الجمهورية الجزائرية الديمقراطية الشعبية وزارة التعليم العالى و البحث العلمي

NATIONAL HIGHER SCHOOL FOR HYDRAULICS

"The MujahidAbdellah ARBAOUI"

المدرسة الوطنية العليا للربي "المجامد عبد الله عرباوي"

+\$UO#311 X#I\$3\$ U*IN#A* X*OO#A

MEMOIRE DE FIN D'ETUDES

Pour l'obtention du diplôme d'Ingénieur d'Etat en Hydraulique

Option: CONCEPTION DES SYSTEMES D'ASSAINISSEMENT

THEME:

Etude du réseau d'assainissement de l'agglomération de Sidi Ben Adda (W.Temouchent).

Présenté par :

Berdane ikram

Devant les membres du jury

Nom et Prénoms	Grade	Qualité		
DJOUDAR/HALLAL Dahbia	M.C.A	Président		
TOUAHIR Sabah	M.A.A	Examinateur		
DERNOUNI Youcef	M.A.A	Examinateur		
DAHMANE Mouloud	M.C.B	Examinateur		
KAHLERRAS Djilali	M.C.A	Promoteur		

Session Juillet 2024

Remercîment

Avant d'approfondir sur cette expérience professionnelle, Avant de plonger dans le détail de cette expérience professionnelle, il me semble essentiel de débuter ce mémoire par des remerciements sincères envers ceux qui m'ont enseigné et soutenu tout au long de ce projet. Leur générosité et leur contribution ont rendu cette expérience particulièrement enrichissante.

Tout d'abord, je remercie Allah, le Tout-Puissant, pour m'avoir donné la santé, la force et la détermination nécessaires pour mener à bien ce travail.

Je tiens également à exprimer ma gratitude envers mes chers parents, pour leur soutien inébranlable et leur encouragement constant. Ils ont toujours cru en moi, m'apportant un soutien moral et financier qui m'a permis de donner le meilleur de moi-même. Mes Sœur et Mon frère et Mon fiancé , toujours présents à mes côtés, méritent aussi toute ma reconnaissance.

Je souhaite également exprimer ma profonde gratitude à mon directeur de mémoire, M. KAHLERRAS DJILALI. Son mentorat précieux, ses conseils éclairés et sa disponibilité constante ont été une source d'inspiration inestimable. Son soutien a joué un rôle crucial dans la réalisation de ce travail, et je le remercie sincèrement pour son engagement et sa contribution significative à la réussite de ce mémoire.

Je remercie également les membres du jury pour leur temps et leur attention. Leurs commentaires et suggestions ont été extrêmement précieux.

Enfin, un grand merci à tous mes amis et collègues pour leur soutien moral tout au long de ce projet. Leur présence a été essentielle à ma réussite.

Ce travail est le fruit de nombreuses années d'efforts et de sacrifices. Je suis fier de ce que j'ai accompli et je remercie tous ceux qui ont contribué à la réalisation de ce mémoire.

Dédicace

L'aboutissement de ce mémoire, représentant cinq longues et dures années de nuits d'études acharnées, d'éloignement et de dépaysement au sein des écoles, est un rêve devenu réalité. Cette réalisation, je la dois à des personnes chères à mon cœur, à tous ceux qui ont toujours cru en moi lorsque je faiblissais et qui m'ont soutenu dans les bons comme dans les mauvais moments.

Ce travail va au-delà d'un simple exercice académique; c'est une promesse d'avenir, un pas vers un monde meilleur, plus durable et plus intelligent. Il se présente comme la synthèse, le symbole d'une victoire collective.

À mes chère parents

A mon pére,

Avec tout mon amour et ma gratitude, je dédie ce travail à l'esprit de mon cher père, qui m'a quitté physiquement mais est resté dans mon cœur et mon âme. À celui qui a été pour moi un soutien et un appui précieux, à celui qui m'a enseigné la patience et la persévérance. Tu me manques énormément et j'aurais aimé que tu sois ici pour voir cette réalisation. Ce travail est le fruit de tes conseils et de tes précieuses orientations. Que Dieu te bénisse et t'accorde le paradis éternel.

Ma mère,

Tu es la pierre angulaire de ma vie.. Tu m'as toujours soutenu, même quand je ne le méritais pas. Tu m'as enseigné l'importance du travail acharné, de la résilience et de l'amour inconditionnel. Je me rappelle encore du jour où j'ai échoué à un examen. Tu m'as dit : "Ne t'inquiète pas, tu réussiras la prochaine fois. Tu es intelligent et tu travailles dur." Tes paroles m'ont donné la force de persévérer.

À mes chères sœurs, mon cher frère et mon fiancé,

À mes chères sœurs Naima et Karima, à mon cher frère Omar, et à mon fiancé Silarbi Abed El Rahmane: vous êtes mes piliers. Vous avez toujours été là pour moi, que ce soit dans les moments heureux ou difficiles. Vous me réconfortez et m'encouragez à donner le meilleur de moi-même. Vous n'avez jamais cessé de me conseiller, d'encourager et de soutenir tout au long de mes études. Que Dieu vous protège et vous comble de chance et de bonheur.

Mon promoteur M. KAHLERRAS.D Je vous suis reconnaissant pour votre aide et votre soutien tout au long de ce projet. Vous avez été un guide précieux et un encouragement constant

A mes amíes : Sírine et Dounía

À tous ceux et celles qui ont cru en moi et m'ont aidé, ne serait-ce que par un sourire sincère. Je vous suis reconnaissant du fond du cœur.

Mercí pour tout ce que vous avez fait pour moi. Les mots ne suffisent pas à exprimer ma gratitude. Avec grand amour

BERDANE IXRAM

تهدف هذه المذكرة بشكل رئيسي إلى تصميم شبكة الصرف الصحي و محطات الرفع لبلدية سيدي بن عدة في ولاية عين تيموشنت. في إطار إنشاء مدينة مثالية لبيئة نظيفة، اخترنا نظاما مشتركا التصريف مياه الأمطار ومياه الصرف الصحى نحو محطة المعالجة.

بعد جمع كل البيانات المطلوبة للمشروع، قمنا بتقدير كمية المياه التي يتم تفريغها وحساب الأبعاد ورسم مخطط شبكة الأنابيب وموقع محطات الرفع. كما أجرينا أيضاً تقييماً اقتصادياً للمشروع، وقمنا بتقدير التكلفة الإجمالية.

الكلمات المفتاحية: بلدية سيدي بن عدة - شبكة الصرف الصحي - محطات الرفع - نظام مشترك لتصريف مياه الامطار و مياه الصحف المعالجة .

Résumé

L'objectif principal de ce mémoire est de dimensionner un réseau d'assainissement et les stations de relevage de la commune de Sidi Ben Adda dans la wilaya d'Ain Temuochent.

Dans le cadre de la création d'une ville idéale pour un environnement propre, nous avons choisi un système unitaire pour drainer les eaux pluviales et les eaux usées vers la station d'épuration.

Après avoir collecté toutes les données nécessaires à la réalisation du projet, nous avons estimé la quantité d'eau à évacuer, calculé les dimensions et mis en place le plan du réseau de canalisations et l'implantation des station de relevage . En outre, nous avons réalisé une évaluation économique du projet en estimant le coût total.

Mots-clés : commune de Sidi Ben Adda - Réseau d'assainissement - Stations de relevage - système unitaire pour drainer les eaux pluviales et les eaux usées- station d'épuration .

Abstract

The main objective of this dissertation is to design a sewer network and lift stations for the commune of Sidi Ben Adda in the wilaya of Ain Temuochent.

With a view to creating an ideal town for a clean environment, we have chosen a combined sewer system to drain rainwater and wastewater to the treatment plant.

After collecting all the data required for the project, we estimated the quantity of water to be evacuated, calculated the dimensions and set up the layout of the pipe network and the lift stations. We also carried out an economic evaluation of the project, estimating the total cost.

Key words: Sidi Ben Adda commune - Sewerage network - Lifting stations - Unitary system for draining rainwater and wastewater - Wastewater treatment plant.

Introduction générale	(1)
CHAPITRE I : Présentation de la zone d'étude	
I.1. Introduction	(2)
I.2. Présentation de la commune	` '
I.2.1. Situation géographique	(2)
I.2.2. Situation topographique	
I.2.3. Situation géologique	
I.2.4. Situation sismicité	
I.2.5. Situation climatique	(3)
I.2.6. Situation hydraulique	(6)
I.2.6.1. Alimentation en eau potable	(6)
I.2.6.2. Assainissement	(7)
I.3. Conclusion	(7)
CHAPITRE II : Etude hydrologique	
II.1. Introduction	(8)
II.2. Les averses	` ′
II.3. la période de retour.	(9)
II.3.1.Choix de la période de retour	(9)
II.4. Détermination de l'intensité moyenne maximale de précipitation	(9)
II.5. Évaluation de l'intensité moyenne des précipitations	(9)
II.5.1. La série des données pluviométriques	(9)
II.6. Etude de précipitation maximale journalière	(11)
II.6.1. Les caractéristiques empiriques de la série	(12)
II.6.2. Ajustement de la série	(12)
II.7. Choix de la loi d'ajustement	(16)
II.7.1. Test graphique	(17)
II.7.2. Test d'adéquation de Khi-deux «χ2»	(17)
II.7.3. Sélection de la loi	(17)
II.8. Calcul des pluies et des intensités de courte durée	(18)
II.8.1. Intensités de courte durée :	(18)
II.8.2. Intensité moyenne maximale	(20)
II.9. Conclusion	(20)
CHAPITRE III : Calcul de base	
III.1. Introduction	(21)
III.2. Situation démographique	
III.3. Découpage de l'aire d'étude en surfaces élémentaires	
III.4. Système d'évacuation des eaux	(22)
III.4.1. Système unitaire	(22)
III.4.2. Système séparatif	(23)

III.4.3. Système pseudo-séparatif	(25)
III.4.5. Système mixte	(25)
III.4.6. Système autonome	(26)
III.5. Choix entre les systèmes d'assainissement	(26)
III.6. Schémas d'évacuation des eaux	(26)
III.6.1. Schéma Perpendiculaire	(26)
III.6.2. Schéma par déplacement latéral	(27)
III.6.3. Schéma à collecteur transversal ou oblique	(27)
III.6.4. Schéma à collecteur étagé	(27)
III.6.5. schéma type radial	(27)
III.7. Choix du schéma d'évacuation	(28)
III.8. Le coefficient de ruissellement Cr	(28)
III.8.1. Méthodes de détermination du coefficient de ruissellement	(28)
III.9. Calcule de la population pour chaque surface élémentaire	(30)
III.10. Conclusion.	(32)
CHAPITRE IV : Estimation des débits à évacuer	(2.2)
IV.1.Introduction	` '
IV.2. Origines et natures des eaux à évacuer	
IV.2.1. Les eaux usées	` ′
IV.2.2. Les eaux usées d'origine domestique	
IV.2.3. Les eaux usées des services publics	
IV.2.4. Les eaux usées industrielles	` ′
IV.2.5. Les eaux parasites	
IV.2.6. Les eaux pluviales	
IV.3. Estimation des débits des eaux usées	` '
IV.3.1. Evaluation des débits des eaux usées domestiques	
IV.3.1.1.Débit journalier	
IV.3.1.2.Débit de pointe	` /
IV.3.2. Evaluation des débits des eaux usées des établissements publics	
IV.3.2.1.Débit journalier	
IV.3.2.1.Débit de pointe	
IV.3.3. Evaluation des débits des eaux parasites	
IV.3.4. Débits totaux des eaux usées à évacue	` ′
IV.4. Évaluation des débits des eaux pluviales	
IV.4.1. Méthode rationnelle	, ,
IV.5. Calcule des débits pluviaux.	
IV.6. Calcul du débit total de chaque surface élémentaire	
IV.7. Conclusion	(44)

CHAPITRE V : Dimensionnement du réseau d'assainissement

V.1. Introduction	(45)
V.2. Le tracé du réseau d'évacuation	(45)
V.3. Dimensionnement du réseau d'assainissement	(45)
V.3.1. Conditions d'écoulement et de dimensionnement	(45)
V.3.2. Hypothèses de dimensionnement	(45)
V.4. Mode de calcul	(46)
V.4.1. Détermination du débit	(46)
V.4.2. Détermination du diamètre	(46)
V.4.3. Détermination de débit plein section	(47)
V.4.4. Déterminer les vitesses réelles	(47)
V.4.5. Déterminer la hauteur de remplissage	(47)
V.5. Résultats du dimensionnement	
V.6. Conclusion.	(63)
CHAPITRE VI : Les éléments constitutifs du réseau	
VI.1. Introduction	(64)
VI.2. Les ouvrages principaux	` '
VI.2.1. Les conduites	
VI.2.2. Type de canalisation	` /
VI.2.3. Les joints	
VI.2.4. choix de type des canalisations	(68)
VI.2.5. Différentes actions supportées par la conduite	(68)
VI.2.6. Protection de la conduite	
VI.2.7. Pose de canalisation	(69)
VI.2.8.Condition de pose	(69)
VI.2.9.Mode de pose	(69)
VI.3. Les ouvrages annexes .	(71)
VI.3.1. Les ouvrages normaux	(71)
VI.3.1.1. Les branchements	
VI.3.1.2. Les ouvrages des collectes et de transport	(71)
VI.3.1.3. Les ouvrages d'accès aux réseaux (les regards)	
VI.3.2. Les ouvrages spéciaux	
VI.4. Station de relevage	
VI.4.1.Définition d'un poste de relevage	
VI.4.2.Choix de la variante d'emplacement	
VI.4.3.Dimensionnement une station de relevage N°01	
VI.4.4. Dimensionnement une station de relevage N°02	
VI.5. Conclusion	

Chapitre VIII : Organisation de chantier

VII.1. Introduction	(87)
VII.2. Exécution des travaux	(87)
VII.3. Manutention et stockage des conduites	(87)
VII.3.1. Manutention	(87)
VII.3.2. Stockage	(87)
VII.3.3. Décapage de la terre végétale	(87)
VII.3.4. Exécution des tranchées et des fouilles des regards	(88)
VII.3.5. Aménagement du lit de sable	(88)
VII.3.6. Emplacement des piquets	(88)
VII.3.7.Pose de canalisation.	(88)
VII.3.8. Assemblage des canalisations	(88)
VII.3.9. Essai d'étanchéité	(88)
VII.3.10. Exécution des regards	(88)
VII.3.11. Réalisation des branchements	(88)
VII.3.12. Remblayage et compactage	(89)
VII.4. Choix des engins	(89)
VII.4.1. Pour le décapage de la terre végétale	(89)
VII.4.2. Pour l'excavation des tranchées	(89)
VII.4.3. Pour le remblaiement des tranchées	(90)
VII.4.4. Pour le compactage	(90)
VII.5. Détermination des différents volumes des travaux	(90)
VII.5.1. Volume du décapage de la couche végétale	(90)
VII.5.2. Volume du déblai des tranchées	(90)
VII.5.3. Volume occupé par le lit de sable	(90)
VII.5.4. Volume occupé par les conduites	(90)
VII.5.5.Volume d'enrobage	(90)
VII.5.6. Volume du remblai de protection	(91)
VII.5.7. Volume excédentaire	(91)
VII.6. Devis quantitatif et estimatif du projet	(91)
VII.7.Conclusion	(93)

Conclusion générale Références bibliographiques Annexe

Liste des tableaux

CHAPITRE I : Présentation de la zone d'étude

TableauI.1: température moyennes mensuelles de la station de Beni Saf (1913-2010)(4)
Tableau I.2 : Précipitations moyennes mensuelles (1974-2017)(5
Tableau I.3: L'humidité d'Ain Temouchent (1950-2005)(5)
Tableau I.4: La vitesses des vents moyennes mensuelles (1950-2005)(5)
Tableau I.5: L'évaporation moyennes mensuelles (1950-2005)(6)
CHAPITRE II : Etude hydrologique
Tableau II.1: Identification de la station pluviométrique de Hamame Bouhdjer(10)
Tableau II.2: La série pluviométrique (station de Hamame Bouhdjer) 1974-2017(10)
Tableau II.2: La série pluviométrique (station de Hamame Bouhdjer) 1974-2017.(suite)(11)
Tableau II.3: Les caractéristiques de la série pluviométriques (Hyfran)(12)
Tableau II.4: Résultat de l'ajustement à la loi de Gumbel (Hyfran)(14)
Tableau II.5: Résultat de l'ajustement à la loi de Galton (Hyfran)(15)
Tableau II.6: Résultat de l'ajustement à la loi de GEV (Hyfran)(16
Tableau II.7: test d'adéquation des trois loi d'ajustement(17
Tableau II.8: Pluies de courte durée de différentes périodes de retour et leurs intensités(18)
Tableau II.8: Pluies de courte durée de différentes périodes de retour et leurs intensité
(suite)(19)
CHAPITRE III : Calcul de base
Tableau III.1 : Estimation de la population(21)
Tableau III.2: Les avantages et les inconvénients d'un système unitaire(23)
Tableau III.3: Les avantages et les inconvénients d'un système séparatif(24)
Tableau III.4: Valeurs du coefficient de ruissellement en fonction du type d'occupation du
sol(28)
Tableau III.5: Valeurs du coefficient de ruissellement en fonction du type d'occupation du sol
(suite)(29)
Tableau III.6: Valeurs du coefficient de ruissellement en fonction de la catégorie
d'urbanisation(29)
Tableau III.7: Valeurs du coefficient de ruissellement en fonction de la densité de
population(29)
Tableau III.8: Valeurs du coefficient de ruissellement en fonction de la nature des
surfaces(30)
Tableau III.9: Calcul du coefficient de ruissellement et du nombre d'habitant de chaque sous
bassin(31)
Tableau III.10: Calcul du coefficient de ruissellement et du nombre d'habitant de chaque sous
bassin(Suite)(32)
CHAPITRE IV : Estimation des débits à évacuer
Tableau VI.1:Calcul des débits de pointe des eaux usées domestiques(35)

Tableau VI.1: Calcul des débits de pointe des eaux usées domestiques (suite)	(36)
Tableau VI.2: Débits des eaux usées des équipements publics pour chaque sous	
bassin(37)	
Tableau VI.3: Débits des eaux parasites pour chaque sous bassin	(38)
Tableau VI.4: Débits totaux des eaux usées à évacuer pour chaque sous bassin	(38)
Tableau VI.4: Débits totaux des eaux usées à évacuer pour chaque sous bassin (suite)	(39)
Tableau VI.5: Valeurs de coefficient réducteur d'intensité α	(41)
Tableau VI.6: Débits totaux des eaux pluviales à évacuer	(43)
Tableau VI.7: Débits total de chaque sous bassins à évacuer	(44)
CHAPITRE V : Dimensionnement du réseau d'assainissement	
Tableau V.1 : Calculs du réseau projeté (collecteur principale et secondaire)	(49)
CHAPITRE VI : Les éléments constitutifs du réseau	
Tableau VI.1: Les caractéristique de la pompe	(79)
Tableau VI.1: Les caractéristique de la pompe (suite)	(80)
Tableau VI.2: Caractéristiques techniques du moteur	(81)
Tableau VI.3: Fiche technique des deux station de relevage	(83)
Tableau VI.3: Fiche technique des deux station de relevage (suite)	(84)
Tableau VI.3: Fiche technique des deux station de relevage (suite)	(85)
Chapitre VIII : Organisation de chantier	
Tableau VIII.1. Coefficients de foisonnement pour différente nature de sol	
Tableau VIII.2. Résultats de calcul des volumes	
Tableau VIII.3. Devis quantitatif et estimatif	
Tableau VIII.4. Devis quantitatif et estimatif (suite)	(92)

Liste des figures

CHAPITRE I : Présentation de la zone d'étude

Figure I.1: Plan de situation de la ville de Sidi Ben Adda(2)	
CHAPITRE II : Etude hydrologique	
Figure II.1: Ajustement Graphique à la Loi Gumbel(14))
Figure II.2: Ajustement Graphique à la Loi Galton(15))
Figure II.3: Ajustement Graphique à la Loi GEV(16))
figure II.4: Courbe intensité- durée- fréquence(19))
CHAPITRE III : Calcul de base	
Figure III.1: Le système unitaire(22)
Figure III.2: Représentation schématique des branchement d'un réseau unitaire(23	3)
Figure III.3: Le système séparatif(24	ŀ)
Figure III.4: Représentation schématique des branchement d'un réseau séparatif(24)
Figure III.5: Le système pseudo-séparatif(25)
Figure III.6: Représentation schématique des branchement d'un réseau pseudo-séparatif(25	5)
Figure III.7: Schémas d'évacuation des eaux(27	")
CHAPITRE IV : Estimation des débits à évacuer Figure IV.1: Principe schématique de détermination du coefficient α(41))
CHAPITRE VI : Les éléments constitutifs du réseau	
Figure VI.1.: Canalisation en PVC(65)
Figure VI.2.: Canalisation en Béton armée(66	5)
figure VI.3. Joint sur tuyaux en béton armé(67)
Figure VI.4: Pose de canalisation dans un terrain ordinaire(69)
Figure VI.5. Schéma d'un branchement simple(71	.)
Figure VI.6. Bouches d'égout(72))
Figure VI-7 : Exemple d'un regard simple(72	.)
Figure VI.8. Schéma de principe de fonctionnement du déversoir d'orage(73))
Figure VI.9. Les courbes caractéristique de la pompe(80)
Figure VI.10. schéma de la pompe(80))

Liste des planches

Planche N°1: Plan de masse de la zone urbaine de Sidi Ben Adda.

Planche N°2: Plan de réseau projeté.

Planche $N^{\circ}3$: Profil en long du collecteur principal.

Planche $N^{\circ}4$: Elément constructif de réseau d'égouts .

Introduction Général

Introduction générale

Afin de protéger notre environnement, un projet d'assainissement est devenu une solution essentielle pour préserver l'hygiène de notre environnement et joue un rôle crucial dans la préservation de la santé des individus. De plus, le déversement d'eaux usées brutes dans un milieu récepteur, notamment un cours d'eau, peut engendrer des problèmes sanitaires graves pour les habitants, étant donné l'importance des rejets qui traversent la majeure partie de la ville.

L'objectif de l'assainissement urbain est de recueillir, traiter et évacuer les eaux usées et pluviales. Cela aide à éviter les maladies transmissibles par l'eau, les inondations et la pollution des nappes phréatiques. Ensuite, les eaux usées traitées sont évacuées vers l'environnement, en respectant les normes de santé publique et d'écosystème.

En prenons l'exemple de la ville de Sidi Ben Adda dans la wilaya d'Ain Temouchent présente une mauvaise gestion des eaux usées , elle a deux rejet qui sont directement évacuées dans le oued Senane , ce qui constitue un risque préoccupant pour la pollution des eaux stagnantes dans le bassin et donc la propagation de différentes maladies.

Après cette ultime urgence, nous avons effectué une étude de dimensionnement d'un réseau d'assainissement pour la ville de Sidi Ben Adda en utilisant un schéma approprié et un système optimal ,dans le but d'éliminer les deux rejet et collecter les eaux usées et pluviales et transporter vers la station d'épuration de la wilaya de Ain Temouchent, selon des critères technico-économiques tout en respectant la nature du terrain et les domaines privés des citoyens.

Chapitre I

Présentation de la ville de Sidi Ben Adda

I.1. Introduction

Avant tout projet d'assainissement, il est essentiel de mener une étude approfondie du site afin de comprendre toutes ses caractéristiques et les facteurs qui influent sur la conception du projet. Parmi ces facteurs, nous incluons les données relatives à l'agglomération, celles propres au réseau d'assainissement, ainsi que la connaissance de la topographie et de la géologie du site. Ces informations nous permettront de prendre les mesures nécessaires lors de la réalisation des travaux.

I.2. Présentation de la ville

I.2.1. Situation géographique

La commune de Sidi Ben Adda (anciennement les trois marabouts) située à environ 4Km de la ville d'Ain Temouchent, elle s'étend sur une superficie de 7288 ha.

Cette commune est localisé au Nord Ouest de Ain Temouchent est délimitée comme suit :

- Du côté NORD, par la commune d'Ouled Kihal.
- Du côté SUD, par la commune d'Ain Tolba et Ain Kihal.
- Du côté EST, par la commune d'Ain T'émouchent et Chaabat el Ham.
- Du côté OUEST, par la commune de Sidi Safi.

La commune de Sidi Ben Adda dispose d'une sortie d'environ 4Km sur la mer.

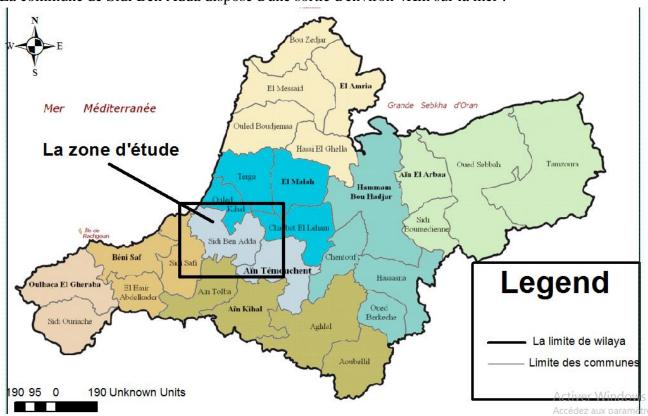


Figure I.1: Plan de situation de la ville de Sidi Ben Adda

(source : wikipedia.com)

I.2.2. Situation topographique

La réalisation d'une étude topographique est essentielle et revêt un rôle crucial dans la conception du réseau d'assainissement. En effet, étant donné que l'évacuation des eaux se fait généralement par gravité, à moins de situations spécifiques telles que les contre-pentes où le relief nécessite un relevage, la connaissance précise du terrain est indispensable pour une conception adéquate du système.

La topographie générale de la commune de Sidi Ben Adda est très accidentée, elle correspond à un grand plan incliné allant du Sud vers le Nord.

Dans la partie basse, on rencontre des pentes allant de 5% à plus de 10%. Les altitudes qui atteignent jusqu'à 117m dans les hauteurs descendent à 27m à la frontière avec la commune de Chaabat El Leham, alors qu'elles atteignent 50m dans le littoral. De plus l'agglomération de Sidi Ben Adda est traversée par l'oued Sennane.

I.2.3. Situation géologique

La structure géologique de la région est constituée par des formations volcaniques de type basaltique et de cendres volcaniques, qui doivent leur apparition aux éruptions du pliocène et quaternaire. Ces formations recouvrent toute la partie Sud-est et Sud d'Ain Temouchent. On distingue trois types de formations :

- Des formations Basaltiques avec des cendres volcaniques d'âge primaire
- Des formations Sédimentaires constituées de calcaires, d'argiles, et de marnes.
- Des formations Quaternaires constituées de tufs et d'alluvions recouvertes de formations Argilo-marneuses et Argilo-sablonneuses et de croutes calcaires.

I.2.4. Sismicité

La région de Ain Temouchent ne soit pas située sur une faille, le tremblement de terre de Mercredi 22 Décembre 1999 d'une magnitude de 5.8° sur l'échelle de Richter , a montré que cette région est sujette à une activité sismique.

D'autres événements similaires affecteront surement la commune.

L'état des connaissances actuelles dans le domaine des géosciences appliquées ne permet pas de prévoir avec certitude les périodes de retour ou la prédiction des événements. Aussi, et afin de garantir la protection des humains et des infrastructures des actions préventives doivent être entreprises.

I.2.4. Situation climatique

Climat

Dans la région d'étude, le climat est de type méditerranéen, marqué par :

- Une saison humide et pluvieuse s'étendant d'octobre à mai, avec des précipitations maximales en décembre et une distribution spatiale très irrégulière.
- Une période sèche et chaude (estivale) débutant à la fin de mai jusqu'à mi-octobre, avec une absence de précipitations en été.

Le régime climatique se caractérise par des vents qui n'apportent généralement que peu d'humidité (vents de direction Nord - Ouest, Sud -Est).

***** Température

La température moyenne enregistrée pour la période: 1980-2004 sont données dans le tableau 1

Tableau I.1 : température moyennes mensuelles de la station de Beni Saf (1913-2010)

Mois Mois	Jan	Fev				Jui	Juil	Aou	Sep	Oct	Nov	Déc
1950-2010	15	16	18	20	23	28	32	33	30	25	20	17

(Source : DRE Ain Temouchent)

Interprétation:

Nous constatons qu'il n'y a pas de changements significatifs de température au cours des deux premières périodes de référence (1950-2010); Il faut donc noter que durant cette période Les mois les plus froids sont décembre et janvier avec des températures de 15°C. Et la température augmente en juillet, juillet est de 32°C et août est de 33°C(voir TableauI.1).

Précipitations

La station sélectionnée pour la période de 1974-2017, est celle de d'Ain Temouchent qui par sa position semble être représentative dans la région des côtiers ouest.

Le tableau suivant (Tableau I-2) présente les précipitations mensuelles moyennes sur la période d'observation de 43 ans (1974-2017) :

Tableau I.2: Précipitations moyennes mensuelles (1974-2017)

Mois	Sep	Oct	Nov	Déc	Jan	Fév	Mars	Avr	Mai	Juin	Juil	Total
Pmoy (mm)	16,6	36,4	66,7	51,3	62,6	47,6	46,1	35,9	22,8	4,9	1,1	394,0

(Source : DRE Ain Temouchent)

Interprétation:

Les caractéristiques des précipitations dans cette zone sont irrégulières, avec des précipitations mensuelles relatives en hiver et un maximum absolu en février et mars.

Le minimum se situe en juillet avec des précipitations presque nulles, comme c'est le cas pour toute la partie ouest du pays.

La répartition mensuelle des précipitations montre un net contraste pluviométrique entre les deux sous-saisons humides (octobre à janvier) et (février à mai).

La répartition mensuelle des précipitations montre un net contraste pluviométrique entre deux sous saisons humides (octobre à janvier) et (février à mai), le mois ayant reçu le plus de pluie est celui de Novembre avec 66,7 mm. A l'opposé, le mois, le plus sec est celui de juillet avec une précipitation moyenne de 1,1 mm (voir Tableau I.2).

Humidité

Le moyen mensuelles de l'humidité pour la période (1950-2005) sont résumer dans le tableau I.3

Tableau I.3: L'humidité d'Ain Temouchent (1950-2005)

Mois	Sept	Oct	Nov	Déc	Jan	Fév	Mar	Avr	Mai	juin	juil	Aou	moy
Humidité	65.3	74	75.9	76.9	73.9	78.9	74.2	69.2	64.5	62.5	60.7	65.3	70.4
(mm)													

(Source: DRE Ain Temouchent)

Interprétation:

On remarque a partir de ce tableau que l'humidité est reste constante pendant les trois mois d'hiver (Novembre, Décembre, Janvier) ; atteint son maximum en Février de 78.9 mm et le minimum en juillet de 60.7 mm .le moyenne annuelle est de 70.4 mm (voir Tableau I.3) .

\Delta La vitesse des vents

La zone est soufflée par des vents dans toutes les directions et à des vitesses différentes ; Les vents dominants sont généralement du nord-ouest, ils sont particulièrement fréquents au printemps et en automne. La vitesse des vents est donnée par le tableau I.4 :

Tableau I.4: La vitesses des vents moyennes mensuelles (1950-2005)

Mois	Sept	Oct	Nov	Dec	Janv	Fev	Mars	Avril	Mai	Juin	Juil	Aout	Moy
V(m/s)	17,9	16,8	22,5	22,2	21,7	23,4	22,0	27,4	19,5	19,8	15,2	16,8	21,64

(Source: DRE Ain Temouchent)

Interprétation:

On remarque a partir de ce tableau que la vitesse des vents est reste constante pendant les mois (Novembre, Décembre, Janvier, Février, Mars); atteint son maximum en Avril de 27,4 m/s et le minimum en juillet de 15,2 m/s .le moyenne annuelle est de 21,64 m/s (voir Tableau I.4).

❖ L'évaporation

Les moyennes mensuelles d'évaporation pour la période 1950-2005 sont indiquées dans le tableau I.5 :

Tableau I.5: L'évaporation moyennes mensuelles (1950-2005)

Mois	Sept	Oct	Nov	Dec	Janv	Fev	Mars	Avril	Mai	Juin	Juil	Aout	Moy
Evap (mm)	127,8	86,9	58,4	43,8	47,3	58,4	87,3	110,6	129,1	152,5	169,4	153,8	1225,3

Interprétation:

D'après le tableau ci dessus en déduire que pendant les mois d'hiver l'évaporation attient son minimaux; au contraire les mois d'été précisément le mois de juillet avais une valeur maximale de tout la période de 169.4 mm; l'évaporation annuelle de cette série est de 1225,3.

I.2.5. Situation hydraulique

I.2.5.1. Alimentation en eau potable

La commune de Sidi Ben Adda soufrait d'un manque apparent en eau potable. Avant la réalisation de la station de dessalement , le centre de Sidi Ben Adda a été alimenté à partir d'un forage de Sidi Hadeau et à partir du cratère de Dzioua .

A partir de la mise en marche de la station de dessalement d'El Hillal un apport important est assuré à partir de la conduite 1600mm reliant Dzioua à Oran par un piquage en DN200mm en fonte .

