
NATIONAL HIGHER SCHOOL FOR HYDRAULICS

"The Mujahid Abdellah ARBAOUI"

HELIOST I XSIEDE DOINSTO XOGOSTO

MEMOIRE DE FIN D'ETUDES

Pour l'obtention du diplôme d'Ingénieur d'Etat en Hydraulique

Option: IRRIGATION ET DRAINAGE.

THEME:

IRRIGATION DU PERIMETRE DE L'OUED SAHEL « SECTEUR TAZMALT » A PARTIR DU BARRAGE DE TICHY-HAF, WILAYA DE BEJAIA ET BOUIRA.

<u>Présenté par</u>: Sidi Saïd Ferroudja.

Devant les members du jury

Nom et Prénoms	Grade	Qualité
RASSOUL ABDELAZIZ.	Professeur	President
AZIEZ OUAHIBA.	M.A.A	Examinatrice
KERID RACHID.	M.C.B	Examinateur
TOUMI SAMIR.	M.C.B	Promoters

Session de Novembre, 2021.

Dédicaces

Je dédie mon travail achevé tout d'abord a :

- Mes parents qui m'ont encouragé tout au long de mes études.
 Toute ma famille frère et sœur.
- ❖ Sans oublier bien-sur a mes amitiés chaleureuses de l'école nationale d'hydraulique.

SIDI SAID FERROUDJA

Remerciements

J'adresse mes remercîments :

- > A mes enseignants et à leurs nobles efforts fournis tout au long de mes études.
- > Aux membres du jury qui me font l'honneur d'évaluer mon travail.
 - Ainsi que toute ma famille et mes amis et leurs encouragements précieux.

SIDI SAID FERROUDJA

ختصر

مشروعنا الدراسي عن محيط "واد ساحل". نحن نختص بدراسة جزء من المحيط وهو «تازمالت" الواقع بين ولاية بويرة وبجاية ذات مساحة شاسعة مخصصة لزراعة الزيتون بنسبة كبيرة والقليل من الخضروات والاعلاف. هذا المحيط مزود من الماء من طرف سد " تيشي حاف" الواقع في ولاية بجاية الموصول بخزان المياه ببوسلام فيزوده عن طريق عملية الضخ مع مراعاة تضاريس المنطقة.

Résumé

Notre projet d'étude intitulé périmètre d'Oud Sahel, soit une partie de ce périmètre « Secteur Tazmalt » situé entre la wilaya de Bouira et celle de Bejaia est une zone vaste destinée beaucoup plus a l'oléiculture et quelques plantations maraichères et fourragère. Le Secteur est alimenté à partir du barrage de Tichy-HAF situé dans la wilaya de Bejaïa qui est Relié au réservoir de stockage de Bousellam qui alimente le secteur par pompage en tenant Compte de la topographie de la zone.

Abstract

Our study project entitled perimeter of "Oued Sahel", or part of this perimeter «Sector Tazmalt" located between the department of Bouira and of Béjaia is a vast area intended much more for olive growing and some vegetable and fodder plantations. The sector is supplied from the Tichy-Haf dam located in the department of Béjaia, which is connected to the Bousellam storage reservoir, which supplies the sector, by pumping, taking into account the topography of the area.

Table des matières

Chapitre I : Les caractéristiques naturelles de la zoned'étude	19
Introduction.	20
1.1. Situation géographique	20
1.2. Situation administrative et infrastructure routière.	20
1.3. Le relief	21
1.4. L'hydrographie	21
2. La climatologie	21
2.2. Les températures.	23
1.6. Les vents	24
2.5. Les indices climatiques :	25
2.5.1. Indice d'aridité de Martonne :	25
2.5.2. Représentation graphique d'un climat : Diagramme ombrothermique deBagnoles et Gaussen :	26
2.5.3. Quotient pluviométrique d'EMBERGER	27
Application numérique de la loi d'EMBERGER modifié :	28
3. Etude du sol:	29
3.2. Définition de la pédologie « Science du sol ».	29
3.3. Les types de sols	29
3.4. Intérêt de l'étude pédologique.	29
4. Etude des profils de la zone d'étude Tazmalt.Tableau.7. Les propriétés chimiques :	30
5. Etude approfondi des propriétés physiques du profil de notre zone d'étude « Tazmalt ».	31
5.1 Humidité hygroscopique.	31
5.2. Point de flétrissement.	31
5.3. Volume spécifique	31
5.4. Capacité de rétention d'eau.	31
5.5. Capacité d'infiltration.	31
5.6. Perméabilité « K »	31
6.2 Objectifs et impacts.	32
6.3. Caractéristiques du barrage.	35
A/ La conductivité électrique.	35
B/Le SAR	36
6.3.2. Normes de qualité des eaux destinées à l'irrigation.	37
Chapitre II: Systèmes d'irrigations	39
Introduction.	40
1. Définition de l'irrigation.	40
3. Les techniques irrigation.	41
3.1.1. Canaux.	41
3.1.2. Rigoles	41
3.1.3. L'irrigation par déversement.	41

3.1.4. L'irrigation par planches:	42
3.1.5. L'irrigation par submersion	42
3.1.6. L'irrigation par sillons ou « a la raie »	42
Les inconvénients de ce système sont :	43
3.2. L'irrigation souterraine	43
3.3. Les techniques d'irrigation sous pression	43
3.3.2. L'irrigation localisée.	44
3.3.3. Rampes	44
Les différents types de couverture	45
B/Couverture totale.	45
C/Couverture intégrale.	45
3.3.5. Le pivot	46
3.4.1. Micro irrigation.	46
3.4.1.2. Le micro-asperseur.	46
3.4.1.3. Les canalisations poreuses	46
3.5.1. Procédé d'utilisation	47
3.5.2.Facteurs qui affectent le choix des méthodes d'irrigati	on et mesurespéciales pour l'utilisation des eaux usées 48
Inconvénients :	48
4. Illustration des différentes techniques d'irrigation	48
5. Les techniques pour économiser l'eau en irrigation	49
5.1. Prendre en compte tout les paramètres de la culture	49
5.2. Posséder un système d'irrigation efficient	
5.3. Adapter les pressions et le débit selon le besoin en eau d	les cultures
5.4. Programmer, automatiser et gérer a distance les phases of	d'irrigation50
5.5. Réaliser régulièrement des maintenances préventives	50
6. Sources d'eau.	51
8. Etude des contraintes a l'irrigation	54
8.1.1. Le sol	54
8.1.2. La pente.	54
8.1.3. La topographie.	54
Les propriétés physiques.	54
A/La cohésion.	54
• •	55
B/ L.'eau	55
C/La qualité physique	55
D/La qualité chimique	55
E/ Excès de salinité	55
8.2. Contrainte économiques	56
	56
Chapitre III	57
Introduction.	58
1 Analyse fréquentielle de la pluviométrie	58

1.1. L'homogénéisation	58
2.1. Ajustement à la loi de gauss.	59
2.2. Ajustement a la loi Log Normal.	61
Paramètres:	61
3. Détermination de l'année de calcul.	65
3.1. Les besoins en eau.	65
L'évapotranspiration potentielle (ETP) également nommée ETo (évapotranspiration deréférence)	65
4. Méthodes d'estimation de l'évapotranspiration de référence.	66
4.5. Autres méthodes de calcul de l'évapotranspiration.	67
5. Calcul de la pluie efficace.	68
6. Calcul de l'évapotranspiration réelle.	68
7. Calcul du bilan hydrique pour les différentes cultures.	69
8.1. Les assolements proposés	70
10. Calcul du débit spécifique :	75
11. Evaluation du débit caractéristique :	76
12. Estimation des volumes d'eau d'irrigation :	76
Conclusion.	78
Chapitre IV	79
Introduction.	80
1. Alimentation en eau du périmètre.	80
2. Organisation et structure du périmètre.	80
3. Ilots et bornes d'irrigation.	80
4. Calcul hydraulique aux bornes.	80
5. Choix du diamètre et du type de bornes.	80
6. Nombre d'ilots et de bornes de chaque secteur.	88
7. Aménagement du périmètre.	88
8. Choix de la variante d'aménagement.	
9.Variante d'aménagement de la zone d'étude	88
10. Etude du système de pompage	89
10.2. Calculs hydrauliques du système d'adduction :	
10.3. Détermination de la hauteur d'élévation calculée :	89
10.4. Hauteur manométrique totale :	89
10.5. Calcul des pertes de charge totales :	
b) Pertes de charge singulières :	90
10.6. Calcul du diamètre économique :	
10.7. Choix des pompes et nombre des pompes :	
10.8. Protection contre de la cavitation :	93
10.9. Bâtiments de la station :	93
10.10. Hauteur du bâtiment :	94
10.11. Longueur du bâtiment :	94
10.12. Largeur du bâtiment :	92
11. Dimensionnement du Réservoir de stockage (Bassin) :	96

12. Etude du système d'adduction-distribution :	96
13. Dimensionnement du réseau de distribution :	96
13.2. Vitesses admissibles :	96
13.3. Choix du matériau des conduites :	96
a)- Conduites en fonte :	96
13.4. Calcul des diamètres :	97
13.5. Estimation des pertes de charge :	97
Conclusion	
ChapitreV Dimensionnement du réseau d'irrigation	
Introduction	
1. Dimensionnement du réseau de distribution.	
1.2. Mode du tracé et implantation des bornes	
1.2.2. Rôle et fonction de la borne d'irrigation	
1.3. Les débits caractéristiques pour les différentes parcelles	s
1.3.1. Dimensionnement a la parcelle.	
1.4.Le diamètre de l'ajutage.	
1.7.Le débit de l'asperseur	
1.8. Vérification de la pluviométrie de la buse	
1.9. Nombre d'irrigation/mois	
1.10.Le temps nécessaire pour donner une dose par 1 asperseur	
1.11. Nombre d'irrigation/mois	
1.12. La durée d'une rotation d'irrigation.	
1.13. Volume fourni par 1 asperseur pendant 1 mois	
1.14. Volume a éprendre en 1 mois sur toute la parcelle	
1.15. Le nombre d'asperseurs.	
1.16. Calcul de la rampe.	
1.16.2. Nombre d'asperseur par rampe (na).	
1.16.3. Nombre de rampes qui fonctionnent en même temps	
1.16.4. Débit d'une rampe (Qr).	
1.16.6. Nombre de poste	
1.16.7. Surface de chaque poste.	
1.16.8. Calcul des pertes de charge (formule de Manning)	
1.16.9. Calcul de la longueur fictive	110
1.16.10. Calcul de la perte de charge unitaire	110
1.16.11. Calcul du diamètre de la porte rampe.	110
Recalcule de j avec le diamètre choisi	111
1.16.12. Calcul du diamètre de la rampe.	111
1.16.13. Les pertes de charge unitaires dans la rampe	
1.16.14. Calcul du diamètre de la conduite secondaire	
1.16.15. Calcul des pertes de charge.	112
1.16.16. Calcul des pertes de charge totale.	112
1.16.17La pression a la horne	112

1.17. Dimensionnement d'un réseau d'irrigation par goutte à goutte : Données générales :Culture : Olivier	112
1.17.1. Besoins d'irrigation des cultures en irrigation localisée :	113
1.17.3. Dose nette pratique:	113
1.17.4.Fréquence et intervalle des arrosages (Fr):	113
1.17.5. Calcul de la dose (brute):	114
1.17.6. Durée de fonctionnement par d'arrosage (h):	114
1.17.8. Nombre de poste :	114
1.17.9. Surface du poste :	114
1.18. Calculs hydrauliques:	115
1.19. Dimensionnement des canalisations du réseau :	115
Pour les rampes : L=72 m	116
2) Nombre des goutteurs par rampe:	116
1.20.Vérification des pertes de charges :	116
1.20.1.Pour la porte rampe :	117
1.21.Calcul des diamètres de la conduite tertiaire:	117
Conclusion	117
Chapitre VI	118
Introduction	119
1. Cout des conduites.	119
2. Frais des travaux du réseau d'irrigation.	119
2.1.calcul des volumes de remblai et de déblai :	119
B)- Profondeur de la tranchée :	119
2.1.2. Volume de lait du sable :	120
Conclusion	121
Conclusion générale.	122

Tableau.1.Caractéristiques de la station pluviomètrique Seddouk	632
Tableau.2.Cumul des pluie moyennes 1982-2002.	632
Tableau.3.Les températures moyennes en °C.	23
Tableau.4.Les humidités relatives	24
Tableau.5.Les vitesses du vent	25
Tableau.6.Classification des régions selon Marton.	26
Tableau.7.Les propriétés chimiques.	30
Tableau.8.Les propriétés physiques.	32
Tableau.9.Propriétés physiques du profil de Tazmalt.	33
Tableau.10.pérméabilité K	33
Tableau.11.Compositions chimique du barrage Tichy-Haf	35
Tableau.12.Le risque du SAR dans l'eau d'irrigation.	36
Tableau.13.Concentration en ions toxiques du barrage.	36
Tableau.13.Concentration en ions toxiques du barrage.	37
Tableau.14.Concentration en paramètres toxiques.	37
Tableau.15.valeurs limites des caractéristiques du barrage.	37
Tableau.16.Efficience du système d'irrigation	47
Tableau.17.Résultats du test de Wilcoxon	59
Tableau.18.Les résultats d'ajustement selon Gauss	60
Tableau.19.Caractéristiques d'ajustement selon Gauss	61
Tableau.20 Résultats d'ajustement selon Gauss.	61
Tableau.21.Résultats d'ajustement selon Log-Normal	62
Tableau.22. Caractéristiques de la série ajustée avec Log-Normal	63
Tableau.23.Résultats d'ajustement selon Log Normal	63
Tableau.24.Pluie mensuelle moyenne.	65
Tableau.25.Calcul de l'évapotranspiration	67
Tableau.26.Calcul de la pluie efficace	68
Tableau.27.Occupation du sol	70
Tableau.28.Occupation du sol en fonction des cultures.	70
Tableeau.29.Assolement prposés pour le secteur	70
Tableau.30.Assolement N°01	75
Tableau.31.Asssolement N°02	75
Tableau.32.Volume d'eau d'irrigation.	77
Tableau.33.Les débits caractéristiques des parcelles.	81
Tableau.34.Nombre d'irrigation du secteur.	88
Tableau.35.Clacul du bilan total.	91
Tableau.36.Variante pour le choix des pompes	92
Tableau.37.Choix du type du batiment	93
Tableau .38 Calcul hydraulique du réseau de distribution.	96
Tableau.39.Les prix des conduites	118
Tableau.40.Clacul des différents volumes	119
Tableau 41 Clacul des travaux de teressement	120

Figure.1. Situation géographique de « Tazmalt».	20
Figure.2. Variation des températures minimales, moyennes et maximales mensuelles	23
Figure.3. Variations des humidités relatives	24
Figure.4. Variations des vitesses du vent.	25
Figure.5.Diagramme ombomethrique pour la région de Tazmalt	27
Figure.6.Projection de la zone d'étude dans le climmagramme d'EMBERGER	28
Figure.7 Barrage De Tichy-Haf.	34
Figure.8.Diagramme de classification des eaux d'irrigation	36
Figure.9.Irrigation par couverture partielle.	45
Figure.10 Irrigation par couverture totale.	45
Figure.11.Irrigation par couverture intégrale.	45
Figure.12.Techniques d'irrigation gravitaire	48
Figure.13.Techniques d'irrigation par canaux.	48
Figure.14.Techniques d'irrigation par aspersion.	48
Figure.15.Techniques d'irrigation par rampe.	48
Figure.16.Technique d'irrigation par pivot.	49
Figure.17.Technique d'irrigation par goutte a goutte	49
Figure.18.Technique d'irrigation par syphon	49
Figure.19.Technique d'irrigation par syphon .	49
Figure.20.Cour d'eau	51
Figure.21.Forage .	51
Figure.22.Lacs et rivières.	51
Figure.23.Nappe phréatique.	51
Figure.24. Retenu collinaire.	51
Figure.25.Eaux usés traités	51
Figure.26.Pompe d'irrigation.	512
Figure.27.Noria	512
Figure.28.Asperseur.	52
Figure.29. Canon enrouleur.	53
Figure.30.Composition d'un système goutte a goutte.	53
Figure.31.Graphe du bilan en fonction du diamètre	92
Figure.32.Courbe caractéristique CAPRARI	93

ANNEXE N°01	
ANNEXE N°02	123
ANNEXE N°03	
ANNEXE N°04	
ANNEXE N°05	126
ANNEXE N°06	

! Liste des planches :

Planche N°01: Plan de situation.

Planche N°02 : Profil en long.

Planche $N^{\circ}03$: Plan topographique.

Planche N°04 : Plan du réseau de distribution et d'adduction.

Planche N°05: Occupation de sol de Tazmalt.

Introduction générale.

La vallée de la Soummam, comme le nom de la rivière qui la traverse « Oued Soummam », se situe en kabylie, occupant un large couloir de la wilaya de Béjaia. Enserrée entre l'ensemble Akfadou-Gouraya au nord, la chaine des bibans au sud-est et la vallée du Sahel-Djurdjura au sud-ouest. « Tazmalt » qui fait partie géographiquement de la vallée du Sahel, une vallée qui abrite toutes les plaines du massif de Djurdjura. Les versants particulièrement au sud, sont des pentes relativements douces et donc très dévellopées. Cette zone est décomposé en petites unités pédologiques différentes : le flysh l'emporte a Akbou et grès a El Kseur.

La Soummam draine un bassin versant répartis en : Oued Sahel situé sur la wilaya de Bouira, bassin Oued Bou sellam sur Akbou et celui ce la Soummam jusqu'à la mer.

La vallée de l'oued Sahel Soummam situé a l'Est de l'Atlas tellien est une zone très complexe conforme aux superposition de nappes d'épaisseur relativement faible, par rapport a leur extension.

La moyenne Soummam est alimentée sur sa rive droite par l'imposant cours de l'Oued Bousselam. Sur le lit aval de celui-ci en face de la ville d'Akbou, est construit le barrage de Tichy Haf. Le Bousellam plonge dans la Soummam, en réservant a l'Ouest la vaste rivière « Assif Almaine » et d'autres branches plus faibles.

Notre projet se focalise sur l'étude du périmètre de Oued Sahel, précisément le secteur de Tazmalt qui est situé entre la wilaya de Bouira et Bejaia, un secteur très large de surface totale irrigable de 2142 Ha.

Ce périmètre englobant les trois secteurs soit : Chorfa, Tazmalt et Akbou est alimenté par le barrage de Tichy-HAF de 150 millions de mètres cubes divisés entre alimentation en eau potable et l'irrigation. Dans le projet on a envisagé de faire un dimensionnement du réseau d'irrigation depuis le barrage de Tichy-HAF en passant par le réservoir de Bousellam jusqu'a notre secteur, un dimensionnement parcellaire qui vise a la fois une bonne alimentation en eau des cultures et un cout plus bas.

Le barrage est réceptionné en 2008, l'eau du barrage servira a l'irrigation des terrains agricoles ainsi qu'a l'approvisionnement des populations de la wilaya de Bejaia spécifiquement la ville d'Akbou et celles des wilaya limitrophes mais le raccordement en eau potable est en cours de réalisation.

Problématique.

Notre projet d'étude est un investissement a long terme pour la région mais surtout indispensable car il sera la partie manquante a la subvention des besoins agricultural pour tout le pays non uniquement a la région, sachant qu'il englobe une superficie de 2400 Ha, majoritairement dédiée a l'oléiculture.

Elas le problème marquant est que cette large superficie de terre adéquate devra être irriguée par une eau conforme aux conditions de développement et épanouissement des cultures mais les ressources en eaux sont inexistantes sur la région et même si il y'n a suffisamment elles sont a des dizaines de kilomètres, ceci est un obstacle pesant a notre projet, d'où la problématique sera de relier le périmètre, plus précisément notre secteur « Tazmalt » a la source d'eau la plus proche et inépuisable afin qu'elle subvient aux besoins des cultures.

Méthodologie et planification du travail.

✓ Etape de sélection du sujet :

Durant ma recherche en ce qui concerne le sujet a sélectionner pour mon projet je me suis dirigé vers l'O.N.I.D (Organisation National d'Irrigation et de Drainage) qui ma orienté vers leur subdivision de la wilaya de Bouira, j'ai choisi cet organisme étant donné qu'il était le plus connu et proche de ma résidence après avoir discuté avec les cadres de cet organisme ils m'ont fait découvrir les différents secteurs existant tout autour, alors ils ont insisté sur le périmètre de Oued Sahel qui les captivait le plus étant donné que c'était l'un des plus vaste projet en cours de réalisation mais toujours pas fini, ils m'ont expliquer que la problématique de ce périmètre réside dans le fait qu'il a besoin d'apport d'eau constant de quantité et de qualité ce qui me convenait parfaitement a moi et a mon projet pour savoir qu'elle hypothèse entreprendre a résoudre cet obstacle.

Donc après m'avoir informé sur les secteurs dont est composé le périmètre d'Oued Sahel qui sont : Chorfa, Tazmalt et Akbou et que celui de Chorfa était pris en compte par une de mes collègue et que celui d'Akbou était mal terrassé ,manquant de données suffisantes j'ai pu choisir mon sujet et définir le secteur de Tazmalt comme mon thème sélectionné étant donné que son étude était a moitié faite et avec des ressources d'informations sure malgré que le fait est que il avait une vaste superficie de 2400 Ha mais cela ne me déranger pas du tout , bien au contraire il me convenait parfaitement , a mettre hypothèses comment résoudre l'obstacle des ressources d'eau inépuisable et suffisante.

✓ Etape De lecture et de recherche de sources et de références :

Les cadres d'organisme m'ont bien défini ou était débuté l'étude de mon projet et dans quel organisme me diriger afin d'obtenir les informations suffisantes.

✓ Etape Définition de la question et des hypothèses :

Tazmalt plus précisaiment le secteur de « Tazmalt » est situé a la wilaya de Bejaia, donc pour résoudre le problèmes des ressources en eau j'ai constaté qu'il y 'avait a Bejaia a quelques kilomètres de ce secteur un barrage nommé « Tichy-HAF » et que celui-ci était très vaste de 150 Mm³, car on l'utiliser non seulement a l'alimentation en eau potable de la ville d'Akbou mais aussi a irrigation du périmètre d'Oued Sahel , Donc maintenant il ne me reste plus qu'a faire le dimensionnement du réseau d'adduction du barrage vers ce secteur puis celui de distribution vers ses cultures.

✓ Etape Sélection de la méthode de recherche :

La résolution serait le dimensionnement de ce réseau d'irrigation et pour cela je devrais chercher des informations sur la qualité de l'eau du barrage si elle est convenable ou pas. Ensuite sur le taux de pluviométrie moyenne annuelle dans cette région et sa conséquence sur le rendement et enfin son type du sol et quelle culture s'épanouira beaucoup plus sur le terrain.

Sans oublier le facteur climat et ses conséquences sur le développement et épanouissement des cultures.

✓ Etape Préparation a la recherche sur le terrain :

Il doit y avoir besoin alors pour débuter mon projet :

- ✓ moyennes des pluies annuelles dans la région.
- ✓ Les températures.
- ✓ La vitesse du vent.
- ✓ Humidité relative.
- ✓ Qualité d'eau du barrage.
- ✓ Analyses du sol.
- ✓ Taux d'insolation.
- ✓ Taux évapotranspiration

✓ Etape Collecte des informations :

Donc je me suis dirigé vers l'A.N.R.H. d'Alger (Agence National des Ressources Hydrauliques) afin de collecter les données pluviométriques de ma station « Seddouk » durant les trontes dernières années ainsi que la qualité de l'eau du barrage de Tichy-HAF sans oublier les analyses pédologiques faites par le laboratoire de cet organisme sur la terre de Tazmalt.

Puis pour mes données climatologiques je me suis dirigé vers l'O.N.M. (Office National de la météorologie) ou j'ai collecté les différentes données climatologiques (températures, vitesses du vent).

✓ Etape Analyse des informations :

La collecte de données étant achevée, j'ai directement procédé a la vérification des données, leur sources, si elles ont était mentionné les dernières années passée sans raté aucune date et vérifier si elles n'étaient pas sujettes a des erreurs d'observations ou tout autre erreur systématique.

