الجمهورية الجزائرية الديمقراطية الشعبية وزارة التعليم العالي و البحث العلمي

NATIONAL HIGHER SCHOOL FOR HYDRAULICS

"The Mujahid Abdallah ARBAOUI"

MEMOIRE DE FIN D'ETUDES

Pour l'obtention du diplôme d'Ingénieur d'Etat en Hydraulique

Option: CONCEPTION DES SYSTEMES D'ASSAINISSEMENT

THEME:

DIAGNOSTIC ET REHABILITATION DU SYSTEME D'ASSAINISSEMENT DE LA ZONE DE SIDI GHIATH LA COMMUNE DE MEURAD (W. TIPAZA)

Présenté par :

OUADJAOUT Belkacem Aimene

Devant les membres du jury

Nom et Prénoms	Grade	Qualité		
HACHMI Abdelkader	M .C.A	Président		
HADJ SADOK Nabila	M.A.A	Examinateur		
AMIRI Djamel	M.A.A	Examinateur		
DERNOUNI Fouzia	M.A.A	Examinateur		
Mr KAHLERRAS Djilali	M.C. A	Promoteur		

Session Juillet 2024

Remerciments

Tout d'abord, je tiens à remercier ALLAH pour toutes les bénédictions qu'il m'a accordées et qu'il continuera de m'accorder tout au long de ma vie.

Je tiens à exprimer ma profonde gratitude envers mon père pour son soutien indéfectible tout au long de mon parcours. Ses encouragements constants m'ont donné la force de surmonter les obstacles et de persévérer dans mes études. Je lui suis reconnaissant pour tout ce qu'il a fait pour moi.,

Je tiens également à exprimer ma profonde gratitude à ma mère pour tous les sacrifices qu'elle a faits pour moi et pour l'amour qu'elle m'a donné.

Je tiens à remercier chaleureusement ma tante et son mari qui m'ont accueilli chez eux pendant cinq ans comme leur propre fils. Leur générosité et leur bienveillance m'ont permis de me sentir chez moi loin de chez moi et de poursuivre mes études dans les meilleures conditions possibles. Je leur suis profondément reconnaissant pour leur soutien et leur affection.

Mes remerciements les plus sincères vont à mon promoteur, Monsieur

D. KAHLERRAS, pour sa disponibilité et son écoute tout au long de l'élaboration de ce mémoire. Je lui suis reconnaissant pour l'aide précieuse qu'il m'a apportée durant la période de réalisation de ce travail.

Je tiens également à remercier Toutes l'équipe pédagogique de l'ENSH

Je tiens également à remercier les membres du jury qui prendront le temps d'évaluer et d'apprécier mon travail. Je suis reconnaissant envers tous mes enseignants, en particulier ceux qui ont fait preuve de patience à mon égard et qui m'ont pardonné mes erreurs.

Enfin, je tiens à exprimer ma gratitude à mes amis et chers collègues étudiants qui m'ont accompagné tout au long de mon cursus. Je suis honoré de les avoir à mes côtés et je leur suis reconnaissant pour leur soutien et leur amitié.

OUADJAOUT AIMENE BELKACEM

Dédicace:

Je dédie ce modeste travail:

- ➤ A mon père KARIM pour son soutien moral et matériel.
- ➤ A ma mère SAMIRA BENMANSOUR pour ses sacrifices et son soutien moral. Aucune dédicace ne saurait exprimer mon respect, mon amour éternel à cette brave femme.
- A ma tente et son mari il n'y a pas de mots pour leur exprimer mes remerciements,
- A mon frère OUSSAMA et mon cousin NASR ALLAH qui est mon petit frère
- A mes sœurs AICHA, ANFAL et mes petits sœurs HADIL et ASSIL
- A mes amis : Fouad, Nadji younes, Yasser, ALAA, Rafik, Midou, Amin, sidahmed
- ➤ Je tiens à remercier chaleureusement ma collègue Rahim Malak pour son aide précieuse tout au long de mon projet.
- ➤ A tous mes collègues de l'école ENSH et ENST
- ➤ A mes collègues NAHIDA, SARA, LILIA, SANA, Nihad
- Les clubs scientifiques de notre école HEC et BGS
- ➤ A tous les membres l'association caritative NESS EL KHIR CHLEF

ملخص:

هدف هذه الدراسة هو تقييم أداء شبكة التطهير في الوسط الحضري لمدينة سيدي غياث بلدية مراد ولاية تيبازة، وذلك عن طريق تشخيص الأضرار الميدانية وتقييم صالحية الشبكة للاستعمال المستقبلي بسبب تطور نسبة السكان والعمران في المدينة. سيتم جمع المعلومات وتطبيق المعارف النظرية لإيجاد خطة لإعادة استغلال الجزء الصالح من الشبكة. ستسعى هذه الدراسة إلى تحقيق الأهداف المسطرة مسبقًا وتأكيد دور الشبكة في ضمان استقرار حياة الإنسان وتلبية المتطلبات الصحية اللازمة للتجمع السكاني.

الكلمات المفتاحية: التقييم، التشخيص، الصرف الصحى، مياه الصرف الصحى ومياه الأمطار، توسعة الشبكة.

Résumé:

L'objectif de cette étude est d'évaluer la performance du réseau d'assainissement dans la zone urbaine de la ville de Sidi Ghiath, commune de Meurad, wilaya de Tipaza. Pour ce faire, une évaluation des dommages sur le terrain sera effectuée et la capacité du réseau à répondre aux besoins futurs sera évaluée en raison de l'évolution de la population et de l'urbanisation dans la ville. Les données seront collectées et les connaissances théoriques seront appliquées pour élaborer un plan visant à réutiliser la partie fonctionnelle du réseau. Cette étude vise à atteindre les objectifs précédemment établis et à confirmer le rôle du réseau dans la garantie de la stabilité de la vie humaine et la satisfaction des exigences sanitaires nécessaires à l'habitat collectif.

Mots-clés: évaluation, diagnostic, assainissement, eaux usées et eaux pluviales, extension du réseau.

Abstract:

The aim of this study is to evaluate the performance of the sewerage network in the urban area of the city of Sidi Ghiath, Meurad municipality, Tipaza province. To do this, an assessment of field damage will be carried out and the capacity of the network to meet future needs will be evaluated due to the evolution of the population and urbanization in the city. Data will be collected and theoretical knowledge will be applied to develop a plan to reuse the functional part of the network. This study aims to achieve previously established objectives and confirm the role of the network in ensuring the stability of human life and meeting the sanitary requirements necessary for collective housing.

<u>Keywords</u>: evaluation, diagnosis, sanitation, wastewater and stormwater, network extension.

Sommaire

Chapitre I : Présentation de la zone d'étude

Introduction:	17
I.I Présentation de la commune de Meurad :	17
I.II Présentation de la zone d'étude sidi Ghiath :	17
I.III La situation géographique	17
I.IV La situation topographique :	18
I.V Les Caractéristiques Naturelles De La Zone D'étude	18
I.V.i Géologie	18
I.V.ii Sismicité	19
I.VI La situation climatique	20
I.VI.i Climat :	20
I.VI.ii La température :	20
I.VI.iii Le vent :	21
I.VI.iv Ensoleillement :	21
I.VI.v Humidité :	22
I.VI.vi Pluviométrie	23
I.VII Hydrographie	24
I.VI.a Oued SELLAMYA :	25
I.VI.b CHAABA :	25
I.VIII La situation démographique	25
I.IX La situation hydraulique :	26
I.IX.1Alimentation en eau potable	26
I.IX.2 Assainissement :	26
Conclusion :	27
Chapitre II : Diagnostic du système d'as	ssainissement
Introduction	29
II.I-Génialité :	29
II. II-Objectif de diagnostic :	30
II.III Avantage du diagnostic :	30
II.IV Rôle du diagnostic :	31
II.V Etapes du diagnostic :	31

II.V.a Collecte et exploitation des données :	31
II.V.b Données relatives à la collecte ;	31
II.V.c Données d'orientation :	32
II.VI Facteurs de dégradations :	32
II.VI.a-Facteurs externes à l'ouvrage (exogène):	32
II.VI.b-Facteurs de dégradation internes (endogène) :	32
II.VII -Le pré-diagnostic :	32
II.VII.1 Reconnaissance approfondie :	32
II.VII.2 Etude fonctionnelle des bassins versant élémentaires :	33
II.VIII Types de diagnostic :	33
II.VII.1 Diagnostic fonctionnel (hydraulique):	33
II.VII.2 Diagnostic structurel (physique):	33
II.IX Aperçu général sur le système :	34
II.IX.1 Reconnaissance du terrain et point de recollement :	34
II.IX.2 Aperçu général du réseau d'assainissement existant de la ville de sidi ghiath:	34
II.IX.3 Diagnostic physique :	35
II.IX.4 Diagnostic hydraulique :	37
Conclusion:	37
Chapitre III :Etude hydrologique	
Introduction :	39
III.I La série des données pluviométriques :	
III.II Homogénéisation des données :	
III.III Etude des précipitations maximales journalières :	
III.III.1 Caractéristiques empiriques de la série :	
III.III.2 Ajustement de la série :	
III.III. 3 Ajustement à la loi de Gumbel :	
a) ANALYTIQUE :	
b) Logiciel Hyfran:	
III.III.4 Ajustements de la série pluviométrique a la loi de Galton (Log-normal) :	
a) ANALYTIQUE:	
b) Logiciel Hyfran	
III.III.5 Choix de la loi d'ajustement :	
a) Test graphique :	

b) Interprétation des graphiques :	51
c) Test d'adéquation khi-deux «χ² »	52
d) Application du test :	52
e) Sélection de la loi	53
III.IV Calcul des pluies et des intensités de courte durée :	54
III.IV.1 Pluies de courte durée :	54
III.IV.2 Intensité de courte durée :	54
III.V Intensité moyenne maximale :	57
Conclusion	57
Chapitre IV : Calcul de base	
Introduction	59
IV.I La situation démographique :	59
IV.II Découpage de l'air d'étude en surfaces élémentaires :	60
i) Définition:	60
IV.III Différents systèmes de drainage pour les eaux usées et les eaux pluviales :	60
i) Systèmes fondamentaux :	60
a) Système unitaire :	60
b) Système séparatif :	62
c) Système pseudo-séparatif :	63
IV.IV Le choix de système d'assainissement :	64
IV.V Schéma d'évacuation des eaux usées :	64
IV.V.1 Les différents schémas d'assainissement :	64
i) Schéma perpendiculaire :	64
ii) Schéma par déplacement latéral :	65
iii) Schéma du collecteur par zones étagée :	65
iv) Schéma radial :	66
IV.V.2 Le choix de schéma d'évacuation :	66
IV.VI Le coefficient de ruissellement :	67
IV.VI.1 Calcul de la population de chaque sous bassin :	69
IV.VI.2 calcul du coefficient de ruissèlement pondéré total :	69
IV.VI.3 Calcul de la densité partielle :	69
IV.VI.4 Calcul du nombre d'habitant de chaque sous bassin :	69
Conclusion :	70

Chapitre V : Estimation des débits à évacuer

Introduction:	72
V.I Évaluation des débits d'eau usées :	72
V.I.1 Généralités :	72
V.I.2 Nature des eaux usées à évacuer :	72
V.II les eaux usées d'origine domestique :	72
V.II.i Quantités à évacuer :	72
V.II Eaux des services publics :	73
V.III Eaux usées industrielles :	73
V.IV Eaux usées des équipements :	73
V.IV.i Consommation en eau potable :	73
V.IV.ii Estimation es débits d'eaux usées :	74
V.V Estimation des débits des eaux usées domestique :	74
V.V.i Evaluation du débits moyen journalier :	74
V.V.ii Evaluation du débit de pointe :	74
V.VI Les eaux claires parasites :	75
V.VII Evaluation des débits des eaux pluviales :	82
V.VII.1 Méthode rationnelle :	82
V.VII.1.i Hypothèses de la méthode rationnelle :	82
V.VII.1.ii Validation de la méthode Rationnelle:	83
V.VII.1.iii Temps de concentration :	83
V.VII.1.iv Critique de la méthode rationnelle :	84
V.VII.2 Méthode superficielle (CAQUOT):	84
V.VII.2. i Validité de la méthode superficielle :	86
V.VIII Choix de la méthode de calcul :	87
V.IX Calcul des débits pluviaux :	87
V.X Estimation le débit total :	89
Conclusion:	90
Chapitre VI : Calcul hydraulique du réseau d'assainis	ssement
Introduction:	92
VI.I Conception du réseau :	92
VI.II Dimensionnement d'un réseau d'assainissement :	92
VI II 1 Conditions d'écoulement et de dimensionnement :	02

VI.II Formules d'écoulements :	93
VI.II.1 Formule de CHEZY :	93
VI.II.2 Formule de MANNING :	93
VI.II.3 Formule de MANNING-STRIKLER :	94
VI.III Mode de calcul :	94
Conclusion :	96
Introduction:	98
VII.I Les ouvrages principaux :	98
VII.II Les canalisations :	98
VII.II.i Type de canalisation :	98
a. Canalisations en béton non armé :	99
b. Canalisations en béton armé :	99
c. Canalisations en fibre-ciment :	99
d. Canalisations en PVC non plastifié :	99
VII.III Critères de sélection du matériau de la canalisation :	99
VII.IV Les raccords de canalisations en béton armé :	100
A Le joint de type Rocla :	100
B Le joint à collet :	100
C Le joint à demi-emboîtement :	101
VII.V Différents types de charges supportées par la canalisation	:101
VII.V.1 Charges mécaniques :	101
VII.V.2 Charges statiques :	101
VII.V.3 Charges chimiques :	101
VII.VI Protection des conduites :	101
VII.VII Les essais de conduites préfabriquées :	102
VII.VII.1 Essai à l'écrasement :	102
VII.VII.2 Essai à l'étanchéité :	102
VII.VII.3 Essai de corrosion :	102
VII-VIII Les ouvrages annexes :	103
VII.VIII.i Les ouvrages courants :	103
1-Les raccordements individuels :	103
2 Les caniveaux :	103
3 Les bouches d'égout :	103

4- Les regards :	104
VII.VII.ii Les ouvrages spéciaux :	105
VII.VII.ii.1 L'emplacement de déversoirs d'orage :	105
VII.VII.ii.2 Les types de déversoir d'orage :	105
VII.VII.ii.3 Données de base pour le dimensionnement d'un déversoir d'orage :	105
VII.VIII Dimensionnement des déversoirs d'orage :	106
VII.VIII.1 Mode de calcul :	106
VII.IX Dimensionnement du DEVERSOIR :	106
Conclusion:	109
Chapitre VII : Les éléments constitutifs du réseau d'égout	
Introduction:	111
VIII.I Informations sur les réseaux publics existants :	111
VIII.II Exécution des travaux :	111
VIII.II .1 Vérification, manutation des canalisations :	112
VIII.II.2 Décapage de la couche de terre végétale	112
VIII.II.3 l'emplacement des jalons des piquets (piquetage).	112
VIII.II.4 l'exécution des fouilles pour les regards et les tranchées	112
VIII.II.5 Aménagement du lit de pose :	114
VIII.II.6 Mise en place des conduites :	114
VIII.II.7 Assemblage des conduites :	115
VIII.II.8 Essais sur les joints et les canalisations :	115
VIII.II.9 Exécution des Regards:	115
VIII.2.10-Exécution des déversoirs d'orage :	118
VIII.2.11-Remblaiement et compactage de la tranchée :	118
VII.III Devis quantitatif estimatif :	119
VIII.III.1 Détermination des différents volumes :	119
VIII.III.1.i volumes des déblais des tranchées Vd :	119
VIII.III.1. ii Volume de découvert «V » :	119
VIII.II.1.iii Volume occupé par le lit de pose «V _{LP} »	120
VIII.III.1.iv Volume de la conduite « Vc » :	120
VIII.III.1.v Volume du remblai « V _R »:	120
VIII.IV Détermination du devis et quantitatif :	121
Conclusion :	122

Conclusion Générale :	123
Bibliographie	124
Annexes	

Liste des tableaux

TABLEAU I. 1 REPARTITION MENSUELLE DE LA TEMPERATURE MOYENNE	20
TABLEAU I. 2 VARIATION D'ENSOLEILLEMENT MOYENNE ET HEURE PAR JOUR.	21
TABLEAU I. 3: REPARTITION MENSUELLE D'HUMIDITE POUR L'ANNEE 2019	22
TABLEAU I. 4:PRECIPITATION DE L'ANNEE 2021 PRIS PAR LA STATION DE HADJOUT	23
TABLEAU I. 5: PRESENTATION DES BASSINS ET LEURS CODES RESPECTIFS.	24
TABLEAU III. 1: LES COORDONNEES DE LA STATION PLUVIOMETRIQUE	
TABLEAU III. 2: SERIE D'OBSERVATION DE PRECIPITATION MAXIMALES.	
TABLEAU III. 3:RESULTAT DU TEST DE LA MEDIANE.	
TABLEAU III. 4: CARACTERISTIQUE DE LA SERIE.	
TABLEAU III. 5:AJUSTEMENT DES PRECIPITATIONS MAXIMALES JOURNALIERES A LA LOI DE GUMBEL	
TABLEAU III.6: AJUSTEMENT DE LA SERIE A LA LOI DE GUMBEL A L'AIDE DU LOGICIEL HYFRAN	
TABLEAU III. 7: AJUSTEMENT DES PRECIPITATIONS MAXIMALES JOURNALIERE A LA LOI DE GALTON	
TABLEAU III. 8: RESULTAT DE L'AJUSTEMENT A LA LOI DE GALTON (HYFRAN)	
TABLEAU III. 9: RESULTATS DE TEST KHI-DEUX.	
TABLEAU III. 10:PLUIES DE COURTE DUREE DE DIFFERENTES PERIODES DE RETOUR ET LEURS INTENSITES	55
The result of the second secon	50
TABLEAU IV. 1: ESTIMATION DE L'EVOLUTION FUTUR DE LA POPULATION.	
TABLEAU IV. 2:AVANTAGE ET INCONVENIENT DE SYSTEME D'EVACUATION UNITAIRE	
TABLEAU IV. 3:AVANTAGES ET INCONVENIENTS DU SYSTEME SEPARATIF.	
TABLEAU IV. 4:LES AVANTAGES ET LES INCONVENIENTS DE SYSTEME PSEUDO-SEPARATIF	
TABLEAU IV. 5: COEFFICIENT DE RUISSELLEMENT RELATIF A CATEGORIE D'URBANISATION	
TABLEAU IV. 6: COEFFICIENTS DE RUISSELEMENT EN FONCTION DE LA DENSITE DE POPULATION	
TABLEAU IV. 7: COEFFICIENT DE RUISSELEMENT EN FONCTION DE LA ZONE D'INFLUENCE	68
TABLEAU IV. 8: COEFFICIENT DE RUISSELEMENT EN FONCTION DE SURFACE DRAINEE.	68
TABLEAU IV. 9: CALCUL DU COEFFICIENT DE RUISSELEMENT ET DU NOMBRE D'HABITANT DE CHAQ	UE 70
The part of M. 1. Degree Manager of the period of the part of the	70
TABLEAU V. 1: DETERMINATIONS DES DEBITS DES EAUX USEES DES EQUIPEMENTS.	
TABLEAU V. 2: DETERMINATION LES EAUX USEES DES EQUIPEMENTS POUR CHAQUE SOUS BASSIN	
TABLEAU V. 3:DETERMINATION LES EAUX USEES DOMESTIQUE POUR CHAQUE SOUS BASSIN	
TABLEAU V. 4:DETERMINATION DES DEBITS D'EAUX USEES DE POINTE POUR CHAQUE SOUS BASSIN.	81
TABLEAU V. 5: CALCUL DES DEBITS PLUVIAUX.	88
TABLEAU V. 6: LES RESULTATS DES DEBITS TOTALES DE CHAQUE SOUS BASSIN	90
TARI FAIL VIII 1 DEVIS ESTIMATIE ET QUANTITATIE •	121

Liste des figures

FIGURE I. 1: CARTE SITUATION GEOGRAPHIQUE DE LA ZONE D'ETUDE.	18
FIGURE I. 2: CARTE DE ZONAGE SISMIQUE DE L'ALGERIE DU NORD ETABLIE APRES LE SEISME DU 21 MAI 2003	19
FIGURE I. 3: CARTE PLUVIOMETRIQUE POUR L'ALGERIE DU NORD (ANRH, 1993).	
FIGURE I. 4: COURBE DE VARIATION DE TEMPERATURE MOYENNE.	
FIGURE I. 5: VARIATION DE RAPPORT ENSOLEILLEMENT HEURE PAR JOUR EN FONCTION DES MOIS.	
FIGURE I. 6: COURBE DE VARIATION HUMIDITE MOYENNE EN FONCTION DES MOIS.	
FIGURE I. 7: DIAGRAMME DE PRECIPITATION DE LA ZONE D'ETUDE	
FIGURE I. 9: CARTE DES RESEAUX HIDROGRAFHIQUE DE LA WILATA DE TIFAZA (SOURCE : DRE 111 AZA)	
FIGURE I. 10:DIAGRAMME D'ESTIMATION DE NOMBRE D'HABITANTS	
FIGURE II. 1:LES REJETS DES EAUX USEES VERS LE MILIEU NATUREL (SOURCE : URBAB)	35
FIGURE II. 2:DES REGARDS EN ETAT DEGRADEE	35
FIGURE II. 3:DES REGARDS COLMATE.	36
FIGURE II. 4:FICHE TECHNIQUE D'EVALUATION DES REGARDS.	
Province W. 1. A suggestion of a contract of the contract of t	47
FIGURE III. 1:AJUSTEMENT GRAPHIQUE A LA LOI DE GUMBEL FIGURE III. 2:AJUSTEMENT GRAPHIQUE A LA LOI DE GALTON	
FIGURE III. 2: AJUSTEMENT GRAPHIQUE A LA LOI DE GALTON	
FIGURE III. 4: COURBE INTENSITE-DUREE-FREQUENCE (IDF)	
FIGURE III. 5: COURBE PLUIE-DUREE-FREQUENCE (PDF)	
FIGURE IV. 1:DIAGRAMME DE L'EVOLUTION DEMOGRAPHIQUE DE LA ZONE D'ETUDE (SOURCE: APC	•
MEURAD)	60
FIGURE IV. 2:RESEAU D'EVACUATION UNITAIRE.	
FIGURE IV. 3:RESEAU D'EVACUATION SEPARATIF	62
FIGURE IV. 4: RESEAU D'EVACUATION PSEUDO SEPARATIF	63
FIGURE IV. 5:SCHEMA D'EVACUATION PERPENDICULAIRE	65
FIGURE IV. 6:SCHEMA PAR DEPLACEMENT LATERAL	65
FIGURE IV. 7:SHEMA D'EVACUATION ETAGEE	
FIGURE IV. 8:SCHEMA D'EVACUATION RADIAL	66
FIGURE VII. 1: JOINT ROCLA.	. 100
FIGURE VII. 2:JOINT A COLLET	. 100
FIGURE VII. 3:JOINT A DEMI-EMBOITEMENT	. 101
FIGURE VII. 4:LES BOUCHES D'EGOUT	. 104

FIGURE VII. 5: REGARD DE VISITE	104
FIGURE VIII. 1: COUPE TRANSVERSALE D'UNE TRANCHEE AVEC LA MISE EN PLACE DE LA CONDUITE .	113
FIGURE VIII. 2:LES ENGINS DE TERRASSEMENT	115

Liste des planches

Planche 1 : plan de masse du réseau existant et découpage des sous bassins

Planche 2 : plan de masse du réseau projetée

Planche 3: profil en long

Planche 4 : les éléments du réseau d'égout

Liste des annexes

ANNEXE I : Tableau de la fonction de répartition de la loi normale standard.

ANNEXE II: Tableau de la loi khi-deux.

ANNEXE III : Tableau de coefficient de Manning-Strickler (Ks).

ANNEXE IV : Abaque de variation des débits et des vitesses en fonction de la hauteur de remplissage.

ANNEXE V : Abaque de dimensionnement des canalisations circulaire d'après la formule de Bazin.

ANNEXE VI: Tableau des calculs hydraulique des collecteurs.

Introduction Générale:

L'assainissement des agglomérations est un élément clé de la gestion urbaine moderne, visant à assurer des conditions sanitaires optimales dans les zones urbaines en évacuant efficacement les déchets et les eaux usées. Avec l'urbanisation croissante et l'augmentation démographique rapide dans de nombreuses régions, la pression sur les infrastructures d'assainissement s'intensifie. Les structures urbaines en expansion créent une demande accrue en eau potable et en évacuation des eaux usées.

Cette augmentation de la demande entraîne une augmentation proportionnelle des rejets polluants, ce qui peut avoir un impact significatif sur la qualité de l'eau et sur la santé publique en général. Les eaux usées contiennent souvent des agents pathogènes et des substances toxiques qui, s'ils ne sont pas correctement traités et évacués, peuvent contaminer les ressources en eau, entraînant la propagation de maladies.

Dans le cadre de notre étude professionnelle sur la Région de Sidi Ghiath, commune de Meurad dans la wilaya de Tipaza, nous nous concentrons sur la conception et la mise en œuvre d'un réseau d'assainissement efficace. L'objectif principal est de protéger la santé publique en prévenant la propagation de maladies liées à la contamination des eaux usées. Pour ce faire, nous entreprenons un diagnostic physique complet de la situation actuelle, évaluant les infrastructures existantes, les flux de déchets et les besoins en termes d'évacuation des eaux usées.

Sur la base de ces données, nous proposerons des solutions adaptées, telles que l'extension ou la mise à niveau des réseaux d'égouts, l'amélioration des installations de traitement des eaux usées et la mise en place de mesures de gestion efficaces. Ces solutions seront conçues pour répondre aux besoins spécifiques de la commune de Meurad, en tenant compte des contraintes budgétaires, environnementales et sociales.

En garantissant un assainissement adéquat, nous contribuons à créer un environnement urbain sain et durable pour les résidents de la commune de Meurad. Notre approche professionnelle et rigoureuse assure la qualité et la fiabilité de nos recommandations, offrant ainsi une base solide pour la planification et la mise en œuvre des futurs projets d'assainissement

Chapitre I : Présentation de la zone d'étude

Introduction:

Avant d'entreprendre tout projet en hydraulique, il est impératif de réaliser une présentation détaillée de la zone d'étude. Cette étape essentielle nécessite une collecte minutieuse de données variées telles que les données géographiques, topographiques, géologiques et climatiques. Ces données jouent un rôle crucial dans la planification et la conception du projet.

La collecte précise de ces informations est fondamentale car elle permet de mieux comprendre les caractéristiques et les contraintes spécifiques de la zone d'étude. Elle fournit également des indications essentielles pour choisir l'approche la plus appropriée dans la conception du projet hydraulique.

I.I Présentation de la commune de Meurad :

Située dans le sud de la wilaya de Tipaza, la commune de Meurad est établie à une distance d'environ 15 kilomètres au sud de la ville de Tipaza. Cette position géographique stratégique lui confère un charme particulier, éloigné de l'agitation urbaine mais suffisamment proche pour rester accessible aux visiteurs.

I.II Présentation de la zone d'étude sidi Ghiath :

Sidi Ghiath est une ville située à 4 kilomètres du cœur de la commune et à 7 kilomètres de la daïra de Hadjout. Elle couvre une superficie de 25 hectares et est caractérisée par un environnement semi-rural.

I.III La situation géographique

La commune de Meurad est délimitée par plusieurs autres communes dans la wilaya de Tipaza. Ses limites territoriales sont définies par celles des communes voisines telles que :

- La commune de Hadjout et sidi Amar au NORD
- La commune d'oued djer wilaya de Ain el Defla
- La commune de Bourkika a l'est
- La commune de Menacera l'ouest

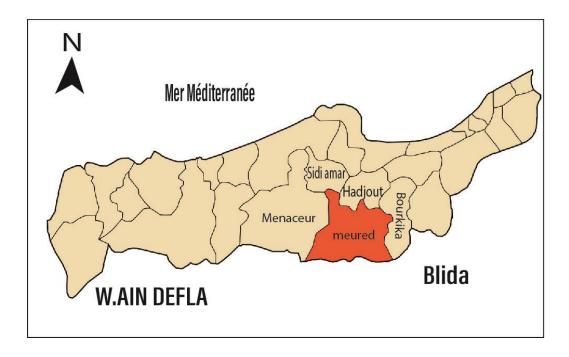


Figure I. 1: Carte situation Géographique de la zone d'étude.

I.IV La situation topographique:

La topographie de la commune, située Entre deux oueds avec des pentes variant entre 7et 15 %, peut avoir un impact significatif sur le réseau d'assainissement.

En effet, les fortes peuvent entraîner une augmentation de la vitesse d'écoulement des eaux usées et pluviales dans les canalisations, ce qui peut causer des phénomènes d'érosion et de dégradation plus rapides des conduites. De plus, les fortes pentes peuvent également augmenter les risques d'inondation en cas de fortes pluies, en raison d'une évacuation des eaux plus difficile.

I.V Les Caractéristiques Naturelles De La Zone D'étude

On peut citer comme caractéristiques :

I.V.i Géologie

La commune de Meurad, située dans une région au relief particulier, est caractérisée principalement par des formations géologiques d'argile-limoneuse et d'argilo-calcaire. Ces sols, très profonds et riches en nutriments, offrent des conditions idéales pour une agriculture diversifiée et prospère.

Les cultures pérennes sont particulièrement adaptées à ce type de sol. Parmi elles, les vignes occupent une place importante dans le paysage de Meurad. Le sol argilo-calcaire, combiné à un climat favorable, permet la production de raisins de qualité, utilisés pour la vinification. Les cépages locaux sont réputés Pour leur robustesse et leur capacité à s'épanouir dans ces conditions, donnant des vins aux arômes uniques et appréciés.

En plus des vignes, les agrumes sont également cultivés avec succès à Meurad. Les orangers, citronniers et autres arbres fruitiers s'épanouissent dans ce sol profond et bien drainé. Les agrumes de Meurad sont réputés pour leur goût et leur qualité, et sont souvent utilisés dans la cuisine locale.

En plus de ces cultures pérennes, d'autres types de cultures sont également pratiquées à Meurad, bénéficiant des conditions favorables offertes par le sol et le climat. Ces cultures comprennent les céréales, les légumes et les fruits, contribuant ainsi à la diversité agricole de la région.

En somme, le territoire de la commune de Meurad, avec ses sols argilo-calcaires et argile-limoneux profonds, offre un environnement propice à une agriculture riche et variée, avec une prédominance de cultures pérennes telles que les vignes et les agrumes.

I.V.ii Sismicité

D'après les règles parasismiques Algériennes (RPA version 2003) document Technique réglementaire, qui ont donné lieu à l'établissement d'un système de classification des zones sismiques détaillé, le territoire national est divisé en cinq (05) zones de sismicité croissante que sont :

- **Zone 0 :** Sismicité négligeable ;
- **Zone I :** Sismicité faible ;
- **Zone IIa et IIb :** Sismicité moyenne ;
- **Zone III :** Sismicité élevée. (**Voir la figure I.4**)

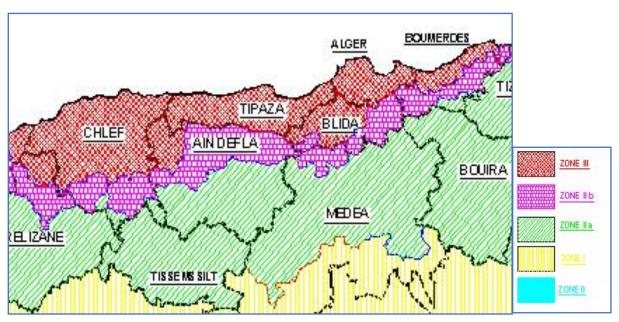


Figure I. 2: Carte de zonage sismique de l'Algérie du Nord établie après le séisme du 21 mai 2003

I.VI La situation climatique

I.VI.i Climat:

Les différences climatiques dans la zone du projet résultent d'une combinaison complexe des influences maritimes au nord, du relief et de l'altitude au sud. Cette région présente un climat méditerranéen tempéré avec deux saisons bien définies : un hiver doux et pluvieux s'étalant d'octobre à mars, suivi d'un été chaud et sec d'avril à septembre. Pendant la saison sèche, qui peut s'étendre sur trois à quatre mois, il y a une période prolongée de sécheresse.

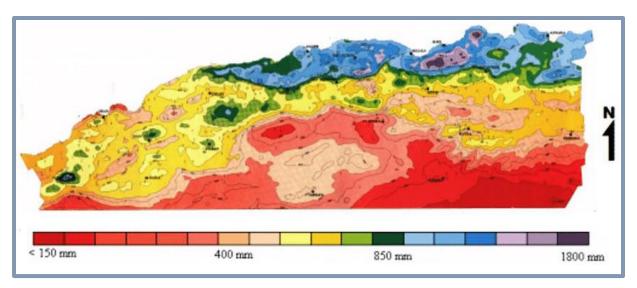


Figure I. 3: Carte pluviométrique pour l'Algérie du Nord (ANRH, 1993).

I.VI.ii La température :

La région est caractérisée par des hivers doux et des étés chauds. Pendant les saisons froides, les températures minimales atteignent rarement en dessous de 10,8 °C, tandis que pendant les saisons chaudes, les températures maximales dépassent régulièrement les 26 °C.

Tableau I. 1 Répartition mensuelle de la température Moyenne

C	Jan	Fév	Mars	Avril	Mai	Juin	Juillet	Aout	Sépt	Oct	Nov	Déc
Température	12	13	14,25	16	19	22,4	25,4	34,3	23	20,1	16	13

Source : ANRH BLIDA

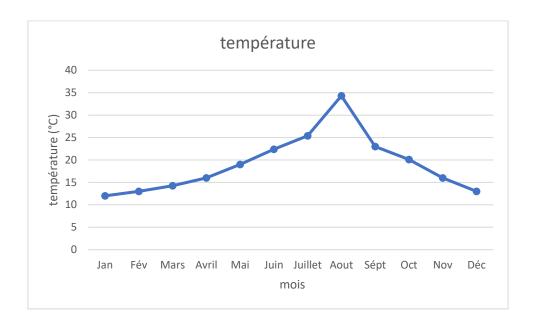


Figure I. 4: courbe de variation de température moyenne.

I.VI.iii Le vent:

Les vents varient en fréquence tout au long de l'année, avec des directions dominantes principalement du sud-ouest et de l'ouest. Sur la côte (au nord), les vents soufflent généralement du nord-est et de l'est, prédominant pendant la saison chaude de mai à octobre. Pendant les mois de novembre à avril, ce sont plutôt les vents d'ouest qui prévalent. En ce qui concerne le siroco, il est également à considérer. La vitesse moyenne du vent est estimée à 6 m/s (22 km/h).

I.VI.iv Ensoleillement:

La région bénéficie d'une quantité d'ensoleillement assez élevée, avec une moyenne annuelle de 7,7 heures par jour. Au total, l'ensoleillement annuel s'élève à 2822 heures.