Les ressources en eau

• Station de dessalement de CHATT EL HILLAL (UDEM)

Production totale actuelle de la commune de Sidi Ben Adda à partir de la station de dessalement : 2520 m3/j.

• Ressources souterraine

Forage de sidi Hadeau : débite produit = $604 \text{ m}^3/\text{j}$.

\$ Les ouvrages de stockage

Le stockage de l'eau potable de la commune de Sidi Ben Adda est assurée par 03 réservoirs avec une Capacité total de **3500m³** réparti sur les ouvrages suivants:

- 01réservoirs : 2 000 m³.
- 02 réservoirs : 1000 m³.
- 01chateau d'eau:500 m³ avec une station de pompage de capacité de production de 604m³/j.

Caractéristiques du réseau de distribution

- Le réseau d'eau potable de la commune est réalisé en P.E.H.D de 44 Km et en Font de 9.50Km avec de différents diamètres.
- Taux de fuite au niveau du réseau AEP de la ville d'Ain T'émouchent et l'ordre de 5% de volume de distribution global.

❖ La dotation

L'alimentation en eau potable de la région est assurée par une dotation de 150 litres par seconde par habitant, les eaux usées sont estimées à 80% du volume consommé.

(Source DRE)

I.2.5.2. Assainissement

Le centre de Sidi Ben Adda dispose d'un système d'assainissement unitaire qui couvre la totalité de l'agglomération. Le réseau de la ville est construit en béton et comprend des canalisations de différents diamètres, allant de Ø300 à Ø900.

Deux rejets sont présents, dans l'oued Sennane . Des déversoirs d'orage sont également installés pour évacuer les eaux de pluie directement dans l'oued en cas de crue, au niveau de chaque rejets. Seules les eaux usées sont dirigées vers une station de relevage afin d'être ensuite acheminées vers la station d'épuration d'Ain

Temouchent.

I.3. Conclusion

Dans ce chapitre, nous avons défini les données concernant le site du point de vue géographique, topographique, géologique, climatologique, ainsi que l'alimentation en eau potable et l'assainissement, nous procéderons à l'élaboration de l'étude qui consistera à projeter un réseau d'assainissement viable pour l'agglomération de Sidi Ben Adda .

II.1. Introduction

L'hydrologie est la science qui étudie l'eau sous ses aspects quantitatifs et qualitatifs durant les différentes phases de son cycle dans la nature.

L'hydrologie utilise des modèles mathématiques pour prédire les différents phénomènes hydrologiques dans le but de gérer les ressources hydriques d'une manière proactive et non réactive.

L'objectif de l'estimation des débits des eaux pluviales est de dimensionner de manière adéquate le réseau d'assainissement et les ouvrages annexe telles que les stations d'épuration, les déversoirs d'orage, les bassins de retenue, et les bassins piège, tout en assurant leur fonctionnement optimal dans le temps.

Les réseaux d'assainissement sont principalement conçus pour protéger les zones urbaines contre les inondations. Leur conception doit donc prendre en compte le risque de dépassement des capacités des ouvrages, étant donné que leur dimensionnement dépend directement de la pluviométrie, un phénomène fortement aléatoire. Par conséquent, bien que les ouvrages d'assainissement offrent une protection partielle, ils doivent être conçus en tenant compte d'un niveau de risque déterminé, souvent exprimé en termes de période de retour de dysfonctionnement.

Cette étude hydrologique vise à déterminer l'intensité de la pluie à considérer lors du dimensionnement du réseau. Dans ce contexte, il est nécessaire de définir certains paramètres, notamment :

II.2- Les averses

Une averse est une courte période de précipitations relativement intenses, caractérisée par une augmentation soudaine de l'intensité de la pluie. Les averses peuvent varier en intensité et en durée, mais elles sont généralement de courte durée, se produisant souvent de manière brusque et localisée. Elles peuvent être associées à des conditions météorologiques instables, telles que des nuages cumulonimbus, des fronts froids ou des orages. Les averses peuvent être accompagnées de vents forts et de changements rapides de température. Après une averse, le temps peut souvent redevenir ensoleillé ou partiellement nuageux.

II.2-1- Les averses caractérisent par

- ✓ Un volume important.
- ✓ Une forte intensité par unité de temps.
- ✓ Un épiderme orageux, un déplacement du foyer et une diffusion dans l'espace.

II.2-2- La mesure de ces averses est effectuée à l'aide des appareils suivants

Les pluviomètres, Les pluviographes (le pluviographe à siphon et le pluviographe à augets basculeurs) qui relèvent les hauteurs d'eau tombée en 24 h

II.3- La période de retour

La période de retour, également appelée période de récurrence, représente la moyenne à long terme du temps ou du nombre d'années entre deux occurrences successives d'un événement de même ampleur ou supérieure, tel qu'une pointe de crue.

II.3-1-Choix de la période de retour

La période de retour représente le temps que met une averse d'une intensité donnée pour se re-manifester.

Dans le domaine d'assainissement le choix de la période de retour se fait à partir des situations générales ou particulières, de degrés de protection ou de compromis dont l'évaluation appartient aux responsables locaux. Il est en effet préférable d'obtenir sur l'ensemble d'un réseau un degré de protection, par exemple T= 5 ans, plutôt que de réaliser des extensions de fréquence décennale, sachant que les collecteurs en aval seront insuffisants. En Algérie nous optons généralement pour une période de retour décennale (T=10 ans).

II.4- Détermination de l'intensité moyenne maximale de précipitation

En hydrologie urbaine, l'ingénieur hydrologue est souvent confronté à la nécessité d'obtenir des données spécifiques pour le projet en cours, bien que dans certaines circonstances, l'accès à de telles données soit limité. Par conséquent, il est impératif de recueillir autant d'informations de base que possible pour permettre une analyse statistique des événements pluvieux et l'identification de leurs paramètres.

L'intensité des précipitations est définie comme le débit d'eau traversant une section horizontale unitaire, exprimée généralement en mm/h. La définition de l'intensité de la pluie est généralement basée sur l'accumulation de hauteur de pluie sur une période donnée.

L'analyse de l'intensité moyenne maximale est très importante dans le dimensionnement des réseaux d'égout. Elle se définissent par rapport à la hauteur d'eau tombée pendant une durée t, soit :

$$i_m = \frac{\Delta h}{\Delta t}$$
....(II-1)

Avec:

im: intensité moyenne en mm/h.

 Δh : hauteur de pluie tombée pendant la durée Δt .

Pour le calcul de l'intensité, on doit :

- Analyser les données pluviométriques et faire le choix du type de loi à laquelle il faut ajuster nos résultats.
- Calculer les paramètres de la loi choisie et vérifier son adéquation.
- Calculer la valeur de l'intensité moyenne de précipitation.

II.5. Évaluation de l'intensité moyenne des précipitations

II.5.1. La série des données pluviométriques

L'analyse des pluies est basée sur les relevés pluviométriques effectués dans un certain nombre de stations sur une surface topographique considérée. Elle est basée sur l'hypothèse

que la pluie tombée à une station est représentative de celle tombée tout autour de cette station sur une étendue plus ou moins large selon la densité du réseau que l'on appelle zone d'influence du pluviomètre .

La station pluviométrique de **Hamame Bouhdjer** est prise comme station de référence, ses caractéristiques sont présentées dans le tableau suivant :

Tableau II.1 : Identification de la station pluviométrique deHamame Bouhdjer

Nom	Code	Les Coordonnées	Les années d'observation	Période d'observation
Station pluviométrique de Hamame Bouhdjer	40415	X =167.2 km Y =237.45km Z =153 m	46ans	1970 / 2017

Source: ANRH Alger (2020)

La station fournit une série pluviométrique comportant les pluies maximales mensuelles et annuelles. Cette série s'étend sur une période d'observation de 47 ans allant de 1970/1971 jusqu'à 2016/2017. Les données de la série sont présentées dans le tableau suivant (Tableau II-2) :

 $Tableau\ II.2: La\ s\'erie\ pluviom\'etrique\ (station\ de Hamame\ Bouhdjer\)\ 1974-2017$

						Précip	itation						3.6
Années	Sep.	Oct.	Nov.	Déc.	Jan.	Fév.	Mars	Avr.	Mai	Juin	Juil.	Août	Max
70-71	0	24,2	2,9	22,1	19,1	7,6	35,6	17	84,6	5,5	0	0	84,6
71-72	2,8	2,2	36,7	19,3	16,1	26,8	26,8	27,3	18,5	34,4	1,1	8,6	36,7
72-73	9,6	14,4	9,7	13,3	16,7	24,3	16,4	19,1	0,6	17,1	0	3,1	24,3
73-74	6,2	9,1	2,1	22,4	12,5	41,5	40,7	17,3	0	12,4	0	0	41,5
74-75	4,5	5,7	8,3	0	4,8	8,3	17	52,3	10,3	3,1	0	3,5	52,3
75-76	0	8,9	15,5	13,4	14,2	38,2	6,6	14,8	15,5	5,2	9,7	9,7	38,2
76-78	17,6	14,8	3,5	15,4	23,4	10,8	7,2	37,6	10,8	1,4	6,8	0	37,6
78-79	0	0	60,9	14,3	17,7	4,6	17,3	23,6	9,9	0	0	0	60,9
79-80	0	21,1	23,1	22,4	3,1	23,2	14,2	9,7	9,1	6,2	5,2	0	23,2
80-81	16,4	12,2	8,3	41,5	35,8	16,7	30,2	10,6	6,2	0	0	0	41,5
81-82	6,2	9,8	7,5	22,4	29,9	12,4	23,8	12,7	13,7	33,4	0	0	33,4
82-83	13,2	0	0	10,5	4,2	29,4	3,2	12,6	19,6	5,2	0	0	29,4
83-84	2,9	17	28,8	29,2	0	33,2	11,5	1,9	2,2	0	0	1,9	33,2
84-85	0	0	15,8	13,6	23,4	25,7	14,1	0	17,7	0	0	0	25,7
85-86	5,8	1,5	115,9	12	14,4	9,1	15,5	32,8	18,1	0	0	0	115,9
86-87	2,9	0,5	108	16,9	39,3	38,4	16,2	13,3	4,1	0	0	0	108
87-88	18	20,6	10,9	24	19,6	54,6	6,2	0	6,3	0	6,6	0	54,6
88-89	2,4	9,2	13,9	6,2	0	6,5	2,4	9,9	10,1	4,1	0	0	13,9

Tableau II.2 : La série pluviométrique (station de Hamame Bouhdjer) 1974-2017(suite)

89-90	8,3	4,8	27,1	0	20,8	7	43	23,3	1,3	0,7	0	0	43
90-91	7,7	0	4,2	7,8	40,5	0	17,8	45,8	12,6	0	0	0	45,8
91-92	4,1	9,9	15,6	18,2	25,9	12,4	23,8	0	1,9	0	0	0	25,9
92-93	9,3	10,8	22,5	5,1	10,7	13	25,4	6,4	48,2	22,4	0	0	48,2
93-94	0	6,1	23,2	11,5	3,3	20,9	32,3	17,3	22	4,6	0	0	32,3
94-95	7,8	71	30,7	5,6	32,7	37,5	3,3	13,2	6,7	0	0	0	71
95-96	0	5,5	12,9	9,7	14,3	39,8	33,5	7,9	0	0	0	0	39,8
96-97	5,2	0,6	3,7	35,1	20,6	21,5	10,7	8,7	2,6	0	0	0	35,1
97-98	12,1	2,7	7,6	21,3	24,6	0	0	13,7	3,9	0,8	0	0	24,6
98-99	24,6	7,5	35,4	13	13,3	10,4	6,1	5,6	13,5	0	0	1	35,4
99-00	0	0	26,8	9,7	21,8	28,3	34,6	0	0	0	0	0	34,6
00-01	7,4	14,9	37,4	23,4	0	0	2,6	8,6	4,7	0	0	0	37,4
01-02	21,5	38,3	18,1	16,6	74,9	16,6	0	12,1	1,6	0	0	0	74,9
02-03	9,2	23,3	63,7	7,9	1,1	0	11,4	20,4	38,7	0	0	15,2	63,7
03-04	0	14,5	24	1,1	11,6	23,5	9,9	7,5	9,9	0	2,1	0	24
04-05	2,9	7,9	16,6	10,3	30,4	3,5	10,8	4,9	17,6	0,5	0	2,5	30,4
05-06	0	14,7	34,7	21,3	7,2	8,3	15,2	3,7	0	1,1	0	0	34,7
06-07	3,4	0	24,7	3,7	13,7	24,9	3,4	4,8	5,1	0	0	0	24,9
07-08	4,6	0	1,1	18,6	5,9	11,8	43,2	16,6	6,5	0	0	0	43,2
08-09	9,2	21,5	17,5	2,1	17,1	6,7	9,7	0	19,2	0	0	0	21,5
09-10	27,5	18,7	25,9	21,8	19,7	18,3	19,8	5,1	5,6	0	1,1	0	27,5
10-11	2,1	0	11,9	11,8	32,1	9,5	24,2	0	12,5	5	0	8,8	32,1
11-12	0	23	8,1	11,3	34,6	9,7	9,1	47,1	8,6	7,6	0	0	47,1
12-13	6,1	13,7	37,8	16,8	16,9	15,3	5,4	23,8	0	0	0	0	37,8
13-14	15,4	28	30,6	31,9	36,9	24,6	27,8	13	2,4	0	0	0	36,9
14-15	17,2	26,9	22,9	37,4	34	28,8	19,6	13	3,2	0	0	0	37,4
15-16	18	10,8	12,2	20,8	26,2	38,2	39,9	5,6	17,2	15,4	0	0,7	39,9
16-17	14,1	12,3	26,1	18,1	11,9	43,6	32,4	4,7	37,6	0	0	0	43,6

Source: ANRH Alger (2020)

II.6. Etude de précipitation maximale journalière

L'étude des précipitations maximales journalières, incluant l'ajustement statistique, consiste en l'analyse et l'interprétation des données pluviométriques à l'aide de méthodes statistiques sophistiquées. Son objectif central est d'obtenir une détermination précise de l'intensité des précipitations extrêmes, les principales étapes de l'étude sont les suivants :

- Classer la série des précipitations par ordre croissant
- Choisir 1a formule de probabilité empirique
- Calculer des caractéristiques de la série

- Choix des lois d'ajustement
- ❖ Calculer le quantile et son intervalle de confiance.
- Ajuster graphiquement les lois choisies.

II.6.1. Les caractéristiques empiriques de la série

❖ La moyenne « Pmax, j » :

Avec N = 46, la moyenne interannuelle des précipitations maximales journalière :

$$\overline{\text{Pmax, j}} = \frac{\sum_{i=1}^{N} \text{Pmax, j}}{N} = 41.8 \text{ m}$$
 (II-1)

\L'\'ecart-type \(\sigma \text{Pmax,j} \(\sigma \):

Pour N = 46 supérieur à 30 ans, on a :

$$\sigma_{\text{Pmax, j}} = \sqrt{\frac{\sum_{i=1}^{N} (\text{Pmax,j} - \overline{\text{Pmax,j}})^2}{N}} = 20.7 \text{ mm} \dots (II.2)$$

Le coefficient de variation « Cv » :

$$Cv = \frac{\sigma \text{ Pmax,j}}{\overline{\text{Pmax,l}}} = 0,494$$
.....(II.3)

Tableau II.3 : Les caractéristiques de la série pluviométriques (Hyfran)

Nombres d'années d'observation	46
Valeur maximale (mm)	115
Valeur Minimale (mm)	13
Médiane (mm)	37
Moyenne (mm)	41,8
Ecart-type (mm)	20,7
Coefficient de variation (Cv)	0.494
Coefficient d'asymétrie (Cs)	1,96
Coefficient d'aplatissement (Ck)	6,51

II.6.2. Ajustement de la série

Plusieurs lois d'ajustement peuvent être appliquées pour représenter notre série donnée. Cependant, dans notre étude, nous allons ajuster notre série en utilisant trois lois différentes via le logiciel HYFRAN. Nous sélectionnerons ensuite celle qui correspond le mieux à nos besoins. Les lois d'ajustement considérées sont les suivantes :

- La loi de Galton (ou loi log-normale)
- La loi de Gumbel
- La loi de GEV

L'objectif de cette étude est de modéliser la série de données des précipitations maximales journalières à l'aide d'une loi théorique afin de déterminer l'intensité de la pluie et la période de retour associée.

A. Ajustement à la loi de Gumbel

❖ La fonction de répartition de la loi de Gumbel :

$$F(x) = e^{-e^{-y}}$$
(II.4)

Sachant que « y » est la variable réduite de la loi de Gumbel :

$$y = \frac{x - x_0}{\alpha} = -\ln[-\ln(F(x))]$$
 (II.5)

Avec:

x : variable étudiée (Pmax,j)

x₀ : paramètre de position (ordonnée à l'origine).

 α : paramètre de l'échelle ($\alpha > 0$) appelé aussi « gradex ».

\Delta L'expression de quantile est alors :

$$x = \alpha y + x_0....(II.6)$$

❖ Les paramètres de la loi de Gumbel, par la méthode du maximum de vraisemblance :

$$\alpha = 13,17$$
; $x_0 = 33,52$ mm

• La droite de GUMBEL devient :

$$Pmaxj_{(p\%)} = 34,14y + 98,15$$

* Résultat d'ajustement avec HYFRAN

Tableau II.4 : Résultat de l'ajustement à la loi de Gumbel (Hyfran)

Période de retour T(ans)	Fréquence au non dépassement (q)	Valeur théorique (XT)	Ecart-type	Intervalle de confiance (95%)
100.0	0.9900	94.1	7.95	78.5 - 110
50.0	0.9800	84.9	6.91	71.4 - 98.5
20.0	0.9500	72.6	5.55	61.8 - 83.5
10.0	0.9000	63.2	4.52	54.3 - 72.0
5.0	0.8000	53.3	3.51	46.4 - 60.2

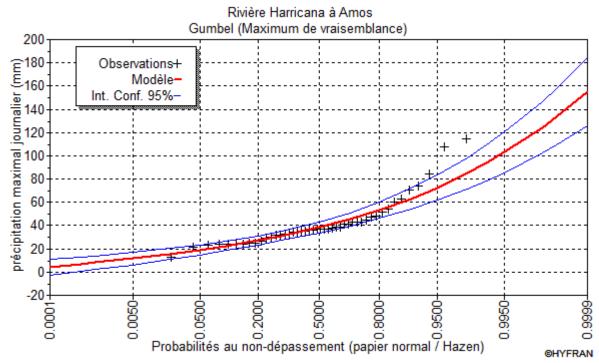


Figure II.1. Ajustement Graphique à la Loi Gumbel.

B. Ajustement à la loi de Galton (lognormale)

La formule de la fonction de répartition de la loi Log-normale :

$$F(x) = \sqrt{2\pi} \int_{\infty}^{u} e^{\frac{u^2}{2}} du$$
 (II.10)

Sachant que « u » est la variable centrée réduite de Gauss :

$$\mathbf{u} = \frac{\ln(x) - \overline{\ln(x)}}{\sigma_{\ln(x)}} \qquad(II.11)$$

Avec:

- x : variable étudiée (Pmax,j).

 $-\ln(x)$: la moyenne des logarithmes de la variable x

- $\sigma ln(x)$: l'écart-type des logarithmes de la variable x.

❖ L'expression de quantile est alors :

$$ln(x) = u \sigma_{ln(x)} + \overline{ln(x)}$$
 (II.12)

❖ Les paramètres de la loi par la méthode du maximum de vraisemblance :

$$\sigma_{\ln(x)} = 0.42$$
 ; et $\overline{\ln(x)} = 3.64$

* Résultat d'ajustement avec HYFRAN

Tableau II.5:	Résultat de	l'ajustemen	t à la loi d	e Galton	(Hyfran)

Période de retour T(ans)	Fréquence au non dépassement (q)	Valeur théorique (XT)	Ecart-type	Intervalle de confiance (95%)
100.0	0.9900	102	12.3	77.6 - 126
50.0	0.9800	90.6	10.0	71.0 - 110
20.0	0.9500	76.2	7.32	61.9 - 90.6
10.0	0.9000	65.4	5.51	54.6 - 76.2
5.0	0.8000	54.3	3.94	46.6 - 62.1

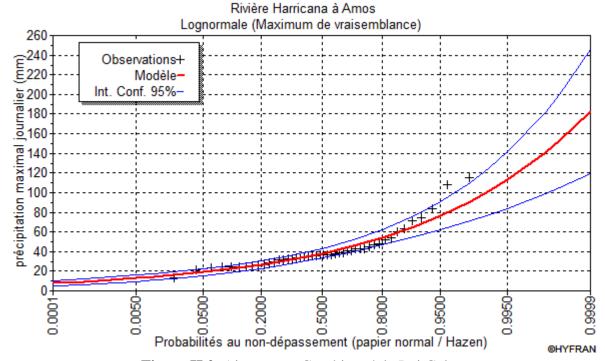


Figure II.2. Ajustement Graphique à la Loi Galton.

C. Ajustement de la loi de GEV

La fonction de répartition de la loi d'extrémum généralisée :

$$F(x) = e^{-e^{-y}}$$
....(II.13)

Sachant que « y » est la variable réduite :

$$y = -\frac{1}{K} \ln \left[1 - \frac{K}{\alpha} (x - u) \right]$$
(II.14)

Avec:

- x : variable étudiée (Pmax,j).
- u : paramètre de position
- α : paramètre de dispersion ($\alpha > 0$).
- k : paramètre de forme appelé indice des valeurs extrêmes.
- ❖ L'expression de quantile est alors :

$$x = u + \frac{\alpha}{\kappa} (1 - e^{-ky})$$
(II.15)

❖ Les paramètres de la loi par la méthode du maximum de vraisemblance :

$$\alpha = 12.6$$
; u= 32.62mm; k= -0.14

* Résultats de l'ajustement avec Hyfran :

	Tableau II.6:	Résultat de	l'ajustement à l	la loi de	GEV (H	(vfran
--	---------------	-------------	------------------	-----------	--------	--------

Période de retour T(ans)	Fréquence au non dépassement (q)	Valeur théorique (XT)	Ecart-type	Intervalle de confiance (95%)	
100.0	0.9900	113	24.5	64.9 - 161	
50.0	0.9800	97.0	17.0	63.7 - 130	
20.0	0.9500	78.1	9.88	58.7 - 97.4	
10.0	0.9000	65.1	6.34	52.7 - 77.6	
5.0	0.8000	53.1	4.06	45.1 - 61.0	

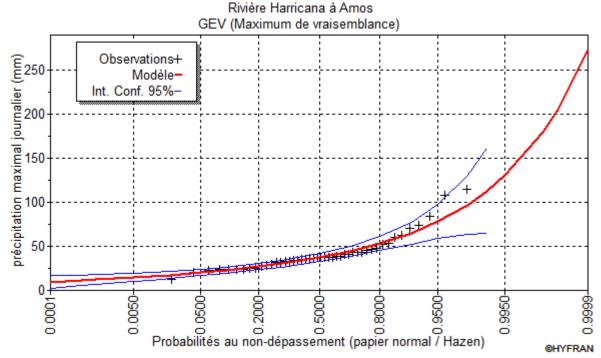


figure II.3. Ajustement Graphique à la Loi GEV.

II.7. Choix de la loi d'ajustement

Lorsqu'on effectue un ajustement d'une loi de probabilité théorique, il est crucial de déterminer si cette loi convient ou non. Les critères de sélection d'une loi sont généralement basés sur un ajustement graphique ainsi que sur un test de dispersion.

II.7.1. Test graphique

Ce test est basé sur une observation visuelle des graphes d'ajustement ; il consiste à examiner l'allure des points sur le papier de probabilité, et vérifier s'il s'agit d'un bon alignement sans existence de mauvaises courbures.

Interprétation des graphiques:

D'après l'examen visuel des graphiques d'ajustement présentés dans les figures II-1, II-2 et II-3, on remarque que :

Suite à l'inspection visuelle des graphiques d'ajustement, il est évident que la loi de Gumbel présente un ajustement moins satisfaisant par rapport aux lois GEV et Galton. En revanche, l'ajustement graphique avec ces dernières est nettement supérieur, avec les points étant très près de la droite théorique, ce qui indique une convergence satisfaisante.

II.7.2. Test d'adéquation de Khi-deux «χ2»

Appelé aussi test de Khi-carré ou de Pearson. Ce test consiste à prendre une règle de décision concernent l'ajustement en comparant entre les valeurs calculées et les valeurs théorique de χ 2.Il est donné pour un seuil de signification risque α =5% et dépend du nombre de degré de liberté de la loi.

D'après le logiciel « HYFRAN », les résultats du test sont donnés comme suit :

1 ableau	111./: test	d'adequation des t	rois ioi d'ajustement
tatique	γ^2	Degré de liberté	

Loi statique	χ^2	Degré de liberté	Conclusion			
Gumbel	7,22	6	Nous devons accepter H0 au niveau de signification de 5 %			
Galton	11,91	6	Nous devons accepter H0 au niveau de signification de 5 %			
GEV	9,17	5	Nous devons accepter H0 au niveau de signification de 5 %			

L'interprétation des résultats de test d'adéquation

D'après le tableau au-dessus, La validité du test est confirmée pour les trois lois. Ainsi, le test de Pearson indique que les lois sont adéquates. Étant donné que l'ajustement est confirmé pour les trois distributions et que les valeurs théoriques Xt sont très similaires, la distribution associée à la plus grande précipitation sera sélectionnée (Tableau II.8).

II.7.3. Sélection de la loi

Après avoir testé les lois GUMBEL, GALTON et GEV, il est constat é que la droite d'ajustement s'aligne de manière optimale avec les points expérimentaux dans le cas de la loi de GEV.

Étant donné que de multiples études en hydrologie ont démontré que la loi de GEV est la plus adaptée dans le nord de l'Algérie, donc nous avons choisie la loi de GEV.

II.8. Calcul des pluies et des intensités de courte durée

Dans le cadre de notre analyse, nous allons établir les valeurs des pluies de courte durée ainsi que leurs intensités. Cette détermination s'appuie sur les résultats obtenus après l'ajustement selon la loi GEV. Le calcul des précipitations de courte durée se fait en se basant sur les pluies maximales journalières, selon la relation suivante :

$$Pt_{p\%} = PMax_j (\frac{t}{24})^b$$
(II.16)

Pt,p% : pluie (mm) de courte durée correspondante à une fréquence de dépassement donnée

Page 17 **ENSH 2024**

(p%).

PMax,j : pluie maximale journalière (mm) correspondante à une fréquence de dépassement donnée (p%).

t : durée de l'averse (h)

b : exposant climatique selon l'ANRH Alger, b = 0.35 pour notre région d'étude la commune de Sidi Ben Adda (W. Ain Temouchent).

II.8.1. Intensités de courte durée :

Pour le calcul de l'intensité moyenne « $i_{t,p\%}$ » de précipitation « $P_{t,p\%}$ (mm) » de courte durée « t (h) » à une fréquence de dépassement donnée « p% », nous utilisons **la formule de Montanari** :

it,p% =
$$\frac{Pt,p\%}{t}$$
 (mm/h)(II.17)

→ Les calculs sont résumés dans le tableau et les graphes suivants :

Tableau II.8 : Pluies de courte durée de différentes périodes de retour et leurs intensités

T	5ans		10ans		20ans		50ans		100ans	
XT	53,1		65,1		78,1		97,1		113	
t (h)	Pt,p%	it	Pt,p%	it	Pt,p%	it	Pt,p%	it	Pt,p%	it
	(mm)	(mm/h)	(mm)	(mm/h)	(mm)	(mm/h)	(mm)	(mm/h)	(mm)	(mm/h)
0,1	7,8	77,99	9,56	95,61	11,47	114,7	14,26	142,61	16,6	165,96
0,2	9,94	49,7	12,19	60,93	14,62	73,1	18,18	90,88	21,15	105,76
0,25	10,75	42,99	13,18	52,7	15,81	63,23	19,65	78,61	22,87	91,48
0,5	13,7	27,4	16,79	33,59	20,15	40,29	25,05	50,1	29,15	58,3
0,75	15,79	21,05	19,35	25,81	23,22	30,96	28,87	38,49	33,6	44,79
1	17,46	17,46	21,4	21,4	25,68	25,68	31,93	31,93	37,15	37,15
2	22,25	11,13	27,28	13,64	32,73	16,36	40,69	20,35	47,35	23,68
3	25,65	8,55	31,44	10,48	37,72	12,57	46,9	15,63	54,58	18,19
4	28,36	7,09	34,77	8,69	41,72	10,43	51,86	12,97	60,36	15,09
5	30,67	6,13	37,6	7,52	45,1	9,02	56,08	11,22	65,26	13,05
6	32,69	5,45	40,07	6,68	48,08	8,01	59,77	9,96	69,56	11,59
7	34,5	4,93	42,3	6,04	50,74	7,25	63,09	9,01	73,42	10,49
8	36,15	4,52	44,32	5,54	53,17	6,65	66,1	8,26	76,93	9,62
9	37,67	4,19	46,18	5,13	55,41	6,16	68,89	7,65	80,17	8,91
10	39,09	3,91	47,92	4,79	57,49	5,75	71,47	7,15	83,18	8,32
11	40,41	3,67	49,54	4,5	59,44	5,4	73,9	6,72	86	7,82
12	41,66	3,47	51,08	4,26	61,28	5,11	76,18	6,35	88,66	7,39

Chapitre II Etude hydrologique

Tableau II.8: Pluies de courte durée de différentes périodes de retour et leurs	
intensités(suite).	

	intensites(fuite).								
13	42,85	3,3	52,53	4,04	63,02	4,85	78,35	6,03	91,18	7,01
14	43,97	3,14	53,91	3,85	64,67	4,62	80,41	5,74	93,57	6,68
15	45,05	3	55,23	3,68	66,25	4,42	82,37	5,49	95,86	6,39
16	46,07	2,88	56,49	3,53	67,77	4,24	84,25	5,27	98,05	6,13
17	47,06	2,77	57,7	3,39	69,22	4,07	86,06	5,06	100,15	5,89
18	48,01	2,67	58,86	3,27	70,62	3,92	87,8	4,88	102,18	5,68
19	48,93	2,58	59,99	3,16	71,97	3,79	89,48	4,71	104,13	5,48
20	49,82	2,49	61,08	3,05	73,27	3,66	91,1	4,55	106,01	5,3
21	50,68	2,41	62,13	2,96	74,53	3,55	92,67	4,41	107,84	5,14
22	51,51	2,34	63,15	2,87	75,76	3,44	94,19	4,28	109,61	4,98
23	52,31	2,27	64,14	2,79	76,95	3,35	95,66	4,16	111,33	4,84
24	53,1	2,21	65,1	2,71	78,1	3,25	97,1	4,05	113	4,71

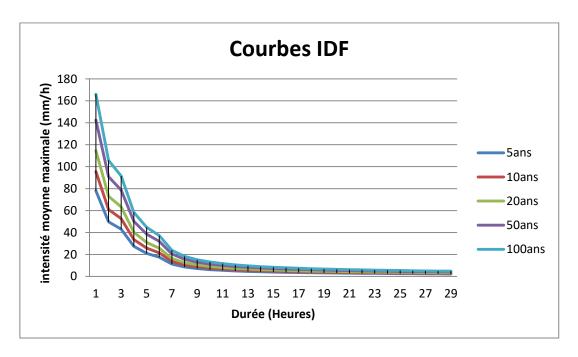


Figure II.4. Courbe intensité- durée- fréquence.

III. Intensité moyenne maximale :

Pour les projets d'assainissement, et concernant l'estimation des débits pluviaux, on s'intéresse généralement à l'intensité moyenne maximale correspondante à une courte durée $t=15\ min=0.25\ h$ et une période de retour T=10 ans, pour des raisons technico-économiques et de sécurité.

D'après les résultats précédents illustrés dans le tableau II-8, On a :

 $i_{15min,10\%} = 52.7 \text{ mm/h}$

Chapitre II Etude hydrologique

$$i_{15\text{min},10\%} = \frac{52,7 \times 10000}{3600} = 146,38 \text{ L/ (s/ha)}.$$

Avec :
$$\frac{10000}{3600}$$
 est le terme de conversion du (mm/h) en (L/(s/ha)).

Conclusion:

L'étude des précipitations maximales journalières nous a permis de déterminer l'intensité moyenne maximale ; cela en utilisant les résultats obtenus par l'ajustement de la série pluviométrique à la loi de GEV, et les calculs des pluies de courte durée.

$$i = 146 L/(s/ha)$$

III.1. Introduction

L'assainissement urbain est une technique qui implique l'évacuation par voie hydraulique, au prix le plus bas, le plus rapidement possible et sans stagnation, des eaux usées provenant d'une agglomération humaine ou généralement d'un centre d'activité, afin d'éviter toute pollution de l'environnement.

Dans cette situation, il est nécessaire de dimensionner un réseau d'assainissement, ce qui nécessite de passer par certaines étapes préliminaires, dont le calcul de base.

Dans cette étape, on évalue le nombre d'habitants pour un horizon de calcul spécifique, on sélectionne le système d'assainissement et on élabore le plan de collecte et d'évacuation des eaux.