✓ Etape Rédaction et de publication :

Le travail accompli dans notre mémoire est rédigé sur des étapes et un plan bien défini. Premièrement au premier chapitre avant toute synthèse on a commencé par situer le périmètre, principalement le secteur géographiquement ainsi qu'administrativement, en présentant le relief de la région, son climat avec des figures et représentation schématiques, les ressources d'eaux les plus proches du terrain et la pédologie du terrain, soit le type de sol, ses composants et ses caractéristiques biologiques, en relevant les analyses d'eau du barrage et par étude des profils et zone du terrain, dont toute les sources des données ont été obtenu a l'A.N.R.H d'Alger et O.N.M pour les données climatologiques.

Ensuite on a défini l'irrigation au deuxième chapitre, son sens général, ses méthodes, ses techniques ainsi que le matériel utilisé.

Après avoir déduit le type du sol et le climat de la région on a pu savoir qu'elles seront les cultures les plus adéquates à la plantation. On a trouvé principalement que l'olivier était la culture s'adaptant beaucoup plus aux conditions enregistrées.

Alors au troisième chapitre on a débuté par faire une homogénéisation de notre série pluviométrique afin de garantir les résultats et éviter les erreurs systématiques et d'observation, donc nous opterons a l'utilisation du logiciel **HYDROLAB** pour les calculs et **HYFRAN plus** pour leurs représentation graphique, après avoir vérifié la série on a procédé

au calcul de l'évapotranspiration mensuelles en se servant du logiciel CROPWAT en suite on a calculé les besoins en eau et volumes d'eau nécessaires a chaque cultures, afin de dimensionner au quatrième chapitre le réseau d'adduction en définissant chaque superficie des parcelles et leur débit soit le type de pompe nécessaire a l'alimentation dont on étudiera ses caractéristiques avec le logiciel CAPRARI, en connaissant les cotes de terrain ainsi que les longueurs des diamètres nous obtiendrons la pression nécessaire a chaque conduite de distribution principale et secondaire qui relierons ce secteur au barrage.

Notre présentation du projet se fera sur le logiciel **Auto-CAD** et **arc-GIS** qui définira soigneusement toute longueur de conduite, tout air de parcelle et l'emplacement des bornes d'irrigation, et même aussi celui du barrage et du réservoir d'eau.

Au cinquième chapitres, on obtiendra les caractéristiques du système de distribution pour la rampe, porte rampe ainsi que le temps d'irrigation.

On finira au dernier et sixième chapitre par faire un bilan économique en déterminant le cout total du projet, après celui des prix des longueurs de conduites, en trouvant économiquement le cout total le plus bas et convenable.

Chapitre I : Les caractéristiques naturelles de la zoned'étude.

Introduction.

Avant d'entamer n'importe quel étude notamment agricole on doit assembler toutes les conditions naturelles favorable a sa réalisation, on citera parmi celles-ci : le climat, la sécheresse, la proximité de l'eau et la présence de groupements humains fortement constitués ; deux autres conditions, la qualité du sol et la nature des plantes, interviennent en second lieu pour modifier les procédés d'irrigation et la quantité d'eau a distribuer.

Ce chapitre donc se focalisera sur les études et sciences suivantes :

Topographie du lieu : Elle désignera la représentation sur un plan ou une carte des formes et détails visibles sur le terrain notamment le relief et l'hydrographie, son objectif est de déterminer la position et l'altitude de n'importe quel point situé dans une zone donnée.

Cartographie : C'est l'art d'élaborer, de dessiner des cartes, avec souvent un souci artistique qui peut être cofondé a la topographie.

Pédologique : Elle s'intéresse principalement a l'étude du sol c'est-à-dire la couche superficielle meuble, et enrichie en matière organique de la croute terrestre. Elle se concentre aussi bien sur sa formation, que son évolution au cours du temps.

Les analyses du sol jouent un rôle important en production végétale ainsi que dans la gestion des éléments nutritifs. Les conditions climatiques à savoir température, vent et l'humidité (la vapeur d'eau dans l'air,varie aussi selon l'environnement).

1. Présentation du périmètre.

1.1. Situation géographique.

Le périmètre de Oued Sahel, situé dans la wilaya de Bouira représente la partie supérieur dela Soummam. Parmi les terres irrigués du périmètre, il y'a le secteur Tazmalt 2400 Ha.

Tazmalt est une Daïra de la wilaya de Bejaia situé entre 36°23' Nord et 4°24' Est, de longitude et d'une superficie de 193 Km².

La commune de Tazmalt a l'instar de toute la daïra de Tazmalt fait partie géographiquement de la vallée de Sahel, qui abrite toutes les plaines du massif de Djurdjura.

1.2. Situation administrative et infrastructure routière. Echelle: 1/1000.

Figure.1. Situation géographique de « Tazmalt ».

Tazmalt est une commune algérienne et le chef-lieu éponyme de la daïra de Tazmalt de la wilaya de Bejaia. Elle est située à 80 kilomètres au sud-ouest de chef-lieu de la wilaya de Bejaia. La commune de Tazmalt est située a 170 Km au sud-est d'Alger (145 Km par l'autoroute est-ouest), soit la ville de toute la wilaya de Bejaia la plus proche de la capitale de Bouira a seulement 45 Km ,80 Km au sud de Tizi-Ouzou, et 80 Km au sud-ouest de chef-lieu de la wilaya de Bejaia. Elle est limitée comme suit :

Au nord : par la commune de Beni Mllikeche. A l'est : par la commune Akbou et Ait-R'zine.

A l'ouest : par la commune de Chorfa (Bouira).

Au sud: par la commune de Boudjellil. Au nord-est: par la commune d'Ighram. Au nord-ouest: par la commune d'Aghbalou.

Au sud-ouest : par la commune d'Ath Mansour(Bouira).

Au sud-est: par la commune d'Ait-R'zine.

La superficie totale de la Daïra de Tazmalt est de 193 Km²répartie sur les trois communes comme suit : Commune de Tazmalt : 33.64 Km².

Commune d'Ath Mllikeche : 42.80 Km². Commune de Boudjellil : 116.56 Km².

La zone d'étude est traversée par la route nationale N26.

Tazmalt est reliée au réseau de la SNTF, soit la ligne pénétrante Beni Mansour-Bejaia.

1.3. Le relief

La commune de Tazmalt est située dans la vallée du « Sahel-Djurdjura », autrement dit la vallée qui englobe toutes les plaines de Djurdjura. Elle est caractérisée par un relief contrasté par une dépression tout au long du périmètre d'Oued Sahel, dont les cotes varient entre 225 à 450 m.

1.4. L'hydrographie

La zone d'étude traverse Oued sahel sur plusieurs kilomètres de plaines.

La vallée de l'Oued Sahel forme la limite naturelle de la région de Djurdjura, depuis Bouira jusqu'à son embouchure. Depuis ses origines dans le massif de Dira jusqu'au dela de Bouira, cette rivière porte le nom de Oued Lekhal et ne prend la désignation de Oued Sahel qu'au confluent de Oued Hous au nord et l'Oued Zaiane au sud, a la hauteur de l'Adjiba formant après avoir reçu Oued Boussellam L'Oued Soummam. C'est a partir de ce point que la vallée large de 3 a 4 kilomètres, forme une zone limite bien tranchée entre les contreforts du Djurdjura au nord et toute la région montagneuse du sud, sa direction d'abord tournée vers l'Est jusqu'à Béni-Mansour s'incline peu a peu au nord.

On explique des lors que les pluies et neiges soient plus abondantes dans les régions situées au nord et au nord ouest de l'Oued Sahel. Les nuages pluvieux du nord ouest et du nord arrêtés par les puissants condensateurs du Djurdjura Akfadou et du Djurdjura Arbalou, ont aux trois quarts déposés leur humidité quand ils arrivent au dessus de la vallée de l'Oued Sahel et des chaines occidentales de la Kabylie des Babor.

L'Oued Sahel reçoit de nombreux affluents.

En rive droite quelques ruisseaux venant de la chaine de BIBANS peu élevés et faiblement arrosés. En rive gauche, des torrents particulièrement violents car ils descendent du DJEBEL Djurdjura qui forme une barrière très élevée (point culminant est de 2305 m) qui reçoit de fortes précipitations soit 180 mm/ an

2. La climatologie.

Le climat de Tazmalt est dit tempéré chaud. L'hiver a Tazmalt se caractérise par des précipitations bien plus importantes qu'en été. La région qui couvre le secteur du périmètre est équipée d'une station pluviométrique située à la commune de Seddouk

Tableau.1. Caractéristiques principales de la station pluviométrique de SEDDOUK.

Code de la station	Nom de la	Coordonne	ées	Altitude (m)	Nombre d'années d'observation	
station	station	X (km)	Y (km)			
151006	SEDDOUK	678.05	362.15	370	30	

Source: ANRH (ALGER).

2.1. Les précipitations.

Tableau.2. Cumuls des pluies moyennes mensuelles et pluies moyennes annuelles enregistrées dans la station de SEDDOUK de 1982 jusqu'à 2012.

Namées N	Annuel
1982 21,7 99,3 89,2 165,3 1,4 44,5 24,8 24 9,6 5,4 1,3 18,9	
1983	505,4
1984	460,5
1985	
1986	519,6
1986	510,9
1987 14,7 46 98,4 16,9 25,5 40,1 43,8 57,5 33 10,0 0 0 1988 43,6 2,5 48,6 127,8 33,9 28,1 14,2 87,8 1,8 14 5,6 12,8 1989 52,4 14,4 41,4 15,1 63,7 0 37,1 42,3 58,6 7,6 19,5 2 1990 16,8 7,2 28,9 96 18,7 86,2 83,3 35,2 42,3 1,4 33,3 6 1991 32,9 65,5 12,7 13,6 55,6 59,9 45,1 72,3 79,1 24, 11,2 0 1992 3,6 30,2 40,2 139,8 34,9 49,2 17,3 60,9 56,9 3,3 0 2,4 1993 57,5 40,6 42,5 49,3 30,3 49,9 0,9 25,1 6,8 2,9	514,6
1988 43,6 2,5 48,6 127,8 33,9 28,1 14,2 87,8 1,8 14 5,6 12,8 1989 52,4 14,4 41,4 15,1 63,7 0 37,1 42,3 58,6 7,6 19,5 2 1990 16,8 7,2 28,9 96 18,7 86,2 83,3 35,2 42,3 1,4 33,3 6 1991 32,9 65,5 12,7 13,6 55,6 59,9 45,1 72,3 79,1 24, 11,2 0 1992 3,6 30,2 40,2 139,8 34,9 49,2 17,3 60,9 56,9 3,3 0 2,4 1993 57,5 40,6 42,5 49,3 30,3 49,9 0,9 25,1 6,8 2,9 0 0 1994 67,1 58,8 8,1 67,9 181,6 31,9 101,4 24,8 0,8 29,	386,7
1988 43,6 2,5 48,6 127,8 33,9 28,1 14,2 87,8 1,8 14 5,6 12,8 1989 52,4 14,4 41,4 15,1 63,7 0 37,1 42,3 58,6 7,6 19,5 2 1990 16,8 7,2 28,9 96 18,7 86,2 83,3 35,2 42,3 1,4 33,3 6 1991 32,9 65,5 12,7 13,6 55,6 59,9 45,1 72,3 79,1 24, 11,2 0 1992 3,6 30,2 40,2 139,8 34,9 49,2 17,3 60,9 56,9 3,3 0 2,4 1993 57,5 40,6 42,5 49,3 30,3 49,9 0,9 25,1 6,8 2,9 0 0 1994 67,1 58,8 8,1 67,9 181,6 31,9 101,4 24,8 0,8 29,0 <td>300,7</td>	300,7
1990 16,8 7,2 28,9 96 18,7 86,2 83,3 35,2 42,3 1,4 33,3 6 1991 32,9 65,5 12,7 13,6 55,6 59,9 45,1 72,3 79,1 24, 11,2 0 1992 3,6 30,2 40,2 139,8 34,9 49,2 17,3 60,9 56,9 3,3 0 2,4 1993 57,5 40,6 42,5 49,3 30,3 49,9 0,9 25,1 6,8 2,9 0 0 1994 67,1 58,8 8,1 67,9 181,6 31,9 101,4 24,8 0,8 29, 0 13 1995 13,9 20,3 29 24 63,7 204,1 47,3 93,6 38,6 54, 7,5 9,4 1996 42 31 45 44,1 21,7 6,4 22,1 32 10,5 27, <t< td=""><td>420,7</td></t<>	420,7
1991 32,9 65,5 12,7 13,6 55,6 59,9 45,1 72,3 79,1 24, 11,2 0 1992 3,6 30,2 40,2 139,8 34,9 49,2 17,3 60,9 56,9 3,3 0 2,4 1993 57,5 40,6 42,5 49,3 30,3 49,9 0,9 25,1 6,8 2,9 0 0 1994 67,1 58,8 8,1 67,9 181,6 31,9 101,4 24,8 0,8 29, 0 0 13 1995 13,9 20,3 29 24 63,7 204,1 47,3 93,6 38,6 54, 7,5 9,4 1996 42 31 45 44,1 21,7 6,4 22,1 32 10,5 27, 0 26,8 1997 53,6 75,8 84,7 71,5 18,9 52,8 37 64,1 147,2 6,6 0 3	354,1
1992 3,6 30,2 40,2 139,8 34,9 49,2 17,3 60,9 56,9 3,3 0 2,4 1993 57,5 40,6 42,5 49,3 30,3 49,9 0,9 25,1 6,8 2,9 0 0 1994 67,1 58,8 8,1 67,9 181,6 31,9 101,4 24,8 0,8 29, 0 13 1995 13,9 20,3 29 24 63,7 204,1 47,3 93,6 38,6 54, 7,5 9,4 1996 42 31 45 44,1 21,7 6,4 22,1 32 10,5 27, 0 26,8 1997 53,6 75,8 84,7 71,5 18,9 52,8 37 64,1 147,2 6,6 0 3 1998 56,7 42,3 74,4 44,8 120,3 63,2 30,9 14,3 26,8 20, <t< td=""><td>455,3</td></t<>	455,3
1992 3,6 30,2 40,2 139,8 34,9 49,2 17,3 60,9 56,9 3,3 0 2,4 1993 57,5 40,6 42,5 49,3 30,3 49,9 0,9 25,1 6,8 2,9 0 0 1994 67,1 58,8 8,1 67,9 181,6 31,9 101,4 24,8 0,8 29, 0 13 1995 13,9 20,3 29 24 63,7 204,1 47,3 93,6 38,6 54, 7,5 9,4 1996 42 31 45 44,1 21,7 6,4 22,1 32 10,5 27, 0 26,8 1997 53,6 75,8 84,7 71,5 18,9 52,8 37 64,1 147,2 6,6 0 3 1998 56,7 42,3 74,4 44,8 120,3 63,2 30,9 14,3 26,8 20, <t< td=""><td>472,7</td></t<>	472,7
1993 57,5 40,6 42,5 49,3 30,3 49,9 0,9 25,1 6,8 2,9 0 0 1994 67,1 58,8 8,1 67,9 181,6 31,9 101,4 24,8 0,8 29,0 0 13 1995 13,9 20,3 29 24 63,7 204,1 47,3 93,6 38,6 54,7,5 9,4 1996 42 31 45 44,1 21,7 6,4 22,1 32 10,5 27,0 0 26,8 1997 53,6 75,8 84,7 71,5 18,9 52,8 37 64,1 147,2 6,6 0 3 1998 56,7 42,3 74,4 44,8 120,3 63,2 30,9 14,3 26,8 20,2 2,1 14,2 1999 73,6 17 39,7 183,2 19,2 0,2 13,8 27,8 33 0 0 <	438,7
1994 67,1 58,8 8,1 67,9 181,6 31,9 101,4 24,8 0,8 29, 6 0 13 1995 13,9 20,3 29 24 63,7 204,1 47,3 93,6 38,6 54, 7,5 9,4 1996 42 31 45 44,1 21,7 6,4 22,1 32 10,5 27, 0 26,8 1997 53,6 75,8 84,7 71,5 18,9 52,8 37 64,1 147,2 6,6 0 3 1998 56,7 42,3 74,4 44,8 120,3 63,2 30,9 14,3 26,8 20, 2,1 14,2 1999 73,6 17 39,7 183,2 19,2 0,2 13,8 27,8 33 0 0 0 2000 5,7 38,6 29,7 96,6 138,5 54,4 3,4 41,4 25,9 0 0 16,4	305,8
1995 13,9 20,3 29 24 63,7 204,1 47,3 93,6 38,6 54, 7,5 9,4 1996 42 31 45 44,1 21,7 6,4 22,1 32 10,5 27, 0 26,8 1997 53,6 75,8 84,7 71,5 18,9 52,8 37 64,1 147,2 6,6 0 3 1998 56,7 42,3 74,4 44,8 120,3 63,2 30,9 14,3 26,8 20, 2,1 14,2 1999 73,6 17 39,7 183,2 19,2 0,2 13,8 27,8 33 0 0 0 2000 5,7 38,6 29,7 96,6 138,5 54,4 3,4 41,4 25,9 0 0 16,4 2001 31 3,4 27,4 14,7 40,7 36,3 29,5 21,9 12,1 0,2 8 57,8 2002 4,2 20,7 142,1 128,2 176,1 59,5 28,2	585
1995 13,9 20,3 29 24 63,7 204,1 47,3 93,6 38,6 54, 7,5 9,4 1996 42 31 45 44,1 21,7 6,4 22,1 32 10,5 27, 0 26,8 1997 53,6 75,8 84,7 71,5 18,9 52,8 37 64,1 147,2 6,6 0 3 1998 56,7 42,3 74,4 44,8 120,3 63,2 30,9 14,3 26,8 20, 2,1 14,2 1999 73,6 17 39,7 183,2 19,2 0,2 13,8 27,8 33 0 0 0 2000 5,7 38,6 29,7 96,6 138,5 54,4 3,4 41,4 25,9 0 0 16,4 2001 31 3,4 27,4 14,7 40,7 36,3 29,5 21,9 12,1 0,2 8 57,8	000
1996 42 31 45 44,1 21,7 6,4 22,1 32 10,5 27, 0 26,8 1997 53,6 75,8 84,7 71,5 18,9 52,8 37 64,1 147,2 6,6 0 3 1998 56,7 42,3 74,4 44,8 120,3 63,2 30,9 14,3 26,8 20, 2,1 14,2 1999 73,6 17 39,7 183,2 19,2 0,2 13,8 27,8 33 0 0 0 2000 5,7 38,6 29,7 96,6 138,5 54,4 3,4 41,4 25,9 0 0 16,4 2001 31 3,4 27,4 14,7 40,7 36,3 29,5 21,9 12,1 0,2 8 57,8 2002 4,2 20,7 142,1 128,2 176,1 59,5 28,2 139 26,9 0 8,8 3,8 </td <td>605,5</td>	605,5
1997 53,6 75,8 84,7 71,5 18,9 52,8 37 64,1 147,2 6,6 0 3 1998 56,7 42,3 74,4 44,8 120,3 63,2 30,9 14,3 26,8 20, 2,1 14,2 1999 73,6 17 39,7 183,2 19,2 0,2 13,8 27,8 33 0 0 0 2000 5,7 38,6 29,7 96,6 138,5 54,4 3,4 41,4 25,9 0 0 16,4 2001 31 3,4 27,4 14,7 40,7 36,3 29,5 21,9 12,1 0,2 8 57,8 2002 4,2 20,7 142,1 128,2 176,1 59,5 28,2 139 26,9 0 8,8 3,8 2003 24 53,5 14,4 162,4 76,8 36 61,6 84,8 76 9 <td< td=""><td>308,7</td></td<>	308,7
1998 56,7 42,3 74,4 44,8 120,3 63,2 30,9 14,3 26,8 20, 2,1 14,2 1999 73,6 17 39,7 183,2 19,2 0,2 13,8 27,8 33 0 0 0 2000 5,7 38,6 29,7 96,6 138,5 54,4 3,4 41,4 25,9 0 0 16,4 2001 31 3,4 27,4 14,7 40,7 36,3 29,5 21,9 12,1 0,2 8 57,8 2002 4,2 20,7 142,1 128,2 176,1 59,5 28,2 139 26,9 0 8,8 3,8 2003 24 53,5 14,4 162,4 76,8 36 61,6 84,8 76 9 12,5 8,5	
1999 73,6 17 39,7 183,2 19,2 0,2 13,8 27,8 33 0 0 0 2000 5,7 38,6 29,7 96,6 138,5 54,4 3,4 41,4 25,9 0 0 16,4 2001 31 3,4 27,4 14,7 40,7 36,3 29,5 21,9 12,1 0,2 8 57,8 2002 4,2 20,7 142,1 128,2 176,1 59,5 28,2 139 26,9 0 8,8 3,8 2003 24 53,5 14,4 162,4 76,8 36 61,6 84,8 76 9 12,5 8,5	615,2
1999 73,6 17 39,7 183,2 19,2 0,2 13,8 27,8 33 0 0 0 2000 5,7 38,6 29,7 96,6 138,5 54,4 3,4 41,4 25,9 0 0 16,4 2001 31 3,4 27,4 14,7 40,7 36,3 29,5 21,9 12,1 0,2 8 57,8 2002 4,2 20,7 142,1 128,2 176,1 59,5 28,2 139 26,9 0 8,8 3,8 2003 24 53,5 14,4 162,4 76,8 36 61,6 84,8 76 9 12,5 8,5	510,1
2000 5,7 38,6 29,7 96,6 138,5 54,4 3,4 41,4 25,9 0 0 16,4 2001 31 3,4 27,4 14,7 40,7 36,3 29,5 21,9 12,1 0,2 8 57,8 2002 4,2 20,7 142,1 128,2 176,1 59,5 28,2 139 26,9 0 8,8 3,8 2003 24 53,5 14,4 162,4 76,8 36 61,6 84,8 76 9 12,5 8,5	407,5
2001 31 3,4 27,4 14,7 40,7 36,3 29,5 21,9 12,1 0,2 8 57,8 2002 4,2 20,7 142,1 128,2 176,1 59,5 28,2 139 26,9 0 8,8 3,8 2003 24 53,5 14,4 162,4 76,8 36 61,6 84,8 76 9 12,5 8,5	450,6
2003 24 53,5 14,4 162,4 76,8 36 61,6 84,8 76 9 12,5 8,5	283
	737,5
	619,5
2004 18,1 55,5 47,5 101,4 112,5 95,7 32,6 30,1 14 6,1 0 0,8	514,3
2005 33 23,6 60,4 84,1 95 56,6 19 17,8 66 1,5 2,5 2,5	462
2006 9,5 1,5 11,4 57,8 16,9 31,6 182,4 140,8 6,6 8 4,5 3,4	474,4
2007 67,4 161,9 51 64,7 11,7 35,7 98,5 24,2 38,2 9,4 0,8 1,7	565,2
2008 59,8 59 87 49,2 145,6 48,2 59,7 114,9 28,3 0,8 5,8 19,9	678,2
2009 51,2 14,3 68,7 56,7 60,2 61,3 67,1 22 31,7 11, 0 9,9	454,9
2010 16,9 104,5 55,1 40,7 27,4 93,4 40,3 51,1 59,9 24, 0 6,5	520,4
2011 8,1 42,6 58,2 80,2 55 113,3 57,7 62,4 8,9 0 0 3,7	490 ,1
2012 3,4 46,2 77 24,3 143,7 95,9 60,1 29,3 72,8 1,2 3,9 37,1	594,9
Moy 30,80 43,39 51,3 75,07 67,82 58,54 51,14 49,93 37,87 10, 4,82 9,45	491,01
% 6,3 8,9 10,5 15,3 13,8 11,9 10,4 10,2 7,7 2,2 1 1,93	100

Le tableau.2. Montre que les précipitations sont bonnes, Avec une moyenne de 491 mm annuelle.

On a enregistré un taux maximum de pluie en mois de décembre avec 15.3% ainsi que mois de janvier avec un pourcentage de 13.8 %. Les moyennes pluies abondantes est enregistré depuis septembre jusqu'au mois de mai (94,87%). Au-delà on enregistrera des mois sec en mai avec 7.7 %, juin avec 2.2 % et juillet avec 1 %. On déduira en ce qui concerne la région qu'elle se caractérise par une humidité élevée.

