0,056 0,001187346 0,040 0,642 0,682		311	312	23,80	0,130	0,001187346	0,028	0,495	0,523
314 315 20,00 0,045 0,001187346 0,024 0,594 0,618 315 316 20,00 0,065 0,001187346 0,024 0,618 0,642 316 317 34,00 0,056 0,001187346 0,040 0,642 0,682		312	313	30,00	0,058	0,001187346	0,036	0,523	0,559
315 316 20,00 0,065 0,001187346 0,024 0,618 0,642 316 317 34,00 0,056 0,001187346 0,040 0,642 0,682		313	314	30,00	0,068	0,001187346	0,036	0,559	0,594
316 317 34,00 0,056 0,001187346 0,040 0,642 0,682		314	315	20,00	0,045	0,001187346	0,024	0,594	0,618
		315	316	20,00	0,065	0,001187346	0,024	0,618	0,642
317 318 16,00 0,025 0,001187346 0,019 0,682 0,701		316	317	34,00	0,056	0,001187346	0,040	0,642	0,682
		317	318	16,00	0,025	0,001187346	0,019	0,682	0,701

	318	319	30,00	0,073	0,001187346	0,036	0,701	0,737
	319	320	22,80	0,057	0,001187346	0,027	0,737	0,764
	320	235	31,25	0,020	0,001187346	0,037	1,124	1,161
Collecteur	Reg.Amont	Reg.Aval	Distance	Pente	Q spe	Q propre	Q tronsit	Q cumul
	321	322	30,00	0,067	0,001187346	0,036	0,000	0,036
	322	323	30,00	0,113	0,001187346	0,036	0,036	0,071
COLL 36	323	324	30,00	0,150	0,001187346	0,036	0,071	0,107
	324	325	18,00	0,233	0,001187346	0,021	0,107	0,128
	325	311	30,00	0,190	0,001187346	0,036	0,128	0,164
Collecteur	Reg.Amont	Reg.Aval	Distance	Pente	Q spe	Q propre	Q tronsit	Q cumul
	327	328	16,50	0,073	0,001187346	0,020	0,000	0,020
	328	329	18,00	0,111	0,001187346	0,021	0,020	0,041
	329	330	20,00	0,050	0,001187346	0,024	0,041	0,065
	330	331	30,00	0,063	0,001187346	0,036	0,065	0,100
	331	332	31,25	0,045	0,001187346	0,037	0,100	0,137
	332	333	24,70	0,024	0,001187346	0,029	0,137	0,167
COLL 37	333	334	32,40	0,012	0,001187346	0,038	0,167	0,205
	334	335	26,00	0,092	0,001187346	0,031	0,205	0,236
	335	336	20,00	0,105	0,001187346	0,024	0,236	0,260
	336	337	30,00	0,097	0,001187346	0,036	0,260	0,295
	337	338	17,00	0,100	0,001187346	0,020	0,295	0,316
	338	339	18,60	0,091	0,001187346	0,022	0,316	0,338
	339	320	19,20	0,021	0,001187346	0,023	0,338	0,361
Collecteur	Reg.Amont	Reg.Aval	Distance	Pente	Q spe	Q propre	Q tronsit	Q cumul
COLL 38	340	341	20,45	0,010	0,001187346	0,024	0,000	0,024
COLL 38	341	342	35,65	0,070	0,001187346	0,042	0,122	0,165

	342	343	30,15	0,066	0,001187346	0,036	0,165	0,201
	343	344	29,80	0,044	0,001187346	0,035	0,201	0,236
	344	240	24,30	0,008	0,001187346	0,029	0,236	0,265
Collecteur	Reg.Amont	Reg.Aval	Distance	Pente	Q spe	Q propre	Q tronsit	Q cumul
COLL 39	345	346	19,15	0,172	0,001187346	0,023	0,000	0,023
	346	347	30,00	0,130	0,001187346	0,036	0,023	0,058
	347	341	33,50	0,048	0,001187346	0,040	0,058	0,098
Collecteur	Reg.Amont	Reg.Aval	Distance	Pente	Q spe	Q propre	Q tronsit	Q cumul
COLL 40	348	349	23,50	0,081	0,001187346	0,028	0,000	0,028
	349	350	30,05	0,070	0,001187346	0,036	0,028	0,064
	350	351	30,00	0,063	0,001187346	0,036	0,064	0,099
	351	352	30,00	0,007	0,001187346	0,036	0,099	0,135
	352	353	34,40	0,122	0,001187346	0,041	0,135	0,176
	353	354	30,30	0,040	0,001187346	0,036	0,213	0,249
	354	355	20,55	0,073	0,001187346	0,024	0,249	0,273
	355	356	16,20	0,056	0,001187346	0,019	0,273	0,292
	356	357	28,25	0,064	0,001187346	0,034	0,292	0,326
	357	244	10,00	0,020	0,001187346	0,012	0,451	0,462
Collecteur	Reg.Amont	Reg.Aval	Distance	Pente	Q spe	Q propre	Q tronsit	Q cumul
COLL 41	360	361	16,20	0,093	0,001187346	0,019	0,000	0,019
	361	353	15,00	0,013	0,001187346	0,018	0,019	0,037
Collecteur	Reg.Amont	Reg.Aval	Distance	Pente	Q spe	Q propre	Q tronsit	Q cumul
COLL 42	365	366	20,85	0,029	0,001187346	0,025	0,000	0,025
	366	367	28,30	0,110	0,001187346	0,034	0,025	0,058
	367	368	13,80	0,130	0,001187346	0,016	0,058	0,075

	368	357	10,50	0,057	0,001187346	0,012	0,112	0,125
Collecteur	Reg.Amont	Reg.Aval	Distance	Pente	Q spe	Q propre	Q tronsit	Q cumul
COLL 43	369	368	31,60	0,139	0,001187346	0,038	0,000	0,038
Collecteur	Reg.Amont	Reg.Aval	Distance	Pente	Q spe	Q propre	Q tronsit	Q cumul
	370	371	30,00	0,010	0,001187346	0,036	0,000	0,036
COLL 44	371	373	30,00	0,033	0,001187346	0,036	0,036	0,071
	373	254	31,00	0,055	0,001187346	0,037	0,071	0,108
Collecteur	Reg.Amont	Reg.Aval	Distance	Pente	Q spe	Q propre	Q tronsit	Q cumul
COLL 45	375	376	23,95	0,115	0,001187346	0,028	0,000	0,028
COLL 43	376	255	32,50	0,117	0,001187346	0,039	0,050	0,088
Collecteur	Reg.Amont	Reg.Aval	Distance	Pente	Q spe	Q propre	Q tronsit	Q cumul
COLL 46	377	376	17,80	0,006	0,001187346	0,021	0,000	0,021
Collecteur	Reg.Amont	Reg.Aval	Distance	Pente	Q spe	Q propre	Q tronsit	Q cumul
	378	379	21,00	0,076	0,001187346	0,025	0,000	0,025
	379	380	30,10	0,080	0,001187346	0,036	0,025	0,061
	380	381	19,55	0,133	0,001187346	0,023	0,061	0,084
	381	382	20,70	0,068	0,001187346	0,025	0,084	0,108
	382	383	30,00	0,083	0,001187346	0,036	0,108	0,144
COLL 47	383	384	39,00	0,103	0,001187346	0,046	0,144	0,190
	384	385	30,00	0,113	0,001187346	0,036	0,190	0,226
	385	386	30,00	0,107	0,001187346	0,036	0,226	0,262
	386	387	16,00	0,106	0,001187346	0,019	0,262	0,281
	387	388	36,60	0,093	0,001187346	0,043	0,281	0,324
	388	389	27,20	0,099	0,001187346	0,032	0,740	0,772

	389	390	26,60	0,090	0,001187346	0,032	0,772	0,804
	390	391	30,00	0,090	0,001187346	0,036	0,804	0,839
	391	392	30,00	0,097	0,001187346	0,036	0,839	0,875
	392	393	30,80	0,032	0,001187346	0,037	0,875	0,912
	393	394	24,70	0,085	0,001187346	0,029	0,912	0,941
	394	395	24,40	0,078	0,001187346	0,029	0,941	0,970
	395	396	16,35	0,080	0,001187346	0,019	0,970	0,989
	396	397	36,20	0,069	0,001187346	0,043	1,158	1,201
	397	398	16,75	0,072	0,001187346	0,020	1,201	1,220
	398	399	30,00	0,050	0,001187346	0,036	1,220	1,256
	399	400	30,10	0,037	0,001187346	0,036	1,256	1,292
	400	401	30,00	0,063	0,001187346	0,036	1,292	1,327
	401	402	28,25	0,060	0,001187346	0,034	1,410	1,444
	402	403	30,00	0,073	0,001187346	0,036	1,444	1,479
	403	404	21,40	0,028	0,001187346	0,025	1,479	1,505
	404	405	20,00	0,025	0,001187346	0,024	1,505	1,528
	405	406	24,35	0,057	0,001187346	0,029	1,528	1,557
	406	407	21,60	0,060	0,001187346	0,026	1,557	1,583
	407	408	20,00	0,060	0,001187346	0,024	1,583	1,607
	408	409	22,70	0,040	0,001187346	0,027	1,607	1,634
	409	410	32,80	0,015	0,001187346	0,039	1,634	1,673
	410	411	38,55	0,015	0,001187346	0,046	1,673	1,718
	411	412	37,70	0,048	0,001187346	0,045	1,718	1,763
	412	413	33,70	0,050	0,001187346	0,040	1,763	1,803
	413	262	30,00	0,050	0,001187346	0,036	1,803	1,839
Collecteur	Reg.Amont	Reg.Aval	Distance	Pente	Q spe	Q propre	Q tronsit	Q cumul
COLL 48	415	416	20,55	0,146	0,001187346	0,024	0,000	0,024

	416	417	19,00	0,089	0,001187346	0,023	0,115	0,137
	417	418	30,00	0,110	0,001187346	0,036	0,137	0,173
	418	419	35,10	0,040	0,001187346	0,042	0,173	0,214
	419	420	27,20	0,107	0,001187346	0,032	0,214	0,247
	420	421	23,60	0,072	0,001187346	0,028	0,247	0,275
	421	422	25,00	0,080	0,001187346	0,030	0,275	0,304
	422	423	11,65	0,172	0,001187346	0,014	0,304	0,318
	423	424	15,15	0,139	0,001187346	0,018	0,318	0,336
	424	425	24,00	0,063	0,001187346	0,028	0,336	0,365
	425	426	8,55	0,012	0,001187346	0,010	0,365	0,375
	426	427	22,00	0,005	0,001187346	0,026	0,375	0,401
	427	388	12,45	0,016	0,001187346	0,015	0,401	0,416
Collecteur	Reg.Amont	Reg.Aval	Distance	Pente	Q spe	Q	Q tronsit	Q cumul
	8	- G		1 01100	₹ °P°	propre	Q tronsit	Q cumur
	430	431	20,00	0,040	0,001187346	propre 0,024	0,000	0,024
COLL 49		_					_	_
	430	431	20,00	0,040	0,001187346	0,024	0,000	0,024
	430 431	431 432	20,00 30,35	0,040 0,082	0,001187346 0,001187346	0,024 0,036	0,000 0,024	0,024 0,060
COLL 49	430 431 432	431 432 416	20,00 30,35 25,60	0,040 0,082 0,027	0,001187346 0,001187346 0,001187346	0,024 0,036 0,030 Q	0,000 0,024 0,060	0,024 0,060 0,090
COLL 49	430 431 432 Reg.Amont	431 432 416 Reg.Aval	20,00 30,35 25,60 Distance	0,040 0,082 0,027 Pente	0,001187346 0,001187346 0,001187346 Q spe	0,024 0,036 0,030 Q propre	0,000 0,024 0,060 Q tronsit	0,024 0,060 0,090 Q cumul
COLL 49	430 431 432 Reg.Amont 435	431 432 416 Reg.Aval 436	20,00 30,35 25,60 Distance 17,00	0,040 0,082 0,027 Pente 0,112	0,001187346 0,001187346 0,001187346 Q spe 0,001187346	0,024 0,036 0,030 Q propre 0,020	0,000 0,024 0,060 Q tronsit 0,000	0,024 0,060 0,090 Q cumul 0,020
COLL 49 Collecteur	430 431 432 Reg.Amont 435 436	431 432 416 Reg.Aval 436 437	20,00 30,35 25,60 Distance 17,00 30,00	0,040 0,082 0,027 Pente 0,112 0,063	0,001187346 0,001187346 0,001187346 Q spe 0,001187346 0,001187346	0,024 0,036 0,030 Q propre 0,020 0,036	0,000 0,024 0,060 Q tronsit 0,000 0,020	0,024 0,060 0,090 Q cumul 0,020 0,056
COLL 49 Collecteur	430 431 432 Reg.Amont 435 436 437	431 432 416 Reg.Aval 436 437 438	20,00 30,35 25,60 Distance 17,00 30,00 30,00	0,040 0,082 0,027 Pente 0,112 0,063 0,083	0,001187346 0,001187346 0,001187346 Q spe 0,001187346 0,001187346 0,001187346	0,024 0,036 0,030 Q propre 0,020 0,036	0,000 0,024 0,060 Q tronsit 0,000 0,020 0,056	0,024 0,060 0,090 Q cumul 0,020 0,056 0,091
COLL 49 Collecteur	430 431 432 Reg.Amont 435 436 437 438	431 432 416 Reg.Aval 436 437 438 439	20,00 30,35 25,60 Distance 17,00 30,00 30,00 29,00	0,040 0,082 0,027 Pente 0,112 0,063 0,083 0,059	0,001187346 0,001187346 0,001187346 Q spe 0,001187346 0,001187346 0,001187346	0,024 0,036 0,030 Q propre 0,020 0,036 0,036	0,000 0,024 0,060 Q tronsit 0,000 0,020 0,056 0,091	0,024 0,060 0,090 Q cumul 0,020 0,056 0,091 0,126
COLL 49 Collecteur COLL 50	430 431 432 Reg.Amont 435 436 437 438 439	431 432 416 Reg.Aval 436 437 438 439 396	20,00 30,35 25,60 Distance 17,00 30,00 30,00 29,00 35,70	0,040 0,082 0,027 Pente 0,112 0,063 0,083 0,059 0,126	0,001187346 0,001187346 0,001187346 Q spe 0,001187346 0,001187346 0,001187346 0,001187346 0,001187346	0,024 0,036 0,030 Q propre 0,020 0,036 0,036 0,034 0,042 Q	0,000 0,024 0,060 Q tronsit 0,000 0,020 0,056 0,091 0,126	0,024 0,060 0,090 Q cumul 0,020 0,056 0,091 0,126 0,168

Collecteur	Reg.Amont	Reg.Aval	Distance	Pente	Q spe	Q propre	Q tronsit	Q cumul
	450	451	20,00	0,060	0,001187346	0,024	0,000	0,024
	451	452	24,70	0,069	0,001187346	0,029	0,024	0,053
	452	453	24,45	0,045	0,001187346	0,029	0,053	0,082
	453	454	24,45	0,025	0,001187346	0,029	0,082	0,111
	454	455	25,50	0,051	0,001187346	0,030	0,344	0,375
	455	456	30,55	0,039	0,001187346	0,036	0,375	0,411
	456	457	33,00	0,073	0,001187346	0,039	0,460	0,499
	457	458	33,40	0,087	0,001187346	0,040	0,499	0,539
	458	459	30,00	0,070	0,001187346	0,036	0,539	0,575
	459	460	30,00	0,063	0,001187346	0,036	0,575	0,610
	460	461	30,00	0,070	0,001187346	0,036	0,610	0,646
	461	462	30,00	0,030	0,001187346	0,036	0,646	0,682
COLL 52	462	463	30,00	0,090	0,001187346	0,036	0,682	0,717
COLL 52	463	464	30,00	0,090	0,001187346	0,036	0,717	0,753
	464	465	17,55	0,085	0,001187346	0,021	0,753	0,774
	465	466	31,40	0,020	0,001187346	0,037	1,055	1,093
	466	467	30,00	0,023	0,001187346	0,036	1,093	1,128
	467	468	30,00	0,037	0,001187346	0,036	1,128	1,164
	468	469	30,00	0,027	0,001187346	0,036	1,164	1,200
	469	470	33,50	0,033	0,001187346	0,040	1,200	1,239
	470	471	30,00	0,025	0,001187346	0,036	1,239	1,275
	471	472	30,00	0,027	0,001187346	0,036	1,275	1,311
	472	473	30,00	0,027	0,001187346	0,036	1,311	1,346
	473	474	30,00	0,037	0,001187346	0,036	1,346	1,382
	474	475	30,00	0,037	0,001187346	0,036	1,382	1,418
	475	476	24,55	0,073	0,001187346	0,029	1,418	1,447

Collecteur COLL 53	Reg.Amont	Reg.Aval	Distance	Pente 0,114	Q spe 0,001187346	Q propre 0,017	Q tronsit 0,000	Q cumul 0,017
	500	R57	38,10	0,050	0,001187346	0,045	2,278	2,323
	499	500	30,00	0,050	0,001187346	0,036	2,243	2,278
	498	499	20,00	0,050	0,001187346	0,024	2,219	2,243
	497	498	30,20	0,050	0,001187346	0,036	2,183	2,219
	496	497	24,40	0,050	0,001187346	0,029	2,154	2,183
	495	496	30,00	0,050	0,001187346	0,036	2,118	2,154
	494	495	25,60	0,050	0,001187346	0,030	2,088	2,118
	493	494	30,00	0,050	0,001187346	0,036	2,052	2,088
	492	493	25,00	0,050	0,001187346	0,030	2,023	2,052
	491	492	20,25	0,050	0,001187346	0,024	1,999	2,023
	490	491	30,00	0,050	0,001187346	0,036	1,963	1,999
	489	490	30,00	0,050	0,001187346	0,036	1,927	1,963
	488	489	30,00	0,050	0,001187346	0,036	1,892	1,927
	487	488	30,10	0,053	0,001187346	0,036	1,856	1,892
	486	487	32,60	0,050	0,001187346	0,039	1,817	1,856
	485	486	30,00	0,050	0,001187346	0,036	1,782	1,817
	484	485	33,00	0,067	0,001187346	0,039	1,743	1,782
	483	484	30,00	0,060	0,001187346	0,036	1,707	1,743
	482	483	30,00	0,063	0,001187346	0,036	1,671	1,707
	481	482	39,20	0,060	0,001187346	0,047	1,625	1,671
	480	481	30,00	0,070	0,001187346	0,036	1,589	1,625
	479	480	30,00	0,060	0,001187346	0,036	1,554	1,589
	478	479	30,00	0,070	0,001187346	0,036	1,518	1,554
	477	478	30,00	0,070	0,001187346	0,036	1,482	1,518
	476	477	30,00	0,033	0,001187346	0,036	1,447	1,482

	506	507	31,20	0,051	0,001187346	0,037	0,017	0,054
	507	508	22,55	0,013	0,001187346	0,027	0,054	0,080
	508	509	30,00	0,063	0,001187346	0,036	0,080	0,116
	509	510	30,00	0,003	0,001187346	0,036	0,116	0,152
	510	511	19,30	0,010	0,001187346	0,023	0,152	0,175
	511	512	19,45	0,021	0,001187346	0,023	0,175	0,198
	512	454	30,00	0,017	0,001187346	0,036	0,198	0,233
Collecteur	Reg.Amont	Reg.Aval	Distance	Pente	Q spe	Q propre	Q tronsit	Q cumul
COLL 54	515	516	11,45	0,035	0,001187346	0,014	0,000	0,014
COLL 54	516	456	30,00	0,020	0,001187346	0,036	0,014	0,049
Collecteur	Reg.Amont	Reg.Aval	Distance	Pente	Q spe	Q propre	Q tronsit	Q cumul
	518	519	18,30	0,087	0,001187346	0,022	0,000	0,022
	519	520	30,00	0,103	0,001187346	0,036	0,022	0,057
COLL 55	520	521	10,00	0,090	0,001187346	0,012	0,057	0,069
	521	522	34,00	0,027	0,001187346	0,040	0,199	0,239
	522	466	36,00	0,010	0,001187346	0,043	0,239	0,282
Collecteur	Reg.Amont	Reg.Aval	Distance	Pente	Q spe	Q propre	Q tronsit	Q cumul
	525	526	25,30	0,079	0,001187346	0,030	0,000	0,030
COLL 56	526	527	26,10	0,061	0,001187346	0,031	0,030	0,061
COLL 50	527	528	20,00	0,080	0,001187346	0,024	0,061	0,085
	528	521	37,70	0,016	0,001187346	0,045	0,085	0,130
Collecteur	Reg.Amont	Reg.Aval	Distance	Pente	Q spe	Q propre	Q tronsit	Q cumul
COLL 57	530	531	36,40	0,124	0,001187346	0,043	0,000	0,043
COLL 37	531	268	30,45	0,131	0,001187346	0,036	0,116	0,152

Collecteur	Reg.Amont	Reg.Aval	Distance	Pente	Q spe	Q propre	Q tronsit	Q cumul
COLT 50	532	533	26,15	0,107	0,001187346	0,031	0,000	0,031
COLL 58	533	531	34,80	0,106	0,001187346	0,041	0,031	0,072
Collecteur	Reg.Amont	Reg.Aval	Distance	Pente	Q spe	Q propre	Q tronsit	Q cumul
	535	536	30,00	0,043	0,001187346	0,036	0,000	0,036
COLI 50	536	537	30,00	0,043	0,001187346	0,036	0,036	0,071
COLL 59	537	538	16,50	0,018	0,001187346	0,020	0,071	0,091
	538	273	31,80	0,107	0,001187346	0,038	0,091	0,129

Tableau 2 : Estimation des débits des eaux pluvial.