Tableau I. 2 variation d'ensoleillement moyenne et heure par jour.

Detre Jan Fév Mars Avrl Mai Juin Juillet Aout Sept Oct Nov

Paramètre	Jan	Fév	Mars	Avrl	Mai	Juin	Juillet	Aout	Sept	Oct	Nov	Déc	Année
Moy mensuelle	167	180	230	244	267	300	328	303	253	225	170	155	2822
Heure/jour	5,4	6,2	7,4	8,1	8,6	10	10,6	9,8	8,4	7,2	5,5	5	7,7

Figure I. 5:variation de rapport Ensoleillement heure par Jour en fonction des mois.

I.VI.v Humidité:

L'analyse de la répartition mensuelle révèle que l'humidité relative de l'air reste généralement élevée tout au long de l'année. Les niveaux les plus élevés sont observés pendant les mois d'hiver (93,5 à 94%), lorsque les températures sont au plus bas. En revanche, les valeurs d'humidité minimale les plus basses sont enregistrées pendant l'été (1,54 à 4,21%).

Tableau I. 3: Répartition mensuelle d'humidité pour l'année 2019

Mois	Jan	Fév	Mars	Avril	Mai	Juin	Juillet	Aout	Sept	Oct	Nov	déc
H _{moy} (%)	73,9	68,5	67,9	68,9	68	74,8	77,7	76,5	77,8	79,5	75,2	73,9

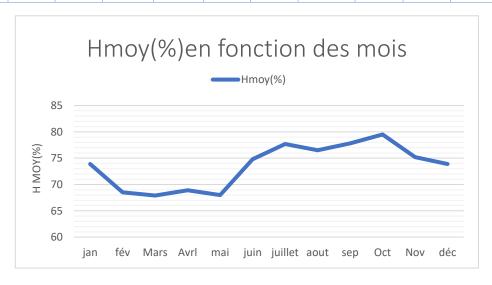


Figure I. 6: Courbe de variation humidité moyenne en fonction des mois.

I.VI.vi Pluviométrie

L'analyse des précipitations revêt une importance primordiale, notamment dans la conception des systèmes d'assainissement appropriés. La commune de Meurad se caractérise par des précipitations annuelles moyennes variant entre 400 et 1000 mm par an. Ces précipitations sont généralement sporadiques et souvent intenses, particulièrement dans les zones en altitude.

Les mois de juin, juillet et août connaissent généralement une période de sécheresse marquée. Cependant, cette sécheresse peut débuter de façon précoce, par exemple dès le mois de mai, ou se prolonger jusqu'à des périodes plus tardives comme octobre. Ces variations saisonnières et annuelles des précipitations doivent être prises en compte de manière rigoureuse lors de l'élaboration des plans d'assainissement, afin d'assurer une gestion efficace des eaux pluviales dans la commune de Meurad.

Tableau I. 4: précipitation de l'année 2021 pris par la station de Hadjout

Mois	Jan	Fév	Mars	Avr	Mai	juin	juil	Aout	sep	Oct	Nov	Dec
Pluvieumetrie	10,6	19,7	27,5	35,3	11,1	3,1	0	0	1,1	2,7	62,9	23

La source « ANRH-BLIDA »

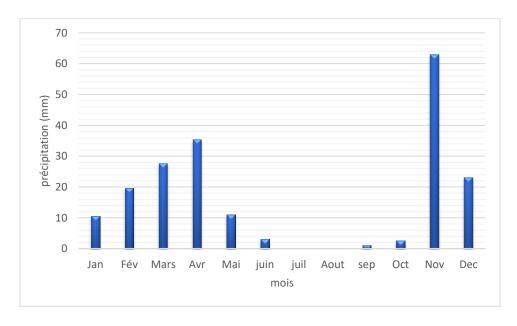


Figure I. 7: Diagramme de précipitation de la zone d'étude.

I.VII Hydrographie

Notre zone d'etude sidi ghiath la commune de meurad inclus dans le bassin versant de oued el nador et oued el hachem

Le bassin versant de l'Oued Nador est caractérisé par un réseau hydrographique dense, en particulier dans sa partie amont. L'Oued Nador, long de 8,5 kilomètres, coule entre le massif du Chenoua au nord-nord-ouest et les formations astiennes des contreforts sahéliens au sud-sud-est.

Ces cours d'eau contribuent à drainer quatre sous-bassins versants qui font partie du grand bassin côtier algérois, selon la classification de l'Agence Nationale des Ressources Hydrauliques (ANRH).

Tableau I. 5: Présentation des bassins et leurs codes respectifs.

Code	Bassin versant
02-12	Oued mazafran
02-10	Oued djer-Bouroumi
02-04	sahel
02-03	Oued El hachem et Oued nador

(Source: DRE TIPAZA)

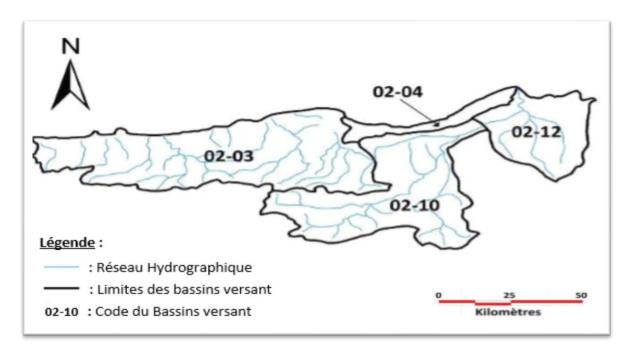


Figure I.8: Carte des réseaux hydrographique de la wilaya de Tipaza (source : DRE TIPAZA)

I.VI.a Oued SELLAMYA:

L'existence de l'oued **SELLAMYA** au nord de notre périmètre d'intervention génère une zone no aédificandie de 10 m a partir de la rive du oued

I.VI.b CHAABA:

L'existence d'une **CHAABA** au nord-est de notre périmètre d'intervention génère une zone non aedificandie de 10 m à partir de la rive de l'oued, avec une surface servitude d'environ 0,79 Ha.

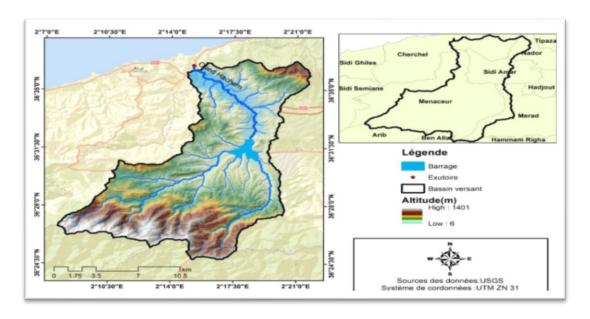


Figure I.9:Carte de bassin versant de la zone d'étude(EXTRA.

I.VIII La situation démographique

D'après l'APC de la commune de Meurad la population totale de la zone d'étude atteignait en 2020 les 1718 habitants, avec un taux d'accroissement de 1,6%

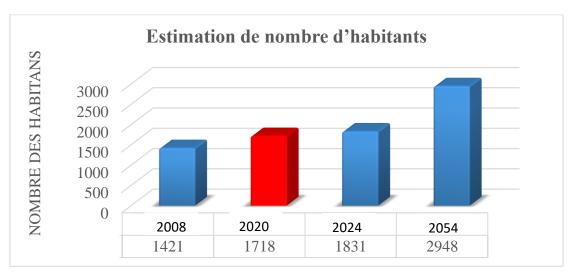


Figure I.10: Diagramme d'estimation de nombre d'habitants

I.IX La situation hydraulique:

I.IX.1Alimentation en eau potable

La population de la zone d'étude s'approvisionne en eau potable à partir du réservoir de capacité de 250 m³ situe au sud du site, qui est alimenté à partir d'une station de pompage par le biais d'une conduite en PEHD de diamètre Ø110 PN16.

Le réseau de distribution existant est de type ramifié, de diamètres variant de Ø20 à Ø32 en PEHD en bonne état.

Les besoins en eau de la commune sont assurés par deux principales sources d'approvisionnement : les eaux de surface provenant de l'adduction en provenance du barrage de Bou-kerdane, et les eaux souterraines puisées à partir des forages localisés dans le champ captant de Hadjout. Ces deux sources fournissent une contribution vitale à l'approvisionnement en eau de la commune, garantissant ainsi un accès fiable à cette ressource essentielle pour les habitants et les activités locales.

I.IX.2 Assainissement:

La ville de Meurad rejette ses eaux usées vers la station d'épuration de Hadjout, qui est Mise en service en juin 2006, la station d'épuration de Hadjout est de type boues activées fonctionnant en aération prolongée à faible charge associée à une dénitrification et une déphosphoration biologique. Sa capacité nominale est de 70 000 Hab pour un débit de 11 200m3 /j. Elle reçoit 7 300 m3 /j en moyenne et permet d'éliminer plus de 94% de la pollution contenue dans les eaux usées. Son niveau de conformité a atteint 100% en 2013. La production de boue est de 2.200 tonnes de boues par an, à 19.4 % de siccité

Conclusion:

Dans ce chapitre, nous avons recueilli et examiné en détail les données essentielles relatives à notre région, couvrant les aspects géographiques, météorologiques, géologiques, démographiques, ainsi qu'un aperçu de la situation actuelle en termes d'approvisionnement en eau et de diversité des ressources hydrauliques.

Cette étape de collecte et de validation des données est fondamentale dans la réalisation de notre projet. Elle nous permet d'acquérir une compréhension approfondie de notre environnement et des ressources disponibles, fournissant ainsi une base solide pour la planification et la mise en œuvre de nos initiatives futures

Chapitre II:

Diagnostic du système d'assainissement existant

Introduction

Au fil des années, les réseaux d'assainissement peuvent subir diverses anomalies qui peuvent entraîner des dysfonctionnements du système d'évacuation. Plusieurs facteurs peuvent être à l'origine de ces dysfonctionnements, tels que l'usure due à une sollicitation continue, les trous, les fissures, la corrosion interne ou externe, l'effondrement causé par des efforts physiques excessifs liés au trafic routier, ou encore le rétrécissement ou l'obturation des sections dû aux dépôts.

Le diagnostic d'un système d'assainissement existant au niveau d'une agglomération consiste à rassembler le maximum d'informations afin d'acquérir une bonne connaissance de l'état et du fonctionnement du réseau et de ses différentes installations. Cette évaluation est effectuée en auscultant le réseau et en relevant les points douteux dans le but de planifier la réhabilitation ou la restructuration, tout en anticipant les zones d'extension urbaines.

Dans notre zone d'étude, nous avons constaté que la croissance de la population et le développement urbain de la ville ont rendu la gestion du réseau d'assainissement plus difficile. En effet, l'urbanisation rapide de la ville meurad et l'aménagement des voiries ont entraîné une augmentation importante des surfaces imperméabilisées, ce qui a considérablement accru les volumes et les débits d'eau de ruissellement. Cela a entraîné une insuffisance de prise en charge des eaux par les collecteurs principaux.

La surface drainée par les collecteurs principaux est importante, mais la section de chaque conduite de transport est insuffisante pour permettre l'évacuation du volume d'eau par secteur hydrologique. Par conséquent, il y a une surcharge progressive sur le réseau existant et une augmentation du risque de débordements.

Ce chapitre a pour objet d'identifier les problèmes et les anomalies du réseau d'assainissement existant, ainsi que de déterminer les zones d'insuffisance afin de prévoir des travaux d'aménagement, d'entretien et de réhabilitation.

II. I-Généralité:

Un système d'évacuation est composé d'un ensemble d'ouvrages, de conduites et d'appareillages qui permettent la collecte et l'évacuation des eaux pluviales, des eaux usées domestiques et industrielles en dehors de l'agglomération vers un point précis tel qu'une station d'épuration, un oued ou la mer. Il

peut s'agir d'un système d'assainissement non collectif pour une habitation ou un petit groupe d'habitations, ou d'un système d'assainissement collectif pour les zones urbaines.

Un système d'assainissement urbain doit remplir plusieurs fonctions principales, notamment le drainage des eaux urbaines par temps de pluie ou par temps sec, la réduction des risques d'inondation, la stabilité de tous les ouvrages, la préservation de la santé et de la qualité de vie des citoyens, la protection de la qualité de la ressource en eau et des milieux aquatiques, et la protection de l'environnement.

Le dysfonctionnement d'un réseau d'assainissement peut entraîner des perturbations du fonctionnement normal, des risques d'inondation ou des débordements. Les dégradations structurelles du réseau d'assainissement peuvent entraîner d'une part l'infiltration d'eau claire (eau parasite), et d'autre part l'exfiltration des effluents qui peut causer la pollution des nappes phréatiques, qu'elles soient exploitées ou non.

II. II-Objectif de diagnostic :

L'étude de diagnostic vise à évaluer l'état de fonctionnement du réseau d'assainissement actuel. Pour ce faire, il est nécessaire de déterminer les paramètres de base qui serviront à l'expertise et à la rénovation du réseau. Cette étape comprend notamment :

- Une reconnaissance détaillée des lieux afin d'identifier les zones d'extension du réseau.
- Une enquête sur le réseau existant, qui permettra de recueillir des informations précises sur son état et son fonctionnement.

En somme, l'étude de diagnostic permet de dresser un bilan précis de l'état du réseau d'assainissement actuel, en vue de déterminer les actions à mener pour son amélioration et sa rénovation.

II.III Avantage du diagnostic :

Le diagnostic du réseau d'assainissement offre de nombreux avantages et les informations recueillies lors de cette étude sont essentielles pour :

- Améliorer la connaissance du fonctionnement réel du réseau, ce qui permettra d'optimiser le fonctionnement global du système d'assainissement, comprenant le réseau de collecte et la station d'épuration.
- Envisager les actions futures à mener sur le réseau, telles que des travaux de rénovation ou des méthodes de gestion adaptées.

En somme, le diagnostic permet d'obtenir une vision précise de l'état du réseau d'assainissement et de définir les actions à mettre en œuvre pour améliorer son fonctionnement et sa durabilité.

II.IV Rôle du diagnostic :

Le rôle du diagnostic dans l'étude du réseau d'assainissement est multiple. Il permet notamment de :

- Hiérarchiser les réparations à effectuer sur le réseau existant de la zone étudiée, en fonction de leur urgence et de leur importance.
- Proposer un programme de réhabilitation du réseau, qui prendra en compte les différents besoins et contraintes de la zone.
- Préparer, en fonction des capacités financières et techniques de la collectivité, un programme de remise en conformité du système de collecte, qui permettra de respecter les normes en vigueur.
- Prévoir la gestion future du système d'assainissement, afin de le maintenir en conformité et de garantir son bon fonctionnement sur le long terme.

II.V Etapes du diagnostic :

La démarche à suivre pour réaliser une étude de diagnostic du réseau d'assainissement consiste à appliquer de manière plus ou moins fine l'ensemble des techniques d'études disponibles, en suivant une méthodologie précise. Les principales étapes de cette méthodologie sont les suivantes :

II.V.a Collecte et exploitation des données :

Avant de procéder à la collecte des données pour l'étude de diagnostic du réseau d'assainissement, il est nécessaire de prévoir un scénario d'interventions sur le terrain. Celui-ci permettra de déterminer les connaissances à acquérir et les ouvrages à visiter. Deux sortes de données peuvent être distinguées :

II.V.b Données relatives à la collecte ;

Dans le cadre de la collecte des données pour l'étude de diagnostic du réseau d'assainissement, plusieurs types de données doivent être pris en compte :

- Les données relatives à la collecte, qui comprennent notamment :
 - ✓ Le nombre d'habitants et leur consommation en eau potable.
 - ✓ Les surfaces totales drainées et leurs caractéristiques, telles que le degré d'imperméabilisation, l'intensité de pluie, la pente, etc.
- Les données relatives au réseau et à ses ouvrages annexes, qui comprennent notamment :
 - ✓ Les caractéristiques des collecteurs, telles que leur diamètre, leur longueur, leur matériau, etc.
 - ✓ Les caractéristiques des stations de relevage, des déversoirs d'orage, des dessableurs, des déshuileurs, des bassins de retenue, des bassins d'orage, etc.
- Les données relatives au traitement, qui comprennent notamment :
 - ✓ Le bilan du traitement, qui permet de déterminer l'efficacité des ouvrages de traitement.
 - ✓ L'état de fonctionnement des ouvrages de traitement, qui permet de déterminer les éventuels dysfonctionnements ou les besoins en maintenance.
- Les données relatives au milieu récepteur, qui comprennent notamment :
 - ✓ La qualité actuelle du milieu récepteur, qui permet de déterminer les éventuels impacts du rejet des eaux usées.

✓ Les objectifs tracés pour le milieu récepteur, qui permettent de déterminer les actions à mener pour préserver ou améliorer sa qualité.

II.V.c Données d'orientation :

Les données d'orientation sont des informations relatives aux conséquences que peuvent avoir les différents dysfonctionnements du réseau d'assainissement. Elles permettent de définir les lieux et les types de pré-diagnostic à mettre en place. On distingue deux types de données d'orientation :

- Les signes, qui sont des manifestations extérieures au réseau physique, telles que les plaintes des riverains et des usagers, les effondrements de chaussées, etc.
- Les symptômes, qui sont des marques intérieures au réseau physique, telles que les fissures, les déboitements, les effritements de l'enduit, etc.

Les symptômes et les signes sont interprétés par un diagnostic, grâce à des auscultations, pour trouver les causes d'un dysfonctionnement ou d'une panne. Ces données d'orientation sont donc essentielles pour déterminer les actions à mener pour améliorer le fonctionnement du réseau d'assainissement.

II.VI Facteurs de dégradations :

Ils sont deux types (Nader, 1998):

II.VI.a-Facteurs externes à l'ouvrage (exogène) :

Comprennent tous les facteurs qui jouent un rôle dans l'apparition de perturbation géotechniques, les contraintes de surface, ainsi que celles qui interviennent dans la transmission de ces dernières à l'ouvrage (type de sol, qualité et fluctuation du niveau de la nappe, qualité de l'interface sol-ouvrage, type de voirie et de circulation en surface, profondeur de l'ouvrage).

II.VI.b-Facteurs de dégradation internes (endogène) :

Sont l'ensemble des données relatives à l'ouvrage pris hors de son contexte environnemental : géométrie, matériau et type de construction, période de construction, type d'effluent, fonctionnement (mise en charge ou non), etc

II.VII -Le pré-diagnostic :

Dans cette phase, et après la collecte des données, un examen à entreprendre sur le réseau d'assainissement et les ouvrages tout en procédant à une mise à jour des plans et de cartographie des patrimoines. Ce pré-diagnostic est destiné à découvrir les points faibles du système d'assainissement et à appréhender la sensibilité des milieux récepteurs

II.VII.1 Reconnaissance approfondie:

Cette phase consiste à faire une reconnaissance approfondie et détaillée des réseaux et des ouvrages élémentaires ce qui permet de (Nader, 1998):

• Quantifier les fuites, qui peuvent être une source de pollution dans le milieu récepteur et d'exfiltrations vers la nappe.

- Détecter les apports d'eaux parasites, qui peuvent surcharger les stations d'épuration, provoquer des déversements au droit des déversoirs et polluer le milieu naturel.
- Contrôler les rejets non conformes effectués dans les collecteurs, qui peuvent provoquer des dépôts nuisibles à leur bon fonctionnement et à leur état de conservation.
- Rechercher l'origine d'éventuelles pollutions toxiques d'origine industrielle, de graisses et de métaux lourds.
- Vérifier la présence d'H2S aux débouchées des conduites de refoulement, car la libération de ce gaz peut provoquer une oxydation et une fermentation de l'H2SO4, qui attaque à son tour les matériaux constituant les ouvrages d'assainissement.
- Vérifier régulièrement l'état des collecteurs et des ouvrages bâtis, afin de prévoir les travaux de confortement nécessaires et d'éviter tout risque d'effondrement pouvant entraîner des accidents et des perturbations de fonctionnement.

Cette phase d'étude permet de recueillir les informations nécessaires sur le fonctionnement des réseaux et des ouvrages annexes. Elle permet notamment de détecter les dysfonctionnements et de définir les actions à mener pour améliorer le fonctionnement du réseau d'assainissement.

II.VII.2 Etude fonctionnelle des bassins versant élémentaires :

La phase de localisation des tronçons suspects implique une représentation préliminaire des espaces et des réseaux. Pour ce faire, des outils sont utilisés pour découper les zones en sous-bassins élémentaires, secteurs de desserte homogènes ou sous-secteurs d'activités. Cette démarche est essentielle compte tenu de l'importance de la superficie et du linéaire du réseau.

II.VIII Types de diagnostic :

On distingue deux types de diagnostic

II.VII.1 Diagnostic fonctionnel (hydraulique):

Ce diagnostic est basé sur l'efficacité hydraulique (débits et flux polluants), il porte sur le transfert sans perte ni dégradation des effluents collectés.

II.VII.2 Diagnostic structurel (physique):

Basé sur l'état de la structure, il porte sur la pérennité des ouvrages et les dommages éventuels susceptibles d'être entraînés par leur ruine. Ce diagnostic concerne les regards, Déversoirs, et postes de relèvement ou le tronçon de collecteur (défini par deux regards consécutifs).

Le risque mécanique est évalué grâce aux critères suivants :

L'âge du collecteur. L'historique des réparations sur le collecteur. La présence d'arbres présentant un risque de pénétration de racines. L'existence de « points noirs », c'est-à-dire de tronçons occasionnant des désobstructions récurrentes, et qui peuvent être la conséquence de désordres structurels sur les canalisations. La structure des chaussées. La charge du collecteur, c'est-à-dire la hauteur de terre située entre le collecteur et le sol.

Ces deux types de diagnostic sont très liés, en effet ils sont complémentaires puisque des problèmes hydrauliques peuvent avoir des conséquences sur la structure, et inversement (exemple : les fissures provoquent des infiltrations en déstabilisent l'ouvrage par entraînement des particules fines).

II.IX Aperçu général sur le système :

II.IX.1 Reconnaissance du terrain et point de recollement :

L'état des lieux implique l'utilisation de plans déjà existants, qui peuvent être plus ou moins mis à jour, pour dresser un bilan des réseaux et installations en place. Cela inclut les canalisations, les regards, les avaloirs, les canaux, les fossés, les ponceaux, etc. Le but est de fournir une évaluation précise de l'état actuel de ces infrastructures.

La reconnaissance permet d'obtenir des informations clés telles que :

- La localisation du tracé des canalisations ;
- Les données relatives aux diamètres et aux types de matériaux utilisés pour les canalisations ;
- L'évaluation de l'état des canalisations et des ouvrages.

Dans le but de collecter toutes ces informations, j'ai pris contact avec les services concernés pour obtenir les études existantes en matière d'hydraulique et d'urbanisme. Cependant, seuls quelques tracés en plan des collecteurs étaient disponibles.

II.IX.2 Aperçu général du réseau d'assainissement existant de la ville de sidi ghiath:

Le réseau d'assainissement actuel dans notre zone d'étude est constitué de conduites en béton dont le diamètre varie entre 200 et 300 mm. Cependant, ces conduites sont fortement endommagées et présentent de nombreuses fissures en raison de la forte activité sismique dans la région. Construites avant 1980, elles ont subi des modifications géologiques et topographiques importantes. De plus, les rejets de la région sont actuellement déversés dans les cours d'eau d'Oued Selamya et Chaaba, ce qui est non seulement interdit mais aussi très néfaste pour l'environnement. (Voir la figure II.1).

Le réseau d'assainissement de notre zone d'étude est dans un état de détérioration avancé et nécessite des réparations urgentes. Les conduites endommagées doivent être remplacées ou réparées pour éviter tout dommage environnemental supplémentaire et les risques pour la santé. Il est également impératif de trouver une solution alternative pour les rejets qui soit conforme aux réglementations environnementales et aux normes en vigueur.

II.IX.3 Diagnostic physique:

Figure II. 1:Les rejets des eaux usées vers le milieu naturel (source : URBAB).

Figure II. 2:des regards en état dégradée

Figure II. 3:Des regards colmaté.



Figure II. 4:Fiche technique d'évaluation des regards.

Observation: URBAB c'est La source des photos de diagnostic.

II.IX.4 Diagnostic hydraulique:

Notre ville est actuellement confrontée à un réseau d'assainissement très dégradé sur le plan physique, avec des rejets vers le milieu naturel dans la partie supérieure de la ville, en particulier vers l'Oued Sellamya. De plus, nous avons des conduites en béton armé de 200 mm de diamètre, qui sont insuffisantes pour répondre aux besoins de notre ville à l'horizon 2054.

Pour remédier à cette situation, nous allons procéder à une étude de dimensionnement de l'ensemble du réseau d'assainissement de notre ville. Cette étude aura pour objectif d'assurer le bon fonctionnement du réseau à long terme, en prenant en compte les prévisions de croissance démographique et économique de notre ville.

Nous mettrons en œuvre les recommandations de cette étude pour réhabiliter et étendre notre réseau d'assainissement, en utilisant des matériaux et des techniques de pointe pour garantir la durabilité et l'efficacité du réseau. Nous veillerons également à ce que les rejets vers le milieu naturel soient traités de manière adéquate, afin de protéger l'environnement et la santé publique.

En somme, notre objectif est de disposer d'un réseau d'assainissement performant et durable, répondant aux besoins de notre ville à l'horizon 2054, tout en préservant notre environnement naturel.

Conclusion:

Il semble que le réseau d'assainissement de notre zone d'étude, construit avant 1980, soit dans un état de dégradation physique avancé, ce qui ne permet pas d'assurer un bon fonctionnement pour la ville. Il est donc prévu de renouveler totalement ce réseau.

C'est une décision importante et nécessaire pour garantir la santé publique et préserver l'environnement. Le renouvellement du réseau d'assainissement permettra d'améliorer l'évacuation des eaux usées et des eaux pluviales, réduisant ainsi les risques d'inondation et de pollution.

Pour mener à bien ce projet, il faudra probablement réaliser une étude préalable pour évaluer l'étendue des travaux et déterminer les solutions techniques les plus adaptées. Il sera également nécessaire de prévoir un budget conséquent et de planifier les travaux de manière à minimiser les désagréments pour les riverains.

Enfin, il peut être intéressant de réfléchir à des solutions durables et écologiques pour le nouveau réseau d'assainissement, comme la récupération des eaux de pluie ou l'utilisation de matériaux respectueux de l'environnement

Chapitre III : Etude hydrologique

Introduction:

Dans le processus de conception d'un réseau d'assainissement, il est essentiel d'estimer un paramètre qui impacte le débit pluvial. Cette estimation requiert une analyse hydrologique, particulièrement de l'intensité des précipitations, souvent représentée par les courbes IDF (Intensité-Durée-Fréquence). L'intensité moyenne maximale des précipitations, dérivée de l'étude des événements pluvieux extrêmes et des averses, est associée à une période de retour spécifique ainsi qu'à une durée d'averse déterminée.

III.I La série des données pluviométriques :

Pour réaliser une étude des précipitations en vue de l'assainissement, une série pluviométrique exhaustive est nécessaire, incluant les précipitations maximales journalières sur la période la plus étendue possible. Les calculs s'appuient sur les données de la série pluviométrique provenant de la station météorologique de Hadjout, sélectionnée pour sa proximité avec la zone d'étude et la longueur de sa série de précipitations maximales journalières. Ces données ont été collectées auprès de l'Agence Nationale des Ressources Hydrauliques (ANRH) à Blida. Voici un tableau présentant les données de cette station :(tableau III.1)

Tableau III. 1 : Les coordonnées de la station pluviométrique

Le nom de station :	POINT CW 7 HADJOUT
Le Code de station	020325
Les coordonnes	X: 475.85 Y: 358.85 Z:59

Pour la station choisie, on dispose d'une série de données comportant les précipitations max journaliers pour 30 années d'observation ; les valeurs de cette série sont reportées dans le tableau

(Voir tableau III.2).

Tableau III. 2: série d'observation de précipitation maximales.

Année	Pjmax	Année	Pjmax
1990-1991	55.5	2005-2006	35.3
1991-1992	51.1	2006-2007	77.5
1992-1993	79.5	2007-2008	27.1
1993-1994	34.4	2008-2009	39.3
1994-1995	69	2009-2010	37.2
1995-1996	40.5	2010-2011	58.9
1996-1997	51.7	2011-2012	23
1997-1998	73.5	2012-2013	45.3
1998-1999	38.7	2013-2014	42.1
1999-2000	33.6	2014-2015	52
2000-2001	51.9	2015-2016	50.9
2001-2002	46.2	2016-2017	65.9
2002-2003	66.6	2017-2018	80.3
2003-2004	58.2	2018-2019	35.6
2004-2005	71.1	2019-2020	32.6

Source: ANRH_BLIDA

III.II Homogénéisation des données :

Nous devons garantir que notre série de données ne comporte pas de discontinuités artificielles et évaluer si elle est homogène ou non. Pour ce faire, nous utilisons le test de la médiane, dont les étapes sont les suivantes :

- (a) Trier la série par ordre croissant.
- (b) Déterminer la valeur M de la médiane d'ordre m (de telle sorte que 50% des xi soient inférieurs à x et 50% des xi soient supérieure à x). Deux cas sont alors possible :
 - (i) Si N impair, on prend $\left(\frac{N+1}{2}\right)^{i \text{ \'eme}}$ valeur
 - (ii) Si N pair, on prend la moyenne entre $\left(\frac{N}{2}\right)^{i \text{ } émE}$ valeur et $\left(\frac{N}{2}+1\right)^{i \text{ } éme}$ valeur

On a N= 30ans donc $M = \frac{71,1+35,3}{2} = 53,5$ alors la médiane est M=53, 5

- (c) Pour la série non triée, attribuer à chaque valeur un signe (+) si $x_i > M$ ou bien un signe (-) si $x_i < M$
- (d) Calculons les quantités NS et TS tel que : Ns est le nombre total des séries (+) ou (-), et Ts est la taille de la plus grande série (+) ou (-).

Pour un seuil de signification compris entre 91% et 95%, les conditions du test sont

$$N_S > \frac{1}{2}(N+1-1.96 \times \sqrt{N+1})$$

$$T_s < 3.3[log_{10}(N) + 1]$$

Tableau III. 3: Résultat du test de la médiane.

Paramètre	Valeur	Comparaison
Ns	16	16>10,043 — LA 1 ^{er} condition vérifier
$\frac{1}{2}(N+1-1.96\times\sqrt{N+1})$	10,04	
Ts	4	5<8,17 LA 2eme condition vérifie
$M3.3[log_{10}(N)+1]$	8, 17	33

III.III Etude des précipitations maximales journalières :

Pour déterminer les valeurs extrêmes ou les quantiles dans le cadre de l'analyse des séries de pluies maximales journalières, une démarche statistique est nécessaire. Cela implique d'ajuster les données observées à une distribution de probabilité théorique. En d'autres termes, il faut trouver un modèle statistique qui correspond le mieux aux données de pluviométrie afin d'identifier les intensités de pluie les plus extrêmes et d'estimer les débits de crue associés. Les principales étapes de cette étude comprennent :

- Classer la série des **Pmax,j** par ordre croissant.
- Calculer la fréquence expérimentale F(x) (au non dépassement).
- Calculer les caractéristiques empiriques de la série.
- Ajuster la série graphiquement.
- Déterminer les quantiles et leurs intervalles de confiance.
- Calculer les averses et les intensités de courte durée

III.III.1 Caractéristiques empiriques de la série :

\Lambda La moyenne $\langle\langle \overline{P_{max,i}}\rangle \rangle$:

Avec N= 30 Ans, la moyenne interannuelle des précipitations maximales journalière :

$$\frac{1}{P_{max,j}} = \frac{\sum_{i=1}^{N} P_{max,j}}{N} = 50.8$$

\Leftharmoonup L'écart-type $\langle \sigma_{max,j} \rangle$:

Pour N=30 supérieurs à 30 ans, on a :

$$\sigma_{max,j} = \sqrt{\frac{\sum_{i=1}^{N} (P_{max,j} - \overline{P_{max,j}})^2}{N}} = 16.3$$

riangle Le coefficient de variation $\ll Cv \gg :$

$$Cv = \frac{\sigma_{max,j}}{\overline{P_{max,j}}} = 0.508$$

Tableau III. 4: Caractéristique de la série.

Nombre d'année d'observation	30
Médiane (mm)	51
Moyenne(mm)	50,8
Ecart-type(mm)	16,3
Coefficient de variation	0,32
Exposant climatique	0,37

III.III.2 Ajustement de la série :

L'efficacité d'une méthode d'estimation dépend de plusieurs facteurs, dont la loi de probabilité sous-jacente, la taille de l'échantillon et ses caractéristiques spécifiques. De nombreuses études, à la fois empiriques et théoriques, ont été entreprises pour évaluer dans quelles conditions une loi de probabilité particulière offre la meilleure performance en termes d'estimation.

En d'autres termes, la capacité d'une méthode à estimer correctement un paramètre dépend de la distribution probabiliste des données, de la taille de l'échantillon utilisé et des propriétés intrinsèques des données elles-mêmes. Des recherches approfondies ont été menées pour analyser comment ces différents facteurs influent sur la qualité des estimations.

Par exemple, certaines lois de probabilité peuvent être plus appropriées pour modéliser certains types de données que d'autres. De plus, la taille de l'échantillon peut jouer un rôle crucial dans la précision de l'estimation, avec des échantillons plus grands souvent associés à

une meilleure performance. Les caractéristiques spécifiques des données, telles que leur distribution, leur dispersion et leur corrélation, peuvent également influencer le choix de la méthode d'estimation la plus appropriée.

Pour faciliter notre travail, l'ajustement sera traité par le logiciel « Hyfran » avec les deux lois suivantes : la loi de **Gumbel**, la loi de **Galton** (**Log-normal**).

III.III. 3 Ajustement à la loi de Gumbel :

a) ANALYTIQUE:

La distribution statistique de Gumbel ou bien la loi doublement exponentielle est Souvent utilisée pour décrire le comportement statistique des valeurs extrêmes. La fonction de répartition est (TOUAIBIA, 2003):

$$F(x) = e^{-e^{-(\frac{x-x_0}{\alpha})}}$$

 $u = \frac{x - x_0}{\alpha}$: La variable réduite de Gumbel

 x_0 et α : Les paramètres du modèle de Gumbel

α: Paramètre de l'échelle diffèrent de zéro et positif appelé aussi« gardex »

 x_0 :Parametre de position

x: Variable étudie « Pjmax »

On écrit alors:

$$F(x) = e^{-e^{-(u)}}$$
$$u = -\ln[-\ln(F(x))]$$

L'avantage d'utiliser la variable réduite est que l'expression d'un quantile est alors linéaire

$$X = \frac{1}{\alpha} \times u + x_0$$
 Soit $Pjmax = \frac{1}{\alpha} \times u + x_0$

Avant de procéder à l'ajustement il faut suivre les étapes suivantes :

- 1. classer les valeurs des précipitations par ordre croissant avec attribution d'un rang 1.2.3.....n
- calculer pour chaque valeur de précipitation la fréquence expérimentale par la formule de HAZEN.

$$F(X) = \frac{m - 0.5}{n}$$

m :rang de précipitation

n :nombre d'observation (30)

3. Calcul de la variable de Gumbel pour chaque valeur observée.

$$u = -ln[-\ln(F(X))]$$

4. Calculer les paramètres d'ajustement $\ll \frac{1}{\alpha} \gg et \ll x_0 \gg$ par les deux formules suivantes :

$$\frac{1}{\alpha}=0.78\sigma$$

$$x_0 = \overline{x} - 0.577 \times \frac{1}{\alpha}$$

Avec:

 $\frac{1}{\alpha}$: pente de la droite de Gumbel.