2.2. Les températures.

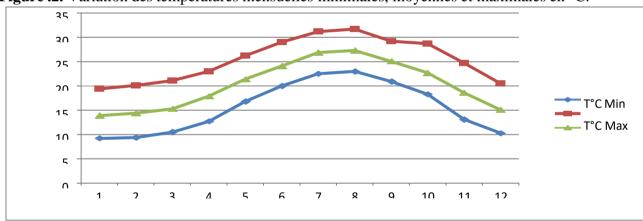

Les températures données dans le tableau suivant ont été enregistrés par l'office national de la météorologie d'Alger.

Tableau.3. les températures moyennes mensuelles de 2006-2015.

Mois	Janvier	Févrrie	Mars	Avril	Mai	Juin	Juillet	Aout	Septembre	Octobre .	Novembre.	Décembre.	Moy
Tmin (°C)	9,2	9,4	10,5	12,7	16,8	20	22,5	23	20,9	18,3	13,1	10,3	15,6
Tm ax(C)	19,4	20,1	21,1	23	26,2	29	31,2	31,7	29,2	28,7	24,7	20,5	25,4
Tm oy(13,9	14,4	15,3	17,9	21,4	24,1	26,9	27,3	25,07	22,7	18,6	15,1	20,2

Source: ONM ALGER.

Figure .2. Variation des températures mensuelles minimales, moyennes et maximales en °C.

1.5.L'Humidité relative

L'humidité relative correspond a la quantité de vapeur d'eau dans l'air par rapport à la capacité maximale que ce dernier peut en contenir. L'humidité relative s'exprime en pourcentage (%) et dépend de la température et de la pression, elle augmente en fonction de l'altitude. Lorsque la pression partielle de vapeur d'eau est égale à la pression de vapeur saturante, l'humidité relative de l'air est de 100 %.

Tableau.4. Les humidités relatives

Mois	Janvier	Févrrier	Mars	Avril	Mai	Juin	Juillet	Aout	Septembre	Octobre	Novembre.	Décembre.	Annuel
										•			
HR	72	71	71	76	78	73	72	71	68	74	68	71	72
Max(%)													
HR Min(%)	67	64	67	63	67	67	69	68	67	67	61	65	66
HR	69,3	66,8	69,5	70	71,8	70,3	70,3	69,7	67,7	70,5	64,5	67,5	69
Moy(%)													

Source: ONM ALGER.

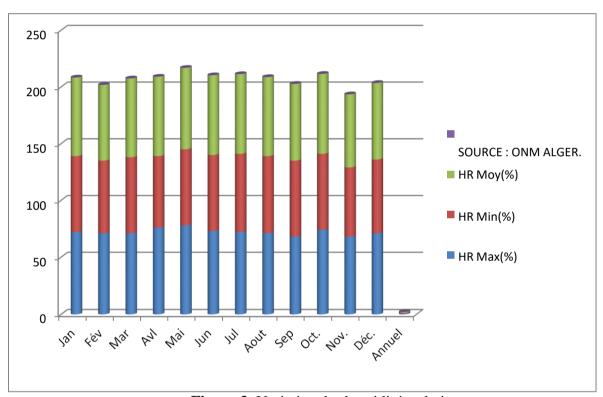


Figure.3. Variation des humidités relatives.

1.6. Les vents

Le vent est le mouvement au sein de l'atmosphère, masse de gaz située a la surface d'une planète, d'une partie de ce gaz. Les vents sont globalement provoqués par un réchauffement inégalement réparti a la surface de la planète provenant du rayonnement stellaire, et par la rotation de la planète. L'action du vent sur la production végétale :

Les échanges d'un couvert végétal (gaz carbonique, vapeur d'eau, chaleur) avec le milieu extérieur dépendent entre autre de la vitesse du vent. Il est nécessaire qu'elle soit une valeur minimale de l'ordre de 0,5 m/s pour que ces échanges soient facilités. Mais si elle dépasse 3 m/s des dégâts peuvent apparaitra sur différents organes.

Tableau.5. Vitesse du vents.

MOIS	Févrrier	Mars	Avril	Mai	Juin	Juill	Aout	Septembre	Octobre	Novembre.	Décembre.	Annuel
						et						
Vmax (m/s)	8,9	9,2	7,9	8,6	8,5	9,0	9,1	8,7	7,7	7,8	7,6	93
Vmin (m/s)	7,7	7,8	6,9	6,9	6,8	8,1	7,5	8,2	6,0	7,0	6,8	79,7
Vmoy (m/s)	8,0	8,4	7,6	7,5	7,9	8,4	8,4	8,4	7,0	7,5	7,3	86,4

Source: ONM ALGER.

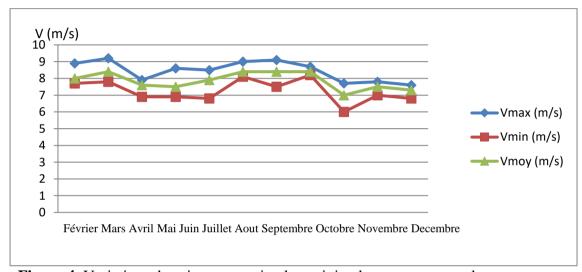


Figure.4. Variations des vitesses maximales, minimales, et moyennes des vents.

Remarque: On n'a pas pu ajouter les vitesses du vent en mois de Janvier pour cause de manque de données.

2.5. Les indices climatiques :

Il s'agit de rapports chiffrés servant a caractériser un climat.

Une mesure de base et une composition a partir de ces mesures qui doit être bien différenciée de l'indicateur climatique (le bio indicateur), valeur quantitative ou qualitative, donc parfois adimensionnelle, caractérisant l'état d'un système de façon indirecte (carottes glaciaires, l'état des coraux par exemple).

2.5.1. Indice d'aridité de Martonne :

L'indice d'aridité de Martonne, noté I, cet indice permet de déterminer le degré d'aridité d'ne région.

Pour le calculer, on utilise la formule : I = P / (T+10) ou :

P: Désigne les précipitations totales annuelles en mm.

T: Désigne la température moyenne annuelle en °C.

Et pour un mois:

I = 12p/(t+10), ou : p : Désigne les précipitations totales mensuelles en mm.

t: Désigne la température moyenne mensuelle en °C.

Application numérique:

Calcul d'indice de l'aridité annuel de Martonne :

I = P/(T+10) = 507,4/(20,22+10) = 16,79. **I= 16,79.**

Tableau.6. Classifications des régions selon l'indice climatique de Martonne.

Valeur de « I »	Type de climat	Irrigation
0 <i<5< th=""><th>Régions hyperarides « Dessert absolu »</th><th>Indispensable</th></i<5<>	Régions hyperarides « Dessert absolu »	Indispensable
5 <i<10< td=""><td>Aride « Sahara »</td><td>Indispensable</td></i<10<>	Aride « Sahara »	Indispensable
10 <i<20< th=""><th>Semi-aride « Sec »</th><th>Souvent indispensable</th></i<20<>	Semi-aride « Sec »	Souvent indispensable
20 <i<30< td=""><td>Régions semi-humides</td><td>Parfois utile</td></i<30<>	Régions semi-humides	Parfois utile
30 <i<55< td=""><td>Humide</td><td>Inutile</td></i<55<>	Humide	Inutile

Source: FAO.

D'après le tableau ci-dessus on constate que selon la valeur de l'indice climatique de Martonne de la région étudiée « I »= 16,79, soit 10<I<20, qu'on est dans une région sec ou l'irrigation est souvent indispensable.

2.5.2. Représentation graphique d'un climat : Diagramme ombrothermique de Bagnoles et Gaussen :

Un diagramme ombrothermique est un type particulier de diagramme climatique représentant les variations mensuelles sur une année des températures et des précipitations selon des gradations standardisés. Une gradation de l'échelle des précipitations correspond a deux gradations de l'échelle des températures (P= 2T).

Il a été développé par Henri Gaussen et F .Bagnoles. Pour mettre en évidence les périodes de sécheresse définies par une courbe des précipitations se situant en dessous de la courbe de températures.

Ces diagrammes permettent de comparer facilement les climats des différents endroits du point de vue pluviosité.

On représentera :

Courbe des précipitations par l'histogramme en bleu. Courbe des températures en courbe rouge.

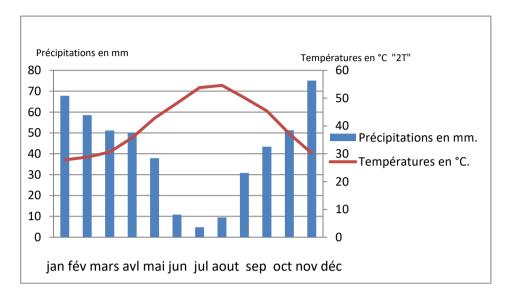


Figure.5. Digramme ombomethrique pour la région de Tazmalt.

2.5.3. Quotient pluviométrique d'EMBERGER.

Le climagramme d'Emberger permet de déterminer l'étage bioclimatique d'une station donnée, il définit les cinq types de climats méditerranéens du plus aride jusqu'à celui de plus haute montagne.

Il est déterminé a partir de la formule originelle d'Emberger suivante : Q=100P/2(M+m/2)(M-m).

Ou : Q : Quotient pluviométrique d'EMBERGER.

P: Précipitations moyennes annuelles en mm.

M : La température maximale du mois le plus chaud en Kelvin.

m: La température minimale du mois le plus froid en Kelvin.

Formule modifiée d'EMBERGER:

 $Q_2 = 2000P/M^2 - m^2$, avec : Q_2 : Quotient pluviométrique modifié d'EMBERGER.

P: précipitation moyenne annuelle en mm.

M : La température maximale du mois le plus chaud en Kelvin.

m: La température minimale du mois le plus froid en Kelvin.

Application numérique de la loi d'EMBERGER modifié :

 $Q_2 = (2000*507,4)/(37,1+273)^2 - (9,2+273)^2 = 61,41.$

En appliquant la formule suivante pour STEWART qui suppose que (M+m)/2=291. On obtiendra la formule suivante : $Q_2=3,43P/(M-m)$ ou : M et m exprimés en °C . P en mm.

Application numérique de la loi de STEWART : Q₂=3,43*507,4 /(31,7-9,2)=77,35.

Selon:

Emberger: $Q_2=77,35$. STEWART: $Q_2=61,41$.

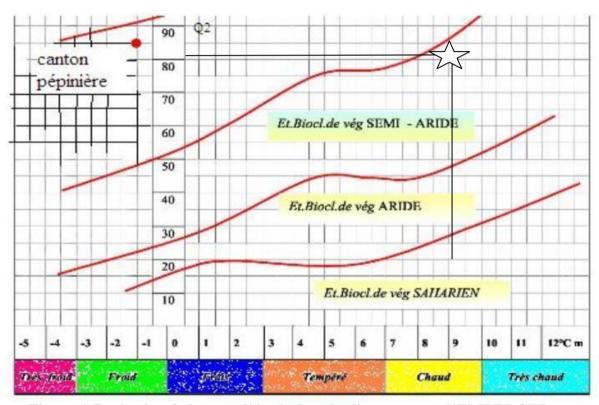


Figure.6. Projection de la zone d'étude dans le climagramme d'EMBERGER.

Le climagramme d'EMBERGER nous indique que notre région d'étude de quotient de 77,35 et de température minimale de 9,2 est de climat : **Etage bioclimatique : Semi-aride**.

Notre zone d'étude est relatif au sous-étage d'un : Hiver chaud.

3. Etude du sol:

3.1. Définition du sol.

Sur le plan agronomique le sol est définit comme étant le support des plantes cultivées ; souvent seul la couche arable est prise en compte.

3.2. Définition de la pédologie « Science du sol ».

La pédologie est une science qui a pour objet l'étude de la pédosphère dans la formation, structure et évolution des sols, ainsi que la pédogenèse. La pédologie est l'étude du sol dans son environnement naturel, elle conforte, elle confire la l'édaphologie, l'agrologie et l'agronomie.

Le pédologue voit le sol comme étant un ensemble complexe qui évolue dans le temps sous l'action de facteurs naturel comme le climat, la végétation, la faune, les roches et le relief.

Le sol est l'interface entre différents ensemble constituants la surface terrestre. Le volume pédologique (ou pédosphère) se situe sur la lithosphère ; il épouse le relief (troposphère), se localise sous l'atmosphère. Il est en interaction avec la biosphère et l'hydrosphère.

3.3. Les types de sols.

Les sols peu différenciés :

- ✓ Lithosols.
- ✓ Cryosols.
- ✓ Colluviosols.

Les sols carbonatés:

- ✓ Les sols Chernozem ou Chernosols.
- ✓ Les sols brunisol.
- ✓ Les sols Bruns lessivés ou Luvisols.
- ✓ Podzols ou Podozosols.
- ✓ Les sols hydro morphes (Gley).
- ✓ Les sols rouges Fersialitiques ou Fersialsols.
- ✓ Les sols sales.

3.4. Intérêt de l'étude pédologique.

Toutes ces données pédologiques regroupées donnent une description, une étude morphologique, des horizons, des organisations élémentaires qui les constituent, de la couverture pédologique et de son état d'évolution.

L'évolution de la couverture pédologique et des horizons s'effectue progressivement sur des périodes de temps plus au moins longues en fonction des conditions environnementales. Lorsque on observe un sol, on l'observe a un temps t qui nous permet de comprendre les pédogénèses anciennes et l'évolution du sol a venir. La différenciation des horizons donne l'évolution de la pédogénèse et permet la dénomination des sols.

4. Etude des profils de la zone d'étude Tazmalt.

Tableau.7. Les propriétés chimiques :

Numéro du profile	Horiz on	Profondeu r	CaCO3 En %	H ₂ O	KC L	Hu ms	N En %	P ₂ O ₅ En Mg.	K ₂ OA 1g	Sels Au Total
Profil N°01		0-20 -cm-	22, O4	8, 20	7,30	1,97	0,09	<1	23,9	
		20-40 -cm-	19,69	8, 20	7,10	1,91	0,09	<1	22,1	
		50-70 -cm-	20,12	8, 10	7,00	1,34	0,06			
		100-120 -cm-	17,85	7, 80	6,80	1,46	0,08			
Profil N°02	A	0-20 -cm-	11,18	8, 20	7,00	1,92	0,09	<1	28,4	0,04
	AB	29-49 -cm-	11,61	8, 20	7,20	1,70	0,08	<1	23,3	0,04
	ВС	70-90 -cm-	16,99	8, 20	7,20	1,08	0,05			0,00
Profil N°03		0-15 -cm-	2,11	8, 00	7,05	3,65	0,18	<1	47,4	
		20-40 -cm-	1,25	7, 80	6,70	1,21	0,06	<1	15,3	
		50-70 -cm-	1,04	7, 70	6,80	1,06				

Source: ANRH ALGER

5. Etude approfondi des propriétés physiques du profil de notre zone d'étude « Tazmalt ».

L'étude se basera sur le calcul des indices suivants :

5.1 Humidité hygroscopique.

Un milieu hygroscopique qualifie une matière ayant tendance a a absorber l'humidité de l'air a des températures normales. La majorité des engrais sont hygroscopiques à différents niveaux pour faciliter leur solubilité. Un déshumificateur d'intérieur joue ce rôle.

L'hygroscopie est la capacité de certaines substances à absorber l'humidité du milieu environnant par adsorption ou absorption. Elle concerne comme l'hydrométrie, l'étude de l'humidité, de ses causes et de ses variations.

Leur hygroscopicités s'expriment par leur humidité critique relative (HCR) a une température standard, en général 30°C.

5.2. Point de flétrissement.

Présente l'état hydrique du sol auquel les plantes ne peuvent plus puiser de l'eau nécessaire a sa croissance et flétrissent de manière réversible, C'est le seuil en dessous duquel les racines ne peuvent plus extraire l'eau du sol.

5.3. Volume spécifique.

C'est le quotient du volume sur la masse.

5.4. Capacité de rétention d'eau.

C'est le volume d'eau retenu dans un sol, qui ne s'écoule pas sous l'action de la gravité. C'est l'état hydrique ou la grande partie de l'eau est retenue par les forces capillaires.

5.5. Capacité d'infiltration.

Désigne la quantité maximum d'eau qui s'infiltre dans le sol ou substrat dans un sol t. elle dépend des constituants et de l'arrangement des de la porosité du substrat. Elle varie dans le temps en fonction de l'état de saturation du substrat .La capacité d'infiltration d'un substrat est le flux la surface de la couverture pédologique lorsque le potentiel de l'eau est nul.

5.6. Perméabilité « K ».

C'est la propriété qu'a le sol de transmettre l'eau et l'air ; c'est l'une des qualités les plus importantes, c'est l'une des qualités les plus importantes à prendre en considérations pour la pisciculture

Pourquoi est-il important de déterminer la perméabilité d'un sol?

Un étang construit dans un sol imperméable perdra peu d'eau par infiltration, la perméabilité est liée à la texture et la structure du sol.

Tableau.8. Propriétés physique du secteur.

Endroit Du profil	Roche mère	Horizon	Profondeur	Sable grossier	Sable fin	Limon	Argile	∑Sable	∑Argile	Humidité	Texture sol selon ferré	Stabilité des agrégats d'après Staybler
X=654,8 Y=346,5	Marnes	A	0-20 -cm-	2,2	55,4	14,4	28	57,6	42,4	1,79	Limon- argilo- sableux	67,75
			20-40 -cm-	1,0	51	18,6	28,6	52,8	47,2	2,07	Limon- argilo- sableux	82,85
		B ₁	50-70 -cm-	0,2	41	18,3	40,5	41,2	58,8	3,15	Limon- sablo- argileux	
		B ₂	100-120 -cm-	0,1	42,1	19,6	38,2	42,2	57,8	2,68	Limon- sablo- argileux	
X=649,5 Y=348,0	Alluvions	A	0-20 -cm-	2,1	49,6	26,6	21,7	51,7	48,3	2,08	Limon- argilo- sableux	86,14
			29-49 -cm-	2,1	51,5	21,7	22,7	53,6	44,4	2,34	Limon- argilo- sableux	67,08
		AC	70-90 -cm-	2,1	61,2	15,9	20,8	63,3	36,7	1,90	Limon- argilo- sableux	
X=651,5 Y=346,5	Argile grès	A	0-15 -cm-	2	50,3	10,5	37,2	52,3	47,7	3,35	Argile Sableuse	82,5
5		В	20-40 -cm-	5	38,2	9,1	47,7	43,2	56,8	4,56	Argile	52,02
		ВС	50-70 -cm-	4	45,1	10,6	40,3	49,1	50,9	4,10	Argile Sableuse	

Source: ANRH ALGER.

Tableau.9. Propriétés physiques du profil de notre zone d'étude « Tazmalt ».

Profondeur 15-20 30-35 60-65 -cm--cm--cm-Humidité Hygroscopique % 2,08 2,34 1,90 Point de flétrissement % 11,31 10,41 Poids volumétrique 1,48 1,64 1,51 2,70 Poids spécifique 2,69 2.71 45,20 39,00 44,30 Volume spécifique Capacité hydrique en eau 38,35 33,50 36,30 Max% Capacité de rétention en eau 35,85 31,65 32,60 Capacité en air lors de 6,85 5,50 8,00 la capacité hydrique.MAX% Capacité en air lors de 9,35 7,45 4,60 larétention en eau % 16,75 17.1 Point de flétrissement en % Eau utile en % 19,10 14,55 Vitesse d'infiltration 2,1 enmm/min 1,75*10-4 1,75*10-5 2,82*10-4 K selon Darcy en cm/sec

Source: ANRH ALGER.

Tableau.10. Classification des sols selon perméabilité.

K (m/s)		K (m/s)
10	Gravier propre	10
10^ (-1)		10^ (-1)
10 ^ (-2)	Sables propres.	- 10 ^ (-2)
10^ (-3)	Mélanges de sables et de gravier propres.	10^ (-3)
10^ (-4)	Metanges de sables et de gravier propres.	10^ (-4)
10^ (-5)	Sables très fins limons organiques et inorganiques.	+ 10^ (-5)
10^ (6)	Mélange de sable limon et argile.	10^ (6)
10^ (-7)	Dépôts d'argile en coucheetc.	10^ (-7) 10^ (-8)
10^ (-8)		10^ (-8)
10^ (-9)	Sols imperméables par exemple argiles homogènes situées	10^(-9)
10^ (-10)	au-dessus de la zone d'altération.	10^(-10)
10^ (-11)		

Source: FAO.

Interprétation:

On conclue donc selon les caractéristiques chimique-physique du sol les résultats suivant :

- ✓ Texture : Limon-argilo-sableux a Limon-sablo-argileux.
- ✓ Salinité : moyenne.
- ✓ Densité: 1,45.
- **✓** Sol suffisamment stable.
- ✓ Perméabilité : modérée.
- ✓ Capacité au champ : 24
- ✓ Point de flétrissement : 12.
- ✓ Réserve utile : 175 mm/m.
- ✓ Sol moyennement calcaire.

6. La source d'eau.

Le périmètre de Oued Sahel et principalement le secteur de Tazmalt est irrigué a partir de l'eau desservie par le barrage de Tichy Haf, celui-ci est un barrage poids-voute situé dans le village de Mahfouda, commune de Bouhemza dans la wilaya de Bejaia, soit sur Oued Boussellam a 10 Km au sud-est de la ville d'Akbou.

Sa réalisation a débutée dans la fin des années 1990 par l'entreprise Hydrotchnika (Ex-Yougoslavie), réceptionné en 2008 et mis en service en 2009.

Il est. destine a:

- ✓ L'irrigation des périmètres du Sahel (6400 Ha) et la Haute Soummam (43 hm³/an).
- ✓ L'alimentation en eau potable et industrielles des agglomérations situé sur le couloir Akbou-Bejaia (47 hm³/an) et pour l'écrêtement des crues de l'Oued Boussellam).

Figure.7. du barrage de Tichy-Haf.

6.1. Géographie du barrage de Tichy Haf.

Wilaya : Bejaia.

Coordonnées : 36°25'12 "Nord, 4°41'26" Est.

Cours d'eau : Asif Boussellam.

6.2 Objectifs et impacts.

Vocation : Eau potable et irrigation.

Propriétaire : Société Nationale des barrages.

Date de début des travaux : 1999.

> Date de mise en service : 2009.

6.3. Caractéristiques du barrage.

- > Type : Barrage poids-voute.
- Capacité : 80 millions de mètres cubes.
- Production : 47 millions de mètres cubes par an destiné a l'alimentation en eau potable et 43 millions destinés a l'irrigation.
- Hauteur (lit de rivière) : 90 m.
- Nombre d'ouvrages : 4 ouvrages.
- ➤ Une station de traitement de capacité de : 120 000 mètres cubes par jour.
- Une conduite d'eau traitée d'une longueur de : 70 Km.
- Des réservoirs de stockage d'une capacité totale de : 42 000 m³.

Tableau.11. Composition chimiques de l'eau du barrage Tichy Haf durant les différentsmois de l'année.

Date de	Ca	Cl	CE	HCO3	K	M	N		SO4	T°C
prélèvement	mg/l	m	μs/c	mg/l	m	g	a	Ph	mg/l	Eau
		g/l	m		g	m	m			
					/1	g/l	g/l			
26/01/2017	113,5	157	1556	228,7	3	65	110	7,6	424	10
07/02/2017	122,3	154	1340	225,7	4	59	120	7,9	414	10
07/03/2017	118,8	150	1500	228,7	5	58	109	8	418	13,5
11/04/2017	139	156	1529	228,7	4	52	120	8,1	414	17
10/05/2017	145	170	1555	216,6	2	54	100	7,9	413	22
15/06/2017	141,7	159	1616	228,8	2	49	100	8	159	27
03/10/2017	120,5	173	1663	198,2	3	56	106	7,8	400	23
08/11/2017	135	172	1608	167,7	4	50	100	7,6	423	18
13/12/2017	136,7	158,	1564	247	3	51	103	7	325,	12,5
		5							9	

Source: ANRH ALGER.

6.3.1. Classification de l'eau du barrage.

63. 1.1 Classification américaine.

Cette classification prend en compte les valeurs de la conductivité électrique et du SAR « Sodium Absorbtio Ratio ».

A/ La conductivité électrique.