Collecteur	Reg.Amont	Reg.Aval	Distance	S (ha/ml)	Coef Ruis	Intens Pluvi	Q propre	Q tronsit	Q cumul
	R01	R02	30,00	0,003169094	0,60	150,00	4,278	293,369	297,647
	R02	R03	30,00	0,003169094	0,60	150,00	4,278	297,647	301,925
	R03	R04	21,30	0,003169094	0,60	150,00	3,038	301,925	304,963
COLL 01A	R04	R05	30,00	0,003169094	0,60	150,00	4,278	304,963	309,241
	R05	R06	30,00	0,003169094	0,60	150,00	4,278	309,241	313,519
	R06	R07	38,00	0,003169094	0,60	150,00	5,419	313,519	318,938
	R07	R244	38,00	0,003169094	0,60	150,00	5,419	318,938	324,358
Collecteur	Reg.Amont	Reg.Aval	Ditance	S (ha/ml)	Coef	Intens Pluvi	Q	Q tronsit	Q cumul
Concettui					Ruis		propre		
	R12	R13	30,00	0,003169094	0,60	150,00	4,278	66,998	71,276
	R13	R14	30,00	0,003169094	0,60	150,00	4,278	71,276	75,554
COLL 01	R14	R15	33,25	0,003169094	0,60	150,00	4,742	75,554	80,296
	R15	R16	30,00	0,003169094	0,60	150,00	4,278	80,296	84,574
	R16	R17	20,80	0,003169094	0,60	150,00	2,966	84,574	87,541

		I							
	R17	R18	23,20	0,003169094	0,60	150,00	3,309	87,541	90,849
	R18	R19	30,00	0,003169094	0,60	150,00	4,278	90,849	95,127
	R19	R20	30,00	0,003169094	0,60	150,00	4,278	95,127	99,406
	R20	R21	20,00	0,003169094	0,60	150,00	2,852	99,406	102,258
	R21	R22	21,45	0,003169094	0,60	150,00	3,059	102,258	105,317
	R22	R23	35,70	0,003169094	0,60	150,00	5,091	117,489	122,580
	R23	R24	39,50	0,003169094	0,60	150,00	5,633	122,580	128,213
	R24	R25	11,50	0,003169094	0,60	150,00	1,640	128,213	129,853
	R25	R26	36,05	0,003169094	0,60	150,00	5,141	137,853	142,994
	R26	R27	30,00	0,003169094	0,60	150,00	4,278	142,994	147,273
	R27	R28	30,00	0,003169094	0,60	150,00	4,278	147,273	151,551
	R28	R29	30,00	0,003169094	0,60	150,00	4,278	151,551	155,829
	R29	R30	32,60	0,003169094	0,60	150,00	4,649	155,829	160,478
	R30	R31	30,00	0,003169094	0,60	150,00	4,278	160,478	164,756
	R31	R32	30,00	0,003169094	0,60	150,00	4,278	164,756	169,035
	R32	R33	38,40	0,003169094	0,60	150,00	5,476	169,035	174,511
	R33	R34	30,00	0,003169094	0,60	150,00	4,278	174,511	178,789
	R34	R35	33,35	0,003169094	0,60	150,00	4,756	178,789	183,545
	R35	R36	30,00	0,003169094	0,60	150,00	4,278	183,545	187,823
	R36	R37	30,00	0,003169094	0,60	150,00	4,278	187,823	192,102
	R37	R38	30,00	0,003169094	0,60	150,00	4,278	192,102	196,380
	R38	DO	10,7	0,003169094	0,6	150	3,05	250,157	253,207
	DO	R39	13,45	0,003169094	0,60	150,00	1,918	253,207	253,207
	R39	R40	23,90	0,003169094	0,60	150,00	3,408	253,207	256,615
COLL 01	R40	R41	25,00	0,003169094	0,60	150,00	3,565	256,615	260,181
	R41	R42	16,75	0,003169094	0,60	150,00	2,389	260,181	262,569
	R42	R43	29,90	0,003169094	0,60	150,00	4,264	262,569	266,833
	R43	R44	9,90	0,003169094	0,60	150,00	1,412	266,833	268,245

R44	R45	38,85	0,003169094	0,60	150,00	5,540	268,245	273,786
R45	R46	33,90	0,003169094	0,60	150,00	4,834	273,786	278,620
R46	R47	30,00	0,003169094	0,60	150,00	4,278	278,620	282,898
R47	R48	30,05	0,003169094	0,60	150,00	4,285	282,898	287,184
R48	R49	30,05	0,003169094	0,60	150,00	4,285	287,184	291,469
R49	R50	30,00	0,003169094	0,60	150,00	4,278	291,469	295,747
R50	R51	30,00	0,003169094	0,60	150,00	4,278	295,747	300,026
R51	R52	30,00	0,003169094	0,60	150,00	4,278	300,026	304,304
R52	R53	30,05	0,003169094	0,60	150,00	4,285	304,304	308,589
R53	R54	27,45	0,003169094	0,60	150,00	3,915	308,589	312,504
R54	R55	20,80	0,003169094	0,60	150,00	2,966	312,504	315,470
R55	R56	35,00	0,003169094	0,60	150,00	4,991	315,470	320,462
R56	R57	35,25	0,003169094	0,60	150,00	5,027	320,462	325,488
R57	R58	20,00	0,003169094	0,60	150,00	2,852	604,553	607,406
R58	R59	29,70	0,003169094	0,60	150,00	4,235	607,406	611,641
R59	R60	40,00	0,003169094	0,60	150,00	5,704	611,641	617,345
R60	R61	34,00	0,003169094	0,60	150,00	4,849	617,345	622,194
R61	R62	22,50	0,003169094	0,60	150,00	3,209	622,194	625,403
R62	R63	20,00	0,003169094	0,60	150,00	2,852	625,403	628,255
R63	R64	40,00	0,003169094	0,60	150,00	5,704	628,255	633,959
R64	R65	40,00	0,003169094	0,60	150,00	5,704	633,959	639,664
R65	R66	39,00	0,003169094	0,60	150,00	5,562	796,848	802,409
R66	R67	36,95	0,003169094	0,60	150,00	5,269	802,409	807,679
R67	R68	40,00	0,003169094	0,60	150,00	5,704	807,679	813,383
R68	R69	40,00	0,003169094	0,60	150,00	5,704	813,383	819,088
R69	R70	40,00	0,003169094	0,60	150,00	5,704	819,088	824,792
R70	R71	20,00	0,003169094	0,60	150,00	2,852	824,792	827,644
R71	BP	25,00	0,003169094	0,60	150,00	3,565	827,644	831,209

Collecteur	Reg.Amont	Reg.Aval	Ditance	S (ha/ml)	Coef Ruis	Intens Pluvi	Q propre	Q tronsit	Q cumul
	R75	R76	30,00	0,003169094	0,60	150,00	4,278	0,000	4,278
	R76	R77	30,00	0,003169094	0,60	150,00	4,278	4,278	8,557
	R77	R78	30,00	0,003169094	0,60	150,00	4,278	8,557	12,835
	R78	R79	21,35	0,003169094	0,60	150,00	3,045	12,835	15,880
COLL 02	R79	R80	22,70	0,003169094	0,60	150,00	3,237	15,880	19,117
COLL 02	R80	R81	30,00	0,003169094	0,60	150,00	4,278	19,117	23,395
	R81	R82	26,40	0,003169094	0,60	150,00	3,765	23,395	27,160
	R82	R83	30,00	0,003169094	0,60	150,00	4,278	27,160	31,438
	R83	R84	30,00	0,003169094	0,60	150,00	4,278	31,438	35,716
	R84	R01	39,05	0,003169094	0,60	150,00	5,569	35,716	41,285
Collecteur	Reg.Amont	Reg.Aval	Distance	S (ha/ml)	Coef	Intens Pluvi	Q	Q tronsit	Q cumul
Conceteur					Ruis		propre		
	R85	R86	21,85	0,003169094	0,60	150,00	3,116	0,000	3,116
	R86	R87	25,50	0,003169094	0,60	150,00	3,637	3,116	6,753
	R87	R88	29,15	0,003169094	0,60	150,00	4,157	15,067	19,224
	R88	R89	32,20	0,003169094	0,60	150,00	4,592	24,586	29,178
	R89	R90	16,85	0,003169094	0,60	150,00	2,403	37,941	40,344
	R90	R91	25,00	0,003169094	0,60	150,00	3,565	53,978	57,543
COLL 03	R91	R92	22,35	0,003169094	0,60	150,00	3,187	57,543	60,730
COLL 03	R92	R93	20,00	0,003169094	0,60	150,00	2,852	60,730	63,582
	R93	R94	20,00	0,003169094	0,60	150,00	2,852	63,582	66,435
	R94	R95	24,00	0,003169094	0,60	150,00	3,423	92,297	95,719
	R95	R96	24,75	0,003169094	0,60	150,00	3,530	115,599	119,129
	R96	R97	31,35	0,003169094	0,60	150,00	4,471	126,402	130,872
	R97	R98	30,00	0,003169094	0,60	150,00	4,278	141,661	145,939
	R98	R99	28,10	0,003169094	0,60	150,00	4,007	145,939	149,946

	R99	100	30,00	0,003169094	0,60	150,00	4,278	156,706	160,984
	100	100	30,00	0,003169094	0,60	150,00	4,278	160,984	165,263
		101		<i>′</i>		1	- 1	,	· · · · · · · · · · · · · · · · · · ·
	101		16,00	0,003169094	0,60	150,00	2,282	165,263	167,544
	101	102	17,55	0,003169094	0,60	150,00	2,503	176,094	178,597
	102	103	30,80	0,003169094	0,60	150,00	4,392	178,597	182,989
	103	104	26,45	0,003169094	0,60	150,00	3,772	188,629	192,401
	104	105	25,45	0,003169094	0,60	150,00	3,629	192,401	196,031
	105	106	12,15	0,003169094	0,60	150,00	1,733	203,560	205,293
	106	107	17,10	0,003169094	0,60	150,00	2,439	248,219	250,657
	107	RO1	10,00	0,003169094	0,60	150,00	1,426	250,657	252,083
Collecteur	Reg.Amont	Reg.Aval	Distance	S (ha/ml)	Coef	Intens Pluvi	Q	Q tronsit	Q cumul
Conceteur					Ruis		propre		
COLL 04	108	109	30,00	0,003169094	0,60	150,00	4,278	0,000	4,278
COLE 01	109	R87	28,30	0,003169094	0,60	150,00	4,036	4,278	8,314
Collecteur	Reg.Amont	Reg.Aval	Distance	S (ha/ml)	Coef	Intens Pluvi	Q	Q tronsit	Q cumul
Conceccu	110		• • • • •	0.0001.0001	Ruis	1.50.00	propre	0.000	
COLL 05	110	111	20,00	0,003169094	0,60	150,00	2,852	0,000	2,852
3322 00	111	R88	17,60	0,003169094	0,60	150,00	2,510	2,852	5,362
Collecteur	Reg.Amont	Reg.Aval	Distance	S (ha/ml)	Coef	Intens Pluvi	Q	Q tronsit	Q cumul
	112	112	20.00	0.002170004	Ruis	150.00	propre	0.000	4.270
COLL 06	112	113	30,00	0,003169094	0,60	150,00	4,278	0,000	4,278
	113	R89	31,45	0,003169094	0,60	150,00	4,485	4,278	8,763
G 11 4	Reg.Amont	Reg.Aval	Distance	S (ha/ml)	Coef	Intens Pluvi	Q	Q tronsit	Q cumul
Collecteur		ð		,	Ruis		propre	_	
Collecteur	114	115	30,00	0,003169094		150,00	propre 4,278	0,000	4,278
	114 115	<u> </u>		, ,	Ruis	150,00 150,00		0,000 4,278	4,278 8,557
COLL 07		115	30,00	0,003169094	Ruis 0,60	,	4,278	r	

Collecteur	Reg.Amont	Reg.Aval	Distance	S (ha/ml)	Coef Ruis	Intens Pluvi	Q propre	Q tronsit	Q cumul
	118	119	32,00	0,003169094	0,60	150,00	4,563	0,000	4,563
COLL 08	119	120	30,00	0,003169094	0,60	150,00	4,278	14,974	19,252
COLL 08	120	121	30,00	0,003169094	0,60	150,00	4,278	19,252	23,531
	121	R94	16,35	0,003169094	0,60	150,00	2,332	23,531	25,862
Collecteur	Reg.Amont	Reg.Aval	Distance	S (ha/ml)	Coef Ruis	Intens Pluvi	Q propre	Q tronsit	Q cumul
	122	123	20,00	0,003169094	0,60	150,00	2,852	0,000	2,852
COLL 09	123	124	26,70	0,003169094	0,60	150,00	3,808	2,852	6,660
	124	119	26,30	0,003169094	0,60	150,00	3,751	6,660	10,410
Collecteur	Reg.Amont	Reg.Aval	Distance	S (ha/ml)	Coef	Intens Pluvi	Q	Q tronsit	Q cumul
	125	126	20,00	0,003169094	Ruis 0,60	150,00	propre 2,852	0,000	2,852
	126	120	20,65	0,003169094	0,60	150,00	2,832	2,852	5,797
	120	127	21,85	0,003169094	0,60	150,00	3,116	5,797	8,913
COLL 10	128	128	23,35	0,003169094	0,60	150,00	3,330	8,913	12,243
		130	20,00	· ·		150,00		· ·	
	129			0,003169094	0,60	-	2,852	12,243	15,095
	130	R95	33,55	0,003169094	0,60	150,00	4,785	15,095	19,880
Collecteur	Reg.Amont	Reg.Aval	Distance	S (ha/ml)	Coef Ruis	Intens Pluvi	Q propre	Q tronsit	Q cumul
COLT 11	131	132	30,00	0,003169094	0,60	150,00	4,278	0,000	4,278
COLL 11	132	R96	21,00	0,003169094	0,60	150,00	2,995	4,278	7,273
Collecteur	Reg.Amont	Reg.Aval	Distance	S (ha/ml)	Coef Ruis	Intens Pluvi	Q propre	Q tronsit	Q cumul
	133	134	19,35	0,003169094	0,60	150,00	2,759	0,000	2,759
COLL 12	134	135	30,00	0,003169094	0,60	150,00	4,278	2,759	7,038
	135	R97	26,30	0,003169094	0,60	150,00	3,751	7,038	10,788

Collecteur	Reg.Amont	Reg.Aval	Distance	S (ha/ml)	Coef Ruis	Intens Pluvi	Q propre	Q tronsit	Q cumul
COLL 13	136	137	30,00	0,003169094	0,60	150,00	4,278	0,000	4,278
COLL 13	137	R99	17,40	0,003169094	0,60	150,00	2,481	4,278	6,760
Collecteur	Reg.Amont	Reg.Aval	Distance	S (ha/ml)	Coef Ruis	Intens Pluvi	Q propre	Q tronsit	Q cumul
	138	139	13,50	0,003169094	0,60	150,00	1,925	0,000	1,925
COLL 14	139	140	9,70	0,003169094	0,60	150,00	1,383	1,925	3,309
COLL 14	140	141	18,10	0,003169094	0,60	150,00	2,581	3,309	5,890
	141	101	18,65	0,003169094	0,60	150,00	2,660	5,890	8,549
Collecteur	Reg.Amont	Reg.Aval	Distance	S (ha/ml)	Coef Ruis	Intens Pluvi	Q propre	Q tronsit	Q cumul
GOTT 45	142	143	20,00	0,003169094	0,60	150,00	2,852	0,000	2,852
COLL 15	143	103	19,55	0,003169094	0,60	150,00	2,788	2,852	5,640
Collecteur	Reg.Amont	Reg.Aval	Distance	S (ha/ml)	Coef Ruis	Intens Pluvi	Q propre	Q tronsit	Q cumul
COLL 16	142	143	24,30	0,003169094	0,60	150,00	3,465	0,000	3,465
COLL 16	143	105	28,50	0,003169094	0,60	150,00	4,064	3,465	7,530
Collecteur	Reg.Amont	Reg.Aval	Distance	S (ha/ml)	Coef Ruis	Intens Pluvi	Q propre	Q tronsit	Q cumul
	145	146	25,40	0,003169094	0,60	150,00	3,622	0,000	3,622
	146	147	30,00	0,003169094	0,60	150,00	4,278	9,819	14,097
COLL 17	147	148	20,25	0,003169094	0,60	150,00	2,888	14,097	16,985
COLL 17	148	149	26,70	0,003169094	0,60	150,00	3,808	20,757	24,564
	149	150	37,00	0,003169094	0,60	150,00	5,277	32,137	37,414
	150	106	38,65	0,003169094	0,60	150,00	5,512	37,414	42,925
Collecteur	Reg.Amont	Reg.Aval	Distance	S (ha/ml)	Coef Ruis	Intens Pluvi	Q propre	Q tronsit	Q cumul
COLL 18	151	152	20,20	0,003169094	0,60	150,00	2,881	0,000	2,881

	152	146	23,25	0,003169094	0,60	150,00	3,316	2,881	6,196
Collecteur	Reg.Amont	Reg.Aval	Distance	S (ha/ml)	Coef Ruis	Intens Pluvi	Q propre	Q tronsit	Q cumul
COLL 19	153	148	26,45	0,003169094	0,60	150,00	3,772	0,000	3,772
Collecteur	Reg.Amont	Reg.Aval	Distance	S (ha/ml)	Coef Ruis	Intens Pluvi	Q propre	Q tronsit	Q cumul
COLL 20	154	155	30,00	0,003169094	0,60	150,00	4,278	0,000	4,278
COLL 20	155	149	23,10	0,003169094	0,60	150,00	3,294	4,278	7,573
Collecteur	Reg.Amont	Reg.Aval	Distance	S (ha/ml)	Coef Ruis	Intens Pluvi	Q propre	Q tronsit	Q cumul
	157	158	24,45	0,003169094	0,60	150,00	3,487	0,000	3,487
	158	159	30,20	0,003169094	0,60	150,00	4,307	9,426	13,733
	159	160	30,00	0,003169094	0,60	150,00	4,278	17,634	21,912
	160	161	31,70	0,003169094	0,60	150,00	4,521	21,912	26,433
COLL 21	161	162	21,20	0,003169094	0,60	150,00	3,023	26,433	29,456
COLL 21	162	163	22,35	0,003169094	0,60	150,00	3,187	29,456	32,643
	163	164	31,10	0,003169094	0,60	150,00	4,435	32,643	37,078
ľ	164	165	48,00	0,003169094	0,60	150,00	6,845	53,764	60,609
	165	166	30,00	0,003169094	0,60	150,00	4,278	60,609	64,887
ľ	166	R12	14,80	0,003169094	0,60	150,00	2,111	64,887	66,998
Collecteur	Reg.Amont	Reg.Aval	Distance	S (ha/ml)	Coef Ruis	Intens Pluvi	Q propre	Q tronsit	Q cumul
COLL 22	167	168	20,00	0,003169094	0,60	150,00	2,852	0,000	2,852
COLL 22	168	158	21,65	0,003169094	0,60	150,00	3,087	2,852	5,940
Collecteur	Reg.Amont	Reg.Aval	Distance	S (ha/ml)	Coef Ruis	Intens Pluvi	Q propre	Q tronsit	Q cumul
COLL 23	167	159	27,35	0,003169094	0,60	150,00	3,900	0,000	3,900
Collecteur	Reg.Amont	Reg.Aval	Distance	S (ha/ml)	Coef Ruis	Intens Pluvi	Q propre	Q tronsit	Q cumul

	150	171	20.00	0.0001.00001	0.60	150.00	4.070	0.000	4.070
	170	171	30,00	0,003169094	0,60	150,00	4,278	0,000	4,278
COLL 24	171	172	25,00	0,003169094	0,60	150,00	3,565	4,278	7,844
COLL 24	172	173	30,00	0,003169094	0,60	150,00	4,278	7,844	12,122
	173	164	32,00	0,003169094	0,60	150,00	4,563	12,122	16,685
Collecteur	Reg.Amont	Reg.Aval	Distance	S (ha/ml)	Coef	Intens Pluvi	Q	Q tronsit	Q cumul
	175	176	20.00	0.002160004	Ruis	150.00	propre	0.000	2.052
	175	176	20,00	0,003169094	0,60	150,00	2,852	0,000	2,852
COLL 25	176	177	20,00	0,003169094	0,60	150,00	2,852	2,852	5,704
COLL 25	177	178	30,00	0,003169094	0,60	150,00	4,278	5,704	9,983
	178	R22	15,35	0,003169094	0,60	150,00	2,189	9,983	12,172
Collecteur	Reg.Amont	Reg.Aval	Distance	S (ha/ml)	Coef	Intens Pluvi	Q	Q tronsit	Q cumul
Conceteur					Ruis		propre		
	180	181	27,00	0,003169094	0,60	150,00	3,850	0,000	3,850
COLL 26	181	182	20,00	0,003169094	0,60	150,00	2,852	3,850	6,703
	100	D 4 =	0.40		0 -0	4.50.00	1 200		
	182	R25	9,10	0,003169094	0,60	150,00	1,298	6,703	8,000
Collectour	Reg.Amont	R25 Reg.Aval	9,10 Distance	0,003169094 S (ha/ml)	0,60 Coef	150,00 Intens Pluvi	1,298 Q	6,703 Q tronsit	8,000 Q cumul
Collecteur			-	· ·		,	1		
Collecteur			-	· ·	Coef	,	Q		
Collecteur	Reg.Amont	Reg.Aval	Distance	S (ha/ml)	Coef Ruis	Intens Pluvi	Q propre	Q tronsit	Q cumul
Collecteur	Reg.Amont	Reg.Aval	Distance 28,10	S (ha/ml) 0,003169094	Coef Ruis 0,60	Intens Pluvi	Q propre 4,007	Q tronsit	Q cumul 4,007
Collecteur	Reg.Amont 185 186	Reg.Aval 186 187	28,10 25,75	S (ha/ml) 0,003169094 0,003169094	Coef Ruis 0,60 0,60	150,00 150,00	Q propre 4,007 3,672	Q tronsit 0,000 4,007	Q cumul 4,007 7,680
Collecteur	Reg.Amont 185 186 187	Reg.Aval 186 187 188	28,10 25,75 22,65	S (ha/ml) 0,003169094 0,003169094 0,003169094	Coef Ruis 0,60 0,60 0,60	150,00 150,00 150,00	Q propre 4,007 3,672 3,230	Q tronsit 0,000 4,007 7,680	Q cumul 4,007 7,680 10,910
	185 186 187 188	186 187 188 189	28,10 25,75 22,65 28,75	S (ha/ml) 0,003169094 0,003169094 0,003169094 0,003169094	Coef Ruis 0,60 0,60 0,60 0,60	150,00 150,00 150,00 150,00	Q propre 4,007 3,672 3,230 4,100	Q tronsit 0,000 4,007 7,680 10,910	Q cumul 4,007 7,680 10,910 15,010
Collecteur	Reg.Amont 185 186 187 188 189	Reg.Aval 186 187 188 189 190	28,10 25,75 22,65 28,75 21,00	S (ha/ml) 0,003169094 0,003169094 0,003169094 0,003169094	Coef Ruis 0,60 0,60 0,60 0,60 0,60	150,00 150,00 150,00 150,00 150,00	Q propre 4,007 3,672 3,230 4,100 2,995	0,000 4,007 7,680 10,910 15,010	4,007 7,680 10,910 15,010 18,004
	Reg.Amont 185 186 187 188 189 190	Reg.Aval 186 187 188 189 190 191	28,10 25,75 22,65 28,75 21,00 30,80	S (ha/ml) 0,003169094 0,003169094 0,003169094 0,003169094 0,003169094	Coef Ruis 0,60 0,60 0,60 0,60 0,60	150,00 150,00 150,00 150,00 150,00 150,00	Q propre 4,007 3,672 3,230 4,100 2,995 4,392	0,000 4,007 7,680 10,910 15,010 18,004	Q cumul 4,007 7,680 10,910 15,010 18,004 22,397
	Reg.Amont 185 186 187 188 189 190 191	Reg.Aval 186 187 188 189 190 191 192	28,10 25,75 22,65 28,75 21,00 30,80 30,80	S (ha/ml) 0,003169094 0,003169094 0,003169094 0,003169094 0,003169094 0,003169094	Coef Ruis 0,60 0,60 0,60 0,60 0,60 0,60	150,00 150,00 150,00 150,00 150,00 150,00 150,00	Q propre 4,007 3,672 3,230 4,100 2,995 4,392 4,392	0,000 4,007 7,680 10,910 15,010 18,004 22,397	4,007 7,680 10,910 15,010 18,004 22,397 26,789
	Reg.Amont 185 186 187 188 189 190 191 192	Reg.Aval 186 187 188 189 190 191 192 193	28,10 25,75 22,65 28,75 21,00 30,80 30,80 15,00	S (ha/ml) 0,003169094 0,003169094 0,003169094 0,003169094 0,003169094 0,003169094 0,003169094	Coef Ruis 0,60 0,60 0,60 0,60 0,60 0,60 0,60	150,00 150,00 150,00 150,00 150,00 150,00 150,00 150,00	Q propre 4,007 3,672 3,230 4,100 2,995 4,392 4,392 2,139	0,000 4,007 7,680 10,910 15,010 18,004 22,397 26,789	Q cumul 4,007 7,680 10,910 15,010 18,004 22,397 26,789 28,928
	Reg.Amont 185 186 187 188 189 190 191 192 193	Reg.Aval 186 187 188 189 190 191 192 193 194	28,10 25,75 22,65 28,75 21,00 30,80 30,80 15,00 22,55	S (ha/ml) 0,003169094 0,003169094 0,003169094 0,003169094 0,003169094 0,003169094 0,003169094 0,003169094	Coef Ruis 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,6	150,00 150,00 150,00 150,00 150,00 150,00 150,00 150,00 150,00	Q propre 4,007 3,672 3,230 4,100 2,995 4,392 4,392 2,139 3,216	0,000 4,007 7,680 10,910 15,010 18,004 22,397 26,789 101,288	4,007 7,680 10,910 15,010 18,004 22,397 26,789 28,928 104,504