 σ : Ecart type de la série.

 \overline{X} :La moynne arithmétique de la série

→ Résultats des 4eme étapes sont représenté dans le tableau

σ	16,3
\overline{X}	50,8
$\frac{1}{\alpha}$	12,712
x_0	43,46

L'équation de la droite de Gumbel s'écrit ainsi :

$$Pjmax(p\%) = 12,712 \times u + 43,46$$

Pour calculer le quantile de période de retour (10 ans), on commence par calculer la fréquence F de non dépassement, représentée par ($F = 1 - (\frac{1}{T})$), où T est la période de retour en années. Ensuite, on déduit la valeur de la variable réduite de Gumbel en utilisant la formule suivante :

La formule de la variable réduite de Gumbel est généralement exprimée comme suit :

$$u=-ln\left(-ln\left(1-\frac{1}{10}\right)\right)=2,25$$

D'ou

$$Pjmax(10\%) = 72,067mm$$

Tableau III. 5: Ajustement des précipitations maximales journalières a la loi de Gumbel

Pjmax (mm)	Classement	Rang	F(x)	U
55.5	23,00	1	0,01666667	-1,4096066
51.1	27,10	2	0,05	-1,0971887
79.5	32,60	3	0,08333333	-0,9102351
34.4	33,60	4	0,11666667	-0,7647394

69	34,40	5	0,15	-0,6403369
40.5	35,30	6	0,18333333	-0,5285374
51.7	35,60	7	0,21666667	-0,4248724
73.5	37,20	8	0,25	-0,3266343
38.7	38,70	9	0,28333333	-0,2320091
33.6	39,30	10	0,31666667	-0,1396798
51.9	40,50	11	0,35	-0,0486207
46.2	42,10	12	0,38333333	0,04202027
66.6	45,30	13	0,41666667	0,13299584
58.2	46,20	14	0,45	0,22501067
71.1	50,90	15	0,48333333	0,31876177
35.3	51,10	16	0,51666667	0,41497414
77.5	51,70	17	0,55	0,51443714
27.1	51,90	18	0,58333333	0,6180462
39.3	52,00	19	0,61666667	0,72685568
37.2	55,50	20	0,65	0,84215099
58.9	58,20	21	0,68333333	0,96555321
23	58,90	22	0,71666667	1,09917911
45.3	65,90	23	0,75	1,24589932
42.1	66,60	24	0,78333333	1,40978016
52	69,00	25	0,81666667	1,59689558
50.9	71,10	26	0,85	1,81696079
65.9	73,50	27	0,88333333	2,08704922
80.3	77,50	28	0,91666667	2,4417164
35.6	79,50	29	0,95	2,97019525
L				

32.6	80,30	30	0,98333333	4,08595277

b) Logiciel Hyfran:

i. Présentation sur logiciel HYFRAN:

Le logiciel HYFRAN a été spécialement développé pour effectuer des analyses fréquentielles dans le domaine de l'hydrologie, en mettant particulièrement l'accent sur l'étude des valeurs extrêmes. Dans le contexte de l'analyse des crues, son utilisation principale est destinée à estimer le débit maximum annuel. Cependant, ses fonctionnalités ne se limitent pas à ce seul domaine. Il peut être appliqué à d'autres ensembles de données présentant des valeurs extrêmes, quelle que soit leur périodicité, à condition que les observations soient indépendantes et distribuées de manière identique.

Le logiciel HYFRAN a été spécialement conçu pour l'environnement Windows, offrant une interface conviviale qui simplifie le processus d'ajustement d'une distribution statistique à un échantillon aléatoire. Ces étapes peuvent être classées en deux grandes catégories :

- Saisie des données et étude des caractéristiques statistiques de l'échantillon aléatoire
- Procédures d'ajustement.

Pour confirmer les résultats antérieurs, nous exploitons le logiciel Hyfran afin de déterminer la précipitation maximale quotidienne pour une période de retour de 10 ans. Voici les étapes à suivre pour effectuer cet ajustement :

- Lancement d'Hyfran
- Mettre la formule de Hazen comme formule de probabilité empirique
- Insérer les données (P journalière max classé).
- Ajuster à la loi Gumbel ((méthode maximum de vraiesemblance)).
- Tirer les coefficients de la droite

Tableau III.6: Ajustement de la série a la loi de Gumbel a l'aide du logiciel Hyfran.

Période de retour	Fréquence au	Valeur théorique	Ecart-type	Intervalle de
T	non dépassement	XT(mm)		confiance
100	0,99	108	10.6	86.9-128
50	0,98	97.8	9.19	79,8-116
20	0,95	84.7	7.37	70,2-99,1
10	0,9	74.6	6.00	62.8-86.3
5	0,8	64	4.65	54,9-73,1

On obtient comme droite:

$$Pjmax = 14,0547.U + 42,9269$$

Donc

$$Pjmax(10\%) = 14,0547.(2,25) + 42,9269$$

$$Pjmax(10\%) = 74,55mm$$

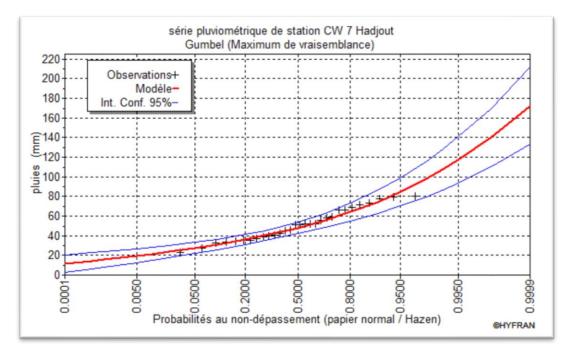


Figure III. 1: Ajustement graphique à la loi de Gumbel

III.III.4 Ajustements de la série pluviométrique a la loi de Galton (Log-normal) :

a) ANALYTIQUE:

La loi de Galton, également connue sous le nom de loi log-normale ou loi gaussienne logarithmique, est ainsi nommée en raison de sa similitude avec la distribution normale, avec une transformation logarithmique appliquée à la variable.

La fonction de répartition est donnée par la représentation suivante (touaibia 2004) :

$$F(x) = \frac{1}{2\pi} \int_{-\infty}^{u} e^{-\frac{u^2}{2}}$$
 Du (Fréquence au non dépassement)

Sachant que <<u>> est la variable centrée réduite de Gauss :

$$u = \frac{\ln(u) - \overline{\ln(x)}}{\sigma_{\ln(x)}}$$

Avec:

X : variable étudiée (Pmax.j).

Ln(x): la moyenne des logarithmes de la variable x

 $\sigma_{ln(x)}$: l'écart-type des logarithmes de la variable x

L'équation de la variable réduite présente sous la forme

 $\ln(x) = \overline{\ln(x)} + \sigma_{lnx}$. Est l'équation d'une droite sur papier gauss-logarithmique, avec en l'échelle gaussienne et en ordonnée l'échelle logarithmique.

Avant de procéder à l'ajustement il faut suivre les étapes suivantes :

- 1) Classement des valeurs par ordre décroissant (fréquence au non dépassement)
- 2) Calcul de la fréquence expérimentale
- 3) Calcul des caractéristiques empiriques de la série initiale \overline{x} , σ D'après le calcul précédant on a :

$$\bar{x} = 50.8$$

 $\sigma = 16.3$

4) Calculer des caractéristiques de la sérié transformer en logarithme

$$\frac{\overline{\ln x}}{\overline{\ln x}} = t \, \sigma_{\ln x}
\overline{\ln x} = \frac{\sum_{i=1}^{n=30} \ln x}{N} = 3,876
\sigma_{\ln x} = \sqrt{\frac{\sum_{i=1}^{n=30} (\ln(p_i - \overline{\ln(p)})^2}{N-1}} = 0,3317$$

5) Calcul la variable du galton pour chaque valeur observée par la formule :

$$u = \frac{\ln(x) - \overline{\ln(x)}}{\sigma_{lnx}}$$

Tableau III. 7: Ajustement des précipitations maximales journalière a la loi de Galton.

Classement	Rang	Freaquence de hazen	U
80,30	1	0,01666667	1,53492906
79,50	2	0,05	1,50474324
77,50	3	0,08333333	1,42988313
73,50	4	0,11666667	1,2701179
71,10	5	0,15	1,17003026
69,00	6	0,18333333	1,07964215
66,60	7	0,21666667	0,97291018
65,90	8	0,25	0,94105472
58,90	9	0,28333333	0,60249357
	79,50 77,50 73,50 71,10 69,00 66,60 65,90	79,50 2 77,50 3 73,50 4 71,10 5 69,00 6 66,60 7 65,90 8	79,50 2 0,05 77,50 3 0,083333333 73,50 4 0,116666667 71,10 5 0,15 69,00 6 0,183333333 66,60 7 0,216666667 65,90 8 0,25

33.6	58,20	10	0,31666667	0,56644866
51.9	55,50	11	0,35	0,42323561
46.2	52,00	12	0,38333333	0,22684952
66.6	51,90	13	0,41666667	0,22104613
58.2	51,70	14	0,45	0,20940571
71.1	51,10	15	0,48333333	0,17421236
35.3	50,90	16	0,51666667	0,16238935
77.5	46,20	17	0,55	-0,1297
27.1	45,30	18	0,58333333	-0,1890107
39.3	42,10	19	0,61666667	-0,4098775
37.2	40,50	20	0,65	-0,5266907
58.9	39,30	21	0,68333333	-0,6173701
23	38,70	22	0,71666667	-0,6637535
45.3	37,20	23	0,75	-0,7829336
42.1	35,60	24	0,78333333	-0,9154764
52	35,30	25	0,81666667	-0,9409902
50.9	34,40	26	0,85	-1,0188533
65.9	33,60	27	0,88333333	-1,0897945
80.3	32,60	28	0,91666667	-1,1808849
35.6	27,10	29	0,95	-1,737967
32.6	23,00	30	0,98333333	-2,2325237

- 6) Reporter les valeurs sur papier gauss-logarithmique
- 7) Détermination la droite de Galton $lnx = \overline{lnx} + \sigma_{lnx}$. $u_{p\%}$ L'équation de la droite de galton s'écrire ainsi :

$$lnx = 3,876 + 0,3316.\,u_{p\%}$$

8) Détermination de la valeur extrême soit graphiquement sur la droite, soit analytiquement par :

$$X_{P\%}=e^{\ln xp_\%}=e^{\overline{\ln x}+\sigma_{\ln x}.u_{p\%}}$$

Avec

Up%=variable réduite de gauss pour fréquence donnée 10%

D'où:

$$P_{jmax}(10\%) = e^{lnxp_{\%}} = e^{3,876+0.3316\times1.28} = 73,73$$
mm

b) Logiciel Hyfran

En suivant les mêmes étapes comme ceux cités précédemment

Tableau III. 8: Résultat de l'ajustement à la loi de Galton (hyfran).

Période de retour T	Fréquence au non dépassement	Valeur théorique XT(mm)	Ecart-type	Intervalle de confiance
100	0,99	104	12.3	80.3-129
50	0,98	95.4	10.3	75,2-116
20	0,95	83.3	7.81	68-98,6
10	0,9	73.8	6.08	61.9-85.8
5	0,8	63.8	4.52	54,9-72,7

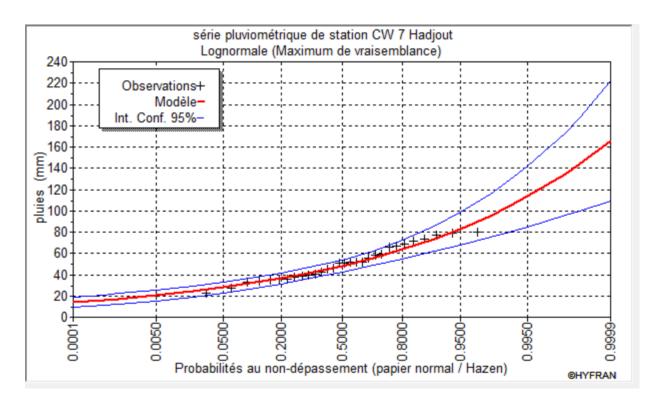


Figure III. 2: Ajustement graphique à la loi de Galton

Remarque : Les résultats obtenus à la fois par le calcul analytique et par le logiciel Hyfran, que ce soit par des méthodes analytiques ou graphiques, sont remarquablement proches. Par conséquent, nous privilégions le résultat généré par le logiciel Hyfran en raison de sa grande précision.

III.III.5 Choix de la loi d'ajustement :

Lorsqu'on a procédé à un ajustement d'une loi de probabilité théorique, le problème qui se pose est de savoir si cette loi s'adapte ou non. Les critères de choix d'une loi sont liés à un ajustement graphique et un test de dispersion

a) Test graphique:

Ce test repose sur l'examen visuel des graphiques d'ajustement, où l'objectif est d'analyser la répartition des points sur le papier probabilité. L'idée est de rechercher un alignement cohérent des points sans présence de déviations significatives ou de courbes inhabituelles.

b) Interprétation des graphiques :

D'après l'examen visuel des graphiques d'ajustement présentés dans les figures on remarque que :

- Les valeurs des Pmaxj s'ajustent d'une façon presque similaire aux deux lois statistiques Galton et Gumbel pour la station CW7 Hadjout
- Mais on a pu constater que pour les faibles valeurs des Pmax, j s'ajuste d'une façon similaire aux deux lois, par contre les fortes valeurs s'ajustent mieux à la loi de Galton.

c) Test d'adéquation khi-deux «χ² »

Effectivement, le test de Khi-carré, également connu sous le nom de test de Pearson, est un outil statistique couramment utilisé pour évaluer l'adéquation entre les observations empiriques et les valeurs théoriques sous une distribution spécifique. Ce test implique une comparaison entre les valeurs calculées de la statistique du chi-deux (χ^2) et les valeurs critiques, en fonction du seuil de signification (niveau de risque) α et du nombre de degrés de liberté de la loi.

Voici comment il est généralement utilisé :

- 1. Calcul de la statistique du chi-deux : La statistique du chi-deux est calculée en comparant les fréquences observées dans chaque catégorie avec les fréquences attendues sous l'hypothèse nulle. Cela implique de calculer la somme des carrés des écarts entre les fréquences observées et attendues, pondérée par les fréquences attendues.
- **2. Détermination des degrés de liberté** : Les degrés de liberté dépendent du nombre de catégories ou d'intervalle et du nombre de paramètres estimés. Pour un test d'ajustement, les degrés de liberté sont généralement égaux au nombre de catégories moins le nombre de paramètres estimés.
- 3. Comparaison avec la valeur critique : Les valeurs critiques du chi-deux dépendent du niveau de signification (α) et des degrés de liberté. Pour un niveau de signification $\alpha = 5\%$, on trouve dans les tables de la distribution du chi-deux la valeur critique correspondante pour le nombre de degrés de liberté donné.
- **4. Règle de décision** : Si la statistique calculée du chi-deux dépasse la valeur critique correspondante, on rejette l'hypothèse nulle au profit de l'hypothèse alternative, indiquant une inadéquation significative entre les observations et la distribution théorique. Sinon, on ne rejette pas l'hypothèse nulle, ce qui suggère que les données fournissent suffisamment de preuves pour soutenir l'hypothèse de départ.

d) Application du test:

Pour évaluer la fiabilité du test de Khi-carré pour chaque ajustement, nous calculons d'abord la valeur de χ^2 à partir des données observées et des valeurs théoriques. Ensuite, nous déterminons la probabilité correspondante en consultant la table de la fonction de densité cumulative du chideux, en utilisant un seuil de signification prédéfini ($\alpha = 5\%$).

Deux hypothèses sont ensuite considérées :

- 1. Si $P(\chi) \ge 0.05$, cela suggère que les données sont cohérentes avec l'hypothèse nulle (H0), indiquant ainsi une bonne adéquation entre les observations et la loi théorique testée.
- 2. Si $P(\chi^2)$ <0.05, cela suggère que les données ne correspondent pas bien à l'hypothèse nulle (H0), ce qui implique une divergence significative entre les observations et la loi théorique testée.

Dans notre cas la valeur de χ^2 pour chaque lois été calculée a l'aide du logiciel hyfran ainsi que sa probabilité $P(\chi^2)$

$$\chi^2$$
=4,53 et P(χ^2)=0,3386 \geq 0,05 Pour la loi de Gumbel χ^2 =2,67 et P(χ^2)=0,6151 \geq 0,05 Pour la loi de Galton

Donc l'application du test khi-deux $\chi 2$ dans notre travail montre que les deux lois sont adéquates.

Tableau III. 9: Résultats de test khi-deux.

Loi d'ajustement	Nombre de paramètre	Dégrée de liberté	χ² calculée	χ² théorique	Observation
Gumbel	7	4	4,53	9,94	χ^2 Theorique $> \chi^2$ cal condition vérifier
Galton	7	4	2,67	9,94	χ^2 Theorique $> \chi^2$ cal condition vérifier

e) Sélection de la loi

Sachant que l'adéquation de l'ajustement par les deux lois est confirmée, et que les valeurs théoriques Xt sont très proches pour les deux. Mais vu que plusieurs études en Hydrologie montrent que la loi Log-normale est celle qui s'adapte mieux au Nord d'Algérie, donc on opte pour celle-ci : la loi de Galton (Log-normal).

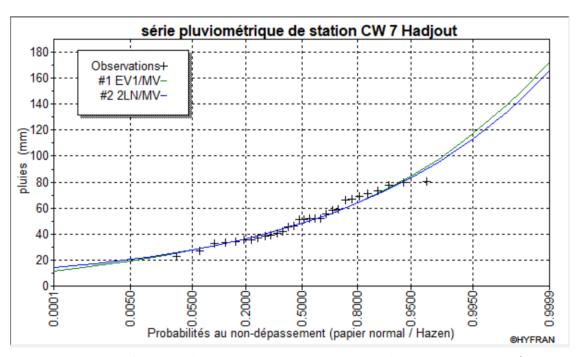


Figure III. 3: Comparaison entre les deux graphes d'ajustement de la série

III.IV Calcul des pluies et des intensités de courte durée :

Dans ce volet, on va déterminer les valeurs des pluies de courte durée et leurs intensités. En se basant sur les résultats de l'ajustement à la loi Log-normale.

III.IV.1 Pluies de courte durée :

La détermination des pluies de courte durée (les averses) se fait à la base des pluies maximales journalières, par la relation de Montanari :

$$P_{t,p\%} = P_{JMAX} \times (\frac{t}{24})^b$$

Avec:

P_{t,p}% : pluie (mm) de courte durée correspondante à une fréquence de dépassement donnée (p%).

 $P_{max,j}$: pluie maximale journalière (mm) correspondante à une fréquence de dépassement donnée (p%).

t: durée de l'averse (h).

b: exposant climatique; selon l'ANRH Alger, b = 0.37 pour la région d'étude

III.IV.2 Intensité de courte durée :

Pour le calcul de l'intensité moyenne « it,p% » de précipitation « Pt,p% (mm) » de courte durée « t (h) » à une fréquence de dépassement donnée « p% », nous utilisons la formule de Montanari :

$$It, p\% = \frac{Pt, p\%}{t}$$

Les calculs sont résumés sur le tableau ci-dessus :

Tableau III. 10:Pluies de courte durée de différentes périodes de retour et leurs intensités

Durée		Période de retour (ans)								
de	1	100		50		20		10		5
l'averse	P%	Intensité	Р%	Intensité	Р%	Intensité	P%	Intensité	P%	Intensité
(h)	(mm)	(mm/h)	(mm)	(mm/h)	(mm)	(mm/h)	(mm)	(mm/h)	(mm)	(mm/h)
0,25	19,21	76,85	17,62	70,50	15,39	61,56	13,63	54,54	11,79	47,15
1	32,09	32,09	29,44	29,44	25,70	25,70	22,77	22,77	19,69	19,69
2	41,47	20,74	38,04	19,02	33,22	16,61	29,43	14,71	25,44	12,72
3	48,18	16,06	44,20	14,73	38,59	12,86	34,19	11,40	29,56	9,85
4	53,59	13,40	49,16	12,29	42,93	10,73	38,03	9,51	32,88	8,22
5	58,21	11,64	53,39	10,68	46,62	9,32	41,30	8,26	35,71	7,14
6	62,27	10,38	57,12	9,52	49,87	8,31	44,19	7,36	38,20	6,37
7	65,92	9,42	60,47	8,64	52,80	7,54	46,78	6,68	40,44	5,78
8	69,26	8,66	63,54	7,94	55,48	6,93	49,15	6,14	42,49	5,31
9	72,35	8,04	66,37	7,37	57,95	6,44	51,34	5,70	44,38	4,93
10	75,22	7,52	69,00	6,90	60,25	6,03	53,38	5,34	46,15	4,61
11	77,92	7,08	71,48	6,50	62,41	5,67	55,30	5,03	47,80	4,35
12	80,47	6,71	73,82	6,15	64,46	5,37	57,11	4,76	49,37	4,11
13	82,89	6,38	76,04	5,85	66,39	5,11	58,82	4,52	50,85	3,91
14	85,20	6,09	78,15	5,58	68,24	4,87	60,46	4,32	52,26	3,73
15	87,40	5,83	80,17	5,34	70,00	4,67	62,02	4,13	53,62	3,57
16	89,51	5,59	82,11	5,13	71,70	4,48	63,52	3,97	54,91	3,43
17	91,54	5,38	83,97	4,94	73,32	4,31	64,96	3,82	56,16	3,30
18	93,50	5,19	85,77	4,76	74,89	4,16	66,35	3,69	57,36	3,19
19	95,39	5,02	87,50	4,61	76,40	4,02	67,69	3,56	58,52	3,08
20	97,22	4,86	89,18	4,46	77,87	3,89	68,99	3,45	59,64	2,98
21	98,99	4,71	90,80	4,32	79,28	3,78	70,24	3,34	60,72	2,89
22	100,71	4,58	92,38	4,20	80,66	3,67	71,46	3,25	61,78	2,81
23	102,38	4,45	93,91	4,08	82,00	3,57	72,65	3,16	62,80	2,73
24	104,00	4,33	95,40	3,98	83,30	3,47	73,80	3,08	63,80	2,66

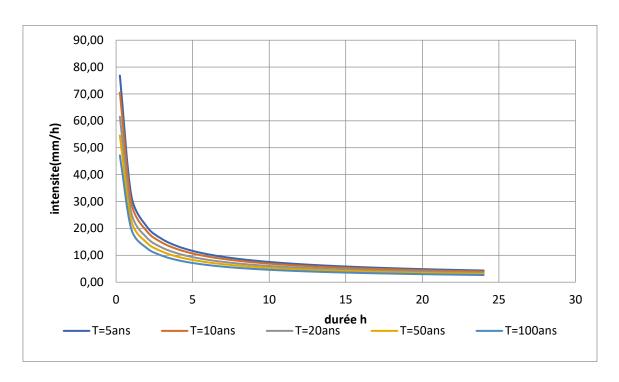


Figure III. 4:courbe intensité-Durée-Fréquence (IDF)

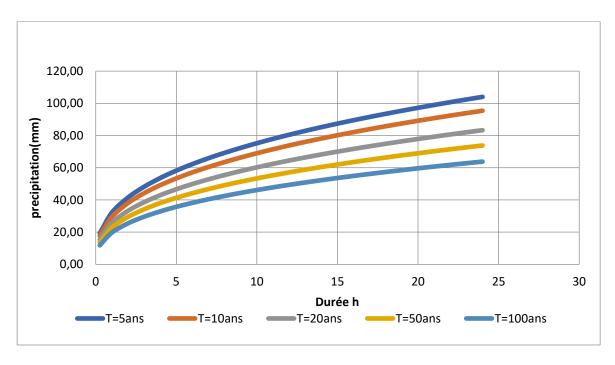


Figure III. 5: Courbe Pluie-Durée-Fréquence (PDF)

III.V Intensité moyenne maximale :

Pour les projets d'assainissement, et concernant l'estimation des débits pluviaux, on s'intéresse généralement à l'intensité moyenne maximale correspondante à une courte durée

t = 15 min = 0.25 h et une période de retour T = 10 ans, pour des raisons technico- économiques et de sécurité.

D'après le tableau on a :

$$i_{15min,10\%} = 54,54mm/h$$

$$i_{15min,10\%} = \frac{54,54 \times 10000}{3600} = 151,5l/s/ha$$

Avec:

$$\frac{10000}{3600}: TERME\ DE\ CONVERSATION\ DU\frac{mm}{h}en\frac{l}{s}/hab$$

CONCLUSION

Ce chapitre nous 'a permis de donner une étude détaillée qui nous a permet déterminer la valeur de l'intensité pluviale égale à 151,5 l/s/ha qui est le débit spécifique pour une durée de quinze minutes et une période de retour de 10 ans, dont on aura besoin pour l'estimation des débits.

Chapitre IV:

Calcul de base

Introduction

Dans le processus d'assainissement, il est impératif de passer par plusieurs étapes préliminaires pour garantir une évacuation efficace des eaux usées en dehors des zones urbaines. Parmi ces étapes essentielles, nous retrouvons :

- Évaluation de la population résidente afin de déterminer les besoins en termes de capacité d'évacuation.
- Division du site en zones élémentaires et évaluation du coefficient de ruissellement pour comprendre la répartition des eaux de surface.
- Sélection du système approprié et conception du schéma du réseau d'évacuation des eaux, en prenant en compte les données précédentes pour une planification adéquate.

IV.I La situation démographique :

Les structures de génie civil et les installations hydrauliques destinées à la collecte des eaux en milieu urbain doivent être conçues pour satisfaire les exigences de la population pendant une période définie, connue sous le nom de durée d'utilisation ou de durée de vie de l'ouvrage.

Pour anticiper le nombre d'habitants de notre zone d'étude, en se basant sur le recensement de 2020 comme point de départ et un taux de croissance annuelle de 1,6%,

Un ingénieur concepteur doit dès la phase de conception prévoir la population à desservir sur la durée de vie prévue de la structure projetée. Cette estimation requiert une projection à long terme, qui peut s'étendre sur une période de 10 à 50 ans.

Pour ce faire, nous utiliserons la formule de croissance géométrique, en s'appuyant sur le principe des intérêts composés.

$$P_n = P_0 \times (1+\tau)^n$$

Où:

 P_n : Nombre d'habitants à l'horizon.

Po: Nombre d'habitant de référence 2020.

 τ : taux d'accroissement. τ=1,6%

n: nombre des années .N=30 ans

Tableau IV. 1: estimation de l'évolution futur de la population.

Horizon (année)	2008	2020	2024	2054
Estimation (Hab.)	1421	1718	1831	2948

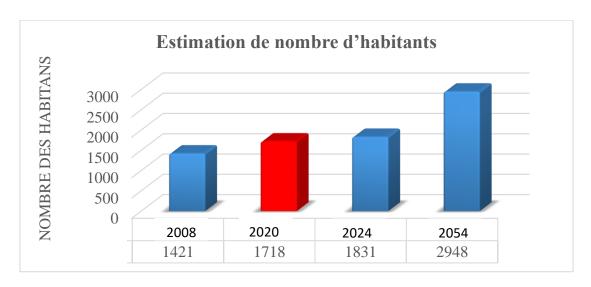


Figure IV. 1:Diagramme de l'évolution démographique de la zone d'étude (Source : APC Meurad)

IV.II Découpage de l'air d'étude en surfaces élémentaires :

i) Définition:

Généralement, un bassin versant se réfère à une région géographique délimitée par les crêtes de montagne ou par les lignes de partage des eaux.

ii) Choix de la limite des sous bassins :

Pour procéder au choix du découpage d'un site en sous-bassins élémentaires, on prend en considération ce qui suit :

- La nature du sol. La densité des habitants. Les courbes de niveau ; les pentes et les contre pentes.
- Les limites naturelles (talweg, oued, etc...). Les routes et les voiries existantes. Dans notre cas ; le découpage se fait selon la nature du sol, la densité des habitants, Les routes et les voiries existantes, les pentes et les contre pentes.

IV.III Différents systèmes de drainage pour les eaux usées et les eaux pluviales :

i) Systèmes fondamentaux :

Les réseaux associés permettent un écoulement libre, mais peuvent présenter des sections où l'écoulement est sous pression. On classe ces réseaux en Catégories distinctes :

a) Système unitaire:

Le système unitaire, également connu sous le nom de "tout-à-l'égout", implique l'évacuation conjointe des eaux usées domestiques et industrielles ainsi que des eaux de pluie à travers un même réseau de conduites.

Ce système requiert la construction d'infrastructures et de stations d'épuration considérables pour gérer les pics de débit pendant les périodes de pluie.

L'avantage principal de ce système est la simplification des branchements. Cependant, il présente des inconvénients majeurs, notamment la nécessité de décider si les eaux seront traitées dans une station d'épuration ou rejetées directement dans le milieu naturel.

De plus, il peut y avoir des difficultés d'auto-nettoyage des conduites pendant les périodes de faible débit.

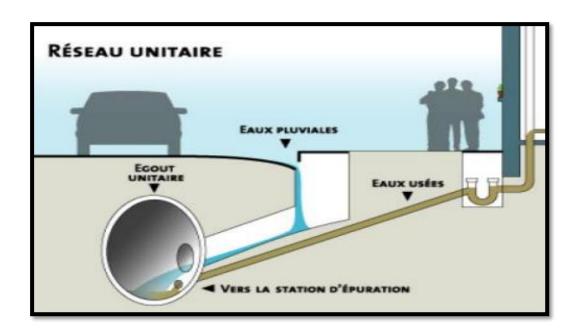


Figure IV. 2: Réseau d'évacuation unitaire.

Tableau IV. 2: Avantage et inconvénient de système d'évacuation unitaire.

D :	Million of contains flat and the mainted to collect			
Domaine	-Milieu récepteur éloigné des points de collecte.			
d'utilisation	- Topographie à faible relief.			
a admisación	- imperméabilisation importante et topographie accentuée de la			
	commune.			
	- débit d'étiage du cours d'eau récepteur important.			
Avantage	Conception simple un seul collecteur, un seul branchement par			
Avantage				
	immeuble.			
	- Encombrement réduit du sous-sol.			
	- A prix économique			
	- Aspect traditionnel, dans l'évolution historique des cités.			
	- Pas de risque d'inversion de branchement			
	•			
Inconvénient	- Débit à la station d'épuration très variable.			
	- lors d'un orage, les eaux usées sont diluées par les eaux pluviales.			
	- apport de sable important à la station d'épuration.			

	- acheminement d'un flot de pollution assez important lors des			
	premières pluies après une période sèche.			
	- rejet direct vers le milieu récepteur du mélange " eaux usées et eaux			
	pluviales " au droit des déversoirs d'orage.			
Contrainte	- Entretien régulier des déversoirs d'orage et des bassins de stockage.			
d'exploitation	- Difficulté d'évaluation des rejets directs vers le milieu récepteur.			

b) Système séparatif:

Ce système prévoit l'évacuation des eaux usées dans une seule conduite et les eaux pluviales dans une autre.

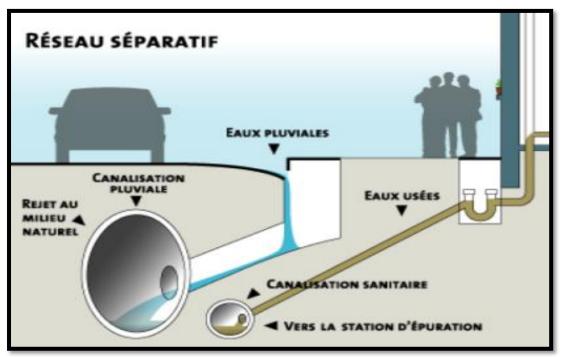


Figure IV. 3: Réseau d'évacuation séparatif

Tableau IV. 3:Avantages et inconvénients du système séparatif.

Domaine	Petites et moyennes agglomérations
d'utilisation	Extension des villes.
	- Faible débit d'étiage du cours d'eau
Avantage	- Diminution du diamètre moyen du réseau de collecte des eaux
	usées.
	- Exploitation plus facile de la station d'épuration.
	- Meilleure préservation de l'environnement des flux polluants
	domestiques.

	- Certains coûts d'exploitation sont limités (relevage des effluents notamment).	
Inconvénient	 - Encombrement important du sous-sol. - Coût d'investissement élevé. - Risque important d'erreur de branchement. 	
Contrainte	- Surveillance accrue des branchements.	
d'exploitation	 Entretien d'un linéaire important de collecteurs (eaux usées et pluviales). Entretien des ouvrages particuliers (siphons, chasses d'eau, avaloirs). Entretien des postes de relèvement et des chambres à sables Détection et localisation des anomalies (inversion de branchement, arrivée d'eaux parasites, passage caméra). 	

(Cerema, 2023)

c) Système pseudo-séparatif:

Un système dit pseudo-séparatif pour lequel une partie des eaux pluviales est évacuées avec les eaux usées, il s'agit notamment des eaux des terrasses et des cours.

Les eaux de ruissellement sont évacuées directement dans la nature par des caniveaux et des fossés.

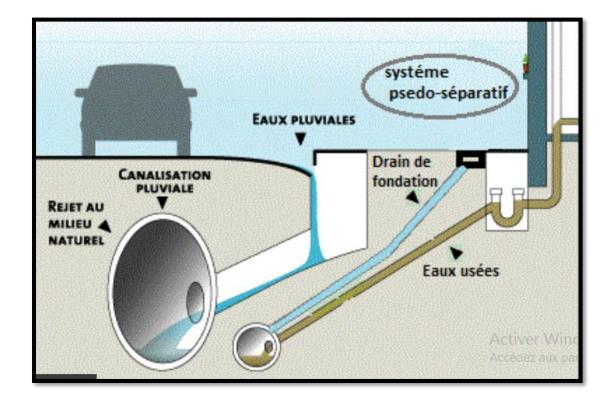


Figure IV. 4: Réseau d'évacuation pseudo séparatif

Tableau IV. 4:Les avantages et les inconvénients de système pseudo-séparatif.