Elle dépend de la nature des ions présent dans la solution et de leurs concentration, elle se mesure a l'aide d'un conductimètre.

Conductivité électrique en us /cm	Qualité de l'eau
0 <ce<500< td=""><td>Non salé</td></ce<500<>	Non salé
500 <ce<1000< td=""><td>Légèrement salé</td></ce<1000<>	Légèrement salé
1000 <ce<2000< th=""><th>Salé</th></ce<2000<>	Salé
2000 <ce<4000< td=""><td>Très salé</td></ce<4000<>	Très salé
CE>4000	Extrément salé

Source: FAO.

On a constaté que l'eau du barrage possède une conductivité électrique moyenne de CE=1548 mmhos/cm= 1,548 mmhos/cm, la qualité de notre eau est donc moyennement salée.

B/Le SAR.

Il exprime l'activité relative des ions de sodium dans les réactions d'échange dans les sols. C'est un indice qui mesure la concentration relative du sodium par rapport au calcium et au magnésium.

SAR= $C N_a^+ / (CCa^{++}+CM_g^{++})^{1/2}/2$. Tel que : • C : Concentration en ions en mol/m³.

- Na: Sodium.
- . Ca: Calcium.
- ❖ Mg: Magnesium.

Tableau.12. Le risque du SAR dans l'eau d'irrigation.

SAR	Classe d'eau
SAR<10	Utilisable pour l'irrigation pour tout les sols.
10 <sar<18< th=""><th>Utilisable pour les textures organique et grossières, utilisable aussi dans les texturesfines par ajout de gypse.</th></sar<18<>	Utilisable pour les textures organique et grossières, utilisable aussi dans les texturesfines par ajout de gypse.
18 <sar<26< th=""><th>Utilisable seulement si il y'a application delessivage et ajout d'amendement.</th></sar<26<>	Utilisable seulement si il y'a application delessivage et ajout d'amendement.
SAR>26	Inutilisable

Source: FAO.

Application numérique :

SAR= $C N_a^+ / (C C_a^{++} + C M_g^{++})^{1/2} / 2 = 107,6/(55+130,3)^{1/2} = 11,18.$

SAR= 11,18.

On déduit alors que l'eau est d'une qualité **Utilisable** pour l'irrigation.

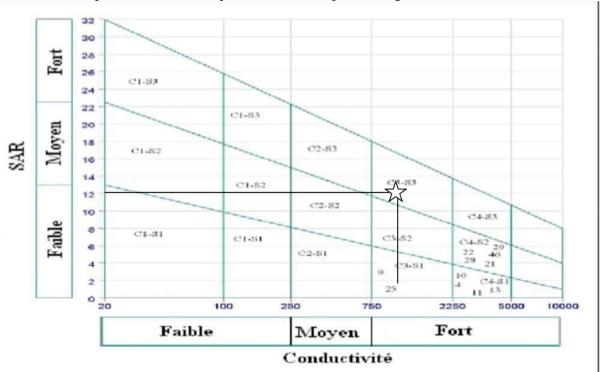


Figure.8. Diagramme de classification des eaux d'irrigation.

On déduit alors selon le diagramme de classification des eaux d'irrigation que notre eau est de classe C₃S₃, ce qui signifie que c'est une eau a forte salinité et sodiocité.

6.3.2. Normes de qualité des eaux destinées à l'irrigation.

Tableau.13. Concentrations en paramètres toxiques de l'eau du barrage.

PARAMETRES TOXIQUES	VALEURS LIMITES
Mercure (Hg)	0,001 mg/l
Cardium(Cd)	0,01 mg/l
Arsenic(As)	0,1 mg/l
Chrome total(Cr)	1 mg/l
Plomb(Pb)	5 mg/l
Cuivre(Cu)	2 mg/l
Zinc(Zn)	2 mg/l
Sélénium(Se)	0,02 mg/l
Fluor(F)	1 mg/l
Cyanures(CN)	1 mg/l
Phénols	3 mg/l
Aluminium(Al)	5 mg/l
Bérilium(Be)	0,1 mg/l
Cobalt(Co)	0,5 mg/l
Fer(Fe)	5 mg/l
Lethinium(Li)	2,5 mg/l
Manganèse(Mn)	0,2 mg/l
Molybdène(Mo)	0,01 mg/l
Nickel(Ni)	2 mg/l
Vanadium(V)	0,1 mg/l

Source:S.E.E.E.

Tableau.14.Concentrations en ions toxiques de l'eau du barrage.

IONS TOXIQUES	VALEURS LIMITES	
Sodium		
Irrigation en surface (SAR***)	69 mg/l	
Irrigation par aspersion	9 mg/l	
Chlorure		
Irrigation en surface	350 mg/l	
Irrigation par aspersion	15 mg/l	
Bore (B)	3 mg/l	

Source:S.E.E.E.

Tableau.15. Valeurs limites des car	actéristiques physiques de l'eau du barrage.
EFFETS DIVERS	VALEURS LIMITES
Tampáratura (°C)	35 °C

Température (°C)

pH

6,5 a 8,4

Matières en suspension en mg/l

Irrigation gravitaire200Irrigation par aspersion localisée100Azote nitrique (N-NO3)30 mg/lBicarbonate (HCO3-) irrigation par518 mg/l

aspersion

Sulfates (SO42-) 250 mg/l

Source:S.E.E.E.

Selon les valeurs de la qualité d'eau du barrage de Tichy Haf on a:

Ph = 7,8 HCO3 = 218,9 Température de l'eau = 17°C. 6,5<ph< 8,4...Condition vérifiée. HCO3⁻<518...... Condition vérifiée. T°C<35°C...... Condition vérifiée.

Conclusion

A préciser que les conditions naturelles de topographie, climat et du sol permettent une bonne connaissance du terrain et étude des caractéristiques du sol, ce qui assure une exploitation meilleure des terres et des systèmes d'irrigations.

La commune de Tazmalt est située dans la vallée du « Sahel-Djurdjura », autrement dit la vallée qui englobe toutes les plaines de Djurdjura qui forment une barrière élevée a gauche de 180mm/an de précipitation et a droite par des ruisseaux de la chaine des Bibans, soit notre secteur a une pluviométrie moyenne de 491 mm/an.

Après l'analyse chimique de notre eau du barrage de TCHY-HAF on a trouvé qu'il a une eau à forte salinité et sodiocité.

Ensuite l'étude pédologique du sol nous a permis de trouver qu'elle a une texture: Limonargilo-sableux a Limon-sablo-argileux de Salinité : moyenne.

Alors que l'étude climatologique nous a permis de déduire que Notre zone d'étude est relatif au sous-étage d'un : Hiver chaud soit étage bioclimatique semi-aride, ou l'irrigation est souvent indispensable.

Chapitre II : Systèmes d'irrigations.

Introduction.

Bien que clairement définie, l'irrigation n'a pas été vraiment identifiée ni distinguée du vaste domaine des activités de développement hydraulique, telles les constructions majeurs et mineures pour la collecte, le stockage, le transport et la distribution de l'eau, la réalisation des forages et les pompages. La plupart des efforts et investissements consentis dans de nombreux pays pour le développement de l'irrigation ont d'avantage porté sur la mise en valeur des ressources en eau plutôt que sur l'amélioration de l'utilisation de l'eau au niveau de la parcelle.

L'application des méthodes et techniques d'amélioration de l'irrigation dans les petites exploitations est en rapide expansion parce que la nécessité d'une plus grande efficience de l'irrigation, d'une meilleure utilisation de l'eau, ainsi qu'une intensification et d'une diversification de la production se fait sentir de manière accrue.

Un système d'irrigation comprend des canaux et des ouvrages pour transporter et distribuer l'eau aux utilisateurs. Il existe essentiellement deux catégories des systèmes d'irrigation : les réseaux de canaux à ciel ouvert et les réseaux de conduites sous pression. Cet ouvrage ne concerne que ce dernier type de réseaux.

L'expérience accumulée dans de nombreux pays des zones arides et semi-arides indique que les techniques d'irrigation en conduites sous pression remplacent avec succès les méthodes traditionnelles d'irrigation par canal à ciel ouvert au niveau de l'exploitation.

1. Définition de l'irrigation.

L'irrigation est l'opération consistant a apporter artificiellement de l'eau a des végétaux cultivés, pour en augmenter la production, et permettre leur développement normal en cas de déficit d'eau induit par un déficit pluviométrique, un drainage excessif, ou une baisse de nappe, en particulier dans les zones arides. Depuis des siècles ou millénaires des canaux d'irrigation ont été construits sur les pentes pour transporter l'eau canal d'irrigation en Anatolie, les techniques plus économes en eau commencent à être développées : image satellite (fausses couleurs) de champs irrigués aux Etats-Unis. L'irrigation peut avoir aussi d'autres applications:

- ✓ L'apport d'éléments fertilisants soit au sol, soit par aspersion aux feuilles (fertilisation foliaire) ; dans la culture hydroponique, l'irrigation se confond totalement avec la fertilisation.
- ✓ La lutte contre le gel, par aspersion d'eau sur le feuillage (vergers, vignobles), pour permettre de gagner quelques degrés de températures précieux, au moment des gelés printanières, voir dans certains cas par inondation. Généralement on parle d'arrosage pour les petites surfaces (jardinage), réservant le terme « irrigation » pour les surfaces plus importantes (agriculture de plein champs, horticultures), mais il n'ya pas de normes en la matière.
- ✓ Selon le glossaire international d'hydrologie, l'irrigation c'est un apport artificiel d'eau sur des terres à des fins agricoles.

2. Les systèmes d'irrigation.

Différents d'une région à l'autre, d'une époque à l'autre, les systèmes d'irrigation ont souvent été regroupés en quatre familles :

- o Le ruissèlement.
- o La submersion.
- o L'infiltration.
- o L'aspersion.

D'après D.SOLTNER, une autre classification en trois familles correspond mieux a la situation actuelle.

- « L'irrigation de surface », qui fait ruisseler l'eau sur le sol avant qu'elle ne s'infiltre.
- o « L'irrigation par aspersion », qui cherche à limiter la pluie tout en évitant qu'elle ne ruissèle.
- o « L'irrigation localisée », qui cherche à placer l'eau le plus prêt possible des racines sans humidifier la surface du sol.

Ces deux derniers systèmes sont groupés en « irrigation sous pression ».

3. Les techniques irrigation.

3.1. Les techniques d'irrigation des surfaces :

Dans ce cas le ruissèlement s'effectue entièrement à l'air libre, par simple écoulement à la surface du sol. La répartition de l'eau est assurée par la topographie du terrain, sous simple effet de la gravité, au moyen de canaux et rigoles.

3.1.1. Canaux.

C'est la technique la plus ancienne d'irrigation, utilise un canal a ciel ouvert, qui apporte l'eau par gravité a des canaux de plus en plus petits, venant irrigués les parcelles cultivées.

Inconvénient : Utilise d'énormes quantités d'eau, d'autant plus qu'une grande partie se perd par évapotranspiration.

3.1.2. Rigoles.

C'est un petit fossé artificiel creusé qui permet l'écoulement de l'eau.

3.1.3. L'irrigation par déversement.

Le principe de cette technique consiste a créé une nappe mince sur des planches courtes et larges dans une forte pente. Débordant de l'un des bords d'une rigole, en général horizontale, l'eau se répond sur toute la surface de la planche en une mince couche qui s'infiltre, et dans l'éventuel excès atteint la rigole inférieure.

3.1.4. L'irrigation par planches:

Le principe de cette technique consiste à créer une nappe mince, sur des planches longues et étroites dans une faible pente. L'eau qui ruissèle et s'infiltre au cours de son parcours de planche, arrive cette fois par l'un de ces petits cotés. Les planches sont donc longues et étroites. Mais pour que l'eau puisse atteindre l'extrémité aval de chaque planche, le débit amené doit être plus important que dans le cas du « Déversement ».

3.1.5. L'irrigation par submersion.

Le principe de cette technique consiste à créer une nappe épaisse en engorgeant temporairement toute la surface à pente nulle, lorsque la pente naturelle est nulle ou presque, le ruissèlement devient impossible. Un débit supérieur à la perméabilité du sol devient nécessaire pour conduire l'eau à l'extrémité des parcelles. L'eau s'accumule alors en une nappe de quelques cm qui s'infiltrent peu a peu.

Les principaux inconvénients de la submersion sont :

- ✓ Le tassement du sol en profondeur.
- ✓ La réduction de la perméabilité.
- ✓ L'asphyxie temporaire, pas toujours nuisible, notamment en riziculture.
- ✓ Des procédés traditionnels, toujours employés dans les oasis, mais nécessitent beaucoup d'eau.

3.1.6. L'irrigation par sillons ou « a la raie ».

Cette technique consiste à couvrir partiellement le sol par l'eau, qui, ensuite s'infiltre latéralement et remonte par capillarité.

Au lieu de s'étendre sur toute la surface, l'eau quittant le canal d'amenée ruisselle puis s'infiltre dans les rigoles bordant les billons, sur lesquels sont implantées les cultures. S'infiltrant latéralement et remontant par capillarité, elle atteint les racines.

Il y'a deux variantes selon la pente du terrain :

- o Les raies en pente.
- o Les raies de niveau.

Les avantages de l'irrigation à la raie expliquent son grand développement traditionnel en régions méridionales, surtout pour les productions maraichères et arboricoles :

- ✓ Une partie seulement de la surface est affectée par le tassement, et dégradation de structure dus à l'eau.
- ✓ Le feuillage des plantes basses, les melons par exemple, n'est mouillé, ce qui limite les maladies.
- ✓ Ce mode d'arrosage convient bien aux cultures nécessitant un buttage : pomme de terre, choux, poireaux, haricots...
- ✓ Les frais d'aménagement sont réduits, du moins a partir du moment où tout un périmètre a été occupé.

Les inconvénients de ce système sont :

- ✓ Une partie de l'eau est perdue par lessivage sous les rigoles, surtout en sol léger.
- ✓ Dans les sols en pente, l'érosion est à craindre si le débit est mal réglé.
- ✓ Dans les sols à forte salinité, la remontée capillaire peut concentrer le sol dans les billons.

3.2. L'irrigation souterraine.

C'est une forme d'irrigation par infiltration, dans laquelle l'eau, amenée au contact des couches profondes du sol, remonté par capillarité.

Trois variantes peuvent être distinguées :

- -L'irrigation par fossés profonds.
- -L'irrigation par rigoles a eaux pluviales.
- -L'irrigation par drains poreux.

3.3. Les techniques d'irrigation sous pression.

3.3.1. L'irrigation par aspersion.

Réservée à l'époque de l'arrosage maraichère, l'aspersion a pris en grande cultures un essor considérable grâce aux matériaux métalliques et plastiques.

Cette technique consiste a limiter la pluie sans ruissèlement, le débit de l'arrosage doit être toujours inférieur a celui de l'infiltration, cela impose beaucoup de calculs.

Elle exige de très grands moyens, et elle est surtout utilisée pour l'irrigation à grande surface.

Ces avantages peuvent se résumer ainsi :

- ✓ Tout nivellement de sol est supprimé.
- ✓ C'est la seule méthode permettant d'arroser convenablement les sols perméables, pour être irrigués par ruissèlement.
- ✓ Elle permet un dosage précis, d'où économie de l'eau.
- ✓ L'eau pulvérisée, est plus oxygénée.
- ✓ L'arrosage antigel est possible.
- ✓ Elle permet une économie de main d'ouvre.

Par contre elle a trois principaux inconvénients :

- ✓ Le cout élevé des installations.
- ✓ La mauvaise répartition de l'eau par temps agité.
- ✓ Le mouillage des feuilles.

3.3.2. L'irrigation localisée.

Elle consiste à apporter l'eau sur une partie du sol seulement par petites doses fréquentes. A la limite, la compensation de l'évapotranspiration se fait quotidiennement, et l'eau est apportée par des distributeurs, ce qui crée dans le sol des zones humides, appelée « bulbes d'arrosage ».

Ces installations sont entièrement fixes, munies de vannes semi-automatiques, elles sont généralement en plastique et l'eau est amenée sous faible pression et faible débit.

Des précautions doivent être prises pour filtrer les eaux utilisées, car les distributeurs se bouchent facilement.

Plusieurs techniques se sont développées :

- L'irrigation localisée par gouteurs.
- o L'irrigation localisée par rampes perforées fixes.
- o L'irrigation localisée par diffusion (micro jet, microdiffuseur).

0

Les avantages de l'irrigation localisée sont :

- ✓ Possibilité, voir nécessité de l'automatisation du système.
- ✓ Economie de l'eau, de main d'œuvre, d'énergie et facilité de travail.
- ✓ Feuillage sec, donc réduction de maladies cryptogamiques.
- ✓ Humidité du sol constante a cause de la continuité d'arrosage.
- ✓ Réduction du développement des mauvaises herbes.

Les inconvénients de ce système sont :

- ✓ Le colmatage des goutteurs, ce qui implique une bonne qualité d'eau.
- ✓ Présence permanente du réseau d'irrigation, ce qui gène le passage des engins.
- ✓ Difficulté de voir si le réseau fonctionne correctement.
- ✓ Fruits et feuillage ne sont pas lessivés de la poussière.
- ✓ Ne convient pas a toute les cultures, surtout les plantes tropicales.
- ✓ Mal contrôle de l'irrigation en cas de pluie en plein champ.

3.3.3. Rampes.

C'est un tuyau de grand diamètre et de grande longueur, posé sur des supports, percée de trous ou muni d'asperseurs.

Les différents types de couverture.

A/Couverture partielle.

Les asperseurs sont disposé le long d'une rampe mobile, qu'il faut régulièrement déplacer manuellement pour irriguer l'ensemble de la parcelle. Ce système demeure très exigent en main d'œuvre, a disparu au profit de rampes mobiles, supportées par des pylônes à déplacement latéral automatique. Les déplacements en rotation restent cependant les plus frequents.

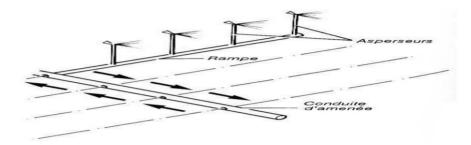


Figure .9. Irrigation par couverture partielle.

B/Couverture totale.

Un réseau de rampes couvrant toute la superficie à arroser, est installé en début de compagne, et seul les asperseurs sont déplacés manuellement après que la dose d'eau ait été apportée sur une bande de la parcelle.

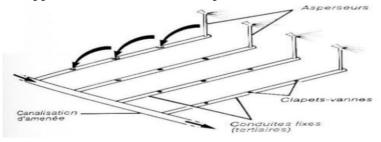


Figure.10.Irrigation par couverture totale.

C/Couverture intégrale.

C'est un système de rampes posées au sol, qui distribuent l'eau par un système d'asperseur. Il peut être le système d'irrigation principal, mais il peut aussi servir en complément d'un autre système sur une parcelle irrégulière.

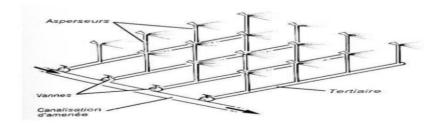


Figure.11.Irrigation par couverture intégrale.

3.3.4. Canon enrouleur.

C'est le matériel d'irrigation par aspersion le plus utilisé, il se compose d'un canal d'arrosage, fixé sur un support a roue, et alimenté par un tuyau flexible enroulé sur une bobine. Un moteur hydraulique entraine la bobine en rotation, et le tuyau en s'en roulant provoque le déplacement du canon. Les canons à retour lent permettent une meilleure répartition de l'eau que les canons à retour rapide.

3.3.5. Le pivot.

Les pivots et les rampes sont de systèmes d'irrigation convenant parfaitement aux cultures plein champ, le pivot nécessite encore moins de pression que le canon enrouleur et la couverture intégrale et permet l'application précise de l'eau. Cette technique d'aspersion est moins sensible au vent, il est possible de combiner le Pivot a un système fertilisant (apporter aux plantes en même temps que l'eau).

3.4.1. Micro irrigation.

3.4.1.1. Goute a Goute.

Les goutteurs sont des dispositifs qui apportent l'eau de façon ponctuelle a des faibles débits (2a 12 litres /heure) sous une pression de l'ordre de 1 bar. Cet apport est fait par des orifices de faible diamètre (1 a1, 5mm), soit par le cheminement de l'eau dans des tubes de section réduite (0,5 a1,5mm), sur une longueur importante , les goutteurs sont normalement réalisés en PVC. Les goutteurs a orifice présentent un risque élevé de colmatage. Il existe des gouteurs autorégulés, qui a l'aide de ressorts ou d'autres dispositifs, maintiennent le débit relativement constant dans une plage de pression donnée.

3.4.1.2. Le micro-asperseur.

Un procédé souvent appelé goute a goute, consiste à utiliser des microdiffuseurs installés sur les canalisations, donc très proche du sol. L'aspersion se limite a la surface occupée par les cultures, avec une portée de 1 a 2,5 m. Les débits sont plus importants qu'avec des gouteurs, varient de 10a 60 litres/heure. Cette technique est très rependue dans l'arboriculture.

Ce dispositif se compose d'un dispositif en tète de réseau permettant de régler le débit d'eau et de filtrer l'eau, de plusieurs conduites d'eau en PVC ou en polyéthylène de plus au moins haute densité selon qu'il s'agit de conduite principale ou secondaire, d'un diamètre de 10 a 16 mm et de microdiffuseurs, micro tubes en polyéthylène basse densité destinés a n'asperger qu'un arbre ou une plante.

3.4.1.3. Les canalisations poreuses.

Ils diffusent l'eau vers le sol sur toute la longueur. Néanmoins le risque de colmatage, l'irrégularité du débit et le fait qu'au début du cycle végétatif les racines ne sont pas assez profondes pour être alimentées par la canalisation.

Dans tout les cas l'eau utilisée pour la micro irrigation doit être filtrée pour minimiser les risques de colmatage.

Avantages de la micro-irrigation :

- ✓ Possibilité d'ajouter des engrais directement dans l'eau.
- ✓ Efficacité plus élevée.
- ✓ Peut être utilisée dans tous les types de terrain.
- ✓ Plus adaptée à l'eau saline.

Inconvénients:

- ✓ Cout initial plus élevé.
- ✓ Nécessité de filtrer l'eau pour minimiser le risque de colmatage.

Tableau.16. Efficience des systèmes d'irrigation.

<u> </u>	.10. Efficience u	ics systemes u i	iligation.	
Système	Couvertu	Canon	Rampes et	Micro-irrigation
d'irrigati	re	enroule		
on	intégrale	ur		
Efficacité	De 70 a 95%	De 80 a	De 90 a 95%	Environ 95%
d'applicati		95%		
onde l'eau				
Consommati	++	+++	++	+
onen énergie				
Sensibilité	++	++	+	
auvent				
Points forts	Adaptable a	Robuste et	Répartition	Efficience de
	tout type de		del'eau,	l'eau, faible
	parcelle		fertigation,	débit, fertigation
	1		gestion a	
Points faibles	Main	Main	Difficilem	Plus
	d'œuvre	d'œuvre	ent	d'entretient,
	pour	nécessaire	déplaçable	renouvlement
	installer et	pour la	d'une	plusfréquent
		miseen	parcelle a	I
		place	rancono	
		r		

Source: FAO.

3.5. Irrigation avec les eaux usées traitées.

Ceci permet l'économie des ressources hydriques en amont et la réduction de la pollution en aval, et même des fois constituer une source d'éléments nutritifs pour les plantes. C'est une pratique très rependue dans les régions qui souffrent d'une pénurie des ressources en eau.

3.5.1. Procédé d'utilisation.

Des traitements primaires et secondaires sont nécessaires pour que l'eau usée atteigne le niveau de qualité requis pour une nouvelle utilisation, par les étapes suivantes :

- -L'identification et la caractérisation des objectifs et besoins du système d'irrigation.
- -Les caractéristiques d'un éventuel traitement additionnel nécessaire.
- -La nécessité d'installation, de stockage et de distribution de l'eau recyclée.

3.5.2. Facteurs qui affectent le choix des méthodes d'irrigation et mesure spéciales pour l'utilisation des eaux usées.

Avantage:

- -Une alternative pour la pénurie d'eau qui frappe certaines régions de la planète.
- -Une source d'eau fiable pour les agriculteurs.
- -L'eau recyclée contiennent des nutriments qui permettent une réduction des couts de fertilisation.