III.2. Situation démographique

On peut estimer le nombre d'habitants pour des horizons futurs, en utilisant la loi des accroissements géométriques donnée par la relation suivante :

Pt =
$$P_0 (1+\tau)^n$$
(III. 1)

Avec:

- Pt: Nombre d'habitants à l'horizon futur.
- P0: Nombre d'habitants actuellement.
- τ : taux d'accroissement annuel de la population en (%), il est estimé à 1,3%. (d'après L'A.P.C de Sidi Ben Adda).
- n : écart d'années entre les deux horizons (2024-2054), n= 30ans

Tableau III.1: Estimation de la population

L'horizon d'étude	2024	2054	
Nombre d'habitants	17540 Hab	25841 Hab	

III.3. Découpage de l'aire d'étude en sous bassins élémentaires

En général, le bassin versant est un secteur géographique qui est limité par les lignes de crête ou par les lignes de partage des eaux.

Toutes les eaux qui ruissellent en surface sont recueillies par une seule ligne d'écoulement. Donc, le découpage du site en sous bassins élémentaires doit être fait selon :

- > La nature des sols.
- La densité des habitations.
- Les courbes de niveaux
- Les routes et voiries existantes.
- Les pentes et les contre pentes.
- Les limites naturelles (oueds, talwegs....).

Pour notre projet le découpage de la zone à étudier se fait suivant la nature du sol et la densité des habitants .

III.4. Système d'évacuation des eaux usées et des eaux pluviales

La conception d'un réseau pour une agglomération doit prendre en compte deux préoccupations principales :

- Garantir une évacuation efficace des eaux pluviales afin d'éviter la submersion des zones urbanisées et prévenir toute stagnation après les précipitations ;
- Assurer l'évacuation des eaux usées domestiques, des eaux vannes, ainsi que, le cas échéant, des eaux résiduaires industrielles. On peut envisager un ou plusieurs réseaux de canalisations où l'effluent s'écoule généralement par gravité.

Trois systèmes d'évacuation susceptibles d'être mis en service sont :

- > Système unitaire.
- > Système séparatif.
- > Système pseudo séparatif.

III.4.1. Système unitaire

Dans ce système, les eaux d'égout ménagères, industrielles et les eaux de pluie sont évacuées en commun dans une même conduite.

Il est essentiel d'avoir des infrastructures et des stations d'épuration de grande envergure pour absorber les pointes de ruissellement.

Ce système est captivant en raison de sa simplicité, car il n'est nécessaire qu'une seule canalisation dans chaque voie publique et un seul branchement pour chaque bâtiment. Si la population est assez dense et que le terrain présente des dénivellations suffisamment importantes pour permettre une évacuation gravitaire, il est conseillé d'utiliser le système unitaire.

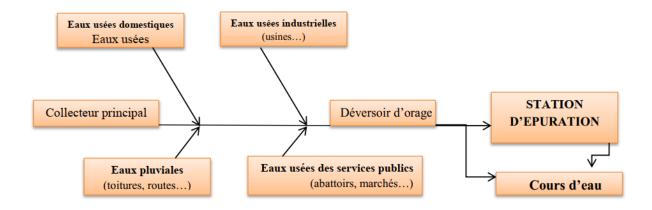
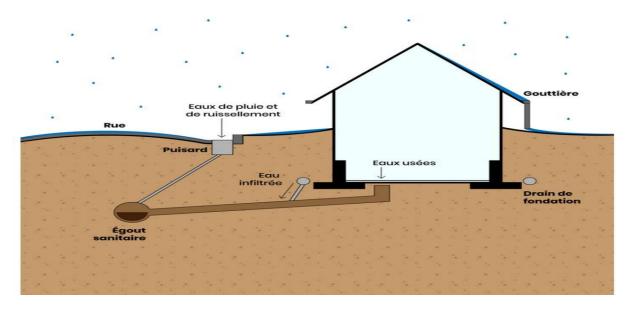



Figure III.1: Le système unitaire

Figure III.2 : Représentation schématique des branchement d'un réseau unitaire source : www.avizo.ca(2022)

Tableau III.2: Les avantages et les inconvénients d'un système unitaire Les avantages Les inconvénients

- Plus simple à gérer, car il n'y a qu'un seul réseau pour les eaux usées et pluviales.
- Le coût de ce système est faible.
- pas de problèmes des faux branchements.
- les systèmes unitaires permettent une utilisation plus efficiente de l'espace urbaine limité.
- Risque de surcharge dans les stations d'épuration
- La pollution des eaux naturelles peut être causée par le mélange des eaux usées et pluviales.
- un transport d'une charge polluante importante lors des premières pluies après une période sèche.
- Il est essentiel de surveiller régulièrement les systèmes unitaires afin de réduire les risques de débordements.

III.4.2. Système séparatif

Selon ce système, les eaux usées domestiques et industrielles sont évacuées dans une seule conduite, tandis que les eaux pluviales sont évacuées dans une autre.

Les tracés de ces deux canalisations sont souvent différents, à l'exception de certains tronçons.

* Réseau pluviale

L'objectif de ce réseau sera d'évacuer les points de ruissellement.

Il suit les lignes avec des pentes plus importantes afin de déverser les eaux dans le cours d'eau le plus près. Il est possible qu'il en découle une diminution des sections des canalisations.

* Réseau des eaux usées

Ce réseau d'évacuation est destiné à transporter les eaux usées jusqu'à la station d'épuration située à l'extérieur de la ville.

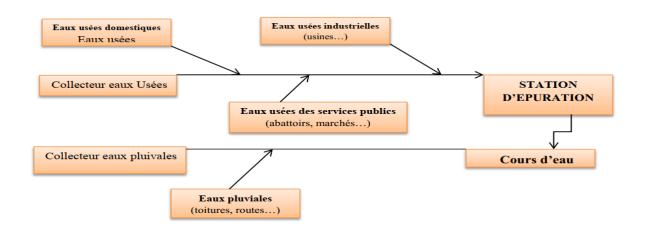
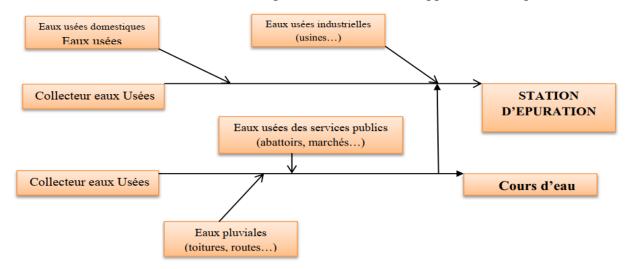
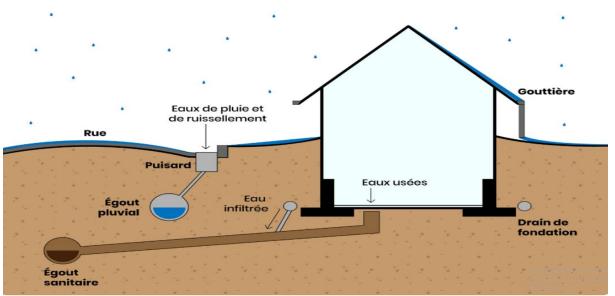


Figure III.3: Le système séparatif.

Figure III.4: Représentation schématique des branchement d'un réseau séparatif source : www.avizo.ca(2022)


Tableau III.3: Les avantages et les inconvénients d'un système séparatif						
Les avantages	les inconvénients					
 Rédaction du diamètre moyen du réseau d'assainissement. 	 Coût de construction plus élevé. 					
 Moins de risque de surcharge. 	 nécessite plus d'espace et plus de maintenance . 					
 Meilleure préservation de l'environnement des flux polluants 	 Risque important d'erreur de branchement. 					
domestique .	 Encombrement important du sous-sol. 					
 La composition des eaux usées étant sensiblement constante, la station peut fonctionner de façon sûre et efficace. 						

III.4.3. Système pseudo-séparatif


Ce système fonctionne à partir d'un réseau commun de collecte des eaux usées avec une partie des eaux pluviales, provenant habituellement des toitures et des espaces privés.

Dans un autre réseau, l'autre partie des eaux pluviales est drainée par les caniveaux et les ouvrages pluviaux.

Il ressemble assez au système séparatif, mais présente au moins un inconvénient : le risque de mauvaise fonctionnement de la station d'épuration en raison de l'apport des eaux pluviales.

Figure III.5 : Le système pseudo-séparatif .

Figure III.6: Représentation schématique des branchement d'un réseau pseudo-séparatif source : www.avizo.ca(2022)

III.4.5. Système mixte

Dans certaines agglomérations on peut rencontrer un système mixte. Dans ce type de système, une zone peut être assainie en partie par le système unitaire, et l'autre partie par le système séparatif.

Il est couramment appliqué dans les villes disposant d'un ancien réseau de type unitaire et

dont l'extension ne pourrait être supportée, par le réseau ancien, qu'en assurant le stockage d'une partie des eaux d'extensions.

III.4.6. Système autonome

Un système autonome c'est un système individuel non raccordé à un réseau public désigne un dispositif individuel de traitement des eaux usées, adapté aux zones à faible densité de population où l'établissement de réseaux publics est peu rentable.

Chaque domicile dispose de son propre système, tel qu'une fosse septique avec un dispositif de traitement comme un filtre à sable ou une micro station d'épuration.

Ces systèmes fonctionnent indépendamment, traitant les eaux usées sur place sans nécessiter de raccordement à un réseau public. Ils offrent aux habitants des zones rurales un accès à un assainissement efficace tout en réduisant les coûts associés à la mise en place et à l'entretien de grands réseaux d'assainissement .

III .5.Le choix du système d'assainissement

- Les paramètres affectant le choix d'un système d'évacuation sont : de La topographie du terrain naturel.
- De l'économie, prenant en compte les dépenses d'investissement et d'entretien d'exploitation et de gestion de l'ensemble des installations.
- De la comparaison des variantes (système séparatif, unitaire).
- De l'urbanisation de l'agglomération et son encombrement.
- Des ouvrages existants, encore utiles pour le projet.
- Environnementales, du cours d'eau récepteur.
- S'il s'agit d'une extension du réseau, il faut tenir compte du système existant.

Remarque:

Pour notre agglomération, on va adopter le système unitaire, pour les raisons suivantes :

- Il est moins encombrant par rapport aux autres systèmes.
- les routes et les cartiers sont étroits.
- plus économique qu'un système séparatif.
- Ne présente pas des faux branchements.
- Conception simple.

III.6. Schéma d'évacuations

Les réseaux d'assainissement fonctionnent essentiellement en écoulements gravitaires. Ils sont donc fortement tributaires du relief si l'on ne veut pas aboutir à des tranchées trop profondes.

En fonction du système d'assainissement et de la topographie, nous distinguons divers schémas :

Les différents schémas d'assainissement

III.6.1. Schéma perpendiculaires

l'écoulement se fait directement dans le cours d'eau ce type de schéma ne permet pas la concertation des eaux vers un point unique d'épuration et rend celle-ci difficile.

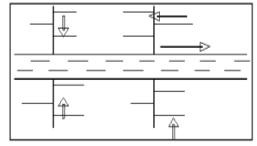
Il n'est guère utilisable que pour les réseaux d'eaux pluviales dans le système séparatif , avec un rejet dans un cours d'eau s'il n'y a pas de traitement prévu. Suivant la disposition des collecteurs on distingue :

- Le schéma perpendiculaire étagé.
- Le schéma perpendiculaire simple.

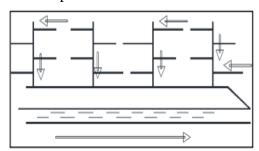
III .6.2. Schéma par déplacement latérale

Dans le cas ou une épuration est nécessaire , on a tout intérêt a transporter les eaux vers une station d'épuration unique , ceci peut être obtenu par un tracé oblique ou par un collecteur latérale .

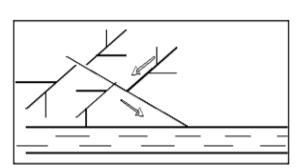
III .6.3. Schéma transversale ou oblique

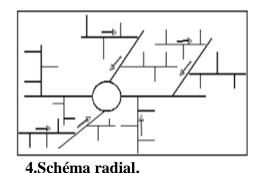

Ce type de schéma est adopté lorsque la pente du terrain est faible. Ce schéma comporte des ramifications de collecteurs qui permettent de rapporter l'effluent à l'aval de l'agglomération.

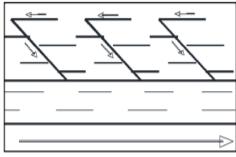
III.6.4. Schéma par zone étagées


C'est un réseau de collecteurs a déplacement latéral avec des collecteurs secondaires longitudinaux pour ne pas charger certains collecteurs.

III .6.5. Schéma radial


Il est utilisé pour les terrains plat pour collecter tous les effluents en un point , par la suite un relevage est nécessaires pour le transit vers le cours d'eau récepteur .


1. Schéma perpendiculaire.



2. Schéma par déplacement latéral.

3. Schéma transversale ou oblique.

5. Schéma par zone étagées.

Cr

Figure III.7: Schémas d'évacuation des eaux.

III.7. Le choix du schéma d'évacuation

On adopte le **schéma par déplacement latérale** en tenant compte de la structure des voiries et du levé topographie de la ville de Sidi Ben Adda .

III.8. Le coefficient de ruissellement

III.8. 1.Méthodes de détermination du coefficient de ruissellement

Le coefficient de ruissellement représente le rapport entre le volume ruisselé sur une surface par rapport au volume tombe sur cette surface, C'est un paramètre proportionnel au débit pluvial à évacuer .

Ce coefficient peut avoir un impact sur le débit des eaux pluviales. C'est pour cette raison qu'il est primordial, lors de la découpages des surfaces élémentaires, de les rendre aussi homogènes que possible. Il est essentiel de maintenir cette homogénéité afin de minimiser les erreurs lors de l'évaluation du coefficient de ruissellement.

La valeur du coefficient de ruissellement varie de 0,05 à 1, elle dépend de plusieurs facteurs :

- La nature de sol.
- l'inclinaison du terrain.
- Le mode d'occupation de sol.
- La densité de population.
- L'humidité de la surface.
- La durée de la pluie.

Type d'occupation du sol

• Le degré de saturation de sol.

L'estimation du coefficient de ruissellement est réalisée de manière empirique, de manière approximative en raison de la diversité des surfaces, et c'en prenant en compte divers facteurs:

> En fonction du type d'occupation du sol

Tableau III.4: Valeurs du coefficient de ruissellement en fonction du type d'occupation du sol.

Commercial		0,70 - 0,95
Résidentiel	Lotissement	0,3 - 0,5
	Collectifs	0,5 - 0,75

Tableau III.4: Valeurs du coefficient de ruissellement en fonction du type d'occupation du sol (suite).

	0,5 - 0,8 0,05 - 0,25
	0,05 - 0,25
	0,1 - 0,3
	0,05 - 0,15
rainées	0,05 - 0,13
on drainées	0,03 - 0,07

Source: Satin et al.(2006)

> En fonction de la catégorie d'urbanisation

Tableau III.5: Valeurs du coefficient de ruissellement en fonction de la catégorie d'urbanisation.

Catégorie d'urbanisation	Cr
Habitations très denses	0.90
Habitations denses	0.60 - 0.70
Habitations moins denses	0.40 - 0.50
Quartiers résidentiels	0.20 - 0.30
Square garde prairie	0.05 - 0.20

Source: Water Environment Federation (1970)

 \mathbf{Cr}

> En fonction de la densité de population

Densité de la population (habitant/ha)

Tableau III.6: Valeurs du coefficient de ruissellement en fonction de la densité de population.

20	0.20
30 –80	0.20 - 0.25
60 –150	0.25 - 0.30
150 –200	0.30 - 0.45
200 –300	0.45 - 0.60
300 –400	0.60 - 0.80
>400	0.80 - 0.90
	Course: Weter Environment Federation (1070)

Source: Water Environment Federation(1970)

> En fonction de la nature de la surface

Tableau III.7: Valeurs du coefficient de ruissellement en fonction de la nature des surfaces.

Nature de la surface	Cr
Toits en métal, tuile, ardoise	0.9
Chaussée avec peu de joints	0.85 - 0.9
Pavés en pierres naturelles, brique avec	0.75 - 0.85
joints cimentés	
Pavage en blocages	0.40 - 0.50
Surfaces goudronnées	0.25 - 0.60
Chemin en gravier	0.25 - 0.30
Gare, terrain de sport	0.10 - 0.30
Parcs, jardins, gazons	0.05 - 0.25
Forêts	0.01 - 0.20

Source: Polycopie Pr. SALAH BOUALEM

III.9. Calcule de la population pour chaque surface élémentaire

On suit les étapes suivantes afin de pouvoir estimer le nombre exact d'habitant :

- On estime le coefficient de ruissellement.
- On calcule le coefficient de ruissellement pondéré total .
- On calcule la densité partielle de chaque sous bassin.
- On déduit le nombre d'habitant de chaque sous bassin.

✓ Calcul du coefficient de ruissellement pondéré total

Dans le cas où la surface de l'agglomération est formée de plusieurs surfaces élémentaires « Ai », Auxquelles on affecte le coefficient de ruissellement « Cri »,par la suite le coefficient de ruissellement pondéré par :

$$\mathbf{Crp} = \frac{\sum \mathbf{Ai*Cri}}{A} \dots (\mathbf{III.2})$$

Avec:

Ai : surface élémentaire (ha)

A : surface totale en (ha), A=87,1ha Cri : coefficient de ruissellement partiel

Crp: coefficient de ruissellement total pondéré

$$Crp = 0.74$$

✓ Calcul de la densité partielle

La densité partielle de chaque sous bassin est exprimée par la relation :

$$\mathbf{Di} = \frac{\mathbf{Cri} \times \mathbf{p}}{\mathbf{Crp} \times \mathbf{A}}$$
 (III. 3)

Avec:

Di : Densité partielle de la surface élémentaire considérée en (hab/ha).

Crp: Coefficient de ruissellement pondéré total.

Cri : Coefficient de ruissellement de chaque surface élémentaire.

P: Population globale à l'horizon de calcul(2053). P = 25841 Hab

✓ Calcul du nombre d'habitants de chaque surface élémentaire

Le nombre d'habitation de chaque surface élémentaire est donné par l'expression :

Avec:

Pi : Population partielle de la surface élémentaire considéré.

Di : Densité partielle du sous bassin en (Hab/ha)

les résultats de calcul du nombre d'habitants des sous bassins, sont reportés dans le tableau III.9:

Tableau III.8: Calcul du coefficient de ruissellement et du nombre d'habitant de chaque sous bassin.

Sous Bassins	Surface (Ha)	Coefficient de ruissellement	Ai×Cri	Densités partielle	Nombre d'habitats
1	2,6	0,8	2,08	320,92	834
2	2,11	0,81	1,71	324,93	686
3	1,9	0,47	0,89	188,54	358
4	3,69	0,7	2,58	280,80	1035
5	3,27	0,6	1,96	240,69	787
6	4,36	0,63	2,75	252,72	1102
7	2,63	0,83	2,18	332,95	876
8	1,4	0,82	1,15	328,94	461
9	2	0,75	1,50	300,86	602
10	2,64	0,84	2,22	336,96	890
11	3,25	0,8	2,60	320,92	1042
12	1,88	0,75	1,41	300,86	566
13	2,28	0,45	1,03	180,52	412
14	3,1	0,8	2,48	320,92	995
15	2,58	0,78	2,01	312,90	807
16	2,57	0,74	1,90	296,85	763
17	4,15	0,8	3,32	320,92	1331
18	2,31	0,7	1,62	280,80	649
19	2,29	0,84	1,92	336,96	772
20	1,12	0,82	0,92	328,94	368
21	3,57	0,7	2,50	280,80	1002
22	3,24	0,8	2,59	320,92	1040
23	2,1	0,77	1,62	308,88	649
24	2,67	0,65	1,74	260,75	696
25	3,3	0,82	2,71	328,94	1086
26	3,4	0,86	2,92	344,99	1173
27	1,95	0,75	1,46	300,86	587
28	1,5	0,77	1,16	308,88	463
29	0,87	0,82	0,71	328,94	286
30	1,15	0,85	0,98	340,98	392
31	1,14	0,5	0,57	200,57	229
32	1,73	0,52	0,90	208,60	361

Tableau III.8: Calcul du coefficient de ruissellement et du nombre d'habitant de chaque sous bassin(suite).

33	4,2	0,72	3,02	288,83	1213
34	4,15	0,8	3,32	320,92	1332

III.10.Conclusion

Dans ce chapitre, nous avons divisé la surface urbaine en 34 surfaces élémentaires réduites afin de réduire les erreurs lors de l'estimation du coefficient de ruissellement. Il en découle que les valeurs de ce coefficient de ruissellement varient entre 0,45 et 0, 86. De plus, le système utilisé pour notre agglomération est de type latérale en unitaire.

IV.1. Introduction

Le réseau d'assainissement est appelé à assurer la collecte et l'évacuation des eaux de ruissellement et des eaux usées d'origine diverse.

Avant d'entamer la phase de dimensionnement des collecteurs, il est impératif de passer par la phase de l'évaluation des débits d'eaux usées et pluviales qui seront acheminées loin de l'agglomération afin d'éviter toute contamination par des maladies à transmission hydrique.

L'établissement des réseaux d'assainissement d'une agglomération doit répondre à deux objectifs principaux :

- ❖ l'évacuation correcte des eaux pluviales permettant :
 - d'empêcher la submersion des zones urbanisées.
 - d'éviter la stagnation de ces eaux particulièrement dans les points bas de l'agglomération.
- ❖ la collecte et l'évacuation des eaux usées de toutes natures (eaux vannes, eaux ménagères, eaux industrielles) en assurant leur transport, le plus rapidement possible, jusqu'au lieu de leur traitement (la station d'épuration).

IV.2. Origine et nature des eaux à évacuer

On distingue les eaux d'origines suivantes :

IV.2.1. Les eaux usées

Les eaux résiduaires urbaines (ERU), également appelées eaux usées, sont des flux liquides chargés de polluants, solubles ou non, majoritairement issus des activités humaines.

La composition des substances polluantes présentes dans l'effluent varie en fonction de la source de ces eaux usées.

On peut distinguer principalement :

- Les eaux usées provenant des ménages.
- Les eaux usées issues d'activités industrielles.
- Les eaux parasites.
- Les eaux des services publics.

IV.2.1. Les eaux usées domestiques

Eaux ménagères: Ce sont les eaux de cuisine, de vaisselle, de lavage, de bains et de douches ; elles sont évacuées par les éviers des lavabos et des baignoires .

Eaux vannes : Ce sont les eaux provenant des sanitaires. La quantité des eaux à évacuer dépend de la consommation en eau potable .

IV.2.3. Les eaux usées des services publiques

Les eaux de lavage des espaces publics (cours, rue...) sont évacuées vers le réseau par l'intermédiaire de puisard menu d'une grille. Les eaux usées des services publics : éducatifs, sanitaires, touristiques, administratifs et différents autres services d'utilité publique seront pris en compte avec les besoins domestiques

IV.2.4. Les eaux usées industrielles :

Comme son nom l'indique, ces eaux proviennent du rejet des industries, elles comprennent toutes les eaux susceptibles d'être rejetées par les industries, c'est-à dire, les eaux de fabrication, et les eaux de refroidissement.

Elles sont le plus souvent polluées par des produits chimiques. Bien qu'un traitement particulier soit requis avant tout rejet.

Cette quantité peut être évaluée selon deux principes :

Industrie de production on s'intéresse aux produits ; c'est-à-dire l'estimation du nombre de produits et la quantité d'eau nécessaire jusqu'au produit fini

Industrie de transformation on s'intéresse au nombre de travailleurs employés par l'industrie, et une estimation de la quantité d'eau utilisée par chacun.

Remarque:

Notre agglomération ne comporte pas d'industries. Les eaux usées provenant de l'agglomération sont d'origine domestique et publique.

• IV.2.5. Les eaux parasites

Les eaux claires parasites désignent, le plus souvent, l'ensemble des eaux provenant de drainage, des infiltrations après une chute de pluie ou de la remontée de la nappe.

Ces eaux pénètrent dans les collecteurs, généralement à travers :

- Mauvaise pose de canalisation ;
- Mauvais raccordement entre les conduites concernant les joints ;
- Fissuration du collecteur qui est due au tassement créer par les véhicules circulants.
- Les racines des arbres cherchant l'humidité (phénomène d'hydrotropisme) ces dernières soulèvent les collecteurs en le fissurant au niveau des lèvres pour absorber ;
 - Absence de bouche d'égout sélectives près des stations de lavage.
- La remontée de la nappe donne des variations de cotes de la génératrices inferieures du collecteur ce qui induit au déboitement niveau des emboitements=>intrusion des eaux parasites. Le débit de ces eaux est difficilement déterminé; seule la modélisation qui peut donner une approche d'estimation.

En pratique ce débit est estimé à environ entre 0,05 et 0,151/s/ha.

La présence de ces eaux perturbe le fonctionnement de la station d'épuration.

IV.2.6. Les eaux pluviales

Les eaux pluviales se réfèrent aux précipitations atmosphériques qui tombent sur les surfaces imperméables telles que les toits, les routes, les trottoirs et les parkings, puis s'écoulent vers les systèmes de drainage. Dans le contexte de l'assainissement, la gestion des eaux pluviales vise à contrôler leur collecte, leur stockage, leur traitement et leur élimination afin de minimiser les risques d'inondation, de pollution et de dégradation environnementale .

IV.3. Estimation des débits des eaux usées

L'évaluation de la quantité d'eaux usées à évacuer journellement s'effectuer a à partir de la consommation d'eau potable par habitant.

L'évacuation quantitative des rejets est fonction du type de l'agglomération ainsi que le mode d'occupation du sol. Plus l'agglomération est urbanisée, plus la proportion d'eau rejetée est élevée.

IV.3.1. Evaluation des débits des eaux usées domestiques

L'eau utilisée par le consommateur n'est pas rejetée en totalité dans le réseau, nous considérons que les 80% de l'eau consommée sont rejetées comme eaux usées dans le réseau d'évacuation

IV.3.1.1. Débit moyen journalier

Pour calculer le débit des eaux usées à évacuer, on prend comme base la dotation de la consommation d'eau potable.

Le débit moyen journalier rejeté est donné par la relation suivante :

$$Q_{\text{dom moy,j}} = \frac{Kr \times D \times Nhab}{86400} \dots (IV.1)$$

Avec:

- Qdom moy, j : débit moyen journalier des eaux usées domestiques en (L/s)
- Nhab: nombre d'habitants à l'horizon d'étude (habitant).
- Kr : coefficient de rejet pris égal à 80% de la quantité d'eau potable consommée.
- D: dotation journalière estimée à 150 L/hab/j.

Source: DRE (W. Ain temouchent)

- Le terme 1/86400 est pour la conversion de (L/j) en (L/s).

IV.3.1.2. Débit de pointe

Le régime du rejet est conditionné par le train de vie des citadins, ce qui nous donne des heures ou on a un pic et des heures creuses où le débit est presque nul (la nuit).

Il est donné par la formule qui suit

Qdom
$$p = Kp \times Qdom moy,j.....(IV.2)$$

Avec:

- Qdom p : débit de pointe des eaux usées domestiques (L/s).
- Qdom moy, j : débit moyen journalier rejeté (L/s).
- Kp : coefficient de pointe ; calculé à partir du débit moyen de rejet :

$$Kp = 1.5 + 5 \frac{2;5}{\sqrt{Q moy \ dom,j}}$$
 $si: Qdom \ moy,j \ge 2.81 \ L/s$(IV.3)

$$Kp = 3$$
 si: Qdom moy, j < 2.81 L/s

→ Les débits de pointes des eaux usées domestiques à évacuer dans chaque sous bassins sont illustrés dans le tableau suivant :

Tableau IV.1: Calcul des débits de pointe des eaux usées domestiques.

Sous Bassins	Nombre d'habitats	Kr	Dotation (L/j/Hab)	Qmoy dom	Kp	Qpnt (L/s)
1	834	0,8	150	1,16	3	3,48
2	686	0,8	150	0,95	3	2,86
3	358	0,8	150	0,50	3	1,49

Tableau IV.1: Calcul des débits de pointe des eaux usées domestiques (suite).

4	1035	0,8	150	1,44	3	4,31
5	787	0,8	150	1,09	3	3,28
6	1102	0,8	150	1,53	3	4,59
7	876	0,8	150	1,22	3	3,65
8	461	0,8	150	0,64	3	1,92
9	602	0,8	150	0,84	3	2,51
10	890	0,8	150	1,24	3	3,71
11	1042	0,8	150	1,45	3	4,34
12	566	0,8	150	0,79	3	2,36
13	412	0,8	150	0,57	3	1,72
14	995	0,8	150	1,38	3	4,15
15	807	0,8	150	1,12	3	3,36
16	763	0,8	150	1,06	3	3,18
17	1331	0,8	150	1,85	3	5,55
18	649	0,8	150	0,90	3	2,70
19	772	0,8	150	1,07	3	3,22
20	368	0,8	150	0,51	3	1,53
21	1002	0,8	150	1,39	3	4,18
22	1040	0,8	150	1,44	3	4,33
23	649	0,8	150	0,90	3	2,70
23	696	0,8	150	0,97	3	2,90
25	1086	0,8	150	1,51	3	4,53
26	1173	0,8	150	1,63	3	4,89
27	587	0,8	150	0,82	3	2,45
28	463	0,8	150	0,64	3	1,93
29	286	0,8	150	0,40	3	1,19
30	392	0,8	150	0,54	3	1,63
31	229	0,8	150	0,32	3	0,95
32	361	0,8	150	0,50	3	1,50
33	1213	0,8	150	1,68	3	5,05
34	1332	0,8	150	1,85	3	5,55

IV.3.2. Evaluation des débits des eaux usées des établissements publics

L'évaluation de ces débits se fait de la même manière que les eaux domestiques, en se basant sur la consommation d'eau potable pour chaque type d'usager.

IV.3.2. 1. Débit moyen journalier :

Le débit moyen journalier des eaux usées des services publics est donné par la relation suivante :

$$Q_{moy,j \, \acute{e}q} = \frac{Kr \, D\acute{e}q \, Nu}{86400} \dots (IV.4)$$

Avec:

- Qmoy,j éq: débit moyen journalier des eaux usées publiques en (L/s)
- Nu : nombre des usagers (des unités) concernés par chaque service.
- Kr : coefficient de rejet pris égal à 80% de la quantité d'eau potable consommée.

- $D\acute{e}q$: dotation de la consommation journalière d'eau potable (L/j/unité) ; une donnée qui diffère d'un type d'usager à un autre.
- Le terme 1/86400 est pour la conversion de (L/j) en (L/s).

IV.3.2.2. Débit de pointe :

On est appelé à déterminer le débit de pointe des eaux usées des équipements publics. Il est donné par la formule suivante :

$$Q_{\acute{e}q\ p} = Kp \times Q_{\acute{e}q\ moy,j}.....(IV.5)$$

Avec:

- Qéq p : débit de pointe des eaux usées publiques (L/s).
- Qmoy, jéq : débit moyen journalier rejeté (L/s).
- Kp : coefficient de pointe ; calculé à partir du débit moyen de rejet :

$$\begin{aligned} Kp &= 1.5 + \frac{2.5}{\sqrt{Q \operatorname{moy}} \, \operatorname{\acute{e}q} \, , j} & si : Q \operatorname{\acute{e}q} \, \operatorname{moy}, j \geq 2.81 \, \, L/s \\ Kp &= 3 & si : Q \operatorname{\acute{e}q} \, \operatorname{moy}, j < 2.81 \, \, L/s \end{aligned}$$

→ Les débits de pointes des eaux usées des équipements publics à évacuer sont illustrés dans le tableau suivant :

Tableau IV.2.: Débits des eaux usées des équipements publics pour chaque sous bassin

Nº du	Équipement	Unité de	Nbre	Dotation	Qmoy éq	Qmoyéq	Kp	Qpteéq
sous		mesure	d'unité	(L/j/unité)	(l/jr)	(l/s)		(l/s)
bassin								
04	CEM	Elève	700	10	7000	0,08	3	0,24
10	Ecole	Elève	780	10	7800	0,09	3	0,27
13	STAD	Visière	40	30	1200	0,01	3	0,04
18	APC	Fonctionnaire	40	15	600	0,01	3	0,02
	Ecole	Elève	800	10	8000	0,09	3	0,28
19	Mosquée	Fidèle	500	15	7500	0,09	3	0,26
26	CEM	Elève	710	10	7100	0,08	3	0,25
31	Ecole	Elève	815	10	8150	0,09	3	0,28
	STAD	Visière	40	30	1200	0,01	3	0,04
33	Mosquée	Fidèle	450	15	6750	0,08	3	0,23

IV.3.3. Evaluation des débits des eaux parasites

Ce débit est compris entre 0,05 et 0,15 L/s/ha.