	197	198	30,00	0,003169094	0,60	150,00	4,278	117,104	121,382
	198	199	30,00	0,003169094	0,60	150,00	4,278	121,382	125,660
	199	200	14,00	0,003169094	0,60	150,00	1,997	149,340	151,337
	200	201	20,00	0,003169094	0,60	150,00	2,852	151,337	154,189
	201	R65	21,00	0,003169094	0,60	150,00	2,995	154,189	157,184
Collecteur	Reg.Amont	Reg.Aval	Distance	S (ha/ml)	Coef	Intens Pluvi	Q	Q tronsit	Q cumul
Conecteur					Ruis		propre		
	202	203	24,65	0,003169094	0,60	150,00	3,515	0,000	3,515
	203	204	30,00	0,003169094	0,60	150,00	4,278	3,515	7,794
COLL 28	204	205	20,00	0,003169094	0,60	150,00	2,852	7,794	10,646
	205	206	26,50	0,003169094	0,60	150,00	3,779	10,646	14,425
	206	193	18,15	0,003169094	0,60	150,00	2,588	69,772	72,360
Collecteur	Reg.Amont	Reg.Aval	Distance	S (ha/ml)	Coef	Intens Pluvi	Q	Q tronsit	Q cumul
Conecteur					Ruis		propre		
	207	208	20,00	0,003169094	0,60	150,00	2,852	0,000	2,852
	208	209	26,55	0,003169094	0,60	150,00	3,786	2,852	6,638
	209	210	31,35	0,003169094	0,60	150,00	4,471	15,074	19,545
	210	211	17,45	0,003169094	0,60	150,00	2,489	19,545	22,033
COLL 29	211	212	28,85	0,003169094	0,60	150,00	4,114	22,033	26,147
COLL 29	212	213	39,10	0,003169094	0,60	150,00	5,576	31,438	37,014
	213	214	39,20	0,003169094	0,60	150,00	5,590	37,014	42,605
	214	215	29,20	0,003169094	0,60	150,00	4,164	42,605	46,769
	215	216	29,40	0,003169094	0,60	150,00	4,193	46,769	50,961
	216	206	30,75	0,003169094	0,60	150,00	4,385	50,961	55,347
Collecteur	Reg.Amont	Reg.Aval	Distance	S (ha/ml)	Coef	Intens Pluvi	Q	Q tronsit	Q cumul
Conecteur					Ruis		propre		
COLL 20	220	221	27,25	0,003169094	0,60	150,00	3,886	0,000	3,886
COLL 30	221	209	31,90	0,003169094	0,60	150,00	4,549	3,886	8,435

Collecteur	Reg.Amont	Reg.Aval	Distance	S (ha/ml)	Coef Ruis	Intens Pluvi	Q propre	Q tronsit	Q cumul
COLL 31	222	212	37,10	0,003169094	0,60	150,00	5,291	0,000	5,291
Collecteur	Reg.Amont	Reg.Aval	Distance	S (ha/ml)	Coef Ruis	Intens Pluvi	Q propre	Q tronsit	Q cumul
	225	226	30,00	0,003169094	0,60	150,00	4,278	0,000	4,278
	226	227	30,00	0,003169094	0,60	150,00	4,278	4,278	8,557
	227	228	30,45	0,003169094	0,60	150,00	4,342	8,557	12,899
COLL 32	228	229	24,30	0,003169094	0,60	150,00	3,465	12,899	16,364
	229	230	30,00	0,003169094	0,60	150,00	4,278	16,364	20,643
	230	199	21,30	0,003169094	0,60	150,00	3,038	20,643	23,680
Collecteur	Reg.Amont	Reg.Aval	Distance	S (ha/ml)	Coef	Intens Pluvi	Q	Q tronsit	Q cumul
Collecteur		_			Ruis		propre		
	235	236	30,00	0,003169094	0,60	150,00	4,278	219,233	223,511
	236	237	20,00	0,003169094	0,60	150,00	2,852	223,511	226,364
	237	238	30,00	0,003169094	0,60	150,00	4,278	226,364	230,642
	238	239	30,00	0,003169094	0,60	150,00	4,278	230,642	234,920
	239	240	19,35	0,003169094	0,60	150,00	2,759	234,920	237,680
	240	241	30,25	0,003169094	0,60	150,00	4,314	269,482	273,795
	241	242	30,00	0,003169094	0,60	150,00	4,278	273,795	278,074
COLL 22	242	243	30,00	0,003169094	0,60	150,00	4,278	278,074	282,352
COLL 33	243	244	30,25	0,003169094	0,60	150,00	4,314	282,352	286,666
	244	245	30,00	0,003169094	0,60	150,00	4,278	666,570	670,848
	245	246	20,00	0,003169094	0,60	150,00	2,852	670,848	673,700
	246	247	22,00	0,003169094	0,60	150,00	3,137	673,700	676,838
	247	248	30,00	0,003169094	0,60	150,00	4,278	676,838	681,116
	248	249	30,00	0,003169094	0,60	150,00	4,278	681,116	685,394
	249	250	30,00	0,003169094	0,60	150,00	4,278	685,394	689,673
	250	251	30,00	0,003169094	0,60	150,00	4,278	689,673	693,951

	251	252	30,40	0,003169094	0,60	150,00	4,335	693,951	698,286
	252	253	30,15	0,003169094	0,60	150,00	4,300	698,286	702,586
	253	254	12,65	0,003169094	0,60	150,00	1,804	702,586	704,390
	254	255	35,40	0,003169094	0,60	150,00	5,048	717,367	722,416
	255	256	30,00	0,003169094	0,60	150,00	4,278	733,004	737,283
	256	257	30,00	0,003169094	0,60	150,00	4,278	737,283	741,561
	257	258	30,25	0,003169094	0,60	150,00	4,314	741,561	745,875
	258	259	28,60	0,003169094	0,60	150,00	4,079	745,875	749,953
	259	260	30,00	0,003169094	0,60	150,00	4,278	749,953	754,232
	260	261	37,00	0,003169094	0,60	150,00	5,277	754,232	759,508
	261	262	13,80	0,003169094	0,60	150,00	1,968	759,508	761,476
	262	263	15,15	0,003169094	0,60	150,00	2,161	982,335	984,496
	263	264	22,50	0,003169094	0,60	150,00	3,209	984,496	987,704
	264	265	30,00	0,003169094	0,60	150,00	4,278	987,704	991,983
COLL 33	265	266	16,15	0,003169094	0,60	150,00	2,303	991,983	994,286
	266	267	27,10	0,003169094	0,60	150,00	3,865	994,286	998,151
	267	268	29,00	0,003169094	0,60	150,00	4,136	998,151	1002,286
	268	269	30,00	0,003169094	0,60	150,00	4,278	1020,512	1024,790
	269	270	11,85	0,003169094	0,60	150,00	1,690	1024,790	1026,480
	270	271	30,00	0,003169094	0,60	150,00	4,278	1026,480	1030,758
	271	272	19,35	0,003169094	0,60	150,00	2,759	1030,758	1033,518
	272	273	15,20	0,003169094	0,60	150,00	2,168	1033,518	1035,685
	273	274	28,60	0,003169094	0,60	150,00	4,079	1051,130	1055,209
	274	275	57,65	0,003169094	0,6	150	16,44	1055,209	1071,651
	275	R38	13,7	0,003169094	0,6	150	3,907	1071,651	53,777
Collecteur	Reg.Amont	Reg.Aval	Distance	S (ha/ml)	Coef	Intens Pluvi	Q	Q tronsit	Q cumul
		-	. –		Ruis		propre		
COLL 34	280	281	17,00	0,003169094	0,60	150,00	2,424	0,000	2,424

	281	282	30,00	0,003169094	0,60	150,00	4,278	2,424	6,703
	282	283	30,00	0,003169094	0,60	150,00	4,278	6,703	10,981
	283	284	30,00	0,003169094	0,60	150,00	4,278	10,981	15,259
	284	285	30,00	0,003169094	0,60	150,00	4,278	15,259	19,537
	285	286	23,20	0,003169094	0,60	150,00	3,309	19,537	22,846
	286	287	30,00	0,003169094	0,60	150,00	4,278	22,846	27,124
	287	288	30,00	0,003169094	0,60	150,00	4,278	27,124	31,403
	288	289	30,00	0,003169094	0,60	150,00	4,278	31,403	35,681
	289	290	30,00	0,003169094	0,60	150,00	4,278	35,681	39,959
	290	291	30,00	0,003169094	0,60	150,00	4,278	39,959	44,237
	291	292	40,30	0,003169094	0,60	150,00	5,747	44,237	49,985
	292	293	30,00	0,003169094	0,60	150,00	4,278	49,985	54,263
	293	294	30,00	0,003169094	0,60	150,00	4,278	54,263	58,541
	294	295	40,00	0,003169094	0,60	150,00	5,704	58,541	64,245
	295	296	30,55	0,003169094	0,60	150,00	4,357	64,245	68,602
	296	297	30,00	0,003169094	0,60	150,00	4,278	68,602	72,880
	297	298	28,15	0,003169094	0,60	150,00	4,014	72,880	76,895
	298	235	20,00	0,003169094	0,60	150,00	2,852	76,895	79,747
Collecteur	Reg.Amont	Reg.Aval	Distance	S (ha/ml)	Coef	Intens Pluvi	Q	Q tronsit	Q cumul
Conecteur					Ruis		propre		
	300	301	32,75	0,003169094	0,60	150,00	4,670	0,000	4,670
	301	302	15,50	0,003169094	0,60	150,00	2,210	4,670	6,881
	302	303	30,00	0,003169094	0,60	150,00	4,278	6,881	11,159
COLL 35	303	304	12,35	0,003169094	0,60	150,00	1,761	11,159	12,920
COLL 33	304	305	30,00	0,003169094	0,60	150,00	4,278	12,920	17,199
	305	306	30,00	0,003169094	0,60	150,00	4,278	17,199	21,477
	306	307	16,00	0,003169094	0,60	150,00	2,282	21,477	23,759
	307	308	30,00	0,003169094	0,60	150,00	4,278	23,759	28,037

	308	309	20,00	0,003169094	0,60	150,00	2,852	28,037	30,889
	309	310	30,00	0,003169094	0,60	150,00	4,278	30,889	35,167
	310	311	32,00	0,003169094	0,60	150,00	4,563	35,167	39,731
	311	312	23,80	0,003169094	0,60	150,00	3,394	59,411	62,805
	312	313	30,00	0,003169094	0,60	150,00	4,278	62,805	67,083
	313	314	30,00	0,003169094	0,60	150,00	4,278	67,083	71,362
	314	315	20,00	0,003169094	0,60	150,00	2,852	71,362	74,214
	315	316	20,00	0,003169094	0,60	150,00	2,852	74,214	77,066
	316	317	34,00	0,003169094	0,60	150,00	4,849	77,066	81,915
	317	318	16,00	0,003169094	0,60	150,00	2,282	81,915	84,196
	318	319	30,00	0,003169094	0,60	150,00	4,278	84,196	88,475
	319	320	22,80	0,003169094	0,60	150,00	3,251	88,475	91,726
	320	235	31,25	0,003169094	0,60	150,00	4,457	135,030	139,486
	Dog Amount	D A1	D'. 4		O 6	T. A. DI .	•	0 4 14	Λ 1
Callagtaum	Reg.Amont	Reg.Aval	Distance	S (ha/ml)	Coef	Intens Pluvi	Q	Q tronsit	Q cumul
Collecteur	<u> </u>	Keg.Avai		, , ,	Coef Ruis		Q propre		Q cumul
Collecteur	321	322	30,00	0,003169094	Ruis 0,60	150,00	_	0,000	4,278
Collecteur	321 322	Ü		, , ,	Ruis		propre		
Collecteur COLL 36	321 322 323	322 323 324	30,00 30,00 30,00	0,003169094 0,003169094 0,003169094	Ruis 0,60 0,60 0,60	150,00 150,00 150,00	propre 4,278	0,000	4,278 8,557 12,835
	321 322	322 323	30,00 30,00	0,003169094 0,003169094	Ruis 0,60 0,60	150,00 150,00	propre 4,278 4,278	0,000 4,278	4,278 8,557
	321 322 323	322 323 324	30,00 30,00 30,00	0,003169094 0,003169094 0,003169094	Ruis 0,60 0,60 0,60	150,00 150,00 150,00	propre 4,278 4,278 4,278 2,567 4,278	0,000 4,278 8,557	4,278 8,557 12,835
COLL 36	321 322 323 324	322 323 324 325	30,00 30,00 30,00 18,00	0,003169094 0,003169094 0,003169094 0,003169094	Ruis 0,60 0,60 0,60 0,60 0,60 Coef	150,00 150,00 150,00 150,00	propre 4,278 4,278 4,278 2,567 4,278 Q	0,000 4,278 8,557 12,835	4,278 8,557 12,835 15,402
	321 322 323 324 325 Reg.Amont	322 323 324 325 311 Reg.Aval	30,00 30,00 30,00 18,00 30,00 Distance	0,003169094 0,003169094 0,003169094 0,003169094 0,003169094 S (ha/ml)	Ruis 0,60 0,60 0,60 0,60 0,60 Coef Ruis	150,00 150,00 150,00 150,00 150,00 Intens Pluvi	propre 4,278 4,278 4,278 2,567 4,278 Q propre	0,000 4,278 8,557 12,835 15,402 Q tronsit	4,278 8,557 12,835 15,402 19,680 Q cumul
COLL 36	321 322 323 324 325 Reg.Amont	322 323 324 325 311 Reg.Aval	30,00 30,00 30,00 18,00 30,00 Distance	0,003169094 0,003169094 0,003169094 0,003169094 0,003169094 S (ha/ml)	Ruis 0,60 0,60 0,60 0,60 0,60 Coef Ruis 0,60	150,00 150,00 150,00 150,00 150,00 Intens Pluvi	propre 4,278 4,278 4,278 2,567 4,278 Q propre 2,353	0,000 4,278 8,557 12,835 15,402 Q tronsit 0,000	4,278 8,557 12,835 15,402 19,680 Q cumul 2,353
COLL 36	321 322 323 324 325 Reg.Amont	322 323 324 325 311 Reg.Aval 328 329	30,00 30,00 30,00 18,00 30,00 Distance 16,50 18,00	0,003169094 0,003169094 0,003169094 0,003169094 0,003169094 S (ha/ml) 0,003169094 0,003169094	Ruis 0,60 0,60 0,60 0,60 0,60 Coef Ruis 0,60 0,60	150,00 150,00 150,00 150,00 150,00 Intens Pluvi	propre 4,278 4,278 4,278 2,567 4,278 Q propre 2,353 2,567	0,000 4,278 8,557 12,835 15,402 Q tronsit 0,000 2,353	4,278 8,557 12,835 15,402 19,680 Q cumul 2,353 4,920
COLL 36	321 322 323 324 325 Reg.Amont 327 328 329	322 323 324 325 311 Reg.Aval 328 329 330	30,00 30,00 30,00 18,00 30,00 Distance 16,50 18,00 20,00	0,003169094 0,003169094 0,003169094 0,003169094 0,003169094 S (ha/ml) 0,003169094 0,003169094 0,003169094	Ruis 0,60 0,60 0,60 0,60 Coef Ruis 0,60 0,60 0,60 0,60	150,00 150,00 150,00 150,00 150,00 Intens Pluvi 150,00 150,00	propre 4,278 4,278 4,278 2,567 4,278 Q propre 2,353 2,567 2,852	0,000 4,278 8,557 12,835 15,402 Q tronsit 0,000 2,353 4,920	4,278 8,557 12,835 15,402 19,680 Q cumul 2,353 4,920 7,772
COLL 36 Collecteur	321 322 323 324 325 Reg.Amont 327 328 329 330	322 323 324 325 311 Reg.Aval 328 329 330 331	30,00 30,00 30,00 18,00 30,00 Distance 16,50 18,00 20,00 30,00	0,003169094 0,003169094 0,003169094 0,003169094 0,003169094 S (ha/ml) 0,003169094 0,003169094 0,003169094 0,003169094	Ruis 0,60 0,60 0,60 0,60 0,60 Coef Ruis 0,60 0,60 0,60 0,60 0,60	150,00 150,00 150,00 150,00 150,00 Intens Pluvi 150,00 150,00 150,00	propre 4,278 4,278 4,278 2,567 4,278 Q propre 2,353 2,567 2,852 4,278	0,000 4,278 8,557 12,835 15,402 Q tronsit 0,000 2,353 4,920 7,772	4,278 8,557 12,835 15,402 19,680 Q cumul 2,353 4,920 7,772 12,050
COLL 36 Collecteur	321 322 323 324 325 Reg.Amont 327 328 329	322 323 324 325 311 Reg.Aval 328 329 330	30,00 30,00 30,00 18,00 30,00 Distance 16,50 18,00 20,00	0,003169094 0,003169094 0,003169094 0,003169094 0,003169094 S (ha/ml) 0,003169094 0,003169094 0,003169094	Ruis 0,60 0,60 0,60 0,60 Coef Ruis 0,60 0,60 0,60 0,60	150,00 150,00 150,00 150,00 150,00 Intens Pluvi 150,00 150,00	propre 4,278 4,278 4,278 2,567 4,278 Q propre 2,353 2,567 2,852	0,000 4,278 8,557 12,835 15,402 Q tronsit 0,000 2,353 4,920	4,278 8,557 12,835 15,402 19,680 Q cumul 2,353 4,920 7,772