Inconvénients:

- -Des modifications importantes des stations d'épuration peuvent être nécessaires pour assurer le niveau de la qualité de l'eau requis pour l'irrigation.
- -Restrictions liées aux enjeux de la santé publique.
- -Projet économique rarement rentable.

4. Illustration des différentes techniques d'irrigation.

Figure.12. Technique d'irrigation gravitaire.

Figure.13.Technique d'irrigation gravitaire par canaux.

Figure.14. Technique d'irrigation par aspersion.

Figure.15. Technique d'irrigation par rampes.

Figure.16. Technique d'irrigation par pivot.

Figure.17. Technique d'irrigation par goutte a goutte.

Figure.18. Technique d'irrigation par syphon.

Figure.19. Technique d'irrigation par les eaux usées traitées.

5. Les techniques pour économiser l'eau en irrigation.

L'irrigation est une assurance en agriculture. Elle permet d'assurer des rendements satisfaisants en termes de quantité et de qualité de la récolte. Cependant elle peut s'avérer couteuse, surtout en cas d'excès d'eau, apporter trop d'eau peut a l'inverse détériorer les récoltes ainsi que le sol (flaques, ruissellement). En réduisant l'eau on gagnera aussi de l'énergie et un cout faible de dépenses. Voici les différentes techniques d'économisassions d'eau :

5.1. Prendre en compte tout les paramètres de la culture.

Avant l'installation ou le remplacement d'un système d'irrigation il faut prendre en compte l'ensemble des critères qui peuvent impacter l'apport de l'eau comme le type de sol, type de parcelle (inclinaison, parcelle), le climat, le vent, le type de plantes. Une étude au préalable permet d'éviter les surprises et d'assurer que votre futur système d'irrigation correspond aux attentes.

5.2. Posséder un système d'irrigation efficient.

Le système en irrigation doit être adapté aux besoins en eau. Les systèmes n'ont pas tous la même efficience, de plus ils doivent être correctement dimensionnés. En effet il faut prendre en compte l'espacement entre les sprinklers, micro-sprinkler et goutteurs, ainsi que la taille de jets pour obtenir la meilleure répartition possible. Le choix du système d'irrigation se fait selon les critères suivants :

- La topographie (pente, relief, géométrie, parcelle).
- Ressources en eau (qualité, quantité, débit, disponibilité).
- Nature du sol (perméabilité).
- > Facteurs économiques.
- Les besoins en mains d'œuvres.
- La culture considérée.

5.3. Adapter les pressions et le débit selon le besoin en eau des cultures.

Les besoins en eau ne sont jamais les mêmes selon les périodes, installer des électrovannes connectées a un boitier de commande programmable permettra de une application plus précise de l'eau. L'économie d'énergie peut être aussi réalisée sur le pompage. Les énergies représentent 90% du cout de la pompe. Il est donc conseillé de se munir d'un variateur de fréquence. Il commande la vitesse de rotation de la pompe pour que la pression de consigne soit toujours respectée. Un variateur de fréquence peut gérer plusieurs pompes en simultané. Il est possible de connecter les systèmes automatiques a d'autres outils comme des capteurs (météo, humidité du sol), permettant d'éviter l'apport inutile d'eau.

5.4. Programmer, automatiser et gérer a distance les phases d'irrigation.

Quel que soit le système d'irrigation même les micro-asperseur, goute a goute, il est possible de gérer A distance les installations, les outils connectés permettent de gagner beaucoup de temps dans la gestion de l'irrigation, ils sont bien précis que la gestion manuelle par l'utilisation des technologies récentes.

5.5. Réaliser régulièrement des maintenances préventives.

Un mauvais entretient peut causer des fuites d'eau, qui a long terme peuvent constituer de sérieux couts, pour éviter cela il faut s'assurer de la qualité de son matériel et de ses réseaux de canalisations avant le démarrage de la saison d'irrigation.

6. Sources d'eau.

Figure.20.Cours d'eau.

Figure.21. Forage.

Figure.22.Lacs et rivières.

Figure.23.Nappe phréatique.

Figure.24.Retenue collinaire.

Figure.25.Eaux usées traitées.

7. Matériel d'irrigation.

On peut distinguer deux catégories de matériels ou d'installation nécessaire a l'irrigation :

7.1. Catégorie N°01 :

Ceux servant a amené l'eau depuis les sources disponibles :

Forage

Pompes

Canaux.

Réseaux d'irrigation.

Norias.

Figure.26. Pompes irrigation

Figure.27. Noria

7.2. Catégories N°02 :

Ceux servant à l'irrigation, c'est-à-dire à distribuer l'eau aux plantes :

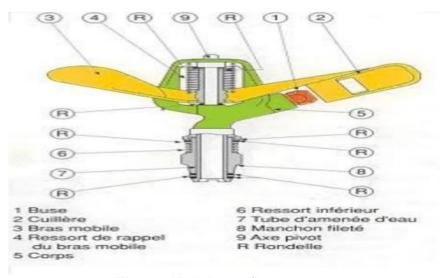


Figure .28. Schème d'un asperseur.

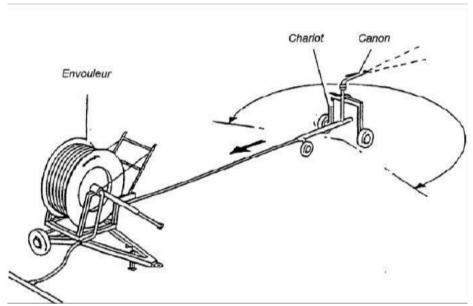


Figure.29. Schéma d'un canon enrouleur.

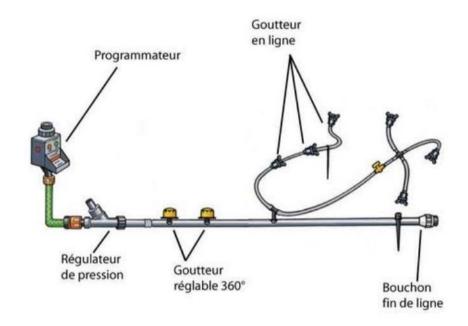


Figure.30. Composition d'un système goutte à goutte.

8. Etude des contraintes a l'irrigation.

8.1. Contraintes naturelles à l'irrigation : Le vent.

Les vents dont la vitesse excède 15 m/s peuvent faire verser les cultures et causer des pertes de production importantes. Lorsque l'averse intervient au moment de l'épiaison, elle provoque une baisse de production de 20 a 40 %, mais si elle intervient de 15 a 20 jours plus tard, la baisse de production est beaucoup plus faible mais la qualité du grain est moins bonne et la culture est beaucoup moins accessible pour la récolte.

8.1.1. Le sol.

C'est le caractère d'ordre général qui doit retenir tout spécialement l'attention réside dans la grande hétérogénéité du sol, il est donc indispensable de chiffrer certaines propriétés du sol.

8.1.2. La pente.

Une pente supérieure a 10% nécessite les aillons ou l'arrosage en pluie

8.1.3. La topographie.

La pente est un facteur capital de l'irrigation, c'est pour cela qu'elle doit être examinera elle conditionne la vitesse de circulation de l'eau en surface, ainsi que le parcellement. Les parcelles a pente uniforme et de faible amplitude (zones desservie par les grands barrages, se prêtent bien a l'irrigation car elles réduisent couteux travaux de terrassement.

Les propriétés physiques.

Perméabilité et capacité du sol pour l'eau, plus la perméabilité est grande plus la capacité est faible.

A/La cohésion.

Le maintien des particules entre elles. La force d'érosion de l'eau est d'autant plus élevée que la vitesse du liquide est plus grande cohésion. En outre l'imbibition du sol réduit par elle-même la force de cohésion en dispersant les agrégats. Les terres lourdes possèdent un degré de cohésion élevé, peuvent donc utiliser des masses d'eau importantes sur des pentes relativement prononcées. Les sols sablonneux se laissent volontiers, car ils sont peu cohérents, aussi de grandes précautions doivent être prises pour les mètrent en eau. Les terres sableuses sont les plus difficiles à irriguer par l'eau, la cohésion peut présenter pour un même sol d'importantes variations durant l'assolement, selon l'état d'ameublissement, la nature et l'âge des cultures cultivées.

Les propriétés chimiques :

A/Matières minérales.

L'excès d'eau entraine dans les couches profondes du sol ou les substances sont définitivement perdues, il est évident qu'il ne serait guerre avantageux d'appliquer des arrosages très suivis sur les terres maigres.

B/L.'eau.

L'utilisateur doit se préoccuper de l'origine de l'eau, de ses qualités et de son débit. Les besoins en eau domestiques étant prioritaires, et vu le rôle centrale de l'eau pour de nombreux autres secteurs d'activités, ce qui fait que les zones de prélèvements agricoles ne sont pas tous déclarés.

C/La qualité physique.

La qualité physique dominante est la température, un apport d'eau sur la terre Très sèche peut donner lieu à des phénomènes d'hydratation susceptibles d'élever dangereusement la température du sol. Une eau froide arrivant au contact d'un feuillage surchauffé peut aussi causer des accidents certaines plantes comme les cucurbitacées y sont très sensibles. Certaines eaux courantes entrainent avec elles des limons de qualités forts variables.

D/La qualité chimique.

La qualité de l'eau d'irrigation est un facteur important déterminant pour la production agricole, c'est pour cela que le choix de la source d'eau pour irriguer doit dépendre du type et la concentration des substances, donc elle pourra participer a la bonne croissance des plantes , mais également limiter les impacts négatifs sur le sol.

Une irrigation par aspersion avec une eau renfermant des concentrations relativement élevées d'ions, sodium ou chlorure peut endommager les feuilles de cultures sensibles, en particulier lorsque les conditions climatiques favorisent l'évaporation (températures élevées et faible humidité).

E/ Excès de salinité.

Peut aller jusqu'à la détérioration de la structure du sol a une réduction de sa macro et microporosité, une teneur élevée en sodium dans une eau d'irrigation amène des problèmes de perméabilité du sol et de toxicité (excès de sodium).

8.2. Contrainte économiques.

- Des pertes en eau causent une diminution des superficies irriguées des périmètres.
- Le quota d'eau alloué aux périmètres irrigués varie sensiblement d'une année à l'autre.
- Le rejet de l'irrigation par aspersion du fait des couts élevés des équipements a la parcelle.
- La variabilité économique de l'exploitation.
- Respect de l'environnement (développement durable).

Conclusion.

Le choix du système d'irrigation désigne un caractère de la réussite de l'investissement, un système d'irrigation mal choisi peut entrainer des pertes économiques très graves. C'est pour cela qu'on doit le prendre en considération le choix des critères suivants : le relief, pente, les ressources en eau selon leur qualité et quantité, la perméabilité du sol, la culture considéré qu'elle est le débit d'eau adéquat a son développement et essentiellement aussi le facteur économique, soit le cout du matériel d'irrigation et celui de la main d'œuvre.

Le choix de l'irrigation localisée est tés couteux, mais son utilisation permet de d'économiser l'eau, d'autant plus que c'est un réseau résistant .C'est le meilleur des systèmes.

Chapitre III Etude des besoins en eau des cultures.

Introduction.

Les pluies, en particulier leur part efficace, fournissent une partie de l'eau requise pour satisfaire les besoins d'évapotranspiration des cultures. Le sol, agissant comme un tampon, stocke une partie de l'eau de pluie et la restitue aux cultures en période de déficit. Sous des climats humides, ce mécanisme suffit pour assurer une croissance satisfaisante dans des systèmes de culture sans irrigation.

La consommation d'eau des sols cultivés est appelée évapotranspiration et notée ET. Elle est composée de l'évaporation directe et des prélèvements par les plantes : eau de transpiration, eau de constitution (négligées). Cette quantité représente donc la somme des volumes enlevés pendant un temps donné et sur une surface déterminée. Elle s'exprime par exemple en mm/j ou mm/an et dépend du climat, du végétal et du sol.

Une partie des besoins en eau des cultures peut être satisfaite par les précipitations ou de l'eau initialement stockée dans le sol. Le calcul des besoins en eau d'irrigation repose sur un bilan hydrique que nous allons développer dans ce chapitre.

1. Analyse fréquentielle de la pluviométrie.

Les données de volume des pluies sont obtenues à l'aide de pluviomètres : ils mesurent la hauteur de pluie tombée. Les radars météorologiques sont une autre source d'information : ils localisent les précipitations en temps réel et renseignent sur leur intensité.

L'unité utilisée est le millimètre de précipitation.

L'estimation des pluies est une étape primordiale pour l'élaboration d'un bilan hydrologique.

1.1.L'homogénéisation.

Des erreurs systématiques, d'observation ... affectent les termes d'une suite chronologique de précipitations annuelles c'est pour cela qu'on procède a l'homogénéisation des séries pluviométriques enregistrés afin de vérifier le caractère aléatoire simple de la série et garantir une étude adéquate des caractéristiques des pluies.

Parmi ces tests d'homogénéisation on optera sur le test de Wilcoxon :

-Nous considérons deux variables aléatoires X et Y de lois continues, observées toutes les deux sur les mêmes unités d'un n-échantillon. Les observations se présentent alors sous la forme d'une suite de couples $(x1, y1), \ldots, (xn, ym)$.

Avec : n<m, tel que : m : la taille des deux échantillons.

Le test de Wilcoxon permet de tester l'hypothèse suivante :

$$H0: L(X) = L(Y).$$
 Contre $H1: L(X) \neq L(Y).$

-On classe la série $(X \cup Y)$ par ordre croissant, en attribuant a chaque valeur son rang et sa série d'origine X ou bien Y.

-La condition pour que la série soit homogène est :

 $W_{min} < W_x < W_{max.}$

Tel que:

 $W_{min} = n (n+m+1)/2-1,96(nm (n+m+1)/12))^{1/2}.$

 $W_{\text{max}} = n (n+m+1)/2+1, 96(nm (n+m+1)/12))^{1/2}.$

W_x = Représente la somme des rangs des X_i.

n : La taille de l'échantillon X.

m: La taille de l'échantillon Y.

Avec: n<m.

Le tableau suivant indique les différents résultats du test de Wilcoxon appliqué à la station pluviométrique :

Tableau.17. Résultats du test de Wilcoxon appliqué à la station de SEDDOUK code : 151006.

X	Y	XuY	Série	Rang	XuY	Série	Rang
		parordre	d'origine		parordre	d'origi ne	
		croissant			croissant	iic iii	
505,4	615,2	283	Y	1	505,4	X	17
460,5	510,1	305,8	X	2	510,1	Y	18
519,6	407,5	308,7	X	3	510,9	X	19
510,9	450,6	354,1	X	4	514,6	X	20
514,6	283	386,7	X	5	514,3	Y	21
386,7	737,5	407,5	Y	6	519,6	X	22
420,7	619,5	420,7	X	7	520,4	Y	23
354,1	514,3	438,7	X	8	565,2	Y	24
455,3	462	450,6	Y	9	585	X	25
472,7	474,4	454,9	Y	10	594,9	Y	26
438,7	565,2	455,3	X	11	605,5	X	27
305,8	678,2	460,5	X	12	615,2	Y	28
585	454,9	462	Y	13	619,5	Y	29
605,5	520,4	472,7	X	14	678,2	Y	30
308,7	490 ,1	474,4	Y	15	737,5	Y	31
	594,9	490 ,1	Y	16			

On a alors selon le tableau:

n = 15.

m = 16.

 $\begin{array}{ll} W_{min} = n \; (n+m+1)/2 - 1,96 (nm \; (n+m+1)/12))^{\frac{1}{2}} = 190,42. & W_{min} = 190,5. \\ W_{max} = n \; (n+m+1)/2 + 1, \; 96 (nm \; (n+m+1)/12))^{\frac{1}{2}} = 289, \; 58. & W_{max} = 289,58. \\ W_{x} = 196. & W_{max} = 289,58. \end{array}$

Donc la condition du test de Wilcoxon: W_{min} $W_{x<}$ W_{max} est vérifiée (190,42<196<289,58).

Donc la série de la station pluviométrique de SEDDOUK est homogène.

1.2.TEST DE Khi-2.

Apres ajustement des données par la loi, Il convient de comparer l'adéquation de cette loi Afin d'adopter le meilleur ajustement. Dans notre cas, nous avons a utilisé le teste de Khi carrée.

La loi est adéquate pour une erreur Alpha =0.22 et Gamma=6. Si et seulement si :

X² calculé < X² théorique

Pour les calculs nous avons utilisé le logiciel HYFRAN.

2. Etude fréquentielle des pluies annuelles.

2.1. Ajustement à la loi de gauss.

La méthode de Gauss est comme suit :

Classer les valeurs des précipitations annuelles par ordre croissant.

Calcul des fréquences des valeurs observées et classées selon la loi suivante :

F(x) = (n-0.5)/N, tel que:

ightharpoonup n: Désigne l'ordre de classement(Rang). N : Le nombre d'années observées. Calcul des paramètres suivants : La moyenne arithmétique...... $\dot{X} = \sum x_i/N$.

L'écart type : $s = \sqrt{1/n} \sum_{i=1}^{n} (x_i - \dot{X})^2$.

La variable réduite de Gauss U=(X- X)/s.

Le coefficient de variation.... $C_v=s/\dot{X}$.

Remarque.

Pour les calculs de la figure et les calculs suivants nous avons opté pour l'utilisation du logiciel hydraulique **HYFRAN** plus et le logiciel **HYDROLAB**.

Tableau.18. Les résultats de l'ajustement selon la loi de GAUSS.

Valeurs de départ	Valeurs classées	Ordre de classement	Fréquence expériment ale	Variable réduite	Valeurs expérime ntales	Valeurs théoriques	Borne inférieure	Borne supérieure
505.4	202		0.0151	0.111	202	255454405	450.025050	200 0040 5
505,4	283	1	0,0161	-2,141	283	266,174197	179,826972	322,82126
460,5	305,8	2	0,0484	- 1,66069761	305,8	316,626751	244,333692	365,8845805
519,6	308,7	3	0,081	- 1,39837662	308,7	344,170455	279,058325	389,885961
510,9	354,1	4	0,113	1,21072713	354,1	363,873651	303,60569	407,34784
514,6	386,7	5	0,145	- 1,05812162	386,7	379,89723	323,346764	421,770687
386,7	407,5	6	0,177	- 0,92685851	407,5	393,679856	340,139679	434,363751
420,7	420,7	7	0,21	0,80642125	420,7	406,325769	355,373384	446,092434
354,1	438,7	8	0,242	-0,6998836	438,7	417,512222	368,693435	456,623053
455,3	450,6	9	0,274	- 0,60075977	450,6	427,920224	380,942287	466,565132
472,7	454,9	10	0,306	- 0,50722066	454,9	437,741831	392,362841	476,085257
438,7	455,3	11	0,339	- 0,41519385	455,3	447,404646	403,458557	485,591657
305,8	460,5	12	0,371	0,32920598	460,5	456,433372	413,69318	494,607208
585	462	13	0,403	0,24558952	462	465,2131	423,516609	503,503065
605,5	472,7	14	0,435	- 0,16365849	472,7	473,815859	433,014358	512,347283
308,7	474,4	15	0,468	0,08029831	474,4	482,568677	442,544817	521,478735
615,2	490,1	16	0,5	0	490,1	491	451,596506	530,403494
510,1	505,4	17	0,532	0,08029831	505,4	499,431323	460,521265	539,455183
407,5	510,1	18	0,565	0,16365849	510,1	508,184141	469,652717	548,985642
450,6	510,9	19	0,597	0,24558952	510,9	516,7869	478,496935	558,483391
283	514,3	20	0,629	0,32920598	514,3	525,566628	487,392792	568,30682
737,5	514,6	21	0,661	0,41519385	514,6	534,595354	496,408343	578,541443
619,5	519,6	22	0,694	0,50722066	519,6	544,258169	505,914743	589,637159
514,3	520,4	23	0,726	0,60075977	520,4	554,079776	515,434868	601,057713
462	565,2	24	0,758	0,6998836	565,2	564,487778	525,376947	613,306565
474,4	585	25	0,79	0,80642125	585	575,674231	535,907566	626,626616
565,2	594,9	26	0,823	0,92685851	594,9	588,320144	547,636249	641,860321
678,2	605,5	27	0,855	1,05812162	605,5	602,10277	560,229313	658,653236
454,9	615,2	28	0,887	1,21072713	615,2	618,126349	574,65216	678,39431
520,4	619,5	29	0,919	1,39837662	619,5	637,829545	592,114039	702,941675
490 ,1	678,2	30	0,952	1,66456286	678,2	665,7791	616,466044	738,181
594,9	737,5	31	0,984	2,14441062	737,5	716,163115	659,463627	802,607326

Fréquences	U.GAUSS	Valeurs	Borne	Borne	Valeurs	Fréquences	Périodes de
		théoriques	inférieure	supérieure		théoriques	retour
0,2	-0,841	402,695	351,017911	442,706733	402,695	0,200	5,0
			3	5			
0,5	0	491	451,596506	530,403493	491	0,500	2,0
			5	5			
0,8	0,841	579,305	539,293266	630,982088	579,305	0,800	5,0
			5	7			

Tableau.19. Caractéristiques de la série ajutée selon Gauss.

Paramètres	Valeurs
Minimum (min)	283
Maximum (max)	737
Moyenne (moyé)	491
Ecart type (δ)	105
Médiane (Me)	490
Coefficient de variation (Cv)	0,214
Coefficient d'asymétrie (Cs)	0,0957
Coefficient d'aplatissement (Ck)	2,78
Paramètre de localisation (mu)	490,581
Paramètre d'échelle (σ)	105,136

T (ans)	Fréquence	XT (mm)	Ecart type	Intervalle	de
10 000	0,9999	882	53,9	776-987	
2 000	0,9995	837	48,5	741-932	
1 000	0,9990	816	46	725-906	
200	0,9950	761	39,7	684-839	
100	0,9900	735	36,8	663-807	
50	0,9800	707	33,7	641-773	
20	0,9500	664	29,2	606-721	
10	0,9000	625	25,7	575-676	
5	0,8000	579	22,1	536-622	
3	0,6667	536	19,8	497-575	
2	0,5000	491	18,9	454-528	
1,4286	0,3000	435	20,2	396-475	
1,2500	0,2000	402	22,1	359-445	
1,1111	0,1000	356	25,7	305-406	
1,0526	0,0500	318	29,2	260-375	
1,0204	0,0200	275	33,7	209-341	
1,0101	0,0100	246	36,8	174-318	
1,0050	0,0050	220	39,7	142-298	
1,0010	0,0010	166	46	75,5-256	
1,0005	0,0005	145	48,5	49,5-240	
1,0001	0,0001	99,6	53,9	-6,09-205	

Tableau .20. Résultats d'ajustement à la loi Gaussienne (A.B).

2.2. Ajustement a la loi Log Normal.

Une variable aléatoire X dite suit une loi Log-Normal de paramètre u et \mathfrak{c}^2 si la variable Y = Ln(X), suit une loi normale d'espérance u et de variante \mathfrak{c}^2 . Elle est également nommée la loi de Galton.

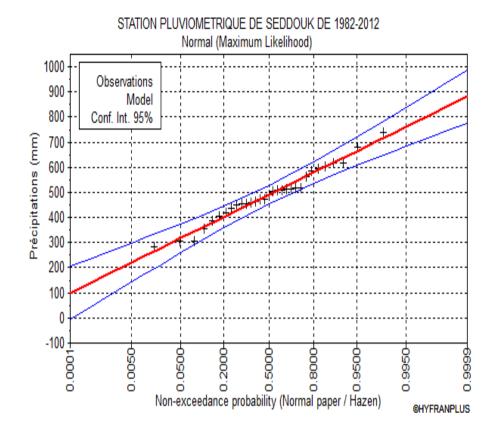
Paramètres:

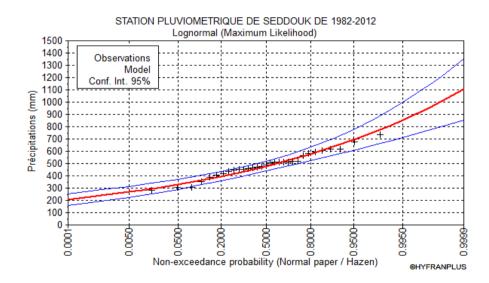
- ✓ **Espérance :** $E(X) = \exp(m + e^2/2)$.
- ✓ Les paramètres m et ɛ sont ceux de la loi Normale.
- ✓ Variance: $V(x) = (\exp (2m + \varepsilon^2)) (\exp \varepsilon^2 1)$.
- ✓ Médiane : .
- ✓ **Mode**: $(m- c^2)$.