On prend q = 0.15 l/s/ha

→ Les débits des eaux parasites dans chaque sous bassins sont illustrés dans le tableau suivant :

Tableau V.3: Débits des eaux parasites pour chaque sous bassin

Sous Bassins	surface Ai	q(L/s/ha)	Qparasite (L/s)		
1	2,6	0,15	0,39		
2	2,11	0,15	0,32		
3	1,9	0,15	0,29		
4	3,69	0,15	0,55		
5	3,27	0,15	0,49		
6	4,36	0,15	0,65		
7	2,63	0,15	0,39		
8	1,4	0,15	0,21		
9	2	0,15	0,30		
10	2,64	0,15	0,40		
11	3,25	0,15	0,49		
12	1,88	0,15	0,28		
13	2,28	0,15	0,34		
14	3,1	0,15	0,47		
15	2,58	0,15	0,39		
16	2,57	0,15	0,39		
17	4,15	0,15	0,62		
18	2,31	0,15	0,35		
19	2,29	0,15	0,34		
20	1,12	0,15	0,17		
21	3,57	0,15	0,54		
22	3,24	0,15	0,49		
23	2,1	0,15	0,32		
24	2,67	0,15	0,40		
25	3,3	0,15	0,50		
26	3,4	0,15	0,51		
27	1,95	0,15	0,29		
28	1,5	0,15	0,23		
29	0,87	0,15	0,13		
30	1,15	0,15	0,17		
31	1,14	0,15	0,17		
32	1,73	0,15	0,26		
33	4,2	0,15	0,63		
34	4,15	0,15	0,62		

IV.3.4. Débits totaux des eaux usées à évacuer

Les débits totaux des eaux usées sont illustrés dans le tableau suivant :

Tableau V.4: Débits totaux des eaux usées à évacuer pour chaque sous bassin

Sous Bassins	Qp dom	Qp éq	Qparasites	Qusée Total (l/s)	QTotal (m³/s)
1	3,48	-	0,39	3,87	0,0039
2	2,86	-	0,32	3,18	0,0032

Tableau V.5: Débits totaux des eaux usées à évacuer pour chaque sous bassin(suite)

3	1,49	-	0,29	1,78	0,0018
4	4,31	0,24	0,55	5,1	0,0051
5	3,28	-	0,49	3,77	0,0038
6	4,59	-	0,65	5,24	0,0052
7	3,65	-	0,39	4,04	0,0040
8	1,92	-	0,21	2,13	0,0021
9	2,51	-	0,30	2,81	0,0028
10	3,71	0,27	0,40	4,38	0,0044
11	4,34	-	0,49	4,83	0,0048
12	2,36	-	0,28	2,64	0,0026
13	1,72	0,04	0,34	2,1	0,0021
14	4,15	-	0,47	4,62	0,0046
15	3,36	-	0,39	3,75	0,0038
16	3,18	-	0,39	3,57	0,0036
17	5,55	-	0,62	6,17	0,0062
18	2,70	0,3	0,35	3,05	0,0031
19	3,22	0,26	0,34	3,86	0,0039
20	1,53	-	0,17	1,96	0,0020
21	4,18	-	0,54	4,72	0,0047
22	4,33	-	0,49	4,82	0,0048
23	2,70	-	0,32	3,02	0,0030
23	2,90	-	0,40	3,3	0,0033
25	4,53	-	0,50	5,03	0,0050
26	4,89	0,25	0,51	5,65	0,0057
27	2,45	-	0,29	2,74	0,0027
28	1,93	-	0,23	2,16	0,0022
29	1,19	-	0,13	1,32	0,0013
30	1,63	-	0,17	1,8	0,0018
31	0,95	0,32	0,17	1,44	0,0014
32	1,50	-	0,26	1,76	0,0018
33	5,05	0,23	0,63	5,91	0,0059
34	5,55	-	0,62	6,17	0,0062

IV.4. Évaluation des débits des eaux pluviales

La première étape de toute étude d'un système d'assainissement consiste à déterminer les débits des eaux pluviales à évacuer, comprenant à la fois les eaux de pluie et les eaux de drainage. Ce problème d'évacuation des débits pluviaux dans les bassins versants a été étudié de manière approfondie, et deux méthodes principales ont émergé :

- la méthode rationnelle.
- la méthode superficielle.

IV.4.1. La méthode rationnelle

Pour notre agglomération Nous avons choisi la méthode rationnelle pour l'évaluation des débits pluviaux, en tenant compte de la faible superficie des surfaces élémentaires et d'une estimation précise du coefficient de ruissellement.

Cette méthode a fait ses preuves surtout pour les bassins urbains à faible surface. Elle exige un découpage de bassin-versant en secteurs limités par les lignes isochrones quand la surface est importante.

Elle consiste à estimer les débits pluviaux suite à une averse d'intensité moyenne « i » supposée constante durant la chute de pluie sur des surfaces d'influence de superficie « A » caractérisée par un coefficient de ruissellement «Cr».

Cependant, on tient compte que l'intensité n'est pas uniforme (ça veut dire que l'averse a un épicentre et se diffuse dans l'espace). Pour cela, il convient d'appliquer un coefficient « α » de répartition de la pluie.

La méthode rationnelle s'exprime par la formule suivante :

$$Q = \alpha \times Cr \times i \times A$$
.....(IV.7)

Avec:

- Q : débit d'eau de ruissellement (L/s).
- A : surface d'apport (ha).
- Cr : coefficient de ruissellement.
- i : intensité moyenne de précipitation (L/s/ha).
- α : coefficient réducteur (correcteur) de l'intensité tenant compte de la distribution de la pluie dans l'espace.

1. Validité de la méthode rationnelle

- ❖ Cette méthode est efficace pour des surfaces relativement limitées (généralement inférieures à 10 ha). Le résultat est meilleur pour des aires encore plus faibles,
- **4** du fait de la bonne estimation du coefficient de ruissellement.
- elle est applicable pour des surfaces où le temps de concentration ne dépasse pas 30 min.
- elle n'est pas susceptible d'être utilisée pour les zones étendues, car les calculs deviendraient fastidieux.

2. Hypothèses de la méthode rationnelle

La méthode rationnelle est fondée sur trois (04) hypothèses de base :

- ❖ Elle suppose des surfaces élémentaires de forme remarquables ayant de préférence la même nature de surface .
- ❖ Le débit de pointe « Qp » est proportionnel à l'intensité moyenne maximale « i » sur une durée égale au temps de concentration « tc » du bassin-versant.
- Le débit de pointe « Qp » est observé à l'exutoire seulement si la durée de l'averse est supérieure au temps de concentration « tc » du bassin-versant.
- ❖ Le débit de pointe « Qp » a la même période de retour que l'intensité « i » qui le provoque, ceci suppose que le coefficient de ruissellement « Cr » du bassin-versant est constant.

3. Coefficient réducteur de l'intensité

Dans la réalité, la répartition des précipitations dans un bassin est souvent inégale, particulièrement lors de pluies brèves et intenses. Pour tenir compte de cette diversité, il est crucial d'intégrer un facteur correctif spécifique pour chaque zone du bassin. Ce paramètre, désigné aussi sous le nom de coefficient de réduction d'intensité et noté α , satisfait à l'inégalité $\alpha \le 1$.

• En fonction de la forme du bassin(des relations empiriques)

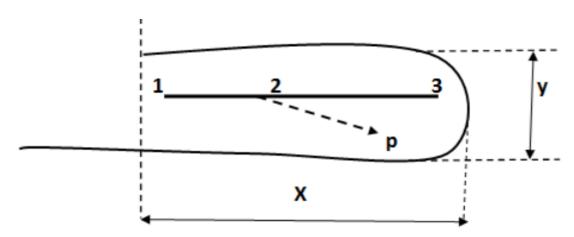
Ce coefficient peut être déterminé d'après une loi de répartition de pluie :

❖ Pour des bassins longs(rectangle étroits,...);ce coefficient sera égal à:

$$\alpha = 1 - 0.006 \times \sqrt{d/2}$$

❖ Pour des bassins ramassés (carrés, cercles, ...):

$$\alpha = 1 - 0.005 \times \sqrt{d/2}$$


Avec:

-d : longueur du milieu de l'aire élémentaire (m).

• En fonction de la nature des pluies

En réalité la répartition d'une pluie au niveau d'un bassin est irrégulière surtout pour les pluies courtes de forte intensité, ceci en fonction de la nature des nuages, vents ...pour en tenir compte on affecte l'intensité d'un coefficient réducteur $\alpha < 1$ déterminé expérimentalement : Supposant un bassin versant assimilé à un rectangle de longueur « \mathbf{x} » et de largeur moyenne « \mathbf{y} » drainé par un collecteur $\mathbf{1} - \mathbf{2} - \mathbf{3}$. (Figure IV.1).

Le point « \mathbf{p} » du bassin se trouve en amont du collecteur $\mathbf{1} - \mathbf{2}$ intéressé par le calcul. $\mathbf{P} - \mathbf{2}$, est la distance du point « $\mathbf{2}$ » situé à l'amont du tronçon étudié au point « \mathbf{p} » du bassin considéré. (**Tableau V.5.**).

Figure IV.1: Principe schématique de détermination du coefficient α.

Tableau V.6: Valeurs de coefficient réducteur d'intensité a

1 40	icau v.o. vai	icurs de coeffici	chi reducteur d	illiciistic u			
L m	200	400	600	800	1000	1200	1400
Y <x 2<="" th=""><th>0.91</th><th>0.88</th><th>0.85</th><th>0.83</th><th>0.81</th><th>0.79</th><th>0.77</th></x>	0.91	0.88	0.85	0.83	0.81	0.79	0.77
Y>X/2	0.9	0.86	0.83	0.8	0.87	0.76	0.75
L m	1600	1800	2000	2200	2400	2600	2800
Y <x 2<="" th=""><th>0.76</th><th>0.75</th><th>0.73</th><th>0.72</th><th>0.7</th><th>0.69</th><th>0.68</th></x>	0.76	0.75	0.73	0.72	0.7	0.69	0.68
Y>X/2	0.72	0.7	0.69	0.67	0.66	0.64	0.63

Remarque:

Dans notre cas , Vu que les surfaces des sous bassins sont petites, les valeurs du coefficient « α » s'approchent de l'unité s'implique que la répartition des précipitations dans les sous bassin est régulière , par conséquent il sera pris égal à 1 .

4. Temps de concentration

C'est une caractéristique du bassin ; définie comme étant le temps mis par la pluie tombée au point le plus éloigné , en durée d'écoulement, pour atteindre l'entrée du collecteur qui doit évacuer l'apport de la surface considérée.

Le temps de concentration « tc » se compose de :

> t1 (min): temps mis par l'eau pour s'écouler dans les canalisations.

$$t_1 = \frac{L}{60V}$$

Avec:

- L : longueur de canalisation (m).
- v : vitesse d'écoulement (m/s).
- Le terme 1/60 pour la conversion de secondes (s) en minutes (min).
- \succ t2 : temps mis par l'eau pour atteindre le premier ouvrage d'engouffrement . En général , il varie de 2 à 20 min.
- > t3 (min): temps de ruissellement superficiel dans un bassin ne comportant pas de canalisations.

$$t3 = \frac{Ls}{11 \times \sqrt{I}}$$

Avec:

- Ls : parcours superficiel de l'eau dans le bassin (km).
- I : pente movenne du parcours (%).

Donc, trois (03) cas peuvent être envisagés :

- Le bassin ne comporte pas de canalisation : tc = t3.
- Le bassin comporte un parcours superficiel puis une canalisation : tc = t1 + t3.
- Le bassin est urbanisé et comporte une canalisation : tc = t1 + t2.

Dans le cas général, pour les zones peu allongées, le temps de concentration « t_c (min) » est donné par la relation suivante :

$$tc = 3.98 \times [\frac{L}{\sqrt{I}}]^{0.77}$$

Avec:

- L : cheminement hydraulique le plus long (km).
- I : pente moyenne du chemin parcouru (%).

5. Critique de la méthode rationnelle

- La décomposition du bassin en aires élémentaires est grossièrement approchée.
- ❖ Suppose généralement le coefficient de ruissellement « C_r » est constant sur tout le sous bassin et pendant toute la durée de l'averse.
- ❖ La méthode ne tient pas compte du stockage de l'eau de ruissellement sur le bassin; en négligeant le rôle des surfaces non revêtues (trous, crevasse, ...).

IV. 5. Calcul des débits pluviaux

Pour le calcule des débits pluviaux nous avons utilisée la méthode rationnelle et on prend les valeurs du coefficient « α » égal à 1 .

Les résultats de calcul des débits pluviaux pour chaque surface élémentaire sont reportés respectivement dans le tableau suivant :

Tableau V.7: Débits totaux des eaux pluviales à évacuer

Sous Bassins	surface Ai	taux des eaux pluvia Coefficient de ruissellement	a	I	Qpluv (L/S)	Qplv (m³/s)
1	2,6	0,81	1	146	311,02	0,3110
2	2,11	0,81	1	146	249,53	0,2495
3	1,9	0,47	1	146	132,44	0,1324
4	3,69	0,72	1	146	387,89	0,3879
5	3,27	0,6	1	146	286,45	0,2865
6	4,36	0,63	1	146	401,03	0,4010
7	2,63	0,83	1	146	318,70	0,3187
8	1,4	0,82	1	146	167,61	0,1676
9	2	0,75	1	146	219,00	0,2190
10	2,64	0,84	1	146	323,77	0,3238
11	3,25	0,85	1	146	403,33	0,4033
12	1,88	0,75	1	146	205,86	0,2059
13	2,28	0,6	1	146	199,73	0,1997
14	3,1	0,8	1	146	362,08	0,3621
15	2,58	0,78	1	146	293,81	0,2938
16	2,57	0,74	1	146	277,66	0,2777
17	4,15	0,74	1	146	448,37	0,4484
18	2,31	0,8	1	146	269,81	0,2698
19	2,29	0,7	1	146	234,04	0,2340
20	1,12	0,84	1	146	137,36	0,1374
21	3,57	0,82	1	146	427,40	0,4274
22	3,24	0,76	1	146	359,51	0,3595
23	2,1	0,81	1	146	248,35	0,2483
24	2,67	0,77	1	146	300,16	0,3002
25	3,3	0,65	1	146	313,17	0,3132
26	3,4	0,82	1	146	407,05	0,4070
27	1,95	0,86	1	146	244,84	0,2448
28	1,5	0,75	1	146	164,25	0,1643
29	0,87	0,77	1	146	97,81	0,0978
30	1,15	0,82	1	146	137,68	0,1377
31	1,14	0,85	1	146	141,47	0,1415
32	1,73	0,6	1	146	151,55	0,1515
33	4,2	0,5	1	146	306,60	0,3066
34	4,15	0,72	1	146	436,25	0,4362

IV. 5. Calcul de débits total de chaque sous bassins

Tableau V.8: Débits total de chaque sous bassins à évacuer :

Sous Bassins	QTot usée (m³/s)	Qplv (m³/s)	QTotal(m³/s)		
1	0,0039	0,3110	0,3149		
2	0,0032	0,2495	0,2527		
3	0,0018	0,1324	0,1342		
4	0,0051	0,3879	0,393		
5	0,0038	0,2865	0,2903		
6	0,0052	0,4010	0,4062		
7	0,0040	0,3187	0,3227		
8	0,0021	0,1676	0,1697		
9	0,0028	0,2190	0,2218		
10	0,0044	0,3238	0,3282		
11	0,0048	0,4033	0,4081		
12	0,0026	0,2059	0,2085		
13	0,0021	0,1997	0,2018		
14	0,0046	0,3621	0,3667		
15	0,0038	0,2938	0,2976		
16	0,0036	0,2777	0,2813		
17	0,0062	0,4484	0,4546		
18	0,0031	0,2698	0,2729		
19	0,0039	0,2340	0,2379		
20	0,0020	0,1374	0,1394		
21	0,0047	0,4274	0,4321		
22	0,0048	0,3595	0,3643		
23	0,0030	0,2483	0,2513		
24	0,0033	0,3002	0,3035		
25	0,0050	0,3132	0,3182		
26	0,0057	0,4070	0,4127		
27	0,0027	0,2448	0,2475		
28	0,0022	0,1643	0,1665		
29	0,0013	0,0978	0,0991		
30	0,0018	0,1377	0,1395		
31	0,0014	0,1415	0,1429		
32	0,0018	0,1515	0,1533		
33	0,0059	0,3066	0,3125		
34	0,0062	0,4362	0,4424		

IV. 7. Conclusion

En conclusion, l'évaluation du débit est une étape importante de notre étude. Nous avons effectué des calculs détaillés des débits de rejet de divers consommateurs de la région, en tenant compte des eaux usées domestiques et pluviales. En divisant notre zone urbaine en 34 sous bassins, nous avons pu obtenir des estimations de trafic pour chaque zone.

D'après les valeurs des débits obtenues, nous constatons que les débits des eaux usées (domestiques et publiques) ne représentent qu'une faible fraction des débits pluviaux.

Ces calculs hydrauliques permettent de mieux comprendre le comportement de l'eau dans le réseau. Ces informations nous permettront de dimensionner correctement le réseau et de planifier les ouvrages annexes nécessaires. Cette approche nous permettra d'optimiser la gestion des eaux usées, de réduire les risques d'inondation et d'assurer un fonctionnement efficace des systèmes de collecte et de traitement de l'eau.

V.1.Introduction

Une fois tous les débits déterminés on commence à déterminer les dimensions réelles de réseau , tout en respectant certaines normes d'écoulement d'un point de vue sanitaire, le réseau d'assainissement doit assurer :

- L'évacuation rapide des eaux usées hors des habitations.
- * Transporter les eaux usées dans des conditions d'hygiène satisfaisantes.

Le tracé et l'installation des projets d'évacuation tels que les collecteurs et les regards doivent respecter des normes rigoureuses de construction et d'installation. Cette approche garantit le respect des exigences mécaniques et hydrauliques, garantissant la pérennité appropriée de ces installations.

V.2.Le tracé du réseau d'évacuation

L'étude approfondie du plan d'urbanisme, la configuration de l'agglomération et l'analyse des pentes nous ont permis de déterminer de manière éclairée le schéma et le système les plus appropriés. Nous avons suivi la direction des pentes principales et évité les obstacles pouvant entraver l'écoulement ou compliquer le système et les ouvrages d'évacuation.

En conclusion, le tracé de notre réseau nous a conduit à un schéma de type Latérale.

V.3. Dimensionnement du réseau d'assainissement

V.3.1. Conditions d'écoulement et de dimensionnement

En fonction de la topographie naturelle du terrain, l'écoulement des eaux usées s'effectue de préférence par gravité. Dans cette optique, le débit doit maintenir une vitesse suffisante pour s'auto-curage tout en préservant l'intégrité des conduites . Concernant la rapidité de l'auto-curage , il est important de respecter certaines conditions, en tenant compte du fait que les eaux usées transportent des charges, notamment du sable, qui peuvent conduire à des phénomènes de décantation. Pour éviter que ces situations ne se produisent, les débits doivent répondre aux critères suivants :

- ❖ La vitesse d'écoulement minimale équivalente à la plein section (1/10) est de 0,6 m/s.
- ❖ La vitesse est de 0,3 m/s, correspondant à (1/100) du débit sur une même section complète, avec un diamètre minimum de 300 mm.

Si ces vitesses ne sont pas respectées, des dispositifs tels qu'un rinçage automatique ou un nettoyage régulier devront être mis en place.

Contrairement aux exigences liées à l'auto-curage, la préservation des joints des canalisations circulaires et de leur revêtement intérieur nécessite l'établissement de limites maximales pour les pentes admissibles. Par conséquent, il est recommandé de ne pas dépasser des vitesses de l'ordre de 4 à 5 m/s à pleine section. Pour les ouvrages de taille moyenne, les sections les plus appropriées sont celles de type circulaire ou ovoïde .

V.3.2. Hypothèses de dimensionnement

L'hypothèse de base pour le dimensionnement du système d'évacuation gravitaire est la suivante:

❖ L'écoulement est uniforme à surface libre.

- ❖ La perte de charge correspond à l'énergie potentielle, équivalente à la différence de niveau du plan d'eau entre l'amont et l'aval.
- Les canalisations d'égouts sont dimensionnées pour un débit en pleine section "Qps", bien que, dans la pratique, elles ne fonctionnent généralement pas à cette capacité maximale.

V.4. Mode de calcul

V.4.1. Détermination du débit

L'écoulement dans les collecteurs est un écoulement à surface libre régi par la formule de la continuité :

Avec:

Q: Débit (m3/s).

V : Vitesse d'écoulement (m/s)

S : Section mouillée (m²).

La vitesse moyenne est déterminée par l'expression suivante (formule de Manning-Strickler) :

$$V = KS.R^{2/3} \sqrt{Im}....(V.2)$$

Avec:

KS : Coefficient de rugosité dépend de la nature des parois.

Im (m/m): Pente du radier nécessaire à l'écoulement d'un débit Q donné.

R (m): Rayon hydraulique.

$$Rh = Sm / Pm(V.3)$$

Où:

- Sm : la surface de la section transversale mouillée de la conduite (m²).

- Pm : le périmètre mouillé (m).

V.4.2. Détermination du diamètre

Le calcul du diamètre s'effectue de la manière suivante:

Dcal=
$$(\frac{3,2036*Qt}{Ks*\sqrt{I}})^{\frac{3}{8}}$$
....(V.4)

Avec:

Dcal: Diamètre calculé de la conduite en(m).

Qt : Débit total de chaque tronçon en(m3/s).

$$\mathbf{Qt} = \mathbf{Qeu} + \mathbf{Qpl}....(V.5)$$

Avec:

Qeu : Débit d'eau usée total (m3/s)

Qpl: Débit d'eau pluviale (m3/s)

I: Pente hydraulique de chaque tronçon en (m/m).

Ks : Coefficient de rugosité(ou de Strickler), (en fonction de matériaux des conduites) .

Dans notre cas les petites diamètre est en PVC on prendra K = 100, et pour les grandes diamètres les conduites sont en Béton armée on prendra K = 75

le diamètre normalisé de la conduite (Dnor)

Les diamètres calculées sera normalisées en respectant les règles de normalisation suivantes:

1. Si Dcal \leq 300, alors Dnor = 300.

- 2. Si $300 < Dcal \le 400$, alors Dnor = 400.
- 3. Si 400 < Dcal < 500, alors Dnor = 500.
- **4.** Si $500 < Dcal \le 600$, alors Dnor = 600.
- 5. Si $600 < Dcal \le 800$, alors Dnor = 800.
- **6.** Si $800 < Dcal \le 1000$, alors Dnor = 1000.
- 7. Si $1000 < Dcal \le 1200$, alors Dnor = 1200.
- 8. Si $1200 < Dcal \le 1500$, alors Dnor = 1500.
- **9.** Si $1500 < Dcal \le 1800$, alors Dnor = 1800.
- **10.** Si $1800 < Dcal \le 2000$, alors Dnor = 2000.
- 11. Si Dcal > 2000, alors il est nécessaire de doubler les conduites.

V.4.3. Détermination de débit plein section

Le débit en pleine section est donné donc par la relation

$$Qps = Vps \frac{\pi(Dnor)2}{4}$$
(V.6)

Avec:

Dnor: Diamètre normalisé de la conduite (m).

La vitesse en pleine section (V_{ps}) est calculée à partir de la formule de Manning-Strickler, avec le rayon hydraulique pris :

On aura:

$$Vps=KS.(Dnor/4)^{2/3}\sqrt{I...}(V.8)$$

Par la suite on calcule les vitesses et les hauteurs dans la conduite sont calculées à partir des relations suivantes :

> Les paramètres hydrauliques

- Rapport des débits $Rq = \frac{Qt}{Qps}$
- Rapport des vitesses $Rv = \frac{V}{Vps}$
- Rapport des hauteurs Rh = $\frac{H}{Dnor}$

Avec:

Qt : Débit total circulant dans la conduite circulaire (m³/s).

V : Vitesse d'écoulement de l'eau (m/s).

H: Hauteur de remplissage dans la conduite (m).

Qps: Débit à pleine section (m³/s).

Vps: Vitesse à pleine section (m/s).

Dnor: Diamètre normalisé de la conduite (mm).

V.4.4. Déterminer les vitesses réelles

$$V = RV * Vps$$
....(V.9)

V.4.5. Déterminer la hauteur de remplissage

$$H = RH * D$$
....(V.10)

Observation:

Les dimensions de tous les collecteurs ont été déterminées en se basant sur les abaques inclus en annexe, avec une validation supplémentaire réalisée à l'aide de la formule de Manning-Strickler. Pour simplifier le processus, nous avons effectué le dimensionnement de notre réseau en utilisant un programme Excel intégrant les formules mentionnées. En tenant compte des données géométriques telles que les pentes et les longueurs, nous avons ensuite calculé les diamètres des collecteurs. Les petits diamètres sont supposés être en PVC, tandis que les grands diamètres sont envisagés en béton.

V.5. Résultats du dimensionnement

Le dimensionnement de tous les collecteurs et la détermination de leur paramètres hydrauliques sont résumés dans le tableau suivant :

Tableau V.1 : Calculs du réseau projeté (collecteur principale et secondaire)

Tronçon	L(m)	Débits	Cote de r	adier	Pente	Dcal	Dnor	Pleine	section	Rq	Rh	Rv	H	V	Vmin	Auto-curage
		(m ³ /s)	Amont	Aval	(%)	(mm)	(mm)	Qps	Vps				(mm)	(m/s)	(m/s)	
								(m ³ /s)	(m/s)							
								seau 01								
							Colle	ecteur C								
C1 - C2	26,4	0,084	109,86	108,31	5,87	184,96	315	0,31	4,33	0,27	0,35	0,86	0,107	3,707	2,381	Auto-curage vérifie
C2 - C3	41	0,084	105,91	103,55	5,76	185,65	315	0,31	4,29	0,27	0,35	0,86	0,107	3,680	2,357	Auto-curage vérifie
C3-C4	68	0,084	103,55	98,97	6,74	180,26	315	0,33	4,64	0,25	0,34	0,84	0,103	3,894	2,550	Auto-curage vérifie
C4-C5	55,4	0,094	94,77	91,2	6,44	189,73	315	0,32	4,53	0,29	0,37	0,87	0,111	3,952	2,494	Auto-curage vérifie
C5-C6	72,5	0,123	89,8	84,78	6,92	207,06	315	0,34	4,70	0,37	0,42	0,92	0,127	4,315	2,585	Auto-curage vérifie
C6-C7	70	0,119	84,78	82,86	2,74	243,10	315	0,21	2,96	0,56	0,53	1,03	0,161	3,058	1,627	Auto-curage vérifie
C7-C8	71	0,121	82,86	82,45	0,58	327,32	400	0,18	1,59	0,66	0,59	1,07	0,226	1,693	0,873	Auto-curage vérifie
C8,1-C8,2	44	0,075	83,63	83,21	0,95	248,95	315	0,12	1,75	0,60	0,55	1,05	0,167	1,829	0,960	Auto-curage vérifie
C8,3-C8,2	38	0,065	85,25	83,21	5,37	170,45	315	0,30	4,14	0,22	0,31	0,80	0,095	3,315	2,276	Auto-curage vérifie
C8,2-C8	39	0,066	83,21	82,45	1,95	208,14	315	0,18	2,49	0,37	0,42	0,92	0,128	2,296	1,372	Auto-curage vérifie
C8-C9	92	0,156	82,45	80,55	2,07	284,05	315	0,18	2,57	0,85	0,71	1,13	0,214	2,902	1,412	Auto-curage vérifie
C9,1-C9,3	46	0,097	85,43	82,69	5,96	194,39	315	0,31	4,36	0,31	0,38	0,88	0,115	3,857	2,398	Auto-curage vérifie
C9,2-C9,3	40	0,084	84,89	82,69	5,5	187,24	315	0,30	4,19	0,28	0,36	0,86	0,109	3,619	2,304	Auto-curage vérifie
C9,3-C9,5	46	0,097	82,69	81,19	3,26	217,64	315	0,23	3,23	0,42	0,45	0,95	0,136	3,060	1,774	Auto-curage vérifie
C9,4-C9,5	89	0,187	83	81,19	2,03	304,55	400	0,34	2,98	0,55	0,52	1,03	0,200	3,060	1,639	Auto-curage vérifie
C9,5-C9	34	0,071	81,19	80,55	1,88	215,40	315	0,18	2,45	0,41	0,44	0,94	0,134	2,308	1,348	Auto-curage vérifie
C9-C10	20	0,086	80,55	80,04	2,55	218,19	315	0,20	2,85	0,42	0,45	0,95	0,137	2,711	1,569	Auto-curage vérifie
C10-C11	51	0,219	80,04	79,78	0,51	419,15	500	0,31	1,73	0,71	0,62	1,08	0,296	1,866	0,950	Auto-curage vérifie
C11-C12	47,5	0,204	79,98	79,54	0,93	364,89	400	0,23	2,01	0,89	0,73	1,14	0,279	2,287	1,106	Auto-curage vérifie
C12-C13	25,5	0,110	79,54	78,99	2,16	246,62	315	0,19	2,62	0,58	0,54	1,04	0,164	2,735	1,443	Auto-curage vérifie
C13,1-C13,3	56	0,118	82,62	82,19	0,77	307,27	400	0,21	1,83	0,56	0,53	1,03	0,203	1,891	1,007	Auto-curage vérifie
C13,2-C13,3	24,5	0,074	83,59	82,19	5,71	176,82	315	0,31	4,27	0,24	0,33	0,83	0,100	3,531	2,349	Auto-curage vérifie
C13,3-C13,4	53,5	0,112	82,19	80,19	3,74	224,49	315	0,25	3,45	0,45	0,47	0,97	0,143	3,355	1,900	Auto-curage vérifie

Page 49

Chapitre V Dimensionnement du réseau d'assainissement

C13,4-C13	48	0,101	80,19	78,99	2,5	232,43	315	0,20	2,82	0,50	0,50	1,00	0,150	2,823	1,553	Auto-curage vérifie
C13-C14	27,5	0,118	78,99	78	3,6	230,47	315	0,24	3,39	0,49	0,49	0,99	0,149	3,364	1,864	Auto-curage vérifie
C14-C15	25	0,108	78	77,5	2	248,28	315	0,18	2,53	0,59	0,55	1,05	0,166	2,644	1,389	Auto-curage vérifie
C15-C16	18	0,034	77,5	77,15	1,94	162,10	315	0,18	2,49	0,19	0,29	0,76	0,089	1,905	1,370	Auto-curage vérifie
C16-C17	60,5	0,131	77,35	76,72	1,04	301,92	400	0,24	2,13	0,54	0,52	1,02	0,198	2,176	1,173	Auto-curage vérifie
C17-C18	38	0,082	76,72	76,25	1,24	245,55	315	0,14	1,99	0,58	0,54	1,04	0,163	2,066	1,093	Auto-curage vérifie
C18-C19	18	0,039	76,25	75,57	3,78	150,50	315	0,25	3,47	0,16	0,27	0,72	0,081	2,484	1,910	Auto-curage vérifie
C19,1-C19,2	89	0,107	105,17	101,56	4,06	216,92	315	0,26	3,60	0,41	0,45	0,95	0,136	3,404	1,979	Auto-curage vérifie
C19,3-C19,2	55	0,066	104,36	101,56	5,09	173,55	315	0,29	4,03	0,23	0,32	0,81	0,097	3,280	2,217	Auto-curage vérifie
C19,2-C19,4	57	0,068	101,06	99,14	3,37	190,05	315	0,23	3,28	0,29	0,37	0,87	0,111	2,860	1,803	Auto-curage vérifie
C19,5-C19,4	49	0,059	99,58	99,14	0,9	230,09	315	0,12	1,69	0,49	0,49	0,99	0,148	1,678	0,931	Auto-curage vérifie
C19,4-C19,6	35	0,042	97,64	95,6	5,83	142,82	315	0,31	4,31	0,14	0,25	0,69	0,075	2,958	2,372	Auto-curage vérifie
C19,7 - C19,6	54	0,065	97,58	95,3	4,22	178,51	315	0,26	3,67	0,25	0,34	0,83	0,101	3,059	2,019	Auto-curage vérifie
C19,6-C19,8	39	0,222	95,3	93,08	5,69	267,63	315	0,31	4,26	0,73	0,63	1,08	0,190	4,621	2,344	Auto-curage vérifie
C19,8-C19,9	39,5	0,224	93,08	91,56	3,85	289,39	315	0,25	3,50	0,89	0,73	1,14	0,222	3,988	1,927	Auto-curage vérifie
C19,10-C19,9	39	0,222	93,84	91,56	5,85	266,29	315	0,31	4,32	0,72	0,62	1,08	0,188	4,669	2,376	Auto-curage vérifie
C19,9-C19,11	73	0,223	91,56	89,44	2,9	304,20	400	0,41	3,56	0,55	0,52	1,03	0,200	3,653	1,958	Auto-curage vérifie
C19,11-C19,12	41	0,125	89,44	88,92	1,27	286,20	315	0,14	2,01	0,87	0,72	1,13	0,217	2,282	1,106	Auto-curage vérifie
C19,12-C19-13	50	0,153	88,92	88,3	1,24	309,62	400	0,27	2,33	0,57	0,54	1,04	0,206	2,415	1,280	Auto-curage vérifie
C19,13-C19,14	50	0,153	88,3	88,06	0,48	369,92	400	0,17	1,45	0,92	0,75	1,14	0,286	1,649	0,796	Auto-curage vérifie
C19,14-C19,15	26,5	0,087	88,06	87	4	201,78	315	0,26	3,57	0,34	0,40	0,90	0,122	3,231	1,965	Auto-curage vérifie
C19,15-C19,16	74	0,494	87	82,65	5,88	359,24	400	0,58	5,07	0,85	0,71	1,13	0,270	5,725	2,786	Auto-curage vérifie
C19,17-C19,16	23	0,153	82,65	82,51	0,61	354,60	400	0,19	1,63	0,82	0,69	1,12	0,264	1,827	0,897	Auto-curage vérifie
C19,16-C19,18	70	0,467	82,51	79,35	4,51	369,69	400	0,51	4,44	0,92	0,75	1,14	0,286	5,058	2,442	Auto-curage vérifie
C19,18-C19,19	28	0,271	79,35	78,68	2,39	339,59	400	0,37	3,23	0,73	0,63	1,09	0,242	3,511	1,778	Auto-curage vérifie
C19,19-C19,20	34,4	0,413	78,68	77,27	4,1	359,45	400	0,48	4,23	0,85	0,71	1,13	0,271	4,782	2,326	Auto-curage vérifie
C19,20-C19,21	38	0,456	77,27	76,07	3,16	391,82	400	0,43	3,71	1,07	0,92	1,12	0,350	4,143	2,042	Auto-curage vérifie
C19,21-C19	42	0,504	76,07	75,57	1,19	488,46	500	0,47	2,64	1,07	0,92	1,11	0,438	2,939	1,452	Auto-curage vérifie
C19-C20	55	0,770	74,57	72,05	4,58	444,74	500	0,92	5,18	0,84	0,70	1,13	0,333	5,830	2,848	Auto-curage vérifie
C20-C21	23	0,322	72,05	71,25	3,48	337,72	400	0,45	3,90	0,72	0,63	1,08	0,239	4,219	2,143	Auto-curage vérifie