	333	334	32,40	0,003169094	0,60	150,00	4,621	20,029	24,650
	334	335	26,00	0,003169094	0,60	150,00	3,708	24,650	28,358
	335	336	20,00	0,003169094	0,60	150,00	2,852	28,358	31,210
	336	337	30,00	0,003169094	0,60	150,00	4,278	31,210	35,488
	337	338	17,00	0,003169094	0,60	150,00	2,424	35,488	37,913
	338	339	18,60	0,003169094	0,60	150,00	2,653	37,913	40,565
	339	320	19,20	0,003169094	0,60	150,00	2,738	40,565	43,303
Collecteur	Reg.Amont	Reg.Aval	Distance	S (ha/ml)	Coef Ruis	Intens Pluvi	Q propre	Q tronsit	Q cumul
	340	341	20,45	0,003169094	0,60	150,00	2,916	0,000	2,916
	341	342	35,65	0,003169094	0,60	150,00	5,084	14,703	19,787
COLL 38	342	343	30,15	0,003169094	0,60	150,00	4,300	19,787	24,087
	343	344	29,80	0,003169094	0,60	150,00	4,250	24,087	28,336
	344	240	24,30	0,003169094	0,60	150,00	3,465	28,336	31,802
Collecteur	Reg.Amont	Reg.Aval	Distance	S (ha/ml)	Coef Ruis	Intens Pluvi	Q propre	Q tronsit	Q cumul
Collecteur	Reg.Amont	Reg.Aval	Distance	S (ha/ml) 0,003169094		Intens Pluvi	Q propre 2,731	Q tronsit 0,000	Q cumul 2,731
Collecteur COLL 39	G	J		, ,	Ruis		propre	_	
	345	346	19,15	0,003169094	Ruis 0,60	150,00	propre 2,731	0,000	2,731
	345 346	346 347	19,15 30,00	0,003169094 0,003169094	Ruis 0,60 0,60	150,00 150,00	propre 2,731 4,278	0,000 2,731	2,731 7,009
COLL 39	345 346 347	346 347 341	19,15 30,00 33,50	0,003169094 0,003169094 0,003169094	Ruis 0,60 0,60 0,60 Coef	150,00 150,00 150,00	propre 2,731 4,278 4,777 Q	0,000 2,731 7,009	2,731 7,009 11,787
COLL 39	345 346 347 Reg.Amont	346 347 341 Reg.Aval	19,15 30,00 33,50 Distance	0,003169094 0,003169094 0,003169094 S (ha/ml)	Ruis 0,60 0,60 0,60 Coef Ruis	150,00 150,00 150,00 Intens Pluvi	propre 2,731 4,278 4,777 Q propre	0,000 2,731 7,009 Q tronsit	2,731 7,009 11,787 Q cumul
COLL 39	345 346 347 Reg.Amont	346 347 341 Reg.Aval 349	19,15 30,00 33,50 Distance 23,50	0,003169094 0,003169094 0,003169094 S (ha/ml) 0,003169094	Ruis 0,60 0,60 0,60 Coef Ruis 0,60	150,00 150,00 150,00 Intens Pluvi	propre 2,731 4,278 4,777 Q propre 3,351	0,000 2,731 7,009 Q tronsit 0,000	2,731 7,009 11,787 Q cumul 3,351
COLL 39 Collecteur	345 346 347 Reg.Amont 348 349	346 347 341 Reg.Aval 349 350	19,15 30,00 33,50 Distance 23,50 30,05	0,003169094 0,003169094 0,003169094 S (ha/ml) 0,003169094 0,003169094	Ruis 0,60 0,60 0,60 Coef Ruis 0,60 0,60	150,00 150,00 150,00 Intens Pluvi 150,00 150,00	propre 2,731 4,278 4,777 Q propre 3,351 4,285	0,000 2,731 7,009 Q tronsit 0,000 3,351	2,731 7,009 11,787 Q cumul 3,351 7,637
COLL 39	345 346 347 Reg.Amont 348 349 350	346 347 341 Reg.Aval 349 350 351	19,15 30,00 33,50 Distance 23,50 30,05 30,00	0,003169094 0,003169094 0,003169094 S (ha/ml) 0,003169094 0,003169094	Ruis 0,60 0,60 0,60 Coef Ruis 0,60 0,60 0,60	150,00 150,00 150,00 Intens Pluvi 150,00 150,00	propre 2,731 4,278 4,777 Q propre 3,351 4,285 4,278	0,000 2,731 7,009 Q tronsit 0,000 3,351 7,637	2,731 7,009 11,787 Q cumul 3,351 7,637 11,915
COLL 39 Collecteur	345 346 347 Reg.Amont 348 349 350 351	346 347 341 Reg.Aval 349 350 351 352	19,15 30,00 33,50 Distance 23,50 30,05 30,00 30,00	0,003169094 0,003169094 0,003169094 S (ha/ml) 0,003169094 0,003169094 0,003169094	Ruis 0,60 0,60 0,60 Coef Ruis 0,60 0,60 0,60 0,60	150,00 150,00 150,00 Intens Pluvi 150,00 150,00 150,00	propre 2,731 4,278 4,777 Q propre 3,351 4,285 4,278 4,278	0,000 2,731 7,009 Q tronsit 0,000 3,351 7,637 11,915	2,731 7,009 11,787 Q cumul 3,351 7,637 11,915 16,193
COLL 39 Collecteur	345 346 347 Reg.Amont 348 349 350 351 352	346 347 341 Reg.Aval 349 350 351 352 353	19,15 30,00 33,50 Distance 23,50 30,05 30,00 30,00 34,40	0,003169094 0,003169094 0,003169094 S (ha/ml) 0,003169094 0,003169094 0,003169094 0,003169094	Ruis 0,60 0,60 0,60 Coef Ruis 0,60 0,60 0,60 0,60 0,60 0,60	150,00 150,00 150,00 Intens Pluvi 150,00 150,00 150,00 150,00	propre 2,731 4,278 4,777 Q propre 3,351 4,285 4,278 4,278 4,906	0,000 2,731 7,009 Q tronsit 0,000 3,351 7,637 11,915 16,193	2,731 7,009 11,787 Q cumul 3,351 7,637 11,915 16,193 21,099
COLL 39 Collecteur	345 346 347 Reg.Amont 348 349 350 351 352 353	346 347 341 Reg.Aval 349 350 351 352 353 354	19,15 30,00 33,50 Distance 23,50 30,05 30,00 30,00 34,40 30,30	0,003169094 0,003169094 0,003169094 S (ha/ml) 0,003169094 0,003169094 0,003169094 0,003169094 0,003169094	Ruis 0,60 0,60 0,60 Coef Ruis 0,60 0,60 0,60 0,60 0,60 0,60 0,60	150,00 150,00 150,00 Intens Pluvi 150,00 150,00 150,00 150,00 150,00	propre 2,731 4,278 4,777 Q propre 3,351 4,285 4,278 4,278 4,906 4,321	0,000 2,731 7,009 Q tronsit 0,000 3,351 7,637 11,915 16,193 25,548	2,731 7,009 11,787 Q cumul 3,351 7,637 11,915 16,193 21,099 29,870

	356	357	28,25	0,003169094	0,60	150,00	4,029	35,110	39,139
	357	244	10,00	0,003169094	0,60	150,00	1,426	54,120	55,546
Collecteur	Reg.Amont	Reg.Aval	Distance	S (ha/ml)	Coef Ruis	Intens Pluvi	Q propre	Q tronsit	Q cumul
COLL 41	360	361	16,20	0,003169094	0,60	150,00	2,310	0,000	2,310
COLL 41	361	353	15,00	0,003169094	0,60	150,00	2,139	2,310	4,449
Collecteur	Reg.Amont	Reg.Aval	Distance	S (ha/ml)	Coef Ruis	Intens Pluvi	Q propre	Q tronsit	Q cumul
	365	366	20,85	0,003169094	0,60	150,00	2,973	0,000	2,973
COLL 42	366	367	28,30	0,003169094	0,60	150,00	4,036	2,973	7,009
COLL 42	367	368	13,80	0,003169094	0,60	150,00	1,968	7,009	8,977
	368	357	10,50	0,003169094	0,60	150,00	1,497	13,484	14,981
Collecteur	Reg.Amont	Reg.Aval	Distance	S (ha/ml)	Coef Ruis	Intens Pluvi	Q propre	Q tronsit	Q cumul
COLL 43	369	368	31,60	0,003169094	0,60	150,00	4,506	0,000	4,506
Collecteur	Reg.Amont	Reg.Aval	Distance	S (ha/ml)	Coef Ruis	Intens Pluvi	Q propre	Q tronsit	Q cumul
	370	371	30,00	0,003169094	0,60	150,00	4,278	0,000	4,278
COLL 44	371	373	30,00	0,003169094	0,60	150,00	4,278	4,278	8,557
	373	254	31,00	0,003169094	0,60	150,00	4,421	8,557	12,977
Collecteur	Reg.Amont	Reg.Aval	Distance	S (ha/ml)	Coef Ruis	Intens Pluvi	Q propre	Q tronsit	Q cumul
COLT 45	375	376	23,95	0,003169094	0,60	150,00	3,415	0,000	3,415
COLL 45	376	255	32,50	0,003169094	0,60	150,00	4,635	5,954	10,589
Collecteur	Reg.Amont	Reg.Aval	Distance	S (ha/ml)	Coef Ruis	Intens Pluvi	Q propre	Q tronsit	Q cumul
COLL 46	377	376	17,80	0,003169094	0,60	150,00	2,538	0,000	2,538
Collecteur	Reg.Amont	Reg.Aval	Distance	S (ha/ml)	Coef Ruis	Intens Pluvi	Q propre	Q tronsit	Q cumul
COLL 47	378	379	21,00	0,003169094	0,60	150,00	2,995	0,000	2,995

379	380	30,10	0,003169094	0,60	150,00	4,293	2,995	7,287
380	381	19,55	0,003169094	0,60	150,00	2,788	7,287	10,075
381	382	20,70	0,003169094	0,60	150,00	2,952	10,075	13,027
382	383	30,00	0,003169094	0,60	150,00	4,278	13,027	17,306
383	384	39,00	0,003169094	0,60	150,00	5,562	17,306	22,867
384	385	30,00	0,003169094	0,60	150,00	4,278	22,867	27,146
385	386	30,00	0,003169094	0,60	150,00	4,278	27,146	31,424
386	387	16,00	0,003169094	0,60	150,00	2,282	31,424	33,706
387	388	36,60	0,003169094	0,60	150,00	5,219	33,706	38,925
388	389	27,20	0,003169094	0,60	150,00	3,879	88,867	92,746
389	390	26,60	0,003169094	0,60	150,00	3,793	92,746	96,539
390	391	30,00	0,003169094	0,60	150,00	4,278	96,539	100,818
391	392	30,00	0,003169094	0,60	150,00	4,278	100,818	105,096
392	393	30,80	0,003169094	0,60	150,00	4,392	105,096	109,488
393	394	24,70	0,003169094	0,60	150,00	3,522	109,488	113,011
394	395	24,40	0,003169094	0,60	150,00	3,480	113,011	116,490
395	396	16,35	0,003169094	0,60	150,00	2,332	116,490	118,822
396	397	36,20	0,003169094	0,60	150,00	5,162	139,030	144,192
397	398	16,75	0,003169094	0,60	150,00	2,389	144,192	146,581
398	399	30,00	0,003169094	0,60	150,00	4,278	146,581	150,859
399	400	30,10	0,003169094	0,60	150,00	4,293	150,859	155,152
400	401	30,00	0,003169094	0,60	150,00	4,278	155,152	159,430
401	402	28,25	0,003169094	0,60	150,00	4,029	169,370	173,399
402	403	30,00	0,003169094	0,60	150,00	4,278	173,399	177,677
403	404	21,40	0,003169094	0,60	150,00	3,052	177,677	180,729
404	405	20,00	0,003169094	0,60	150,00	2,852	180,729	183,581
405	406	24,35	0,003169094	0,60	150,00	3,473	183,581	187,053
 406	407	21,60	0,003169094	0,60	150,00	3,080	187,053	190,134

Collecteur	Reg.Amont	Reg.Aval	Distance	S (ha/ml)	Coef Ruis	Intens Pluvi	Q propre	Q tronsit	Q cumul
	432	416	25,60	0,003169094	0,60	150,00	3,651	7,180	10,831
COLL 49	431	432	30,35	0,003169094	0,60	150,00	4,328	2,852	7,180
	430	431	20,00	0,003169094	0,60	150,00	2,852	0,000	2,852
Collecteur	Reg.Amont	Reg.Aval	Distance	S (ha/ml)	Coef Ruis	Intens Pluvi	Q propre	Q tronsit	Q cumul
	427	388	12,45	0,003169094	0,60	150,00	1,775	48,166	49,942
	426	427	22,00	0,003169094	0,60	150,00	3,137	45,029	48,166
	425	426	8,55	0,003169094	0,60	150,00	1,219	43,810	45,029
	424	425	24,00	0,003169094	0,60	150,00	3,423	40,387	43,810
	423	424	15,15	0,003169094	0,60	150,00	2,161	38,226	40,387
	422	423	11,65	0,003169094	0,60	150,00	1,661	36,565	38,226
COLL 48	421	422	25,00	0,003169094	0,60	150,00	3,565	33,000	36,565
	420	421	23,60	0,003169094	0,60	150,00	3,366	29,634	33,000
	419	420	27,20	0,003169094	0,60	150,00	3,879	25,755	29,634
	418	419	35,10	0,003169094	0,60	150,00	5,006	20,750	25,755
	417	418	30,00	0,003169094	0,60	150,00	4,278	16,471	20,750
	416	417	19,00	0,003169094	0,60	150,00	2,710	13,762	16,471
	415	416	20,55	0,003169094	0,60	150,00	2,931	0,000	2,931
Collecteur	Reg.Amont	Reg.Aval	Distance	S (ha/ml)	Coef Ruis	Intens Pluvi	Q propre	Q tronsit	Q cumul
	413	262	30,00	0,003169094	0,60	150,00	4,278	216,581	220,859
	412	413	33,70	0,003169094	0,60	150,00	4,806	211,775	216,581
	411	412	37,70	0,003169094	0,60	150,00	5,376	206,398	211,775
	410	411	38,55	0,003169094	0,60	150,00	5,498	200,901	206,398
	409	410	32,80	0,003169094	0,60	150,00	4,678	196,223	200,901
	408	409	22,70	0,003169094	0,60	150,00	3,237	192,986	196,223
	407	408	20,00	0,003169094	0,60	150,00	2,852	190,134	192,986

							1		
	435	436	17,00	0,003169094	0,60	150,00	2,424	0,000	2,424
	436	437	30,00	0,003169094	0,60	150,00	4,278	2,424	6,703
COLL 50	437	438	30,00	0,003169094	0,60	150,00	4,278	6,703	10,981
	438	439	29,00	0,003169094	0,60	150,00	4,136	10,981	15,117
	439	396	35,70	0,003169094	0,60	150,00	5,091	15,117	20,208
Collecteur	Reg.Amont	Reg.Aval	Distance	S (ha/ml)	Coef	Intens Pluvi	Q	Q tronsit	Q cumul
Conecteur					Ruis		propre		
COLL 51	440	441	34,50	0,003169094	0,60	150,00	4,920	0,000	4,920
COLL 31	441	401	35,20	0,003169094	0,60	150,00	5,020	4,920	9,940
Collecteur	Reg.Amont	Reg.Aval	Distance	S (ha/ml)	Coef	Intens Pluvi	Q	Q tronsit	Q cumul
Concettui					Ruis		propre		
	450	451	20,00	0,003169094	0,60	150,00	2,852	0,000	2,852
	451	452	24,70	0,003169094	0,60	150,00	3,522	2,852	6,375
	452	453	24,45	0,003169094	0,60	150,00	3,487	6,375	9,861
	453	454	24,45	0,003169094	0,60	150,00	3,487	9,861	13,348
	454	455	25,50	0,003169094	0,60	150,00	3,637	41,371	45,007
	455	456	30,55	0,003169094	0,60	150,00	4,357	45,007	49,364
	456	457	33,00	0,003169094	0,60	150,00	4,706	55,275	59,981
	457	458	33,40	0,003169094	0,60	150,00	4,763	59,981	64,745
COLL 52	458	459	30,00	0,003169094	0,60	150,00	4,278	64,745	69,023
	459	460	30,00	0,003169094	0,60	150,00	4,278	69,023	73,301
	460	461	30,00	0,003169094	0,60	150,00	4,278	73,301	77,579
	461	462	30,00	0,003169094	0,60	150,00	4,278	77,579	81,858
	462	463	30,00	0,003169094	0,60	150,00	4,278	81,858	86,136
	463	464	30,00	0,003169094	0,60	150,00	4,278	86,136	90,414
	464	465	17,55	0,003169094	0,60	150,00	2,503	90,414	92,917
	465	466	31,40	0,003169094	0,60	150,00	4,478	126,772	131,250
	466	467	30,00	0,003169094	0,60	150,00	4,278	131,250	135,529

467	468	30,00	0,003169094	0,60	150,00	4,278	135,529	139,807
468	469	30,00	0,003169094	0,60	150,00	4,278	139,807	144,085
469	470	33,50	0,003169094	0,60	150,00	4,777	144,085	148,863
470	471	30,00	0,003169094	0,60	150,00	4,278	148,863	153,141
471	472	30,00	0,003169094	0,60	150,00	4,278	153,141	157,419
472	473	30,00	0,003169094	0,60	150,00	4,278	157,419	161,697
473	474	30,00	0,003169094	0,60	150,00	4,278	161,697	165,976
474	475	30,00	0,003169094	0,60	150,00	4,278	165,976	170,254
475	476	24,55	0,003169094	0,60	150,00	3,501	170,254	173,755
476	477	30,00	0,003169094	0,60	150,00	4,278	173,755	178,033
477	478	30,00	0,003169094	0,60	150,00	4,278	178,033	182,312
478	479	30,00	0,003169094	0,60	150,00	4,278	182,312	186,590
479	480	30,00	0,003169094	0,60	150,00	4,278	186,590	190,868
480	481	30,00	0,003169094	0,60	150,00	4,278	190,868	195,146
481	482	39,20	0,003169094	0,60	150,00	5,590	195,146	200,737
482	483	30,00	0,003169094	0,60	150,00	4,278	200,737	205,015
483	484	30,00	0,003169094	0,60	150,00	4,278	205,015	209,293
484	485	33,00	0,003169094	0,60	150,00	4,706	209,293	213,999
485	486	30,00	0,003169094	0,60	150,00	4,278	213,999	218,278
486	487	32,60	0,003169094	0,60	150,00	4,649	218,278	222,927
487	488	30,10	0,003169094	0,60	150,00	4,293	222,927	227,219
488	489	30,00	0,003169094	0,60	150,00	4,278	227,219	231,498
489	490	30,00	0,003169094	0,60	150,00	4,278	231,498	235,776
490	491	30,00	0,003169094	0,60	150,00	4,278	235,776	240,054
491	492	20,25	0,003169094	0,60	150,00	2,888	240,054	242,942
492	493	25,00	0,003169094	0,60	150,00	3,565	242,942	246,507
493	494	30,00	0,003169094	0,60	150,00	4,278	246,507	250,785
494	495	25,60	0,003169094	0,60	150,00	3,651	250,785	254,436

Collecteur	Reg.Amont	Reg.Aval	Distance	S (ha/ml)	Coef Ruis	Intens Pluvi	Q propre	Q tronsit	Q cumul
	522	466	36,00	0,003169094	0,60	150,00	5,134	28,722	33,855
	521	522	34,00	0,003169094	0,60	150,00	4,849	23,873	28,722
COLL 55	520	521	10,00	0,003169094	0,60	150,00	1,426	6,888	8,314
	519	520	30,00	0,003169094	0,60	150,00	4,278	2,610	6,888
	518	519	18,30	0,003169094	0,60	150,00	2,610	0,000	2,610
Collecteur	Reg.Amont	Reg.Aval	Distance	S (ha/ml)	Coef Ruis	Intens Pluvi	Q propre	Q tronsit	Q cumul
	516	456	30,00	0,003169094	0,60	150,00	4,278	1,633	5,911
COLL 54	515	516	11,45	0,003169094	0,60	150,00	1,633	0,000	1,633
	£15	£1.c	11.45	0.002170004	Ruis	150.00	propre	0.000	1 (22
Collecteur	Reg.Amont	Reg.Aval	Distance	S (ha/ml)	Coef	Intens Pluvi	Q	Q tronsit	Q cumul
	512	454	30,00	0,003169094	0,60	150,00	4,278	23,744	28,023
	511	512	19,45	0,003169094	0,60	150,00	2,774	20,971	23,744
	510	511	19,30	0,003169094	0,60	150,00	2,752	18,218	20,971
COLL 55	509	510	30,00	0,003169094	0,60	150,00	4,278	13,940	18,218
COLL 53	508	509	30,00	0,003169094	0,60	150,00	4,278	9,662	13,940
	507	508	22,55	0,003169094	0,60	150,00	3,216	6,446	9,662
	506	507	31,20	0,003169094	0,60	150,00	4,449	1,997	6,446
	505	506	14,00	0,003169094	0,60	150,00	1,997	0,000	1,997
Collecteur	Reg.Amont	Reg.Aval	Distance	S (ha/ml)	Ruis	Intens Pluvi	Q propre	Q tronsit	Q cumul
	500	R57	38,10	0,003169094	0,60 Coef	150,00	5,433	273,631	279,065
	499	500	30,00	0,003169094	0,60	150,00	4,278	269,353	273,631
	498	499	20,00	0,003169094	0,60	150,00	2,852	266,501	269,353
	497	498	30,20	0,003169094	0,60	150,00	4,307	262,194	266,501
	496	497	24,40	0,003169094	0,60	150,00	3,480	258,715	262,194
	495	496	30,00	0,003169094	0,60	150,00	4,278	254,436	258,715

0,000	3,608
3,608	7,330
7,330	10,182
10,182	15,559
Q tronsit	Q cumul
_	_
0,000	5,191
13,883	18,225
15,005	10,223
Q tronsit	Q cumul
,	
,	
Q tronsit	Q cumul
Q tronsit 0,000	Q cumul 3,729
Q tronsit 0,000 3,729	Q cumul 3,729 8,692
Q tronsit 0,000 3,729	Q cumul 3,729 8,692
Q tronsit 0,000 3,729 Q tronsit	Q cumul 3,729 8,692 Q cumul
Q tronsit 0,000 3,729 Q tronsit 0,000	3,729 8,692 Q cumul 4,278
	3,608 7,330 10,182 Q tronsit 0,000

Tableau 3 : Calcul hydraulique des collecteurs d'assainissement.