Domaine	- petits et moyennes agglomération.			
d'utilisation	- présence d'un milieu récepteur proche			
privilégié				
Avantage	-problème de faux branchements éliminé dimensionnement des collecteurs pluviaux en schéma perpendiculaire			
Inconvénient	 fonctionnement de la station d'épuration perturbé. charge polluante variable en qualité et en quantité 			
Contraintes d'exploitation	-Entretien régulier des déversoirs d'orage et des bassins de stockage Surveillance accrue des branchements			

(Cerema, 2023)

IV.IV Le choix de système d'assainissement :

Les principaux facteurs influençant le choix du système d'assainissement comprennent :

- La répartition des zones d'habitation et la densité de la population ;
- La configuration topographique du terrain naturel;
- Les réglementations locales et les politiques d'assainissement adoptées par la collectivité ;
- En cas d'extension du réseau, la compatibilité avec le système existant
- Les considérations économiques : une analyse comparative de plusieurs options est essentielle pour évaluer les coûts et les avantages.

Remarque :Dans notre cas le système d'évacuation est système unitaire.

IV.V Schéma d'évacuation des eaux usées :

IV.V.1 Les différents schémas d'assainissement :

Les réseaux d'assainissement opèrent principalement grâce à l'écoulement gravitaire et peuvent adopter une grande variété de configurations en fonction du système sélectionné. Leur agencement tend généralement à correspondre à l'un des schémas suivants :

i) Schéma perpendiculaire :

L'écoulement se fait directement dans le cours d'eau. Ce type de schéma ne permet pas la concentration des eaux vers un point unique d'épuration ; il convient lorsque l'épuration n'est pas jugée nécessaire et aussi pour l'évacuation des eaux pluviales en système séparatif

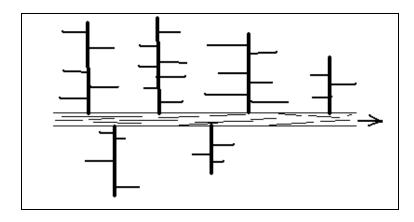


Figure IV. 5:Schéma d'évacuation perpendiculaire

ii) Schéma par déplacement latéral :

Dans le cas où une épuration est nécessaire, on a tout intérêt à transporter les eaux vers une station unique ; ceci peut être obtenu soit par un tracé, soit par un collecteur latéral,

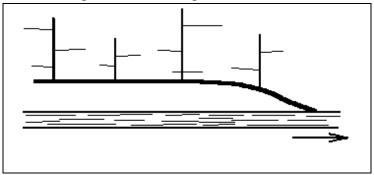


Figure IV. 6:Schéma par déplacement latéral

iii) Schéma du collecteur par zones étagée :

Le schéma par zones étagées est une transposition du schéma par déplacement latéral, mais avec multiplication des collecteurs longitudinaux, il permet de décharger le collecteur bas des apports en provenance du haut de l'agglomération.

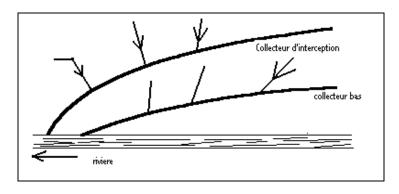
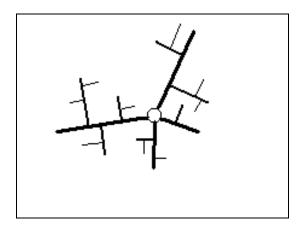



Figure IV. 7:Schéma d'évacuation étagée

iv) Schéma radial:

Le schéma à centre collecteur unique ou le schéma radial conviennent pour les régions plates ; Ils permettent de concentre l'effluent en un ou plusieurs points où il sera relevé pour être évacué en un point éloigner de l'agglomération.

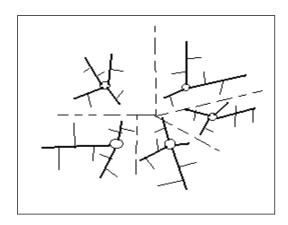


Figure IV. 8:Schéma d'évacuation radial

Remarque : Vu la configuration et la pente du site et suivant le chemin hydraulique le plus long nous optons pour un schéma a déplacement latéral.

IV.V.2 Le choix de schéma d'évacuation :

Exactement, vous avez bien résumé les principaux paramètres à prendre en compte lors du choix du schéma du réseau d'évacuation. Je vais détailler chaque point :

- **1. Conditions techniques et locales du lieu :** L'existence d'un système d'évacuation existant peut limiter les options de conception ou nécessiter des modifications pour s'adapter aux besoins actuels. La topographie du terrain, notamment les altitudes et les pentes, influence la direction du flux d'eau et la configuration du réseau. La répartition géographique des habitats à desservir détermine la densité de population et les besoins en matière d'évacuation des eaux usées et des eaux pluviales.
- **2. Conditions d'environnement :** La nature du rejet des eaux usées, qu'il s'agisse d'eaux traitées ou non traitées, ainsi que le milieu récepteur (cours d'eau, lacs, océans) influencent les choix de conception pour garantir la conformité environnementale et la préservation des écosystèmes. L'emplacement de la station d'épuration, le cas échéant, doit être stratégiquement déterminé pour maximiser l'efficacité du traitement des eaux usées.
- 3. Conditions économiques : Les coûts d'investissement initiaux et les frais d'entretien à long terme sont des considérations cruciales dans le choix du schéma du réseau d'évacuation. Les solutions techniques doivent être économiquement viables et durables à long terme, en tenant compte des ressources financières disponibles et des priorités budgétaires.

4. Implantation des canalisations dans le domaine public :

L'implantation des canalisations dans l'espace public nécessite une planification minutieuse pour minimiser les perturbations pour les résidents, les commerces et les infrastructures existantes. Les contraintes telles que les routes, les réseaux souterrains existants (électricité, gaz, télécommunications) et les réglementations locales doivent être prises en compte pour assurer une coordination efficace et éviter les conflits.

En intégrant ces aspects techniques, environnementaux, économiques et logistiques, les planificateurs et les ingénieurs peuvent concevoir des réseaux d'évacuation des eaux usées et des eaux pluviales efficaces, durables et adaptés aux besoins spécifiques de chaque région ou communauté.

IV.VI Le coefficient de ruissellement :

C'est le rapport caractérisant le volume d'eau qui ruisselle de cette surface au volume d'eau tombé sur cette surface.

La valeur du coefficient de ruissellement dépend de l'inclinaison, du genre et de la densité de l'air, l'humidité de la surface, la durée de la pluie.

Tableau IV. 5: Coefficient de ruissellement relatif a catégorie d'urbanisation.

Catégorie d'urbanisation	Coefficient de ruissellement
Habitation très denses	0,90
Habitation denses	0,6-0,7
Habitation moyennement denses	0,4-0,5
Quartier résidentiels	0,2-0,3
Square – jardin- praire	0,05-0,20

(Source: Water Environment Federation, 1970)

Tableau IV. 6:Coefficients de ruissèlement en fonction de la densité de population.

Densité de la population (Hab/ha)	Coefficient de ruissèlement
20	0,20
30-80	0,20-0,25
60-150	0,25-0,30
150-200	0,30-0,45
200-300	0,45-0,60

300-400	0,60-0,80
400 et plus	0,80-0,90

(Source : Water Environment Fediration, 1970)

Tableau IV. 7: Coefficient de ruissèlement en fonction de la zone d'influence.

Zone D'influence	Coefficient de ruissèlement
Surface imperméable	0,90
Pavage a large joints	0,60
Voirie non goudronnée	0,35
Allées en gravier	0,20
Surfaces boisées	0,05

(gomella, c; Guerree, H, 1986)

Tableau IV. 8: Coefficient de ruissèlement en fonction de surface drainée.

Surface	Coefficient de ruissellement Cr		
Chaussée en béton asphaltée	0,70-0,95		
Chaussée en brique	0,70- 0,85		
Toiture	0,75-0,95		
Terrain gazonné, sol sablonneux			
-plat (pente < a 2%)	0,05-0,10		
-pente moyenne de 2 à 7%	0,10-0,15		
-pente abrupte	0,15-0,20		
Terrain gazonné, sol sablonneux			
-plat (pente < a 2%)	0,13-0,17		
-pente moyenne de 2 à 7%	0,18-0,22		
-pente abrupte	0,25-0,35		
Entrée de garage en gravier	0,15-0,30		

(gomella, c; Guerree, H, 1986)

IV.VI.1 Calcul de la population de chaque sous bassin :

On suit les étapes suivantes afin de pouvoir estimer le nombre exact d'habitant :

- On estime le coefficient de ruissellement
- . On calcule le coefficient de ruissellement pondéré total
- On calcule la densité partielle de chaque sous bassin.
- On déduit le nombre d'habitant de chaque sous bassin

IV.VI.2 Calcul du coefficient de ruissèlement pondéré total :

Le coefficient de ruissellement pondéré est donné par l'expression :

$$C_{rp} = \frac{\sum c_{ri}.A_i}{A}$$

Avec : Ai : surface élémentaire de chaque sous bassin.

A : Surface totale de la zone urbanisée.

C_{rp}: Coefficient de ruissèlement pondéré totale.

Cri: Coefficient de ruissèlement de chaque sous bassin.

Application numérique:

$$Crp = \frac{18,264}{23,24} = 0,78$$

IV.VI.3 Calcul de la densité partielle :

La densité partielle de chaque sous bassin est exprimée par la relation :

$$D_i = \frac{C_{ri}P}{C_{rp}A}$$

Avec: Di: Densité partielle du sou bassin considéré en (hab/ha).

Crp: Coefficient de ruissellement pondéré total.

Cri: Coefficient de ruissellement de chaque sous bassin.

P: Population globale à l'horizon de calcul.

A: Surface totale de la zone urbanisée en (ha).

IV.VI.4 Calcul du nombre d'habitant de chaque sous bassin :

Le nombre d'habitant de chaque sou bassin est donné par l'expression :

$$P_i = D_i \cdot A_i$$

Avec:

Pi : Population partielle du sou bassin considéré.

Ai : Surface partielle du sou bassin considéré (ha).

Tableau IV. 9:Calcul du coefficient de ruissèlement et du nombre d'habitant de chaque Sous-bassin.

N°SB	AIRE (HA)	Cr	Ai. Cri	Densité par ha	Nombre d'habitant
SB1	1,6	0,9	1,44	144	231
SB2	1,09	0,6	0,654	96	105
SB3	1	0,85	0,85	136	136
SB4	2,7	0,85	2,295	136	367
SB5	1,67	0,8	1,336	128	214
SB6	1,1	0,6	0,66	96	106
SB7	2,85	0,9	2,565	144	411
SB8	1,8	0,6	1,08	96	173
SB9	1,7	0,6	1,02	96	163
SB10	2,3	0,9	2,07	144	331
SB11	2,7	0,6	1,62	96	259
SB12	3,1	0,9	2,79	144	447
Totale	23,61	-	18,38		2942

Conclusion:

Voici les choix qui ont été établis pour notre agglomération :

- Le système d'assainissement unitaire a été choisi pour la zone urbaine.
- L'horizon de calcul a été fixé à 2054, ce qui correspond à une population future prévue de 2928 habitants.
- La division de la zone urbaine en sous-bassins nous amène à identifier 12 sous-bassins distincts.

Chapitre V:

Évaluation des débits à évacuer.

Introduction:

Ce chapitre se concentre principalement sur l'évaluation des débits des eaux pluviales et usées, qui implique l'estimation de la quantité et de la qualité des rejets. Le réseau d'assainissement a pour fonction de collecter et d'évacuer les eaux de ruissellement et les eaux usées provenant de diverses sources. Ainsi, nous allons nous pencher sur le calcul des débits à évacuer dans ce chapitre.

V.I Évaluation des débits d'eau usées :

V.I.1 Généralités :

Les eaux usées, dont la composition peut être à l'origine de maladies transmises par l'eau, doivent être évacuées le plus rapidement possible. C'est pourquoi l'évaluation des quantités à traiter est d'une grande utilité. En effet, cette évaluation permet de déterminer les volumes d'eau à évacuer et à traiter, ce qui est essentiel pour prévenir les risques sanitaires liés à l'exposition aux eaux usées.

V.I.2 Nature des eaux usées à évacuer :

Elle dépend de l'origine de ces eaux usées.

On compte:

- Les eaux usées d'origine industrielle ;
- Les eaux usées d'origine domestique ;

V.II les eaux usées d'origine domestique :

Les eaux usées domestiques sont issues des résidences de l'agglomération et se composent principalement d'eaux ménagères et d'eaux vannes. Les eaux vannes se réfèrent spécifiquement aux eaux provenant des toilettes. Quant aux eaux ménagères, elles incluent les eaux de vaisselle, de lessive, de bain et de douche.

V.II.i Quantités à évacuer :

La détermination des normes de consommation en eau potable dépend de plusieurs facteurs, notamment :

- L'évaluation de la consommation actuelle, qui prend en compte les facteurs suivants :
 - La dotation en eau potable disponible.
 - Le type d'habitat et le niveau de confort qu'il offre.
 - Les conditions climatiques de la région.
- La prise en compte des besoins en eau des secteurs publics et industriels.

En fonction de ces facteurs, les normes de consommation en eau potable peuvent varier d'une région à l'autre et d'une période à l'autre.

V.II Eaux des services publics :

Les eaux usées provenant des services publics sont principalement générées par le nettoyage des espaces publics tels que les rues, les trottoirs et les places. Ces eaux sont souvent chargées en matières grasses en raison de la présence de déchets tels que les huiles de vidange, les graisses alimentaires et autres résidus organiques. Il est donc important de traiter ces eaux avant de les rejeter dans l'environnement pour éviter la pollution des cours d'eau et des sols.

V.III Eaux usées industrielles :

Les eaux usées industrielles proviennent de diverses usines et contiennent souvent des substances chimiques et toxiques. La quantité d'eaux évacuées par les industries dépend de plusieurs facteurs, notamment :

- 1. La nature de l'industrie : les industries de fabrication et de transformation peuvent générer des eaux usées différentes.
- 2. Le taux de recyclage effectivement réalisé : plus le taux de recyclage est élevé, moins il y aura d'eaux usées à évacuer.
- 3. Le procédé de fabrication utilisé : certains procédés peuvent générer plus d'eaux usées que d'autres.

Ces eaux doivent répondre à certaines conditions avant d'être rejetées dans l'environnement :

- Elles ne doivent pas contenir de matières corrosives, solides ou toxiques qui pourraient nuire à l'environnement ou à la santé humaine.
- Les eaux chaudes doivent avoir une température inférieure à 35°C pour éviter de perturber les écosystèmes aquatiques.

V.IV Eaux usées des équipements :

L'estimation de la quantité d'eaux usées générées par les équipements publics et commerciaux se fait en fonction de la dotation requise pour chaque activité et du nombre de personnes qui fréquentent le lieu. Par exemple, pour un stade, la dotation en eau dépendra du nombre de spectateurs accueillis lors d'un événement, tandis que pour un hôtel, elle dépendra du nombre de chambres occupées quotidiennement. Cette estimation permet de déterminer les besoins en eau potable et en eau usée pour chaque activité et de planifier en conséquence les infrastructures nécessaires pour répondre à ces besoins, notamment en ce qui concerne le traitement et l'évacuation des eaux usées.

V.IV.i Consommation en eau potable :

EN vue l'information obtenue de la subdivision de DRE de Hadjout on a adopté une dotation en eau potable de 120 l/j/hab.

V.IV.ii Estimation es débits d'eaux usées :

L'évaluation de la quantité d'eaux usées générées par une agglomération dépend de la consommation d'eau par habitant. Plus la consommation d'eau par habitant est élevée, plus la quantité d'eaux usées générées sera importante.

La quantité d'eaux usées rejetées dépend également du type d'agglomération. Plus l'agglomération est urbanisée, plus la proportion d'eau rejetée est élevée en raison de la densité de population et de l'activité économique. Les zones rurales, en revanche, ont tendance à produire moins d'eaux usées en raison d'une population moins dense et d'une activité économique moins intense.

Il est donc important de prendre en compte ces facteurs lors de la planification et de la conception des infrastructures de traitement et d'évacuation des eaux usées pour garantir une gestion efficace et durable des ressources en eau.

V.V Estimation des débits des eaux usées domestique :

Nous supposons que 80% de l'eau consommée est rejetée sous forme d'eaux usées dans le réseau d'évacuation. Cela signifie que la majorité de l'eau utilisée pour les activités domestiques, commerciales et industrielles est évacuée sous forme d'eaux usées après utilisation. Il est donc important de prévoir des infrastructures adéquates pour collecter, traiter et évacuer ces eaux usées afin de prévenir la pollution de l'environnement et de protéger la santé publique.

V.V.i Evaluation du débits moyen journalier :

Le débit moyen journalier rejeté est calculé par la relation suivante :

$$Q_{moy,j} = \frac{(K_r.D.N)}{86400} \; (l/s)$$

Avec:

D: dotation journalière prise égale à 120 l/j hab.

N: nombre d'habitants à l'horizon étudié (hab.).

Qmoy,j: débit moyen rejeté quotidiennement en (1/s);

Kr: coefficient de rejet pris égal à 80% de la quantité d'eau potable consommé

V.V.ii Evaluation du débit de pointe :

Le rejet des eaux usées est aussi variable dans la journée, d'où on détermine le débit de pointe donnée par formule qui suit :

$$Q_{pte} = K_p \times Q_{mov,i}$$

Avec:

Qmoy.j: débit moyen journalier.

K_p: coefficient de pointe

Qpte: débit de pointe.

Ce coefficient de pointe peut être :

a) - estimé de façon moyenne :

$$K_p = 24/14$$
.

$$K_p = 24/10.$$

b) -relié à la position de la conduite dans le réseau :

Kp= 3 en tête du réseau ;

Kp= 2 à proximité de l'exutoire ;

c)- Calculé à partir du débit moyen journalier :

$$K_p = 1.5 + \frac{2.5}{\sqrt{Q_{moy,j}}}$$
 si $Q_{moy,j} \ge 2.8 \text{ l/s}$

$$K_p = 3$$
 si $Q_{moyj} \le 2.8 \text{ l/s}$

Remarque : Pour notre cas tous les résultats sont inferieur a 2,8 l/s donc on a utilisé Kp=3 directement

V.VI Les eaux claires parasites :

Ce sont le plus souvent des eaux provenant des infiltrations après une chute de pluie ou de la remontée de la nappe. Ces eaux pénètrent dans le collecteur à travers les joints mal confectionnés ou déboités, ou bien à travers les fissures. Le débit de ces eaux est difficilement déterminé ; seule la modélisation qui peut donner une approche d'estimation. En pratique, Nous estimons ce débit a environ 0,15 l/s/ha. La présence de ces eaux présence de ces eaux perturbe le fonctionnement de la station d'épuration. (saleh, 2014)

Tableau V. 1: Déterminations des débits des eaux usées des équipements.

Type d'équipement	Nombre	Unité de mesure	Quantité	Dotation (l/j/unité)	Q _{potable} (l/s)	Coefficient de rejet	Qmoy rej
Ecole primaire	1	Elève	240	20	0,056	0,8	0,044
Annexe APC	1	m ²	75	10	0,009	0,8	0,007
Annexe PPT	1	m ²	75	10	0,009	0,8	0,007
Centre de santé	1	m ²	415	10	0,048	0,8	0,038
Aire des jeux	1	m ²	490	5	0,028	0,8	0,023
Salle de prière	1	m ²	450	10	0,052	0,8	0,042
Equipement éventuel 01	1	m ²	350	10	0,041	0,8	0,032
Equipement éventuel 02	1	m ²	3200	10	0,370	0,8	0,296
Equipement éventuel 03	1	m ²	2600	10	0,301	0,8	0,241
Equipement éventuel 04	1	m ²	3020	10	0,350	0,8	0,280
Equipement éventuel 05	1	m ²	2000	10	0,231	0,8	0,185
Equipement éventuel 06	1	m ²	1500	10	0,174	0,8	0,139
Equipement éventuel 07	1	m ²	1400	10	0,162	0,8	0,130
Equipement éventuel 08	1	m ²	2050	10	0,237	0,8	0,190

Chapitre V : Evaluation des débits à évacuer.

ENSH 2024

Equipement éventuel 09	1	m ²	2100	10	0,243	0,8	0,194
Jardin public	1	m ²	272	5	0,016	0,8	0,0125
Maison de jeunes	1	m ²	1650	10	0,191	0,8	0,153
Centre-culturel	1	m ²	1400	10	0,162	0,8	0,130
CEM	1	Elève	360	20	0,083	0,8	0,067
Placette	1	m ²	2000	5	0,116	0,8	0,093
Mosquée	1	m ²	2700	10	0,313	0,8	0,250
Totale	21				3,193		2,5545

Tableau V. 2: Détermination Les eaux usées des équipements pour chaque sous bassin.

Sous bassin	Equipement	Débit moyen (l/s)	Débit totale des équipement (l/s)	Débit totale des équipement (m³/s)
SOUS BASSIN N°02	Maison de jeune	0,153		
	Centre culturel	0,130	0,82	8,2×10 ⁻⁴
	Equipement-éventuel 02	0,296		
	Equipement-éventuel 03	0,241		
SOUS BASSIN N°04	PTT	0,007		
	Ecole primaire	0,044	0,081	8,1×10 ⁻⁵
	APC	0,007		
	Aire de jeux	0,023		
SOUS BASSIN N°07	Equipement-éventuel 01	0,032	0,07	7×10 ⁻⁵
	Centre de santé	0,038		
SOUS BASSIN N°08	Equipement-éventuel 04	0,280		
	Equipement-éventuel 05	0,185		
	Equipement-éventuel 06	0,139		
	Equipement-éventuel 07	0,130	1,1305	1,1305×10 ⁻³
	Equipement-éventuel 08	0,190		

Chapitre V : Evaluation des débits à évacuer.

ENSH 2024

SOUS BASSIN N°12	Salle de prière	0,042	0,042	4,2×10 ⁻⁵
	CEM	0,067		
	Placette	0,093	0,41	4,1×10 ⁻⁴
SOUS BASSIN N°11	Mosquée	0,250		
	Jardin public	0,0125		
	Equipement-éventuel 09	0,194		

 ${\bf Tableau\ V.\ 3:} D\'{e}termination\ les\ eaux\ us\'{e}es\ domestique\ pour\ chaque\ sous\ bassin\ .$

Sous bassin	AIRE (HA)	Nombre d'habitant	Dotation (l/j/hab)	Q _{Consommé} (l/s)	Coefficient de rejet Kr	Q moy-dom (1/s)
SB1	1,6	231	120	0,32	0,8	0,26
SB2	1,09	105	120	0,15	0,8	0,12
SB3	1	136	120	0,19	0,8	0,15
SB4	2,7	367	120	0,51	0,8	0,41
SB5	1,67	214	120	0,30	0,8	0,24
SB6	1,1	106	120	0,15	0,8	0,12
SB7	2,85	411	120	0,57	0,8	0,46
SB8	1,8	173	120	0,24	0,8	0,19
SB9	1,7	163	120	0,23	0,8	0,18
SB10	2,3	331	120	0,46	0,8	0,37
SB11	2,7	259	120	0,36	0,8	0,29
SB12	3,1	447	120	0,62	0,8	0,50
Totale	23,61	2942		4,09		3,27

Tableau V. 4:Détermination des débits d'eaux usées de pointe pour chaque sous bassin.

Sous bassin	Q moye dome (l/s)	Q équipement (l/s)	Q moyen(l/s)	KP	Q usée tot (l/s)	Q usée tot (m3/s)
SB1	0,26		0,26	3	0,77	7,68×10 ⁻⁴
SB2	0,12	0,82	0,94	3	2,81	2,81×10 ⁻³
SB3	0,15		0,15	3	0,45	4,54×10 ⁻⁴
SB4	0,41	0,081	0,49	3	1,47	1,47×10 ⁻³
SB5	0,24		0,24	3	0,71	7,13×10 ⁻⁴
SB6	0,12		0,12	3	0,35	3,52×10 ⁻⁴
SB7	0,46	0,07	0,53	3	1,58	1,58×10 ⁻³
SB8	0,19	1,1305	1,32	3	3,97	3,97×10 ⁻³
SB9	0,18		0,18	3	0,54	5,44E-04
SB10	0,37		0,37	3	1,10	1,10×10 ⁻³
SB11	0,29	0,41	0,70	3	2,09	2,09×10 ⁻³
SB12	0,50	0,042	0,54	3	1,61	1,61×10 ⁻³
Totale	3,27	2,5545	5,82	3	17,47	1,75×10 ⁻²

V.VII Evaluation des débits des eaux pluviales :

Les débits pluviaux seront évalués en prenant en compte une précipitation décennale d'une durée de 15 minutes. Afin d'estimer ces débits de manière précise, deux méthodes éprouvées sont fréquemment employées dans le domaine :

- ✓ La méthode rationnelle
- ✓ La méthode superficielle.

V.VII.1 Méthode rationnelle:

Cette méthode utilise pour les surfaces limitées (généralement inferieur a 10 ha) les résultats est meilleur pour des aires encore plus faibles, du fait de la bonne estimation du coefficient de ruissèlement. Le débit déterminer par la relation (1), est proportionnel à l'intensité moyenne des précipitations, au coefficient de ruissèlement et à l'aire balayée : (saleh, 2014)

$$Q = C_r \cdot A \cdot \alpha \cdot I$$

Avec:

Cr : coefficient de ruissellement

I: intensité de précipitation (1 / s / ha).

 α : Coefficient correcteur de l'intensité tenant compte de la distribution de la pluie dans l'espace.

Q: débit d'eau de ruissellement (1/s).

A: surface de l'aire d'influence (ha).

V.VII.1.i Hypothèses de la méthode rationnelle :

- Le coefficient de ruissellement est invariable d'une averse à l'autre.
- L'intensité de l'averse est uniforme dans le temps et dans l'espace, sur l'ensemble du bassin drainé.
- Le débit de pointe Q_p en m3/s de l'hydrogramme de ruissellement est une fonction du débit précipité I, A ;
- L'intervalle de récurrence du débit de pointe Q_p est le même que celui de l'averse d'intensité uniforme i.

V.VII.1.ii Validation de la méthode Rationnelle :

Cette méthode est efficace pour des surfaces relativement limitées (généralement inférieures à 10 ha). Le résultat est meilleur pour des aires encore plus faibles, du fait de la bonne estimation du coefficient de ruissellement. Ainsi, elle est applicable pour des surfaces où le temps de concentration ne dépasse pas 30 min. Par contre, elle n'est pas susceptible d'être utilisée pour les zones étendues, car les calculs deviendraient fastidieux

V.VII.1.iii Temps de concentration :

Il s'agit d'une particularité propre à chaque bassin versant, définie comme le temps nécessaire à une goutte de pluie tombée au point le plus éloigné de ce bassin pour atteindre l'entrée du collecteur d'évacuation des eaux pluviales de la surface considérée. Ce temps est également appelé temps de concentration.

- Le temps de concentration « tc » se compose de :
- \checkmark $t_1(min)$: temps mis par l'eau pour s'écouler dans les canalisations.

$$t_1 = \frac{L}{60.V}$$

Avec:

- L: longueur de canalisation (m).
- **v**: vitesse d'écoulement (m/s).

Le terme $\frac{1}{60}$ pour la conversion de secondes (s) en minutes (min).

- ✓ t₂: temps mis par l'eau pour atteindre le premier ouvrage d'engouffrement. En général, il varie de 2 à 20 min.
- \checkmark **t**₃ (**min**): temps de ruissellement superficiel dans un bassin ne comportant pas de canalisations.

$$t_3 = \frac{L_S}{11 \times \sqrt{I}}$$

Avec:

Ls: parcours superficiel de l'eau dans le bassin (km).

I: pente moyenne du parcours (%).

❖ Donc, trois (03) cas peuvent être envisagés :

- Le bassin ne comporte pas de canalisation : t_c=t₃
- Le bassin comporte un parcours superficiel puis une canalisation : $t_c=t_1+t_3$.
- Le bassin est urbanisé et comporte une canalisation : $t_c=t_1+t_2$.
 - Dans le cas général, pour les zones peu allongées, le temps de concentration « tc (min) » est donné par la relation suivante :

$$t_c = 3,98 imes \left[rac{L}{\sqrt{I}}
ight]^{0,77}$$

Avec:

L: cheminement hydraulique le plus long (km).

I: pente moyenne du chemin parcouru (%).

V.VII.1.iv Critique de la méthode rationnelle :

- ✓ La division du bassin versant en sous-zones élémentaires est approximative et grossière.
- ✓ La méthode suppose que le coefficient de ruissellement « Cr » reste constant sur l'ensemble du sous-bassin et pendant toute la durée de la pluie.
- ✓ Elle ne prend pas en compte le stockage temporaire de l'eau de ruissellement sur le bassin, négligeant ainsi l'impact des surfaces non imperméabilisées telles que les trous et les crevasses.

V.VII.2 Méthode superficielle (CAQUOT) :

La méthode de Caquot, également connue sous le nom de méthode superficielle, est une variante de la méthode rationnelle.

Ce modèle hydrologique permet d'établir un bilan hydraulique des précipitations sur le bassin versant jusqu'à un instant approximativement égal au temps de concentration « t_c ». C'est à ce moment-là que l'on observe le débit de pointe « Q_p » à l'exutoire du bassin versant.

L'expression générale de la formule de Caquot est la suivante :

$$Q(f) = K^{\frac{1}{u}} \cdot I^{\frac{v}{u}} \cdot C_r^{\frac{1}{u}} \cdot A^{\frac{w}{u}}$$

Avec: -

Q(f): le débit pluvial de pointe de fréquence de dépassement « F » ; en (m3/s).

Cr: est le coefficient de ruissellement du sous bassin considéré.

I : la pente moyenne calculée selon le plus long cheminement hydraulique (m/m).

A: la superficie drainée du sous bassin (ha).

K, **u**, **v**, **w** : coefficients d'expression, donnés en fonction des paramètres de Caquot par les formules suivantes :

$$K = \frac{(0,5)^{b(f)} \cdot a(f)}{6,6}$$

$$v = -0,41b(f)$$

$$u = 1 + 0,287b(f)$$

$$w = 0,95 + 0,507b(f)$$

a(f) et b(f) sont des paramètres de la relation :

$$i(t,f) = a(f).t^{b(f)}$$

Où:

 $\mathbf{i}(\mathbf{t,f})$: Intensité de pluie de durée t et de fréquence de non dépassement f.

t=15 min et f=90%

La pente moyenne du collecteur du sous bassin est donnée par la relation :

$$I = \frac{C_{am} - C_{av}}{L}$$

C_{am}: Cote amont du collecteur (m).

Cav: Cote aval du collecteur (m).

L: longueur du collecteur (m).

On divise de parcours L du collecteur en tronçons et on détermine la longueur et la pente moyenne de chacun séparément.

Pour des tronçons places en séries, la pente équivalente est donnée en utilisant la formule suivante :

$$I_{eq} = \left[\frac{\sum_{i=1}^{N} Li}{\sum_{i=1}^{N} \left(\frac{Li}{\sqrt{Ii}} \right)} \right]^{2}$$

Li: distance partielle du tronçon i en mètre;

Ii: pente du tronçon i m/m;

N: nombre de tronçons.

Si les tronçons sont placés en parallèles, on utilise la formule

$$I_{eq} = \left[\frac{\sum_{i=1}^{N} li. Qi}{\sum_{i=1}^{N} Qi}\right]^{2}$$

Li : distance partielle du tronçon i en mètre ;

Ii: pente du tronçon i m/m;

N: nombre de tronçons.

Remarque:

La valeur de débit Q(f) doit tenir compte d'un coefficient m d'où :

$$Q(f)_{corrigé} = m Q(f) calculée$$

Avec:

m : coefficient d'influence donné par l'expression qui suit :

$$m = \left(\frac{M}{2}\right)^{\frac{0.84b(f)}{1+0.287.b(f)}} = \left(\frac{M}{2}\right)^{b}$$

Et: M: coefficient d'allongement $M = \frac{L}{\sqrt{A}}$.

OÙ: L : longueur du plus parcours hydraulique en (m).

A: surface du bassin considéré en m².

V.VII.2. i Validité de la méthode superficielle :

La validité de la méthode superficielle s'applique strictement dans les conditions suivantes :

- Le coefficient de ruissellement (Cr) doit se situer dans une fourchette comprise entre 0,2 et 1, ce qui permet de tenir compte de la variabilité des caractéristiques de la surface étudiée.
- Le coefficient d'allongement (M) doit être compris entre 0,8 et 2, afin d'assurer une représentation fidèle de la géométrie du bassin versant et de son réseau hydrographique.
- La superficie totale de la zone d'étude ne doit pas dépasser les 200 hectares, ce qui garantit une précision suffisante des calculs et une pertinence des résultats obtenus.
- Enfin, la pente moyenne de la zone considérée (I) doit se trouver dans une plage de valeurs allant de 0,2 % à 5 %, pour permettre une évaluation correcte des écoulements de surface et des temps de concentration.

Le respect de ces limites d'application est essentiel pour assurer la fiabilité et la pertinence des résultats obtenus par la méthode superficielle.

V.VIII Choix de la méthode de calcul:

Après avoir pris en considération les particularités de notre zone d'étude, notamment en termes de superficie, de pente et de coefficient de ruissellement, nous avons décidé d'utiliser la méthode rationnelle pour nos calculs et analyses.

V.IX Calcul des débits pluviaux :

Compte tenu de la complexité et de l'importance du travail nécessaire pour déterminer le coefficient réducteur, celui-ci est établi en fonction de la surface de la zone concernée. Ainsi, deux cas sont à considérer :

- ✓ Si la surface (A) est inférieure ou égale à 10 hectares, alors le coefficient réducteur (α)=1.
- ✓ Si la surface (A) est supérieure à 10 hectares, alors le coefficient réducteur (α)<1.

Les résultats de calcul des débits pluviaux sont repostés dans le (Tableau V.5)

Tableau V. 5: Calcul des débits pluviaux.

Sous-Bassin	Aire (Ha)	Coefficient de ruissellement	Intensité(l/s/ha)	α	Qpluvial (I/s)	Q _{pluvial} (m ³ /s)
SB1	1,6	0,9	151,5	0,8	174,528	0,174528
SB2	1,09	0,6	151,5	0,8	79,2648	0,0792648
SB3	1	0,85	151,5	0,8	103,02	0,10302
SB4	2,7	0,85	151,5	0,8	278,154	0,278154
SB5	1,67	0,8	151,5	0,8	161,9232	0,1619232
SB6	1,1	0,6	151,5	0,8	79,992	0,079992
SB7	2,85	0,9	151,5	0,8	310,878	0,310878
SB8	1,8	0,6	151,5	0,8	130,896	0,130896
SB9	1,7	0,6	151,5	0,8	123,624	0,123624
SB10	2,3	0,9	151,5	0,8	250,884	0,250884
SB11	2,7	0,6	151,5	0,8	196,344	0,196344
SB12	3,1	0,9	151,5	0,8	338,148	0,338148
Totale	23,61				2227,656	2,227656

V.X Estimation le débit total :

Le débit total évacué par le système d'assainissement correspond à la somme de l'ensemble des débits qui le composent. Autrement dit, il s'agit de la somme des débits de tous les effluents qui transitent par le réseau d'assainissement. Résumé par la formule suivante :

$$Q_{tot} = Q_{usee\ dom} + Q_{usee\ equi} + Q_{parasite} + Q_{pluvial}$$

Tableau V. 6: les résultats des débits totales De chaque sous bassin.