C21,2-C21,1	56	0,784	75,8	73,6	3,93	460,85	500	0,85	4,80	0,92	0,75	1,14	0,356	5,463	2,637	Auto-curage vérifie
C21,1-C21	44	0,616	73,6	71,25	5,34	397,45	400	0,55	4,83	1,11	1,03	0,90	0,395	4,351	2,656	Auto-curage vérifie
C21-C22	45	0,788	70,05	68,21	4,09	458,18	500	0,87	4,89	0,91	0,74	1,14	0,352	5,572	2,691	Auto-curage vérifie
C22,1-C22	101	0,090	71,38	68,21	3,14	213,46	315	0,23	3,16	0,40	0,44	0,94	0,133	2,962	1,741	Auto-curage vérifie
C22-C23	50	0,875	66,71	64,76	3,9	480,89	500	0,85	4,78	1,03	0,84	1,15	0,401	5,477	2,628	Auto-curage vérifie
C23-C24	60	1,050	64,06	61,51	4,25	506,68	630	1,64	5,82	0,64	0,58	1,06	0,345	5,905	3,201	Auto-curage vérifie
C24,1-C24,2	36,5	0,033	76	75,03	2,66	150,91	315	0,21	2,91	0,16	0,27	0,72	0,081	2,088	1,602	Auto-curage vérifie
C24,2-C24,3	36	0,036	75,03	73,36	4,64	140,69	315	0,28	3,85	0,13	0,24	0,68	0,074	2,609	2,116	Auto-curage vérifie
C24,4-C24,3	67	0,067	73,71	73,36	0,52	267,47	315	0,09	1,29	0,72	0,63	1,08	0,190	1,399	0,710	Auto-curage vérifie
C24,3-C24,6	31	0,031	73,36	71,67	5,45	129,06	315	0,30	4,17	0,10	0,22	0,64	0,066	2,668	2,294	Auto-curage vérifie
C24,5-C24,6	63	0,063	72,49	71,67	1,3	220,24	315	0,15	2,04	0,43	0,46	0,96	0,139	1,950	1,121	Auto-curage vérifie
C24,6-C24,7	30,5	0,031	71,67	70,62	3,44	139,82	315	0,24	3,31	0,13	0,24	0,68	0,073	2,237	1,823	Auto-curage vérifie
C24,8-C24,7	55	0,055	71,12	70,62	0,91	223,88	315	0,12	1,70	0,45	0,47	0,97	0,142	1,651	0,937	Auto-curage vérifie
C24,7-C24,9	27	0,027	70,62	70,19	1,59	154,34	315	0,16	2,25	0,17	0,28	0,73	0,083	1,649	1,240	Auto-curage vérifie
C24,9-C24,10	26	0,026	70,19	69,8	1,5	153,89	315	0,16	2,19	0,17	0,27	0,73	0,083	1,596	1,203	Auto-curage vérifie
C24,10-C24,11	29	0,029	69,8	69,17	2,17	149,57	315	0,19	2,63	0,15	0,27	0,71	0,080	1,874	1,448	Auto-curage vérifie
C24,11-C24,12	34	0,034	68,37	66,64	5,09	135,34	315	0,29	4,03	0,12	0,23	0,66	0,070	2,659	2,216	Auto-curage vérifie
C24,12-C24,13	37	0,235	66,64	64,65	5,38	276,52	315	0,30	4,14	0,79	0,67	1,11	0,203	4,596	2,279	Auto-curage vérifie
C24,14-C24,13	77	0,134	69,15	64,65	5,84	220,54	315	0,31	4,32	0,43	0,46	0,96	0,139	4,137	2,375	Auto-curage vérifie
C24,13-C24,15	33	0,057	64,65	62,87	5,39	162,94	315	0,30	4,15	0,19	0,30	0,77	0,089	3,189	2,282	Auto-curage vérifie
C24,16-C24,17	37	0,064	67,62	65,67	5,27	170,83	315	0,29	4,10	0,22	0,32	0,80	0,095	3,291	2,256	Auto-curage vérifie
C24,17-C24,15	36	0,063	64,97	62,97	5,56	167,42	315	0,30	4,21	0,21	0,31	0,79	0,093	3,318	2,316	Auto-curage vérifie
C24,15-C24,19	35,5	0,062	62,97	62,72	0,7	245,31	315	0,11	1,50	0,58	0,54	1,04	0,163	1,558	0,824	Auto-curage vérifie
C24,18-C24,19	72	0,137	65,12	62,72	3,33	246,95	315	0,23	3,26	0,59	0,55	1,04	0,165	3,403	1,794	Auto-curage vérifie
C24,19-C24,20	117	0,222	62,72	62,07	0,56	414,55	500	0,32	1,80	0,69	0,61	1,07	0,290	1,937	0,992	Auto-curage vérifie
C24,20-C24,21	41,5	0,079	62,07	61,83	0,58	278,94	315	0,10	1,36	0,81	0,68	1,12	0,206	1,517	0,747	Auto-curage vérifie
C24,21-C24	36,5	0,069	61,83	61,51	0,88	245,88	315	0,12	1,67	0,58	0,54	1,04	0,164	1,741	0,920	Auto-curage vérifie
C24-C25	39	1,014	61,51	59,49	5,18	536,79	500	0,98	5,51	1,04	0,85	1,15	0,405	5,292	3,028	Auto-curage vérifie
C25-C26	40	1,040	59,49	57,82	4,18	506,56	630	1,63	5,77	0,64	0,58	1,06	0,345	5,853	3,173	Auto-curage vérifie

C26-C27	40	1,040	57,82	57,27	1,37	694,90	800	1,51	3,01	0,69	0,61	1,07	0,485	3,227	1,654	Auto-curage vérifie
							Colle	cteur D								
D1-D2	83	0,116	113,31	109,1	5,07	214,70	315	0,29	4,02	0,40	0,44	0,94	0,134	3,780	2,213	Auto-curage vérifie
D2-D3	49,5	0,069	109,1	106,5	5,25	175,72	315	0,29	4,09	0,24	0,33	0,82	0,099	3,368	2,252	Auto-curage vérifie
D3-D4	44,5	0,062	106	103,33	6	164,68	315	0,31	4,38	0,20	0,30	0,78	0,091	3,396	2,407	Auto-curage vérifie
D4-D5	40	0,057	103,33	102,91	1,05	220,56	315	0,13	1,83	0,43	0,46	0,96	0,139	1,753	1,007	Auto-curage vérifie
D5-D6	47,5	0,067	102,91	101,72	2,51	199,85	315	0,20	2,83	0,33	0,40	0,90	0,120	2,543	1,555	Auto-curage vérifie
D6-D7	35	0,049	101,72	99,64	5,94	150,77	315	0,31	4,35	0,16	0,27	0,72	0,081	3,121	2,395	Auto-curage vérifie
D7-2 _ D7-1	50	0,070	101,67	100,12	3,1	194,71	315	0,23	3,15	0,31	0,38	0,89	0,115	2,786	1,730	Auto-curage vérifie
D7-1 _ D7	50	0,070	100,12	99,64	0,96	242,58	315	0,13	1,75	0,56	0,53	1,03	0,160	1,806	0,963	Auto-curage vérifie
D7- D8	36	0,143	98,24	97	3,44	249,55	315	0,24	3,32	0,60	0,55	1,05	0,168	3,478	1,823	Auto-curage vérifie
D8 - D9	52	0,143	97	94,07	5,63	227,55	315	0,30	4,24	0,47	0,48	0,98	0,146	4,164	2,332	Auto-curage vérifie
D9 - D10	78	0,143	93,37	88,74	5,94	225,34	315	0,31	4,35	0,46	0,48	0,97	0,144	4,240	2,394	Auto-curage vérifie
D10,1- D10,2	36	0,143	96,88	96,7	0,5	358,35	400	0,17	1,48	0,84	0,70	1,13	0,269	1,667	0,813	Auto-curage vérifie
D10,2-D10,3	69	0,143	96,8	95,63	1,7	285,01	315	0,17	2,33	0,86	0,71	1,13	0,215	2,634	1,279	Auto-curage vérifie
D10,3-D10,4	54,5	0,071	95,63	94,01	2,97	197,30	315	0,22	3,08	0,32	0,39	0,89	0,117	2,749	1,694	Auto-curage vérifie
D10,4-D10,5	46	0,050	93,41	90,72	5,85	152,83	315	0,31	4,32	0,16	0,27	0,73	0,082	3,132	2,376	Auto-curage vérifie
D10,5-D10	40	0,073	90,72	88,74	4,95	181,00	315	0,28	3,97	0,26	0,34	0,84	0,103	3,349	2,186	Auto-curage vérifie
D10-D11	34,5	0,048	88,74	87,65	3,16	168,82	315	0,23	3,18	0,21	0,31	0,79	0,094	2,521	1,746	Auto-curage vérifie
D11-C26J	37	0,052	87,65	87	1,76	193,47	315	0,17	2,37	0,31	0,38	0,88	0,114	2,089	1,302	Auto-curage vérifie
C26A-C26B	30,5	0,063	99,23	97,71	4,98	171,23	315	0,29	3,99	0,22	0,32	0,80	0,096	3,207	2,193	Auto-curage vérifie
C26B-C26C	36	0,063	97,71	96,91	2,22	199,23	315	0,19	2,66	0,33	0,39	0,90	0,119	2,390	1,465	Auto-curage vérifie
C26C - C26D	73	0,063	96,01	91,69	5,92	165,80	315	0,31	4,35	0,20	0,30	0,78	0,092	3,394	2,390	Auto-curage vérifie
C26D1 -C26D	101	0,074	93,86	91,69	2,15	212,96	315	0,19	2,62	0,39	0,44	0,93	0,132	2,446	1,440	Auto-curage vérifie
C26D-C26E	35	0,075	91,69	91,19	1,43	230,54	315	0,15	2,14	0,49	0,49	0,99	0,149	2,120	1,174	Auto-curage vérifie
C26E-C26F	30	0,064	91,19	90,66	1,77	209,09	315	0,17	2,37	0,38	0,43	0,92	0,128	2,193	1,306	Auto-curage vérifie
C26F-C26G	53	0,113	90,66	89,51	2,17	249,05	315	0,19	2,63	0,60	0,55	1,05	0,167	2,758	1,447	Auto-curage vérifie
С26G-С26Н	42	0,089	89,51	89,2	0,74	279,39	315	0,11	1,53	0,81	0,69	1,12	0,207	1,716	0,844	Auto-curage vérifie
С26Н -С26І	43	0,092	89,2	88,25	2,21	229,49	315	0,19	2,66	0,48	0,49	0,99	0,148	2,626	1,460	Auto-curage vérifie
C26I-C26j	32	0,074	88,25	86,7	4,84	182,48	315	0,28	3,93	0,26	0,35	0,85	0,104	3,333	2,162	Auto-curage vérifie

C26J-C26K	40	0,134	86,7	84,48	5,55	222,70	315	0,30	0,44	0,45	0,47	0,97	0,141	4,062	2,315	Auto-curage vérifie
C26K-C26L	87	0,291	84,48	82,87	1,85	366,19	400	0,33	0,90	0,79	0,73	1,14	0,281	3,235	1,563	Auto-curage vérifie
C26L-C26M	32	0,107	82,87	82,25	1,94	249,51	315	0,18	0,60	0,61	0,55	1,05	0,168	2,609	1,368	Auto-curage vérifie
C26M-C26N	52	0,174	82,25	81,94	0,6	373,36	400	0,18	0,94	0,83	0,76	1,14	0,292	1,838	0,887	Auto-curage vérifie
C26N-C26O	44	0,147	81,94	81,69	0,57	353,86	400	0,18	0,82	0,72	0,69	1,12	0,263	1,763	0,866	Auto-curage vérifie
C26O-C26P	40	0,134	81,79	81,04	1,88	272,95	315	0,18	0,77	0,78	0,65	1,10	0,198	2,687	1,345	Auto-curage vérifie
C26P-C26Q	40	0,134	81,04	79,84	3	249,93	315	0,22	0,60	0,62	0,56	1,05	0,168	3,249	1,702	Auto-curage vérifie
C26Q-C19,18	28	0,095	79,84	79,35	1,75	243,24	315	0,17	0,56	0,57	0,53	1,03	0,161	2,443	1,300	Auto-curage vérifie
C27-E1	74	1,036	57,27	56,79	0,65	798,87	800	1,04	4,21	1,00	0,81	1,14	0,646	2,361	1,136	Auto-curage vérifie
							Colle	ecteur E								
E1-E2	23	0,322	57,19	56,71	2,09	371,66	400	0,35	3,02	0,93	0,76	1,14	0,289	3,439	1,660	Auto-curage vérifie
E2-E3	16	0,224	56,71	56,52	1,19	360,55	400	0,26	2,28	0,86	0,71	1,13	0,272	2,578	1,252	Auto-curage vérifie
E3-E4	33	0,462	56,42	55,63	2,39	414,74	500	0,67	3,74	0,69	0,61	1,07	0,290	4,022	2,059	Auto-curage vérifie
E4-E5	35	0,490	55,63	55,11	1,49	463,66	500	0,52	2,95	0,93	0,76	1,14	0,361	3,360	1,622	Auto-curage vérifie
E5-E6	27	0,378	55,21	53,94	4,7	338,92	400	0,52	4,53	0,73	0,63	1,08	0,241	4,916	2,492	Auto-curage vérifie
E6-E7	36	0,504	53,64	51,71	5,36	368,38	400	0,55	4,84	0,91	0,74	1,14	0,284	5,510	2,661	Auto-curage vérifie
E7,6-E7,5	32	0,064	65,16	64	3,62	182,84	315	0,24	3,40	0,26	0,35	0,85	0,105	2,888	1,871	Auto-curage vérifie
E7,51-E7,5	54	0,108	64,79	64	1,46	263,73	315	0,15	2,16	0,70	0,61	1,08	0,185	2,324	1,188	Auto-curage vérifie
E7,5-E7,4	35	0,070	64	63,08	2,63	200,83	315	0,21	2,90	0,34	0,40	0,90	0,121	2,612	1,593	Auto-curage vérifie
E7,44-E7,43	25	0,050	65,69	65,5	0,76	223,40	315	0,11	1,56	0,45	0,47	0,97	0,142	1,507	0,857	Auto-curage vérifie
E7,43-E7,42	19	0,038	65,5	64,84	3,47	151,58	315	0,24	3,33	0,16	0,27	0,72	0,081	2,397	1,831	Auto-curage vérifie
E7,42-E7,41	45	0,090	64,84	63,97	1,93	233,76	315	0,18	2,48	0,51	0,50	1,00	0,152	2,494	1,366	Auto-curage vérifie
E7,41-E7,4	35	0,070	63,97	63,08	2,54	202,08	315	0,20	2,85	0,34	0,40	0,91	0,122	2,578	1,567	Auto-curage vérifie
E7,4-E7,3	35,5	0,071	63,08	62,2	2,48	204,13	315	0,20	2,81	0,35	0,41	0,91	0,124	2,560	1,547	Auto-curage vérifie
E7,3-E7,2	30	0,060	62,2	60,34	6,2	161,38	315	0,32	4,45	0,19	0,29	0,76	0,088	3,388	2,446	Auto-curage vérifie
E7,24-E7,23	21	0,042	62,52	62,13	1,86	176,98	315	0,17	2,43	0,24	0,33	0,83	0,100	2,014	1,339	Auto-curage vérifie
E7,23-E7,22	20	0,040	62,13	61,04	5,45	142,01	315	0,30	4,17	0,13	0,25	0,68	0,075	2,848	2,294	Auto-curage vérifie
E7,22-E7,21	18	0,040	61,04	60,53	2,83	159,94	315	0,22	3,01	0,18	0,29	0,76	0,087	2,271	1,654	Auto-curage vérifie
E7,21-E7,2	34	0,068	60,33	58,34	5,85	170,97	315	0,31	4,32	0,22	0,32	0,80	0,095	3,471	2,377	Auto-curage vérifie

Chapitre V Dimensionnement du réseau d'assainissement

E7,2-E7,1	34	0,068	58,14	56,11	5,97	170,33	315	0,31	4,36	0,22	0,31	0,80	0,095	3,494	2,401	Auto-curage vérifie
E7,1-E7	90	0,180	55,21	49,83	5,98	245,32	315	0,31	4,37	0,58	0,54	1,04	0,163	4,540	2,402	Auto-curage vérifie
E7-E8	45	0,090	49,83	49,05	1,73	238,60	315	0,17	2,35	0,53	0,52	1,02	0,156	2,399	1,294	Auto-curage vérifie
E8-E9	30	0,060	48,65	46,87	5,93	162,71	315	0,31	4,35	0,19	0,30	0,77	0,089	3,340	2,393	Auto-curage vérifie
E9,1-E9	26	0,060	48,01	46,87	4,38	172,21	315	0,27	3,74	0,22	0,32	0,81	0,096	3,024	2,057	Auto-curage vérifie
E9,5-E9,4	33,8	0,082	52,32	51,88	1,3	243,12	315	0,15	2,04	0,56	0,53	1,03	0,161	2,107	1,121	Auto-curage vérifie
E9,4-E9,3	33	0,082	51,88	50,88	3,03	207,50	315	0,22	3,11	0,37	0,42	0,92	0,127	2,858	1,710	Auto-curage vérifie
Е9,3-Е9,2	30	0,082	50,88	49,79	3,63	200,56	315	0,24	3,41	0,34	0,40	0,90	0,120	3,068	1,873	Auto-curage vérifie
Е9,2-Е9	52	0,082	49,79	46,87	5,62	184,84	315	0,30	4,23	0,27	0,35	0,86	0,106	3,623	2,328	Auto-curage vérifie
E9-E10	31	0,372	46,87	46,1	2,48	379,74	400	0,38	3,29	0,99	0,80	1,14	0,304	3,758	1,811	Auto-curage vérifie
E10,4-E10,3	57	0,091	52,97	50,35	4,6	199,71	315	0,27	3,83	0,33	0,40	0,90	0,120	3,443	2,106	Auto-curage vérifie
E10,3-E10,2	18	0,029	50,35	50,23	0,67	186,17	315	0,10	1,46	0,28	0,36	0,86	0,108	1,255	0,802	Auto-curage vérifie
E10,2-E10,1	40	0,064	50,23	47,76	6,18	165,46	315	0,32	4,44	0,20	0,30	0,78	0,091	3,460	2,441	Auto-curage vérifie
E10,1-E10	E10-E11 15 0,180 44,5 43,49 6,73 239,91 315 0,33 4,64 0,54 0,52 1,02 0,158 4,748 2,549 Auto-curage vérifie															
E10-E11																
E11-E12	25	0,300	43,49	42,16	5,32	303,69	400	0,55	4,82	0,54	0,52	1,02	0,200	4,938	2,650	Auto-curage vérifie
E12,2-E12,1	15,3	0,024	44,51	44,21	1,96	143,08	315	0,18	2,50	0,14	0,25	0,69	0,076	1,718	1,376	Auto-curage vérifie
E12,1-E12	35	0,056	44,21	42,16	5,86	158,94	315	0,31	4,32	0,18	0,29	0,75	0,087	3,247	2,378	Auto-curage vérifie
E12-E13	35	0,050	40,56	38,48	5,94	151,92	315	0,31	4,35	0,16	0,27	0,72	0,082	3,141	2,395	Auto-curage vérifie
E13,3-E13,2	21	0,034	41,54	40,2	6,38	129,14	315	0,32	4,51	0,10	0,22	0,64	0,066	2,888	2,482	Auto-curage vérifie
E13,2-E13	25	0,050	40,2	38,48	6,88	147,80	315	0,34	4,69	0,15	0,26	0,70	0,079	3,302	2,577	Auto-curage vérifie
E13,1-E13	52	0,050	39,38	38,48	1,73	191,45	315	0,17	2,35	0,30	0,37	0,88	0,112	2,060	1,293	Auto-curage vérifie
E13-E14	18	0,216	37,88	36,82	5,89	263,42	315	0,31	4,33	0,70	0,61	1,07	0,184	4,660	2,384	Auto-curage vérifie
E14-E15	30	0,360	36,82	34,78	6,8	310,55	400	0,62	5,45	0,58	0,54	1,04	0,207	5,666	2,997	Auto-curage vérifie
E15,5-E15,4	39	0,078	40,97	40,17	2,05	219,10	315	0,18	2,56	0,43	0,46	0,95	0,138	2,439	1,407	Auto-curage vérifie
E15,4-E15,3	32	0,064	40,17	39,38	2,47	196,49	315	0,20	2,81	0,32	0,39	0,89	0,117	2,499	1,544	Auto-curage vérifie
E15,3-E15,2	32	0,064	39,38	39,06	1	232,77	315	0,13	1,79	0,50	0,50	1,00	0,151	1,787	0,982	Auto-curage vérifie
E15,2-E15,1	36	0,072	39,06	37,44	4,5	183,50	315	0,27	3,79	0,27	0,35	0,85	0,105	3,226	2,084	Auto-curage vérifie
E15,1-E15	63	0,126	37,44	34,78	4,22	229,07	315	0,26	3,67	0,48	0,49	0,99	0,147	3,625	2,019	Auto-curage vérifie
							Collecteu	r de reje	et 01							

E15-E16	27	3,860	32,38	31,54	3,11	975,02	1000	4,12	5,25	0,94	0,76	1,14	0,760	5,981	2,887	Auto-curage vérifie
E16-E17	35	3,860	31,54	30,71	2,37	1025,94	1200	5,85	5,18	0,66	0,59	1,07	0,706	5,514	2,847	Auto-curage vérifie
E17-E18	77	3,860	30,71	27,8	3,78	940,10	1000	4,54	5,79	0,85	0,71	1,01	0,708	5,844	3,182	Auto-curage vérifie
E18-E19	40	3,860	27,6	26,02	3,95	932,34	1000	4,64	5,92	0,83	0,70	1,01	0,696	5,986	3,253	Auto-curage vérifie
E19-E20	55	3,860	26,02	25,33	1,25	1156,03	1200	4,26	3,76	0,91	0,74	1,14	0,890	4,288	2,071	Auto-curage vérifie
E20-D01	40	3,860	25,33	24,4	2,33	1029,75	1200	5,79	5,12	0,67	0,59	1,07	0,711	5,468	2,819	Auto-curage vérifie
								eaux 02								
Tronçon	L	Debits	Cote du		Pente	Dcal	Dnor	Pleine		Rq	Rh	Rv	H	V	Vmin	Auto-curage
	(m)	(m^3/s)	Amont	Aval	(%)	(mm)	(mm)	Qps	Vps				(mm)	(m/s)	(m/s)	
11.10	10	0.011		115 10	0.5	21552		ecteur A								4.0
A1-A2	40	0,044	117,45	117,18	0,67	217,73	315	0,11	1,47	0,42	0,45	0,95	0,137	1,392	0,807	Auto-curage vérifie
A2-A3	40	0,044	117,18	116,96	0,55	226,25	315	0,09	1,32	0,46	0,48	0,98	0,145	1,295	0,729	Auto-curage vérifie
A3-A4	45	0,050	116,96	116,67	0,64	229,55	315	0,10	1,43	0,48	0,49	0,99	0,148	1,419	0,789	Auto-curage vérifie
A4,1-A4	30	0,033	116,87	116,57	1	181,58	315	0,13	1,79	0,26	0,34	0,84	0,104	1,509	0,982	Auto-curage vérifie
A4-A5	45	0,050	116,57	116,34	0,51	239,74	315	0,09	1,28	0,54	0,52	1,02	0,157	1,307	0,702	Auto-curage vérifie
A5-A6	45	0,050	116,34	116,11	0,51	239,74	315	0,09	1,28	0,54	0,52	1,14	0,157	1,456	0,702	Auto-curage vérifie
A6-A7	64	0,070	116,21	115,93	0,44	281,69	315	0,08	1,18	0,83	0,70	1,12	0,210	1,329	0,650	Auto-curage vérifie
A7-A8	45	0,050	115,93	115,7	0,51	239,74	315	0,09	1,28	0,54	0,52	1,02	0,157	1,307	0,702	Auto-curage vérifie
A8-A9	45	0,050	115,7	115,11	1,31	200,92	315	0,15	2,05	0,34	0,40	0,90	0,121	1,845	1,125	Auto-curage vérifie
A9,1-A9	45	0,050	115,83	115,42	0,91	215,12	315	0,12	1,71	0,41	0,44	0,94	0,134	1,604	0,938	Auto-curage vérifie
A9-A10	45	0,050	115,42	115,18	0,53	237,84	315	0,09	1,30	0,53	0,52	1,02	0,156	1,328	0,718	Auto-curage vérifie
A10-A11	35	0,058	115,18	113,73	4,14	171,85	315	0,26	3,64	0,22	0,32	0,81	0,096	2,934	2,000	Auto-curage vérifie
A13,4-A13,3	45	0,058	116,15	115,88	0,6	246,89	315	0,10	1,38	0,59	0,55	1,04	0,165	1,444	0,761	Auto-curage vérifie
A13,3-A13,2	45	0,058	115,88	115,11	1,71	202,84	315	0,17	2,34	0,35	0,41	0,91	0,123	2,120	1,285	Auto-curage vérifie
A13,2-A13,1	45	0,058	115,11	114,59	1,16	218,34	315	0,14	1,92	0,42	0,45	0,95	0,137	1,826	1,056	Auto-curage vérifie
A13,1-A13	35	0,058	114,59	114,04	1,57	206,11	315	0,16	2,24	0,36	0,42	0,92	0,126	2,050	1,232	Auto-curage vérifie
A13-A12	35	0,058	114,04	113,87	0,49	256,86	315	0,09	1,24	0,65	0,58	1,06	0,176	1,323	0,685	Auto-curage vérifie
A12-A11	30	0,083	113,87	113,63	0,8	267,57	315	0,11	1,60	0,73	0,63	1,08	0,190	1,732	0,879	Auto-curage vérifie
A11-A14	30	0,252	113,63	113,39	0,8	405,80	500	0,38	2,16	0,65	0,59	1,06	0,279	2,302	1,190	Auto-curage vérifie

A14,1-A14	103	0,071	115,18	113,79	1,35	228,75	315	0,15	2,08	0,48	0,49	0,99	0,147	2,047	1,141	Auto-curage vérifie
A14-A15	41	0,257	113,39	112,62	1,88	348,39	400	0,33	2,86	0,78	0,67	1,11	0,255	3,167	1,575	Auto-curage vérifie
A15-A16	35	0,219	112,62	111,65	2,77	305,22	400	0,40	3,48	0,55	0,53	1,03	0,201	3,577	1,913	Auto-curage vérifie
A16,7-A16,6	35	0,200	116,21	115,21	2,86	293,10	315	0,22	3,02	0,93	0,75	1,14	0,227	3,440	1,661	Auto-curage vérifie
A16,6-A16,5	45	0,200	115,21	115,01	0,44	415,47	500	0,29	1,61	0,70	0,61	1,08	0,291	1,734	0,887	Auto-curage vérifie
A16,5-A16,4	44	0,200	115,01	114,73	0,64	388,42	400	0,19	1,67	1,05	0,87	1,14	0,332	1,905	0,917	Auto-curage vérifie
A16,4-A16,2	45	0,200	114,73	114,51	0,49	408,11	500	0,30	1,69	0,66	0,59	1,07	0,282	1,804	0,930	Auto-curage vérifie
A16,3-A16,2	105	0,200	115,28	114,51	0,73	378,23	400	0,20	1,79	0,98	0,79	1,14	0,301	2,040	0,984	Auto-curage vérifie
A16,2-A16,1	64	0,200	114,51	114,11	0,63	389,74	400	0,19	1,65	1,06	0,89	1,14	0,339	1,878	0,908	Auto-curage vérifie
A16,1-A16	52	0,326	114,11	111,65	4,73	320,29	400	0,52	4,54	0,63	0,57	1,06	0,217	4,801	2,499	Auto-curage vérifie
A16-A17	66	0,549	111,65	111,05	0,91	530,58	630	0,76	2,69	0,72	0,63	1,08	0,376	2,915	1,480	Auto-curage vérifie
A17,1-A17	104	0,093	114,85	111,05	3,65	210,03	315	0,24	3,41	0,38	0,43	0,93	0,129	3,162	1,878	Auto-curage vérifie
A17-A18	50	0,416	111,05	109,25	3,6	369,38	400	0,45	3,96	0,92	0,75	1,14	0,285	4,516	2,180	Auto-curage vérifie
A18,4-A18,3	88,5	0,100	116,29	115,67	0,7	294,17	315	0,11	1,50	0,93	0,76	1,14	0,229	1,704	0,822	Auto-curage vérifie
A18,3-A18,1	91	0,095	115,67	113,5	2,38	229,35	315	0,20	2,76	0,48	0,49	0,99	0,147	2,727	1,517	Auto-curage vérifie
A18,2-A18,1	106	0,095	114,89	113,5	1,31	256,56	315	0,15	2,05	0,65	0,58	1,06	0,176	2,173	1,125	Auto-curage vérifie
A18,1-A18	112	0,095	113,5	109,25	3,79	210,22	315	0,25	3,48	0,38	0,43	0,93	0,129	3,224	1,914	Auto-curage vérifie
A18-A19	67	0,418	109,25	107,15	3,13	379,80	400	0,42	3,70	0,99	0,80	1,14	0,304	4,221	2,034	Auto-curage vérifie
A19,9-A19,8	51	0,110	114,99	114,77	0,43	333,89	400	0,16	1,37	0,70	0,61	1,08	0,234	1,477	0,755	Auto-curage vérifie
A19,8-A19,7	45	0,110	114,77	114,39	0,84	294,38	315	0,12	1,64	0,94	0,76	1,14	0,229	1,870	0,903	Auto-curage vérifie
A19,7-A19,6	45	0,110	114,39	113,52	1,93	252,03	315	0,18	2,48	0,62	0,56	1,05	0,170	2,619	1,366	Auto-curage vérifie
A19,6-A19,5	45	0,110	113,52	112,28	2,76	235,83	315	0,21	2,97	0,52	0,51	1,01	0,154	2,998	1,631	Auto-curage vérifie
A19,5-A19,3	45	0,110	112,28	110,81	3,27	228,42	315	0,23	3,23	0,48	0,49	0,99	0,147	3,181	1,776	Auto-curage vérifie
A19,4-A19,3	56	0,100	113,23	110,81	4,32	209,14	315	0,27	3,71	0,38	0,43	0,92	0,128	3,430	2,042	Auto-curage vérifie
A19,3-A19,2	40	0,100	110,81	109,38	3,58	216,71	315	0,24	3,38	0,41	0,45	0,95	0,136	3,194	1,858	Auto-curage vérifie
A19,2-A19,1	40	0,100	109,38	108,18	3	223,95	315	0,22	3,09	0,45	0,47	0,97	0,142	3,000	1,702	Auto-curage vérifie
A19,1-A19	31,5	0,100	108,18	107,15	3,27	220,36	315	0,23	3,23	0,43	0,46	0,96	0,139	3,092	1,777	Auto-curage vérifie
A19-A20	110	0,308	107,15	105,51	1,49	389,31	400	0,29	2,55	1,05	0,88	1,14	0,336	2,907	1,403	Auto-curage vérifie
A20,1-A20	108	0,218	109,84	105,51	4,01	284,33	315	0,26	3,58	0,85	0,71	1,13	0,214	4,045	1,967	Auto-curage vérifie
A20-A21	45	0,126	105,51	104,65	1,91	265,77	315	0,18	2,47	0,71	0,62	1,08	0,188	2,667	1,358	Auto-curage vérifie