Q 11	_	_	Tabl	eau 3 : Card	ui iiyui a		es concen			111 .		T 7	T 7	
Collec- teur	Reg. Amont	Reg. Aval	Distance	Q TOT(l/s)	Pente	D (mm)	C	Vps (m/s)	Qps (1/s)	R _H (%)	Hr (mm)	Vr (m/s)	V aut- cur(m/s)	Va
	R01	R02	30,00	300,125	0,043	500	54,39	4,00	785,60	42,57	212,87	3,75	2,40	Vérifie
	R02	R03	30,00	304,439	0,047	500	54,39	4,15	815,31	42,09	210,44	3,86	2,49	Vérifie
COLL	R03	R04	21,30	307,502	0,023	500	54,39	2,95	578,18	51,76	258,79	2,99	1,77	Vérifie
COLL 01A	R04	R05	30,00	311,816	0,020	500	54,39	2,72	533,73	55,42	277,09	2,79	1,63	Vérifie
UIA	R05	R06	30,00	316,130	0,010	500	54,39	1,92	377,40	73,19	365,93	2,07	1,15	Vérifie
	R06	R07	38,00	321,594	0,010	500	54,39	1,92	377,40	74,33	371,65	2,07	1,15	Vérifie
	R07	R244	38,00	327,058	0,010	500	54,39	1,92	377,40	75,56	377,82	2,08	1,15	Vérifie
Collec- teur	Reg.Amont	Reg.Aval	Distance	Q TOT(l/s)	Pente	D (mm)	C	Vps (m/s)	Qps (l/s)	rH (%)	Hr (mm)	Vr (m/s)	V aut- cur(m/s)	1
	R12	R13	30,00	71,870	0,007	315	50,36	1,15	89,90	70,43	221,87	1,23	0,69	Vérifie
	R13	R14	33,25	76,183	0,024	315	50,36	2,19	170,75	46,28	145,79	2,15	1,32	Vérifie
	R14	R15	30,00	80,965	0,027	315	50,36	2,31	179,77	46,53	146,58	2,27	1,38	Vérifie
	R15	R16	20,80	85,279	0,024	315	50,36	2,19	170,68	49,62	156,29	2,20	1,31	Vérifie
	R16	R17	23,20	88,270	0,017	315	50,36	1,86	144,54	57,32	180,56	1,91	1,11	Vérifie
	R17	R18	30,00	91,606	0,027	315	50,36	2,31	179,77	50,27	158,34	2,33	1,38	Vérifie
	R18	R19	30,00	95,920	0,070	315	50,36	3,74	291,25	39,58	124,67	3,32	2,24	Vérifie
COLL	R19	R20	20,00	100,233	0,010	400	52,41	1,66	208,15	48,46	193,83	1,66	0,99	Vérifie
01	R20	R21	21,45	103,109	0,007	400	52,41	1,38	173,03	56,26	225,02	1,42	0,83	Vérifie
	R21	R22	14,10	106,194	0,007	400	52,41	1,38	173,03	57,54	230,16	1,42	0,83	Vérifie
	R22	R23	30,00	123,600	0,007	400	52,41	1,38	173,03	64,69	258,74	1,44	0,83	Vérifie
	R23	R24	35,70	129,280	0,007	400	52,41	1,38	173,03	66,91	267,66	1,45	0,83	Vérifie
	R24	R25	39,50	130,934	0,051	400	52,41	3,73	468,36	36,55	146,18	3,13	2,24	Vérifie
	R25	R26	11,50	144,185	0,009	400	52,41	1,55	194,15	66,61	266,44	1,63	0,93	Vérifie
	R26	R27	36,00	148,499	0,006	400	52,41	1,29	162,04	80,90	323,61	1,38	0,77	Vérifie
	R27	R28	30,00	152,813	0,006	400	52,41	1,29	162,04	84,83	339,32	1,36	0,77	Vérifie

	R28	R29	30,00	157,127	0,013	400	52,41	1,91	240,32	60,43	241,71	1,98	1,15	Vérifie
	R29	R30	30,00	161,814	0,083	400	52,41	4,78	600,87	35,87	143,49	3,97	2,87	Vérifie
	R30	R31	32,60	166,128	0,026	400	52,41	2,65	332,78	49,59	198,36	2,67	1,59	Vérifie
	R31	R32	30,00	170,442	0,026	400	52,41	2,65	332,78	50,44	201,76	2,68	1,59	Vérifie
	R32	R33	30,00	175,964	0,040	400	52,41	3,31	416,30	44,90	179,59	3,20	1,99	Vérifie
	R33	R34	38,40	180,278	0,031	400	52,41	2,93	367,96	48,99	195,96	2,94	1,76	Vérifie
	R34	R35	30,00	185,073	0,037	400	52,41	3,17	398,60	47,38	189,53	3,15	1,90	Vérifie
	R35	R36	33,35	189,387	0,009	500	54,39	1,82	358,04	51,56	257,82	1,85	1,09	Vérifie
	R36	R37	30,00	193,701	0,007	500	54,39	1,57	308,23	58,60	293,01	1,62	0,94	Vérifie
	R37	R38	30,00	197,181	0,047	500	54,39	4,15	815,31	33,97	169,84	3,33	2,49	Vérifie
	R38	DO	10,70	254,842	0,033	500	54,39	3,50	686,94	41,95	209,76	3,25	2,10	Vérifie
	DO	R39	13,45	263,728	0,033	500	54,39	3,50	686,94	42,68	213,41	3,28	2,10	Vérifie
	R39	R40	30,00	267,164	0,047	500	54,39	4,15	815,31	39,48	197,41	3,69	2,49	Vérifie
	R40	R41	23,90	270,759	0,008	500	54,39	1,76	345,28	69,40	346,99	1,87	1,06	Vérifie
	R41	R42	25,00	273,168	0,032	500	54,39	3,44	675,12	43,86	219,28	3,28	2,06	Vérifie
	R42	R43	16,75	277,467	0,024	500	54,39	2,97	583,21	48,09	240,47	2,96	1,78	Vérifie
	R43	44	40,00	278,891	0,008	500	54,39	1,67	326,84	74,43	372,13	1,80	1,00	Vérifie
	44	R46	40,00	284,478	0,043	500	54,39	3,96	778,04	41,65	208,25	3,66	2,38	Vérifie
COLL	R46	R47	34,00	289,352	0,024	500	54,39	2,95	578,92	49,63	248,14	2,97	1,77	Vérifie
01	R47	R48	30,00	293,666	0,050	500	54,39	4,30	843,90	40,65	203,25	3,90	2,58	Vérifie
	R48	R49	30,00	297,987	0,030	500	54,39	3,33	653,68	46,87	234,33	3,29	2,00	Vérifie
	R49	R50	30,00	302,308	0,004	600	56,07	1,30	366,68	72,20	433,20	1,39	0,78	Vérifie
	R50	R51	30,00	306,622	0,004	600	56,07	1,30	366,68	73,08	438,45	1,40	0,78	Vérifie
	R51	R52	30,00	310,936	0,004	600	56,07	1,30	366,68	73,99	443,96	1,40	0,78	Vérifie
	R52	R53	30,00	315,250	0,004	600	56,07	1,30	366,68	74,97	449,80	1,40	0,78	Vérifie
	R53	R54	27,45	319,571	0,004	600	56,07	1,30	366,68	76,01	456,05	1,40	0,78	Vérifie
	R54	R55	20,80	323,518	0,004	600	56,07	1,30	366,68	77,03	462,20	1,40	0,78	Vérifie
	R55	R56	35,00	326,509	0,040	600	56,07	4,34	1227,40	35,65	213,92	3,59	2,61	Vérifie

	R56	R57	35,25	331,542	0,040	600	56,07	4,34	1227,40	35,93	215,57	3,61	2,61	Vérifie
	R57	R58	20,00	336,611	0,040	600	56,07	4,34	1227,40	36,20	217,20	3,62	2,61	Vérifie
	R58	R59	29,70	618,552	0,020	600	56,07	3,07	867,90	64,57	387,44	3,22	1,84	Vérifie
	R59	R60	40,00	622,823	0,020	600	56,07	3,07	867,90	64,91	389,46	3,22	1,84	Vérifie
	R60	R61	34,00	628,574	0,020	600	56,07	3,07	867,90	65,36	392,18	3,23	1,84	Vérifie
	R61	R62	22,50	633,464	0,020	600	56,07	3,07	867,90	65,75	394,48	3,23	1,84	Vérifie
	R62	R63	20,00	636,699	0,020	600	56,07	3,07	867,90	66,00	396,00	3,23	1,84	Vérifie
	R63	R64	40,00	639,575	0,020	600	56,07	3,07	867,90	66,22	397,35	3,24	1,84	Vérifie
	R64	R65	39,30	645,327	0,020	600	56,07	3,07	867,90	66,67	400,03	3,24	1,84	Vérifie
	R65	R66	39,00	651,079	0,020	600	56,07	3,07	867,90	67,12	402,70	3,25	1,84	Vérifie
	R66	R67	37,00	813,871	0,020	600	56,07	3,07	867,90	83,97	503,79	3,25	1,84	Vérifie
	R67	R68	40,00	819,184	0,025	600	56,07	3,43	970,35	73,70	442,17	3,70	2,06	Vérifie
	R68	R69	40,00	824,936	0,025	600	56,07	3,43	970,35	74,17	445,01	3,70	2,06	Vérifie
	R69	R70	40,00	830,688	0,025	600	56,07	3,43	970,35	74,66	447,94	3,70	2,06	Vérifie
	R70	R71	20,00	836,439	0,025	600	56,07	3,43	970,35	75,16	450,97	3,71	2,06	Vérifie
	R71	BP	25,00	839,315	0,025	600	56,07	3,43	970,35	75,42	452,52	3,71	2,06	Vérifie
Collec-	Reg.Amont	Reg.Aval	Distance	Q	Pente	D	C	Vps	Qps	rH (%)	Hr	Vr	V aut-	/
teur				TOT(l/s)		(mm)		(m/s)	(l/s)	1 1	(mm)	(m/s)	cur(m/s)	
	R75	R76	30,00	4,314	0,023	315	50,36	2,16	168,14	11,05	34,79	0,92	1,30	Vérifie
	R76	R77	30,00	8,628	0,020	315	50,36	2,00	155,68	16,15	50,87	1,05	1,20	Vérifie
	R77	R78	30,00	12,942	0,020	315	50,36	2,00	155,68	19,16	60,36	1,23	1,20	Vérifie
	R78	R79	21,35	16,012	0,016	315	50,36	1,78	138,76	22,64	71,31	1,20	1,07	Vérifie
COLL	R79	R80	22,70	19,276	0,016	315	50,36	1,78	138,76	25,07	78,96	1,25	1,07	Vérifie
02	R80	R81	30,00	23,590	0,027	315	50,36	2,31	179,77	24,28	76,50	1,60	1,38	Vérifie
	R81	R82	26,40	27,386	0,038	315	50,36	2,75	214,25	23,94	75,40	1,90	1,65	Vérifie
	R82	R83	30,00	31,700	0,027	315	50,36	2,31	179,77	28,65	90,23	1,71	1,38	Vérifie
	R83	R84	30,00	36,014	0,013	315	50,36	1,63	127,10	36,79	115,89	1,38	0,98	Vérifie
	R84	R01	39,05	41,629	0,008	315	50,36	1,24	96,47	45,41	143,05	1,20	0,74	Vérifie

Collec- teur	Reg.Amont	Reg.Aval	Distance	Q TOT(l/s)	Pente	D (mm)	C	Vps (m/s)	Qps (l/s)	rH (%)	Hr (mm)	Vr (m/s)	V aut- cur(m/s)	/
tear	R85	R86	21,85	3,142	0,011	315	50,36	1,45	113,12	11,47	36,12	0,63	0,87	Vérifie
	R86	R87	25,50	6,809	0,011	315	50,36	1,45	113,12	16,66	52,49	0,79	0,87	Vérifie
	R87	R88	29,15	19,384	0,021	315	50,36	2,03	157,92	23,41	73,74	1,39	1,22	Vérifie
	R88	R89	32,20	29,421	0,006	315	50,36	1,11	86,75	40,14	126,46	1,00	0,67	Vérifie
	R89	R90	16,85	40,680	0,030	315	50,36	2,43	189,62	31,89	100,46	1,89	1,46	Vérifie
	R90	R91	25,00	58,022	0,052	315	50,36	3,22	251,02	33,18	104,51	2,55	1,93	Vérifie
	R91	R92	22,35	61,236	0,063	315	50,36	3,54	275,51	32,50	102,38	2,77	2,12	Vérifie
	R92	R93	20,00	64,112	0,045	315	50,36	3,00	233,52	36,22	114,09	2,50	1,80	Vérifie
	R93	R94	20,00	66,988	0,015	315	50,36	1,73	134,82	49,44	155,73	1,74	1,04	Vérifie
	R94	R95	24,00	96,516	0,096	315	50,36	4,37	340,77	36,78	115,86	3,69	2,62	Vérifie
	R95	R96	24,75	120,120	0,032	315	50,36	2,54	197,90	57,05	179,71	2,62	1,52	Vérifie
COLL	R96	R97	31,35	131,962	0,041	315	50,36	2,88	224,17	55,74	175,57	2,96	1,73	Vérifie
03	R97	R98	30,00	147,154	0,067	315	50,36	3,65	284,24	50,81	160,04	3,69	2,19	Vérifie
	R98	R99	28,10	151,195	0,075	315	50,36	3,86	300,93	49,80	156,87	3,89	2,32	Vérifie
	R99	100	30,00	162,325	0,070	315	50,36	3,74	291,25	53,52	168,58	3,82	2,24	Vérifie
	100	101	30,00	166,639	0,063	315	50,36	3,56	277,03	56,66	178,48	3,66	2,13	Vérifie
	101	101	16,00	168,939	0,028	315	50,36	2,37	184,63	80,72	254,26	2,54	1,42	Vérifie
	101	102	17,55	180,084	0,046	315	50,36	3,02	235,02	68,19	214,81	3,20	1,81	Vérifie
	102	103	30,80	184,513	0,070	315	50,36	3,74	291,25	58,97	185,75	3,86	2,24	Vérifie
	103	104	26,45	194,003	0,070	315	50,36	3,74	291,25	61,31	193,12	3,88	2,24	Vérifie
	104	105	25,45	197,663	0,063	315	50,36	3,54	276,02	64,81	204,15	3,72	2,13	Vérifie
	105	106	12,15	207,002	0,033	400	52,41	3,01	377,67	52,88	211,50	3,07	1,80	Vérifie
	106	107	17,10	252,744	0,023	400	52,41	2,53	318,34	70,06	280,24	2,71	1,52	Vérifie
	107	RO1	10,00	254,182	0,020	400	52,41	2,34	294,37	75,29	301,16	2,53	1,41	Vérifie
Collec- teur	Reg.Amont	Reg.Aval	Distance	Q TOT(l/s)	Pente	D (mm)	C	Vps (m/s)	Qps (l/s)	rH (%)	Hr (mm)	Vr (m/s)	V aut- cur(m/s)	1

COLL	108	109	30,00	4,314	0,077	315	50,36	3,91	304,81	8,34	26,27	1,38	2,35	Vérifie
04	109	R87	28,30	8,383	0,042	315	50,36	2,91	226,67	13,13	41,36	1,38	1,75	Vérifie
Collec- teur	Reg.Amont	Reg.Aval	Distance	Q TOT(l/s)	Pente	D (mm)	C	Vps (m/s)	Qps (l/s)	rH (%)	Hr (mm)	Vr (m/s)	V aut- cur(m/s)	/
COLL	110	111	20,00	2,876	0,048	315	50,36	3,08	239,92	7,71	24,29	1,04	1,85	Vérifie
05	111	R88	17,60	5,407	0,063	315	50,36	3,53	275,20	9,74	30,67	1,38	2,12	Vérifie
Collec- teur	Reg.Amont	Reg.Aval	Distance	Q TOT(l/s)	Pente	D (mm)	C	Vps (m/s)	Qps (l/s)	rH (%)	Hr (mm)	Vr (m/s)	V aut- cur(m/s)	1
COLL	112	113	30,00	4,314	0,043	315	50,36	2,94	229,14	9,54	30,06	1,13	1,77	Vérifie
06	113	R89	31,45	8,836	0,057	315	50,36	3,38	263,35	12,54	39,50	1,56	2,03	Vérifie
Collec- teur	Reg.Amont	Reg.Aval	Distance	Q TOT(l/s)	Pente	D (mm)	C	Vps (m/s)	Qps (l/s)	rH (%)	Hr (mm)	Vr (m/s)	V aut- cur(m/s)	1
	114	115	30,00	4,314	0,057	315	50,36	3,36	262,05	8,96	28,21	1,25	2,02	Vérifie
COLL	115	116	30,00	8,628	0,083	315	50,36	4,08	317,77	11,34	35,74	1,76	2,45	Vérifie
07	116	117	20,00	11,504	0,060	315	50,36	3,46	269,64	14,05	44,24	1,72	2,08	Vérifie
	117	R90	15,60	13,747	0,032	315	50,36	2,53	197,07	17,70	55,76	1,47	1,52	Vérifie
Collec- teur	Reg.Amont	Reg.Aval	Distance	Q TOT(l/s)	Pente	D (mm)	C	Vps (m/s)	Qps (l/s)	rH (%)	Hr (mm)	Vr (m/s)	V aut- cur(m/s)	1
	118	119	32,00	4,601	0,038	315	50,36	2,74	213,17	10,18	32,07	1,10	1,64	Vérifie
COLL	119	120	30,00	19,413	0,043	315	50,36	2,94	229,14	19,33	60,90	1,83	1,77	Vérifie
08	120	121	30,00	23,726	0,063	315	50,36	3,56	277,03	19,44	61,22	2,21	2,13	Vérifie
	121	R94	16,35	26,078	0,024	315	50,36	2,21	172,16	26,31	82,87	1,58	1,33	Vérifie
Collec- teur	Reg.Amont	Reg.Aval	Distance	Q TOT(l/s)	Pente	D (mm)	C	Vps (m/s)	Qps (l/s)	rH (%)	Hr (mm)	Vr (m/s)	V aut- cur(m/s)	1
COLL	122	123	20,00	2,876	0,070	315	50,36	3,74	291,25	7,03	22,16	1,19	2,24	Vérifie
COLL 09	123	124	26,70	6,715	0,045	315	50,36	3,00	233,36	11,66	36,73	1,32	1,80	Vérifie
US	124	119	26,30	10,497	0,076	315	50,36	3,90	303,57	12,72	40,06	1,81	2,34	Vérifie
Collec- teur	Reg.Amont	Reg.Aval	Distance	Q TOT(l/s)	Pente	D (mm)	C	Vps (m/s)	Qps (l/s)	rH (%)	Hr (mm)	Vr (m/s)	V aut- cur(m/s)	1

	125	126	20,00	2,876	0,040	315	50,36	2,83	220,16	8,03	25,29	0,98	1,70	Vérifie
	126	127	20,65	5,845	0,019	315	50,36	1,97	153,21	13,32	41,97	0,94	1,18	Vérifie
COLL	127	128	21,85	8,987	0,037	315	50,36	2,70	210,63	14,05	44,25	1,34	1,62	Vérifie
10	128	129	23,35	12,345	0,009	315	50,36	1,31	101,91	23,24	73,21	0,89	0,78	Vérifie
	129	130	20,00	15,221	0,070	315	50,36	3,74	291,25	15,81	49,80	1,91	2,24	Vérifie
	130	R95	33,55	20,045	0,036	315	50,36	2,67	208,20	20,59	64,86	1,72	1,60	Vérifie
Collec- teur	Reg.Amont	Reg.Aval	Distance	Q TOT(l/s)	Pente	D (mm)	C	Vps (m/s)	Qps (l/s)	rH (%)	Hr (mm)	Vr (m/s)	V aut- cur(m/s)	1
COLL	131	132	30,00	4,314	0,070	315	50,36	3,74	291,25	8,52	26,84	1,34	2,24	Vérifie
11	132	R96	21,00	7,334	0,029	315	50,36	2,39	186,07	13,53	42,62	1,16	1,43	Vérifie
Collec- teur	Reg.Amont	Reg.Aval	Distance	Q TOT(l/s)	Pente	D (mm)	C	Vps (m/s)	Qps (l/s)	rH (%)	Hr (mm)	Vr (m/s)	V aut- cur(m/s)	1
COLI	133	134	19,35	2,782	0,052	315	50,36	3,21	250,25	7,44	23,44	1,06	1,93	Vérifie
COLL 12	134	135	30,00	7,096	0,043	315	50,36	2,94	229,14	12,07	38,03	1,32	1,77	Vérifie
12	135	R97	26,30	10,878	0,008	315	50,36	1,23	95,97	22,42	70,63	0,83	0,74	Vérifie
Collec- teur	Reg.Amont	Reg.Aval	Distance	Q TOT(l/s)	Pente	D (mm)	C	Vps (m/s)	Qps (l/s)	rH (%)	Hr (mm)	Vr (m/s)	V aut- cur(m/s)	1
COLL	136	137	30,00	4,314	0,097	315	50,36	4,39	342,26	7,89	24,87	1,50	2,64	Vérifie
13	137	R99	17,40	6,816	0,075	315	50,36	3,86	300,89	10,41	32,81	1,58	2,32	Vérifie
Collec- teur	Reg.Amont	Reg.Aval	Distance	Q TOT(l/s)	Pente	D (mm)	C	Vps (m/s)	Qps (l/s)	rH (%)	Hr (mm)	Vr (m/s)	V aut- cur(m/s)	1
	138	139	13,50	1,941	0,067	315	50,36	3,65	284,24	5,91	18,62	1,04	2,19	Vérifie
COLL	139	140	9,70	3,336	0,036	315	50,36	2,68	209,10	8,82	27,80	0,98	1,61	Vérifie
14	140	141	18,10	5,939	0,235	315	50,36	6,85	533,42	7,45	23,45	2,25	4,11	Vérifie
	141	101	18,65	8,621	0,239	315	50,36	6,90	537,72	8,84	27,86	2,54	4,14	Vérifie
Collec- teur	Reg.Amont	Reg.Aval	Distance	Q TOT(l/s)	Pente	D (mm)	C	Vps (m/s)	Qps (l/s)	rH (%)	Hr (mm)	Vr (m/s)	V aut- cur(m/s)	1
COLL	142	143	20,00	2,876	0,030	315	50,36	2,45	190,67	8,59	27,07	0,88	1,47	Vérifie
15	143	103	19,55	5,687	0,082	315	50,36	4,04	314,92	9,36	29,47	1,54	2,43	Vérifie

Collec- teur	Reg.Amont	Reg.Aval	Distance	Q TOT(l/s)	Pente	D (mm)	C	Vps (m/s)	Qps (l/s)	rH (%)	Hr (mm)	Vr (m/s)	V aut- cur(m/s)	1
COLL	142	143	24,30	3,494	0,132	315	50,36	5,13	399,48	6,64	20,93	1,57	3,08	Vérifie
16	143	105	28,50	7,592	0,049	315	50,36	3,13	243,97	12,10	38,12	1,41	1,88	Vérifie
Collec- teur	Reg.Amont	Reg.Aval	Distance	Q TOT(l/s)	Pente	D (mm)	C	Vps (m/s)	Qps (l/s)	rH (%)	Hr (mm)	Vr (m/s)	V aut- cur(m/s)	1
	145	146	25,40	3,652	0,063	315	50,36	3,55	276,28	8,07	25,43	1,23	2,13	Vérifie
	146	147	30,00	14,214	0,040	315	50,36	2,83	220,16	17,14	53,98	1,59	1,70	Vérifie
COLL	147	148	20,25	17,126	0,054	315	50,36	3,29	256,56	17,37	54,73	1,88	1,98	Vérifie
17	148	149	26,70	24,769	0,006	315	50,36	1,12	87,24	36,83	116,00	0,95	0,67	Vérifie
	149	150	37,00	37,725	0,006	315	50,36	1,12	87,24	45,47	143,22	1,09	0,67	Vérifie
	150	106	38,65	43,283	0,021	315	50,36	2,03	158,38	36,14	113,83	1,69	1,22	Vérifie
Collec- teur	Reg.Amont	Reg.Aval	Distance	Q TOT(l/s)	Pente	D (mm)	C	Vps (m/s)	Qps (l/s)	rH (%)	Hr (mm)	Vr (m/s)	V aut- cur(m/s)	1
COLL	151	152	20,20	2,905	0,223	315	50,36	6,67	519,57	5,38	16,94	1,79	4,00	Vérifie
18	152	146	23,25	6,248	0,065	315	50,36	3,59	279,62	10,35	32,59	1,46	2,15	Vérifie
Collec- teur	Reg.Amont	Reg.Aval	Distance	Q TOT(l/s)	Pente	D (mm)	C	Vps (m/s)	Qps (l/s)	rH (%)	Hr (mm)	Vr (m/s)	V aut- cur(m/s)	1
COLL 19	153	148	26,45	3,803	0,178	315	50,36	5,96	464,03	6,44	20,29	1,79	3,57	Vérifie
Collec- teur	Reg.Amont	Reg.Aval	Distance	Q TOT(l/s)	Pente	D (mm)	C	Vps (m/s)	Qps (l/s)	rH (%)	Hr (mm)	Vr (m/s)	V aut- cur(m/s)	/
COLL	154	155	30,00	4,314	0,150	315	50,36	5,47	426,34	7,12	22,42	1,75	3,28	Vérifie
20	155	149	23,10	7,636	0,108	315	50,36	4,65	362,15	10,07	31,71	1,86	2,79	Vérifie
Collec- teur	Reg.Amont	Reg.Aval	Distance	Q TOT(l/s)	Pente	D (mm)	C	Vps (m/s)	Qps (l/s)	rH (%)	Hr (mm)	Vr (m/s)	V aut- cur(m/s)	1
	157	158	24,45	3,516	0,029	315	50,36	2,39	186,26	9,55	30,10	0,92	1,43	Vérifie
COLL	158	159	30,20	13,848	0,136	315	50,36	5,21	405,60	12,64	39,82	2,41	3,12	Vérifie
21	159	160	30,00	22,094	0,107	315	50,36	4,62	359,53	16,80	52,92	2,54	2,77	Vérifie
	160	161	31,70	26,653	0,104	315	50,36	4,56	355,17	18,28	57,57	2,72	2,74	Vérifie