Sous bassin	Qusée (1/s)	QParasite (l/s)	Qpluvial(I/s)	Qtotale (I/s)	Qtotale (m ³ /s)
SB1	0,77	0,24	174,528	175,536	0,176
SB2	2,81	0,1635	79,265	82,237	0,082
SB3	0,45	0,15	103,020	103,624	0,104
SB4	1,47	0,405	278,154	280,027	0,280
SB5	0,71	0,2505	161,923	162,887	0,163
SB6	0,35	0,165	79,992	80,509	0,081
SB7	1,58	0,4275	310,878	312,884	0,313
SB8	3,97	0,27	130,896	135,134	0,135
SB9	0,54	0,255	123,624	124,423	0,124
SB10	1,10	0,345	250,884	252,334	0,252
SB11	2,09	0,405	196,344	198,843	0,199
SB12	1,61	0,465	338,148	340,228	0,340
Totale	17,47	3,5415	2227,656	2248,669	2,249

Conclusion:

D'après les valeurs des débits obtenues, on voit que les débits des eaux usées ne représentent qu'une faible fraction 0.1Qpluviaux

Les sous bassin SB02 SB03 SB05 SB06 SB08 SB09 SB 11 Sont des sous bassins d'extension

Calcul hydraulique du réseau d'assainissement.

Introduction:

Le calcul hydraulique est une étape cruciale dans la conception et la réalisation d'un réseau d'assainissement. Il consiste à déterminer les dimensions des différents ouvrages constituant le réseau (conduites, regards, ouvrages de visite, etc.) en fonction des contraintes liées à l'écoulement des eaux usées ou pluviales.

Pour cela, il est nécessaire de prendre en compte plusieurs paramètres tels que le débit, la vitesse d'écoulement, la pente, le coefficient de frottement, etc. Les normes en vigueur doivent également être respectées afin d'assurer le bon fonctionnement du réseau et de garantir la sécurité des personnes et des biens.

Le calcul hydraulique permet donc de dimensionner les ouvrages de manière optimale, en évitant les surdimensionnements inutiles et coûteux, tout en garantissant un écoulement efficace des eaux. Il est généralement effectué à l'aide de logiciels spécialisés, qui permettent de simuler le comportement du réseau en fonction des différents paramètres et de déterminer les dimensions optimales des ouvrages.

VI.I Conception du réseau :

La conception du réseau consiste à représenter tous les éléments constitutifs des branches du réseau sur un schéma global, afin de visualiser l'ensemble du réseau et de déterminer les caractéristiques de chaque élément. Cette étape permet de définir les emplacements des différents équipements, les dimensions des collecteurs et des regards, ainsi que les pentes et les profondeurs nécessaires pour garantir le bon fonctionnement du réseau. Le schéma global permet également de prévoir les éventuelles extensions ou modifications du réseau à l'avenir.

- Les collecteurs sont définis par :
 - ✓ Leur diamètre intérieur et extérieur.
 - ✓ Leur pente.
 - ✓ Leur profondeur.
 - ✓ Leur emplacement en plan.
 - ✓ Le type de joints et leur confection.
- Les regards de visite et de jonction sont définis par :
 - ✓ Leur profondeur.
 - ✓ Leurs côtes.
 - ✓ Leur emplacement en plan.

VI.II Dimensionnement d'un réseau d'assainissement :

Certaines conditions doivent être vérifiées :

VI.II.1 Conditions d'écoulement et de dimensionnement :

Le dimensionnement du réseau unitaire doit prendre en compte plusieurs facteurs pour garantir son bon fonctionnement et éviter les problèmes d'érosion, de décantation et de dépôts.

Pour cela, il est recommandé de respecter les conditions suivantes :

- La vitesse de l'écoulement doit être suffisante pour éviter la décantation des sables et assurer leur entraînement. Pour cela, il est recommandé d'assurer une vitesse minimale de 0,6 m/s pour le (1/10) du débit de pleine section, et une vitesse de 0,3 m/s pour le (1/100) de ce même débit.
- Les conditions d'auto-curage doivent être satisfaites pour éviter l'accumulation de dépôts dans les conduites.
- Il est déconseillé de dépasser des vitesses de l'ordre de 4 à 5 m/s pour éviter les phénomènes d'érosion et les dommages sur la paroi de la conduite.

VI.II Formules d'écoulements :

VI.II.1 Formule de CHEZY:

$$V = C.\sqrt{R_h.I}$$

Où:

Rh: Rayon hydraulique (m).

I : Pente du collecteur (m/m).

C : Coefficient de CHEZY donné par la formule de BAZIN :

$$C = \frac{87}{1 + \frac{\gamma}{\sqrt{R_h}}}$$

γ: Coefficient de BAZIN dont on a:

 γ = 0.06 pour les collecteurs d'eaux pluviales.

 γ = 0.16 pour les collecteurs d'eaux usées.

VI.II.2 Formule de MANNING:

$$V = \frac{\alpha}{n} R_h^{\frac{2}{3}} \cdot I^{\frac{1}{2}}$$

Où:

Rh: Rayon hydraulique (m)

I: Pente du collecteur (m/m)

α :est un coefficient d'unité qui vaut 1en système international 1,486 en système anglosaxon n : coefficient de MANNING il dépend des parois des conduites.

VI.II.3 Formule de MANNING-STRIKLER:

$$V = K_s R_h^{\frac{2}{3}} \sqrt{I}$$

Avec:

Ks: coefficient de rugosité de Manning-Strickler

$$K_S = 26 \left(\frac{1}{d_{35}}\right)^{\frac{1}{6}}$$

Où:

D35: est diamètre en mètre correspondant à 35% passant en poids.

VI.III Mode de calcul:

Les hypothèses du calcul hydraulique du réseau gravitaire sont :

- L'écoulement est uniforme à surface libre.
- Les canalisations d'égouts dimensionnées pour un débit en pleine section Qps ne débitent en réalité et dans la plupart du temps que des quantités d'eaux plus faibles.
- La perte de charge engendrée est une énergie potentielle égale à la différence des côtes du plan d'eau en amont et en aval.
- Le gradient hydraulique de perte de charge est égal à la pente du radier.

L'écoulement dans les collecteurs est un écoulement a surface libre régi par la formule de la continuité :

$$Q = V.S$$

Avec:

S: section mouillée (m²).

V: vitesse d'écoulement (m/s).

 \mathbf{Q} : Débit (m³/s).

La vitesse est déterminée par l'expression :

$$V = K_S R^{\frac{2}{3}} \sqrt{I_m}$$

Où:

R(**m**): Rayon hydraulique.

K_s: coefficient de rugosité.

 $I_m(m/m)$: Pente du collecteur.

L'expression de débit devient :

$$Q = K_S. S. R^{2/3}. \sqrt{I_m}$$

D'où

la formule de diamètre est :

$$D_{cal} = \left(\frac{3,2036 * Q_t}{K_s * \sqrt{I}}\right)^{3/8}$$

Le débit en plein section est donc :

$$Q_{ps} = Vps.\frac{\pi (Dnor)^2}{4}$$

D_{nor} : Diamètre normalisé de la conduite en (mm).

On obtient la vitesse de pleine section

$$V_{ps} = K_{S} \cdot \left(\frac{D_{nor}}{4}\right)^{2/3} \cdot \sqrt{I}$$

Par la suite on calcule les vitesses et les hauteurs :

$$R_{V} = \frac{V}{V_{ps}} \rightarrow V = R_{v}.V_{ps}$$

$$R_{H} = \frac{H}{D_{nor}} \rightarrow H = R_{H}.D_{nor}$$

$$R_{Vmin} = \frac{V_{min}}{V_{ps}} \rightarrow V_{min} = R_{v_{min}}.V_{ps}$$

$$R_{H,min} = \frac{H_{min}}{D_{nor}} \rightarrow H_{min} = R_{H,min}.D_{nor}$$

Pour la vérification d'auto curage on a deux conditions à vérifier :

➤ $1^{\text{ère}}$ condition: Vitesse d'écoulement (V $\geq 1.00 \text{m} / \text{s}$)

Remarque: Les résultats de dimensionnement des collecteurs annexe VI

Conclusion:

Ce chapitre nous a permis d'effectuer le dimensionnement des nouveaux collecteurs projetés.

Grâce aux informations et aux données recueillies dans ce chapitre, nous avons pu déterminer les dimensions appropriées pour les nouveaux collecteurs que nous prévoyons d'installer. Cela nous permettra de concevoir un réseau d'assainissement efficace et durable qui répondra aux besoins actuels et futurs de notre zone d'étude.

Chapitre VII:

Les éléments constitutifs du réseau d'égout.

Introduction:

Le réseau d'assainissement est conçu pour améliorer la situation sanitaire générale de l'environnement et le protéger contre les risques d'inondation. Pour ce faire, il se compose de plusieurs types d'ouvrages :

- Les ouvrages principaux : ils forment l'ensemble du réseau de collecte des eaux usées, depuis leur point d'entrée jusqu'à leur rejet dans le milieu naturel.
- Les ouvrages annexes : ils regroupent toutes les installations qui permettent d'optimiser l'exploitation du réseau, tels que les regards de visite, les bouches d'égout, les déversoirs d'orages, etc.

VII.I Les ouvrages principaux :

L'ouvrage principal est l'ouvrage d'évacuation des eaux usées vers le point de rejet ou la station d'épuration. Cela inclut les tuyaux et les connexions. Ils se composent de différents types de conduites, notamment :

- Les tuyaux cylindriques
- Les tuyaux ovoïdes
- Les ouvrages visitables (qui permettent l'accès d'un opérateur pour des opérations de maintenance ou d'inspection)

VII.II Les canalisations :

La canalisation d'assainissement est une conduite faisant partie d'un réseau d'assainissement et permettant de faire circuler des fluides (eaux usées, eaux pluviales ...) entre deux lieux de desserte :

VII.II.i Type de canalisation :

Les canalisations peuvent être de différents types en fonction de leur matériau et de leur utilisation. Parmi eux, on peut citer les canalisations en béton non armé et armé, les canalisations en amiante-ciment et les canalisations en polychlorure de vinyle (PVC).

a. Canalisations en béton non armé:

Ces tuyaux ne contiennent aucune armature ou fibre d'acier pour le renforcement. Leur longueur utile ne doit pas dépasser 2,50 m. Ils présentent une rupture brutale, sauf si la hauteur de recouvrement est insuffisante.

b. Canalisations en béton armé:

Ces tuyaux ont une résistance structurelle renforcée par des armatures en acier, judicieusement placées pour résister aux contraintes de traction dans la paroi du tuyau.

c. Canalisations en fibre-ciment :

Ces tuyaux et pièces de raccordement sont composés d'un mélange de ciment Portland et d'amiante en fibres, fabriqué en présence d'eau. Ils sont disponibles en deux types en fonction du mode d'assemblage : à emboîtement ou sans emboîtement avec deux bouts lisses. Les diamètres varient de 60 à 500 mm pour des longueurs allant de 4 à 5 m. Les joints sont exclusivement de type préformé.

d. Canalisations en PVC non plastifié :

Les canalisations en PVC sont largement utilisées dans le secteur de la construction et des travaux publics depuis plus de 50 ans. Ces tuyaux sont fabriqués selon les normes indiquées dans la norme 1452 relative aux systèmes de canalisations en plastique pour l'alimentation en eau, les raccordements et les collecteurs d'assainissement enterrés et aériens sous pression.

VII.III Critères de sélection du matériau de la canalisation :

Pour sélectionner le matériau approprié pour les canalisations, plusieurs facteurs doivent être pris en compte :

- La pente du terrain.
- Le diamètre à installer.
- La nature du sol traversé.
- La qualité des eaux usées.
- Les contraintes extérieures dues au remblai et aux différentes charges auxquelles les canalisations sont soumises.

Dans notre étude, nous avons choisi les canalisations en PVC pour les diamètres allant de 315 mm à 630 mm. Pour les diamètres supérieurs à 630 mm, nous avons opté pour le béton armé de classe 135A. Ce choix est motivé par l'importance des charges roulantes au-dessus des remblais.

Le PVC présente un ensemble de propriétés exceptionnelles, notamment la solidité, la légèreté, la résistance à la corrosion, la durabilité et l'inertie chimique.

VII.IV Les raccords de canalisations en béton armé :

Le choix approprié des raccords dépend de la qualité de l'étanchéité. Celle-ci est fonction de la nature des eaux usées et de leur compatibilité avec la stabilité du sol, ainsi que de la nature des tuyaux et de leurs caractéristiques (diamètre, épaisseur).

Pour les tuyaux en béton armé, les raccords sont généralement réalisés par bourrage en mortier de ciment, à emboîtement ou à demi-emboîtement. Des photos associées sont fournies pour illustrer ces types de raccords.

A Le joint de type Rocla:

Offre une excellente étanchéité pour les eaux usées et les eaux extérieures. Ce type de joint est adapté à tous les diamètres de canalisations.

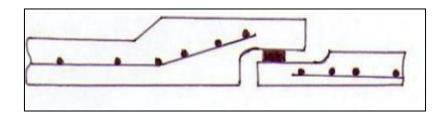


Figure VII. 1: Joint rocla.

B Le joint à collet :

est réalisé à l'aide d'un bourrage au mortier de ciment. Il n'est utilisé que dans les sols de bonne qualité et à faible pente.

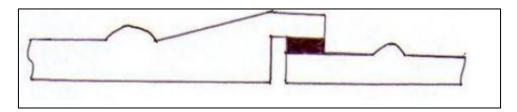


Figure VII. 2: Joint à collet

C Le joint à demi-emboîtement :

Avec cordon de bourrage en mortier de ciment est utilisé dans les terrains stables. Cependant, il y a un risque de suintement si la pression est trop élevée. Il est déconseillé d'utiliser ce type de joint dans les terrains à forte pente.

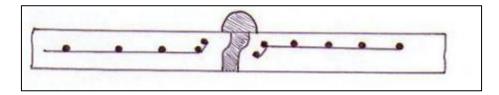


Figure VII. 3: Joint à demi-emboitement

VII.V Différents types de charges supportées par la canalisation :

Les canalisations sont soumises à des charges extérieures et intérieures. Pour résister à ces charges, les canalisations doivent être sélectionnées en fonction de leur capacité à les supporter. Ces charges comprennent :

VII.V.1 Charges mécaniques :

Ce type de charge résulte de l'agressivité des particules de sable et de gravier qui forment le remblai et le radier des canalisations. Cette agressivité provoque la détérioration des parois intérieures par le phénomène d'érosion, qui est principalement causé par des vitesses d'écoulement élevées imposées par le relief.

VII.V.2 Charges statiques :

Les charges statiques sont dues aux surcharges fixes ou mobiles, telles que le remblai, le mouvement de l'eau dans les canalisations et les charges dues à la circulation routière.

VII.V.3 Charges chimiques :

Elles sont généralement présentes à l'intérieur de la canalisation. Une baisse du pH peut favoriser le développement de bactéries acidophiles, qui peuvent à leur tour favoriser la formation d'acide sulfurique (H2S) corrosif et néfaste pour les canalisations.

VII.VI Protection des conduites :

Le béton utilisé pour la fabrication des tuyaux et des ouvrages d'assainissement est soumis à différentes formes d'agression, telles que la corrosion chimique qui entraîne la destruction des canalisations et l'abrasion qui est une action physique non négligeable en raison de la faible résistance du matériau et de la vitesse limite maximale des écoulements dans le réseau.

Pour lutter contre ces agressions, plusieurs moyens peuvent être mis en œuvre :

• Réduire au maximum les temps de rétention des eaux usées dans les canalisations.

- Éliminer régulièrement les dépôts, car ils favorisent le développement de fermentations anaérobies génératrices d'hydrogène sulfuré (H2S).
- Assurer une bonne aération pour éviter les condensations d'humidité sur les parois et réduire ainsi la teneur en H2S.
- Mettre en place un mortier de ciment alumineux.
- Utiliser des fluosilicates de zinc ou de magnésium (floculation).
- Mettre en œuvre une solution chaude de silicate de sodium.
- Utiliser du fluorure de silicium (coarctation).
- Fixer des plaques préfabriquées en matière plastique.
- Appliquer un revêtement en caoutchouc chloré.

VII.VII Les essais de conduites préfabriquées :

Avant de commencer la pose de canalisations, il est essentiel de réaliser quelques essais sur nos conduites, notamment l'essai à l'écrasement, l'essai d'étanchéité et l'essai de corrosion.

VII.VII.1 Essai à l'écrasement :

L'essai de résistance à l'écrasement consiste à mesurer la charge de compression nécessaire pour déformer, fracturer, éclater ou effondrer un échantillon. Ce type d'essai peut être effectué sur une grande variété de produits, y compris les ouvrages d'assainissement. Les ouvrages doivent résister aux charges permanentes des remblais et aux surcharges dans les zones accessibles aux véhicules routiers, ce qui rend l'essai à l'écrasement obligatoire.

VII.VII.2 Essai à l'étanchéité :

L'essai d'étanchéité consiste à mettre en pression une partie de la canalisation pour déterminer son état. Il permet de détecter la présence de fuites dans les réseaux de canalisations d'assainissement. Dans le cas de la plomberie sanitaire, cet essai vise à analyser en détail les canalisations pour s'assurer de leur bon fonctionnement. Pour un essai réussi, les experts doivent respecter les normes imposées dans l'exécution de l'essai. Le résultat de l'essai est décrypté uniquement par un professionnel qualifié dans le domaine.

VII.VII.3 Essai de corrosion :

Les eaux ménagères et les eaux industrielles évacuées par les canalisations en béton contiennent de l'acide carbonique dissous dans l'eau, de l'hydrogène sulfuré (H2S) produit par les fermentations anaérobies et des composés acides divers des eaux industrielles. Sous l'action de ces agents, le béton est corrodé et se détériore. L'essai de corrosion consiste à ajouter des produits, suivi d'un lavage à l'eau douce. Après séchage à l'étuve, on pèse l'échantillon. Les surfaces de la paroi interne ne doivent pas être altérées.

VII-VIII Les ouvrages annexes :

Les ouvrages annexes jouent un rôle crucial dans l'exploitation efficace des réseaux d'égout. Ils sont nombreux et ont des fonctions très diversifiées, telles que la collecte des effluents, l'accès au réseau pour faciliter l'entretien, et la réduction des coûts en évitant les surdimensionnements. Pour notre réseau, il est essentiel d'installer et de dimensionner certains ouvrages indispensables pour assurer un bon fonctionnement, en particulier pendant les fortes pluies.

Ces ouvrages peuvent être regroupés en deux catégories :

- Les ouvrages normaux.
- Les ouvrages spéciaux.

VII.VIII.i Les ouvrages courants :

Ces ouvrages comprennent:

1-Les raccordements individuels :

Le raccordement est l'ensemble de canalisations reliant les installations sanitaires d'un bâtiment au réseau public d'assainissement. Il constitue donc le lien entre le point de raccordement de la construction (domaine privé) et le réseau public (domaine public).

2-. Les caniveaux :

Les caniveaux sont conçus pour recueillir les eaux pluviales ruisselant sur la chaussée et les trottoirs, et pour les transporter jusqu'aux bouches d'égout.

3-. Les bouches d'égout :

Les bouches d'égout sont généralement situées en bordure des voies de circulation et permettent l'écoulement des eaux de surface (pluviales et de lavage des chaussées). La distance moyenne entre deux bouches d'égout est de 50 m. La section d'entrée dépend de l'écartement entre les deux bouches, afin d'absorber le flux d'orage venant de l'amont. Les bouches d'égout peuvent être classées en fonction de deux critères : le mode de collecte des eaux et le mode de rétention des déchets solides.

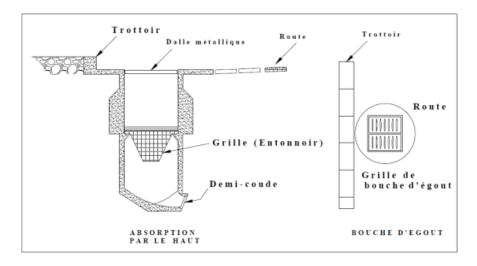


Figure VII. 4:Les bouches d'égout

4- Les regards:

Les regards sont des ouvertures permettant au personnel d'entretien d'accéder au réseau pour assurer son entretien et sa surveillance. Ils servent également à l'aération du réseau. Les regards doivent être installés à chaque changement de direction, de jonction de canalisation, de pente, ou de diamètre. Les types de regards varient en fonction de l'encombrement et de la pente du terrain, ainsi que du système d'évacuation. On peut distinguer :

4.i Les regards de visite :

sont utilisés pour l'entretien régulier et le curage des canalisations, tout en assurant une bonne ventilation de celles-ci.

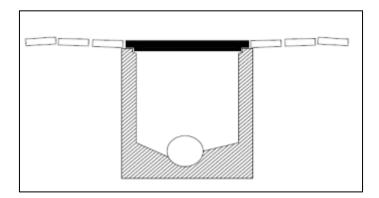


Figure VII. 5:Regard de visite

4.ii Les regards de jonction : servent à relier deux collecteurs de même section ou de sections différentes. Ils sont conçus pour assurer :

- Une bonne aération des collecteurs en jonction ;
- La gestion des différences de hauteur entre les radiers des collecteurs ;
- L'absence de reflux d'eau par temps sec.

VII.VII.ii Les ouvrages spéciaux :

Les déversoirs d'orage en hydraulique urbaine sont des dispositifs conçus pour évacuer rapidement les pointes exceptionnelles de débits d'orage vers le milieu récepteur. Ces ouvrages permettent de réduire la charge sur le réseau aval en déversant une certaine quantité d'eaux pluviales. Les déversoirs jouent un rôle essentiel dans la conception des réseaux en système unitaire.

VII.VII.ii.1 L'emplacement de déversoirs d'orage :

L'emplacement des déversoirs d'orage doit prendre en compte plusieurs facteurs :

- Le milieu récepteur et son équilibre après le rejet des effluents. Il est nécessaire d'établir un degré de dilution en fonction du pouvoir auto-épurateur du milieu récepteur.
- Les valeurs du débit compatibles avec la valeur de dilution et avec l'économie générale du projet. Il faut rechercher le facteur de probabilité de déversement pour limiter la fréquence des rejets d'effluents dans le milieu récepteur.
- La capacité et les surfaces des ouvrages de la station d'épuration pour éviter les surcharges et le mauvais fonctionnement.
- Le régime d'écoulement de niveau d'eau dans la canalisation amont et aval.
- La topographie du site et les variations des pentes.

VII.VII.ii.2 Les types de déversoir d'orage :

Il existe plusieurs types de déversoirs, notamment :

- Déversoir à seuil latéral et conduite aval étranglée ou libre.
- Déversoir d'orage à ouverture du fond.
- Déversoir à seuil frontal.
- Déversoir à seuil haut.
- Déversoir à seuil bas.
- Déversoir by-pass.

VII.VII.ii.3 Données de base pour le dimensionnement d'un déversoir d'orage :

Lorsqu'un déversoir d'orage est prévu à un emplacement spécifique, il est important de connaître les débits caractéristiques pouvant traverser l'ouvrage à cet endroit :

- Le débit maximum admissible d'eau pluviale,
- Le débit de temps sec,

• Le débit limite admissible pour le collecteur aval.

Ensuite, il est nécessaire de définir les données relatives aux collecteurs :

- La pente motrice moyenne,
- Les diamètres des collecteurs amont et aval,
- Les conditions d'écoulement fluvial ou torrentiel,
- La charge moyenne disponible pour évacuer l'eau à la décharge,
- La zone d'implantation et sa topographie.

VII.VIII Dimensionnement des déversoirs d'orage :

Pour les déversoirs déchargeant dans les oueds, on décharge la totalité de surplus des eaux pluviale, tant au déversoir conduisant à la STEP prévu, nous optons pour une dilution double, qui veut dire garder le double en eau pluviale du débit en temps sec

VII.VIII.1 Mode de calcul:

Pour le calcul on doit adopter :

-Le débit total de dimensionnement qui est égal à la somme de débit pluvial (QP) et des débits en temps sec (QUS).

$$Q_t = Q_p + Q_{us}$$

Pour le déversoir conduisant à la STEP prévu un débit de pointe dilué deux fois :

$$Q_{St} = 3. Q_{us}$$

Le débit rejeté vers l'Oued:

$$Q_R = Q_t - Q_{st}$$

- -On détermine la valeur de la lame déversée (Hr)
- On détermine la longueur du seuil, déversant (L).

VII.IX Dimensionnement du DEVERSOIR :

Les données de base sont les suivantes :

- Diamètre d'entrée : De =1000 mm
- Débit total à l'entrée : Qt = 2,248m3 / s
- Débit du temps sec : Qts= 0,0213m3 /s
- Débit de pointe allant vers la l'aval : Qst=0,0639 m3 /s
- Débit rejeté vers l'oued : Q_R =/s

- La pente égale à 0,002 m/m
- Hauteur d'eau à l'entrée : He =596mm
- Temps de concentration Tc=t1+t2

$$t_1 = \frac{L}{60.V} (Min) = \frac{1476,69}{60 \times 2,99} = 8 min$$

On prend t₂=5min

Le temps de concentration : Tc =8+5=12 Min

Coefficientions de retardement :

Il tient compte du temps mis par l'eau pour arriver aux déversoirs donc du temps de concentration, il démunie alors le débit pluvial

$$Z = 1 - \frac{t_c}{100} = 1 - \frac{12}{100} = 0,88$$

Calcul le débit pluvial critique :

$$\begin{aligned} Q_{cri} &= Q_t * Z = 0.88 * 2.248 = 1.978 \ m^3/s \\ R_Q &= \frac{Q_{st}}{Q_t} = \frac{0.0639}{1} = 0.032 \\ Q_{dev} &= Q_{cri} - Q_{step} = 1.978 - 0.0639 = 1.914 m^3/s \end{aligned}$$

Damont =1000mm

$$R_Q = \frac{Q_{cri}}{Q_{ps}} = \frac{1,978}{3,73} = 0,53$$
 D'apres l'abaque $Rh = 0,52$ donc hamont = $520mm$

Calcul H_{seuil}:

$$R_Q = \frac{Q_{step}}{Q_{ps}} = \frac{0,0639}{2,73} = 0,0234 \text{ D'apres l'abaque Rh} = 0,035 \text{ Hseuil} = 0,035*1000 = 35 \text{mm}$$

Notre déversoir a une hauteur du $H_{seuil} = 35mm$ est trop petit et non réalisable Alors on prend $H'_{seuil} = 200mm$.

$$R'h = \frac{H'seuil}{D} = \frac{200}{1000} = 0.2 \rightarrow R'Q = 0.15 \rightarrow Q'dilu\'e = 0.41 \,m3/s$$

Donc:
$$Q'dev = Qcr - Q'step \rightarrow Q'dev = 1.978 - 0.41 = 1.5685 \, m3 \, /s$$

Calcul de la hauteur déversant :

$$Hdev = Hamont - H'seuil = 520 - 200 = 320mm$$

La longueur du seuil déversant :

On applique la formule de BAZIN :

$$Qdev = m \times L \times hdev \times \sqrt{2} \times g \times h$$

Avec : m : coefficient de débit en fonction de type de déversoir

• m= 0.46 : déversoir frontale.

• m<0.46 : Déversoir latéral

Pour notre cas: déversoir frontale m=0.46.

L: longueur du seuil.

hdev : à la hauteur d'eau déversée par le déversoir.

 \mathbf{g} : pesanteur = 9.81 m/s2

Donc:
$$L = \frac{Qdev}{m \times hdev \times \sqrt{2} \times g \times hdev} = 4,22m$$

Conclusion:

Après avoir évalué les différentes options possibles pour la conception du nouveau réseau d'assainissement de la commune, notre projet a retenu les choix suivants :

Les regards de chute : ils permettent de raccorder les canalisations entre elles et de garantir une bonne évacuation des eaux. Ils seront installés à des endroits où les pentes sont importantes pour éviter les phénomènes d'érosion.

Les regards de visite : ils permettent d'accéder facilement aux canalisations pour leur entretien et leur nettoyage. Ils seront installés à intervalles réguliers pour permettre une maintenance efficace du réseau.

Un déversoir d'orage : ils permettent d'évacuer les eaux pluviales en cas de fortes précipitations. Ils seront installés à des endroits stratégiques pour éviter les risques d'inondation.

Des conduites circulaires en béton armé et en PVC de différents diamètres : elles permettent d'assurer une bonne évacuation des eaux usées et pluviales. Les diamètres seront choisis en fonction des besoins et des contraintes du réseau.

Ces choix techniques permettront de garantir une évacuation efficace et durable des eaux usées et pluviales dans la commune, tout en prenant en compte les spécificités topographiques du bassin versant. Ils permettront également de minimiser les risques d'inondation et de garantir une gestion pérenne des eaux dans la commune.

Chapitre VIII : Organisation de chantier et devis

Introduction:

Tout projet de construction, y compris la mise en place d'un système d'assainissement, est encadré par des lois et des règles strictes. Pour garantir une réalisation optimale du projet, il est essentiel de respecter les règles d'organisation des chantiers.

Parmi les méthodes les plus couramment utilisées pour gérer efficacement un chantier, on trouve la méthode CPM, ou "Critical Path Method". Cette méthode vise à réduire les coûts de réalisation, les délais et à augmenter le rendement du travail.

Le principe de la méthode CPM est de créer un réseau de tâches qui reflète la succession des opérations du projet. À la fin de l'analyse, on obtient le "chemin critique", c'est-à-dire la séquence de tâches qui détermine la durée minimale du projet.

VIII.I Informations sur les réseaux publics existants :

Lors de la construction de réseaux publics, il est important de prendre en compte l'existence de réseaux déjà en place dans le sous-sol des voiries, tels que les réseaux d'assainissement, d'électricité, d'eau potable, de gaz et de télécommunications.

Avant de détruire le revêtement des chaussées et de poser les nouvelles conduites, il est essentiel de réaliser une étude détaillée de l'encombrement du sous-sol, afin d'éviter d'endommager les réseaux existants.

VIII.II Exécution des travaux :

Pour la pose des canalisations, les principales étapes à suivre sont les suivantes :

- 1. Vérification de la manutention des conduites.
- 2. Décapage de la couche de goudron (si elle existe).
- 3. Emplacement des jalons des piquets (piquetage).
- 4. Exécution des tranchées et des fouilles pour les regards.
- 5. Aménagement du lit de pose.
- 6. Mise en place des conduites.
- 7. Assemblage des tuyaux.
- 8. Essais d'étanchéité pour les conduites et les joints.
- 9. Construction des regards.
- 10. Remblai des tranchées.

VIII.II .1 Vérification, manutation des canalisations :

La vérification des conduites porte sur l'aspect et le contrôle de la conformité, le marquage en cas de défaut et les quantités. Il est important de manipuler les conduites avec précaution et de ne pas les rouler que sur des chemins de roulement prévus à cet effet.

VIII.II.2 Décapage de la couche de terre végétale

La construction de réseaux publics est le décapage de la couche de terre végétale, qui est effectué à l'aide d'un Bulldozer sur une épaisseur de 10 cm. Le volume V de terre décapé est donné par la formule suivante :

$$V = bHL(m^3)$$

οù

b: est la largeur de la couche végétale (m),

L: est la longueur totale de la tranchée (m)

H: est l'épaisseur de la couche végétale (m).

VIII.II.3 l'emplacement des jalons des piquets (piquetage).

Les jalons des piquets doivent être placés dans chaque :

- Point d'emplacement d'un regard,
- Changement de direction ou de pente,
- Branchement ou jonction des canalisations.

VIII.II.4 l'exécution des fouilles pour les regards et les tranchées.

Le mode d'exécution en fouille ouverte, en tranchée, est le plus fréquemment utilisé dans la construction de collecteurs urbains.

La profondeur de la tranchée est déterminée par les conditions de croisement d'ouvrages existants ou d'axe hydraulique.

La largeur de la tranchée dépend du type d'emboîtement des tuyaux, des dimensions extérieures, de l'espace minimum entre la canalisation et la paroi de la tranchée, de la fondation, de la place disponible pour l'exécution des fouilles, de la profondeur de pose et de la nature des terrains rencontrés.

L'exécution des fouilles pour les regards et les tranchées est réalisée à l'aide d'une pelle mécanique équipée, en rétro de l'aval vers l'amont du réseau. Les aptitudes de la pelle rétro sont :

- Creuser rapidement et précisément les tranchées à talus vertical,
- Creuser à une profondeur importante,
- Creuser au-dessous de la surface d'appui et de creuser dans la direction de la machine.

Pour les collecteurs en terrain naturel.

a) Profondeur de la tranchée H = e + D + h (m)

Avec:

H: Profondeur de la tranchée.

D: Diamètre de la conduite.

h: Hauteur du remblai

e: Epaisseur du lit de sable.

b) Largeur de la tranchée B = D + 2c

Avec:

D : Diamètre de la conduite.

c: Espacement entre les parois de la tranchée et la conduite (c = 0,3 m)

B: Largeur de la fouille au fond.

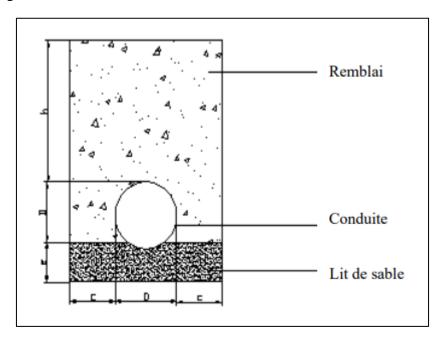


Figure VIII. 1: coupe transversale d'une tranchée avec la mise en place de la conduite

VIII.II.5 Aménagement du lit de pose :

Les conduites seront posées sur un lit de sable d'une épaisseur minimale de 10 cm, bien nivelé selon les côtes du profil en long. Il est conseillé de :

- ➤ En sol rocheux, il est conseillé d'approfondir la fouille de 15 à 20 cm et de confectionner un lit de pose bien damé avec des matériaux pulvérulents, ou de procéder à une pose sur un bain fluant de mortier.
- ➤ En sols mouvants, marécageux ou organique, il est recommandé de prévoir un appui en béton, éventuellement sur pieux, ou de procéder au remplacement du sol insuffisamment portant.
- En terrains où l'eau peut ruisseler ou s'accumuler, il est conseillé de confectionner un appui en matériaux pulvérulents capable d'assurer un bon drainage.

Voici également quelques recommandations générales pour la pose des tuyaux :

- Èviter de poser les tuyaux sur des tasseaux qui concentrent les efforts d'écrasement et les font travailler en flexion longitudinale.
- Réaliser un fond de fouille bien rectiligne pour que les tuyaux y reposent sur toute leur longueur.
- > Creuser le fond de fouille, lorsque les tuyaux sont à emboîtement par collet extérieur sur tout leur pourtour, de façon à éviter que les collets ne portent sur le sol.
- Placer toujours les tuyaux sur des fouilles sèches.
- ➤ Éliminer du fond des fouilles tous les points durs (grosses pierres, crêtes rocheuses, vieilles maçonneries,) qui constituent des tasseaux naturels.
- Réaliser, si possible dans tous les cas, un appui de manière que le tuyau repose sur un arc au moins égal au quart de sa circonférence extérieure ; plus le diamètre est grand, plus la surface d'appui doit être soignée.