A21-A22	80	0,224	104,65	103,12	1,91	329,73	400	0,33	2,89	0,60	0,60	1,07	0,229	3,091	1,589	Auto-curage vérifie
A22-A23	85	0,238	103,12	101,77	1,59	349,27	400	0,30	2,63	0,70	0,67	1,11	0,256	2,918	1,448	Auto-curage vérifie
A23-A24	46	0,129	101,87	100,84	2,24	260,13	315	0,19	2,67	0,67	0,60	1,07	0,180	2,857	1,470	Auto-curage vérifie
A24-A25	78	0,218	100,84	97,04	4,87	274,09	315	0,28	3,94	0,77	0,66	1,10	0,199	4,345	2,169	Auto-curage vérifie
A25-A26	72	0,202	97,04	93,56	4,83	266,38	315	0,28	3,93	0,72	0,62	1,08	0,188	4,246	2,160	Auto-curage vérifie
A26,11-A26,10	34	0,095	114,36	113,48	2,59	226,03	315	0,21	2,87	0,46	0,48	0,98	0,144	2,807	1,581	Auto-curage vérifie
A26,10-A26,9	36	0,082	113,48	112,26	3,39	203,19	315	0,24	3,29	0,35	0,41	0,91	0,123	2,986	1,809	Auto-curage vérifie
A26,9-A26,8	40	0,082	112,26	111,32	2,35	217,63	315	0,20	2,74	0,42	0,45	0,95	0,136	2,597	1,506	Auto-curage vérifie
A26,8-A26,7	48,5	0,082	111,32	109,03	4,72	190,94	315	0,28	3,88	0,30	0,37	0,88	0,112	3,396	2,135	Auto-curage vérifie
A26,7-A26,6	47	0,120	109,03	108,64	0,83	305,14	400	0,22	1,90	0,55	0,53	1,03	0,201	1,957	1,047	Auto-curage vérifie
A26,6-A26,5	40	0,120	108,64	106,56	5,2	216,30	315	0,29	4,07	0,41	0,45	0,94	0,135	3,847	2,240	Auto-curage vérifie
A26,5-A26,4	44	0,120	106,56	104,21	5,34	215,22	315	0,30	4,13	0,41	0,44	0,94	0,134	3,885	2,271	Auto-curage vérifie
A26,4-A26,3	23,12	0,120	104,21	102,83	5,97	210,78	315	0,31	4,36	0,38	0,43	0,93	0,130	4,051	2,400	Auto-curage vérifie
A26,3-A26,2	56,5	0,120	102,53	99,3	5,72	212,49	315	0,31	4,27	0,39	0,44	0,93	0,132	3,985	2,349	Auto-curage vérifie
A26,2-A26,1	57	0,120	99,3	96,58	4,77	219,81	315	0,28	3,90	0,43	0,46	0,96	0,139	3,729	2,146	Auto-curage vérifie
A26,1-A26	70	0,110	96,58	93,56	4,31	216,82	315	0,27	3,71	0,41	0,45	0,95	0,136	3,510	2,041	Auto-curage vérifie
A26-A27	38	0,106	93,56	91,36	5,79	202,64	315	0,31	4,30	0,35	0,41	0,91	0,122	3,896	2,364	Auto-curage vérifie
							Colle	ecteur F								
F24-F23	45,5	0,230	106,74	104,86	4,13	288,23	315	0,26	3,63	0,88	0,73	1,14	0,220	4,129	1,997	Auto-curage vérifie
F23-F22	51	0,230	104,86	102,81	4,02	289,72	315	0,26	3,58	0,90	0,74	1,14	0,222	4,077	1,970	Auto-curage vérifie
F22-F21	93	0,230	102,81	100,54	2,44	318,13	400	0,37	3,26	0,62	0,56	1,05	0,215	3,438	1,795	Auto-curage vérifie
F21,11-F21,10	78	0,060	112,87	110,85	2,59	190,61	315	0,21	2,87	0,29	0,37	0,87	0,111	2,513	1,581	Auto-curage vérifie
F21,10-F21,9	42	0,033	110,85	108,66	5,21	132,54	315	0,29	4,08	0,11	0,23	0,65	0,068	2,654	2,243	Auto-curage vérifie
F21,9-F21,8	32	0,025	108,66	107,36	4,06	125,43	315	0,26	3,60	0,10	0,21	0,63	0,063	2,263	1,980	Auto-curage vérifie
F21,8-F21,7	37	0,029	107,36	106,92	1,19	166,75	315	0,14	1,95	0,21	0,31	0,79	0,092	1,529	1,071	Auto-curage vérifie
F21,7-F21,6	80	0,062	106,92	105,82	1,38	216,69	315	0,15	2,09	0,41	0,45	0,95	0,136	1,981	1,152	Auto-curage vérifie
F21,63-F21,62	44	0,034	107,6	106,71	2,02	161,08	315	0,18	2,54	0,19	0,29	0,76	0,088	1,932	1,397	Auto-curage vérifie
F21,62-F21,61	54	0,042	106,71	106,41	0,56	221,62	315	0,10	1,33	0,44	0,46	0,96	0,140	1,280	0,732	Auto-curage vérifie
F21,61-F21,6	52	0,040	106,41	105,82	1,13	191,13	315	0,14	1,90	0,30	0,37	0,88	0,112	1,666	1,047	Auto-curage vérifie

F21,6-F21,5	43	0,033	105,82	105,47	0,81	189,42	315	0,12	1,61	0,29	0,37	0,87	0,110	1,403	0,886	Auto-curage vérifie
F21,5-F21,4	77,7	0,060	105,47	105,12	0,45	264,21	315	0,09	1,20	0,70	0,61	1,08	0,185	1,291	0,659	Auto-curage vérifie
F21,4-F21,3	42	0,033	105,12	104,42	1,67	164,14	315	0,17	2,31	0,20	0,30	0,77	0,090	1,785	1,268	Auto-curage vérifie
F21,12-F21-11	78	0,060	106,65	106,27	0,49	260,73	315	0,09	1,25	0,68	0,60	1,07	0,181	1,334	0,686	Auto-curage vérifie
F21,11-F21,1	35	0,027	106,27	106,06	0,6	185,66	315	0,10	1,38	0,27	0,35	0,86	0,107	1,188	0,761	Auto-curage vérifie
F21,1-F21,2	42	0,033	106,06	105,28	1,86	160,85	315	0,17	2,43	0,19	0,29	0,76	0,088	1,849	1,339	Auto-curage vérifie
F21,22-F21,21	42	0,033	106,4	105,9	1,19	174,83	315	0,14	1,95	0,23	0,33	0,82	0,098	1,596	1,072	Auto-curage vérifie
F21,21-F21,2	41	0,032	105,9	105,28	1,51	165,66	315	0,16	2,20	0,20	0,30	0,78	0,091	1,714	1,208	Auto-curage vérifie
F21,2-F21,3	39	0,030	105,28	103,92	3,49	139,01	315	0,24	3,34	0,13	0,24	0,67	0,073	2,242	1,835	Auto-curage vérifie
F21,3-F21	57	0,044	103,92	100,54	5,93	145,08	315	0,31	4,35	0,14	0,25	0,69	0,077	3,020	2,392	Auto-curage vérifie
F21-F20	42	0,121	100,54	98,26	5,43	214,92	315	0,30	4,16	0,40	0,44	0,94	0,134	3,913	2,289	Auto-curage vérifie
F20-F19	49	0,141	98,26	96,56	3,47	247,65	315	0,24	3,33	0,59	0,55	1,05	0,166	3,477	1,830	Auto-curage vérifie
F19-F4	62,5	0,179	96,56	94,61	3,12	276,77	315	0,23	3,16	0,79	0,67	1,11	0,203	3,503	1,735	Auto-curage vérifie
F15-F14	39	0,230	105,87	103,8	5,31	275,01	315	0,29	4,12	0,78	0,66	1,10	0,201	4,547	2,263	Auto-curage vérifie
F14-F13	27	0,230	103,5	102,02	5,48	273,35	315	0,30	4,18	0,77	0,66	1,10	0,198	4,599	2,300	Auto-curage vérifie
F13-F12	33	0,230	102,02	101,25	2,33	320,82	400	0,37	3,19	0,63	0,57	1,06	0,218	3,374	1,755	Auto-curage vérifie
F12-F11	34,5	0,230	101,25	100,64	1,77	337,95	400	0,32	2,78	0,72	0,63	1,08	0,240	3,009	1,528	Auto-curage vérifie
F17-F16	22	0,230	101,43	101,26	0,77	394,69	400	0,21	1,84	1,09	0,97	1,05	0,370	1,923	1,010	Auto-curage vérifie
F16-F11	41	0,067	101,26	100,64	1,51	219,14	315	0,16	2,20	0,43	0,46	0,95	0,138	2,094	1,208	Auto-curage vérifie
F11-F10	39	0,067	100,64	99,66	2,51	199,23	315	0,20	2,83	0,33	0,39	0,90	0,119	2,542	1,557	Auto-curage vérifie
F10-F6	47	0,067	99,66	98,7	2,04	207,13	315	0,18	2,55	0,37	0,42	0,92	0,127	2,344	1,404	Auto-curage vérifie
F9-F8	38,5	0,070	103,17	100,89	5,92	172,46	315	0,31	4,35	0,22	0,32	0,81	0,097	3,518	2,391	Auto-curage vérifie
F8-F7	31	0,070	100,59	98,8	5,77	173,28	315	0,31	4,29	0,23	0,32	0,81	0,097	3,489	2,361	Auto-curage vérifie
F7-F6	15	0,070	98,8	98,7	0,67	259,74	315	0,10	1,46	0,67	0,59	1,07	0,180	1,558	0,802	Auto-curage vérifie
F6-F5	38,29	0,070	98,3	96,08	5,8	173,15	315	0,31	4,30	0,23	0,32	0,81	0,097	3,494	2,366	Auto-curage vérifie
F5-F4	41,12	0,070	96,08	94,21	4,55	181,21	315	0,27	3,81	0,26	0,34	0,84	0,103	3,213	2,095	Auto-curage vérifie
F4-F3	14	0,040	94,21	93,96	1,79	175,35	315	0,17	2,39	0,24	0,33	0,82	0,099	1,960	1,313	Auto-curage vérifie
F3-F2	82	0,235	93,96	93,24	0,88	388,68	400	0,22	1,96	1,05	0,87	1,14	0,333	2,236	1,077	Auto-curage vérifie
F2-F1	26	0,075	93,24	92,24	3,85	191,53	315	0,25	3,50	0,30	0,37	0,88	0,112	3,071	1,927	Auto-curage vérifie
F1-A27	47	0,135	92,24	91,36	1,87	273,71	315	0,18	2,44	0,77	0,66	1,10	0,199	2,691	1,344	Auto-curage vérifie

							Colle	ecteur B								
B1-B2	35	0,025	110,6	109,55	3	133,56	315	0,22	3,09	0,11	0,23	0,65	0,069	2,023	1,702	Auto-curage vérifie
B2-B3	43	0,031	109,55	108,01	3,58	139,57	315	0,24	3,38	0,13	0,24	0,67	0,073	2,279	1,859	Auto-curage vérifie
B3,1-B3	64	0,046	108,4	108,01	0,61	225,82	315	0,10	1,39	0,46	0,48	0,98	0,144	1,361	0,767	Auto-curage vérifie
B3-B4	49	0,035	108,01	105,99	4,12	142,76	315	0,26	3,63	0,14	0,25	0,69	0,075	2,487	1,995	Auto-curage vérifie
B4,1-B4	42	0,030	106,4	105,99	0,98	176,52	315	0,13	1,76	0,24	0,33	0,83	0,100	1,457	0,971	Auto-curage vérifie
B4-B5	41	0,030	105,99	104,53	3,56	137,24	315	0,24	3,37	0,12	0,24	0,67	0,072	2,246	1,854	Auto-curage vérifie
B5,1-B5	75	0,054	104,95	104,53	0,56	243,49	315	0,10	1,34	0,56	0,53	1,03	0,161	1,383	0,735	Auto-curage vérifie
B5-B6	40	0,029	104,53	103,09	3,6	135,70	315	0,24	3,39	0,12	0,23	0,66	0,070	2,240	1,864	Auto-curage vérifie
B6-B7	42	0,030	103,09	101,99	2,62	146,70	315	0,21	2,89	0,15	0,26	0,70	0,078	2,025	1,590	Auto-curage vérifie
B7,4-B7,3	75,5	0,054	108,86	106,93	2,56	183,62	315	0,20	2,86	0,27	0,35	1,13	0,105	4,010	1,571	Auto-curage vérifie
B7,3-B7,2	65	0,047	106,93	104,93	3,08	167,66	315	0,22	3,13	0,21	0,31	0,79	0,093	2,473	1,723	Auto-curage vérifie
B7,222-B7,221	64	0,046	115,67	114,72	1,48	191,10	315	0,16	2,18	0,30	0,37	0,88	0,112	1,905	1,197	Auto-curage vérifie
B7,221-B7,219	104	0,075	114,72	113,63	1,05	244,72	315	0,13	1,83	0,57	0,54	1,04	0,162	1,898	1,006	Auto-curage vérifie
B7,220-B7,219	49	0,035	113,98	113,63	0,71	198,31	315	0,11	1,51	0,33	0,39	0,90	0,118	1,352	0,830	Auto-curage vérifie
B7,219-B7,213	66	0,048	113,63	113,28	0,53	234,47	315	0,09	1,30	0,51	0,50	1,01	0,152	1,309	0,715	Auto-curage vérifie
B7,218-B7,217	51	0,037	115,27	114,91	0,71	201,75	315	0,11	1,50	0,34	0,40	1,14	0,122	1,711	0,825	Auto-curage vérifie
B7,217-B7,216	50	0,036	114,91	114,67	0,48	215,28	315	0,09	1,24	0,41	0,44	0,94	0,134	1,165	0,681	Auto-curage vérifie
B7,216-B7,215	50	0,036	114,67	114,4	0,54	210,57	315	0,09	1,31	0,38	0,43	0,93	0,130	1,218	0,722	Auto-curage vérifie
B7,215-B7,214	32,29	0,023	114,4	114,14	0,81	165,83	315	0,11	1,60	0,20	0,30	0,78	0,092	1,252	0,882	Auto-curage vérifie
B7,214-B7,213	85	0,061	114,14	113,38	0,89	233,75	315	0,12	1,69	0,51	0,50	1,00	0,152	1,696	0,929	Auto-curage vérifie
B7,213-B7,210	72	0,052	113,38	111,29	2,9	176,13	315	0,22	3,04	0,24	0,33	0,82	0,099	2,508	1,674	Auto-curage vérifie
B7,212-B7,211	77	0,055	114,81	113,32	1,94	194,89	315	0,18	2,48	0,31	0,38	0,89	0,115	2,202	1,367	Auto-curage vérifie
B7,211-B7,210	72	0,052	113,32	111,29	2,82	177,10	315	0,21	3,00	0,24	0,33	0,83	0,100	2,483	1,650	Auto-curage vérifie
B7,210-B7,29	47	0,034	111,29	108,56	5,81	131,79	315	0,31	4,31	0,11	0,22	0,65	0,068	2,791	2,368	Auto-curage vérifie
B7,29-B7,26	41	0,030	108,56	106,32	5,46	126,66	315	0,30	4,18	0,10	0,21	0,63	0,064	2,640	2,296	Auto-curage vérifie
B7,28-B7,27	59	0,042	110,04	108,22	3,08	161,61	315	0,22	3,14	0,19	0,29	0,76	0,088	2,393	1,726	Auto-curage vérifie
B7,27-B7,26	63	0,045	108,22	106,32	3,02	166,33	315	0,22	3,10	0,20	0,30	0,78	0,092	2,430	1,706	Auto-curage vérifie
B7,26-B7,21	54	0,039	106,32	104,97	2,5	162,61	315	0,20	2,82	0,19	0,30	0,77	0,089	2,167	1,553	Auto-curage vérifie

B7,22-B7,21	51	0,037	105,22	104,97	0,49	216,03	315	0,09	1,25	0,41	0,45	0,94	0,135	1,180	0,688	Auto-curage vérifie
B7,25-B7,23	45	0,032	108,14	106,57	3,49	142,66	315	0,24	3,34	0,14	0,25	0,69	0,075	2,286	1,835	Auto-curage vérifie
B7,24-B7,23	65	0,047	109,05	106,57	3,82	161,03	315	0,25	3,49	0,19	0,29	0,76	0,088	2,653	1,919	Auto-curage vérifie
B7,23-B7,21	63	0,045	105,97	104,97	1,59	187,60	315	0,16	2,25	0,28	0,36	0,86	0,109	1,947	1,238	Auto-curage vérifie
B7,21-B7,2	41	0,030	104,97	104,73	0,59	192,54	315	0,10	1,37	0,30	0,37	0,88	0,113	1,202	0,752	Auto-curage vérifie
B7,2-B7,1	48	0,035	104,73	103,13	3,33	147,41	315	0,23	3,26	0,15	0,26	0,70	0,079	2,293	1,794	Auto-curage vérifie
B7,1-B7	83	0,060	103,13	101,99	1,37	213,76	315	0,15	2,09	0,40	0,44	0,94	0,133	1,961	1,151	Auto-curage vérifie
B7-B8	44	0,032	101,99	101,09	2,05	156,36	315	0,18	2,55	0,17	0,28	0,74	0,085	1,891	1,405	Auto-curage vérifie
B8,4-B8,3	42	0,030	107,44	106,48	2,29	150,49	315	0,19	2,70	0,16	0,27	0,72	0,081	1,932	1,485	Auto-curage vérifie
B8,3-B8,2	40	0,029	106,48	105	3,7	135,00	315	0,25	3,44	0,12	0,23	0,66	0,070	2,263	1,890	Auto-curage vérifie
B8,2-B8,1	44	0,032	105	102,37	5,98	127,88	315	0,31	4,37	0,10	0,22	0,64	0,065	2,778	2,402	Auto-curage vérifie
B8,1-B8	79	0,057	102,37	101,09	1,62	203,44	315	0,16	2,27	0,35	0,41	0,91	0,123	2,066	1,251	Auto-curage vérifie
B8-B9	37	0,027	101,09	100,04	2,84	137,80	315	0,22	3,01	0,12	0,24	0,67	0,072	2,010	1,655	Auto-curage vérifie
B9-B10	42	0,030	100,04	99,28	1,81	157,23	315	0,17	2,40	0,18	0,28	0,74	0,085	1,787	1,322	Auto-curage vérifie
B10-B11	41	0,030	99,28	98,58	1,71	157,52	315	0,17	2,33	0,18	0,28	0,74	0,086	1,739	1,284	Auto-curage vérifie
B11,1-B11,2	47	0,034	108,05	105,31	5,83	131,70	315	0,31	4,31	0,11	0,22	0,65	0,068	2,795	2,372	Auto-curage vérifie
B11,2-B11,3	166	0,120	105,31	102,48	1,7	266,20	315	0,17	2,33	0,72	0,62	1,08	0,188	2,521	1,283	Auto-curage vérifie
B11,3-B11,4	56	0,040	102,48	101,03	2,59	163,76	315	0,21	2,87	0,20	0,30	0,77	0,090	2,219	1,581	Auto-curage vérifie
B11,4-B11,5	55	0,040	101,03	100,5	0,96	195,78	315	0,13	1,75	0,32	0,38	0,89	0,116	1,558	0,964	Auto-curage vérifie
B11,5-B11,6	51	0,037	100,5	99,58	1,8	169,20	315	0,17	2,40	0,21	0,31	0,80	0,094	1,909	1,320	Auto-curage vérifie
B11,6-B11,14	61	0,044	99,58	99,03	0,9	206,08	315	0,12	1,70	0,36	0,42	0,92	0,126	1,553	0,933	Auto-curage vérifie
B11,7-B11,8	45	0,032	109,81	107,36	5,44	131,24	315	0,30	4,17	0,11	0,22	0,65	0,067	2,695	2,292	Auto-curage vérifie
B11,8-B11,9	56	0,040	107,36	104,79	4,59	147,10	315	0,27	3,83	0,15	0,26	0,70	0,078	2,686	2,105	Auto-curage vérifie
B11,9-B11,10	57	0,041	104,79	103,79	1,75	177,33	315	0,17	2,37	0,24	0,33	0,83	0,100	1,961	1,301	Auto-curage vérifie
B11,10-B11,11	51	0,037	103,79	102,03	3,45	149,83	315	0,24	3,32	0,15	0,27	0,71	0,080	2,365	1,825	Auto-curage vérifie
B11,11-B11,12	45	0,032	102,03	100,44	3,53	142,33	315	0,24	3,36	0,13	0,25	0,68	0,075	2,297	1,847	Auto-curage vérifie
B11,12-B11,13	64	0,046	100,44	99,37	1,67	186,89	315	0,17	2,31	0,28	0,36	0,86	0,108	1,992	1,270	Auto-curage vérifie
B11,13-B11,14	55	0,040	99,37	99,03	0,62	212,77	315	0,10	1,40	0,39	0,44	0,93	0,132	1,312	0,772	Auto-curage vérifie
B11,14-B11	49	0,035	99,03	98,58	0,92	189,18	315	0,12	1,71	0,29	0,36	0,87	0,110	1,489	0,942	Auto-curage vérifie
B11,19,3-B11,19,4	44	0,032	107,29	107,06	0,52	201,94	315	0,09	1,29	0,34	0,40	0,90	0,122	1,168	0,710	Auto-curage vérifie

B11,19,5-B11,19,4	49	0.035	107,39	107,06	0.67	200,51	315	0,10	1,47	0,34	0,40	0,90	0,120	1,321	0,806	Auto-curage vérifie
B11,19,4-B11,19,1	61	0,044	107,06	106,64	0,69	216,77	315	0,11	1,48	0,41	0,45	0,95	0,136	1,402	0,815	Auto-curage vérifie
B11,19,2-B11,19,1	50	0,036	107,34	106,64	1,4	176,13	315	0,15	2,11	0,24	0,33	0,82	0,099	1,742	1,162	Auto-curage vérifie
B11,19,1-B11,19	58	0,042	106,54	104,74	3,1	160,39	315	0,23	3,15	0,19	0,29	0,76	0,088	2,383	1,731	Auto-curage vérifie
B11,19-B11,18	44,5	0,032	104,74	102,89	4,16	137,47	315	0,26	3,64	0,12	0,24	0,67	0,072	2,429	2,003	Auto-curage vérifie
B11,18,1-B11,18	99	0,071	106,38	102,89	3,53	191,37	315	0,24	3,35	0,30	0,37	0,88	0,112	2,939	1,845	Auto-curage vérifie
B11,18-B11,17	40	0,029	102,89	101,39	3,75	134,67	315	0,25	3,46	0,12	0,23	0,66	0,070	2,275	1,903	Auto-curage vérifie
B11,17,1-B11,17,2	40	0,029	104,61	103,42	2,97	140,64	315	0,22	3,08	0,13	0,24	0,68	0,074	2,089	1,695	Auto-curage vérifie
B11,17,2-B11,17	60	0,043	103,42	101,39	3,38	159,83	315	0,24	3,29	0,18	0,29	0,75	0,087	2,481	1,807	Auto-curage vérifie
B11,17-B11,16	42	0,030	101,39	100,28	2,64	146,45	315	0,21	2,90	0,15	0,26	1,13	0,078	4,010	1,597	Auto-curage vérifie
B11,16,2-B11,16,1	40	0,029	102,33	101,58	1,88	153,36	315	0,18	2,45	0,16	0,27	0,73	0,083	1,779	1,345	Auto-curage vérifie
B11,16,1-B11,16	60	0,043	101,58	100,28	2,17	173,76	315	0,19	2,63	0,23	0,32	0,81	0,098	2,142	1,446	Auto-curage vérifie
B11,16-B11,15	40,5	0,029	100,28	99,33	2,35	147,74	315	0,20	2,74	0,15	0,26	0,70	0,079	1,927	1,505	Auto-curage vérifie
B11,15,2-B11,15,1	39	0,028	100,79	99,87	2,36	145,50	315	0,20	2,74	0,14	0,26	0,70	0,077	1,909	1,509	Auto-curage vérifie
B11,15,1-B11,15	61	0,044	99,87	99,33	0,89	206,79	315	0,12	1,68	0,36	0,42	0,92	0,126	1,542	0,924	Auto-curage vérifie
B11,15-B11	42	0,030	99,33	98,58	1,79	157,62	315	0,17	2,39	0,18	0,28	0,75	0,086	1,779	1,313	Auto-curage vérifie
B11,B12	52	2,230	98,58	98,29	0,56	1095,55	1200	2,84	2,51	0,79	0,67	1,11	0,802	2,778	1,380	Auto-curage vérifie
B12-B13	58	2,230	98,29	97,24	1,81	878,52	1000	3,14	4,00	0,71	0,62	1,14	0,619	4,565	2,203	Auto-curage vérifie
B13-B14	47	2,230	97,24	96,35	1,89	871,14	1000	3,22	4,10	0,69	0,61	1,07	0,609	4,400	2,253	Auto-curage vérifie
B14-B15	40	2,230	96,35	95,88	1,18	952,68	1000	2,53	3,23	0,88	0,73	1,14	0,726	3,667	1,774	Auto-curage vérifie
B15-B16	47	2,230	95,85	95,66	0,4	1163,68	1200	2,42	2,14	0,92	0,75	1,14	0,902	2,435	1,175	Auto-curage vérifie
B16-B17	67	2,230	95,66	95,39	0,4	1164,36	1200	2,41	2,13	0,92	0,75	1,14	0,903	2,431	1,173	Auto-curage vérifie
B17-B18	59	2,230	95,39	95,07	0,54	1101,29	1200	2,80	2,48	0,80	0,68	1,11	0,810	2,751	1,361	Auto-curage vérifie
B18-B19	82	2,230	95,17	94,78	0,48	1128,75	1200	2,62	2,32	0,85	0,71	1,13	0,850	2,620	1,275	Auto-curage vérifie
B19-B20	67	2,230	94,78	94,4	0,57	1092,09	1200	2,86	2,53	0,78	0,66	1,10	0,797	2,795	1,392	Auto-curage vérifie
B20-B21	59	2,230	94,4	93,99	0,69	1051,28	1200	3,17	2,80	0,70	0,62	1,08	0,739	3,018	1,541	Auto-curage vérifie
B21-B22	93	2,230	93,89	93,36	0,57	1091,11	1200	2,87	2,54	0,78	0,66	1,10	0,795	2,800	1,396	Auto-curage vérifie
B22-B23	87	2,230	93,46	92,99	0,54	1102,10	1200	2,79	2,47	0,80	0,68	1,11	0,811	2,747	1,359	Auto-curage vérifie
B23-B24	59	2,230	92,99	92,34	1,1	964,26	1000	2,45	3,12	0,91	0,74	1,14	0,743	3,559	1,718	Auto-curage vérifie

B24-A27	236	2,230	92,34	91,36	0,42	1157,84	1200	2,45	2,17	0,91	0,74	1,14	0,893	2,467	1,191	Auto-curage vérifie
							Colle	eteur G								
G6-G5	33	0,086	101,96	100,4	4,73	194,34	315	0,28	3,88	0,31	0,38	0,88	0,115	3,436	2,136	Auto-curage vérifie
G5-G4	35	0,092	99,8	98,1	4,86	198,06	315	0,28	3,94	0,33	0,39	0,89	0,118	3,522	2,165	Auto-curage vérifie
G4-G3	36	0,094	97,5	95,91	4,42	203,77	315	0,27	3,75	0,35	0,41	0,91	0,123	3,414	2,065	Auto-curage vérifie
G3-G2	54	0,141	95,91	94,16	3,24	251,41	315	0,23	3,22	0,61	0,56	1,05	0,170	3,386	1,769	Auto-curage vérifie
G2-G1	20	0,054	94,16	93,21	4,75	163,07	315	0,28	3,89	0,19	0,30	0,77	0,090	2,994	2,141	Auto-curage vérifie
G1,5-G1,4	68	0,069	100,05	96,35	5,44	174,08	315	0,30	4,17	0,23	0,32	0,82	0,098	3,400	2,292	Auto-curage vérifie
G1,4-G1,3	75	0,074	96,35	95,54	1,08	242,58	315	0,13	1,86	0,56	0,53	1,03	0,160	1,916	1,021	Auto-curage vérifie
G1,6-G1,3	73,71	0,074	96,15	95,54	0,83	254,64	315	0,12	1,63	0,64	0,57	1,06	0,173	1,721	0,894	Auto-curage vérifie
G1,3-G1,2	67,5	0,068	95,54	95,16	0,56	265,58	315	0,10	1,34	0,71	0,62	1,08	0,187	1,447	0,737	Auto-curage vérifie
G1,2-G1,1	61,67	0,061	95,06	94,36	1,14	223,33	315	0,14	1,90	0,45	0,47	0,97	0,142	1,841	1,047	Auto-curage vérifie
G1,1-G1	65,82	0,065	94,46	93,21	1,9	207,79	315	0,18	2,46	0,37	0,42	0,92	0,127	2,265	1,354	Auto-curage vérifie
G1-A27	91,93	0,241	93,11	91,86	1,36	361,20	400	0,28	2,44	0,86	0,72	1,13	0,273	2,761	1,340	Auto-curage vérifie
							Collecteu	r de reje	t 02							
A27-A28	37	5,850	90,26	88,71	4,19	1077,71	1200	5,75	5,09	1,02	0,83	1,15	0,992	5,830	2,800	Auto-curage vérifie
A28-A29	35	5,850	88,21	86,56	4,71	1054,11	1200	6,35	5,62	0,92	0,75	1,04	0,900	5,839	3,091	Auto-curage vérifie
A29-A30	55	5,850	86,56	83,71	5,18	1035,58	1200	6,35	5,62	0,92	0,75	1,04	0,900	5,839	3,091	Auto-curage vérifie
A30-A31	70	5,850	83,71	82,42	1,84	1257,10	1500	9,93	5,62	0,59	0,55	1,04	0,821	5,839	3,091	Auto-curage vérifie
A31-D02	55	5,850	82,42	79,8	4,76	1052,05	1200	6,35	5,62	0,92	0,75	1,04	0,900	5,839	3,091	Auto-curage vérifie

V.6.Conclusion

Dans ce chapitre, nous calculons les caractéristiques dimensionnelles des collecteurs . Nous déterminons le diamètre du collecteur en fonction du débit des eaux usées et des eaux pluviales. Nous avons vérifié la vitesse et le débit de l'auto-curage pour nous assurer du bon fonctionnement du réseau d'assainissement.

Nous avons choisi un système mixte de (PVC + Béton) pour des raisons de coût et de facilité d'installation. A partir de la fiche de calcul projetée du réseau, on peut noter les points suivants :

- ❖ Le réseau est dimensionné avec des conduites cicutaire de 315 jusqu'à 1500 mm.
- Le système d'évacuation des eaux usées et pluviales est de type unitaire.
- Le schéma d'évacuation est latéral.

VI.1. Introduction

Dans le domaine d'assainissement, les éléments constitutifs d'un réseau d'égout doivent garantir une évacuation correcte et rapide des eaux de pluie, sans stagnation, et le transport des eaux usées, évitant la pétrification et les mauvaises odeurs, tout en maintenant des conditions d'hygiène favorables.

Pour atteindre ces objectifs, le réseau d'assainissement se compose de plusieurs ouvrages, parmi lesquels on distingue :

- Les ouvrages principaux : constituant l'ensemble du réseau depuis l'entrée des effluents jusqu'à leur sortie vers la station d'épuration.
- Les ouvrages annexes : Ils ont pour rôle de faciliter l'exploitation et l'entretien du réseau, telles que les regards, les bouches d'égout, les déversoirs d'orages, etc...

VI.2.Les ouvrages principaux

Les ouvrages principaux d'assainissement, qui assurent l'évacuation des effluents vers le point de rejet ou vers la station d'épuration, sont constitués de canalisations et de joints

VI.2.1.Les conduites

Les collecteurs d'assainissement sont des ouvrages permettant le transport et l'évacuation des eaux usées et pluviales. Ils sont dimensionnés en fonction de la charge d'évacuation prévue et peuvent se présenter sous plusieurs formes :

- ❖ Formes cylindriques : Ces collecteurs sont préfabriqués en usine et désignés par leur diamètre intérieur, appelé diamètre nominal. Ils sont simples à fabriquer et peuvent être utilisés pour les grandes sections. Cependant, ils présentent deux inconvénients :
 - Ils nécessitent une tranchée large.
 - La vitesse d'écoulement est faible pour des tirants d'eau faibles, ce qui rend le curage et l'entretien plus difficiles.
- ❖ Formes ovoïdes: Ces collecteurs, également préfabriqués en usine, sont désignés par leur hauteur. Ils sont utilisés pour remplacer les conduites circulaires de diamètre supérieur à 800 mm afin d'éviter le problème d'auto-curage. Cependant, ils présentent un inconvénient majeur :
 - Ils sont sensibles à l'inclinaison du sol, ce qui peut les déformer en cas de sol faible.