Tableau.21. Résultats d'ajustement de la série pluviométrique selon la loi Log Normal.

Valeur s	Valeurs	Ordre de	Fréquence		Valeurs	Valeurs	Borne	Borne
de départ	classées	classemen t	expérimental e	Variable réduite	expérimentales	théoriques	inférieure	supérieure
505,4	283	1	0,0161	-2,141	283,00	298,55	249,14	336,17
460,5	305,8	2	0,0484	-1,6606976	305,8	331,8379	285,1956 3	367,916
519,6	308,7	3	0,081	-1,3983766	308,7	351,5518	306,7189 1	386,891
510,9	354,1	4	0,113	-1,2107271	354,1	366,3686	322,9069 8	401,308
514,6	386,7	5	0,145	-1,0581216	386,7	378,8776	336,5432	413,62
386,7	407,5	6	0,177	-0,9268585	407,5	389,9783	348,5953	424,679
420,7	420,7	7	0,21	-0,8064212	420,7	400,4494	359,9013 4	435,245
354,1	438,7	8	0,242	-0,6998836	438,7	409,9461	370,0871	444,955
455,3		9					9 379,7081	
472,7	450,6		0,274	-0,6007597	450,6	418,984	3 388,9036	454,321
438,7	454,9	10	0,306	-0,5072206	454,9	427,6955	7 398,0508	463,474
305,8	455,3	11	0,339	-0,4151938	455,3	436,4428	8 406,6788	472,798
585	460,5	12	0,371	-0,3292059	460,5	444,7777	5 415,1360	481,814
605,5	462	13	0,403	-0,2455895	462	453,0354	2 423,4799	490,879
308,7	472,7	14	0,435	-0,1636584	472,7	461,2753	9 432,0212	500,06
	474,4	15	0,468	-0,0802983	474,4	469,8128	8 440,2929	509,719
615,2	490,1	16	0,5	0	490,1	478,1861	5	519,34
510,1	505,4	17	0,532	0,0802983 1	505,4	486,7086	448,6036 7	529,284
407,5	510,1	18	0,565	0,1636584 9	510,1	495,7168	457,2692 4	539,959
450,6	510,9	19	0,597	0,2455895 2	510,9	504,7331	465,8217 7	550,812
283	514,3	20	0,629	0,3292059 8	514,3	514,1039	474,5856 2	562,267
737,5	514,6	21	0,661	0,4151938 5	514,6	523,9219	483,6356 2	574,454
619,5	519,6	22	0,694	0,5072206 6	519,6	534,6373	493,3653 3	587,966
514,3	520,4	23	0,726	0,6007597 7	520,4	545,7534	503,3052 6	602,205
462	565,2	24	0,758	0,6998836	565,2	557,7855	513,8995 9	617,86
474,4	585	25	0,79	0,8064212 5	585	571,0134	525,3643 6	635,346
565,2	594,9	26	0,823	0,9268585	594,9	586,3453	538,4348	655,952
678,2	605,5	27	0,855	1,0581216	605,5	603,5246	552,8307 5	679,443
454,9			,	1,2107271		,	569,7918	
520,4	615,2	28	0,887	1,3983766	615,2	624,1308	591,0248	708,136
490 ,1	619,5		,	1,6645628	619,5	650,436	621,9633	745,51
594,9	678,2 737,5	30	0,952 0,984	6 2,1444106	678,2 737,5	689,6635 766,4507	9 680,5977	802,637 918,637

Ugauss=1,96 Seuil x_0 =0. Moyenne $ln(x-x_0)$ =6,17. E.T. $ln(x-x_0)$ =0,22.


Fréquence s	U.GAUSS	Valeurs théoriques	Borne inférieure	Borne supérieure	Valeurs	Fréquence s théoriques	Périodes de retour
0,2	-0,841	397,41	356,63	432,17	397,41	0,200	5,0
0,5	0	478,19	440,29	519,34	478,19	0,500	2,0
0,8	0,841	575,37	529,10	641,17	575,37	0,800	5,0


Tableau.22.Caractéristiques de la série ajutée selon la loi Log Normal.

Paramètres	Valeurs	
Minimum (min)	283	
Maximum (max)	737	
Moyenne (moyé)	491	
Ecart type (δ)	105	
Médiane (Me)	490	
Coefficient de variation (Cv)	0,214	
Coefficient d'asymétrie (Cs)	0,0957	
Coefficient d'aplatissement (Ck)	2,78	•
Paramètre de localisation (mu)	6.17209	
Paramètre d'échelle (σ)	0.224737	

T (ans)	Fréquence	XT (mm)	Ecart type	Intervalle	de
10 000	0,9999	1110	127	856-1350	
2 000	0,9995	1000	104	800-1210	
1 000	0,9990	960	94,4	775-1140	
200	0,9950	855	72,6	713-997	
100	0,9900	808	63,6	684-933	
50	0,9800	760	54,7	653-868	
20	0,9500	694	43,4	609-779	
10	0,9000	639	35,1	570-708	
5	0,8000	579	27,3	525-632	
3	0,6667	528	22,3	484-572	
2	0,5000	479	19,3	441-517	
1,4286	0,3000	426	18,4	390-462	
1,2500	0,2000	397	18,7	360-433	
1,1111	0,1000	359	19,7	321-398	
1,0526	0,0500	331	20,7	291-372	
1,0204	0,0200	302	21,7	259-345	
1, 0101	0,0100	284	22,3	240-328	
1,0050	0,0050	269	22,8	224-313	
1,0010	0,0010	239	23,5	193-285	
1,0005	0,0005	229	23,7	182-275	
1,0001	0,0001	208	23,9	161-255	

Tableau.23. Résultats d'ajustement à la loi Log Normal.

3. Détermination de l'année de calcul.

La détermination de l'année de calcul nous permettra de connaitre la quantité de pluie utilisable par la plante. Elle est une fraction de pluie efficace c'est-à-dire de probabilité de 80%, P 80%.

Pour trouver la pluviométrie moyenne mensuelle de probabilité 80% on utilise la loi suivante :

 $P_{moyenne\ 80\%\ de\ chaque\ mois} = P_{moyenne\ de\ chaque\ mois}.P\ th\'eorique\ (80\%)\ annuelle/P_{th\'eorique\ (50\%)\ annuelle}$

P théorique (80%) annuelle 402,695 mm.

Pthéorique(50%) annuelle = **491mm**.

Nous avons:

 $P_{moyenne\ mensuelle\ de\ 80\%} = P_{th\acute{e}orique}/P_{moyenne\ annuelle.}\ P_{moyenne\ mensuelle}$

P_{movenne} de 80%=402,695/491 .P_{movenne} mensuelle=0,82 .P_{movenne} mensuelle.

 $P_{moyenne}$ de chaque mois et $P_{80\% \ moyenne}$ sont données par le tableau suivant :

Mois	P _{moyenne} (mm)	P ₈₀ %moyenne (mm)
Septembre	30,80	25,3
Octobre	43,39	35,58
Novembre	51,3	42,07
Décembre	75,07	61,56
Janvier	67,82	55,61
Février	58,54	48
Mars	51,14	41,93
Avril	49,93	40,94
Mai	37,87	31,05
Juin	10,88	8,92
Juillet	4,82	3,95
Aout	9,45	7,749
Année	491,01	402,659

Tableau.24. Pluviométrie moyenne mensuelle en mm.

3.1. Les besoins en eau.

Les besoins en eau d'une plante varient selon les espèces et leurs stades de développement. Donc l'irrigation d'une culture doit tenir compte de la nature de la plante, du climat et du sol. Elle assure au niveau de la plante deux rôles essentiels : .Le transport des éléments nutritifs et la régulation thermique grâce à la transpiration.

En théorie, l'intensité des échanges gazeux entre la culture et l'atmosphère ne dépend que des conditions climatiques et peut être approchée par des formules mathématiques tenant compte uniquement des facteurs climatiques. La valeur obtenue par ces formules est, comme on le sait, l'évapotranspiration potentielle (ETP) ou évapotranspiration de référence (ETo).

3.2.L'évapotranspiration potentielle (référence).

L'évapotranspiration potentielle (ETP) également nommée ETo (évapotranspiration de référence).

C'est une mesure de la capacité de l'atmosphère à éliminer l'eau de la surface d'un sol avec couvert végétal disposant de l'eau en abondance.

C'est la quantité maximale d'eau susceptible d'être perdue en phase vapeur, sous un climat donné, par un couvert végétal continu spécifié (gazon) bien alimenté en eau et pour un végétal sain en pleine croissance.

Les valeurs de l'ETo sont d'autant plus grandes que la température est élevée, le vent fort, l'air sec...

4. Méthodes d'estimation de l'évapotranspiration de référence.

Depuis 1950, plusieurs formules ont été développées pour estimer l'évapotranspiration: Thornthwaite (1944), Turc (1962), Blanney-Criddle (1950) et PenmanMonteith-FAO (1998). L'utilisation de ces modèles nécessite la connaissance de certaines données climatiques telles que, les températures maximales et minimales de l'air, les humidités relatives maximale et minimale, la radiation solaire globale et la vitesse du vent.

❖ 4..1. Formule de Turc.

Si Hr > 50 %, on a

ETP (mm/ mois) = K (Iga + 50) t/(t + 15)

 $k=0,37\,$ pour février $k=0,40\,$ pour les autres mois t:température moyenne mensuelleIga : radiation globale solaire mesurée ou calculée par : Iga =

Io(0.18+0.62h/H)

H :durée d'insolation effective Io : radiation maximalthéorique Io et H sont donnés par des tables en fonction de la latitude.

Si Hr < 50 %, on a:

ETP=0,40.(Ig+50).(1+(50-Hr)/70).(T)/(T+15)

Ig=Ig_A. (0, 18+0, 62.h/H)(Cal/cm2/Jour)

Avec:

Hr: Humidité de l'air en %.

H : Durée astronomique de jours en (Heure/Mois).

Ig: Radiation.

Ig_A: Radiation maximale théorique.

h: Durée d'insolation de la station considérée en Heure/Mois.

h/H: Insolation relative en heures.

4.2. Formule de Blaney Criddle.

Cette méthode de Blaney - Criddle, fait intervenir la température moyenne mensuelle et le pourcentage d'éclairement du mois considéré. L'ETP exprimée en mm/mois est la suivante :

$$ETP = K.P (0.46 T + 8.13).$$

T: Température moyenne mensuelle en °C P: Pourcentage d'éclairement mensuel, fonction de la latitude de la zone d'étude ; K : Coefficient fonction de la culture et de la zone climatique.

❖ 4.3. Formule de Penman.

La modélisation de Penman est très utilisée et considérée comme le modèle offrant « les meilleurs résultats et le minimum d'erreurs » selon la FAO et présentant des résultats « exacts et constants » pour les climats tempérés, humides et arides. Avec ce modèle, la couverture végétale est considérée comme un ensemble homogène et l'évapotranspiration est considérée de manière « verticale », comme une succession de résistances et régulations empêchant l'eau de s'évaporer : la résistance du sol, des racines, des stomates des feuilles, du couvert.

ETP=
$$p'(t)Rn/L + c. (Ea)/(p(t)+c)$$

Avec:

- ✓ Rn : Rayonnement net climatique.
- ✓ Ea : Pouvoir évaporant de l'air, fonction du vent et du déficit de saturation de l'air.
- ✓ L : Chaleur latente de vaporisation $(2,6.10^6 \text{ J/Kg})$.
- ✓ c: Constante psychométrique. (0,65 h la /°C).
- ✓ p'(t): Valeur de dérivée de la fonction de pression partielle de vapeur d'eau saturante en fonction de la pression de vapeur d'eau en fonction de la température, pour la température de l'air T.

❖ 4.4. Formule de BOUCHET.

Cette formule permet d'évaluer l'évapotranspiration à partir d'une mesure de l'évaporation (évaporomètre Piche), pour la période considérée (jour, décade, mois) :

ETP = α . λ (θ). Ep

 $\alpha = 0.37 \ .\lambda$: Coefficient fonction de la température θ .

 θ : Température moyenne entre la température de l'air et la température du point de rosée θ r (°C). Ep : Evaporation piche (mm/ (jour, décade, mois).

4.5. Autres méthodes de calcul de l'évapotranspiration.

La quantité d'eau est mesurée pour les données climatiques, qui peuvent s'évaporer ou s'évapotranspirer dans certaines conditions climatiques. La différence entre les précipitations et l'évapotranspiration potentielle donne le bilan hydrique climatique.

L'évapotranspiration par laquelle l'eau est éliminée de la surface ou du profil du sol, si disponible, est surtout exploitée (outre pour le climat) en agriculture. La mesure se réfère à des plantes convenablement alimentées en eau et généralement non limitées par des maladies ou la fertilité. La surface doit être entièrement recouverte, avec le potentiel de matrice proche de la capacité du champ (CC), et doit être plate et horizontale.

Les résultats sont présentés dans le tableau ci-dessous.

Tableau.25. Calcul des valeurs de l'évapotranspiration de référence par la méthode de Penmann-Montheith en mm/j

Pays AL Altitude 3	00 m .	La	atitude 36.3	8 °N 🔻		TAZMALT ongitude 4.4	10 °E
Month	Temp Min	Temp Max	Humidity	Wind	Sun	Rad	ЕТо
	°C	*C	%	m/s	heures	MJ/m²/jour	mm/jou
January	9.2	19.4	69	7.0	5.7	9.4	2.99
February	9.4	20.1	66	8.0	6.4	12.3	3.70
March	10.5	21.1	69	8.4	7.3	16.3	4.06
April	12.7	23.0	70	7.6	8.3	20.3	4.61
May	16.8	26.2	71	7.5	9.7	23.9	5.51
June	20.0	29.0	70	7.9	10.7	25.8	6.50
July	22.5	31.2	70	8.4	11.2	26.2	7.13
August	23.0	31.7	69	8.4	10.0	23.1	7.01
September	20.9	29.2	67	8.4	8.6	18.7	6.14
October	18.3	28.7	70	7.0	7.2	13.9	4.82
November	13.1	24.7	64	7.5	6.3	10.4	4.37
December	10.3	20.5	67	7.3	5.6	8.7	3.27
Average	15.6	25.4	69	7.8	8.1	17.4	5.01

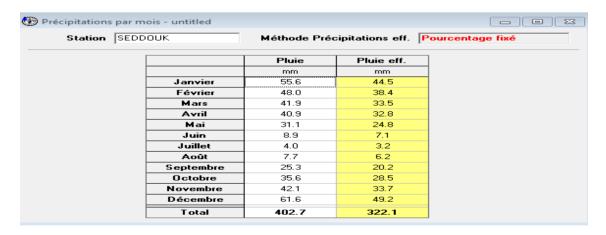
Les mesures météorologiques nécessaires lors de l'utilisation de la formule de l'évapotranspiration de référence :

- Rayonnement solaire Représente jusqu'à 80% de l'équation en fonction des conditions.
- Température de l'air (°C) Représente la 2^{ième} place avec la vitesse du vent.
- Vitesse du vent (m/s) Représente la 2^{ième} place avec la température de l'air.
- Humidité relative (%) a un effet notable lorsque l'air est très sec ou très humide.

En plus de ces mesures météorologiques, vous avez besoin de la hauteur de l'anémomètre, ainsi que la latitude, la longitude et l'altitude de l'emplacement du site.

Pour les calculs suivants, de l'évapotranspiration de référence on optera a l'utilisation du logiciel **CROPWAT.8.0**.

5. Calcul de la pluie efficace.


La pluie efficace représente la différence entre les précipitations et l'évapotranspiration. Elle peut être négative (cas de faible pluviométrie et de fortes températures). L'eau des pluies efficaces se répartit entre le ruissellement et l'infiltration.

Les précipitations efficaces peuvent être calculées directement à partir des paramètres climatiques et de la réserve utile du sol (RU). L'eau des précipitations efficaces est répartie, au niveau du sol, en deux fractions : l'écoulement superficiel et l'infiltration.

La pluie efficace est donc d'autant plus grande que la végétation est en sommeil comme en hiver.

Peff= 80% Pluie tombée.

Tableau.26. Calcul de la pluie efficace dans notre zone d'étude « Tazmalt ».

6. Calcul de l'évapotranspiration réelle.

Une évapotranspiration réelle est la quantité totale d'eau qui s'évapore du sol/substrat (évapotranspiration) et des plantes lorsque le sol est à son taux d'humidité naturel. L'ETR peut être mesurée expérimentalement à l'aide de cases lysimétriques. Une case lysimétrique est un bac exposé en plein air qui contient un sol couvert d'un certain type de végétation, ou laissé à nu, dont on évalue la quantité d'eau infiltrée et drainée par rapport à celle apportée par les précipitations. Certains lysimètres peuvent être pesés régulièrement pour connaître le volume d'eau contenu dans le sol.

6.1. Les facteurs affectant l'évapotranspiration :

- <u>L'énergie disponible</u>: il faut 600 calories pour vaporiser 1 gramme d'eau liquide. Plus l'énergie disponible augmente, plus l'ET augmente. L'ET variera donc en fonction de l'heure de la journée, des saisons, de la latitude.
- <u>Le gradient d'humidité</u>: plus l'air sera sec, plus la quantité d'eau d'eau vaporisée dans l'atmosphère augmentera.
- Le vent : il augmente la vaporisation de l'eau
- La disponibilité en eau : en l'absence d'eau, il n'y a pas d'ET.
- <u>Les facteurs spécifiques à la végétation considérée</u> : croissance des plantes, hauteurs, surface des feuilles
- <u>La résistance des stomates</u> : les plantes régulent leurs transpirations en ajustant leur ouverture.
- <u>Les caractéristiques des sols :</u> chimie, albédo...

On calcul généralement l'évapotranspiration maximale soit l'ETM.

Avec:

ETM=Kc*ET0

➤ Tel que :

ETM: Evapotranspiration maximale journalièreen mm/j.

ETO: Evapotranspiration de référence en mm/j.

Kc: Coefficient culturel.

7. Calcul du bilan hydrique pour les différentes cultures.

7.1. Choix des cultures irriguées.

Le bilan hydrique permet de mesurer le stress hydrique et l'éventuel déficit hydrique, notamment pour prévoir les sécheresses ou, à l'inverse, les inondations.

Le bilan hydrique prend en compte les entrées d'eau, les sorties d'eau, la capacité de stockage.

Besoins en eau d'irrigation = ETP-(Peff+RFU).

Tel que : ETP : Evapotranspiration en mm/j.

Peff: Pluie efficace en mm.

RFU: Réserve facilement utilisable.

Da : Densité apparente.

Avec RFU = (Hcc-Hpf)*Da*Y*Z

Z:Profondeurd'enracinement en mm.

Hcc: Humidité a la capacité au champ.

Hpf: Humidité au point de flétrissement.

Y : Le degré de tarissement, pour les sols limoneux-argileux et argileux-

limoneux on prend Y = 2/3.

Cas ou Besoins <0 ou B=0, Pas nécessaire d'effectuer une irrigation. Cas ou Besoins>0, L'irrigation est nécessaire.

A partir de l'abaque de la texture du sol et selon le type de texture on tire les valeurs des réserves utiles « RU » et celles des humidités pondérales Hcc et Hpf.

Le choix des cultures dépend donc du type du sol, de la quantité des sels présents dans le sol.

Tableau.27. Occupation du sol de l'ensemble du secteur de la zone d'étude.

La zone	Les cultures (Ha)	Superficies occupées en
		(Ha)
Arboriculture	2169,9	90,4%
Maraichère	79,7	3,3%
Fourragère	50,2	2,1%
(Luzerne/lotier)		·
Céréalaire	100,2	4,2%
(Avoine/TRITICALE/mai		
s /,le seigle, le sorgho, le		
millet,1'épeautre, le qu		
Total	2400	100%

Tableau.28. Occupation de sol en fonction des cultures.

Arboricultu	Maraichè	Fourragère	Céréalière
re(2169,9	re	(50,2Ha)	(100,2ha)
Ha)	(79,7Ha)		
	Pomme de	Luzer	Blé
Olivier.	terre.Tomate.	ne.	tendre.
Abricoti	Poivr	Lotier.	Avoine.
er.	on.	Mais.	Sarrasin
	Laitue		
			Triticale
	Ogno		. le
	n.		seigle.
	Pois.		Le
			sorgho.
			Le
			millet.
			L'épeaut
			re.Le
			quinoa.
			Orge.

8. Identification des principaux types d'assolement :

8.1. Les assolements proposés.

Tableau.29. Assolements proposées pour le secteur.

Assolement 1	Assolement 2
Pomme de terre	Haricots secs
Petit pois	Choux
Haricots verts	Orge d'hiver
Poivron	Ail
Olivier	Olivier (Sans assolement)
Amandier	Amandier (Sans assolement)
Abricotier	Abricotier (Sans assolement)

9. Calcul des besoins en eau des cultures :

1/ Pomme de terre.

Mois	P 80%	Pef f (m m)	ETP (mm/mois)	Z(m)	RFU théoriqu e	RFU réelle	KC	ETM	Beso ins nett es (mm)
Septembre	25,3	20,2	184,2						
Octobre	35,58	28,5	149,42	0,3	34,8		0,5	74,6	46,1
Novembre	42,07	33,7	131,1	0,5	58		0,8	104,88	71,18
Décembre	61,56	49,2	101,37	0,6	69,6		1,15	116,6	67,4
Janvier	55,61	44,5	92,69	0,6	69,6	23,2	1,0	92,7	25
Février	48	38,4	107,3			34,8			
Mars	41,93	33,5	125,86						
Avril	40,94	32,8	138,3						
Mai	31,05	24,8	170,81						
Juin	8,92	7,1	195						

2/Haricots Secs.

Mois	P 80%	P _{ef} f (m m)	ETP (mm/moi s)	Z(m)	RFU théoriq ue	RFU réelle	KC	ETM	Besoin s net tes (m m)
Septembre	25,3	20,2	184,2	0,9	104,4		0,35	64,47	44,27
Octobre	35,58	28,5	149,42			52,2			
Novembre	42,07	33,7	131,1						
Décembre	61,56	49,2	101,37						
Janvier	55,61	44,5	92,69						
Février	48	38,4	107,3						
Mars	41,93	33,5	125,86						
Avril	40,94	32,8	138,3						
Mai	31,05	24,8	170,81	0,3	34,8	•	0,4	68,32	43,5
Juin	8,92	7,1	195	0,6	69,6		0,7	136,5	129,4
Juillet	3,95	3,2	221,03	0,9	104,4		1,15	254,2	251
Aout	7,749	6,2	217,31	0,9	104,4		0,8	173,85	167,65

3/ Petit pois.

3/ 1 Cut									
Mois	P 80%	Pef f (m m)	ETP (mm/moi s)	Z(m)	RFU théoriq ue	RFU réelle	KC	ETM	Beso ins nett es (mm
Septembre	25,3	20,2	184,2						
Octobre	35,58	28,5	149,42						
Novembre	42,07	33,7	131,1						
Décembre	61,56	49,2	101,37	0,25	29		0,5	50,69	1,485
Janvier	55,61	44,5	92,69	0,4	46,4	9,66	0,8	74,15	20
Février	48	38,4	107,3	0,6	69,6	0,00	1,15	123,4	85
Mars	41,93	33,5	125,86	0,6	69,6	0,00	1,1	138,45	104,95
Avril	40,94	32,8	138,3			34,8			
Mai	31,05	24,8	170,81			`			
Juin	8,92	7,1	195						
Juillet	3,95	3,2	221,03						
Aout	7,749	6,2	217,31						

4/ Choux.