VIII.II.6 Mise en place des conduites :

La mise en place des conduites se fait à l'aide d'engins appropriés appelés "pipelayers". Ces engins sont spécialement conçus pour la pose de canalisations et permettent de déplacer, de positionner et de souder les tuyaux avec précision et efficacité. Il est important de s'assurer que les opérateurs de ces engins sont bien formés et qualifiés pour effectuer ce travail, afin de garantir la sécurité et la qualité de la pose des conduites.

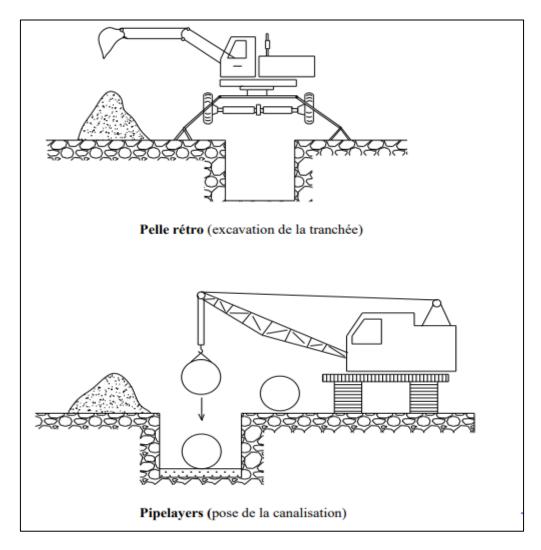


Figure VIII. 2:Les engins de terrassement

VIII.II.7 Assemblage des conduites :

Les joints des conduites circulaires à emboîtement sont effectués à l'aide d'une bague renforcée d'une armature et coulée sur place à l'intérieur d'un moule.

VIII.II.8 Essais sur les joints et les canalisations :

L'essai est réalisé avec de l'eau, de l'air, de la fumée ou un mélange d'eau et d'air. C'est une épreuve d'étanchéité au quelle sont soumises les conduites déjà placées au fond de la tranchée.

VIII.II.9 Exécution des Regards :

Les regards sont des ouvrages de visite et d'entretien des canalisations. La profondeur et l'épaisseur varient d'un regard à un autre en fonction de la taille et de la profondeur de la canalisation. Les regards sont généralement de forme carrée dont les dimensions varient en fonction des collecteurs.

La première étape d'exécution d'un regard est le réglage du fond du regard. Il s'agit de déterminer la profondeur à laquelle le radier en béton sera coulé. Le radier en béton comporte une cunette de hauteur au moins égale au rayon de la canalisation et deux plages inclinées à 10%. En aucun point l'épaisseur du béton ne doit être inférieure à 8 cm.

La deuxième étape est l'exécution de la couche du béton de propreté. Il s'agit d'une couche de béton fine qui est coulée sur le fond du regard pour le niveler et le rendre propre.

La troisième étape est le ferraillage du radier de regard. Il s'agit de la mise en place des armatures en acier qui renforceront le radier en béton.

La quatrième étape est le bétonnage du radier. Il s'agit de la mise en place du béton dans le moule et de son compactage.

La cinquième étape est le ferraillage des parois. Il s'agit de la mise en place des armatures en acier qui renforceront les parois en béton.

La sixième étape est le coffrage des parois. Il s'agit de la mise en place des moules dans lesquels le béton sera coulé.

La septième étape est le bétonnage des parois. Il s'agit de la mise en place du béton dans le moule et de son compactage.

La huitième étape est le décoffrage des parois. Il s'agit de l'enlèvement des moules une fois que le béton a suffisamment durci.

La neuvième étape est le ferraillage de la dalle. Il s'agit de la mise en place des armatures en acier qui renforceront la dalle en béton.

La dixième étape est le coffrage de la dalle. Il s'agit de la mise en place des moules dans lesquels le béton sera coulé.

La onzième étape est le bétonnage de la dalle. Il s'agit de la mise en place du béton dans le moule et de son compactage.

La douzième et dernière étape est le décoffrage de la dalle. Il s'agit de l'enlèvement des moules une fois que le béton a suffisamment durci.

Si une canalisation de branchement ou de bouche d'égout est raccordée sur la canalisation principale à la base du regard, les dispositions suivantes sont à respecter :

- Le niveau de la génératrice inférieure du branchement doit être supérieure à 0,10 m au moins à celui de la canalisation principale.
- La canalisation de branchement doit être encastrée dans le radier, la continuité de la banquette ou de la plage citée ci-dessus étant assurée par une grille ou une dalle.
- L'angle de raccordement doit être au maximum de 67°30.

Le coté du carrée ou le diamètre du cercle ne doivent pas inférieurs à 0,90 m. Cette dimension minimale étant portée à 1,0 m si les échelons de descente font saillies sur le gabarit de l'ouvrage.

La cheminée verticale peut être en maçonnerie de moellons ou en béton armé. Dans le cas du béton armé, l'épaisseur minimale est de 8 cm. La section des cheminées peut être circulaire ou carrée.

Si nécessaire, une hotte conique ou pyramidale permet de raccorder la cheminée à la dalle supérieure.

Les échelons réalisés en acier Tor DN 20 mm, doivent avoir une longueur de 0,35 m et être espacé de 0,30 m d'axe en axe.

Les regards sur les canalisations pourront ne pas être systématiquement pourvus d'échelons, lorsque leur profondeur est inférieure à 5,0 m, il est cependant recommandé d'en équiper un regard sur deux.

Dans chaque cheminée de regard, une série d'échelons percés doivent permettre la mise en place de la crosse mobile de sortie, laquelle doit comporter un renflement empêchant de l'enlever.

La dalle supérieure en béton armé, dont l'épaisseur minimale doit être de 0,12 m si elle est sous trottoir, et de 0,15 m si elle est sous chaussée, comporte une feuillure destinée à supporter les dispositifs de fermeture. Ce dispositif doit être capable de résister à la rupture, à des charges centrées de 30000 daN sous chaussée, ou dans les zones accessibles aux véhicules, 10000 daN sous trottoir.

Les tampons doivent comporter un orifice, ayant pour but de faciliter leur levage ainsi que l'aération de l'égout.

Les différentes étapes d'exécution d'un regard sont les suivantes :

- 1) Réglage du fond du regard.
- 2) Exécution de la couche du béton de propreté.
- 3) Ferraillage du radier de regard.
- 4) Bétonnage du radier.
- 5) Ferraillage des parois.

- **6)** Coffrage des parois.
- 7) Bétonnage des parois.
- 8) Décoffrage des parois.
- 9) Ferraillage de la dalle.
- **10**) Coffrage de la dalle.
- 11) Bétonnage de la dalle.
- 12) Décoffrage de la dalle.

Boite de branchement:

Les boites de dérivation seront équipées de grilles. Les raccordements individuels devront être reliés au réseau via des boites de dérivation. Ces dernières seront installées de manière aussi linéaire que possible, avec une pente minimale de 3%. Le diamètre de la canalisation utilisée pour les raccordements individuels doit être inférieur à celui de la canalisation principale du réseau.

VIII.2.10-Exécution des déversoirs d'orage :

Il est nécessaire que les coffrages aient une raideur suffisante pour résister à la pression du béton, surtout au cours de la vibration. Le démontage des coffrages doit se faire sans destruction du béton.

VIII.2.11-Remblaiement et compactage de la tranchée :

Un remblayage de qualité doit être réalisé sur une hauteur minimale de 30 cm au-dessus du générateur supérieur. Le compactage jusqu'à 75 cm doit être effectué manuellement pour en minimiser les effets dynamiques.

Si l'utilisation d'engins de compactage lourds ou vibrants est envisagée pour les remblais supérieurs, il est important d'augmenter cette hauteur minimale et, dans tous les cas, de ne jamais accepter sans précaution particulière l'utilisation de ces engins avec des hauteurs de recouvrement inférieures à un mètre.

Pour le remblai supérieur, la nature des matériaux à utiliser pour le corps du remblai et le degré de compactage dépendent essentiellement des conditions finales à atteindre au niveau de la surface du sol.

Remarque : Lors du compactage, il faut appliquer une force qui n'excède pas la charge maximale que peut supporter la canalisation.

VII.III Devis quantitatif estimatif:

Le calcul de ce dernier permet d'effectuer une estimation du coût du projet. L'estimation est réalisée au stade du schéma de principe, par mètre linéaire de canalisation posée. Les différentes opérations effectuées sont :

- Fourniture et pose des buses.
- L'exécution des regards de chute, de visite ou de jonction.
- Travaux de remblai de la tranchée.
- Transport des terres excédentaires.
- Travaux de décapage à grande masse.
- Travaux de décapage de la tranchée.
- Fourniture et pose de lit de sable

VIII.III.1 Détermination des différents volumes :

VIII.III.1.i volumes des déblais des tranchées Vd:

A) forme rectangulaire:

Il est donné par la relation suivante :

$$V_D = B.L.H_{tr}$$

Avec : **B** : largeur de la tranchée (m) ;

a : distance entre la conduite et l'extrémité de la fouille.

L: longueur totale de la tranchée (m).

Htr: profondeur de la tranchée (m).

$$B = D + 2.a; (a = 0.30m)$$

$$\mathbf{H_{tr}} = \mathbf{e} + \mathbf{h} + \mathbf{D} \ (\mathbf{m})$$

Où: **e**: épaisseur da la couche du lit de pose ; e=0.10m

D: diamètre nominal de la conduite (m)

h: profondeur minimale au-dessus de la génératrice supérieure de la couche (m).

VIII.III.1. ii Volume de découvert «V » :

Le volume de la couche végétale à décaper est calculé comme suit :

$$V=b.h'. L (m^3)$$

Avec : \mathbf{V} : volume de la couche végétale (\mathbf{m}^3).

h': la hauteur de la couche végétale (m); h=0.20m

L: longueur totale de la tranchée (m).

b : la largeur de la couche végétale (m)

VIII.II.1.iii Volume occupé par le lit de pose «VLP »

Il est donné par la formule suivante :

$$V_{LP}=e.b. L (m^3)$$

Avec : e : épaisseur de la couche du lit de pose ; e=0.10m

L: longueur totale de la tranchée (m).

b : largeur de la tranchée (m).

VIII.III.1.iv Volume de la conduite « Vc » :

Le volume occupé par la conduite dans la tranchée est donné par la relation suivante :

$$Vc = \frac{\pi \cdot D^2}{4} \cdot L(m^3)$$

Avec : L: longueur totale de la tranchée (m).

D: diamètre de la conduite (m).

VIII.III.1.v Volume du remblai « V_R »:

Il est donné par l'expression suivante :

$$VR=V_{D.F}-V_{evacué}$$
 (m3)

Avec : V_{D.F} : volume des déblais foisonnés.

$$V_{D.F}=V_{D.}K_{f}(m^{3})$$
;

K_f=1.25 (Coefficient de foisonnement)

$$V_{\text{evacu\'e}} = V_{LP} + V_{c} + V_{e,t} (m^3)$$

Où : V_{LP} : volume occupé par le lit de pose (m3).

Ve.t: volume d'enrobage tamisé (m3).

Vc: volume de la conduite (m3).

VIII.IV Détermination du devis et quantitatif :

Tableau VIII. 1 Devis estimatif et quantitatif :

	DEVIS QUA	ANTIT	ATIF ET	ESTIMATII	F
N°	Désignation des travaux	Unité	Quantité	Prix unitaire (DA)	Montant (DA)
A	TRAVAUX	MECAN	NIQUES D	E TERRASSE	MENT
1	Décapage de la terre végétale	M^3	1598,01	150,00 DA	239 701,50 DA
2	Déblai de la tranchée sur une profondeur h = 2-6m	M^3	27965,175	250,00 DA	6 991 293,75 DA
3	Pose de lit de sable e=0.1m	M^3	799	1 000,00 DA	799 000,00 DA
4	Remblai compacté de la tranchée avec de la terre épierrée	M^3	24930,095	200,00 DA	4 986 019,00 DA
5	Évacuation des terres excédentaires à la décharge publique	M^3	9688,87	300,00 DA	2 906 661,00 DA
6	Grillage avertisseur	Ml	5327	65,00 DA	346 280,35 DA
В	FOURNITURE TRANSP 06 ET BETON ARME CI			E CANALISAT	TION EN PVC PN
1	DN 315 PN 06 PVC	Ml	3400,7	3 800,00 DA	12 922 660,00 DA
2	DN 400 PN 06 PVC	Ml	995	4 800,00 DA	4 776 000,00 DA
3	DN 500 PN 06 PVC	Ml	670	6 000,00 DA	4 020 000,00 DA
4	DN 630 PN 06 PVC	Ml	93,69	8 000,00 DA	749 520,00 DA
5	DN 800 BA 135 A	Ml	158	9 000,00 DA	1 422 000,00 DA
6	DN 1000 BA 135 A	Ml	10	12 000,00 DA	120 000,00 DA
C		Constru	iction (Gén	ie Civile)	
1	Construction des regards en béton armé, y compris toutes sujétions de bonne exécution, avec tampon en fonte série lourde; h = 1 - 6 m	U	187	100 000,00 DA	18 700 000,00 DA
2	Exécution des déversoirs d'orage, y compris toutes sujétions de bonne exécution	U	1	800 000,00 DA	800 000,00 DA
				Totale (T.H.T)	59 779 135,60 DA
	Totaux			T.V.A (19%)	11 358 035,76 DA
				Totale (T.T.C)	71 137 171,36 DA

Le prix total de notre projet est : Soixante-onze millions, cent trente-sept mille, cent soixante-onze dinars et trente-six centimes.

Conclusion:

Le nouveau système d'assainissement prévu pour la ville de Sidi Ghiath, située dans la commune de Meurad, comprend une variété d'ouvrages hydrauliques. Ces derniers incluent des conduites de différents diamètres, des regards de visite, des regards de jonction, des regards de chute et des déversoirs d'orage. Pour garantir un fonctionnement efficace du système, il est essentiel d'utiliser des matériaux de qualité supérieure pour ces ouvrages. Ainsi, lors de la sélection des conduites, il est important de considérer leur disponibilité sur le marché national.

Le devis total de notre projet c'est : Soixante-onze millions, cent trente-sept mille, cent soixante-onze dinars et trente-six centimes.

Conclusion Générale:

Dans le cadre de notre travail, nous avons réalisé un diagnostic du système d'assainissement existant de la ville de Sidi Ghiath. Cette évaluation nous a permis d'identifier les problèmes présents dans le réseau.

Pour ce faire, nous avons suivi plusieurs étapes clés. Tout d'abord, nous avons présenté la zone d'étude et ses caractéristiques. Ensuite, nous avons mené une étude hydrologique pour déterminer l'intensité moyenne maximale de la pluie en utilisant les résultats obtenus par l'ajustement de la série pluviométrique à la loi de Gumbel.

Nous avons également effectué des calculs pour estimer les débits pluviaux en divisant la zone en plusieurs sous-bassins. Pour ce faire, nous avons utilisé la méthode rationnelle, en prenant en compte les débits domestiques et publics, étant donné que la zone ne dispose pas d'industries.

En utilisant les nouveaux débits calculés, nous avons pu concevoir des collecteurs principaux et secondaires. Cependant, certains tronçons de collecteurs secondaires du réseau existant qui sont toujours en bon état ont été conservés et réutilisés dans notre nouveau réseau.

En ce qui concerne les ouvrages annexes, nous avons conçu des regards de visite, de chute et de déversoir d'orage.

Le devis total de notre projet c'est : Soixante-onze millions, cent trente-sept mille, cent soixante-onze dinars et trente-six centimes. 71 137 171,36 DA

Enfin, nous espérons avoir traité la majorité des problèmes du réseau d'assainissement de la ville de Sidi Ghiath et que notre étude se concrétisera sur le terrain.

Bibliographie

- [01] SALAH, B., 2014 « polycopié d'assainissement », école nationale supérieure de l'hydraulique, BLIDA
- [02] DERNOUNI.F. (Cours d'assainissement, ENSH2004)
- [03] REGIS, B, 1984 « les réseaux d'assainissement, calculs application et perspective », Paris
- [04] TOUAIBIA, B, 2003, « Cours d'hydrologie » Ecole nationale supérieure de l'hydraulique, BLIDA
- [05] TOUAIBIA, B, 2004 « Manuel pratique d'hydrologie »
- [06] GOMELLA, C., GUERREE, H, 1986 « Guide d'assainissement dans les agglomérations urbaines et rurales (tome 1), Eyrolles, Paris perspective », Paris
- [07] François G, Brière, distribution et collecte des eaux, édition de l'école polytechnique de Montréal 1997,
- [08] NONCLERCO. P. (Le calcul statique des collecteurs urbains, 3eme partie)
- [10] FRANCOIS, V., 1994 « Mémento du gestionnaire de l'alimentation en eau et de l'assainissement », Paris
- [11] BOUNADER. E, Thèse pour obtenir le grade de Docteur, Conduit de diagnostic, et évaluation des collecteurs des infrastructures urbaines, Formation doctorale : conception en bâtiment, et techniques urbaines, Institut National des Sciences Appliquées de Lyon1998
- [12] BELHOCINE. H, Mémoire de fin d'études d'assainissement, Diagnostic du réseau d'assainissement de la ville de Cherchell (W.Tipaza), ENSH 2002.
- [13] GHAMMIT. M, Mémoire de fin d'études d'assainissement, Diagnostic du réseau d'assainissement de la ville de Bou-Ismail (W.Tipaza) ENSH 2003.
- [14] FALI.A, Mémoire de fin d'études d'assainissement, Etude de diagnostic et extension du réseau d'assainissement de la ville de Oued-Rhiou (W.Relizane) ENSH septembre 1999.
- [15] AGENCE DE L'EAU Artois-Picardie, 1999 « Guide du raccordement à l'égout », format PDF
- [16] STPM CHIALI, édition 2005, « catalogue technique des tubes en PVC ».

ANNEXE I

FONCTION DE RÉPARTITION DE LA LOI NORMALE STANDARD

$$\Phi(z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx$$

2	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998
3.5	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998
3.6	0.9998	0.9998	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999

2	0.841	1.282	1.645	1.960	2.054	2.326	2.576	2.807	3.091	3.291
$\Phi(z)$	0.8000	0.9000	0.9500	0.9750	0.9800	0.9900	0.9950	0.9975	0.9990	0.9995

ANNEXE II

Loi du khi-deux avec k degrés de liberté Quantiles d'ordre $1-\gamma$

						γ					
k	0.995	0.990	0.975	0.950	0.900	0.500	0.100	0.050	0.025	0.010	0.005
1	0.00	0.00	0.00	0.00	0.02	0.45	2.71	3.84	5.02	6.63	7.88
2	0.01	0.02	0.05	0.10	0.21	1.39	4.61	5.99	7.38	9.21	10.60
3	0.07	0.11	0.22	0.35	0.58	2.37	6.25	7.81	9.35	11.34	12.84
4	0.21	0.30	0.48	0.71	1.06	3.36	7.78	9.94	11.14	13.28	14.86
5	0.41	0.55	0.83	1.15	1.61	4.35	9.24	11.07	12.83	15.09	16.75
6	0.68	0.87	1.24	1.64	2.20	5.35	10.65	12.59	14.45	16.81	18.55
7	0.99	1.24	1.69	2.17	2.83	6.35	12.02	14.07	16.01	18.48	20.28
8	1.34	1.65	2.18	2.73	3.49	7.34	13.36	15.51	17.53	20.09	21.96
9	1.73	2.09	2.70	3.33	4.17	8.34	14.68	16.92	19.02	21.67	23.59
10	2.16	2.56	3.25	3.94	4.87	9.34	15.99	18.31	20.48	23.21	25.19
- 11	2.60	3.05	3.82	4.57	5.58	10.34	17.28	19.68	21.92	24.72	26.76
12	3.07	3.57	4.40	5.23	6.30	11.34	18.55	21.03	23.34	26.22	28.30
13	3.57	4.11	5.01	5.89	7.04	12.34	19.81	22.36	24.74	27.69	29.82
14	4.07	4.66	5.63	6.57	7.79	13.34	21.06	23.68	26.12	29.14	31.32
15	4.60	5.23	6.27	7.26	8.55	14.34	22.31	25.00	27.49	30.58	32.80
16	5.14	5.81	6.91	7.96	9.31	15.34	23.54	26.30	28.85	32.00	34.27
17	5.70	6.41	7.56	8.67	10.09	16.34	24.77	27.59	30.19	33.41	35.72
18	6.26	7.01	8.23	9.39	10.87	17.34	25.99	28.87	31.53	34.81	37.16
19	6.84	7.63	8.81	10.12	11.65	18.34	27.20	30.14	32.85	36.19	38.58
20	7.43	8.26	9.59	10.85	12.44	19.34	28.41	31.41	34.17	37.57	40.00
21	8.03	8.90	10.28	11.59	13.24	20.34	29.62	32.67	35.48	38.93	41.40
22	8.64	9.54	10.98	12.34	14.04	21.34	30.81	33.92	36.78	40.29	42.80
23	9.26	10.20	11.69	13.09	14.85	22.34	32.01	35.17	38.08	41.64	44.18
24	9.89	10.86	12.40	13.85	15.66	23.34	33.20	36.42	39.36	42.98	45.56
25	10.52	11.52	13.12	14.61	16.47	24.34	34.28	37.65	40.65	44.31	46.93
26	11.16	12.20	13.84	15.38	17.29	25.34	35.56	38.89	41.92	45.64	48.29
27	11.81	12.88	14.57	16.15	18.11	26.34	36.74	40.11	43.19	46.96	49.65
28	12.46	13.57	15.31	16.93	18.94	27.34	37.92	41.34	44.46	48.28	50.99
29	13.12	14.26	16.05	17.71	19.77	28.34	39.09	42.56	45.72	49.59	52.34
30	13.79	14.95	16.79	18.49	20.60	29.34	40.26	43.77	46.98	50.89	53.67
40	20.71	22.16	24.43	26.51	29.05	39.34	51.81	55.76	59.34	63.69	66.77
50	27.99	29.71	32.36	34.76	37.69	49.33	63.17	67.50	71.42	76.15	79.49
60	35.53	37.48	40.48	43.19	46.46	59.33	74.40	79.08	83.30	88.38	91.95
70	43.28	45.44	48.76	51.74	55.33	69.33	85.53	90.53	95.02	100.42	104.22
80	51.17	53.54	57.15	60.39	64.28	79.33	96.58	101.88	106.63	112.33	116.32
90	59.20	61.75	65.65	69.13	73.29	89.33	107.57	113.14	118.14	124.12	128.30
100	67.33	70.06	74.22	77.93	82.36	99.33	118.50	124.34	129.56	135.81	140.17

Si k est entre 30 et 100 mais n'est pas un multiple de 10, on utilise la table ci-haut et on fait une interpolation linéaire. Si k>100 on peut, grâce au théorème limite central, approximer la loi $\chi^2(k)$ par la loi N(k,2k).

ANNEXE III

Coefficient de Manning-strckler (ks).

Fossé à parois en herbe	30
Fossé à parois en terre	40
Canal en maçonnerie	60
Conduite en béton	75
Conduite en fibre ciment	80
Conduite en fonte ou en grés	90
Conduite en PVC	100

ANNEXE IV

VARIATIONS DES DEBITS ET DES VITESSES EN FONCTION DE LA HAUTEUR DE REMPLISSAGE

(d'après la formule de Bazin)

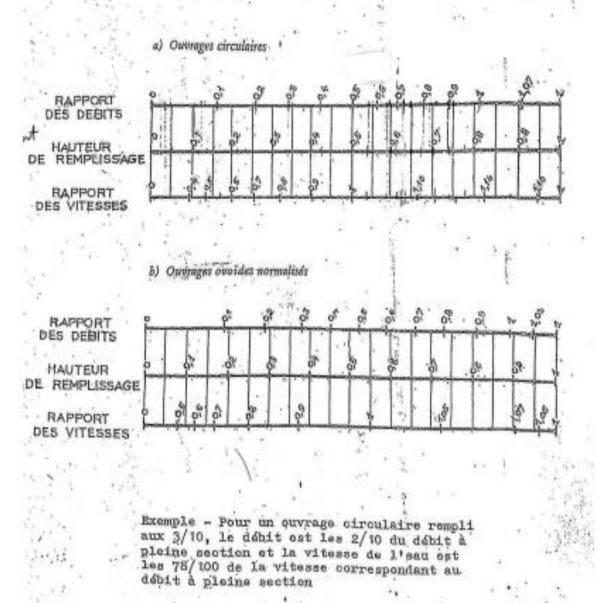
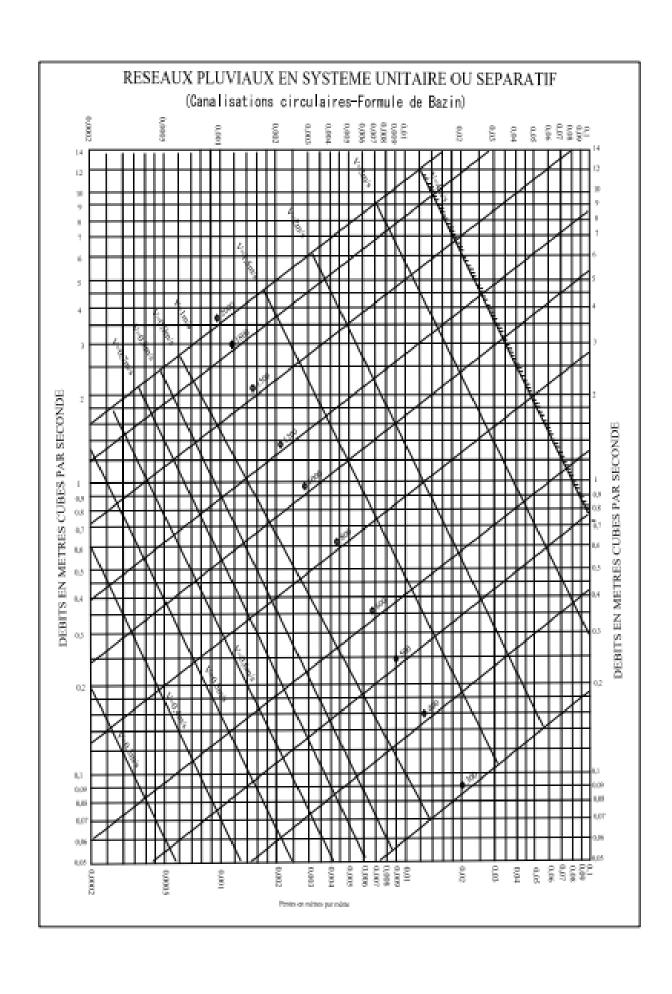



Figure 2 : Abaque de variation des débits et des vitesses en fonction de la hauteur de remplissage (D'après la formule de Bazin)

ANNEXE V

ANNNEXE VI

												Dn														
												or														Qps/1
			CT,am	CT,av	CR,am	CR,av	Dist	1	Qeu	Qt		(m	Vps	Qps		D			D.I.	Diam'r.	V	Vmin	H ()	Hmin	Qps/1	00-
	Tron	<u> </u>	(m) 151.00	(m) 149,18	(m) 148,50	(m) 148,18	(m)	(m/m)	(m3/s)	(m3/s)	(mm)	m)	(m/s)	(m3/s)	кq	Rqmin	RV	Rvmin	KN	Rhmin	(m/s)	(m/s)	(mm)	(mm)	0- Qeu	Qeu
	RG184	RG185	62	143,18	62	19		0.0205	0,0000	0.0069	88,2005	315	2.6312	0.2050	0.0336	0.0002	0.4643	0.1828	0.1245	0.0224	1.2218	0.4810	0,0392	0.0071	0,0205	0,0020
			149,18	147,93		146,93			.,				,		.,	.,	,			-/-	, -	.,			.,	
A-1	RG185	RG186	19	55	19	55	0	0,0205	0,0001	0,0121	109,0902	315	2,6290	0,2048	0,0593	0,0004	0,5583	0,1849	0,1631	0,0224	1,4677	0,4862	0,0514	0,0071	0,0204	0,0020
			147,93	145,64	,		,																			
	RG186	RG187	55	33	55	33		0,0324	0,0001	0,0228	126,7994	315	3,3065	0,2576	0,0885	0,0006	0,6165	0,1874	0,2006	0,0231	2,0385	0,6195	0,0632	0,0073	0,0256	0,0024
	RG187	RG188	145,64 33	143,93 58	144,64 33	142,93 58	21,955 0	0 0222	0,0002	0.0334	144,7463	215	2 2002	0.2560	0,1260	0 0008	0.6714	0 1005	0.2402	0.0244	2 21/15	0.6292	0,0757	0,0077	0,0255	0,0024
	KG167	KG100	143,93	142,83		141,83	23,866	0,0322	0,0002	0,0324	144,7403	313	3,2963	0,2303	0,1200	0,0008	0,0714	0,1903	0,2403	0,0244	2,2143	0,0282	0,0737	0,0077	0,0233	0,0024
	RG188	RG189	58	19	58	19	,	0,0253	0,0003	0,0428	168,1508	315	2,9225	0,2276	0,1879	0,0012	0,7610	0,1955	0,2921	0,0270	2,2240	0,5714	0,0920	0,0085	0,0225	0,0020
			142,83	142,17	141,83	141,17	10,616																			
	RG189	RG190	19	00	19	00	1	0,0153	0,0003	0,0474	192,1546	315	2,2690	0,1767	0,2682	0,0017	0,8539	0,2020	0,3508	0,0306	1,9374	0,4583	0,1105	0,0096	0,0174	0,0015
			142,17	139,91	141,17	138,91	22,314																			
	RG190	RG50	00	80	00	80	4	0,0475	0,0004	0,0571	166,5734	315	4,0026	0,3118	0,1832	0,0012	0,7544	0,1951	0,2885	0,0268	3,0196	0,7810	0,0909	0,0084	0,0308	0,0027
				-	127,26																					
A-2	RG148	RG149	64	11	64	11		0,0101	0,0001	0,0093	112,7029	315	1,8425	0,1435	0,0646	0,0004	0,5714	0,1854	0,1705	0,0225	1,0529	0,3415	0,3100	0,0071	0,0143	0,0014
	RG149	PG150	129,55 11	129,55 83	127,05 11	126,55	18,070 2	0 0272	0,0001	0.0171	117,5938	215	2 0220	0 2262	0.0724	0.0005	0 5000	0 1960	0 1907	0.0227	1 79/10	0.5642	0.0560	0.0071	0.0225	0,0023
	KG143	KG130				126,29		0,0273	0,0001	0,0171	117,3336	313	3,0336	0,2303	0,0724	0,0003	0,3880	0,1800	0,1807	0,0227	1,7640	0,3043	0,0303	0,0071	0,0233	0,0023
	RG150	RG151	83	73	83	73	3	0,0158	0,0002	0,0243	148,5085	315	2,3094	0,1799	0,1349	0,0009	0,6842	0,1911	0,2486	0,0247	1,5801	0,4414	0,0783	0,0078	0,0178	0,0016
			129,79	127,98	126,29	125,98	26,999																			
	RG151	RG58	73	68	73	68	5	0,0115	0,0002	0,0360	182,6779	315	1,9704	0,1535	0,2344	0,0015	0,8203	0,1992	0,3264	0,0290	1,6163	0,3924	0,1028	0,0091	0,0151	0,0013
			119,25	117,77	116,75	115,97	30,000																			
A-3	RG144	RG145	58	75	58	75	0	0,0259	0,0001	0,0113	101,6890	315	2,9593	0,2305	0,0491	0,0002	0,5285	0,1832	0,1486	0,0224	1,5639	0,5422	0,0468	0,0070	0,0230	0,0022
			117,77	117,88	115,97	115,88	30,060																			
	RG145	RG146	75 117,88	84 116,08	75 115,88	84 114,58	29,955	0,0160	0,0001	0,0227	144,5014	315	2,3213	0,1808	0,1254	0,0006	0,6706	0,1882	0,2397	0,0234	1,5566	0,4368	0,0755	0,0074	0,0180	0,0017
	RG146	RG147	84	06	84	06	29,955	0.0270	0,0002	0.0340	152,4302	315	3.0171	0.2350	0.1446	0.0007	0.6983	0,1894	0.2572	0.0239	2.1067	0.5715	0,0810	0.0075	0,0233	0.0022
			116,08	113,11	114,58	112,11	16,697	0,0270	0,0002	0,00.0	102) 1002	010	3,0171	0,200	0,2 : :0	0,0007	0,000	0,200 .	0,2372	0,0200	2,2007	0,57.25	0,0010	0,007.0	0,0200	0,0022
	RG147	RG62	06	01	06	01	, 5	0,0581	0,0002	0,0403	140,6868	315	4,4293	0,3450	0,1168	0,0006	0,6583	0,1876	0,2313	0,0232	2,9157	0,8310	0,0729	0,0073	0,0343	0,0032
												315														
			111,24	109,04	108,24	108,04	30,387					,00														
A-4	RG169	RG170	12	44	12	44	2	0,0228	0,0001	0,0218	133,2452	00	2,7711	0,2158	0,1010	0,0006	0,6356	0,1874	0,2148	0,0231	1,7613	0,5194	0,0677	0,0073	0,0215	0,0020
												315														
	DC170	DC7C	109,04	105,66	108,04	104,66		0.0226	0.0003	0.0533	172 7042	,00	2 2400	0.3504	0.2020	0.0013	0.7004	0.1040	0.2027	0.0366	2 5003	0.6463	0.0054	0.0004	0.0355	0.0033
	RG170	KG/b	152,78	26 150,66	149,78	26 147,66	17,048	0,0326	0,0003	0,0522	172,7842	UU	3,3180	0,2584	0,2020	0,0012	0,7804	0,1948	0,3027	0,0266	2,5893	0,6462	0,0954	0,0084	0,0255	0,0023
Α	RG43	RG44	152,78	130,00	149,78	147,66	,	0.0319	0,0000	0.0078	85,2036	315	3.2799	0,2555	0,0307	0.0002	0.4487	0,1824	0.1195	0.0226	1.4716	0,5984	0,0377	0,0071	0,0255	0,0025
			150,66	148,47	147,66		27,223	-,0010	3,000	2,00.0	55,2550	3-3	-,	-,2000	-,0007	3,0002	3, 37	-,	-,	-,0220	_,0	3,0001	3,00.7	-,00.1	3,0200	-,0023
	RG44	RG45	12	27	12	27	0	0,0404	0,0001	0,0197	115,1780	315	3,6921	0,2876	0,0685	0,0004	0,5800	0,1856	0,1756	0,0226	2,1414	0,6852	0,0553	0,0071	0,0286	0,0028