Observation

Pour notre projet, nous avons opté pour des collecteurs cylindriques en raison de leur disponibilité et de leur facilité d'installation. Les diamètres varient de 315 à 1500 mm, selon les exigences spécifiques du réseau.

VI.2.2.Type de canalisation

Les conduites d'assainissement sont fabriquées à partir de matériaux variés et sont utilisées pour différentes applications :

- Conduite en fonte.
- Conduite en amiante ciment.
- Conduite en polychlorure de vinyle (PVC)non plastifié.
- Conduite en polyéthylène haute densité(PEHD).

- Conduite en grés.
- Conduite en matière plastique.
- Conduite en béton armé et non armé.

A. Conduite en fonte

Ce type de conduite a été imposé à titre de sécurité pour la traversée d'un bassin hydrominéral par un collecteur d'eau usée.

Les raffineries de pétrole utilisent couramment ce type de conduites pour évacuer les eaux usées industrielles.

B. Conduite en amiante ciment

Les conduites en amiante ciment à utiliser sont celles de la série « assainissement » du type sans emboitement. Le revêtement intérieur de la paroi est à base d'enduit antiacide.

Les diamètres couramment utilisés varient de 80 à 500 mm. Les longueurs utiles varient de 0,5 à 5 m.

C. Conduite en PVC:

Les canalisations en PVC , un matériau durable et économique fabriqué à partir de polychlorure de vinyle (PVC), sont utilisées depuis plus de 50 ans dans le bâtiment et les travaux publics, dans une large gamme de diamètres allant de 315 mm à 630 mm.

Figure VI.1.: Canalisation en PVC.

(source:sotici.com)

D. Tuyaux annelés en PEHD:

Ces tuyaux en polyéthylène haute densité à double paroi se connectent par des manchons à joints. Ils sont extrêmement légers, jusqu'à 25 fois plus que le béton, ce qui permet un transport plus économique en carburant et une installation sans besoin de levage. Malgré leur légèreté, ils présentent une résistance exceptionnelle aux chocs, à la corrosion et à l'abrasion.

Leur structure se compose de deux couches parfaitement soudées :

- Paroi extérieure : Ondulée et noire, cette paroi assure la rigidité et offre une excellente résistance aux rayons UV, garantissant une stabilité optimale lors du stockage en plein soleil.
- **Paroi intérieure** : Lisse et généralement blanche, elle facilite le transport des effluents et permet une inspection aisée à l'aide de caméras.

Les tuyaux annelés en PEHD constituent une alternative attrayante aux matériaux traditionnels comme le béton, grâce à leur excellente résistance aux agents chimiques et à l'abrasion.

D. Conduites en grés artificiels :

Le grès servant à la fabrication des tuyaux est obtenu à parties égales d'argile et de sable argileux cuits entre 1200°C à 1300°C. Le matériau obtenu est très imperméable. Il est inattaquable par les agents chimiques, sauf l'acide fluorhydrique. L'utilisation de ce type de canalisation est recommandée dans les zones industrielles.

E. conduite en matières plastique

On distingue

- les conduites en matières thermodurcissables.
- les conduites en matières thermoplastiques.

Elles présentent les caractéristiques suivantes

- Résistance aux chocs.
- Résistance au gel.
- Résistance à la corrosion chimique.
- Adaptation à la déformation.
- Facilité de pose et de transport

F. Conduites en béton non armé:

Les tuyaux en béton non armé sont fabriqués mécaniquement par un procédé garantissant une grande compacité du béton. Leur longueur utile ne doit pas excéder 2,50 mètres. Cependant, ils sont sujets à une rupture brutale et sont déconseillés pour les canalisations accessibles.

G. Les conduites en béton armé :

Les tuyaux en béton armé sont fabriqués par des procédés mécaniques garantissant une haute compacité du béton, tels que la centrifugation, la compression radiale ou la vibration. Ils comportent deux séries d'armatures :

- **Génératrices** : Barres droites formant la structure principale du tuyau.
- **Spires en hélice** : Barres métalliques enroulées autour du tuyau pour le renforcer, avec un espacement maximal de 15 cm entre elles.

La longueur utile d'un tuyau en béton armé ne doit pas dépasser 2 mètres.

Figure VI.2.: Canalisation en Béton armée.

(source:www.shutterstock.com)

VI.2.3. Type de joint :

Différents types de joints peuvent être utilisés lors de l'assemblage de tuyaux en béton armé. Les principaux types de joints de tuyaux en béton sont les suivants :

❖ Joint type Rocla:

Ce type de joint assure une bonne étanchéité à la fois à l'eau transportée et à l'eau extérieure. Il est constitué de deux éléments (mâle et femelle) qui s'emboîtent pour créer un joint étanche. Ce raccord est disponible pour toutes les tailles de tuyaux.

***** Joint torique:

Ce type de joint convient aux sols meubles. Il est constitué d'un anneau en caoutchouc qui assure l'étanchéité entre les deux éléments du tuyau. Ce joint est généralement utilisé pour des canalisations d'un diamètre de 700 à 900 mm.

❖ Joint à demi-emboîtement :

Ce type de joint est utilisé pour un sol stable. Il est constitué de deux éléments, un élément mâle et un élément femelle, qui s'accouplent sur une partie de leur longueur. Utilisez des billes de mortier de ciment pour combler l'espace entre les deux éléments. Ce raccord est disponible pour toutes les tailles de tuyaux.

❖ Joints à coller :

Ce type de joint nécessite un bourrage avec du mortier de ciment. Il est utilisé pour stabiliser les sols sur les faibles pentes.

❖ Joint en plastique :

Ce type de joint est étanche et résistant à la corrosion même sous pression. Il se compose d'un bloc d'asphalte et d'un anneau ou d'un manchon en plastique. Ce raccord peut être utilisé sur tous les diamètres de tuyaux, mais convient mieux aux sols stables.

❖ Joint mécanique :

Ce type de raccord est conçu pour relier l'extrémité lisse d'un tuyau à un manchon ou un raccord d'étanchéité. Il est utilisé dans le cas de conduites sous pression.

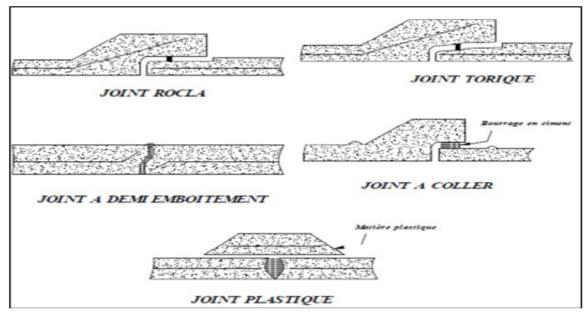


Figure VI.3. Joint sur tuyaux en béton armé

(Source: polycopie de Mr B. SALAH)

VI.2.4 Choix du type de canalisation

Le matériau des conduites est choisi en fonction :

- De la nature du sol (agressivité, stabilité).
- De la nature chimique des eaux usées transportées par la conduite.
- Des efforts extérieurs au quels les conduites sont soumises.
- Du milieu à traverser.

VI.2.5. Différentes actions supportées par la conduite

Les canalisations sont soumises à diverses actions extérieures et intérieures qui doivent être prises en compte lors de leur conception et de leur installation. Ces actions comprennent :

- Actions mécaniques: Provoquées par les forces exercées par le remblai et le radier sur les canalisations. Elles peuvent résulter du poids du remblai, des mouvements du sol ou des vibrations.
- Actions chimiques : Provoquées par les agents chimiques présents dans les eaux usées, qui peuvent être corrosifs ou abrasifs et endommager les canalisations.
- Actions statiques: Provoquées par les charges permanentes ou temporaires appliquées aux canalisations, telles que le poids du remblai, le mouvement de l'eau ou les véhicules circulant à proximité.

VI.2.6. Protection de la conduite

Le béton des canalisations d'assainissement est vulnérable aux agressions chimiques et physiques, pouvant entraîner sa détérioration. Pour contrer ces agressions, diverses mesures de protection peuvent être mises en œuvre :

- **Réduction du temps de séjour des eaux usées** : Limite le contact des eaux usées avec le béton, réduisant ainsi les risques de corrosion et d'abrasion.
- Élimination régulière des dépôts : Les dépôts favorisent le développement de bactéries anaérobies produisant de l'hydrogène sulfuré (H2S), un gaz corrosif.
- **Bonne aération**: Prévient les condensations d'humidité sur les parois des canalisations, réduisant ainsi la teneur en H2S.
- **Application d'un revêtement intérieur** : Utilisation de matériaux résistants aux agressions chimiques et à l'abrasion, comme le ciment limoneux ou le ciment sulfaté.

Observation:

Dans le cadre de notre projet, nous avons soigneusement sélectionné une combinaison de conduites en béton armé circulaire (CAO) et en polychlorure de vinyle (PVC) pour répondre aux exigences spécifiques de notre réseau d'assainissement.

Les collecteurs en béton armé, offrant une robustesse exceptionnelle, sont prévus pour des diamètres allant de $\phi 800$ à 1500 mm. Cette solution garantit la stabilité structurelle des conduites et assure une durabilité à long terme. Le choix du béton armé est motivé par sa résistance aux charges et sa capacité à maintenir l'intégrité structurelle même dans des conditions environnementales difficiles.

Parallèlement, nous prévoyons d'incorporer des conduites en PVC pour les diamètres plus petits, variant entre $\phi 315$ au 630 mm. Le PVC présente des avantages significatifs, notamment sa résistance à la corrosion, et sa durabilité . Sa légèreté ce qui facilite leur transport, leur manipulation et leur installation sur le chantier, réduisant ainsi les coûts de main-d'œuvre et d'équipement.

VI.2.7. Pose de canalisation

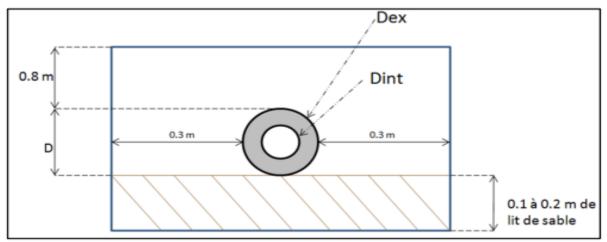
La nature du terrain est un facteur important à considérer lors de la pose de canalisation. En effet, les propriétés du sol ont un impact sur la stabilité de la canalisation et son étanchéité :

Sur terrain naturel, les canalisations peuvent être posées directement sur un lit de sable. Le sable aide à soutenir les tuyaux et à empêcher leur sédimentation.

Sur terrain mouvait, le tuyau doit être posé sur un lit de béton. Le béton est plus résistant à l'usure que le sable, ce qui contribue à assurer la stabilité des canalisations.

En terrain marécageux, les canalisations doivent être posées sur un lit de béton armé. Le béton armé est plus résistant que le béton et aide à empêcher les tuyaux de se tasser et de se déformer. **En terrain très stagnant,** les canalisation doivent être protégés des attaques chimiques. Pour ce faire, les tuyaux peuvent être enveloppés de gravier et d'un revêtement en plastique.

VI.2.8. Condition de pose


Les principales exigences pour la pose des canalisations sont les suivantes :

- La canalisation doit être enterrée sous une couverture d'au moins 80 cm au départ.
- Les canalisations d'eau usée et pluviale sont souvent posées en parallèle dans la même tranchée, mais décalées de 30 à 40 cm.
- Il faut éviter de poser les tuyaux sur des tasseaux qui concentrent les efforts d'écrasement et les font travailler en flexion longitudinale.
- Le fond de la fouille doit être bien rectiligne pour que les tuyaux reposent sur toute leur longueur.
- Les tuyaux doivent toujours être placés sur des fouilles sèches.
- Il est nécessaire d'éliminer tous les points durs (grosses pierres, crêtes rocheuses, vieilles maçonneries, etc.) du fond des fouilles, car ils constituent des tasseaux naturels.

VI.2.9.Les mode de pose

❖ Terrain ordinaire

Le fond de tranchée doit être exempt de pierres et de massifs durs : l'appui du tuyau sur sa partie inférieure doit être réalisé d'une façon aussi large que possible . le mode de pose consiste à réaliser un lit de sable sur le fond de la tranchée dressé et damé de 10cm à 20cm.

Figure VI.4: Pose de canalisation dans un terrain ordinaire.

❖ Mauvais terrain

Dans les terrains peu consistants, la canalisation doit reposer sur deux briques posées au fond et le vide sera rempli de sable.

❖ Terrain très mauvais

Dans ce type de terrain une dalle en béton préfabriqué doit être envisagé au fond de la tranchée.

Remarque:

Dans notre cas, le terrain a été évalué comme étant de type ordinaire lors de notre visite sur site. Pour ce type de terrain, la pose de la canalisation est prévue sur un lit de sable, préparé sur un fond dépourvu de massifs durs. Les joints seront confectionnés avec soin, en stricte conformité avec les directives des fabricants de conduites. Si le sol présente une faible cohésion, la canalisation sera placée sur deux briques disposées au fond, et l'espace entre elles sera comblé avec du sable. Cette méthode garantit une installation robuste et conforme aux normes, assurant ainsi la stabilité et la durabilité du réseau d'assainissement.

VI.3.Les ouvrages annexes

VI.3.1. Les ouvrages normaux

Ce sont des ouvrages essentiels situés en amont ou sur le parcours des réseaux. Ils remplissent la fonction d'accès au réseau ou de réception des effluents.

VI.3.1.1. Les branchements :

Ils sont chargés de recueillir les eaux usées et les eaux pluviales provenant des bâtiments.

Un branchement est constitué de trois éléments essentiels ;

- 1. Situé en bordure de la voie publique et au plus près de la façade de la propriété raccordée, un regard de façade est installé. Cela facilite l'accès du personnel responsable de l'exploitation et de la vérification du bon déroulement.
- 2. Il est recommandé de relier les canalisations de branchement selon un angle incliné de 45° ou 60° par rapport à l'axe général du réseau privé.
- 3. Les systèmes de connexion de la canalisation de branchement sont conçus pour s'adapter à la nature et aux dimensions du réseau public.

Le tracé de la conduite de branchement de service doit présenter une pente d'environ 3%, favorisant ainsi un écoulement avec rinçage interne de la conduite, avec un diamètre minimum de 200 mm.

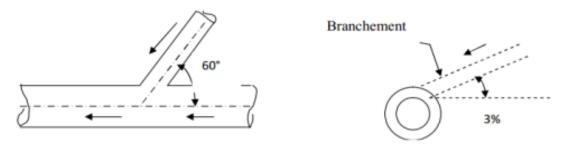
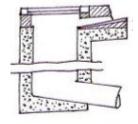


Figure VI.5. Schéma d'un branchement simple

VI.3.1.2. Les ouvrages des collectes et de transport

Les caniveaux

Ce sont des ouvrages annexes de voirie destinés à la collecte des eaux pluviales provenant de la chaussée et éventuellement du trottoir.


Les bouches d'égout

Les bouches d'égout sont destinées à collecter les eaux en surface (Pluviale et de lavage des chaussées). On les trouve :

-Au point bas des caniveaux, soit sous le trottoir. La distance entre deux Bouches d'égout est en Moyenne de 50m, la section d'entrée est en fonction de l'écartement

Entre les deux bouches afin d'absorber le flot. D'orage venant de l'amont.

Elles peuvent être classées selon deux critères : la manière de recueillir les eaux et la manière dont les déchets sont retenus. On distingue la bouche à absorption latérale (fig. a), ou à absorption par le haut (fig.b). [06]

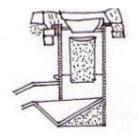


fig.a. Absorption latéral

Figure VI.6. Bouches d'égout.

fig.b. Absorption par le haut

VI.3.1.3. Les ouvrages d'accès aux réseaux (les regards)

Les regards sont des dispositifs qui permettent d'accéder à tout le système d'assainissement, ce qui facilite le contrôle et l'entretien de ce dernier.

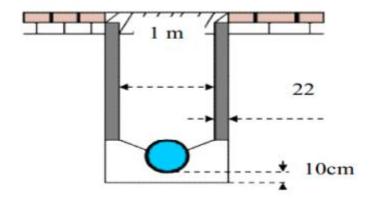


Figure VI-7: Exemple d'un regard simple

Fonction

Le regard a quatre fonctions principales dans le système d'assainissement :

- Effectuer des coudes de 90 degrés (au niveau de la canalisation).
- Inclure des équipements de nettoyage à tout instant.

- Évaluer toutes les éléments constitutifs du système d'assainissement.
- Assurer la surveillance et l'entretien de tout le système d'assainissement.

Emplacement

Un regard doit être installé sur les canalisations :

- A tous les points de jonctions.
- Au changement de direction.
- Au changement de pente de canaux.
- Aux points de chute.

Les types de regard

Les types de regards varient en fonction de l'encombrement et de la pente du terrain, ainsi que du système d'évacuation, donc on distingue :

- ❖ Regard de visite: Installés tous les 30 à 50 m le long du collecteur, ces regards varient en dimensions en fonction du diamètre du collecteur. Ils servent d'accès à l'intérieur du collecteur pour l'entretien et les réparations
- * Regard de ventilation : La présence d'air dans les égouts est la meilleure garantie contre la fermentation et la production de sulfure d'hydrogène.
- ❖ Regards simples de jonction : Ils servent à unir deux collecteurs de même ou de différentes sections et sont conçus de manière à assurer :
 - Une bonne aération des collecteurs en jonction.
 - Les dénivelées entre les radiers des collecteurs.
 - L'absence de reflux d'eau par temps sec.
 - Les niveaux d'eau des conduites à la même hauteur.
- * Regard de chute : Utilisés en cas de forte pente, ils sont très utiles pour la gestion du réseau. La distance entre les regards varie de :
 - 30 à 50 m en terrain accidenté.
 - 50 à 80 m en terrain plat.
- * Regards de toboggan : Utilisés en cas d'exhaussement des remous.
- * Regards latéraux : Placés latéralement par rapport à l'axe du collecteur lorsque le diamètre est important.
- * Regards doubles: Utilisés dans le cas d'un système séparatif, recevant à la fois la conduite d'eau pluviale et la conduite d'eau usée

Remarque:

Dans le cadre de notre projet, nous avons utilisé des regards simples pour raccorder les collecteurs d'assainissement de même diamètre ou de diamètres différents dans les zones où le terrain est plat. Dans les zones accidentées, nous avons installé des regards de chute pour gérer la pente.

Les dimensions de ces regards varient en fonction du diamètre des canalisations raccordées et de la profondeur de leur pose.

VI.3.2. Les ouvrages spéciaux

Les déversoirs d'orage

Un déversoir es t un dispositif qui évacue les pointes exceptionnelles des débits d'orage, il est destiné à décharger le réseau d'une certaine quantité d'eaux pluviales et à aider dans l'économie du projet en réduisant le réseau aval. [5]

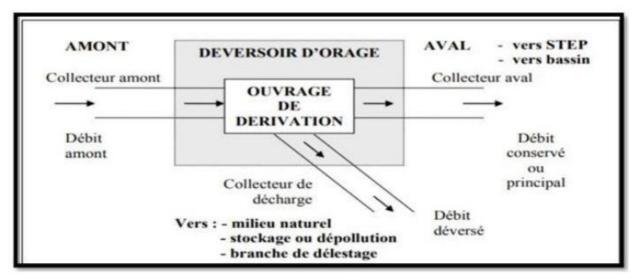


Figure VI.8. Schéma de principe de fonctionnement du déversoir d'orage

(Source: polycopie de Mr B. SALAH)

Emplacement des déversoirs d'orage

Avant l'emplacement des déversoirs d'orage il faut voir :

- Le régime d'écoulement de niveau d'eau dans la canalisation amont et aval.
- Topographie du site et variations des pentes.
- Le milieu récepteur, son pouvoir auto épurateur et la dilution nécessaire.
- La capacité de la station d'épuration pour éviter le mauvais fonctionnement et les surcharges. [4]

Les types des déversoirs

Il existe plusieurs types de déversoirs, notamment :

- Le déversoir à seuil frontal.
- Le déversoir à seuil latéral avec une conduite aval libre.
- Le déversoir à seuil latéral avec une conduite aval étranglée.
- •Le déversoir by-pass.
- Le déversoir à ouverture de fond.
- Le déversoir siphon.
- •Les déversoirs doubles.

Choix de type de déversoir

L'endroit d'emplacement du déversoir dépend de deux situations :

- On utilise le type de déversoir(bas ou haut) suite a une étude hydraulique a l'amont et a l'aval
- On utilise un déversoir frontal ou latéral en fonction de l'implantation de la STEP et de l'exutoire par apport au tracé de collecteur principale ou intercepteur.

Remarque:

Pour notre projet suite a l'étude de site, on a opté pour deux déversoir d'orage de type Latérale.

Dimensionnement des déversoirs d'orage

A. Dimensionnement du DEVERSOIR-01

Les données de base sont les suivantes :

Diamètre d'entrée : De = 1200mm.

– Débit total à l'entrée : $Qt = 3.79 \text{ m}^3/\text{s}$.

- Débit du temps sec : Qts= $0.05 \text{ m}^3/\text{s}$.

1. Calcul de temps de concentration (Tc) :

Pour le dimensionnement nous devrons d'abord évaluer le temps de concentration tc en zone urbanisée avec le réseau projeté, ce temps tc se compose de :

$Tc=t_1+t_2$

Avec:

 $t_1 = L/60V$ [min]

Le temps t1 correspond au temps d'écoulement dans le collecteur amont à partir du point le plus éloigné C1 du déversoir à savoir :

$$t_1 = \sum t_{1i}$$
 et $L = \sum Li$

Avec: t_{1i} = Li / Vi

Donc: $t_1 = 9.1$ min

Etant donné que le temps t2 varie entre 2 et 20 min, nous avons choisi un temps de 15 min :

On prend : $t_2 = 15 \text{ min}$

Tc= 24,1min

2. Calcul du coefficient de retardement

Il tient compte du temps mis par l'eau pour arriver aux déversoirs donc du temps de concentration, il démunie alors le débit pluvial.

$$Z = 1 - (tc/100)$$

Donc Z = 0.75

3. Calcul du débit de dimensionnement (débit critique) :

Le débit de dimensionnement ou appelé le débit critique (Qcr) représente un débit à partir du quel le déversoir ne contrôle plus. Il est calculé en utilisant la formule suivante :

$$Qcr = Z*Qtp$$

$$Qcr = 0.75 *3.79 = 2.84 \text{m}^3/\text{s}$$

Avec:

 $Qtp = 3,79m^3/s$

4. Calcul de débits de la STEP :

Le débit de la station d'épuration (Qstep) est déterminé en utilisant la formule suivante en choisissant une dilution de 3 :

Qstep = Cdilution*Qts

Qstep= $3*0.05= 0.15 \text{ m}^3/\text{s}$

Avec:

 $Qts = 0.05 \text{ m}^3/\text{s}$

5. Calcul du débit déversant

Le débit déversé c'est Qdev est obtenu en combinant deux composantes :

$$Qcr = Qd\acute{e}v + Qstep$$

Où :

Qdév :Débit déversé par le déversoir vers le milieu naturel ou un autre collecteur :

Odév = Ocr - Ostep

 $Qd\acute{e}v = 2.84 - 0.15 = 2.69 \text{ m}^3/\text{s}$.

6. Détermination des hauteurs d'eau correspondant aux débits en amont du déversoir :

Pour effectuer les calculs, on se réfère à l'abaque de BAZIN (Annexe N°4) afin de trouver les hauteurs d'eau correspondant aux débits à l'amont du déversoir. La hauteur d'eau nécessaire

pour la station d'épuration (Hstep) correspond à la hauteur du seuil du déversoir, qui dirige le débit (Qstep) vers la station d'épuration. On utilise également l'abaque de variation des débits et des vitesses en fonction de la hauteur de remplissage.(annexe N°2)

RQstep = Qstep/ Qps Abaque

RhHstep=Rh*D

RQstep = Qstep/Qps = 0.15/5, 79 = 0.03,

Rh = 0.07

D'où:

Hstep=0.07*1.2=0,08m.

7. Détermination de la hauteur de déversement :

Hdév Correspond à la hauteur d'eau déversée par le déversoir vers le milieu naturel ou un autre collecteur.

Hdév= H-Hstep

RQcr = Qcr / Qps Abaque Rhcr=Hcr/D Hcr = Rhcr*D

≻Détermination de H

RQ = Qcr/Qps=2.84 / 5.79=0.49

Rhcr = 0.48

D'où:

H= Rh. D= 0.48*1.2= 0.58m

Détermination de Hdév :

 $Hd\acute{e}v = H-Hstep = 0.58-0.08 = 0.5m$

8. Détermination de la longueur du seuil du déversoir(b) :

On applique la formule de BAZIN pour trouver la longueur du seuil du déversoir:

Qdev=
$$m*b*Hdev*\sqrt{(2*g*Hdev)}$$
.

Avec:

m: Coefficient de débit en fonction du type de déversoir.

✓ un déversoir d'orage Latérale, On prend m = 0.4.

Hdév: Hauteur d'eau déversée par le déversoir.

g: La pesanteur, $g = 9.81 \text{ m/s}^2$ (accélération due à la gravité).

$$\boldsymbol{b} = \frac{\text{Qdev}}{\text{mhdev}\sqrt{2 \times \text{g} \times \text{Hdev}}}$$

\rightarrow b= 4,2m

Remarque:

Puisque la largeur de ce déversoir est grand nous optons dans ce cas pour un déversoir d'orage latérale à 2 seuils déversant.

Dans ce cas la largeur devient :

L'=L/2=2.1m

B. Dimensionnement du DEVERSOIR-02

1. Calcul de temps de concentration (Tc)

Tc=t1+t2

t1 = 10,45min

t2 = 15 min

Donc : **Tc= 25,45 min**

2. Calcul de coefficient de retardement

Z = 0.74

3. Calcul du débit de dimensionnement (débit critique)

Qcr = Z*Qtp

Avec:

$$Qtp = 5.85 \text{ m}^3/\text{s}$$

$$Qcr = 0.74 *5.85 = 4.33 \text{m}^3/\text{s}$$

4. Calcul de débits de la STEP

Qstep = Cdilution*Qts

Qstep=
$$3*0.123=0,37 \text{ m}^3/\text{s}$$

Avec : Ots =
$$0.123 \text{ m}^3/\text{s}$$

5. Calcul du débit déversant

$$Qd\acute{e}v = Qcr - Qstep$$

$$Qd\acute{e}v = 4,33 - 0,37 = 3,96 \text{ m}^3/\text{s}$$

6. Détermination des hauteurs d'eau correspondant aux débits en amont du déversoir

$$RQstep = Qstep/Qps=0,123/6,35=0.02,$$

Rh = 0.05

D'où:

Hstep=0.03*1.2=0,06m

7. Détermination de la hauteur de déversement

Hdév= H-Hstep

Détermination de H

RQ=Qcr/Qps=4,33/6,35=0,68

Rhcr = 0.59

D'où:

H=Rh. D=0.59*1.2=0.7 m

Détermination de Hdév

$$Hd\acute{e}v = H-Hstep = 0,7-0.06 = 0,64m$$

8. Détermination de la longueur du seuil du déversoir(b)

$$\boldsymbol{b} = \frac{\text{Qdev}}{\text{mhdev}\sqrt{2\text{ghdev}}}$$

\rightarrow b= 4,3 m

Remarque:

Puisque la largeur de ce déversoir est grand nous optons dans ce cas pour un déversoir d'orage latérale à 2 seuils déversant.

Dans ce cas la largeur devient :

$$L' = L/2 = 2,1 \text{ m}$$

VI.4.station de relevage

VI.4.1.Définition de poste de relevage

Un poste de relevage est installé chaque fois que le niveau d'évacuation des eaux usées se trouve en dessous de celui du réseau de collecte (habitat individuel, collectif, collectivités) ou lorsque le réseau collectif est à un niveau inférieur à celui de la station d'épuration. Le poste de relevage pompe alors les eaux usées pour les acheminer à une altitude supérieure.

VI.4.2. Choix de la variante d'emplacement :

Pour le choix de la variante la plus adéquate nous devons suivre les critères suivants :

- ✓ Le site d'implantation de la station de pompage doit être géologiquement stable .
- ✓ Evite les zones inondables .
- ✓ La station de pompage des eaux usées doit être proche du réservoir d'orage.
- ✓ Prévoir deux a un schéma à un réseau électrique.
- ✓ Evite les contre pente .
- ✓ Réduire les travaux de terrassement.
- ✓ Il faut prévoir un trop plein et une zone de débordement (en cas d'un débit dépassent la capacité de la station de pompage).
- ✓ Prévoir un réseau drainage .
- ✓ Prévoir une aération .
- ✓ Prévoir une verdure autour de la station de pompage .

Dans notre cas d'après la sortie de terrain on remarque que La hauteur manométrique est très importante, Le responsable de l'assainissement a suggéré la possibilité de procéder avec un double relevage.

VI.4.3.Dimensionnement de station de relevage N°01

1.Les données de départ

Côte de départ: $Z_{R.S.R1} = 20.2m$.

Côte d'arrivée: $Z_{R.S. R2} = 61,07 \text{ m}$.

Longueur de la conduite 278,14m

Le débits a pomper $Q = 0.05*3=0.15m^3/s$

2. Hauteur Géométrique de refoulement

 $\mathbf{Hg} = \mathbf{Z}_{R.S.R1} - \mathbf{Z}_{R.S.R2}$

Avec:

- Hg: La hauteur géométrique.
- **Z**_{R.S.R1}: La cote de radier de la station de relevage N°01.
- $\mathbf{Z}_{\mathbf{R.S. R2}}$: La cote de radier de la station de relevage N°02.

Hg= 61,07-20,2=40,87m.

3.Les pertes de Charge

 $\Delta H = Hlin + Hsin$

avec:

 ΔH : La perte de charge totale.

Hlin: Les pertes de charge linéaire.

Hsin: Les pertes de charges singulier.

$$\mathbf{Hlin} = \frac{8 \times \lambda \times L \times Q^2}{\pi \times g \times D^5}$$

Avec:

- L: la longueur de la conduite de refoulement.
- Q:Le débit à pomper , $Q = 0.15 \text{m}^3/\text{s}$.
- g: la pesanteur, $g=9.81 \text{ m/s}^2$.
- D: le diamètre de la conduite de refoulement.
- $\lambda = (1,14-0,86 \operatorname{Ln}_{\overline{D}}^{\varepsilon})^{-2}$

Tel que : ε : La rigosité de la conduite ($\varepsilon = 0.01$).

=> on prend un diamétre approximatif de Dn = 400 mm.

- $\lambda = (1.14 0.86 Ln \frac{0.01}{400})^{-2} = 0.01$
- Hlin=1.58
- Hsing = 15% Hlin = 0.23 m

$$\Delta$$
H= 1,81m.

4. Hauteur manométrique totale

$$HMT = Hg + \Delta H = 42,68m.$$

Choix de matériaux :

Dans ce cas : notre choix de matériaux de la conduite de refoulement et PEHD PN6 car il est suffisant de résister la pression HMT=42,68m.

D = 400 mm

il faut que : 0.4 < V < 1.5 m/s

$$Vref = \frac{4 \times Q}{PI \times D^2} = 1.2 \text{m/s}$$

Condition vérifié.

5.Détermination le type de pompe

En utilisant le catalogue de logiciel caprari :

 $Q = 0.15 \text{m}^3/\text{s} = 150 \text{ l/s}$

HMT = 42,68m

Dans notre cas on choisit deux pompe de type KCM150R 55042NA-E

ELECTROPOMPE submersible, le type d'installation est accouplement automatique immergé. le nombre de pompe de secours =1.

Tableau VI.1. Les caractéristique de la pompe.

Nombre de pompe	1 pompes		
Débit Q	75 l/s		
Hauteur de refoulement	42,7 M		
Puissance absorbée	62KW		
N(tr/min)	1450tr/min		
NPSH	2,63m		

Tableau VI.1. Les caractéristique de la pompe (suite).

Passage libre	102 mm
Rendement de la pompe	61,3%
Orifice de refoulement	DN150
Installation	accouplement automatique immergé
Poids de la pompe	812 Kg

Figure VI.9. Les courbes caractéristique de la pompe.

(source: logiciel Caprari)

Dimensions mm b = 885d = 35DN = PN10DNp = PN10f = 180g = 305HI = 95J = 295K = 340Ls1 = 1190 Ls3 = 445 ∇_{1} m = 54008 = 0øa" = 3 øe = 12,5 $\phi X = 22$ p = 24q = 280r = 210t = 555v = 117 8 = W

Figure VI.10. schéma de la pompe.

source:(logiciel Caprari)

6.Choix de type de moteur

D'après CAPRARI : le moteur est Asynchronie triphasique

Tableau VI.2. Caractéristiques techniques du moteur.