Mois	P 80%	P _{eff} (mm)	ETP (mm/moi s)	Z(m)	RFU théoriq ue	RFU réelle	KC	ETM	Beso ins nette
			3)		uc				S
									(mm)
Septembre	25,3	20,2	184,2	0,25	29		0,7	128,94	108,74
Octobre	35,58	28,5	149,42	0,3	34,8		0,8	119,54	91,04
Novembre	42,07	33,7	131,1	0,4	46,4		0,9	118	84,29
Décembre	61,56	49,2	101,37	0,4	46,4	15,47	0,97	98,33	
									33,66
Janvier	55,61	44,5	92,69	0,5	58	15,47	1,05	97,33	37,34
Février	48	38,4	107,3	0,5	58	0,00	0,95	101,94	
									63,54
Mars	41,93	33,5	125,86			29			
Avril	40,94	32,8	138,3						
Mai	31,05	24,8	170,81						
Juin	8,92	7,1	195						
Juillet	3,95	3,2	221,03						
Aout	7,749	6,2	217,31						

5/ Haricots verts.

Mois	P 80%	Pef f (m m)	ETP (mm/moi s)	Z(m)	RFU théoriq ue	RFU réelle	KC	ETM	Beso ins nett es (mm
Septembre	25,3	20,2	184,2	0,7	81,2		0,9	165,78	145,58
Octobre	35,58	28,5	149,42			40,6			
Novembre	42,07	33,7	131,1						
Décembre	61,56	49,2	101,37						
Janvier	55,61	44,5	92,69						
Février	48	38,4	107,3						
Mars	41,93	33,5	125,86						
Avril	40,94	32,8	138,3						
Mai	31,05	24,8	170,81						
Juin	8,92	7,1	195	0,3	34,8		0,5	97,5	90,4
Juillet	3,95	3,2	221,03	0,5	58		0,8	176,9	173,63
Aout	7,749	6,2	217,31	0,7	81,2		1,05	228,18	221,98

6/ Orge d'hiver.

Mois	P 80%	P _{ef} f (m m)	ETP (mm/moi s)	Z(m)	RFU théoriq ue	RFU réelle	KC	ETM	Beso ins nett es (mm)
Septembre	25,3	20,2	184,2	0,3	34,8		0,3	55,26	35,06
Octobre	35,58	28,5	149,42	0,7	81,2		0,7	104,6	76,1
Novembre	42,07	33,7	131,1	1,10	127,6		1,15	150,77	117,07
Décembre	61,56	49,2	101,37	1,10	127,6	42,533	0,7	70,959	
Janvier	55,61	44,5	92,69	1,10	127,6	42,533	0,25	23,18	
Février	48	38,4	107,3			63,8			
Mars	41,93	33,5	125,86						
Avril	40,94	32,8	138,3						
Mai	31,05	24,8	170,81						
Juin	8,92	7,1	195						
Juillet	3,95	3,2	221,03						
Aout	7,749	6,2	217,31						

7/ Poivron.

Mois	P 80%	Pef f (m m)	ETP (mm/moi s)	Z(m)	RFU théoriq ue	RFU réelle	KC	ETM	Besoin s net tes (m m)
Septembre	25,3	20,2	184,2						
Octobre	35,58	28,5	149,42						
Novembre	42,07	33,7	131,1						
Décembre	61,56	49,2	101,37						
Janvier	55,61	44,5	92,69						
Février	48	38,4	107,3						
Mars	41,93	33,5	125,86	0,25	29	0,00	0,6	75,52	42,1
Avril	40,94	32,8	138,3	0,5	58	9,66	0,7	96,81	54,35
Mai	31,05	24,8	170,81	0,8	92,8	0,00	1,05	179,36	154,56
Juin	8,92	7,1	195	0,8	92,8	0,00	1,00	195	187,9
Juillet	3,95	3,2	221,03	0,8	92,8	0,00	0,9	199	195,73
Aout	7,749	6,2	217,31			30,93			

8/ Ail.

Mois	P 80%	Pef f (m m	ETP (mm/moi s)	Z(m)	RFU théoriq ue	RFU réelle	KC	ETM	Besoin s net tes (m
)							m)
Septembre	25,3	20,2	184,2						
Octobre	35,58	28,5	149,42						
Novembre	42,07	33,7	131,1						
Décembre	61,56	49,2	101,37						
Janvier	55,61	44,5	92,69						
Février	48	38,4	107,3	0,25	29	0,00	0,7	75,11	36,71
Mars	41,93	33,5	125,86	0,4	46,4	0,00	0,8	100,7	67,188
Avril	40,94	32,8	138,3	0,6	69,6	0,00	1,05	145,22	112,42
Mai	31,05	24,8	170,81	0,6	69,6	0,00	1,00	170,81	146,01
Juin	8,92	7,1	195			23,2			
Juillet	3,95	3,2	221,03						
Aout	7,749	6,2	217,31						

9/ Abricotier.

Mois	P 80%	P _{ef} f (m m)	ETP (mm/moi s)	Z(m)	RFU théoriq ue	RFU réelle	KC	ETM	Beso ins nett es (mm)
Septembre	25,3	20,2	184,2	1,5	174	58	0,5	92,1	13, 9
Octobre	35,58	28,5	149,42	1,5	174	58	0,6	89,66	3,15
Novembre	42,07	33,7	131,1	1,5	174	58	0,7	91,77	
Décembre	61,56	49,2	101,37	1,5	174	58	0,9	91,24	
Janvier	55,61	44,5	92,69	1,5	174	58	0,65	60,25	
Février	48	38,4	107,3	1,5	174	58	0,65	69,75	
Mars	41,93	33,5	125,86	1,5	174	58	0,55	69,23	
Avril	40,94	32,8	138,3	1,5	174	58	0,55	76,1	
Mai	31,05	24,8	170,81	1,5	174	58	0,55	93,95	11,15
Juin	8,92	7,1	195	1,5	174	0,00	0,55	107,25	100,15
Juillet	3,95	3,2	221,03	1,5	174	0,00	0,55	121,57	118,37
Aout	7,749	6,2	217,31	1,5	174	0,00	0,55	119,53	113,33

10/ Olivier.

Mois	P 80%	$\mathbf{P}_{\mathbf{ef}}$	ETP	Z(m)	RFU	RFU	KC	ETM	Besoin
		f	(mm/moi		théoriq	réelle			S
		(s)		ue				net
		m							tes
		m							(m
G	25.2)	1010			0.00	0.0	4 (7 7 0	m)
Septembre	25,3	20,2	184,2	1,5	174	0,00	0,9	165,78	145,58
Octobre	35,58	28,5	149,42	1,5	174	0,00	0,9	134,48	
									105,98
Novembre	42,07	33,7	131,1	1,5	174	58	0,75	98,325	6,625
Décembre	61,56	49,2	101,37	1,5	174	58	0,65	65,9	
Janvier	55,61	44,5	92,69	1,5	174	58	0,65	60,25	
Février	48	38,4	107,3	1,5	174	58	0,55	59,015	
Mars	41,93	33,5	125,86	1,5	174	58	0,55	69,22	
Avril	40,94	32,8	138,3	1,5	174	0,00	0,55	76,065	
							-		43,27
Mai	31,05	24,8	170,81	1,5	174	0,00	0,55	93,95	
		,		,		ĺ		,	69,15
Juin	8,92	7,1	195	1,5	174	0,00	0,9	175,5	168
							-	-	,4
Juillet	3,95	3,2	221,03	1,5	174	0,00	0,9	198,93	195,73
Aout	7,749	6,2	217,31	1,5	174	0,00	0,9	195,58	
									0189,3
									8

12/ Amandier.

Mois	P 80%	P _{eff} (m m)	ETP (mm/mo is)	Z(m)	RFU théor ique	RFU réelle	KC	ЕТМ	Besoins nettes (mm)
Septembre	25,3	20,2	184,2	1,5	174	0	0,8	147,36	127,16
Octobre	35,58	28,5	149,42	1,5	174	58	0,65	97,12	10,63
Novembre	42,07	33,7	131,1	1,5	174	58	0,65	85,22	
Décembre	61,56	49,2	101,37	1,5	174	58	0,65	65,9	
Janvier	55,61	44,5	92,69	1,5	174	58	0,65	60,25	
Février	48	38,4	107,3	1,5	174	58	0,4	42,92	
Mars	41,93	33,5	125,86	1,5	174	58	0,4	50,344	
Avril	40,94	32,8	138,3	1,5	174	58	0,4	55,32	
Mai	31,05	24,8	170,81	1,5	174	58	0,4	68,324	
Juin	8,92	7,1	195	1,5	174	58	0,4	78	12,9
Juillet	3,95	3,2	221,03	1,5	174	58	0,45	99,47	38,27
Aout	7,749	6,2	217,31	1,5	174	0,00	0,9	195,58	189,38

Tableau.30. Récapitulatif des besoins en eau pour l'assolement 1.

Cultures	Pom	P	Haric	Poivron	Abri	Olivier	Amandie	M	Total (mm)
	me	et	ots		coti		r	ax	
	de	it	verts		er			(
	terre	p oi						m	
								m	
Septembre		S	145,58		13,9	145,58	127,16	145,58	432,22
Octobre			110,00		15,5	113,30	127,10	105,98	165,85
Octobre	46,1				3,152	105,98	10,623	103,76	105,65
Novembre	71,18					6,625		71,18	77,81
Décembre	67,38	1,485						67,38	68,86
Janvier	24,99	19,992						24,99	44,98
Février		85						84,995	85
Mars								104,95	146,96
		104,95		42,016					
Avril				54,35		43,27		54,35	97,615
Mai				154,56	11,1455	69,1455		154,56	234,85
Juin			90,4	187,9	100,15	168,4	12,9	187,9	559,75
Juillet			173,62	195,73	118,37	195,73	38,27	195,73	721,71
Aout			221,98		113,33	189,38	189,38	221,98	714,1

Tableau.31. Récapitulatif des besoins en eau pour l'assolement 2.

Cultures	Harico ts secs	Chou	Orge d'hive r	Ail	Abricotie r	Olivier	Amandie r	Max (mm)	Total (mm)
Septembre	44,27	108,74	35,1		13,9	145,58	127,16	145,58	474,71
Octobre	0,00	91,036	76,1		3,152	105,98	10,623	105,97 8	286,89
Novembre	0,00	84,29	117,1			6,625		117,1	207,98
Décembre	0,00	33,66						33,66	33,66
Janvier	0,00	37,36						37,36	37,36
Février	0,00	63,54		36,71				63,54	100,25
Mars	0,00			67,188				67,19	67,19
Avril	0,00			112,41 5		43,27		112,42	155,68
Mai	43,524			146,01	11,1455	69,15		69,15	269,83
Juin	129,4				100,15	168,4	12,9	168,4	410,85
Juillet	250,98				118,37	195,73	38,26	250,98	603,34
Aout	167,65				113,32	189,38	189,38	189,38	659,73

10. Calcul du débit spécifique :

Les débits spécifiques sont définis d'après les besoins en eau de chaque culture évaluée précédemment à partir de la répartition culturale. La dose d'arrosage de la consommation de pointe est donnée sous forme de débit fourni 22 heures sur 24 afin d'assurer les besoins de la consommation mensuelle.

qs = Bnet*10*1000/Nj*Ni*3600*Ei l/s/ha.

Avec:

- ✓ **Bnet**: besoin net du mois de pointe en mm/mois.
- ✓ **Ni:** nombre des heures d'irrigation=22h.
- ✓ **Nj**: nombre de jours du mois de pointe =30 jours.
- ✓ **Ei**: Efficience d'irrigation=75%.

On calcule les besoins en eau pour l'assolement le plus exigent (Assolement 1) D'où les besoins de pointe correspondent au mois de juillet.

Bnet =**721,708**mm/mois.

qs=4,051/s/ha > 1.5 1/s/ha.

Le débit spécifique obtenu est supérieur à 1.5. Il y'a un risque de surdimensionnement Pour y remédier, nous avons trois méthodes pour estimer le débit spécifique :

- > prendre la moyenne des débits spécifiques de l'ensemble des cultures ;
- > prendre en considération la moyenne des débits spécifiques des cultures les plus exigeantes.
- > On prend donc le débit spécifique de la culture la plus exigeante pour le mois de Pointe.

Pour notre cas on prend le débit spécifique da la culture la plus exigeante (L'olivier=195,727mm).

Donc le débit spécifique pris en considération pour notre périmètre est de : qs = 1.1 l/s /ha ; ce débit est inférieur à 1.5 l/s/ha donc le choix de ce débit reste valable.

11. Evaluation du débit caractéristique :

Le calcul du débit caractéristique permet de définir le débit maximum que le système de desserte aura à fournir pour l'irrigation de chaque parcelle, déterminé en multipliant le débit de pointe par la surface agricole utile, voir la formule suivante :

Ocar= qs. S

- qs : débit spécifique de mois de pointe en (l/s/ha).
- S: la superficie nette à irriguer = 1033,63ha.

Qcar = qs. S = 1.1*1033, 63=1137 l/s.

12. Estimation des volumes d'eau d'irrigation :

L'estimation des volumes d'eau d'irrigation permet de prévoir les volumes d'eau stockés dans la retenue et d'effectuer un meilleur calendrier d'arrosage.

Le volume des besoins en eau =le besoin de la culture (m3) * la surface de la culture.

Le volume des besoins en eau pour notre périmètre est présenté dans le Tableau.

Tableau.32. volume d'eau d'irrigation.

Type de	surfa	Besoins	Besoins	Besoins en	Besoins
culture	ce	e	e	eau brut	
culture		_	_		en
	(Ha)	n	n	(m ³ /Ha)	eau
		eau	eau		br
					ut
		net(mm)	net		totau
			(m ³ /Ha)		X
					(m^3/H)
					a)
Arboriculture	923				
Olivier	723	924,0995	9240,995	12321,3266	8908319,18
		,,,,,,,		7	2
					_
Amandier	100	378,3255	3783,255	5044,34	504434
Abricotier	100	360,0345	3600,345	4800,46	480046
		,	ŕ	,	
Le	90				
maraichage					
Pomme de	30	209,6455	2096,455	2795,27333	83858,1999
terre		207,0455	2070,455	3	9
Petit pois	30	211,418	2114,18	2818,90666	84567,2000
1 cut pois	30	211,410	4114,10	2010,90000 7	1
				'	1
Doire	20	624 5425	6245 425	0460 50	252017 4
Poivron	30	634,5435	6345,435	8460,58	253817,4
Fourragère	20,63				
Touringere	20,00				
Orge d'hiver	20,63	228,219	2282,19	3042,92	62775,4396
orge a miver	20,03	220,217	2202,17	3074,74	04113,7370

Donc selon tableau on aura: Les besoins total = 10,38 Mm³.

On remarque que le volume nécessaire pour les besoins des cultures sur notre zone d'étude durant toute leur période végétative est de l'ordre de 10 Mm3. Et comme le barrage d'alimentation est de capacité totale de 90 Mm3 et le volume extrait à partir du barrage Tichy-Haf d'une capacité destinée uniquement a irrigation de tout le périmètre Oued Sahel de 43 Mm³, la totalité du périmètre étudié (2400 Ha) consommera 23 Mm3, mais notre zone d'étude d'une superficie de 1033,63Ha consommera alors 10 Mm3, le volume d'eau extrait est donc adéquat et vérifié.

Conclusion.

Le chapitre précédant se résume au choix des cultures implantées dans notre zone d'étude toute en prenant compte des conditions climatiques ainsi que pédologiques du terrain (taux pluies, évapotranspiration) on a trouvé que l'olivier tait la culture la plus exigeante avec 196 mm de débit spécifique 1,1 l/s /Ha, on a remarqué que la région est une zone spécifiée a l'arboriculture beaucoup plus, notamment l'oléiculture qui occupe la majeure partie du secteur.

Chapitre IV ETUDE DU SYSTEME D'ADDUCTION

Introduction.

À partir du réservoir de Bousellam situé à une altitude de, deux canalisations en acier appelées « Conduite maîtresse ILO » et « Adduction ILO Antenne 0 », dont les diamètres varient de mm à mm, amènent l'eau en écoulement gravitaire du barrage Tichy-Haf vers le réservoir Bousellam puis sous pression vers le secteur de Tazmalt par un adducteur de conduite principale et de conduites secondaires.

Ces canalisations assurant l'adduction traversent ainsi un territoire marqué par d'importantes Sur l'ensemble de linéaire et alimente également le secteur de Chorfa et traverse celui d'Akbou. Ces canalisations sont souterraines et pourvues d'équipements hydrauliques en ligne. Elles sont en acier et protégées par une protection cathodique.

1. Alimentation en eau du périmètre.

Le périmètre de Oued Sahel, inclus notre secteur de Tazmalt de 1033 ha est alimenté par le barrage de Tichy-Haf situé a la wilaya de Bejaia d'une capacité de 43 Mm³ destinés uniquement a l'irrigation.

2. Organisation et structure du périmètre.

L'utilisation d'un bon système d'adduction en irrigation vise à augmenter la productivité (taux de rendement), à diminuer la consommation d'eau et le coût de la main d'œuvre. Notre étude consiste en la réalisation des études techniques d'exécution des travaux d'adduction sur notre secteur de 1033 ha de superficie irrigué. Les travaux du périmètre composé d'un réseau de bornes, un réservoir, un barrage et une station de pompage.

3. Ilots et bornes d'irrigation.

Un îlot cultural est constitué d'un regroupement de parcelles contiguës, entières ou partielles. Les parcelles multi-parties sont composées de plusieurs polygones.

Une borne d'irrigation est un appareil placé a l'extrémité d'un réseau sous pression cumulant les fonctions d'arrêt ou de mise en services des prises individuelles, de détendeur de pression, de limiteur de débit et de compteur de débit. Située en tête du tertiaire ou a l'arrivée sur l'exploitation, la borne peut compter jusqu'a quatre orifices indépendants.

4. Calcul hydraulique aux bornes.

Le débit de chaque borne qui desserre un ilot est calculé par la formule suivante :

 $Q_b = q_s * S_i;$

Avec : Q_b : Débit de chaque ilot (l/s) ; q_s : Débit spécifique (l/s/ha) ; S_i : Superficie de l'ilot (ha).

5. Choix du diamètre et du type de bornes.

Il existe quatre types de bornes d'irrigation : A, on les choisit selon superficies des parcelles et celles des ilots.

Tableau.33. Les débits caractéristiques pour les différentes parcelles de la zone d'étude.

Ilots	Superficies (ha)	Parcelles	Superficies	Q(l/s/ha)	Q _b (l/s)	Matériau	Bornetype
Ilot1	8,80608231	P1 P2 P3 P4	2,46833420 2,89364809 1,72205001 1,72205001	2,71516762 3,1830129 1,89425501 1,89425501	9,7	PEHD	A4
Ilot2	9,0151325	P5 P6 P7 P8	2,11447264 3,01316084 2,17857444 1,70892458	2,3259199 3,31447692 2,39643188 1,87981704	9,91	PEHD	A4
Ilot3	13,1680841	P9 P10 P11 P12	5,12196439 1,28459379 2,56717165 4,19435426	5,63416083 1,41305317 2,82388882 4,61378969	14,5	PEHD	A4
Ilot4	11,7483592	P13 P14 P15 P16	1,91592534 4,77410969 3,21735089 1,84097334	2,10751787 5,25152066 3,53908597 2,02507067	13,0	PEHD	A4
Ilot5	11,1383847	P17 P18 P19 P20	2,36223682 3,33704444 2,55126242 2,88784100	2,5984605 3,67074888 2,80638866 3,1766251	12,3	PEHD	A4
Ilot6	9,20280523	P21 P22 P23 P24	2,34770718 2,55223538 2,51866624 1,78419643	2,5824779 2,80745892 2,77053286 1,96261607	10,1	PEHD	A4
Ilot7	12,239764	P25 P26 P27 P28	2,47141949 3,23535375 3,16036166 3,37262912	2,71856144 3,55888912 3,47639783 3,70989203	13,5	PEHD	A4
Ilot8	14,1578846	P29 P30 P31 P32	4,07192509 2,82519712 1,83841470 5,42234766	4,4791176 3,10771683 2,02225617 5,96458243	15,6	PEHD	A4
Ilot9	14,5011471	P33 P34 P35 P36	2,68221473 4,71231124 4,20560026 2,90102089	2,9504362 5,18354236 4,62616028 3,19112297	15,9	PEHD	A4

Ilots	Superficies(ha)	Parcelles	Superficies	Q(l/s/ha)	Q _b (l/s)	Matériau	Borne type
Ilot10	8,00238261	P37	1,85139220	2,0365314	8,81	PEHD	A4
		P38	1,64029096	1,8043200			
		P39	1,72130134	1,8934314			
		P40	2,78939811	3,0683379			
Ilot11	9,62947269	P41	1,71236885	1,8836057	10,6	PEHD	A4
		P42	3,39246124	3,7317073			
		P43	2,06196521	2,2681617			
		P44	2,46267739	2,7089451			
Ilot12	13,3208635	P45	3,41403002	3,7554330	14,7	PEHD	A4
		P46	3,25268686	3,5779555			
		P47	2,71304795	2,9843527			
		P48	3,94109863	4,3352084			
Ilot13	8,84938709	P49	1,82147120	2,0036183	9,7	PEHD	A4
		P50	1,80896550	1,9898620			
		P51	3,01418436	3,3156027			
		P52	2,20476603	2,4252426			
Ilot14	5,07836556	P53	1,56193197	1,7181251	5,59	PEHD	A4
		P54	1,12038048	1,2324185			
		P55	1,29291128	1,4215202			
		P56	1,10314183	1,2134560			
Ilot15	6,70202768	P57	1,45224133	1,5974654	7,4	PEHD	A4
		P58	1,58897211	1,7478693			
		P59	2,04249670	2,2467463			
		P60	1,61831754	1,7801492			
Ilot16	6,1574502	P61	1,82536005	2,0078960	6,8	PEHD	A4
		P62	0,82751418	0,9102656			
		P63	1,50537741	1,6559151			
		P64	1,99919856	2,1991184			
Ilot17	9,81475325	P65	1,78469104	1,9631601	10,8	PEHD	A4
		P66	4,17099181	4,5880409			
		P67	1,29356884	1,4229257			
		P68	2,56550156	2,8220517			

Γ	Ilot18	7,99955123	P69	2,54787675	2,8026644	8,8	PEHD	A4
			P70	1,22844613	1,3512907			
			P71	1,66345239	1,8297976			
			P72	2,55977596	2,8157535			

Ilots	Superficies(ha)	Parcelles	Superficies	Q(l/s/ha)	Q _b (l/s)	Matériau	Bornet ype
Ilot19	6,68290325	P73	2,67722619	2,9449488	7,4	PEHD	A4
		P74	1,14415933	1,2585752			
		P75	1,13924756	1,2531723			
		P76	1,72227017	1,8944971			
Ilot20	7,69425366	P77	2,48589964	2,7344896	8,5	PEHD	A4
		P78	1,48418164	1,6325998			
		P79	2,23726852	2,4609953			
		P80	1,48690386	1,6355942			
Ilot21	7,0155611	P81	1,42298126	1,5652793	7,7	PEHD	A4
		P82	1,39012670	1,5291393			
		P83	2,88756862	3,1763254			
		P84	1,31488452	1,4463729			
Ilot22	6,61138124	P85	1,43693453	1,5806279	7,3	PEHD	A4
		P86	1,33908049	1,47298854			
		P87	2,83326209	3,1165883			
		P88	1,00210413	1,10231454			
Ilot23	4,99207787	P89	0,96208821	1,05824703	5,49	PEHD	A4
		P90	0,86817082	0,9549879			
		P91	1,86567006	2,05223707			
		P92	1,29614878	1,42576366			
Ilot24	14,4445834	P93	2,92261921	3,21488113	15,9	PEHD	A4
		P94	2,82337671	3,10571438			
		P95	3,98015461	4,37817007			
		P96	4,71843286	5,19027615			
Ilot25	7,05517857	P97	1,98389864	2,1822885	7,76	PEHD	A4
		P98	1,86534382	2,0518782			
		P99P	1,70290342	1,87319376			
		100	1,50303269	1,65333596			
Ilot26	14,7480688	P101	4,13112756	4,54424032	16,2	PEHD	A4
		P102	3,54623166	3,90085483			
		P103	2,66517117	2,93168829			
		P104	4,40553837	4,84609221			
Ilot27	9,48671671	P105	2,61774850	2,87952335	10,4	PEHD	A4
	P106	2,08850465	2,29735512				
		P107	1,91349124	2,10484003			
		P108	2,86697232	3,15366955			