1 1	1	111017	145 22	145,47	142 22	25 747	l i	l i	l i]		l		l i	ĺ	Ī	l	l i		l	l	1	ĺ		1 1
RG45	RG46	27	06	27	06		0.0093	0.0002	0.0309	179,7797	315	1.7678	0.1377	0.2246	0.0014	0.8090	0.1982	0.3193	0.0285	1.4301	0.3505	0.1006	0.0090	0.0136	0.0012
1.0.5	110.0	145.22	143,38				0,0000	0,0002	0,000	275)7757	010	2). 0. 0	0,1077	0,22.0	0,001	0,000	0,2302	0,0100	0,0200	2) 1002	0,000	0,2000	0,000	0,0100	0,0012
RG46	RG47	06	42	06	42	. 8	0,0325	0,0003	0,0467	165,8958	315	3,3113	0,2579	0,1812	0,0012	0,7516	0,1948	0,2870	0,0266	2,4887	0,6452	0,0904	0,0084	0,0255	0,0023
		143,38	140,51	140,38	137,51	19,562																			
RG47	RG48	42	10	42	10	8	0,0216	0,0004	0,0553	190,7020	315	2,6137	0,1847	0,2993	0,0014	0,8780	0,1985	0,3730	0,0286	2,2949	0,5188	0,1119	0,0086	0,0182	0,0016
		140,51	138,71	137,51	135,71	22,596																			
RG48	RG49	10	87	10	87	4	0,0405	0,0004	0,0651	277,0000	315	3,6975	0,2880	0,2261	0,0014	1,1400	0,1985	0,3205	0,0286	4,2152	0,7339	0,1009	0,0090	0,0284	0,0025
		138,71	,	135,71	•	,																			
RG49	RG50	87	80	87	08	2	0,0358	0,0006	0,0883	206,8409	315	3,4739	0,2706	0,3264	0,0021	0,8953	0,2065	0,3919	0,0331	3,1101	0,7173	0,1235	0,0104	0,0265	0,0021
BCE0	DCE1			136,91		40,000	0.0270	0.0007	0.1630	105 0000	215	2 0174	0.2250	0.6020	0.0020	1 0741	0.2162	0.6000	0.0204	2 2400	0.6533	0.1010	0.0121	0.0220	0.0017
RG50	RG51	08	58	08	58		0,0270	0,0007	0,1629	195,0000	313	3,0174	0,2350	0,6930	0,0029	1,0741	0,2162	0,0088	0,0384	3,2409	0,0522	0,1918	0,0121	0,0228	0,0017
RG51	RG52	138,47 58	138,45 57	135,47 58	135,45 57	40,000 0	0,0130	0.0012	0 1803	326,7716	400	2.4567	U 3U8E	0.5844	0 0038	1 0/28	0 2265	0 5//0	0 0438	2 5610	0.5564	0,2179	0,0175	0,0297	0,0019
11031	NOSZ	-		134,95		40,000	0,0130	0,0012	0,1803	320,7710	400	2,4307	0,3080	0,3044	0,0038	1,0420	0,2203	0,3443	0,0438	2,3013	0,5504	0,2173	0,0173	0,0237	0,0013
RG52	RG53	57	97	57	97	,	0,0131	0.0013	0.1973	337,2592	400	2.4705	0.3103	0.6357	0.0040	1.0591	0.2299	0.5741	0.0455	2.6164	0.5680	0.2296	0.0182	0,0298	0,0018
11000		137,42			133,30	40,000	5,5252	5,0000	0,2010			_,	-,	-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2,00.10	_,	-,	-,		_,-,	,,,,,,,,,	-,	-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-,	0,000
RG53	RG54	97	72	97	72	,	0,0281	0,0014	0,2142	301,7622	400	3,6091	0,4533	0,4726	0,0030	0,9831	0,2175	0,4836	0,0391	3,5481	0,7851	0,1935	0,0157	0,0440	0,0032
		136,30	134,05	133,30	131,05	40,000																			
RG54	RG55	72	78	72	78	0	0,0437	0,0015	0,2312	285,7178	315	3,8422	0,2993	0,7724	0,0049	1,1015	0,2400	0,6594	0,0503	4,2321	0,9221	0,2077	0,0159	0,0285	0,0015
		134,05	131,96	131,05	129,96	40,000																			
RG55	RG56	78	41	78	41	0	0,0273	0,0016	0,2481	320,4223	400	3,5623	0,4474	0,5546	0,0036	1,0302	0,2242	0,5285	0,0426	3,6699	0,7988	0,2114	0,0171	0,0431	0,0029
		131,96	129,15	129,96		40,000																			
RG56	RG57	41	82	41	82		0,0451	0,0017	0,2651	298,9759	315	3,9039	0,3041	0,8718	0,0057	1,1350	0,2482	0,7207	0,0541	4,4310	0,9688	0,2270	0,0170	0,0287	0,0013
	2050	129,15		· ·	125,98	40,000	0 00 40	0.0000	0 0004	406 6407		4 5055	0 0040	0.0004	0.0064	4 4004	0.0500	0.7560	0.0560	4 0640		0.0704	0.0004	0 0000	0.0040
RG57	RG58	82	68	82	68		0,0043	0,0020	0,2994	486,6197	500	1,6366	0,3212	0,9321	0,0061	1,1394	0,2529	0,7569	0,0562	1,8648	0,4140	0,3784	0,0281	0,0302	0,0013
DCE9	DCEO	127,98				40,000	0.0201	0.0022	0.2527	242 5051	400	4 2020	0 5270	0.6691	0.0042	1.0674	0 2224	0.5034	0.0472	1 1061	0.0000	0 2274	0.0100	0.0505	0.0020
RG58	RG59	68 123.46	45	68 122,46	110 40	35.000	0,0381	0,0023	0,3527	343,5951	400	4,2030	0,5279	0,0081	0,0043	1,0674	0,2334	0,5934	0,0472	4,4804	0,9809	0,2374	0,0189	0,0505	0,0030
RG59	RG60	45	16	45	119,40	,	0,0304	0.0024	0 3678	364,1581	400	3 7543	0 4715	0.7801	0.0051	1 1045	0,2417	0 6643	0.0511	4 1468	0 9073	0,2657	0,0205	0,0448	0,0023
11.033	11000	121.40		119,40			0,0301	0,0021	0,3070	30 1,1301	100	3,7313	0, 17 13	0,7001	0,0031	1,1013	0,2117	0,0013	0,0311	1,1100	0,5075	0,2037	0,0203	0,0110	0,0023
RG60	RG61	16	35	16	35	-	0,0408	0.0025	0.3844	350,2013	400	4.3540	0.5469	0.7029	0.0046	1.0769	0.2359	0.6150	0.0484	4.6889	1.0272	0,2460	0.0194	0.0522	0,0030
		114,84		113,84				-,	-,	, , ,		,		,		,	.,			,	,-	-,			
RG61	RG62	35	01	35	01	1	0,0254	0,0026	0,3969	387,5043	400	3,4323	0,4311	0,9207	0,0060	1,1393	0,2518	0,7498	0,0557	3,9106	0,8644	0,2999	0,0223	0,0405	0,0017
		113,11	111,49	111,11	108,49	19,216																			
RG62	RG63	01	47	01	47	9	0,0320	0,0026	0,4071	374,5093	400	3,8554	0,4842	0,8406	0,0055	1,1273	0,2461	0,7021	0,0531	4,3462	0,9488	0,2808	0,0213	0,0458	0,0022
ı		111,49	108,98	108,49	107,98	29,996																			
RG63	RG64	47	84	47	84		0,0169	0,0028	0,4229	428,4016	500	3,2477	0,6374	0,6636	0,0043	1,0663	0,2330	0,5907	0,0470	3,4630	0,7568	0,2954	0,0235	0,0610	0,0036
	2005	108,98	107,49	· ·	106,49	44,035	0.000	0.000	0.4465	202 565-	400	2 2 2 5 -		0.0053	0.0055		0.0505	0 7055	0.0555	4 5 4 0 5		0 0045	0.000-	0.0465	
RG64	RG65	84	66	84	66		0,0339	0,0029	0,4462	383,5635	400	3,9655	υ,4981	0,8959	0,0058	1,1383	0,2503	0,7350	0,0550	4,5137	0,9924	0,2940	0,0220	0,0469	0,0021
DCCE.	DCCC	107,49	107,12	106,49	105,12	40,033	0.0343	0.0034	0.4674	200 7020	400	2 001 4	0.5004	0.0347	0.0004	1 1204	0.2524	0.7505	0.0563	4 5363	1 0070	0.2024	0.0335	0.0470	0.0020
RG65	RG66	107,12	109 22	105 12	94	U	0,0342	0,0031	0,4674	389,7020	400	3,9814	0,5001	0,9347	0,0061	1,1394	0,2531	0,7585	0,0563	4,5363	1,0078	0,3034	0,0225	0,0470	0,0020
RG66	RG67	94	108,32	105,12 94	,	8,1172	0 0373	0,0031	0 4717	384,5343	400	4 1636	0 5230	0 9020	0 0050	1 1397	0,2508	0 7386	0.0552	4 7/11	1 0442	0.2954	0.0221	0.0492	0,0022
11.000	11007					21,218	0,0373	0,0031	0,4/1/	504,5543	+00	7,1030	0,3230	0,3020	0,0033	1,1307	0,2308	0,7300	0,0332	7,/711	1,0442	0,2334	0,0221	0,0432	0,0022
RG67	RG68				•	9	0.0202	0.0032	0.4829	435,1989	500	3.5559	0.6978	0.6920	0.0045	1.0738	0.2354	0.6082	0.0481	3.8184	0.8369	0.3041	0.0241	0.0666	0,0038
	1.000					J	-,0202	2,0002	-, .525	.55,2555	300	2,000	-,00.0	-,0020	-,00.0	2,0.00	3,2001	-,0002	-,0.01	2,0201	3,0003	2,00.1	-,02.1	2,0000	2,0000
RG68	RG69	70	75	70	75	1	0,0084	0,0033	0,4980	518,9408	630	2,6753	0,8335	0,5974	0,0039	1,0475	0,2282	0,5521	0,0447	2,8025	0,6106	0,3478	0,0281	0,0801	0,0051
RG67 RG68	RG68 RG69	62 109,39	70 109,65	62 104,39	70 104,15	,		0,0032		435,1989 518,9408				,		,	0,2354	,	0,0481	,	0,8369	-,	0,0241	0,0666	

					104,15	-	1																			
	RG69	RG70	75 109.31	48 109,62	75	48 103,06		0,0183	0,0033	0,5079	451,8242	500	3,3838	0,6641	0,7648	0,0050	1,0984	0,2408	0,6545	0,0507	3,7168	0,8150	0,3273	0,0254	0,0631	0,0033
	RG70	RG71	48	26	48	55		0.0200	0,0035	0.5277	450,8789	500	3.5355	0.6938	0.7605	0.0050	1.0967	0.2406	0.6518	0.0506	3.8776	0.8506	0,3259	0,0253	0,0659	0,0035
			109,62	107,95		102,42		0,0200	0,000	0,0277	.50,0705	500	3,3333	0,0000	0,7 000	0,0000	2,0307	0,2 .00	0,0010	0,0000	3,0770	0,000	0,0200	0,0200	0,000	0,000
	RG71	RG72	26	10	55	34	8	0,0200	0,0036	0,5507	458,1626	500	3,5355	0,6938	0,7937	0,0052	1,1101	0,2427	0,6730	0,0516	3,9247	0,8582	0,3365	0,0258	0,0658	0,0034
			107,95	106,86	102,42	101,91																				
	RG72	RG73	10	89	34	54		0,0200	0,0037	0,5689	463,7915	500	3,5355	0,6938	0,8200	0,0053	1,1203	0,2444	0,6894	0,0524	3,9608	0,8641	0,3447	0,0262	0,0657	0,0032
	RG73	RG74	106,86 89	106,22 54	101,91 54	101,42	24,//1	0.0200	0,0038	0,5867	469,1734	500	3 5355	0 6038	0.8456	0.0055	1 1288	0 2/61	0,7051	0.0531	3 0000	0 8600	0,3525	0,0266	0,0656	0,0031
	11073	11074	106,22	104,92		101,92		0,0200	0,0050	0,3007	403,1734	300	3,3333	0,0550	0,0430	0,0055	1,1200	0,2401	0,7031	0,0331	3,3303	0,0033	0,3323	0,0200	0,0050	0,0031
	RG74	RG75	54	92	00	92	, , , , , , , , , , , , , , , , , , ,	0,0267	0,0039	0,6057	449,8118	500	4,0837	0,8014	0,7557	0,0049	1,0949	0,2393	0,6487	0,0500	4,4712	0,9772	0,3244	0,0250	0,0762	0,0041
			104,92	105,66	101,92	101,66	23,608																			
	RG75	RG76	92	26	92	26	1	0,0113	0,0040	0,6226	533,9992	630	3,0992	0,9656	0,6448	0,0041	1,0614	0,2309	0,5794	0,0460	3,2897	0,7157	0,3650	0,0290	0,0926	0,0057
	RG76	RG77	105,66 26	101,49	101,66 26	99,490		0.0206	0,0045	0.7022	466,5082	E00	4 2024	0 0112	0 0220	0.0053	1 12/10	0.2440	0 6072	0.0522	4 9202	1 0406	0 2497	0,0261	0.0000	0,0040
	NG/0	NG//	20	01	20		U	0,0290	0,0043	0,7032	400,3062	300	4,3024	0,6443	0,6329	0,0055	1,1240	0,2440	0,0973	0,0322	4,0333	1,0490	0,3467	0,0201	0,0800	0,0040
ı	ſ	ı	l l		l 40 67		ا مم مدد ا	ı	i i	i i	l I		I I		l i		1 1	Ì	i i		ı	l	1	Ì	i i	1 1
B-1	RG198	RG199	145,67	144,46	143,67 80	143,46		0.0111	0,0001	0 0085	106,9113	215	1 0307	O 1511	0.0562	0.0004	0 5/199	0 1847	0 1587	0.0224	1 0667	0.3582	0.0500	0.0071	0.0151	0.0015
D-1	NG138	KG133		144,29				0,0111	0,0001	0,0003	100,5113	313	1,3337	0,1311	0,0302	0,0004	0,3433	0,1047	0,1367	0,0224	1,0007	0,3382	0,0300	0,0071	0,0131	0,0013
	RG199	RG200	10	48	10	48	8	0,0132	0,0001	0,0140	124,8469	315	2,1116	0,1645	0,0849	0,0005	0,6107	0,1871	0,1964	0,0230	1,2895	0,3950	0,0619	0,0072	0,0164	0,0016
			144,29	144,07	143,29																					
	RG200	RG201	48	49	48		9,1264	0,0241	0,0001	0,0179	122,5271	315	2,8521	0,2222	0,0808	0,0005	0,6036	0,1867	0,1913	0,0229	1,7216	0,5326	0,0603	0,0072	0,0221	0,0021
	RG201	RG84	144,07	142,54 13	143,07 49	140,54 13	, , , , , , , , , , , , , , , , , , ,	0.0522	0,0002	0.0266	122,7979	215	1 1001	0 2270	0.0912	0.0005	0.6045	O 1969	0 1010	0.0220	2,5378	0,7841	0,0604	0.0072	0,0325	0,0031
	NGZUI	11004	140,00		138,00	137,63		0,0322	0,0002	0,0200	122,7373	313	4,1364	0,3270	0,0813	0,0003	0,0043	0,1808	0,1313	0,0223	2,3376	0,7841	0,0004	0,0072	0,0323	0,0031
B-2	RG195	RG196	84	76	84	76	, , , , , , , , , , , , , , , , , , ,	0,0185	0,0001	0,0085	97,1990	315	2,5004	0,1948	0,0436	0,0003	0,5085	0,1841	0,1403	0,0223	1,2714	0,4603	0,0442	0,0070	0,0194	0,0019
			138,63	138,17	137,63	137,17	20,840																			
	RG196	RG197	76	69	76	69	7	0,0221	0,0001	0,0173	122,8744	315	2,7316	0,2128	0,0814	0,0006	0,6047	0,1875	0,1921	0,0231	1,6518	0,5121	0,0605	0,0073	0,0212	0,0020
	RG197	DC00			137,17			0.0427	0.0003	0.0262	126 2700	215	2 9404	0.2001	0.0077	0.0006	0.6153	0 1001	0.1007	0.0224	2 2620	0.7225	0.0630	0.0074	0.0207	0,0028
	KG197	RG88	69 132,71	67 132,61	69 131,71	67 131 61	19,957	0,0437	0,0002	0,0202	126,3798	313	3,0404	0,2991	0,0877	0,0006	0,6153	0,1001	0,1997	0,0234	2,3029	0,7225	0,0629	0,0074	0,0297	0,0028
B-3	RG191	RG192	14	132,01	14	131,01	9	0,0101	0,0001	0,0085	108,7267	315	1,8489	0,1440	0,0587	0,0004	0,5569	0,1854	0,1624	0,0225	1,0297	0,3428	0,0511	0,0071	0,0143	0,0014
			132,61	131,88	131,61	130,88	20,312																			
	RG192	RG193	13	02	13	02		0,0360	0,0001	0,0171	111,5342	315	3,4855	0,2715	0,0629	0,0004	0,5673	0,1857	0,1681	0,0226	1,9772	0,6473	0,0529	0,0071	0,0270	0,0026
	PC103	DC104	131,88		130,88	128,55	21,716	0.0517	0.0003	0.0363	122 5170	215	A 1765	0 2252	0.0000	0.0000	0.6036	0.1072	0.1013	0.0224	2 5200	0.7924	0.0603	0.0073	0.0222	0.0021
	RG193	RG194	02 129,55	80 128,44	128 55	80 126,94		0,051/	0,0002	0,0263	122,5178	315	4,1/65	0,3253	0,0808	0,0006	0,6036	0,18/3	0,1913	0,0231	2,5209	0,7821	0,0603	0,0073	0,0323	0,0031
	RG194	RG91	80	37	80	37	13,008	0,0394	0,0002	0,0329	140,2634	315	3,6449	0,2839	0,1158	0,0008	0,6569	0,1904	0,2304	0,0244	2,3945	0,6941	0,0726	0,0077	0,0282	0,0026
			126,98		125,98		23,158	·		,					,					•						
B-4	RG152	RG153	69	80	69	80	0	0,0116	0,0001	0,0100	112,9844	315	1,9799	0,1542	0,0651	0,0004	0,5724	0,1854	0,1710	0,0225	1,1334	0,3671	0,0539	0,0071	0,0154	0,0015
	DC453	DC454	127,21	126,99		125,49		0.0427	0.0001	0.0470	422 2045	245	2 4 402	0.4674	0.4043	0.0000	0.6363	0.400.4	0.2454	0.0225	4 2662	0.4040	0.0670	0.007.	0.0466	0.0046
	RG153	RG154	80 126,99	94 126,06	125.40	94 125,06		0,0137	0,0001	0,0170	133,3815	315	2,1492	0,1674	0,1013	0,0006	0,6360	0,1884	0,2151	0,0235	1,3669	0,4049	0,0678	0,0074	0,0166	0,0016
	RG154	RG155	94	126,06	94	09	-, -	0.0211	0,0002	0.0260	144,2660	315	2.6692	0.2079	0,1249	0.0006	0,6698	0.1881	0.2392	0.0234	1,7878	0,5022	0,0754	0,0074	0,0207	0,0019
			126,06	126,67	125,06	124,67	15,123	-,0	-,0002	2,0200	_ : :,2550	323	_,0002	-,=0.3	-,3	-,0000	3,0000	-,	-,2002	-,0-01	_,,	3,3022	2,0.01	2,00.1	-,0207	2,0023
	RG155	RG156	09	98	09	98	3	0,0252	0,0002	0,0325	150,0000	315	1,5900	0,1238	0,2626	0,0017	0,8489	0,2014	0,3468	0,0303	1,3497	0,3203	0,1092	0,0095	0,0122	0,0010

l	I	I	126 67	12/160	124,67	123 10	20 245	ĺ			i i		1 1				I	l			1	l	1	i i		1 1
	RG156	RG93	98	01	98	01		0,0242	0,0003	0,0413	277,0000	315	2,8573	0,2226	0,1855	0,0012	1,1400	0,1952	0,2903	0,0269	3,2573	0,5579	0,0914	0,0085	0,0220	0,0020
			125,78	124,61	124,28	123,61		-,-	,		,		,		-,		,	.,			,	.,	.,			
B-5	RG157	RG158	26	11	26	11	9	0,0316	0,0001	0,0092	90,7370	315	3,2642	0,2543	0,0363	0,0002	0,4773	0,1830	0,1289	0,0224	1,5579	0,5974	0,0406	0,0071	0,0254	0,0025
			124,61	124,66	123,61	123,46	19,904																			
	RG158	RG159	11	33	11	33	1	0,0142	0,0001	0,0178	134,9558	315	2,1919	0,1707	0,1045	0,0005	0,6407	0,1868	0,2186	0,0229	1,4044	0,4095	0,0689	0,0072	0,0170	0,0016
			124,66	123,96	123,46	122,96	26,953																			
	RG159	RG160	33	17	33	17	4	0,0186	0,0002	0,0295	155,0128	315	2,5063	0,1952	0,1512	0,0010	0,7079	0,1925	0,2629	0,0254	1,7743	0,4824	0,0828	0,0080	0,0193	0,0018
	20160	2000	123,96	121,45	122,96	120,45	17,629	0.0005	0.0000	0.0070	456.0400	245	2 4 2 4 2	0 0 4 4 6	0.4500	0.0040	0.7440	0.4007	0.0554	0.0055	2 2272	0 5075	0 0005	0 0000	0.0000	0.0000
	RG160	RG96	17	94	17	94	20.201	0,0285	0,0002	0,0372	156,0128	315	3,1012	0,2416	0,1539	0,0010	0,/118	0,1927	0,2651	0,0255	2,20/3	0,5975	0,0835	0,0080	0,0239	0,0022
B-6	RG141	RG142	122,56 14	122,61 47	121,56 14	121,11 47	26,361 1	0,0169	0,0001	0,0114	110,4940	215	1 4500	0 1120	0.1400	0.1400	0.6016	0,6916	0.2521	0,2531	1 0029	1,0028	0,0797	0,0797	0,0112	0,0011
B-0	KG141	NG142	122,61	122,39	121,11		17,574	0,0109	0,0001	0,0114	110,4940	313	1,4300	0,1129	0,1400	0,1400	0,0910	0,0910	0,2331	0,2331	1,0028	1,0028	0,0797	0,0797	0,0112	0,0011
	RG142	RG143	47	09	47	09	17,374	0.0127	0,0001	0.0190	141,1918	315	2 0733	0 1615	0 1179	0 0008	0 6599	0,1897	0 2324	0.0241	1,3681	0,3934	0.0732	0,0076	0,0160	0,0015
	NO142	110143	122,39				31,536	0,0127	0,0001	0,0130	141,1310	313	2,0733	0,1013	0,1173	0,0000	0,0333	0,1037	0,2324	0,0241	1,5001	0,3334	0,0732	0,0070	0,0100	0,0013
	RG143	RG97	09	53	09	53	,	0,0427	0,0002	0.0327	137,8652	315	3.7952	0.2956	0.1106	0.0007	0.6495	0,1891	0.2251	0,0238	2.4650	0,7179	0,0709	0,0075	0,0294	0,0027
B-7-			120,04	119,36	119,04	118,36	18,248	-,-	-,	-,	,		-,	-,		-,	-,-	-,	-,	-,-	,	-,	-,-	-,	-,-	-,
1	RG172	RG173	97	64	97	64	3	0,0374	0,0001	0,0097	89,4009	315	3,5551	0,2769	0,0349	0,0002	0,4705	0,1830	0,1266	0,0224	1,6727	0,6507	0,0399	0,0071	0,0276	0,0027
			119,36	118,60	118,36	117,60	22,726																			
	RG173	RG174	64	71	64	71	4	0,0334	0,0001	0,0217	123,6974	315	3,3581	0,2616	0,0829	0,0006	0,6072	0,1872	0,1938	0,0230	2,0390	0,6285	0,0611	0,0073	0,0260	0,0025
			118,60	117,45	117,60	116,45	21,995																			
	RG174	RG175	71	15	71	15	4	0,0298	0,0002	0,0333	148,4685	315	3,1719	0,2471	0,1348	0,0009	0,6841	0,1916	0,2485	0,0250	2,1697	0,6077	0,0783	0,0079	0,0245	0,0022
			117,45	•	116,45	115,98	26,917																			
	RG175	RG176	15	02	15	02		0,0175	0,0003	0,0475	187,4620	315	2,4311	0,1894	0,2511	0,0017	0,8379	0,2014	0,3385	0,0302	2,0371	0,4895	0,1066	0,0095	0,0186	0,0016
	DC176	DC177	117,48			115,70	17,302	0.0157	0.0004	0.0567	204 4452	245	2 2005	0.1703	0.2164	0.0034	0.0000	0.2000	0.2050	0.0222	2.0456	0.4757	0.1212	0.0105	0.0175	0.0014
	RG176	RG177	02	90	02	90	0	0,0157	0,0004	0,0567	204,4452	315	2,3005	0,1792	0,3164	0,0021	0,8892	0,2068	0,3850	0,0333	2,0456	0,4757	0,1213	0,0105	0,0175	0,0014
	RG177	RG178	116,70 90	114,40 91	115,70 90	91	18,661	0.0161	0,0004	0,0666	216,1247	215	2 2201	O 1914	0.3660	0.0025	0.0194	0.2100	0.4104	0.0255	2 1201	0.4012	0,1321	0.0112	0.0177	0,0014
	NG177	10178	114.40				28,183	0,0101	0,0004	0,0000	210,1247	313	2,3231	0,1014	0,3003	0,0023	0,3104	0,2103	0,4134	0,0333	2,1331	0,4312	0,1321	0,0112	0,0177	0,0014
	RG178	RG179	91	33	91	33	8	0.0240	0,0005	0,0815	216,2892	315	2.8449	0.2216	0.3677	0,0025	0.9188	0,2110	0.4198	0.0356	2.6140	0.6002	0,1323	0,0112	0,0216	0,0017
			113,23		111,23			5,52.10	5,000	0,0000			_,	-,	0,000	-,	0,000	-,	0,1200		_,-,	-,,,,,,,	5,200	-,	0,0220	
	RG179	RG164	33	20	33	20	-	0,0163	0,0006	0,0906	242,0116	315	2,3447	0,1826	0,4961	0,0033	0,9980	0,2213	0,4967	0,0411	2,3400	0,5189	0,1565	0,0130	0,0177	0,0012
			114,51	115,02	113,51	113,02	24,665																			
B-7	RG162	RG163	18	82	18	82	7	0,0196	0,0001	0,0130	113,0055	315	2,5726	0,2004	0,0651	0,0004	0,5725	0,1856	0,1711	0,0226	1,4728	0,4776	0,0539	0,0071	0,0200	0,0019
			115,02	111,95	113,02	110,95	37,463																			
	RG163	RG164	82	20	82	20		0,0287	0,0002	0,0329	148,7454	315	3,1140	0,2426	0,1355	0,0009	0,6850	0,1917	0,2491	0,0250	2,1332	0,5968	0,0785	0,0079	0,0240	0,0022
	2016:	2046-	111,95	110,92	110,95	108,92	28,519	0.0745	0.000	0.400-	245 2065	245	4 0000	0.0045	0.000		0.0461	0.0405	0.4465	0.005		4 000 :	0.4045	0.044	0.0075	
-	RG164	RG165	20	07	20	07		0,0712	0,0009	0,1386	215,2083	315	4,9032	0,3819	0,3628	0,0024	0,9161	0,2106	0,4166	0,0354	4,4918	1,0324	0,1312	0,0111	0,0373	0,0029
	DC16F	DC10F	110,92	108,26	108,92	106,76	20,216	0.0226	0.0010	0.1402	256 2224	215	2 2166	0.3503	0 5777	0.0020	1 0403	0 2277	0 5413	0.0444	2 4504	0.7552	0.1705	0.0140	0.0240	0.0016
-	RG165	RG105	15/115	19 152,69	07 150,65	19 150,19	23,464	0,0326	0,0010	0,1493	256,2324	313	3,3100	0,2583	0,5///	0,0039	1,0403	0,2277	0,5412	0,0444	3,4301	0,7553	0,1705	0,0140	0,0248	0,0016
В	RG78	RG79	154,15 80	152,69 26	150,65	26	,	0,0198	0.0001	0,0102	102,9268	315	2 5873	0,2015	0,0508	0 0003	0,5337	0,1842	0.1510	0,0223	1,3809	0,4767	0,0476	0,0070	0,0201	0,0019
	11070	11073		151,77		149,27		3,0130	3,0001	3,0102	102,3200	313	2,3073	5,2013	3,0300	3,0003	0,3337	0,1042	5,1310	3,0223	1,3003	0,4707	0,0470	3,0070	3,0201	3,0013
	RG79	RG80	26	70	26	70	,	0,0278	0.0001	0.0167	116,2078	315	3.0641	0.2387	0,0701	0.0005	0.5835	0,1858	0.1778	0.0226	1.7878	0,5695	0,0560	0.0071	0,0238	0,0023
			151,77	149,44			33,303	-,	-,	-,	-,		-,	-,	-,	.,	-,	-,	-,	-,	, 5. 3	-,	-,	-,	-,	-,
	RG80	RG81	70	79	70	79	3	0,0399	0,0002	0,0313	137,2534	315	3,6703	0,2859	0,1093	0,0007	0,6476	0,1891	0,2237	0,0238	2,3771	0,6940	0,0705	0,0075	0,0284	0,0027
			149,44	147,27	147,44	144,77	42,571																			
	RG81	RG82	79	97	79	97	1	0,0392	0,0003	0,0498	164,0255	315	3,6369	0,2833	0,1758	0,0011	0,7438	0,1945	0,2828	0,0265	2,7052	0,7075	0,0891	0,0083	0,0280	0,0025

1 1	1	147 27	1// 01	144,77	1/12 01	15 128			1 1			l				Ì	1 1	l i		l	l	l i	l i	1 1	ı ı
RG82	RG83	97	68	97	68		0.0191	0.0004	0,0695	212,5913	315	2.5405	0.1979	0.3511	0.0023	0.9096	0.2086	0.4088	0.0343	2.3107	0.5299	0.1288	0.0108	0.0193	0,0015
11002	11005	144.91	142.54	142,91			0,0131	0,0001	0,0033	212,3313	313	2,3103	0,1373	0,3311	0,0023	0,5050	0,2000	0,1000	0,03 13	2,3107	0,3233	0,1200	0,0100	0,0133	0,0013
RG83	RG84	68	13	68	13		0,0608	0,0006	0,0865	185,8328	315	4,5287	0,3527	0,2453	0,0016	0,8321	0,2001	0,3344	0,0296	3,7682	0,9064	0,1053	0,0093	0,0347	0,0030
				140,54						, , , , , , , , , , , , , , , , , , , ,		,	-,							,	-,	,			
RG84	RG85	13	78	13	78	7	0,0633	0,0008	0,1300	214,8327	315	4,6219	0,3600	0,3611	0,0023	0,9152	0,2094	0,4155	0,0347	4,2298	0,9676	0,1309	0,0109	0,0352	0,0028
		140,58	138,81	138,58	136,81	29,496																			
RG85	RG86	78	33	78	33	7	0,0263	0,0009	0,1429	262,4765	315	2,9772	0,2319	0,6160	0,0040	1,0535	0,2290	0,5627	0,0450	3,1364	0,6817	0,1772	0,0142	0,0223	0,0014
		138,81	137,45	136,81	135,45	20,577																			
RG86	RG87	33	23	33	23	5	0,0321	0,0010	0,1516	258,4276	315	3,2927	0,2565	0,5910	0,0038	1,0453	0,2273	0,5486	0,0442	3,4418	0,7486	0,1728	0,0139	0,0247	0,0016
		137,45	136,25	135,45	134,25	24,731																			
RG87	RG88	23	67	23	67	5	0,0200	0,0011	0,1621	289,4917	315	2,6009	0,2026	0,8000	0,0052	1,1126	0,2433	0,6769	0,0519	2,8937	0,6328	0,2132	0,0163	0,0192	0,0010
		136,25	133,64	134,25	131,64	47,742																			
RG88	RG89	67	07	67	07	1	0,0338	0,0014	0,2085	288,4211	315	3,3801	0,2633	0,7921	0,0053	1,1094	0,2438	0,6720	0,0521	3,7499	0,8241	0,2117	0,0164	0,0249	0,0012
		-		131,64																					
RG89	RG90	07	29	07	29		0,0360	0,0015	0,2292	295,4201	315	3,4855	0,2715	0,8444	0,0056	1,1284	0,2481	0,7043	0,0540	3,9332	0,8646	0,2219	0,0170	0,0256	0,0012
2000	2004	130,38	-	,			0.0065	0.0046	0 0 4 4 0	222 4422	400	2 5 2 5 2	0 4405	0.5546	0.0007	4 0000	0.0064	0.5005	0.0406	2 6420	0.7000	0 0444	0.0474		
RG90	RG91	29	37	29	37	7	0,0265	0,0016	0,2443	320,4189	400	3,5069	0,4405	0,5546	0,0037	1,0302	0,2261	0,5285	0,0436	3,6129	0,7930	0,2114	0,0174	0,0424	0,0028
DC01	DC03	128,44	-		124,46	38,465	0.0305	0.0034	0.2101	226 7400	400	4 2265	0 5300	0.5043	0.0040	1 0420	0 2200	0.5440	0.0450	4 4072	0.0076	0.2170	0.0100	0.0510	0.0022
RG91	RG92	37	33	37	33		0,0385	0,0021	0,3101	326,7408	400	4,2265	0,5308	0,5842	0,0040	1,0428	0,2289	0,5448	0,0450	4,4073	0,9676	0,2179	0,0180	0,0510	0,0032
RG92	RG93	126,46 33	124,69	124,46 33	122,69 01	34,621 4	0 0368	0,0022	O 2251	335,4270	400	1 1216	0.5190	0.6266	0.0042	1 0565	0 2222	U 2666	0.0466	1 2651	0.0502	0,2275	0.0196	0.0407	0,0030
KG92	NG53	124,69				24,039	0,0308	0,0022	0,3231	333,4270	400	4,1310	0,3163	0,0200	0,0042	1,0303	0,2322	0,3088	0,0400	4,3031	0,9392	0,2273	0,0180	0,0437	0,0030
RG93	RG94	01	00	01	00	, , , , , , , , , , , , , , , , , , ,	0 0101	0,0025	0 3768	400,7005	500	2 / 5 8 5	0 6787	0.5552	0 0037	1 0305	0 2262	N 5280	0.0436	3 5640	0.7823	0.2644	0.0218	0.0653	0.0043
11033	NO34	123,23				22,185	0,0131	0,0023	0,3708	400,7003	300	3,4363	0,0767	0,3332	0,0037	1,0303	0,2202	0,3203	0,0430	3,3040	0,7823	0,2044	0,0210	0,0033	0,0043
RG94	RG95	00	88	00	88	1	0.0167	0,0026	0.3865	414,8158	500	3.2340	0.6347	0.6089	0.0041	1.0513	0.2304	0.5586	0.0457	3.3999	0.7450	0,2793	0.0229	0.0609	0,0038
1.05		121,85				15,996	0,010.	0,0020	0,000	12 1,0250	500	0,20.0	0,00 .7	0,0005	0,00.1	2,0020	0,200 .	0,000	0,0 .07	0,000	0,7 150	0,2750	0,0223	0,000	0,000
RG95	RG96	88	94	88	94	, , , , , , , , , , , , , , , , , , ,	0.0250	0,0026	0.3934	387,4157	400	3.4040	0.4275	0.9201	0.0062	1.1393	0.2540	0.7495	0.0566	3.8783	0.8645	0.2998	0.0226	0.0401	0,0016
		121,45	120.04	120,45	119.04			-,		,		-,			,	,			,	-,-	-,	,			,
RG96	RG97	94	53	94	53		0,0149	0,0030	0,4426	446,0768	500	3,0514	0,5988	0,7391	0,0049	1,0887	0,2401	0,6381	0,0504	3,3221	0,7327	0,3190	0,0252	0,0569	0,0030
		120,04	118,11	119,04	116,61	22,349																			
RG97	RG98	53	48	53	48	5	0,0193	0,0032	0,4850	439,9355	500	3,4696	0,6809	0,7123	0,0047	1,0798	0,2379	0,6210	0,0493	3,7463	0,8253	0,3105	0,0247	0,0649	0,0036
		118,11	117,52	116,61	115,52	14,968																			
RG98	RG99	48	64	48	64	8	0,0393	0,0033	0,4915	386,7859	400	4,2713	0,5365	0,9161	0,0061	1,1393	0,2531	0,7470	0,0562	4,8662	1,0809	0,2988	0,0225	0,0504	0,0021
		117,52	117,92	115,52	115,42	16,614																			1
RG99	RG100	64	57	64	57		0,0061	0,0033	0,4979	551,8357	630	2,2705	0,7074	0,7038	0,0047	1,0772	0,2371	0,6156	0,0490	2,4458	0,5384	0,3878	0,0309	0,0674	0,0038
		-	117,04	115,42	114,54	· 1																			
RG100	RG101	57	79	57	79		0,0209	0,0033	0,5048	440,0067	500	3,6101	0,7085	0,7126	0,0047	1,0798	0,2377	0,6212	0,0493	3,8983	0,8580	0,3106	0,0246	0,0675	0,0037
			-	114,54																					
RG101	RG102	79	07	79	07		0,0218	0,0034	0,5145	439,3982	500	3,6926	0,7247	0,7100	0,0047	1,0790	0,2373	0,6195	0,0491	3,9845	0,8764	0,3097	0,0246	0,0691	0,0038
	20402	115,00	-	113,50			0.0055	0.000-	0.5045	405 0065	-00	4 6755	0.0475	0.574.5	0.000-	4 0077	0.000	0.5075	0.040-	4 0505	4 050-	0.000	0.0045	0.000	0.00==
RG102	RG103	07	16	07	16	3	0,0350	0,0035	0,5245	405,0865	500	4,6758	0,9176	0,5716	0,0038	1,0377	0,2266	0,5378	0,0439	4,8523	1,0597	0,2689	0,0219	0,0883	0,0057
DC103	DC104		-	112,09	,	36,676	0.0300	0.0035	0.5300	401 1040	F00	4.0274	0.0000	0.5570	0.0027	1 0212	0.3354	0.5300	0.0433	F 001F	1 1104	0.2640	0.0346	0.0022	0.0001
KG103	RG104	16	71	16	71	6	0,0388	0,0035	0,5386	401,1848	500	4,92/1	0,9669	0,55/0	0,0037	1,0313	0,2254	0,5298	0,0432	5,0815	1,1104	0,2649	0,0216	0,0932	0,0061
DC104	DC10E	111,96	108,26		106,76	, , , , , , , , , , , , , , , , , , ,	0.0350	0.0027	0.5622	/12 0/E0	500	17211	0.0201	0.6051	0.0040	1 0501	0 2200	0 5565	0.0450	1 0716	1 0024	0 2702	0.0225	0.0003	0.0056
RG104	RG105	71	19 106,78	71 106,76	19 104,78	24 641	0,0359	0,0037	0,5022	413,8459	500	4,/344	0,9291	0,6051	0,0040	1,0501	0,2288	0,5505	0,0450	4,9/16	1,0834	0,2782	0,0225	0,0892	0,0056
RG105	RG106	108,26 19	106,78	106,76	104,78		U U300	0.0049	0.7162	494,9140	500	3 7/120	0 73/15	0 9750	0 0049	1 1/02	0 2307	0.7870	0.0502	1 2676	0.8070	0 3035	0.0251	0 0699	0,0037
VQ102	VGTOD	19	UU	19	UU	U	0,0338	0,0048	0,7102	434,3140	200	3,7429	0,7343	0,3730	0,0049	1,1402	0,2337	0,7670	0,0302	4,20/0	0,0370	0,3333	0,0231	0,0099	0,0037