	161	162	21,20	29,701	0,137	315	50,36	5,23	407,14	18,05	56,86	3,08	3,14	Vérifie
	162	163	22,35	32,915	0,049	315	50,36	3,14	244,22	24,65	77,64	2,19	1,88	Vérifie
	163	164	31,10	37,387	0,058	315	50,36	3,40	264,84	25,29	79,67	2,40	2,04	Vérifie
	164	165	48,00	61,114	0,127	315	50,36	5,04	392,42	26,72	84,17	3,63	3,02	Vérifie
	165	166	30,00	65,427	0,150	315	50,36	5,47	426,34	26,50	83,48	3,93	3,28	Vérifie
	166	R12	14,80	67,556	0,142	315	50,36	5,32	414,66	27,41	86,33	3,87	3,19	Vérifie
Collec- teur	Reg.Amont	Reg.Aval	Distance	Q TOT(l/s)	Pente	D (mm)	C	Vps (m/s)	Qps (l/s)	rH (%)	Hr (mm)	Vr (m/s)	V aut- cur(m/s)	1
COLL	167	168	20,00	2,876	0,040	315	50,36	2,83	220,16	8,03	25,29	0,98	1,70	Vérifie
22	168	158	21,65	5,989	0,092	315	50,36	4,30	334,58	9,32	29,35	1,63	2,58	Vérifie
Collec- teur	Reg.Amont	Reg.Aval	Distance	Q TOT(l/s)	Pente	D (mm)	C	Vps (m/s)	Qps (l/s)	rH (%)	Hr (mm)	Vr (m/s)	V aut- cur(m/s)	/
COLL 23	167	159	27,35	3,933	0,022	315	50,36	2,09	163,05	10,73	33,79	0,87	1,26	Vérifie
Collec-	Dog Amont	D 4 1	D: 4	Q	D .	D	~	Vps	Qps	TT (0()	Hr	Vr	V aut-	_
teur	Reg.Amont	Reg.Aval	Distance	TOT(l/s)	Pente	(mm)	C	(m/s)	(l/s)	rH (%)	(mm)	(m/s)	cur(m/s)	/
teur	170	Reg.Aval	30,00	TOT(l/s) 4,314	0,157	(mm) 315	50,36		(l/s) 435,72	rH (%) 7,04				/ Vérifie
teur COLL	Ü	Ŭ		TOT(l/s)		` /		(m/s)	(l/s)	1 1	(mm)	(m/s)	cur(m/s)	Vérifie Vérifie
	170	171	30,00	TOT(l/s) 4,314	0,157	315	50,36	(m/s) 5,59	(l/s) 435,72	7,04	(mm) 22,19	(m/s) 1,78	cur(m/s) 3,36	
COLL	170 171	171 172	30,00 25,00	TOT(l/s) 4,314 7,909	0,157 0,148	315 315	50,36 50,36	(m/s) 5,59 5,44	(l/s) 435,72 423,49	7,04 9,51	(mm) 22,19 29,94	(m/s) 1,78 2,09	cur(m/s) 3,36 3,26	Vérifie
COLL	170 171 172	171 172 173	30,00 25,00 30,00	TOT(l/s) 4,314 7,909 12,223	0,157 0,148 0,008	315 315 315	50,36 50,36 50,36	(m/s) 5,59 5,44 1,27	(I/s) 435,72 423,49 98,83	7,04 9,51 23,51	(mm) 22,19 29,94 74,04	(m/s) 1,78 2,09 0,87	3,36 3,26 0,76	Vérifie Vérifie
COLL 24	170 171 172 173	171 172 173 164	30,00 25,00 30,00 32,00	TOT(l/s) 4,314 7,909 12,223 16,824 Q	0,157 0,148 0,008 0,008	315 315 315 315 D	50,36 50,36 50,36 50,36	(m/s) 5,59 5,44 1,27 1,27 Vps	(l/s) 435,72 423,49 98,83 98,83 Qps	7,04 9,51 23,51 28,09	(mm) 22,19 29,94 74,04 88,48 Hr	(m/s) 1,78 2,09 0,87 0,93 Vr	cur(m/s) 3,36 3,26 0,76 0,76 V aut-	Vérifie Vérifie Vérifie
COLL 24 Collecteur	170 171 172 173 Reg.Amont	171 172 173 164 Reg.Aval 176 177	30,00 25,00 30,00 32,00 Distance 20,00 20,00	TOT(I/s) 4,314 7,909 12,223 16,824 Q TOT(I/s) 2,876 5,752	0,157 0,148 0,008 0,008 Pente	315 315 315 315 D (mm) 315 315	50,36 50,36 50,36 50,36 C 50,36 50,36	(m/s) 5,59 5,44 1,27 1,27 Vps (m/s)	(l/s) 435,72 423,49 98,83 98,83 Qps (l/s) 419,18 453,88	7,04 9,51 23,51 28,09 rH (%)	(mm) 22,19 29,94 74,04 88,48 Hr (mm)	(m/s) 1,78 2,09 0,87 0,93 Vr (m/s) 1,53 1,99	cur(m/s) 3,36 3,26 0,76 0,76 V aut- cur(m/s) 3,23 3,50	Vérifie Vérifie Vérifie / Vérifie Vérifie
COLL 24 Collecteur	170 171 172 173 Reg.Amont	171 172 173 164 Reg.Aval	30,00 25,00 30,00 32,00 Distance 20,00	TOT(l/s) 4,314 7,909 12,223 16,824 Q TOT(l/s) 2,876	0,157 0,148 0,008 0,008 Pente 0,145	315 315 315 315 D (mm) 315	50,36 50,36 50,36 50,36 C 50,36	(m/s) 5,59 5,44 1,27 1,27 Vps (m/s) 5,38	(l/s) 435,72 423,49 98,83 98,83 Qps (l/s) 419,18	7,04 9,51 23,51 28,09 rH (%)	(mm) 22,19 29,94 74,04 88,48 Hr (mm) 18,66	(m/s) 1,78 2,09 0,87 0,93 Vr (m/s) 1,53	cur(m/s) 3,36 3,26 0,76 0,76 V aut- cur(m/s) 3,23	Vérifie Vérifie Vérifie / Vérifie
COLL 24 Collecteur	170 171 172 173 Reg.Amont 175 176	171 172 173 164 Reg.Aval 176 177	30,00 25,00 30,00 32,00 Distance 20,00 20,00	TOT(I/s) 4,314 7,909 12,223 16,824 Q TOT(I/s) 2,876 5,752	0,157 0,148 0,008 0,008 Pente 0,145 0,170	315 315 315 315 D (mm) 315 315	50,36 50,36 50,36 50,36 C 50,36 50,36	(m/s) 5,59 5,44 1,27 1,27 Vps (m/s) 5,38 5,83	(l/s) 435,72 423,49 98,83 98,83 Qps (l/s) 419,18 453,88	7,04 9,51 23,51 28,09 rH (%) 5,92 7,91	(mm) 22,19 29,94 74,04 88,48 Hr (mm) 18,66 24,93	(m/s) 1,78 2,09 0,87 0,93 Vr (m/s) 1,53 1,99	cur(m/s) 3,36 3,26 0,76 0,76 V aut- cur(m/s) 3,23 3,50	Vérifie Vérifie Vérifie / Vérifie Vérifie
COLL 24 Collecteur	170 171 172 173 Reg.Amont 175 176 177	171 172 173 164 Reg.Aval 176 177	30,00 25,00 30,00 32,00 Distance 20,00 20,00 30,00	TOT(I/s) 4,314 7,909 12,223 16,824 Q TOT(I/s) 2,876 5,752 10,066	0,157 0,148 0,008 0,008 Pente 0,145 0,170 0,050	315 315 315 315 D (mm) 315 315 315	50,36 50,36 50,36 50,36 C 50,36 50,36	(m/s) 5,59 5,44 1,27 1,27 Vps (m/s) 5,38 5,83 3,16	(l/s) 435,72 423,49 98,83 98,83 Qps (l/s) 419,18 453,88 246,15	7,04 9,51 23,51 28,09 rH (%) 5,92 7,91 13,77	(mm) 22,19 29,94 74,04 88,48 Hr (mm) 18,66 24,93 43,37	(m/s) 1,78 2,09 0,87 0,93 Vr (m/s) 1,53 1,99 1,55	cur(m/s) 3,36 3,26 0,76 0,76 V aut- cur(m/s) 3,23 3,50 1,90	Vérifie Vérifie Vérifie / Vérifie Vérifie Vérifie

COLL	181	182	20,00	6,758	0,095	315	50,36	4,36	339,29	9,80	30,87	1,71	2,61	Vérifie
26	182	R25	9,10	8,067	0,066	315	50,36	3,63	282,65	11,62	36,59	1,59	2,18	Vérifie
Collec- teur	Reg.Amont	Reg.Aval	Distance	Q TOT(l/s)	Pente	D (mm)	C	Vps (m/s)	Qps (l/s)	rH (%)	Hr (mm)	Vr (m/s)	V aut- cur(m/s)	1
	185	186	28,10	4,041	0,014	315	50,36	1,69	131,32	12,04	37,91	0,76	1,01	Vérifie
	186	187	25,75	7,743	0,132	315	50,36	5,14	400,01	9,67	30,46	2,00	3,08	Vérifie
	187	188	22,65	11,000	0,137	315	50,36	5,23	407,26	11,32	35,65	2,25	3,14	Vérifie
	188	189	28,75	15,135	0,021	315	50,36	2,04	159,03	20,47	64,48	1,31	1,23	Vérifie
	189	190	21,00	18,154	0,067	315	50,36	3,65	284,24	17,06	53,74	2,04	2,19	Vérifie
	190	191	30,80	22,583	0,032	315	50,36	2,55	198,36	22,47	70,79	1,71	1,53	Vérifie
	191	192	30,80	27,012	0,007	315	50,36	1,21	94,18	37,01	116,58	1,02	0,73	Vérifie
COLL	192	193	15,00	29,169	0,007	315	50,36	1,21	94,18	38,42	121,02	1,05	0,73	Vérifie
COLL 27	193	194	22,55	105,374	0,015	315	50,36	1,73	134,82	69,22	218,05	1,84	1,04	Vérifie
21	194	195	28,35	109,451	0,018	315	50,36	1,88	146,21	67,01	211,09	1,98	1,13	Vérifie
	195	196	30,00	113,765	0,015	315	50,36	1,73	134,82	73,66	232,04	1,87	1,04	Vérifie
	196	197	30,00	118,079	0,027	315	50,36	2,31	179,77	60,64	191,03	2,39	1,38	Vérifie
	197	198	30,00	122,392	0,070	315	50,36	3,74	291,25	44,75	140,98	3,61	2,24	Vérifie
	198	199	30,00	126,706	0,030	315	50,36	2,45	190,67	61,20	192,77	2,54	1,47	Vérifie
	199	200	14,00	152,597	0,057	315	50,36	3,38	263,14	55,11	173,60	3,46	2,03	Vérifie
	200	201	20,00	155,473	0,070	315	50,36	3,74	291,25	51,89	163,46	3,80	2,24	Vérifie
	201	R65	21,00	158,493	0,070	315	50,36	3,74	291,25	52,60	165,70	3,81	2,24	Vérifie
Collec- teur	Reg.Amont	Reg.Aval	Distance	Q TOT(l/s)	Pente	D (mm)	C	Vps (m/s)	Qps (l/s)	rH (%)	Hr (mm)	Vr (m/s)	V aut- cur(m/s)	1
	202	203	24,65	3,545	0,008	315	50,36	1,27	99,13	12,92	40,70	0,60	0,76	Vérifie
COLL	203	204	30,00	7,858	0,007	315	50,36	1,15	89,90	19,63	61,83	0,72	0,69	Vérifie
COLL 28	204	205	20,00	10,734	0,115	315	50,36	4,79	373,30	11,66	36,72	2,10	2,88	Vérifie
20	205	206	26,50	14,545	0,147	315	50,36	5,42	422,30	12,69	39,99	2,52	3,25	Vérifie
	206	193	18,15	72,962	0,083	315	50,36	4,06	316,45	33,13	104,37	3,21	2,44	Vérifie

Collec- teur	Reg.Amont	Reg.Aval	Distance	Q TOT(l/s)	Pente	D (mm)	C	Vps (m/s)	Qps (l/s)	rH (%)	Hr (mm)	Vr (m/s)	V aut- cur(m/s)	1
	207	208	20,00	2,876	0,105	315	50,36	4,58	356,70	6,39	20,14	1,37	2,75	Vérifie
	208	209	26,55	6,694	0,072	315	50,36	3,78	294,48	10,43	32,86	1,54	2,27	Vérifie
	209	210	31,35	19,707	0,128	315	50,36	5,05	393,21	15,58	49,08	2,53	3,03	Vérifie
	210	211	17,45	22,217	0,069	315	50,36	3,71	288,68	18,49	58,23	2,23	2,22	Vérifie
COLL	211	212	28,85	26,365	0,038	315	50,36	2,76	214,96	23,40	73,71	1,89	1,66	Vérifie
29	212	213	39,10	37,322	0,046	315	50,36	3,03	236,20	26,94	84,86	2,19	1,82	Vérifie
	213	214	39,20	42,959	0,036	315	50,36	2,67	208,02	31,25	98,42	2,05	1,60	Vérifie
	214	215	29,20	47,158	0,021	315	50,36	2,03	157,80	37,76	118,94	1,74	1,22	Vérifie
	215	216	29,40	51,386	0,017	315	50,36	1,84	143,57	41,21	129,82	1,69	1,11	Vérifie
	216	206	30,75	55,807	0,029	315	50,36	2,42	188,33	37,60	118,45	2,07	1,45	Vérifie
Collec- teur	Reg.Amont	Reg.Aval	Distance	Q TOT(l/s)	Pente	D (mm)	C	Vps (m/s)	Qps (l/s)	rH (%)	Hr (mm)	Vr (m/s)	V aut- cur(m/s)	/
COLL	220	221	27,25	3,918	0,015	315	50,36	1,71	133,38	11,78	37,09	0,76	1,03	Vérifie
30	221	209	31,90	8,506	0,006	315	50,36	1,12	87,17	20,73	65,30	0,72	0,67	Vérifie
Collec- teur	Reg.Amont	Reg.Aval	Distance	Q TOT(l/s)	Pente	D (mm)	C	Vps (m/s)	Qps (l/s)	rH (%)	Hr (mm)	Vr (m/s)	V aut- cur(m/s)	1
COLL 31	222	212	37,10	5,335	0,075	315	50,36	3,88	302,41	9,25	29,15	1,47	2,33	Vérifie
Collec- teur	Reg.Amont	Reg.Aval	Distance	Q TOT(l/s)	Pente	D (mm)	C	Vps (m/s)	Qps (l/s)	rH (%)	Hr (mm)	Vr (m/s)	V aut- cur(m/s)	1
	225	226	30,00	4,314	0,097	315	50,36	4,39	342,26	7,89	24,87	1,50	2,64	Vérifie
	226	227	30,00	8,628	0,083	315	50,36	4,08	317,77	11,34	35,74	1,76	2,45	Vérifie
COLL	227	228	30,45	13,006	0,089	315	50,36	4,21	327,80	13,57	42,75	2,04	2,53	Vérifie
32	228	229	24,30	16,501	0,033	315	50,36	2,56	199,73	19,10	60,18	1,58	1,54	Vérifie
	229	230	30,00	20,815	0,017	315	50,36	1,82	142,13	25,82	81,32	1,30	1,09	Vérifie
	230	199	21,30	23,877	0,028	315	50,36	2,37	184,76	24,08	75,85	1,64	1,42	Vérifie

Collec- teur	Reg.Amont	Reg.Aval	Distance	Q TOT(l/s)	Pente	D (mm)	C	Vps (m/s)	Qps (1/s)	rH (%)	Hr (mm)	Vr (m/s)	V aut- cur(m/s)	/
	235	236	30,00	225,372	0,060	500	54,39	4,71	924,45	34,11	170,55	3,79	2,83	Vérifie
	236	237	20,00	228,248	0,030	500	54,39	3,33	653,68	40,72	203,59	3,02	2,00	Vérifie
	237	238	30,00	232,562	0,023	500	54,39	2,94	576,45	43,79	218,94	2,80	1,76	Vérifie
	238	239	30,00	236,876	0,030	500	54,39	3,33	653,68	41,47	207,33	3,06	2,00	Vérifie
	239	240	19,35	239,659	0,052	500	54,39	4,37	857,96	36,53	182,65	3,67	2,62	Vérifie
	240	241	30,25	276,075	0,033	500	54,39	3,50	686,21	43,72	218,62	3,33	2,10	Vérifie
	241	242	30,00	280,389	0,008	500	54,39	1,72	337,56	72,66	363,28	1,85	1,03	Vérifie
	242	243	30,00	284,703	0,033	500	54,39	3,51	689,01	44,35	221,74	3,37	2,11	Vérifie
	243	244	30,25	289,053	0,030	500	54,39	3,32	650,95	46,15	230,77	3,25	1,99	Vérifie
COLL	244	245	30,00	676,434	0,030	600	56,07	3,76	1062,96	59,17	355,04	3,89	2,26	Vérifie
33	245	246	20,00	679,309	0,015	600	56,07	2,66	751,63	79,34	476,04	2,86	1,60	Vérifie
	246	247	22,00	682,473	0,023	600	56,07	3,27	925,24	66,27	397,63	3,45	1,96	Vérifie
	247	248	30,00	686,787	0,015	600	56,07	2,66	751,63	80,55	483,32	2,85	1,60	Vérifie
	248	249	30,00	691,101	0,020	600	56,07	3,07	867,90	70,22	421,32	3,28	1,84	Vérifie
	249	250	30,00	695,415	0,030	600	56,07	3,76	1062,96	60,46	362,75	3,90	2,26	Vérifie
	250	251	30,00	699,729	0,015	600	56,07	2,66	751,63	82,92	497,53	2,83	1,60	Vérifie
	251	252	30,40	704,100	0,020	600	56,07	3,07	867,90	71,26	427,55	3,29	1,84	Vérifie
	252	253	30,15	708,435	0,020	600	56,07	3,07	867,90	71,61	429,67	3,30	1,84	Vérifie
	253	254	12,65	710,254	0,020	600	56,07	3,07	867,90	71,76	430,56	3,30	1,84	Vérifie
	254	255	35,40	728,430	0,020	600	56,07	3,07	867,90	73,31	439,87	3,31	1,84	Vérifie
	255	256	30,00	743,421	0,020	600	56,07	3,07	867,90	74,70	448,19	3,31	1,84	Vérifie
	256	257	30,00	747,735	0,020	600	56,07	3,07	867,90	75,12	450,73	3,31	1,84	Vérifie
COLL	257	258	30,25	752,085	0,020	600	56,07	3,07	867,90	75,56	453,36	3,31	1,84	Vérifie
33	258	259	28,60	756,197	0,020	600	56,07	3,07	867,90	75,99	455,92	3,31	1,84	Vérifie
	259	260	30,00	760,511	0,020	600	56,07	3,07	867,90	76,45	458,70	3,31	1,84	Vérifie
	260	261	37,00	765,832	0,020	600	56,07	3,07	867,90	77,04	462,26	3,31	1,84	Vérifie