Moteur	Asynchronie triphasique			
Puissance nominale	62kw			
Nombre de pole	4			
Tension	400 V			
Rotor	guidé par roulements à bille lubrifiés à la			
	graisse			
Fréquence	50Hz			
Courant nominal	117A			
Classe d'isolation	F			

7.Les équipements en amont et en aval :

En amont :

Notre pompe est une pompe submergée, on n'a pas besoin d'une conduite d'aspiration.

❖ En aval:

Diamètre de refoulement :

$$Dr = 400 \text{ mm}$$

> Le diamètre divergent :

$$dr = 0.4 \times Dr = 160 \text{ mm}$$

➤ Longueur de divergeant :

L div =
$$(3.5 \div 4)$$
 (Dr – dr) = 3.5 (160 – 252) = 840 mm

Diamètre de conduite de vidange :

Clapet:

$$DN (clapet) = DN (vanne) = 400 mm$$

8. Dimensionnement des équipements auxiliaire :

1-système anti-bélier (réservoir d'air)

• Calcul de la célérité :

$$C = \frac{9900}{\sqrt{48,3+K\times\frac{D}{e}}}$$

Avec:

D : diamètre de la conduite.(D=400mm)

e : épaisseur de la conduite(e=15,3mm).

K : coefficient dépend de la nature de matériaux (PEHD (K=83)).

C=210,2m/s.

La valeur de coup de bélier (perte de charge):

$$V_0 = \frac{4 \times Q}{\pi \times D^2} = 1.2 \text{m/s}$$

$$b = \frac{c \times v_0}{q} = 25,71 \text{ m}.$$

- Cas de surpression Hs=Hg+b=66,58 m.
- Cas de dépression Hd=Hg-b = 15,16m.

ENSH 2024

• Les caractéristiques de l'air dans le réservoir :

Z0 = Hg+10=41,87 m (C'est la charge statique absolue).

 $Zmax = Z0+b=67,58 \text{ m}(C'est la charge maximale absolue}).$

Zmin = Z0-b=16,16 m (C'est la charge minimale absolue).

Z = Hg+b = 67,58 m (la charge tenant compte du coup de bélier).

$$h0 = \frac{V^2}{2g} = 0.07 \text{m}$$

D'après l'abaque (ZmaxZ0;h0Z0) de VIBERT situé dans le (ANNEXE N°04) on aU0/Ls=2*10⁻².

LS= 278,14*
$$\frac{\pi \times 0.4^2}{4}$$
 = 34,95 m³.

 $U0=0.7 \text{ m}^3$.

U0: Volume d'air.

Umax=U0*Z0/Zmin=1.81 m3.

 $U=1,3 \times Umax=2,35m^3$

2-Le panier degrillieur (a nettoyage automatique avec des grilles fin):

La section de la grille : $s = Qmax / Va \times O \times C$

Avec:

- Qmax : le débit de passage des eaux à travers la grille = 150L/s.
- Va : vitesse = 1.2 m/s.
- O: coefficient de contraction O = 0.833.
- OR E : espacement entre les barreaux =50.
- D : diamètre des barreaux = 10.
- C : coefficient de colmatage = 0.4.

Donc: $S = 0.15/0.48 \times 0.833 \times 0.4 = 0.37 \text{ m}^2$

9.Dimensionnement de la bâche

Le débit des eaux usées devant être refouler est de Qr = 150 l/s

La bâche est de forme circulaire de dimensions suivantes :

 $V = 18.16m^3$

D = 3.4 m

H=2m

VI.4.4.Dimensionnement de station de relevage N°02

1.Les données de départ

Côte de départ: $Z_{R.S.R2} = 61,07m$.

Côte d'arrivée: $Z_{A19} = 107,15 \text{ m}$.

Longueur de la conduite 258, 4m

Le débits a pomper $Q = 0.05*3=0.15m^3/s$

2. Hauteur Géométrique de refoulement

 $Hg = Z_{A19} - Z_{R.S.R2}$.

Avec:

Hg: La hauteur géométrique .

- Z_{R.S.R2}: La cote de radier de la station de relevage N°09.
- **Z**_{A19}:La cote de plan d'eau dans le regard A19.

Hg= 107,15-61,07= 40,87m.

3.Les pertes de Charge

$\Delta H = Hlin + Hsin$

=> on prend un diamétre approximatif de Dn = 400 mm.

•
$$\lambda = (1.14 - 0.86 Ln \frac{0.01}{400})^{-2} = 0.01$$

- Hlin= $1,47 \sim 1,5$
- Hsing = 15% Hlin = 0.23 m

$$\Delta$$
H= 1,81m.

4. Hauteur manométrique totale

$$HMT = Hg + \Delta H = 42,68 \text{ m}.$$

Remarque:

On opte pour des stations identiques avec une HMT= 42,7m et un débit de 150 l/s , donc les dimension sont les même pour les deux station de relevage .

Tableau VI.3. Fiche technique des deux station de relevage.

Désignation	Quantité	Unité	Destination
Station de relevage N°1 : Type d'installation : accouplement automatique immergé	150 l/s	L ³ .T ⁻¹	Pompage des eaux usées vers la station de relevage N°2.
Pompe : nombre de pompe principale nombre de pompe de secours Débit nominal HMT nominal rendement	02 01 75 42,7 61,3	L/S M %	Assurer la pression nécessaire pour élevée l'eau usée vers la station de relevage N°2
Moteur: type: Asynchrone tri phasique nombre de moteur puissance de moteur courant nominale tension d'alimentation vitesse de rotation poids de moteur	01 62 117 400 1460 812	KW A Volts Tr/min Kg	Entrainement de l'arbre de la pompe et la roue par la suie

Tableau VI.3.Fiche technique des deux station de relevage (suite).

	Tableau VI.3. Fiche technique des deux station de relevage (suite).				
Canalisation de refoulement :			Véhiculer l'eau usée vers l'ouvrage d'arrivé		
pas de collecteur secondaire collecteur principale					
type de matériaux PEHD	200 1 4	3.6			
• longueur	278,14	M			
diamètre	400	mm			
Les équipement en aval :					
divergent					
divergentLdiv	840	M	Changement de section élargissement		
- clapet	400	mm	Clargissement		
DN			Permet a l'eau de passer dans		
			un seul sens		
Equipement auxiliaires			Protection contre le		
 Réservoir d'air 			coup de bélier		
> volume	0,7	M^3	 Protection contre 		
			l'incendie		
Extincteur			Levage des		
pompage d'incendie			équipement en vue de		
pont roulantaérateur			l'entretien		
aérateurdébitmètres			 Aération de la bâche 		
manomètre			de l'effluent		
tableau de commande			Mesure de débitMesure de la pression		
			 Mesure de la pression 		
Station de relevage N°2 :	150 l/s	L ³ .T ⁻¹	Pompage des eaux usées vers		
Type d'installation : accouplement			le regard A19.		
automatique immergé					
Pompe:			Assurer la pression		
 nombre de pompe principale 	02		nécessaire pour élevée l'eau		
 nombre de pompe principale nombre de pompe de secours 	01		usée vers le regard A19.		
Débit nominal	75	L/S			
HMT nominal	42,7				
• rendement	61.0	M			
	61,3	%			
		/0			

Tableau VI.3. Fiche technique des deux station de relevage (suite).

Moteur: type: Asynchrone tri phasique nombre de moteur puissance de moteur courant nominale tension d'alimentation vitesse de rotation poids de moteur	01 62 117 400 1460 812	KW A Volts Tr/min Kg	Entrainement de l'arbre de la pompe et la roue par la suie
Canalisation de refoulement : pas de collecteur secondaire collecteur principale type de matériaux PEHD longueur diamètre	258, 4 400	M mm	Véhiculer l'eau usée vers l'ouvrage d'arrivé
Les équipement en aval : divergent Ldiv clapet DN	840 400	m mm	Changement de section élargissement Permet a l'eau de passer dans un seul sens
Equipement auxiliaires ■ Réservoir d'air ➤ volume ■ Extincteur ■ pompage d'incendie ■ pont roulant ■ aérateur ■ débitmètres ■ manomètre ■ tableau de commande	0,7	M³	 Protection contre le coup de bélier Protection contre l'incendie Levage des équipement en vue de l'entretien Aération de la bâche de l'effluent Mesure de débit Mesure de la pression

VI.5.Conclusion

Dans ce chapitre, nous avons étudié divers ouvrages intégrés dans le réseau d'assainissement. Ces infrastructures sont essentielles pour l'efficacité hydraulique du système, l'économie des ressources et la facilité d'exploitation.

Les déversoirs d'orage, situés en amont, permettent de gérer les flux excédentaires, diminuant ainsi la pression sur les sections en aval et protégeant les ouvrages contre les surcharges potentielles.

Les regards, en plus de servir de points de raccordement, de jonction et d'aération, facilitent l'entretien et les inspections régulières du réseau. Ils jouent également un rôle crucial dans la régulation de la pente dans les zones à forte inclinaison. Ces éléments sont indispensables pour le contrôle et la maintenance, assurant ainsi un fonctionnement optimal.

la station de relevage est principalement un dimensionnement hydraulique , nous avons réalisé une étude de dimensionnement de deux poste de relevage pour connecter les deux rejet a un seul rejet .

La sélection des formes de sections et des matériaux utilisés est réalisée avec soin pour répondre aux contraintes internes et externes de la canalisation. Cette sélection vise à garantir la résistance, l'étanchéité et la durabilité du réseau d'assainissement, assurant ainsi sa pérennité et son efficacité

CHAPITRE VII Organisation de chantier

VII.1. Introduction

L'organisation d'un chantier est un ensemble d'aménagements conçus dans le but de Effectuer dans des conditions optimales pour un projet ou un travail n'importe lequel. L'organisation comprend les moyens de définir et de coordonner nécessaire pour terminer le travail tout en restant fidèle aux instructions Conditions générales imposées par le maître d'ouvrage. Ces lignes directrices générales peuvent être résumées dans certains des éléments suivants : rapidité , Économie et qualité .

Organiser un chantier, c'est donc prendre toutes les mesures pour que La mise en œuvre du projet fait face à :

- en conformité avec les plans établis;
- de bonne qualité;
- aux moindres délais;
- aux moindres coûts;
- sans accidents humains.

VII.2. Exécution des travaux

Les principales opérations à exécuter pour la pose des canalisations sont:

- ❖ La vérification, manutention et stockage des conduites.
- Le décapage de la couche de goudron (si elle existe) ou de végétation.
- L'exécution des tranchées et des fouilles pour les regards.
- L'aménagement du lit de pose.
- La mise en place des canalisations en tranchée.
- ❖ L'emplacement des jalons et des piquets(piquetage).
- L'assemblage des tuyaux.
- La construction des regards.
- Les essais d'étanchéité pour les conduites et les joints.
- . Le remblai des tranches.

VII.3. Manutention et stockage des conduites

VII.3.1. Manutention

Afin de préserver les conduites pendant le transport, il faut éviter les chocs en particulier sur les extrémités, et éviter le déchargement brutal sur le sol

VII.3.2. Stockage

Pour le stockage du matériel, il faut absolument respecter ces consignes :

- L'aire de stockage doit être plane et nivelée.
- Les accessoires et les conduites doivent être à l'abri du soleil.
- Préserver les conduites des produits chimiques, des solvants et des huiles.

VII.3.3. Décapage de la terre végétale

C'est une opération préliminaire, qui consiste à éliminer la couche superficielle du sol (les dix (10) premiers centimètres de la surface) constituée principalement de matière végétale.

VII.3.4. Exécution des tranchées et des fouilles des regards

Le fond de fouille doit être arasé à la pente du projet, en évitant le remaniement, et en respectant les largeurs minimales des tranchées par mesure de sécurité.

VII.3.5. Aménagement du lit de sable

Le lit de pose de sable sur lequel les conduites seront posées est d'une d'épaisseur égale au moins à 10 cm. Il sera bien nivelé suivant les côtes du profil en long.

VII.3.6.Emplacement des piquets

Dans chaque point d'emplacement d'un regard, on doit placer un jalon de piquet.

VII.3.7. Pose des canalisations

Durant la pose de canalisation, il faut vérifier que :

- La décente du tuyau se fait dans une fouille blindée
- Les surfaces des abouts doivent être débarrassés.
- Les joints doivent être vérifiés et nettoyés.

VII.3.8. Assemblage des canalisations

Les joints des conduites circulaires à emboîtement sont effectués à l'aide d'une bague renforcée d'une armature et coulée sur place à l'intérieur d'un moule.

VII.3.9. Essai d'étanchéité

C'est une épreuve d'étanchéité au quelle sont soumises les conduites déjà placées au fond de la tranchée.

L'essai est réalisé avec de l'eau, de l'air, de la fumée ou un mélange des deux.

VII.3.10. Exécution des regards

Les regards ont généralement une forme cubique, leurs dimensions varient en fonction des profondeurs des tranchées. La réalisation de ces regards s'effectue sur place avec le béton armé comme on peut avoir aussi des regards préfabriqués.

Les différentes opérations pour l'exécution d'un regard sont les suivantes :

- * Réglage du fond du regard.
- * Exécution de la couche du béton de propreté.
- Ferraillage du radier de regard.
- Bétonnage du radier.
- Ferraillage des parois.
- Coffrage des parois.
- **&** Bétonnage des parois.
- Décoffrage des parois.
- Ferraillage de la dalle.
- Coffrage de la dalle.
- **&** Bétonnage de la dalle.
- Décoffrage de la dalle.

VII.3.11. Réalisation des branchements

Les branchements comprennent de l'aval vers l'amont :

- Le raccordement de la canalisation de branchement vers la canalisation principal (généralement un regard).
- La canalisation de branchement proprement dite avec une pente au moins égale à 3%;
- Eventuellement un regard collecteur de branchement.

 Sur chaque branchement individuel, la boite de branchement à la limite du domaine public.

VII.3.12. Remblayage et compactage

Pour assurer la protection de la canalisation, et la transmission des charges, on doit effectuer un remblayage avec un matériau similaire à celui mis en œuvre pour le remblayage latéral.

VII.4. Choix des engins

Pour réaliser ces travaux, on doit utiliser différents types d'engins, car chaque opération nécessite un engin précis. Ces engins sont répartis en trois grandes familles :

! Les engins de chargement

- Les chargeuses.
- Les pelles hydrauliques.
- Les pelles mécaniques.

***** Les engins de transport

- Les brouettes.
- Les camions bennes.
- Les dumpers.
- Les motos basculeurs.
- Les véhicules utilitaires.

Les engins de mise en place des matériaux

- Les niveleuses.
- Les compacteurs.
- Les finisseurs.

Concernant notre projet, nous avons utilisé les engins suivants :

VII.4. 1.Pour le décapage

Le décapage est une opération de terrassement visant à enlever la couche superficielle de terre, composée de végétaux et de déchets organiques, qui pourrait rendre instable le futur édifice. Cette couche est retirée sur une épaisseur de 10 cm à 40 cm et stockée pour une éventuelle réutilisation lors de l'aménagement du terrain, car la terre végétale de qualité est recherchée pour les aménagements extérieurs.

Nous utilisons une niveleuse pour les terrains faciles à décaper, car c'est l'engin le plus adapté à ce type de travaux. Pour les terrains difficiles, nous utilisons un bulldozer.

VII.4. 2.Pour l'excavation des tranchées

Nous employons une pelle équipée en rétro. Les pelles sont des engins de terrassement adaptés à tous types de terrains. Elles exécutent les déblais et les chargent. Leur fonctionnement est discontinu, incluant les phases suivantes :

- Fouille
- Transport
- Déchargement
- Remise en position des déblais

Pour les terrains difficiles, nous utilisons une pelle à chenille.

VII.4. 3. Pour le remblaiement des tranchées

Le remblayage est effectué avec une chargeuse, qui possède un corps automoteur articulé et une grande benne à l'avant.

- Pour les grands travaux, nous utilisons un chargeur.
- Pour les travaux moins importants, nous employons un rétro-chargeur.

VII.4. 4.Pour le compactage

Le compactage de la terre après remblayage est réalisé avec un compacteur à rouleaux lisses, un engin lourd qui tasse la terre grâce à un ou plusieurs rouleaux à l'avant.

VII.5. Détermination des différents volumes des travaux

VII.5.1. Volume du décapage de la couche végétale

$$V_{d\acute{e}c} = H_{vc} \times L \times B_{CV} \dots (VII.1)$$

Tel que:

- V_{déc}: volume de la couche végétale décapée (m³).
- Hcv: profondeur de la couche végétale (m)
- L : longeur totale de la tranchée (m).
- Bcv: largeur de la couche végétale (m).

VII.5.2. Volume du déblai des tranchées

$$V_d = B \times L \times H....(VII.2)$$

Tel que:

- V_d: volume du déblai des tranchées (m₃).
- B : largeur de la tranchée (m).
- H: profondeur de la tranchée (m).
- L : longueur totale de la tranchée (m).

VII.5.3. Volume occupé par le lit de sable

$$V_{ls} = e \times L \times B....(VII.3)$$

Avec:

- V_{1s}: volume du lit de sable (m₃).
- e : épaisseur de la couche de sable (m).
- B : largeur de la tranchée (m).
- L : longueur totale de la tranchée (m).

VII.5.4. Volume occupé par les conduites

$$V_{cond} = (\pi \times \frac{Dext}{4}) \times L....(VII.4)$$

Avec:

- V_{cond}: volume occupé par les conduites (m₃).
- Dext : diamètre extérieur de la conduite (m).
- L : longueur totale de la tranchée (m).

VII.5.5. Volume de l'enrobage

Avec:

- He: hauteur d'enrobage

- B : Largeur de la tranchée (m).

- L : longueur totale de la tranchée (m).

VII.5.6. Volume du remblai de protection

$$V_{rem} = V_d - (V_{cond} + V_{d\acute{e}c} + V_{ls})$$
 (VII.6)

Avec:

- V_{rem}: volume du remblai (m₃).

- V_d: volume du déblai (m₃).

- V_{1s}: volume du lit de sable (m₃).

- V_{déc}: volume de la couche végétale décapée (m₃).

- V_{cond}: volume de conduite (m₃).

VII.5.7. Volume excédentaire

$$V_{\text{exc}} = V_{\text{f}} - V_{\text{rem.....}}$$
 (VII.7)

Tel que:

- Vexc: Volume du sol excédentaire (m3).

- V_f: Volume du sol foisonné (m₃).

- V_{rem}: Volume du remblai (m₃).

Sachant que:

$$Vf = Vd \times Kf....(VII.8)$$

Avec:

- Kf: Coefficient de foisonnement dépend de la nature de sol.

Tableau VIII.1. Coefficients de foisonnement pour différente nature de sol

Type de sol	Kf
Sables, matériaux fins	1.08-1.17
Limons argileux	1.14-1.28
Argiles	1.25-1.30

(Source: Métré de terrassement-cours génie civil)

Pour notre cas, nous avons pris $K_f = 1,2$

Les données relatives au calcul des volumes sont présentées dans le tableau ci-dessous :

Tableau VIII.2. Résultats de calcul des volumes

Les volumes	Vdéc (m³)	Vd (m ³)	Vls (m ³)	Vcond (m ³)	Vrem (m ³)	Vexc (m ³)	
La Somme	1357,03	27080,53	2707,91	3357,4	19658,2	12838,44	

VII.6.Devis quantitatif et estimatif

Tableau VIII.3. Devis quantitatif et estimatif.

N	0	Désignation des travaux	U	Quantité	Prix Unitaire (DA)	Montant(DA)		
I		Travaux de terrassement						
	1	Décapage de la terre végétale	M³	1357,03	150	203554,5		

Tableau VIII.3. Devis quantitatif et estimatif (suite).

2	Déblai de tranchée	M^3	27080,53	250	6770132,5				
3	Pose lit de sable ,e=20cm	M³	2707,91	1000	2707910				
4	Remblai compacté de la tranchée avec de la terre épierrée	M ³	19658,2	200	3931640				
5	terres excédentaires à la décharge publique	M ³	12838,44	300	3851532				
6	Grillage avertisseur	Ml	19113	50	955650				
II	W V C L C L S S C W L	Mark Mark							
1									
_					TO LIVE TO THE				
				nnelé					
1.1	Canalisation en PEHD Annelé Ø315mm Ml 14155,62 3800 53791356								
1.2	Ø400mm	Ml	2457,83	4800	11797584				
1.3	Ø500mm	Ml	643	6000	3858000				
1.4	Ø630mm	Ml	166	8000	1328000				
		Cana	lisation en CA	0					
1.5	Ø800mm	Ml	114	9000	1026000				
1.6	Ø1000mm	Ml	348	12000	4176000				
1.7	Ø1200mm	Ml	1161	15000	17415000				
1.8	Ø1500mm	Ml	70	18000	1260000				
	2								
2.1	Exécution de r	200mm Ml 1161 15000 17415000 500mm Ml 70 18000 1260000 2 Génie civil Exécution de regard de visite ou de jonction en béton armé avec tampon:							
2.2	Regard	U	388	100000	38800000				
2.3	Déversoir	U	2	800000	1600000				
	d'orage				100000				
2.4	Station de relevage (génie civil et équipements)	U	2						
	Totau	X		<u> </u>	30679748,2				
Total(T.T.C) 192152107									

Arrêté le montant de ce devis quantitatif et estimatif à la somme de : cent quatre-vingt douze millions cent cinquante deux mille cent sept dinars algériens, en toutes taxes comprises

VII.7. Conclusion

l'organisation du chantier est indispensable pour la mise en place d'un système d'assainissement, dans le but d'économiser des dépenses, de l'énergie et du temps, tout en améliorant le rendement du travail.

La discipline nous donne également la possibilité de réaliser un devis quantitatif et estimatif qui nous permet d'évaluer le coût global de notre projet, qui est estimé à **192152107** DA.

Conclusion générale

Conclusion générale

En conclusion de cette étude, il est possible de conclure que dans ce mémoire, nous avons élaboré un système d'assainissement des eaux usées et pluviales (Agglomération de Sidi Ben Adda) vers la station d'épuration de la wilaya de Ain T'émouchent dans le but de préserver la santé publique et l'environnement.

Nous avons débuté en présentation de la zone d'étude et ses particularités. Ensuite, l'étude hydrologique est réalisée afin de mesurer l'intensité moyenne maximale, qui est de 146 L/s/ha, en se basant sur les résultats obtenus par l'ajustement de la série pluviométrique à la loi GEV. Le système que nous avons mis en place est un système unitaire en raison de la configuration du site. Il utilise un schéma d'évacuation par déplacement latéral pour acheminer les eaux usées vers la station d'épuration.

Pour l'estimation des débits évacuer, Nous avons pris en compte les débits domestiques et publiques pour calculer les débits des eaux usées, car il n'y a pas d'industries dans la zone. Afin d'évaluer les débits de pluie, nous avons divisé la zone en 34 sous-bassins, sélectionné le coefficient de ruissellement en fonction de la nature de la surface drainée et choisi une méthode rationnelle.

Les diamètres en PVC sont de 315 à 630 mm et en béton armé de 800 à 1500 mm.

L'installation des déversoirs d'orage, qui ont pour fonction de décharge et diminuer les dimensions globales des collecteurs, d'améliorer les conditions de collecte et de connexion, et de réduire les charges liées aux déversements pendant les périodes de pluie. Afin de simplifier l'entretien et la gestion, et assurer le bon fonctionnement des déversoirs d'orage, des bouches d'égout et des regards de visite et de chute ont été ajoutés au réseau.

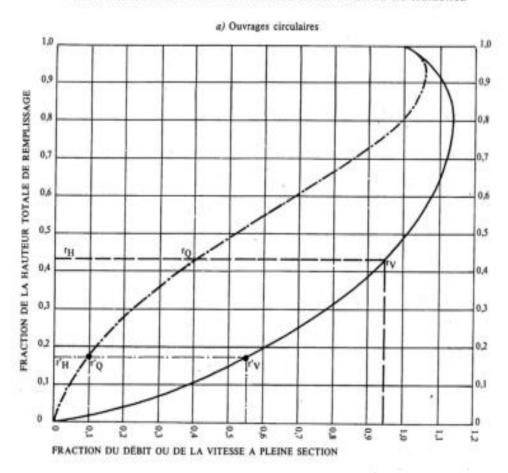
L'implantation des deux station de relevage sont but est de connecter les deux réseau , ensuite acheminée les eaux usées vers la station d'épuration .

En ce qui concerne l'aspect financier, nous avons élaboré un devis quantitatif et estimatif pour estimer le coût du projet, qui s'élève à **192152107** DA.

Références Bibliographiques

- -[1] Bourrier R., Satin M., Selmi B., (2010) (Guide technique de l'assainissement, Ed. Le Moniteur,775 pages,Paris .
- [2] Bourrier, R., Satin, M., & Selmi, B. (2017). Guide technique de l'assainissement : Collecte, épuration, conception, exploitation (5e éd). Éditions « Le Moniteur ». Paris
- [3] Gomella C. et Guerree H., (1967). « Les eaux usées dans les agglomérations urbaines ». Eyrolles, Paris.
- [4] SALAH. B. « polycops d'assainissement », école nationale supérieure de l'hydraulique,2014, BLIDA
- -[05] TOUAIBIA, **B**, 2003, « Cours d'hydrologie » Ecole nationale supérieure de l'hydraulique», Blida.
- -[06] MALKI,A,2023, «Diagnostic et extension du reseau d'assainissement de la ville d'Aïn Deheb (w. Tiaret) ».Mémoire de fin d'étude ,Blida.
- -[06] CHERGUI, K,2020, « Conception du réseau d'assainissement de l'agglomération D'AIN BEIDA commune de HAMMAM BOUHDJAR (W.AIN TEMOUCHENT) ». Mémoire de fin d'étude ,Blida.
- -[07] MEBARKI, F,2023, «Diagnostic et dimensionnement du système d'assainissement de la commune d'EL Biod (Wilaya de Naâma) ». Mémoire de fin d'étude ,Blida.

ANNEXES


TABLE DU X2

La table donne la probabilité α pour que χ^2 égale ou dépasse une valeur donnée, en fonction du nombre de degrés de liberté v. Exemple : avec $\nu=3$, pour $\chi^2=0,11$ la probabilité $\alpha=0,99$.

α	0,99	0,975	0,95	0,90	0,10	0,05	0,025	0,01	0,00
٧				794303040	10000000		20000		
1	0,0002	0,001	0,004	0,016	2,71	3,84	5,02	6,63	10,83
2	0,02	0,05	0,10	0,21	4,61	5,99	7,38	9,21	13,83
3	0,11	0,22	0,35	0,58	6,25	7,81	9,35	11,34	16,2
4	0,30	0,48	0,71	1,06	7,78	9,49	11,14	13,28	18,4
5	0,55	0,83	1,15	1,61	9,24	11,07	12,83	15,09	20,5
6	0,87	1,24	1,64	2,20	10,64	12,59	14,45	16,81	22,4
7	1,24	1,69	2,17	2,83	12,02	14,07	16,01	18,48	24,3
8	1,65	2,18	2,73	3,49	13,36	15,51	17,53	20,09	26,1
9	2,09	2,70	3,33	4,17	14,68	16,92	19,02	21,67	27,8
10	2,56	3,25	3,94	4,87	15,99	18,31	20,48	23,21	29,5
11	3,05	3,82	4,57	5,58	17,28	19,68	21,92	24,73	31,2
12	3,57	4,40	5,23	6,30	18,55	21,03	23,34	26,22	32,9
13	4,11	5,01	5,89	7,04	19,81	22,36	24,74	27,69	34,5
14	4,66	5,63	6,57	7,79	21,06	23,68	26,12	29,14	36,1
15	5,23	6,26	7,26	8,55	22,31	25,00	27,49	30,58	37,7
16	5,81	6,91	7,96	9,31	23,54	26,30	28,85	32,00	39,2
17	6,41	7,56	8,67	10,09	24,77	27,59	30,19	33,41	40,7
18	7,01	8,23	9,39	10,86	25,99	28,87	31,53	34,81	42,3
19	7,63	8,91	10,12	11,65	27,20	30,14	32,85	36,19	43,8
20	8,26	9,59	10,85	12,44	28,41	31,41	34,17	37,57	45,3
21	8,90	10,28	11,59	13,24	29,62	32,67	35,48	38,93	46,8
22	9,54	10,98	12,34	14,04	30,81	33,92	36,78	40,29	48,2
23	10,20	11,69	13,09	14,85	32,01	35,17	38,08	41,64	49,7
24	10,86	12,40	13,85	15,66	33,20	36,42	39,36	42,98	51,1
25	11,52	13,12	14,61	16,47	34,38	37,65	40,65	44,31	52,6
26	12,20	13,84	15,38	17,29	35,56	38,89	41,92	45,64	54,0
27	12,88	14,57	16,15	18,11	36,74	40,11	43,19	46,96	55,4
28	13,56	15,31	16,93	18,94	37,92	41,34	44,46	48,28	56,8
29	14,26	16,05	17,71	19,77	39.09	42,56	45,72	49,59	58,3
30	14,95	16,79	18,49	20,60	40,26	43,77	46,98	50,89	59,7

Annexe [2] : Les variations des débits et des vitesses en fonction de la hauteur de remplissage.

ABAQUE 3-a
VARIATIONS DES DÉBITS ET DES VITESSES EN FONCTION DU REMPLISSAGE

MODE D'EMPLOL

Les abaques Ab. 3 et Ab. 4 (a et 8) utilisés pour le choix des sections d'ouvrages, compte tenu de la pente et du débit, permettent d'évaluer la vitesse d'écoulement à pleine section.

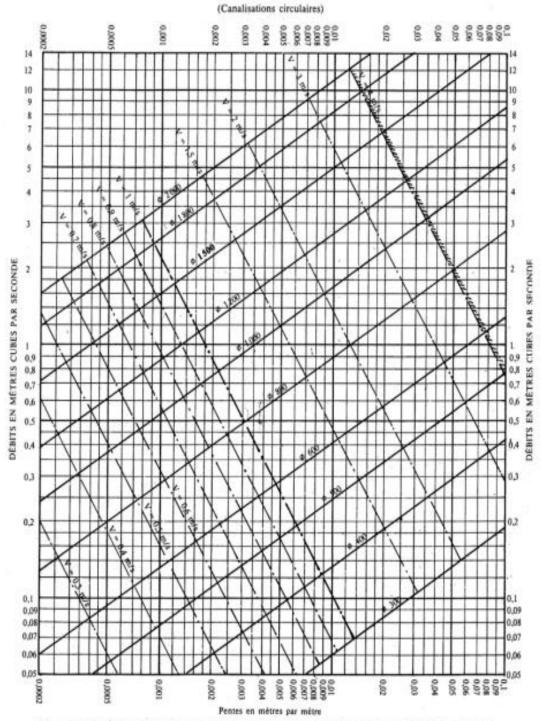
Pour l'évaluation des caractéristiques capacitaires des conduites, ou pour apprécier les possibilités d'autocurage, le nomogramme ci-dessus permet de connaître la vitesse atteinte en régime uniforme pour un débit inférieur à celui déterminé à pleine section.

Les correspondances s'établissent, soit en fonction de la fraction du débit à pleine section, soit en fonction de la hauteur de remplissage de l'ouvrage.

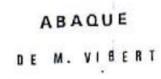
Exemples :

Pour r_Q = 0,40, on obtient r_V = 0,95 et r_H = 0,43.

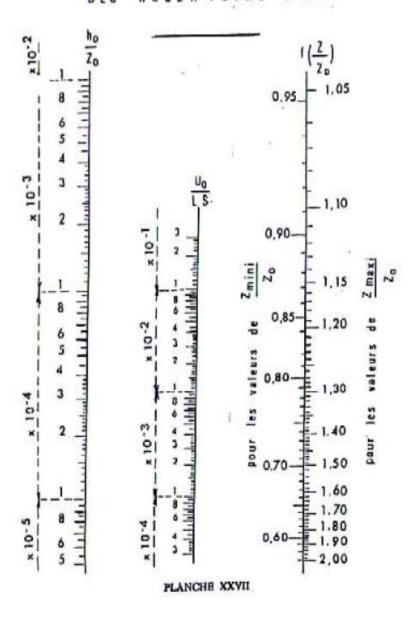
Pour Qpg/10, on obtient $r'_V = 0.55$ et $r'_H = 0.17$ (autocurage).


Nota. — Pour un débit égal au débit à pleine section, la valeur du rapport $r_Q = 1.00$ est obtenue avec $r_H = 0.80$.

Le débit maximum ($r_{Q} = 1,07$) est obtenu avec $r_{H} = 0.95$.


La vitesse maximum (ry = 1,14) est obtenue avec rH = 0,80.

Ces dernières conditions d'écoulement à caractère assez théorique ne peuvent être obtenues que dans des conditions très particulières d'expérimentation.


ABAQUE 2-a
RÉSEAUX PLUVIAUX EN SYSTÈME UNITAIRE OU SÉPARATIF

Nota. – La valeur du coefficient de Bazin a été prise égale à 0,66. Lorsque la pose des canalisations aura été particulièrement soignée, et surtout si le réseau est bien entretenu, les débits pourront être majorés de 20 % (Y = 0,30). A débit égal, les pentes pourront être réduites d'un tiers.

POUR LE CALCUL SIMPLIFIÉ DES RÉSERVOIRS D'AIR