			106,78	105,12	104,78	-	23,915																			
	RG106	RG107	00	99	00	99		0,0063	0,0050	0,7209	701,6045	800	2,0321	1,0209	0,7061	0,0037	1,0779	0,2255	0,6171	0,0433	2,1904	0,4583	0,4936	0,0346	0,0983	0,0065
			105,12	103,75		•	· .																			
	RG107	RG108	99	90	99	90	4	0,0148	0,0052	0,7258	598,6770	630	2,6635	0,8299	0,8746	0,0047	1,1355	0,2376	0,7224	0,0492	3,0245	0,6330	0,4551	0,0310	0,0791	0,0044
	DC100	DC77	103,75	101,49		99,490	, , , , , , , , , , , , , , , , , , ,	0.0100	0.0054	0.7211	C4C 0040	000	2 5500	1 2001	0.5004	0.0022	1 0264	0.2107	0.5361	0.0403	2.6524	0.5634	0.4200	0.0222	0.1345	0.0000
	RG108	RG77	90	100.47	90 99,490	1		0,0100	0,0054	0,/311	646,8040	800	2,5599	1,2861	0,5684	0,0032	1,0364	0,2197	0,5361	0,0403	2,6531	0,5624	0,4289	0,0322	0,1245	0,0088
	RG77	RG109	101,49 01	100,47	99,490	96,002		0,0256	0.0100	1 // 70	699,9805	900	1 1065	2 0621	0,7018	0.0040	1 0766	0 2202	0.6142	0.0500	4 4210	0,9823	0.4015	0,0400	0,1963	0,0106
	NG//	KG103	100,47	94,203	96,002	92 692		0,0230	0,0100	1,4476	033,3603	800	4,1003	2,0031	0,7018	0,0043	1,0700	0,2392	0,0143	0,0300	4,4210	0,3623	0,4313	0,0400	0,1903	0,0100
	RG109	RG110	69	7	20,002	<i>J2,0J2</i>	· 1	0,0285	0.0102	1.4534	687,1117	800	4.3316	2.1762	0.6679	0.0047	1.0674	0.2374	0.5933	0.0491	4.6234	1.0282	0.4747	0.0393	0,2074	0,0115
			94,203	89.670	92,692	87.761		0,0200	0,0101	1,	007,1117	-	.,0010	2,2702	0,0075	0,00	2,007	0,207	0,000	0,0.51	.,626 .	1,0202	0,	0,0050	0,207 .	0,0115
	RG110	RG111	7	8	4	8		0,0328	0,0104	1,4594	670,1679	800	4,6488	2,3356	0,6249	0,0045	1,0561	0,2347	0,5678	0,0478	4,9094	1,0912	0,4542	0,0383	0,2231	0,0129
			89,670	83,814	87,761	82,314	20,006																			
	RG111	RG34	8	9	8	9	4	0,0328	0,0106	1,4633	671,1006	800	4,6441	2,3332	0,6272	0,0045	1,0567	0,2355	0,5691	0,0482	4,9074	1,0935	0,4553	0,0386	0,2227	0,0128
			125,48	122,57	122,98	121,57	28,997																			
C-1	RG182	RG183	62	38	62	38	7	0,0487	0,0002	0,0124	93,6036	315	4,0547	0,3158	0,0394	0,0005	0,4914	0,1864	0,1339	0,0228	1,9926	0,7558	0,0422	0,0072	0,0314	0,0030
	1		122,57	120,30	121,57	119,30	30,002	_																	i 7	1
	RG183	RG17	38	63	38	63	6	0,0422	0,0003	0,0253	125,4767	315	3,7763	0,2941	0,0861	0,0011	0,6126	0,1939	0,1977	0,0261	2,3132	0,7321	0,0623	0,0082	0,0291	0,0026
			121,62	118,68																						1
C-2	RG35	RG36	87	23	87	23	2	0,0300	0,0003	0,0107	96,9101	315	3,1806	0,2477	0,0432	0,0014	0,5071	0,1973	0,1398	0,0280	1,6130	0,6276	0,0440	0,0088	0,0244	0,0021
	DC3C	DC10	118,68		117,68			0.0402	0.0007	0.0313	114.0163	215	4.0706	0 2177	0.0007	0.0034	0.5760	0.2064	0.1722	0.0224	2 2404	0.0430	0.0546	0.0104	0.0311	0.0025
	RG36	RG19	23	02	23	02	6	0,0493	0,0007	0,0212	114,0162	315	4,0786	0,31//	0,0667	0,0021	0,5760	0,2064	0,1732	0,0331	2,3494	0,8420	0,0546	0,0104	0,0311	0,0025
C-3	RG37	RG38	117,54 81	82	114,54 81	82	30,021 9	0,0343	0,0003	0.0102	92,7146	215	2 4020	0.2651	0,0384	0.0013	0 4071	0,1954	0 1222	0.0360	1 6575	0,6650	0,0417	0,0085	0,0262	0,0023
C-3	NG57	NUSO		111,98				0,0343	0,0003	0,0102	92,7140	313	3,4029	0,2031	0,0364	0,0012	0,4671	0,1954	0,1323	0,0209	1,0373	0,0030	0,0417	0,0063	0,0202	0,0023
	RG38	RG21	82	64	82	64	23,341	0.0345	0,0006	0.0203	120,0736	315	3 4106	0 2657	0,0765	0.0024	0.5960	0,2102	0 1860	0.0352	2 0327	0,7170	0.0586	0.0111	0,0259	0,0020
	11030	NOZI	112,82	109,56		108,56	39.081	0,03 13	0,0000	0,0203	120,0730	313	3,1100	0,2037	0,0703	0,0021	0,3300	0,2102	0,1000	0,0332	2,0327	0,7170	0,0300	0,0111	0,0233	0,0020
C-4	RG39	RG40	02	04	02	04	,	0,0322	0.0004	0.0133	103,5542	315	3.2986	0.2569	0.0516	0.0016	0.5363	0.2006	0.1522	0.0298	1.7692	0.6616	0,0479	0.0094	0,0253	0,0022
			109,56		108,56	106,93	23,882		-,		,				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		.,		-, -		,		-,-			
	RG40	RG23	04	72	04	72	1	0,0261	0,0007	0,0214	128,8360	315	2,9680	0,2312	0,0924	0,0029	0,6226	0,2162	0,2051	0,0384	1,8477	0,6418	0,0646	0,0121	0,0224	0,0016
	RG		101,09	95,558	96,091	94,558	40,013																			
C-5	161	RG29	15	8	5	8	4	0,0383	0,0001	0,0154	106,0401	315	3,5957	0,2801	0,0549	0,0003	0,5465	0,1841	0,1570	0,0223	1,9649	0,6620	0,0495	0,0070	0,0279	0,0027
			124,24	122,06	121,74	120,06	37,973																			1
С	RG15	RG16	66	95	66	95	3	0,0310	0,0002	0,0163	112,7216	315	3,2347	0,2520	0,0647	0,0008	0,5715	0,1905	0,1705	0,0244	1,8487	0,6161	0,0537	0,0077	0,0250	0,0023
			122,06	120,30	,	•	, , , , , , , , , , , , , , , , , , ,																			1
	RG16	RG17	95	63	95	63		0,0201	0,0004	0,0326	158,6181	315	2,6032	0,2028	υ,1608	0,0020	0,7219	0,2056	0,2708	0,0326	1,8793	0,5352	0,0853	0,0103	0,0199	0,0016
	DC17	DC10	120,30	118,40	,			0.0205	0.0013	0.0053	200 2705	215	2 6504	0.2042	0.2000	0.0046	0.0704	0.3350	0.2724	0.0494	2 2065	0.0611	0.1176	0.0153	0.0274	0.0015
-	RG17	RG18	63 118,40	09	63 116,90	115 16		0,0395	0,0013	0,0853	200,3785	313	3,0304	0,2843	0,2999	0,0046	0,8784	0,2359	0,3734	0,0484	3,2005	0,8011	0,1176	0,0152	0,0271	0,0015
	RG18	RG19	09	110,10	09	02	35,675	0 0488	0,0017	0.0974	202,3983	315	4 0583	0 3161	0 3080	0.0053	0 8830	0,2443	0 3791	0.0523	3 5860	0 9914	0,1194	0,0165	0,0299	0,0015
			116,16	114,51		113,51	27,927	0,0400	5,0017	3,0374	202,3303	313	1,0000	0,0101	5,5000	0,0000	3,0033	5,2445	3,3731	0,0323	3,3003	0,0014	0,1104	0,0103	5,0233	5,0015
	RG19	RG20	02	114,31	02	113,31		0,0411	0.0026	0.1280	231,5749	315	3.7260	0.2902	0.4411	0.0091	0.9628	0,2847	0,4656	0.0689	3.5875	1,0609	0.1467	0,0217	0,0264	0,0003
	1			111,98	113,51		27,725	-,	-,	-,====	,5		-,-===	-,	-,	-,	3,2220	-,	-,:0	-,	-,	,	-,=,	-,	-,	
	RG20	RG21	16	64	16	64	, -	0,0550	0,0029	0,1374	225,1915	315	4,3092	0,3356	0,4094	0,0087	0,9431	0,2811	0,4465	0,0675	4,0639	1,2114	0,1406	0,0213	0,0306	0,0004
			111,98	109,44	110,98	108,44	22,492																			
	RG21	RG22	64	59	64	59	2	0,0463	0,0038	0,1654	249,3596	315	3,9515	0,3078	0,5373	0,0124	1,0216	0,3165	0,5192	0,0799	4,0370	1,2508	0,1635	0,0252	0,0270	0,0007
			109,44	107,93	108,44	105,93	28,742																			
	RG22	RG23	59	72	59	72	7	0,0351	0,0041	0,1751	268,3118	315	3,4419	0,2681	0,6532	0,0153	1,0636	0,3429	0,5845	0,0882	3,6609	1,1802	0,1841	0,0278	0,0227	0,0014

1	I	i	107 02	106 60	105,93	104,60	2/ 052	I	İ	i i		l	1	i	i i	1	Ī	1	1	İ	İ	İ				1 1
	RG23	RG24	72	28	72	28	,	0.0382	0.0052	0.0134	100,8592	315	3 5897	0 2796	0.0481	0.0187	0 5249	0 3702	0 1471	0,0964	1 8842	1 3290	0.0463	0.0304	0,0227	0.0024
	NG25	NO24	106,60	104,01		102,81	35.033	0,0302	0,0032	0,0134	100,0332	313	3,3037	0,2730	0,0401	0,0107	0,3243	0,3702	0,1471	0,0304	1,0042	1,3230	0,0403	0,0304	0,0227	0,0024
	RG24	RG25	28	45	28	45	,	0.0368	0.0053	0.0269	131,7752	315	3.5233	0.2744	0,0981	0.0193	0.6312	0.3751	0.2116	0,0978	2.2240	1.3215	0.0667	0.0308	0,0221	0,0026
			104,01	101,64		100,64		0,000	0,0000	0,0200	101,7701	010	0,0200	0,2,	0,0001	0,0130	0,0012	0,0701	0,222	0,0370		1,0210	0,000.	0,0000	0,0222	0,0020
	RG25	RG26	45	22	45	22	3	0,0393	0.0054	0.0404	151,5114	315	3.6409	0.2836	0,1423	0.0190	0.6949	0.3724	0.2552	0,0970	2.5300	1.3559	0,0804	0.0306	0,0230	0.0026
			101,64	99,272	100.64	98.272	35.007	, , , , , , ,			,-			,		-,	, , , , , ,	-,-	,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,	,	-,			
	RG26	RG27	22	0	22	0	7	0,0391	0,0055	0,0538	168,8920	315	3,6347	0,2831	0,1901	0,0193	0,7641	0,3747	0,2938	0,0977	2,7773	1,3621	0,0925	0,0308	0,0228	0,0026
			99,272	97,398	98,272	96,398	35,004								,						- 1	-				
	RG27	RG28	0	2	0	2	4	0,0392	0,0055	0,0673	183,5463	315	3,6397	0,2835	0,2373	0,0195	0,8236	0,3766	0,3286	0,0982	2,9976	1,3708	0,1035	0,0309	0,0228	0,0027
			97,398	95,558	96,398	94,558	34,987																			
	RG28	RG29	2	8	2	8	3	0,0240	0,0057	0,0961	230,1075	315	2,8457	0,2217	0,4337	0,0258	0,9581	0,4196	0,4612	0,1108	2,7265	1,1941	0,1453	0,0349	0,0165	0,0035
			95,558	93,996	94,558	92,796	30,976																			
	RG29	RG30	8	3	8	3	5	0,0246	0,0059	0,3105	355,4622	400	3,3803	0,4246	0,7314	0,0126	1,0860	0,3187	0,6331	0,0806	3,6710	1,0772	0,2533	0,0322	0,0371	0,0011
			93,996	91,074	92,796	90,074	30,996																			
	RG30	RG31	3	0	3	0	5	0,0298	0,0059	0,3166	345,5480	400	3,7163	0,4668	0,6783	0,0127	1,0701	0,3195	0,5997	0,0808	3,9768	1,1872	0,2399	0,0323	0,0408	0,0013
			91,074	88,759	90,074	87,759	31,008																			1
	RG31	RG32	0	2	0	2	8	0,0424	0,0061	0,3227	325,6559	400	4,4363	0,5572	0,5791	0,0110	1,0408	0,3037	0,5419	0,0756	4,6172	1,3475	0,2168	0,0302	0,0496	0,0006
			88,759	87,423	87,759	85,512	-																			1
	RG32	RG33	2	1	2	8	5	0,0070	0,0064	0,3296	460,3445	500	2,0891	0,4100	0,8038	0,0155	1,1141	0,3442	0,6794	0,0886	2,3274	0,7190	0,3397	0,0443	0,0346	0,0023
			87,423	83,814	85,512	84,080																				
	RG33	RG34	1	9	8	9	6	0,0250	0,0066	0,3329	363,7885	400	3,4072	0,4279	0,7780	0,0154	1,1037	0,3435	0,6630	0,0884	3,7605	1,1704	0,2652	0,0354	0,0362	0,0023
D-1-			,	119,61	,	113,96	,																			1
1	RG41	RG42	45	23	45	43		0,0115	0,0002	0,0150	131,7012	315	1,9695	0,1534	0,0979	0,0012	0,6310	0,1958	0,2114	0,0271	1,2428	0,3856	0,0666	0,0085	0,0152	0,0013
D 4	DC443	DC443	134,21	130,79	130,71	129,24	36,754	0.0400	0.0000	0.0450	406 4534	245	2 6745	0.2062	0.0554	0.0007	0.5460	0.4000	0.4572	0.0227	2.0006	0.6043	0.0405	0.0075	0.0004	0.0027
D-1	RG112	RG113	78	64	78	76	4	0,0400	0,0002	0,0158	106,1534	315	3,6745	0,2862	0,0551	0,0007	0,5469	0,1889	0,1572	0,0237	2,0096	0,6942	0,0495	0,0075	0,0284	0,0027
	DC112	DC114	130,79	129,21	- /	,	,	0.0400	0.0004	0.0316	127 6747	215	2 6745	0.2062	0.1103	0.0014	0.6400	0.1077	0 2247	0.0202	2 2045	0.7265	0.0700	0.0000	0.0000	0.0035
	KG113	RG114	64	08	76 127,77	68		0,0400	0,0004	0,0316	137,6747	315	3,6745	0,2862	0,1102	0,0014	0,6489	0,1977	0,2247	0,0282	2,3845	0,7265	0,0708	0,0089	0,0282	0,0025
	DC114	RG115	129,21 08	130,44 36	68	126,53 01	31,108	0.0400	0.0006	0.0440	157,1850	215	2 6745	0.2062	0.1570	0.0020	0.7162	0,2050	0 2676	0,0323	2 6220	0,7533	0,0843	0,0102	0,0281	0,0023
	KG114	KG113	130.44	129,14		125.64	22 162	0,0400	0,0000	0,0443	137,1630	313	3,0743	0,2802	0,1370	0,0020	0,7103	0,2030	0,2070	0,0323	2,0320	0,7333	0,0843	0,0102	0,0281	0,0023
	RG115	RG116	36	81	01	36	,	0,0400	0.0007	0.0544	168.9212	315	3 6745	0 2862	0 1902	0.0024	0.7642	0.2101	0 2938	0,0351	2 8081	0 7721	0,0926	0.0111	0.0279	0.0022
	KOIIS	NOTIO	129,14	127,22		125,22		0,0400	0,0007	0,0344	100,3212	313	3,0743	0,2002	0,1302	0,0024	0,7042	0,2101	0,2330	0,0331	2,0001	0,7721	0,0320	0,0111	0,0273	0,0022
	RG116	RG117	81	34	36	34	4	0.0203	0.0008	0.0633	202,9648	315	2.6191	0.2040	0,3103	0,0039	0.8853	0,2282	0.3807	0,0446	2.3188	0.5976	0.1199	0.0141	0,0196	0,0012
			127,22	124,18		122,68		-,	-,	-,	,0		,,	3,=0.0	-,	-,	3,2236	-7	-,	3,2	,	-,	-,	-,	-,	-,
	RG117	RG118	34	13	34	13	,	0,0365	0,0010	0,0791	197,6690	315	3,5106	0,2734	0,2892	0,0036	0,8708	0,2250	0,3658	0,0431	3,0569	0,7901	0,1152	0,0136	0,0264	0,0017
		<u> </u>	124,18	121,58		120,08	36,742			,	,			<u> </u>	,				,	<u> </u>		,		,		
	RG118	RG119	13	22	13	22	5	0,0435	0,0012	0,0948	204,7590	315	3,8329	0,2985	0,3177	0,0040	0,8900	0,2292	0,3859	0,0452	3,4113	0,8787	0,1216	0,0142	0,0287	0,0018
			121,58	119,61	120,08	117,61	36,745																			
L	RG119	RG42	22	23	22	23	3	0,0400	0,0016	0,1256	231,1518	315	3,6746	0,2862	0,4390	0,0055	0,9615	0,2467	0,4643	0,0534	3,5330	0,9064	0,1463	0,0168	0,0270	0,0013
			119,61	117,21	117,61	115,21	31,691																			
	RG42	RG120	23	54	23	54	7	0,0441	0,0017	0,1463	240,2894	315	3,8573	0,3004	0,4868	0,0057	0,9921	0,2487	0,4916	0,0543	3,8269	0,9592	0,1548	0,0171	0,0283	0,0013
			117,21	115,19	115,21	113,69	31,947																			
	RG120	RG121	54	09	54	09	0	0,0477	0,0018	0,1670	248,8332	315	4,0133	0,3126	0,5343	0,0059	1,0201	0,2509	0,5175	0,0553	4,0938	1,0071	0,1630	0,0174	0,0294	0,0013
			115,19	113,68	113,69	112,18	31,892																			i I
	RG121	RG122	09	25	09	25		0,0473	0,0020	0,1878	260,4316	315	3,9956	0,3112	0,6033	0,0064	1,0495	0,2559	0,5555	0,0575	4,1934	1,0227	0,1750	0,0181	0,0291	0,0011
				112,38	-	110,88	,																			i
	RG122	RG123	25	96	25	96	1	0,0408	0,0021	0,2084	278,3715	315	3,7122	0,2891	0,7206	0,0073	1,0824	0,2661	0,6263	0,0617	4,0181	0,9879	0,1973	0,0194	0,0268	0,0008

	l	I	112 38	111 27	110,88	109 77	32 100	1]]			1				I] [1	1				1] [1 1
	RG123	RG124	96	59	96	59	-	0.0347	0.0022	0,2292	297,4586	315	3.4221	0.2666	0.8600	0.0084	1.1326	0.2779	0.7137	0.0663	3.8758	0.9509	0.2248	0.0209	0.0244	0.0004
			111,27	110,97	109,77		32,017	5,55	5,5522	5,==5=			-,	-,	-,	-,	_,	0,2110	57: 20:	5,5555	2,2122	7,000	0,22.0	0,0200	7,02.1.1	
	RG124	RG125	59	05	59	05	6	0,0252	0,0024	0,2551	328,8523	400	3,4170	0,4292	0,5943	0,0056	1,0465	0,2478	0,5504	0,0539	3,5758	0,8467	0,2202	0,0216	0,0405	0,0019
			110,97	111,32	108,97	108,82	31,993																			
	RG125	RG126	05	63	05	63	7	0,0045	0,0024	0,2601	457,2621	500	1,6785	0,3294	0,7896	0,0074	1,1084	0,2674	0,6703	0,0622	1,8605	0,4489	0,3352	0,0311	0,0305	0,0008
			111,32	111,39	108,82	108,39	31,980																			
	RG126	RG127	63	96	63	96	8	0,0133	0,0025	0,2651	375,7582	400	2,4886	0,3126	0,8481	0,0079	1,1295	0,2727	0,7066	0,0643	2,8109	0,6788	0,2826	0,0257	0,0288	0,0006
			111,39	110,31	108,39	107,81	32,001																			
	RG127	RG128	96	01	96	01	1	0,0184	0,0025	0,2701	356,1983	400	2,9242	0,3673	0,7354	0,0068	1,0874	0,2612	0,6357	0,0597	3,1798	0,7637	0,2543	0,0239	0,0342	0,0012
			110,31	108,52	107,81	•	,																			1
	RG128	RG129	01	12	01	12		0,0559	0,0025	0,2751	291,2677	315	4,3440	0,3384	0,8131	0,0075	1,1177	0,2684	0,6852	0,0626	4,8553	1,1661	0,2158	0,0197	0,0313	0,0008
	20420	20120	108,52	106,24	106,02		-	0.0556	0.0006	0.0004	202 5224	245		0 0075	0.0004	0.0076	4 4 2 2 2 2	0.0007	0.6056	0.0004	4.0004	4 4 6 0 5	0.0404	0.0400	0.0040	
	RG129	RG130	12	17	12	17		0,0556	0,0026	0,2801	293,5301	315	4,3328	0,3375	0,8301	0,0076	1,1239	0,2697	0,6956	0,0631	4,8694	1,1685	0,2191	0,0199	0,0312	0,0008
	RG130	DC131	106,24 17		103,24			0.0534	0.0026	0.2052	200 0000	215	4 2042	0 2275	0.0711	0.0000	1 1240	0 2722	0.7202	0.0645	4 771 4	1 1 1 0 7	0.2260	0.0202	0.0201	0.0007
	KG130	RG131		85	17	85		0,0524	0,0026	0,2853	298,8898	313	4,2042	0,3275	0,8711	0,0080	1,1349	0,2732	0,7203	0,0645	4,//14	1,1467	0,2269	0,0203	0,0301	0,0007
	RG131	RG132	104,52 85	07	101,02 85	98,770	3	0.0581	0,0026	0 2886	294,4054	215	1 1201	0.3450	0.8367	0 0076	1 1260	0 2697	n 6997	0.0631	1 9871	1 10/13	0.2204	0 0100	0.0310	0,0008
	NOISI	NOISE			98,770	95 845		0,0381	0,0020	0,2000	234,4034	313	4,4231	0,3430	0,8307	0,0070	1,1200	0,2037	0,0337	0,0031	4,3074	1,1343	0,2204	0,0133	0,0313	0,0008
	RG132	RG7	07	70,043	7	7	-	0,0371	0.0027	0.2926	321,8376	400	4.1509	0.5214	0.5611	0.0051	1.0332	0.2420	0.5321	0.0513	4.2888	1.0044	0.2128	0.0205	0.0495	0,0026
	NOISE	1107	108,30	108.67	107,30	106,67	31,782	0,0371	0,0027	0,2320	321,0370	100	1,1303	0,3211	0,3011	0,0031	1,0332	0,2 120	0,3321	0,0313	1,2000	1,0011	0,2120	0,0203	0,0133	0,0020
D	RG1	RG2	41	71	41	71	-	0,0197	0,0000	0,0050	78,6484	315	2,5804	0,2010	0,0248	0,0002	0,4133	0,1821	0,1089	0,0227	1,0664	0,4700	0,0343	0,0071	0,0201	0,0020
			108,67	106,50	106,67	105,00	36,949	•					,		,		, , , , , , , , , , , , , , , , , , ,	,		•		,	,	,	,	
	RG2	RG3	71	44	71	44	3	0,0453	0,0001	0,0108	89,8789	315	3,9091	0,3045	0,0354	0,0002	0,4729	0,1830	0,1274	0,0224	1,8487	0,7155	0,0401	0,0071	0,0304	0,0030
			106,50	105,53	105,00	104,53	37,134																			
	RG3	RG4	44	09	44	09	9	0,0127	0,0001	0,0166	134,0281	315	2,0745	0,1616	0,1026	0,0007	0,6379	0,1887	0,2166	0,0236	1,3234	0,3915	0,0682	0,0074	0,0160	0,0015
			105,53	102,79	104,53	101,79	36,858																			
	RG4	RG5	09	36	09	36		0,0471	0,0001	0,0224	117,3203	315	3,9888	0,3107	0,0720	0,0005	0,5871	0,1861	0,1801	0,0227	2,3420	0,7425	0,0567	0,0072	0,0309	0,0030
			102,79	99,724	101,79	98,724	36,929																			
	RG5	RG6	36	4	36	4		0,0560	0,0002	0,0281	123,8149	315	4,3489	0,3387	0,0831	0,0005	0,6076	0,1871	0,1941	0,0230	2,6422	0,8136	0,0611	0,0072	0,0337	0,0032
			99,724	96,845	98,724	94,845	,																			
	RG6	RG7	4	7	4	7		0,0353	0,0002	0,0343	145,3896	315	3,4503	0,2688	0,1275	0,0008	0,6735	0,1908	0,2417	0,0246	2,3239	0,6584	0,0761	0,0077	0,0266	0,0025
	DC7	DC0	96,845	94,570	94,845	92,570		0.0275	0.0000	0.2527	244.0044	400	4 4 7 2 2	0 5242	0.6740	0.0050	1 0002	0.2400	0.5076	0.0540	4 4610	1 0 1 2 0	0.2200	0.0310	0.0404	0.0022
-	RG7	RG8	04 570	01 510	02 570	00 E10		0,0375	0,0030	0,3537	344,8944	400	4,1/32	0,5242	0,6748	0,0058	1,0692	0,2499	0,5976	0,0549	4,4619	1,0430	0,2390	0,0219	0,0494	0,0022
	RG8	RG9	54,570 A	31,51U	92,570	20,510		0,0312	0 0033	0 3752	365,1188	400	3 8036	0 4777	0.7856	0 0066	1 1069	0.2590	0 6679	0 0589	4 2007	0.0852	0,2671	0 0335	0.0446	0,0016
	1100	NO3	91 510	90 953	90,510	88 953		0,0312	0,0032	0,3733	303,1100	+00	3,0030	5,4777	0,7630	0,0000	1,1000	0,2330	0,0076	0,0300	+,2031	0,3632	0,20/1	0,0233	J,U440	0,0010
	RG9	RG10	21,310	0	20,310	00,555	-	0,0293	0.0032	0.3874	373,7256	400	3.6893	0.4634	0.1400	0.1400	0.6916	0,6916	0.2531	0.2531	2.5514	2,5514	0.1013	0,1013	0,0431	0,0014
			90.953	90.117	88,953	88.117		-,0200	2,0002	2,00.1	2.0,.200		-,000	2, .00 1	-,2.00	-,	3,0020	2,0020	-,2001	-,2001	_,0011	_,001	-,1010	-,2020	-,0.01	-,0021
	RG10	RG11	0	1	0	1	-	0,0239	0,0034	0,4096	396,5976	400	3,3295	0,4182	0,9794	0,0081	1,1405	0,2741	0,7905	0,0649	3,7973	0,9128	0,3162	0,0259	0,0384	0,0008
			90,117	89,706	88,117	87,706		,			,				, -				,					,	,	,
	RG11	RG12	1	0	1	0	6	0,0218	0,0034	0,4215	407,6775	500	3,6946	0,7251	0,5814	0,0047	1,0417	0,2379	0,5432	0,0494	3,8486	0,8791	0,2716	0,0247	0,0691	0,0038
		RG	89,706	89,008	87,706	86,790	22,420																			
	RG12	112	0	6	0	6	2	0,0408	0,0035	0,4358	367,0976	400	4,3532	0,5468	0,7970	0,0064	1,1114	0,2569	0,6751	0,0579	4,8380	1,1183	0,2700	0,0231	0,0512	0,0019
	RG		89,008	83,814	86,790	82,814	66,209							_									_			
	112	RG34	6	9	6	9	2	0,0331	0,0040	0,4487	385,9720	400	3,9216	0,4925	0,9110	0,0081	1,1391	0,2744	0,7439	0,0650	4,4671	1,0760	0,2976	0,0260	0,0453	0,0009
				-	84,080							100														
E	RG34	DVO	9	8	9	8	9,4150	0,0255	0,0213	2,2478	826,0315	0	4,7574	3,7345	0,6019	0,0057	1,0490	0,2488	0,5547	0,0544	4,9906	1,1838	0,5547	0,0544	0,3521	0,0160

Remarque: auto-curage vérifie pour toutes les conduites

Avec:

```
Cam : côte de terrain naturel amont (m) ;
Cav : côte de terrain naturel aval (m) ;
Cam.r: côte projet amont (m) du terrain;
Cav.r : côte projet aval (m) du terrain ;
L: longueur de conduite entre deux regards (m);
I: pente (m/m);
Qpl: débit d'eau pluviale (m3/s);
Qeu : débit d'eau usée (m3/s);
Qps: débit à pleine section (m3/s);
Vps: vitesse à pleine section (m/s);
Dexi: diamètre de conduite existante (mm) ;
Dcal: diamètre calculé (mm);
Dnor: diamètre normalisé (mm);
Rq: rapport des débits;
Rq.min: rapport des débits en temps sec;
Rh: rapport des hauteurs;
Rh.min: rapport des hauteurs en temps sec;
Rv: rapport des vitesses;
Rv.min: rapport des vitesses en temps sec;
h:hauteur de remplissage (mm);
hmin :hauteur de remplissage en temps sec ( mm) ;
V : vitesse de l'écoulement (m/s) ;
Vmin : vitesse de l'écoulement en temps sec(m/s).
```