	261	262	13,80	767,816	0,010	800	58,82	2,63	1321,68	55,18	441,48	2,70	1,58	Vérifie
	262	263	15,15	992,693	0,010	800	58,82	2,63	1321,68	67,18	537,42	2,78	1,58	Vérifie
	263	264	22,50	995,928	0,010	800	58,82	2,63	1321,68	67,34	538,74	2,78	1,58	Vérifie
	264	265	30,00	1000,242	0,010	800	58,82	2,63	1321,68	67,56	540,49	2,78	1,58	Vérifie
	265	266	16,15	1002,564	0,010	800	58,82	2,63	1321,68	67,68	541,43	2,79	1,58	Vérifie
	266	267	27,10	1006,461	0,010	800	58,82	2,63	1321,68	67,88	543,01	2,79	1,58	Vérifie
	267	268	29,00	1010,631	0,010	800	58,82	2,63	1321,68	68,09	544,70	2,79	1,58	Vérifie
	268	269	30,00	1033,322	0,010	800	58,82	2,63	1321,68	69,24	553,92	2,80	1,58	Vérifie
	269	270	11,85	1035,026	0,010	800	58,82	2,63	1321,68	69,33	554,61	2,80	1,58	Vérifie
	270	271	30,00	1039,340	0,010	800	58,82	2,63	1321,68	69,55	556,37	2,80	1,58	Vérifie
	271	272	19,35	1042,123	0,010	800	58,82	2,63	1321,68	69,69	557,51	2,81	1,58	Vérifie
	272	273	15,20	1044,308	0,010	800	58,82	2,63	1321,68	69,80	558,41	2,81	1,58	Vérifie
	273	274	28,60	1063,994	0,020	800	58,82	3,72	1869,14	54,35	434,84	3,81	2,23	Vérifie
	274	275	57,65	1080,505	0,020	800	58,82	3,72	1869,14	54,98	439,85	3,81	2,23	Vérifie
	275	R38	13,70	62,647	0.020	800	58,82	3,72	1869,14	12,53	100,26	1 71	2 22	V/ózeifi o
	273	130	15,70	02,047	0,020	800	30,02	3,72	1009,14	12,33	100,20	1,71	2,23	Vérifie
Collec- teur	Reg.Amont	Reg.Aval	Distance	Q	Pente	D (mm)	C	Vps	Qps	rH (%)	Hr	Vr	V aut-	/ verifie
Collec- teur						D								/ Vérifie
	Reg.Amont	Reg.Aval	Distance	Q TOT(l/s)	Pente	D (mm)	C	Vps (m/s)	Qps (l/s)	rH (%)	Hr (mm)	Vr (m/s)	V aut- cur(m/s)	/
	Reg.Amont	Reg.Aval	Distance	Q TOT(l/s) 2,445	Pente 0,194	D (mm) 315	C 50,36	Vps (m/s) 6,23	Qps (1/s) 485,01	rH (%) 5,12	Hr (mm) 16,13	Vr (m/s) 1,62	V aut- cur(m/s) 3,74	/ Vérifie
	280 281	Reg.Aval 281 282	Distance 17,00 30,00	Q TOT(I/s) 2,445 6,758	Pente 0,194 0,100	D (mm) 315 315	C 50,36 50,36	Vps (m/s) 6,23 4,47	Qps (l/s) 485,01 348,11	rH (%) 5,12 9,68	Hr (mm) 16,13 30,50	Vr (m/s) 1,62 1,74	V aut- cur(m/s) 3,74 2,68	/ Vérifie Vérifie
teur	280 281 282	281 282 283	Distance 17,00 30,00 30,00	Q TOT(l/s) 2,445 6,758 11,072	Pente 0,194 0,100 0,043	D (mm) 315 315 315	C 50,36 50,36 50,36	Vps (m/s) 6,23 4,47 2,94	Qps (1/s) 485,01 348,11 229,14	rH (%) 5,12 9,68 14,90	Hr (mm) 16,13 30,50 46,92	Vr (m/s) 1,62 1,74 1,52	V aut- cur(m/s) 3,74 2,68 1,77	/ Vérifie Vérifie Vérifie
teur	280 281 282 283	281 282 283 284	Distance 17,00 30,00 30,00 30,00	Q TOT(l/s) 2,445 6,758 11,072 15,386	Pente 0,194 0,100 0,043 0,057	D (mm) 315 315 315 315	C 50,36 50,36 50,36 50,36	Vps (m/s) 6,23 4,47 2,94 3,36	Qps (1/s) 485,01 348,11 229,14 262,05	rH (%) 5,12 9,68 14,90 16,50	Hr (mm) 16,13 30,50 46,92 51,98	Vr (m/s) 1,62 1,74 1,52 1,82	V aut- cur(m/s) 3,74 2,68 1,77 2,02	Vérifie Vérifie Vérifie Vérifie
teur	280 281 282 283 284	281 282 283 284 285	17,00 30,00 30,00 30,00 30,00 30,00	Q TOT(l/s) 2,445 6,758 11,072 15,386 19,700	Pente 0,194 0,100 0,043 0,057 0,043	D (mm) 315 315 315 315 315	C 50,36 50,36 50,36 50,36	Vps (m/s) 6,23 4,47 2,94 3,36 2,94	Qps (l/s) 485,01 348,11 229,14 262,05 229,14	rH (%) 5,12 9,68 14,90 16,50 19,47	Hr (mm) 16,13 30,50 46,92 51,98 61,33	Vr (m/s) 1,62 1,74 1,52 1,82	V aut- cur(m/s) 3,74 2,68 1,77 2,02 1,77	Vérifie Vérifie Vérifie Vérifie Vérifie
teur	280 281 282 283 284 285	281 282 283 284 285 286	17,00 30,00 30,00 30,00 30,00 23,20	Q TOT(l/s) 2,445 6,758 11,072 15,386 19,700 23,036	Pente 0,194 0,100 0,043 0,057 0,043 0,030	D (mm) 315 315 315 315 315 315	C 50,36 50,36 50,36 50,36 50,36	Vps (m/s) 6,23 4,47 2,94 3,36 2,94 2,45	Qps (l/s) 485,01 348,11 229,14 262,05 229,14 191,21	rH (%) 5,12 9,68 14,90 16,50 19,47 23,17	Hr (mm) 16,13 30,50 46,92 51,98 61,33 72,99	Vr (m/s) 1,62 1,74 1,52 1,82 1,83 1,67	V aut- cur(m/s) 3,74 2,68 1,77 2,02 1,77 1,47	Vérifie Vérifie Vérifie Vérifie Vérifie Vérifie
teur	Reg.Amont 280 281 282 283 284 285 286	Reg.Aval 281 282 283 284 285 286 287	17,00 30,00 30,00 30,00 30,00 30,00 23,20 30,00	Q TOT(l/s) 2,445 6,758 11,072 15,386 19,700 23,036 27,350	Pente 0,194 0,100 0,043 0,057 0,043 0,030 0,020	D (mm) 315 315 315 315 315 315 315 315	C 50,36 50,36 50,36 50,36 50,36 50,36	Vps (m/s) 6,23 4,47 2,94 3,36 2,94 2,45 2,00	Qps (l/s) 485,01 348,11 229,14 262,05 229,14 191,21 155,68	rH (%) 5,12 9,68 14,90 16,50 19,47 23,17 28,59	Hr (mm) 16,13 30,50 46,92 51,98 61,33 72,99 90,05	Vr (m/s) 1,62 1,74 1,52 1,82 1,83 1,67	V aut- cur(m/s) 3,74 2,68 1,77 2,02 1,77 1,47	Vérifie Vérifie Vérifie Vérifie Vérifie Vérifie
teur	Reg.Amont 280 281 282 283 284 285 286 287	Reg.Aval 281 282 283 284 285 286 287 288	Distance 17,00 30,00 30,00 30,00 30,00 23,20 30,00 30,00 30,00	Q TOT(l/s) 2,445 6,758 11,072 15,386 19,700 23,036 27,350 31,664	Pente 0,194 0,100 0,043 0,057 0,043 0,030 0,020 0,023	D (mm) 315 315 315 315 315 315 315 315 315	C 50,36 50,36 50,36 50,36 50,36 50,36 50,36	Vps (m/s) 6,23 4,47 2,94 3,36 2,94 2,45 2,00 2,16	Qps (l/s) 485,01 348,11 229,14 262,05 229,14 191,21 155,68 168,14	rH (%) 5,12 9,68 14,90 16,50 19,47 23,17 28,59 29,71	Hr (mm) 16,13 30,50 46,92 51,98 61,33 72,99 90,05 93,58	Vr (m/s) 1,62 1,74 1,52 1,82 1,83 1,67 1,48	V aut- cur(m/s) 3,74 2,68 1,77 2,02 1,77 1,47 1,20 1,30	Vérifie Vérifie Vérifie Vérifie Vérifie Vérifie Vérifie Vérifie

	291	292	40,30	50,401	0,047	315	50,36	3,07	239,03	31,60	99,53	2,37	1,84	Vérifie
	292	293	30,00	54,715	0,050	315	50,36	3,16	246,15	32,50	102,38	2,47	1,90	Vérifie
	293	294	30,00	59,028	0,047	315	50,36	3,05	237,81	34,43	108,44	2,47	1,83	Vérifie
	294	295	40,00	64,780	0,030	315	50,36	2,45	190,67	40,18	126,57	2,20	1,47	Vérifie
	295	296	30,55	69,173	0,052	315	50,36	3,23	251,92	36,22	114,10	2,70	1,94	Vérifie
	296	297	30,00	73,487	0,050	315	50,36	3,16	246,15	37,74	118,88	2,71	1,90	Vérifie
	297	298	28,15	77,535	0,004	400	52,41	1,07	134,09	54,99	219,97	1,09	0,64	Vérifie
	298	235	20,00	80,411	0,004	400	52,41	1,07	134,09	56,53	226,10	1,10	0,64	Vérifie
Collec- teur	Reg.Amont	Reg.Aval	Distance	Q TOT(l/s)	Pente	D (mm)	C	Vps (m/s)	Qps (l/s)	rH (%)	Hr (mm)	Vr (m/s)	V aut- cur(m/s)	/
	300	301	32,75	4,709	0,070	315	50,36	3,75	291,73	8,87	27,95	1,38	2,25	Vérifie
	301	302	15,50	6,938	0,039	315	50,36	2,78	216,58	12,27	38,64	1,26	1,67	Vérifie
	302	303	30,00	11,252	0,110	315	50,36	4,69	365,10	12,04	37,94	2,10	2,81	Vérifie
	303	304	12,35	13,028	0,089	315	50,36	4,22	328,53	13,57	42,74	2,05	2,53	Vérifie
	304	305	30,00	17,342	0,073	315	50,36	3,83	298,10	16,45	51,80	2,06	2,30	Vérifie
	305	306	30,00	21,656	0,043	315	50,36	2,94	229,14	20,40	64,26	1,89	1,77	Vérifie
	306	307	16,00	23,957	0,072	315	50,36	3,79	295,11	18,95	59,68	2,32	2,27	Vérifie
	307	308	30,00	28,270	0,072	315	50,36	3,78	294,70	20,55	64,74	2,43	2,27	Vérifie
COLL	308	309	20,00	31,146	0,030	315	50,36	2,45	190,67	27,45	86,46	1,78	1,47	Vérifie
35	309	310	30,00	35,460	0,077	315	50,36	3,91	304,81	22,74	71,62	2,64	2,35	Vérifie
	310	311	32,00	40,062	0,053	315	50,36	3,26	253,71	26,93	84,83	2,35	1,95	Vérifie
	311	312	23,80	63,328	0,130	315	50,36	5,10	397,29	27,07	85,28	3,69	3,06	Vérifie
	312	313	30,00	67,642	0,058	315	50,36	3,41	265,86	34,86	109,81	2,78	2,05	Vérifie
	313	314	30,00	71,956	0,068	315	50,36	3,69	287,75	34,56	108,85	2,99	2,22	Vérifie
	314	315	20,00	74,832	0,045	315	50,36	3,00	233,52	39,06	123,03	2,64	1,80	Vérifie
	315	316	20,00	77,708	0,065	315	50,36	3,60	280,65	36,37	114,57	3,02	2,16	Vérifie
	316	317	34,00	82,597	0,056	315	50,36	3,34	260,22	38,88	122,47	2,93	2,00	Vérifie
	317	318	16,00	84,898	0,025	315	50,36	2,23	174,05	48,85	153,89	2,24	1,34	Vérifie

	318	319	30,00	89,211	0,073	315	50,36	3,83	298,10	37,79	119,02	3,29	2,30	Vérifie
	319	320	22,80	92,490	0,057	315	50,36	3,37	262,86	40,87	128,74	3,07	2,02	Vérifie
	320	235	31,25	140,647	0,020	315	50,36	2,00	155,68	79,30	249,80	2,15	1,20	Vérifie
Collec- teur	Reg.Amont	Reg.Aval	Distance	Q TOT(l/s)	Pente	D (mm)	C	Vps (m/s)	Qps (l/s)	rH (%)	Hr (mm)	Vr (m/s)	V aut- cur(m/s)	/
	321	322	30,00	4,314	0,067	315	50,36	3,65	284,24	8,62	27,15	1,32	2,19	Vérifie
COLI	322	323	30,00	8,628	0,113	315	50,36	4,76	370,58	10,55	33,23	1,96	2,85	Vérifie
COLL 36	323	324	30,00	12,942	0,150	315	50,36	5,47	426,34	11,96	37,67	2,44	3,28	Vérifie
30	324	325	18,00	15,530	0,233	315	50,36	6,83	531,74	11,74	36,99	3,01	4,10	Vérifie
	325	311	30,00	19,844	0,190	315	50,36	6,16	479,83	13,84	43,60	3,03	3,70	Vérifie
Collec-	Reg.Amont	Reg.Aval	Distance	Q	Pente	D	C	Vps	Qps	rH (%)	Hr	Vr	V aut-	/
teur	Ü			TOT(l/s)		(mm)		(m/s)	(l/s)	` ′	(mm)	(m/s)	cur(m/s)	
	327	328	16,50	2,373	0,073	315	50,36	3,81	296,87	6,37	20,05	1,14	2,29	Vérifie
	328	329	18,00	4,961	0,111	315	50,36	4,71	366,94	8,16	25,71	1,64	2,83	Vérifie
	329	330	20,00	7,837	0,050	315	50,36	3,16	246,15	12,23	38,53	1,43	1,90	Vérifie
	330	331	30,00	12,151	0,063	315	50,36	3,56	277,03	14,23	44,83	1,78	2,13	Vérifie
	331	332	31,25	16,644	0,045	315	50,36	2,99	233,00	17,88	56,34	1,75	1,79	Vérifie
COLI	332	333	24,70	20,196	0,024	315	50,36	2,20	171,56	22,88	72,08	1,49	1,32	Vérifie
COLL 37	333	334	32,40	24,855	0,012	315	50,36	1,57	122,33	30,97	97,56	1,20	0,94	Vérifie
31	334	335	26,00	28,594	0,092	315	50,36	4,29	334,46	19,42	61,17	2,67	2,58	Vérifie
	335	336	20,00	31,470	0,105	315	50,36	4,58	356,70	19,72	62,11	2,88	2,75	Vérifie
	336	337	30,00	35,784	0,097	315	50,36	4,39	342,26	21,48	67,67	2,89	2,64	Vérifie
	337	338	17,00	38,228	0,100	315	50,36	4,47	348,11	22,05	69,44	2,98	2,68	Vérifie
	338	339	18,60	40,903	0,091	315	50,36	4,27	332,80	23,43	73,79	2,92	2,56	Vérifie
	339	320	19,20	43,664	0,021	315	50,36	2,04	158,88	36,24	114,15	1,70	1,22	Vérifie
Collec- teur	Reg.Amont	Reg.Aval	Distance	Q TOT(l/s)	Pente	D (mm)	C	Vps (m/s)	Qps (l/s)	rH (%)	Hr (mm)	Vr (m/s)	V aut- cur(m/s)	/
COLL	340	341	20,45	2,941	0,010	315	50,36	1,40	108,86	11,32	35,65	0,60	0,84	Vérifie
38	341	342	35,65	19,952	0,070	315	50,36	3,74	291,52	17,56	55,31	2,16	2,25	Vérifie

	342	343	30,15	24,287	0,066	315	50,36	3,64	283,51	19,44	61,23	2,27	2,18	Vérifie
	343	344	29,80	28,572	0,044	315	50,36	2,95	229,91	23,57	74,24	2,02	1,77	Vérifie
	344	240	24,30	32,067	0,008	315	50,36	1,28	99,87	39,10	123,15	1,13	0,77	Vérifie
Collec- teur	Reg.Amont	Reg.Aval	Distance	Q TOT(l/s)	Pente	D (mm)	C	Vps (m/s)	Qps (l/s)	rH (%)	Hr (mm)	Vr (m/s)	V aut- cur(m/s)	/
COLI	345	346	19,15	2,754	0,172	315	50,36	5,87	456,96	5,57	17,55	1,61	3,52	Vérifie
COLL 39	346	347	30,00	7,068	0,130	315	50,36	5,10	396,90	9,29	29,28	1,93	3,06	Vérifie
39	347	341	33,50	11,885	0,048	315	50,36	3,09	240,57	15,51	48,84	1,54	1,85	Vérifie
Collec- teur	Reg.Amont	Reg.Aval	Distance	Q TOT(l/s)	Pente	D (mm)	C	Vps (m/s)	Qps (l/s)	rH (%)	Hr (mm)	Vr (m/s)	V aut- cur(m/s)	/
	348	349	23,50	3,379	0,081	315	50,36	4,02	313,01	7,34	23,11	1,31	2,41	Vérifie
	349	350	30,05	7,700	0,070	315	50,36	3,74	291,00	11,21	35,30	1,60	2,24	Vérifie
	350	351	30,00	12,014	0,063	315	50,36	3,56	277,03	14,15	44,59	1,77	2,13	Vérifie
	351	352	30,00	16,328	0,007	315	50,36	1,15	89,90	29,12	91,73	0,86	0,69	Vérifie
COLL	352	353	34,40	21,275	0,122	315	50,36	4,94	384,64	16,14	50,83	2,60	2,96	Vérifie
40	353	354	30,30	30,118	0,040	315	50,36	2,81	219,06	24,92	78,50	1,97	1,69	Vérifie
	354	355	20,55	33,073	0,073	315	50,36	3,82	297,40	22,19	69,91	2,55	2,29	Vérifie
	355	356	16,20	35,403	0,056	315	50,36	3,33	259,48	24,82	78,17	2,33	2,00	Vérifie
	356	357	28,25	39,465	0,064	315	50,36	3,57	277,88	25,38	79,94	2,52	2,14	Vérifie
	357	244	10,00	56,009	0,020	315	50,36	2,00	155,68	41,32	130,15	1,83	1,20	Vérifie
Collec- teur	Reg.Amont	Reg.Aval	Distance	Q TOT(l/s)	Pente	D (mm)	C	Vps (m/s)	Qps (l/s)	rH (%)	Hr (mm)	Vr (m/s)	V aut- cur(m/s)	1
COLL	360	361	16,20	2,330	0,093	315	50,36	4,30	334,96	5,96	18,78	1,23	2,58	Vérifie
41	361	353	15,00	4,486	0,013	315	50,36	1,63	127,10	12,84	40,45	0,76	0,98	Vérifie
Collec- teur	Reg.Amont	Reg.Aval	Distance	Q TOT(l/s)	Pente	D (mm)	C	Vps (m/s)	Qps (l/s)	rH (%)	Hr (mm)	Vr (m/s)	V aut- cur(m/s)	1
COLL	365	366	20,85	2,998	0,029	315	50,36	2,40	186,75	8,85	27,88	0,88	1,44	Vérifie
COLL 42	366	367	28,30	7,068	0,110	315	50,36	4,68	364,33	9,68	30,49	1,82	2,81	Vérifie
74	367	368	13,80	9,052	0,130	315	50,36	5,10	397,56	10,44	32,88	2,09	3,06	Vérifie

	368	357	10,50	15,106	0,057	315	50,36	3,38	263,14	16,36	51,54	1,81	2,03	Vérifie
Collec- teur	Reg.Amont	Reg.Aval	Distance	Q TOT(l/s)	Pente	D (mm)	C	Vps (m/s)	Qps (l/s)	rH (%)	Hr (mm)	Vr (m/s)	V aut- cur(m/s)	/
COLL 43	369	368	31,60	4,544	0,139	315	50,36	5,27	410,77	7,42	23,38	1,73	3,16	Vérifie
Collec- teur	Reg.Amont	Reg.Aval	Distance	Q TOT(l/s)	Pente	D (mm)	C	Vps (m/s)	Qps (l/s)	rH (%)	Hr (mm)	Vr (m/s)	V aut- cur(m/s)	1
COLI	370	371	30,00	4,314	0,010	315	50,36	1,41	110,08	13,49	42,50	0,68	0,85	Vérifie
COLL 44	371	373	30,00	8,628	0,033	315	50,36	2,58	200,97	14,09	44,37	1,28	1,55	Vérifie
77	373	254	31,00	13,085	0,055	315	50,36	3,31	257,79	15,65	49,30	1,67	1,99	Vérifie
Collec- teur	Reg.Amont	Reg.Aval	Distance	Q TOT(l/s)	Pente	D (mm)	C	Vps (m/s)	Qps (l/s)	rH (%)	Hr (mm)	Vr (m/s)	V aut- cur(m/s)	1
COLL	375	376	23,95	3,444	0,115	315	50,36	4,79	373,01	6,81	21,47	1,49	2,87	Vérifie
45	376	255	32,50	10,677	0,117	315	50,36	4,83	376,41	11,58	36,48	2,11	2,90	Vérifie
Collec- teur	Reg.Amont	Reg.Aval	Distance	Q TOT(l/s)	Pente	D (mm)	C	Vps (m/s)	Qps (l/s)	rH (%)	Hr (mm)	Vr (m/s)	V aut- cur(m/s)	/
COLL 46	377	376	17,80	2,560	0,006	315	50,36	1,06	82,52	12,08	38,06	0,48	0,64	Vérifie
Collec- teur	Reg.Amont	Reg.Aval	Distance	Q TOT(l/s)	Pente	D (mm)	C	Vps (m/s)	Qps (l/s)	rH (%)	Hr (mm)	Vr (m/s)	V aut- cur(m/s)	/
	378	379	21,00	3,020	0,076	315	50,36	3,90	303,85	7,06	22,23	1,24	2,34	Vérifie
	379	380	30,10	7,348	0,080	315	50,36	3,99	310,83	10,63	33,47	1,65	2,39	Vérifie
	380	381	19,55	10,159	0,133	315	50,36	5,15	401,44	10,97	34,57	2,18	3,09	Vérifie
	381	382	20,70	13,136	0,068	315	50,36	3,68	286,28	14,54	45,79	1,87	2,21	Vérifie
COLL	382	383	30,00	17,450	0,083	315	50,36	4,08	317,77	16,09	50,70	2,14	2,45	Vérifie
47	383	384	39,00	23,058	0,103	315	50,36	4,53	352,54	17,23	54,27	2,56	2,72	Vérifie
	384	385	30,00	27,372	0,113	315	50,36	4,76	370,58	18,15	57,17	2,82	2,85	Vérifie
	385	386	30,00	31,686	0,107	315	50,36	4,62	359,53	19,71	62,07	2,90	2,77	Vérifie
	386	387	16,00	33,986	0,106	315	50,36	4,61	358,82	20,42	64,33	2,95	2,76	Vérifie
	387	388	36,60	39,249	0,093	315	50,36	4,31	335,52	22,80	71,83	2,91	2,58	Vérifie

	388	389	27,20	93,518	0,099	315	50,36	4,45	346,82	35,90	113,07	3,69	2,67	Vérifie
	389	390	26,60	97,343	0,117	315	50,36	4,82	375,80	35,18	110,82	3,95	2,89	Vérifie
	390	391	30,00	101,657	0,100	315	50,36	4,47	348,11	37,34	117,61	3,81	2,68	Vérifie
	391	392	30,00	105,971	0,097	315	50,36	4,39	342,26	38,41	121,00	3,82	2,64	Vérifie
	392	393	30,80	110,400	0,032	315	50,36	2,55	198,36	53,46	168,41	2,60	1,53	Vérifie
	393	394	24,70	113,952	0,085	315	50,36	4,12	320,98	41,05	129,30	3,76	2,47	Vérifie
	394	395	24,40	117,460	0,078	315	50,36	3,94	307,18	42,59	134,17	3,69	2,37	Vérifie
	395	396	16,35	119,811	0,080	315	50,36	3,99	310,40	42,80	134,81	3,74	2,39	Vérifie
	396	397	36,20	145,393	0,069	315	50,36	3,71	289,29	49,81	156,90	3,74	2,23	Vérifie
	397	398	16,75	147,801	0,072	315	50,36	3,78	294,64	49,75	156,70	3,81	2,27	Vérifie
	398	399	30,00	152,115	0,050	315	50,36	3,16	246,15	57,85	182,21	3,26	1,90	Vérifie
	399	400	30,10	156,443	0,037	315	50,36	2,70	210,43	66,67	210,00	2,85	1,62	Vérifie
	400	401	30,00	160,757	0,063	315	50,36	3,56	277,03	55,14	173,69	3,65	2,13	Vérifie
	401	402	28,25	174,842	0,060	400	52,41	4,07	510,63	40,33	161,32	3,66	2,44	Vérifie
	402	403	30,00	179,156	0,073	400	52,41	4,49	563,66	38,90	155,62	3,94	2,69	Vérifie
	403	404	21,40	182,233	0,028	400	52,41	2,78	348,55	51,15	204,60	2,81	1,67	Vérifie
	404	405	20,00	185,109	0,025	400	52,41	2,62	329,12	53,88	215,50	2,68	1,57	Vérifie
	405	406	24,35	188,611	0,057	400	52,41	3,97	499,09	42,34	169,37	3,71	2,38	Vérifie
	406	407	21,60	191,717	0,050	400	52,41	3,71	465,44	44,27	177,09	3,56	2,22	Vérifie
	407	408	20,00	194,593	0,050	400	52,41	3,71	465,44	44,63	178,52	3,57	2,22	Vérifie
	408	409	22,70	197,857	0,040	400	52,41	3,30	414,48	48,19	192,78	3,29	1,98	Vérifie
	409	410	32,80	202,573	0,015	400	52,41	2,03	254,93	70,11	280,42	2,17	1,22	Vérifie
	410	411	38,55	208,117	0,015	400	52,41	2,03	254,93	71,62	286,47	2,18	1,22	Vérifie
	411	412	37,70	213,538	0,048	400	52,41	3,62	454,85	47,70	190,81	3,60	2,17	Vérifie
	412	413	33,70	218,384	0,050	400	52,41	3,71	465,44	47,68	190,74	3,68	2,22	Vérifie
	413	262	30,00	222,698	0,050	400	52,41	3,71	465,44	48,26	193,05	3,70	2,22	Vérifie
Collec- teur	Reg.Amont	Reg.Aval	Distance	Q TOT(l/s)	Pente	D (mm)	C	Vps (m/s)	Qps (l/s)	rH (%)	Hr (mm)	Vr (m/s)	V aut- cur(m/s)	1

	415	416	20,55	2,955	0,146	315	50,36	5,40	420,61	5,99	18,87	1,55	3,24	Vérifie
	416	417	19,00	16,609	0,089	315	50,36	4,23	329,27	15,62	49,19	2,13	2,54	Vérifie
	417	418	30,00	20,922	0,110	315	50,36	4,69	365,10	16,35	51,51	2,50	2,81	Vérifie
	418	419	35,10	25,970	0,040	315	50,36	2,82	219,86	22,92	72,21	1,91	1,69	Vérifie
	419	420	27,20	29,881	0,107	315	50,36	4,61	359,45	19,16	60,36	2,85	2,77	Vérifie
COLI	420	421	23,60	33,275	0,072	315	50,36	3,79	295,44	22,34	70,39	2,54	2,28	Vérifie
COLL 48	421	422	25,00	36,869	0,080	315	50,36	4,00	311,36	22,96	72,31	2,71	2,40	Vérifie
40	422	423	11,65	38,545	0,172	315	50,36	5,86	456,10	19,31	60,83	3,63	3,51	Vérifie
	423	424	15,15	40,723	0,139	315	50,36	5,26	409,84	20,92	65,91	3,42	3,16	Vérifie
	424	425	24,00	44,174	0,063	315	50,36	3,53	275,20	27,18	85,61	2,56	2,12	Vérifie
	425	426	8,55	45,404	0,012	315	50,36	1,53	119,07	42,53	133,98	1,43	0,92	Vérifie
	426	427	22,00	48,567	0,005	315	50,36	0,95	74,25	60,45	190,41	0,99	0,57	Vérifie
	427	388	12,45	50,358	0,016	315	50,36	1,79	139,50	41,39	130,37	1,64	1,07	Vérifie
Collec- teur	Reg.Amont	Reg.Aval	Distance	Q TOT(l/s)	Pente	D (mm)	C	Vps (m/s)	Qps (l/s)	rH (%)	Hr (mm)	Vr (m/s)	V aut- cur(m/s)	1
COLI	430	431	20,00	2,876	0,040	315	50,36	2,83	220,16	8,03	25,29	0,98	1,70	Vérifie
COLL	430 431	431 432	20,00 30,35	, ,	0,040 0,082	,	50,36 50,36	` ,	1 1	8,03 10,47	` /	,	` ,	Vérifie Vérifie
COLL 49			- 1	2,876	,	315		2,83	220,16	,	25,29	0,98	1,70	
	431	432	30,35	2,876 7,240	0,082	315 315	50,36	2,83 4,06	220,16 315,94	10,47	25,29 32,99	0,98 1,66	1,70 2,43	Vérifie
49 Collec-	431 432	432 416	30,35 25,60	2,876 7,240 10,921 Q	0,082 0,027	315 315 315 D	50,36 50,36	2,83 4,06 2,34 Vps	220,16 315,94 182,02 Qps	10,47 16,64	25,29 32,99 52,42 Hr	0,98 1,66 1,27 Vr	1,70 2,43 1,40 V aut-	Vérifie Vérifie
Collecteur	431 432 Reg.Amont	432 416 Reg.Aval	30,35 25,60 Distance	2,876 7,240 10,921 Q TOT(I/s)	0,082 0,027 Pente	315 315 315 D (mm)	50,36 50,36 C	2,83 4,06 2,34 Vps (m/s)	220,16 315,94 182,02 Qps (l/s)	10,47 16,64 rH (%)	25,29 32,99 52,42 Hr (mm)	0,98 1,66 1,27 Vr (m/s)	1,70 2,43 1,40 V aut- cur(m/s)	Vérifie Vérifie /
Collecteur COLL	431 432 Reg.Amont 435	432 416 Reg.Aval 436	30,35 25,60 Distance 17,00	2,876 7,240 10,921 Q TOT(I/s) 2,445	0,082 0,027 Pente 0,112	315 315 315 D (mm) 315	50,36 50,36 C 50,36	2,83 4,06 2,34 Vps (m/s) 4,72	220,16 315,94 182,02 Qps (l/s) 368,01	10,47 16,64 rH (%) 5,83	25,29 32,99 52,42 Hr (mm) 18,37	0,98 1,66 1,27 Vr (m/s) 1,33	1,70 2,43 1,40 V aut- cur(m/s) 2,83	Vérifie Vérifie / Vérifie
Collecteur	431 432 Reg.Amont 435 436	432 416 Reg.Aval 436 437	30,35 25,60 Distance 17,00 30,00	2,876 7,240 10,921 Q TOT(l/s) 2,445 6,758	0,082 0,027 Pente 0,112 0,063	315 315 315 D (mm) 315 315	50,36 50,36 C 50,36 50,36	2,83 4,06 2,34 Vps (m/s) 4,72 3,56	220,16 315,94 182,02 Qps (l/s) 368,01 277,03	10,47 16,64 rH (%) 5,83 10,79	25,29 32,99 52,42 Hr (mm) 18,37 33,97	0,98 1,66 1,27 Vr (m/s) 1,33 1,48	1,70 2,43 1,40 V aut- cur(m/s) 2,83 2,13	Vérifie Vérifie Vérifie Vérifie
Collecteur COLL 50	431 432 Reg.Amont 435 436 437	432 416 Reg.Aval 436 437 438	30,35 25,60 Distance 17,00 30,00 30,00	2,876 7,240 10,921 Q TOT(I/s) 2,445 6,758 11,072 15,242 20,376	0,082 0,027 Pente 0,112 0,063 0,083	315 315 315 D (mm) 315 315 315 315	50,36 50,36 C 50,36 50,36 50,36	2,83 4,06 2,34 Vps (m/s) 4,72 3,56 4,08	220,16 315,94 182,02 Qps (l/s) 368,01 277,03 317,77 266,52 390,83	10,47 16,64 rH (%) 5,83 10,79 12,76	25,29 32,99 52,42 Hr (mm) 18,37 33,97 40,21 51,47 49,76	0,98 1,66 1,27 Vr (m/s) 1,33 1,48 1,90 1,83 2,56	1,70 2,43 1,40 V aut-cur(m/s) 2,83 2,13 2,45 2,05 3,01	Vérifie Vérifie Vérifie Vérifie Vérifie
Collecteur COLL	431 432 Reg.Amont 435 436 437 438	432 416 Reg.Aval 436 437 438 439	30,35 25,60 Distance 17,00 30,00 30,00 29,00	2,876 7,240 10,921 Q TOT(I/s) 2,445 6,758 11,072 15,242	0,082 0,027 Pente 0,112 0,063 0,083 0,059	315 315 315 D (mm) 315 315 315 315	50,36 50,36 C 50,36 50,36 50,36 50,36	2,83 4,06 2,34 Vps (m/s) 4,72 3,56 4,08 3,42	220,16 315,94 182,02 Qps (l/s) 368,01 277,03 317,77 266,52	10,47 16,64 rH (%) 5,83 10,79 12,76 16,34	25,29 32,99 52,42 Hr (mm) 18,37 33,97 40,21 51,47	0,98 1,66 1,27 Vr (m/s) 1,33 1,48 1,90 1,83	1,70 2,43 1,40 V aut- cur(m/s) 2,83 2,13 2,45 2,05	Vérifie Vérifie Vérifie Vérifie Vérifie Vérifie
Collecteur COLL 50 Collec-	431 432 Reg.Amont 435 436 437 438 439	432 416 Reg.Aval 436 437 438 439 396	30,35 25,60 Distance 17,00 30,00 30,00 29,00 35,70	2,876 7,240 10,921 Q TOT(I/s) 2,445 6,758 11,072 15,242 20,376 Q	0,082 0,027 Pente 0,112 0,063 0,083 0,059 0,126	315 315 315 D (mm) 315 315 315 315 D	50,36 50,36 C 50,36 50,36 50,36 50,36 50,36	2,83 4,06 2,34 Vps (m/s) 4,72 3,56 4,08 3,42 5,02 Vps	220,16 315,94 182,02 Qps (l/s) 368,01 277,03 317,77 266,52 390,83 Qps	10,47 16,64 rH (%) 5,83 10,79 12,76 16,34 15,80	25,29 32,99 52,42 Hr (mm) 18,37 33,97 40,21 51,47 49,76 Hr	0,98 1,66 1,27 Vr (m/s) 1,33 1,48 1,90 1,83 2,56 Vr	1,70 2,43 1,40 V aut- cur(m/s) 2,83 2,13 2,45 2,05 3,01 V aut-	Vérifie Vérifie Vérifie Vérifie Vérifie Vérifie Vérifie

Collec- teur	Reg.Amont	Reg.Aval	Distance	Q TOT(l/s)	Pente	D (mm)	C	Vps (m/s)	Qps (1/s)	rH (%)	Hr (mm)	Vr (m/s)	V aut- cur(m/s)	/
teur	450	451	20,00	2,876	0,060	315	50,36	3,46	269,64	7,30	22,98	1,12	2,08	Vérifie
	451	452	24,70	6,428	0,069	315	50,36	3,71	288,80	10,33	32,53	1,51	2,22	Vérifie
	452	453	24,45	9,944	0,045	315	50,36	3,00	233,49	14,03	44,21	1,49	1,80	Vérifie
	453	454	24,45	13,459	0,025	315	50,36	2,21	172,45	18,61	58,61	1,34	1,33	Vérifie
	454	455	25,50	45,382	0,051	315	50,36	3,19	248,55	29,21	92,00	2,38	1,91	Vérifie
	455	456	30,55	49,775	0,039	315	50,36	2,80	218,17	32,95	103,80	2,21	1,68	Vérifie
	456	457	33,00	60,481	0,073	315	50,36	3,81	296,87	31,02	97,70	2,92	2,29	Vérifie
	457	458	33,40	65,284	0,087	315	50,36	4,16	324,38	30,81	97,06	3,18	2,50	Vérifie
	458	459	30,00	69,598	0,070	315	50,36	3,74	291,25	33,76	106,34	2,99	2,24	Vérifie
	459	460	30,00	73,911	0,063	315	50,36	3,56	277,03	35,71	112,48	2,94	2,13	Vérifie
	460	461	30,00	78,225	0,070	315	50,36	3,74	291,25	35,83	112,85	3,10	2,24	Vérifie
	461	462	30,00	82,539	0,030	315	50,36	2,45	190,67	45,49	143,31	2,38	1,47	Vérifie
COLL	462	463	30,00	86,853	0,100	315	50,36	4,47	348,11	34,52	108,73	3,62	2,68	Vérifie
52	463	464	30,00	91,167	0,100	315	50,36	4,47	348,11	35,38	111,43	3,67	2,68	Vérifie
	464	465	17,55	93,691	0,085	315	50,36	4,13	321,83	37,28	117,43	3,52	2,48	Vérifie
	465	466	31,40	132,343	0,020	315	50,36	2,00	155,68	74,17	233,62	2,16	1,20	Vérifie
	466	467	30,00	136,657	0,023	315	50,36	2,16	168,14	71,36	224,79	2,32	1,30	Vérifie
	467	468	30,00	140,971	0,037	315	50,36	2,71	210,80	61,49	193,71	2,81	1,62	Vérifie
	468	469	30,00	145,285	0,027	315	50,36	2,31	179,77	71,04	223,78	2,47	1,38	Vérifie
	469	470	33,50	150,102	0,033	315	50,36	2,56	199,49	67,27	211,90	2,71	1,54	Vérifie
	470	471	30,00	154,416	0,025	315	50,36	2,23	174,05	77,52	244,20	2,41	1,34	Vérifie
	471	472	30,00	158,730	0,027	315	50,36	2,31	179,77	77,10	242,86	2,49	1,38	Vérifie
	472	473	30,00	163,044	0,027	315	50,36	2,31	179,77	79,71	251,10	2,48	1,38	Vérifie
	473	474	30,00	167,358	0,037	315	50,36	2,71	210,80	70,06	220,68	2,89	1,62	Vérifie
	474	475	30,00	171,672	0,037	315	50,36	2,71	210,80	71,48	225,15	2,90	1,62	Vérifie
	475	476	24,55	175,202	0,073	315	50,36	3,83	298,08	55,67	175,37	3,93	2,30	Vérifie

	476	477	30,00	179,516	0,033	315	50,36	2,58	200,97	78,16	246,21	2,78	1,55	Vérifie
	477	478	30,00	183,830	0,070	315	50,36	3,74	291,25	58,80	185,22	3,86	2,24	Vérifie
	478	479	30,00	188,143	0,070	315	50,36	3,74	291,25	59,87	188,58	3,87	2,24	Vérifie
	479	480	30,00	192,457	0,070	315	50,36	3,74	291,25	60,93	191,92	3,88	2,24	Vérifie
	480	481	30,00	196,771	0,070	315	50,36	3,74	291,25	61,98	195,25	3,89	2,24	Vérifie
	481	482	39,20	202,408	0,070	315	50,36	3,74	291,25	63,34	199,53	3,90	2,24	Vérifie
	482	483	30,00	206,722	0,063	315	50,36	3,56	277,03	66,85	210,58	3,75	2,13	Vérifie
	483	484	30,00	211,036	0,060	315	50,36	3,46	269,64	69,30	218,28	3,69	2,08	Vérifie
	484	485	33,00	215,781	0,067	315	50,36	3,65	284,24	67,72	213,32	3,86	2,19	Vérifie
	485	486	30,00	220,095	0,050	315	50,36	3,16	246,15	78,26	246,51	3,40	1,90	Vérifie
	486	487	32,60	224,783	0,050	315	50,36	3,16	246,15	80,49	253,53	3,38	1,90	Vérifie
COLI	487	488	30,10	229,111	0,053	315	50,36	3,26	253,81	79,21	249,52	3,50	1,96	Vérifie
COLL 52	488	489	30,00	233,425	0,050	400	52,41	3,71	465,44	49,74	198,96	3,73	2,22	Vérifie
32	489	490	30,00	237,739	0,050	400	52,41	3,71	465,44	50,35	201,39	3,74	2,22	Vérifie
	490	491	30,00	242,053	0,050	400	52,41	3,71	465,44	50,96	203,85	3,75	2,22	Vérifie
	491	492	20,25	244,965	0,050	400	52,41	3,71	465,44	51,38	205,54	3,76	2,22	Vérifie
	492	493	25,00	248,560	0,050	400	52,41	3,71	465,44	51,91	207,63	3,77	2,22	Vérifie
	493	494	30,00	252,873	0,050	400	52,41	3,71	465,44	52,54	210,17	3,77	2,22	Vérifie
	494	495	25,60	256,555	0,050	400	52,41	3,71	465,44	53,09	212,36	3,78	2,22	Vérifie
	495	496	30,00	260,869	0,050	400	52,41	3,71	465,44	53,74	214,95	3,79	2,22	Vérifie
	496	497	24,40	264,377	0,050	400	52,41	3,71	465,44	54,27	217,07	3,79	2,22	Vérifie
	497	498	30,20	268,720	0,050	400	52,41	3,71	465,44	54,93	219,72	3,80	2,22	Vérifie
	498	499	20,00	271,596	0,050	400	52,41	3,71	465,44	55,37	221,48	3,80	2,22	Vérifie
	499	500	30,00	275,910	0,050	400	52,41	3,71	465,44	56,03	224,13	3,81	2,22	Vérifie
	500	R57	38,10	281,388	0,050	400	52,41	3,71	465,44	56,88	227,51	3,81	2,22	Vérifie
Collec- teur	Reg.Amont	Reg.Aval	Distance	Q TOT(l/s)	Pente	D (mm)	C	Vps (m/s)	Qps (l/s)	rH (%)	Hr (mm)	Vr (m/s)	V aut- cur(m/s)	/
	505	506	14,00	2,013	0,114	315	50,36	4,78	372,15	5,29	16,67	1,27	2,87	Vérifie

COLL 53	506	507	31,20	6,500	0,051	315	50,36	3,20	249,28	11,13	35,06	1,36	1,92	Vérifie
	507	508	22,55	9,742	0,013	315	50,36	1,63	126,95	18,46	58,16	0,98	0,98	Vérifie
	508	509	30,00	14,056	0,063	315	50,36	3,56	277,03	15,65	49,29	1,79	2,13	Vérifie
	509	510	30,00	18,370	0,003	315	50,36	0,82	63,52	37,16	117,05	0,69	0,49	Vérifie
	510	511	19,30	21,145	0,010	315	50,36	1,44	112,05	29,74	93,69	1,08	0,86	Vérifie
	511	512	19,45	23,942	0,021	315	50,36	2,03	157,88	26,33	82,93	1,45	1,22	Vérifie
	512	454	30,00	28,256	0,017	315	50,36	1,82	142,13	30,61	96,41	1,39	1,09	Vérifie
Collec-	Reg.Amont	Reg.Aval	Distance	Q	Pente	D	C	Vps	Qps	rH (%)	Hr	Vr	V aut-	1
teur	Ü			TOT(l/s)		(mm)		(m/s)	(l/s)	1 1	(mm)	(m/s)	cur(m/s)	,
COLL	515	516	11,45	1,646	0,035	315	50,36	2,64	205,74	6,37	20,06	0,79	1,58	Vérifie
54	516	456	30,00	5,960	0,020	315	50,36	2,00	155,68	13,35	42,04	0,96	1,20	Vérifie
Collec-	Reg.Amont	Reg.Aval	Distance	Q	Pente	D	C	Vps	Qps	rH (%)	Hr	Vr	V aut-	/
teur	U			TOT(l/s)		(mm)		(m/s)	(l/s)	` ′	(mm)	(m/s)	cur(m/s)	Í
	518	519	18,30	2,631	0,087	315	50,36	4,18	325,50	6,40	20,16	1,25	2,51	Vérifie
COLL 55	519	520	30,00	6,945	0,103	315	50,36	4,54	353,86	9,73	30,66	1,77	2,73	Vérifie
	520	521	10,00	8,383	0,090	315	50,36	4,24	330,24	10,99	34,62	1,79	2,54	Vérifie
	521	522	34,00	28,961	0,027	315	50,36	2,32	180,51	27,17	85,59	1,68	1,39	Vérifie
	522	466	36,00	34,137	0,010	315	50,36	1,41	110,08	38,44	121,10	1,23	0,85	Vérifie
Collec- teur	Reg.Amont	Reg.Aval	Distance	Q TOT(l/s)	Pente	D (mm)	C	Vps (m/s)	Qps (l/s)	rH (%)	Hr (mm)	Vr (m/s)	V aut- cur(m/s)	/
	525	526	25,30	3,638	0,079	315	50,36	3,97	309,50	7,64	24,06	1,33	2,38	Vérifie
COLL 56	526	527	26,10	7,391	0,061	315	50,36	3,50	272,55	11,34	35,72	1,51	2,10	Vérifie
	527	528	20,00	10,267	0,080	315	50,36	4,00	311,36	12,44	39,17	1,83	2,40	Vérifie
	528	521	37,70	15,688	0,016	315	50,36	1,78	138,89	22,38	70,49	1,20	1,07	Vérifie
Collec-	Reg.Amont	Reg.Aval	Distance	Q	Pente	D	C	Vps	Qps	rH (%)	Hr	Vr	V aut-	,
teur				TOT(l/s)		(mm)		(m/s)	(l/s)	` ′	(mm)	(m/s)	cur(m/s)	,
COLL	530	531	36,40	5,234	0,124	315	50,36	4,97	387,06	8,16	25,71	1,73	2,98	Vérifie
57	531	268	30,45	18,377	0,131	315	50,36	5,12	398,98	14,56	45,87	2,60	3,07	Vérifie

Collec- teur	Reg.Amont	Reg.Aval	Distance	Q TOT(l/s)	Pente	D (mm)	C	Vps (m/s)	Qps (l/s)	rH (%)	Hr (mm)	Vr (m/s)	V aut- cur(m/s)	/
COLL	532	533	26,15	3,760	0,107	315	50,36	4,62	360,20	7,22	22,75	1,49	2,77	Vérifie
58	533	531	34,80	8,764	0,106	315	50,36	4,61	358,94	10,79	33,99	1,92	2,76	Vérifie
Collec- teur	Reg.Amont	Reg.Aval	Distance	Q TOT(l/s)	Pente	D (mm)	C	Vps (m/s)	Qps (l/s)	rH (%)	Hr (mm)	Vr (m/s)	V aut- cur(m/s)	1
	535	536	30,00	4,314	0,043	315	50,36	2,94	229,14	9,54	30,06	1,13	1,77	Vérifie
COLL	536	537	30,00	8,628	0,043	315	50,36	2,94	229,14	13,24	41,71	1,40	1,77	Vérifie
59	537	538	16,50	11,000	0,018	315	50,36	1,91	148,43	18,18	57,26	1,13	1,14	Vérifie
	538	273	31,80	15,573	0,107	315	50,36	4,62	359,95	14,14	44,54	2,30	2,77	Vérifie