Ilots	Superficies(ha)	Parcelles	Superficies	Q(l/s/ha)	Q _b (l/s)	Matériau	Borne type
Ilot28	12,8926206	P109	1,95328043	2,1486084	14,19	PEHD	A4
		P110	3,61818898	3,9800078			
		P111	4,53508020	4,9885882			
		P112	2,78607103	3,0646781			
Ilot29	14,655067	P113	2,11687900	2,3285669	16,12	PEHD	A4
		P114	2,29809696	2,5279066			
		P115	6,47540601	7,1229466			
		P116	3,76468499	4,1411534			
Ilot30	14,1376959	P117	4,56443925	5,0208831	15,6	PEHD	A4
		P118	1,79837671	1,9782143			
		P119	4,21903053	4,6409335			
		P120	3,55584940	3,9114343			
Ilot31	14,6077562	P121	2,89314160	3,1824557	16,07	PEHD	A4
		P122	3,77419196	4,1516111			
		P123	4,26055107	4,6866061			
		P124	3,67987152	4,0478586			
Ilot32	6,23450454	P125	1,08039912	1,1884390	6,86	PEHD	A4
		P126	1,64484417	1,8093285			
		P127	2,63218987	2,8954088			
		P128	0,87707138	0,9647785			
Ilot33	5,21029217	P129	1,69470183	1,8641720	5,7	PEHD	A4
		P130	1,51241112	1,6636522			
		P131	1,06653701	1,1731907			
		P132	0,93664221	1,0303064			
Ilot34	5,0328793	P133	1,58099999	1,7390999	5,5	PEHD	A4
		P134	1,44423630	1,5886599			
		P135	0,90047624	0,9905238			
		P136	1,10716677	1,2178834			

Ilot35	4,66735373	P137	1,11259757	1,2238573	5,13	PEHD	A4
		P138	1,01672127	1,1183934			
		P139	1,22006577	1,3420723			
		P140	1,31796912	1,4497660			
Ilot36	4,46746314	P141	1,36975896	1,5067348	4,91	PEHD	A4
		P142	1,15748544	1,2732339			
		P143	0,93544111	1,0289852			
		P144	1,00477763	1,1052553			

Ilots	Superficies(ha)	Parcelles	Superficies	Q(l/s/ha)	Q _b (l/s)	Matéria	Bornetype
						u	
Ilot37	4,37019233	P145	1,04345642	1,14780206	4,81	PEHD	A4
		P146	1,70357428	1,87393171			
		P147	0,83181533	0,91499686			
		P148	0,79134630	0,87048093			
Ilot38	5,0001209	P149	1,34956457	1,4845210	5,5	PEHD	A4
		P150	1,61417153	1,77558868			
		P151	0,71261129	0,78387241			
		P152	1,32377351	1,45615086			
Ilot39	14,930651	P153	2,76414483	3,0375931	16,42	PEHD	A4
		P154	4,31465887	4,74612475			
		P155	5,27348131	5,80082944			
		P156	2,57836594	2,83620253			
Ilot40	5,03004049	P157	1,73442480	1,90786728	5,53	PEHD	A4
		P158	1,37842634	1,51626897			
		P159	0,73371539	0,80708692			
		P160	1,18347396	1,30182135			
Ilot41	9,5971007	P161	2,05314616	2,25846077	10,56	PEHD	A4
		P162	1,29943445	1,42937789			
		P163	4,14808169	4,56288985			
		P164	2,09643840	2,30608224			
Ilot42	8,49069321	P165	1,99457874	2,19403661	9,34	PEHD	A4
		P166	1,56528796	1,72181676			
		P167	2,52554084	2,77809492			
		P168	2,40528567	2,64581424			
Ilot43	5,36614099	P169	1,10017892	1,21019681	5,90	PEHD	A4
		P170	0,89576418	0,9853406			
		P171	1,81279108	1,99407019			
		P172	1,55740681	1,71314749			
Ilot44	5,75800925	P173	1,90017097	2,09018807	6,33	PEHD	A4
		P174	1,44933671	1,59427038			
		P175	0,98569327	1,0842626			
		P176	1,42280830	1,56508913			
Ilot45	20,9201899	P177	5,29339004	5,82272904	23,01	PEHD	A4
		P178	4,36026850	4,79629535			
		P179	5,96704936	6,5637543			
		P180	5,29948203	5,82943023			

Ilots	Superficies(ha)	Parcelles	Superficies	Q(l/s/ha)	Q _b (l/s)	Matéria	Bornety
						u	pe
Ilot46	12,1185493	P181	1,22637075	1,34900782	13,33	PEHD	A4
		P182	3,93467080	4,32813788			
		P183	3,29687586	3,62656345			
		P184	3,66063190	4,02669509			
Ilot47	8,12351944	P185	1,61441370	1,77585507	8,94	PEHD	A4
		P186	1,92564202	2,11820622			
		P187	1,91575461	2,10733007			
		P188	2,66770911	2,93448002			
Ilot48	8,33780587	P189	1,37226331	1,50948964	9,17	PEHD	A4
		P190	3,54764185	3,90240604			
		P191	2,45464237	2,70010661			
		P192	0,96325834	1,05958417			
Ilot49	5,96888638	P193	1,18185577	1,30004135	6,57	PEHD	A4
		P194	1,23594387	1,35953826			
		P195	1,15101291	1,2661142			
		P196	2,40007383	2,64008121			
Ilot50	13,4903767	P197	3,37286438	3,71015082	14,84	PEHD	A4
		P198	2,64318676	2,90750544			
		P199	4,49716574	4,94688231			
		P200	2,97715986	3,27487585			
Ilot51	15,7944438	P201	4,10509429	4,51560372	17,38	PEHD	A4
	·	P202	4,02176515	4,42394166			
		P203	4,06325754	4,46958329			

		P204	3,60432685	3,96475954			
Ilot52	15,6305366	P205	4,01024332	4,41126765	17,19	PEHD	A4
		P206	3,85923560	4,24515916			
		P207	4,25063650	4,67570015			
		P208	3,51042119	3,86146331			
Ilot53	8,42417597	P209	2,07475918	2,2822351	9,27	PEHD	A4
		P210	2,56944695	2,82639164			
		P211	2,20600185	2,42660204			
		P212	1,57396799	1,73136479			
Ilot54	8,07795307	P213	2,04533791	2,2498717	8,89	PEHD	A4
		P214	2,19314771	2,41246248			
		P215	2,06964641	2,27661105			
		P216	1,76982104	1,94680314			

Ilots	Superficies(ha)	Parcelles	Superficies	Q(l/s/ha)	Q _b (l/s)	Matériau	Borne type
Ilot55	8,27085517	P217	1,87603825	2,06364208	9,1	PEHD	A4
		P218	1,54210044	1,69631048			
		P219	1,72052475	1,89257722			
		P220	3,13219173	3,4454109			
Ilot56	4,73200927	P221	1,78591952	1,96451147	5,21	PEHD	A4
		P222	0,99388622	1,09327484			
		P223	1,25600126	1,38160139			
		P224	0,69620227	0,7658225			
Ilot57	5,60478854	P225	1,00173943	1,10191337	6,17	PEHD	A4
	,	P226	2,01606224	2,21766846	The state of the s		
		P227	1,62355252	1,78590777			
		P228	0,96343435	1,05977778			
Ilot58	7,19382192	P229	1.29505777	1.42456355	7,91	PEHD	A4
	.,	P230	2,37797076	2,61576784	,,,		
		P231	1,36657361	1,50323097			
		P232	2,15421978	2,36964176			
Ilot59	8,09307718	P233	2,05804213	2,26384634	8,90	PEHD	A4
		P234	2,45203157	2,69723473			
		P235	1,24039467	1,36443414			
		P236	2,34260881	2,57686969			
Ilot60	6,98174628	P237	1,41217240	1,55338964	7,68	PEHD	A4
		P238	1,95876498	2,15464148			
		P239	1,85839343	2,04423277			
		P240	1,75241547	1,92765702			
Ilot61	11,871933	P241	3,38887046	3,72775751	13,06	PEHD	A4
		P242	2,02121382	2,2233352			
		P243	3,95569042	4,35125946			
		P244	2,50615828	2,75677411			
Ilot62	8,98841623	P245	2,87882293	3,16670522	9,9	PEHD	A4
		P246	2,40992158	2,65091374			
		P247	1,71788892	1,88967781			1
		P248	1,98178280	2,17996108			
Ilot63	11,0955284	P249	3,06576147	3,37233762	12,2	PEHD	A4
		P250	2,16594995	2,38254494			1
		P251	2,84345729	3,12780302			
		P252	3,02035969	3,32239566			1

Ilots	Superficies(ha)	Parcelles	Superficies	Q(l/s/ha)	Q _b (l/s)	Matéria u	Bor nety pe
Ilot64	11,5293267	P253 P254 P255 P256	2,22286370 1,89064059 3,97543917 3,44038321	2,44515007 2,07970465 4,37298309 3,78442153	12,68	PEHD	A4
Ilot65	8,39499046	P257 P258 P259 P260	1,33836158 2,16070005 2,77988223 2,11604660	1,47219774 2,37677006 3,05787045 2,32765126	9,23	PEHD	A4
Ilot66	5,1683877	P261 P262 P263 P264	0,74166756 2,10161366 1,29597569 1,02913079	0,81583432 2,31177503 1,42557326 1,13204387	5,69	PEHD	A4
Ilot67	5,03287365	P265 P266 P267 P268	1,23265876 0,89474811 1,15930204 1,74616474	1,35592464 0,98422292 1,27523224 1,92078121	5,5	PEHD	A4
Ilot68	5,00085846	P269 P270	1,19652694 1,63381214	1,31617963 1,79719335	5,5	PEHD	A4

		P271 P272	0,79561893 1,37490045	0,87518082 1,5123905			
Ilot69	5,30377475	P273 P274 P275 P276	1,03382907 1,33527311 1,22314649 1,71152608	1,13721198 1,46880042 1,34546114 1,88267869	6,1	PEHD	A4
Ilot70	5,02297212	P277 P278 P279 P280	1,19750642 1,62973815 1,20346901 0,99225854	1,31725706 1,79271196 1,32381591 1,09148439	5,5	PEHD	A4
Ilot71	5,02173965	P281 P282 P283 P284	1,42264804 0,89621879 1,16569526 1,53717756	1,56491284 0,98584067 1,28226479 1,69089532	5,52	PEHD	A4
Ilot72	5,16104696	P285 P286 P287 P288	1,70968211 1,05342674 0,85259089 1,54534722	1,88065032 1,15876941 0,93784998 1,69988194	5,7	PEHD	A4

Ilots	Superficies(ha)	Parcelles	Superficies	Q(l/s/ha)	Q _b (1/s)	Matériau	Bornet ype
Ilot73	5,55086675	P289	1,15230483	1,26753531	6,1	PEHD	A4
		P290	1,50564810	1,65621291			
		P291	1,19829839	1,31812823			
		P292	1,69461543	1,86407697			
Ilot74	5,54419156	P293	1,16430899	1,28073989	6,1	PEHD	A4
		P294	1,66280403	1,82908443			
		P295	1,51485420	1,66633962			
		P296	1,20222434	1,32244677			
Ilot75	4,76797992	P297	0,89317694	0,98249463	5,2	PEHD	A4
		P298	1,35856479	1,49442127			
		P299	1,62564502	1,78820952			
		P300	0,89059317	0,97965249			
Ilot76	8,17734192	P301	1,74871685	1,92358854	9,0	PEHD	A4
		P302	1,22776907	1,35054598			
		P303	3,06056135	3,36661748			
		P304	2,14029465	2,35432412			
Ilot77	5,25618735	P305	1,96806567	2,16487224	5,8	PEHD	A4
		P306	0,82696147	0,90965762			
		P307	0,80467611	0,88514372			
		P308	1,65648410	1,82213251			
Ilot78	4,9301471	P309	0,90675903	0,99743493	5,4	PEHD	A4
		P310	1,15130047	1,26643052			
		P311	0,94747106	1,04221817			
		P312	1,92461654	2,11707819			
Ilot79	7,83713692	P313	2,23719750	2,46091725	8,6	PEHD	A4
		P314	1,94579069	2,14036976			
		P315	1,90031882	2,0903507			
		P316	1,75382991	1,9292129			
Ilot80	4,25581252	P317	0,99739418	1,0971336	4,7	PEHD	A4
		P318	0,59073378	0,64980716			
		P319	1,42966616	1,57263278			
		P320	1,23801840	1,36182024			
Ilot81	3,63368314	P321	1,06685642	1,17354206	4,0	PEHD	A4
		P322	1,14713948	1,26185343			
		P323	0,64972579	0,71469837			
		P324	0,76996145	0,8469576			

Ilots	Superficies(ha)	Parcelles	Superficies	Q(l/s/ha)	Q _b (l/s)	Matéria	Bornety
						u	pe
Ilot82	13,12835932	P325	2,74593482	3,0205283	14,44	PEHD	A4
		P326	2,75454788	3,03000267			
		P327	3,32193413	3,65412754			
		P328	4,30501157	4,73551273			
Ilot83	13,7527223	P329	1,54009408	1,69410349	15,13	PEHD	A4
		P330	4,14204077	4,55624485			
		P331	5,52619202	6,07881122			
		P332	2,54439542	2,79883496			

Ilot84	12,719928	P333 P334 P335 P336	3,72594193 2,92729695 1,91546652 4,15122259	4,09853612 3,22002664 2,10701317 4,56634485	14,0	PEHD	A4
Ilot85	6,17678321	P337 P338 P339 P340	2,38512427 1,29046910 1,77506007 0,72612977	2,6236367 1,41951601 1,95256608 0,79874275	6,79	PEHD	A4
Ilot86	6,66126197	P341 P342 P343 P344	1,18081410 1,57834214 2,24212405 1,65998168	1,29889551 1,73617635 2,46633646 1,82597985	7,33	PEHD	A4
Ilot87	5,99571881	P345 P346 P347 P348	1,15305567 1,76683925 1,65780147 1,41802242	1,26836124 1,94352318 1,82358162 1,55982466	6,6	PEHD	A4
Ilot88	4,9259837	P349 P350 P351 P352	0,99466886 1,14534563 1,39824009 1,38772912	1,09413575 1,25988019 1,5380641 1,52650203	5,42	PEHD	A4
Ilot89	6,75876622	P353 P354 P355 P356	2,32774020 2,25893598 0,77164757 1,40044247	2,56051422 1,90648106 0,84881233 1,54048672	6,86	PEHD	A4
Ilot90	14,3698442	P357 P358 P359 P360	3,43482029 3,22836755 4,00568126 3,70099340	3,77830232 3,5512043 4,40624939 4,07109274	15,8	PEHD	A4

Ilots	Superficies(ha)	Parcelles	Superficies	Q(l/s/ha)	Q _b (l/s)	Matériau	Borne type
Ilot91	4,94772536	P361	1,79611111	1,97572222	5,44	PEHD	A4
		P362	0,67876769	0,74664444			
		P363	0,90506337	0,99556971			
		P364	1,56778319	1,72456151			
Ilot92	5,38241751	P365	1,21607286	1,33768015	5,92	PEHD	A4
		P366	1,55571994	1,71129193			
		P367	0,55386248	0,60924873			
		P368	2,05676223	2,26243845			
Ilot93	15,1599452	P369	4,38391499	4,82230649	16,68	PEHD	A4
	,	P370	4,72431324	5,19674456			
		P371	4,66927469	5,13620216			
		P372	1,38244233	1,52068656			
Ilot94	3,07280843	P373	0,76361910	0,83998101	3,38	PEHD	A4
		P374	0,93520240	1,02872264	ĺ		
		P375	0,79789193	0,87768112			
		P376	0,57609500	0,6337045			
Ilot95	3,06343482	P377	0,83973698	0,92371068	3,37	PEHD	A4
		P378	1,01798945	1,1197884	ĺ		
		P379	0,68905188	0,75795707			
		P380	0,51665651	0,56832216			
Ilot96	5,69722696	P381	0,95959689	1,05555658	6,27	PEHD	A4
		P382	1,55321014	1,70853115			
		P383	1,65251628	1,81776791			
		P384	1,53190365	1,68509402			
Ilot97	5,91318628	P385	1,72541140	1,89795254	6,5	PEHD	A4
		P386	1,94156435	2,13572078			
		P387	1,58950643	1,74845707			
		P388	0,65670410	0,72237451			
Ilot98	4,68245366	P389	0,81258643	0,89384507	5,15	PEHD	A4
		P390	1,57438134	1,73181947			
		P391	1,26658282	1,3932411			
		P392	1,02890307	1,13179338			
Ilot99	5,15361205	P393	0,75760541	0,83336595	5,7	PEHD	A4
		P394	1,94714017	2,14185419			
		P395	1,43977627	1,5837539			
		P396	1,00909020	1,10999922			

Ilots	Superficies(ha)	Parcelles	Superficies	Q(l/s/ha)	Q _b (l/s)	Matéria	Bornet
			_			u	ype
Ilot100	5,33379307	P397	1,28455436	1,4130098	5,87	PEHD	A4
		P398	0,84596243	0,9305586			
		P399	1,84081314	2,0248944			
		P400	1,36246314	1,4987094			
Ilot101	5,01526234	P401	0,61651716	0,6781688	5,5	PEHD	A4
		P402	1,72462500	1,8970875			
		P403	1,85420888	2,0396297			
		P404	0,81991302	0,9019043			
Ilot102	5,41048155	P405	1,03936006	1,1432960	5,95	PEHD	A4
		P406	1,24892617	1,3738187			
		P407	1,63490003	1,7983900			
		P408	1,48729529	1,6360248			
Ilot103	8,19303313	P409	1,64489256	1,8093818	9,01	PEHD	A4
		P410	2,21173140	2,4329045			
		P411	2,93246971	3,2257166			
		P412	1,40393946	1,5443334			
Ilot104	10,3742348	P413	3,21269070	3,5339597	11,41	PEHD	A4
		P414	1,26702461	1,3937270			
		P415	2,06176255	2,2679388			
		P416	3,83275692	4,2160326			
Ilot105	8,27193756	P417	0,84083112	0,9249142	9,1	PEHD	A4
		P418	2,21866575	2,4405323			
		P419	4,26404247	4,6904467			
		P420	0,94839822	1,0432380			
Ilot106	9,15452655	P421	2,93663414	3,2302975	10,07	PEHD	A4
		P422	2,24217090	2,4663879			
		P423	2,00072388	2,2007962			
		P424	1,97499763	2,1724974			
Ilot107	13,8516144	P425	4,36346312	4,7998094	15,24	PEHD	A4
		P426	1,23475646	1,3582321			
		P427	3,83660794	4,2202687			
		P428	4,41678684	4,8584655			
Ilot108	6,37693781	P429	1,79280425	1,9720846	7,01	PEHD	A4
	·	P430	0,64961218	0,7145734			
		P431	1,00921379	1,1101351			
		P432	2,92530759	3,2178383	1		

Ilots	Superficies(ha)	Parcelles	Superficies	Q(l/s/ha)	Q _b (l/s)	Matéria u	Borne type
Ilot109	14,0116336	P433	3,73085654	4,1039421	15,41	PEHD	A4
	, i	P434	3,12888850	3,4417773	, i		
		P435	4,49119045	4,9403095			
		P436	2,66069816	2,9267679			
Ilot110	13,3028996	P437	2,84109340	3,1252027	14,63	PEHD	A4
		P438	3,33955837	3,6735142			
		P439	3,46919438	3,8161138			
		P440	3,65305343	4,0183587			
Ilot111	8,42848386	P441	1,61871289	1,7805841	9,27	PEHD	A4
		P442	2,49769455	2,747464			
		P443	2,30596377	2,5365601			
		P444	2,00611265	2,2067239			
Ilot112	14,0904427	P445	3,14052929	3,4545822	15,5	PEHD	A4
		P446	3,38889714	3,7277868			
		P447	4,83943898	5,3233828			
		P448	2,72157729	2,9937350			
Ilot113	18,4055468	P449	5,91278378	6,5040621	20,25	PEHD	A4
		P450	4,27430370	4,7017340			
		P451	3,18755087	3,5063059			
		P452	5,03090847	5,5339993			
Ilot114	8,09162724	P453	2,40495885	2,6454547	8,9	PEHD	A4
		P454	2,76387908	3,0402669			
		P455	1,36025561	1,4962811			
		P456	1,56253370	1,7187870			
Ilot115	5,2608419	P457	1,09497630	1,2044739	5,79	PEHD	A4
		P458	1,40889931	1,5497892			
		P459	1,48529190	1,6338210			
		P460	1,27167439	1,3988418			
Ilot116	4,98522086	P461	1,53387419	1,6872616	5,48	PEHD	A4
		P462	1,34620640	1,4808270			
		P463	0,96619875	1,0628186			
		P464	1,13894152	1,2528356			

Ilot117	4,62958071	P465	0,98242810	1,0806709	5,1	PEHD	A4
		P466	0,84022038	0,9242424			
		P467	1,41885037	1,5607354			
		P468	1,38808186	1,5268900			

Ilots	Superficies(ha)	Parcelles	Superficies	Q(l/s/ha)	Q _b (l/s)	Matériau	Bornety pe
Ilot118	11,7189809	P469 P470 P471 P472	2,36303040 3,51213150 3,17039982 2,67341916	2,5993334 3,8633446 3,4874398 2,9407610	12,9	PEHD	A4
Ilot119	6,71348741	P472 P473 P474 P475 P476	2,41034328 1,43375874 1,24309274 1,62629265	2,6513776 1,5771346 1,3674020 1,7889219	7,38	PEHD	A4
Ilot120	7,71462604	P477 P478 P479 P480	2,29178785 2,62020073 1,38766904 1,41496842	2,5209666 2,8822208 1,5264359 1,5564652	8,48	PEHD	A4
Ilot121	6,64113322	P481 P482 P483 P484	1,34753515 2,52920063 1,36901545 1,39538199	1,4822886 2,7821206 1,505917 1,5349201	7,3	PEHD	A4
Ilot122	6,0713298	P485 P486 P487 P488	1,08253586 0,76718395 2,27346891 1,94814108	1,1907894 0,8439023 2,5008158 2,1429551	6,7	PEHD	A4

6. Nombre d'ilots et de bornes de chaque secteur.

Tableau.34. Nombre d'irrigations du secteur.

Secteur	Superfi cie(ha)	Nomb re d'ilots	Nombre de bornes	Nombre d'irriga nts	Sup.moy./il ot(ha)	Q spécifiq ue (l/s/ha)
Tazmalt	1033,63	122	122	122	8,47	1,1

7. Aménagement du périmètre.

Le choix du système d'irrigation doit être fait en croisant plusieurs critères, et doit s'envisager sur le long terme.

La préservation d'une pression et d'un débit adéquat dans les tuyaux et les branches est indispensable pour réussir l'aménagement de notre zone d'étude. Les pompes doivent préserver la fiabilité du débit d'eau dans les systèmes sous-pression.

8. Choix de la variante d'aménagement.

Le choix de la variante d'aménagement dépend des paramètres suivants :

La source d'eau et le débit à extraire, le type de sol et le choix de la culture.

La topographie de la parcelle et les vents dominants.

Les besoins en eau de la culture.

9. Variante d'aménagement de la zone d'étude.

Notre secteur est alimenté à partir du barrage de Tichy-Haf, c'est la source d'eau principale et unique du périmètre, le barrage alimente gravitairement le réservoir de Boussellam, puis l'adduction vers le périmètre est faite sous-pression par une station de pompage.

10. Etude du système de pompage.

10.1. Les pompe.

Une pompe se caractérise par deux paramètres essentiels : le débit (m³/h) et la pression. Afin d'assurer une bonne irrigation on a besoin d'une pompe centrifuge équipée d'une turbine et d'un moteur comme source d'énergie.

Les pompes centrifuges comportent les organes essentiels suivants :

La volute transforme l'énergie de vitesse en énergie de pression.

La roue met en vitesse le liquide arrivant par son ouïe centrale.

Les formes de roues sont réalisées essentiellement en fonction des caractéristiques hydrauliques à satisfaire. Par contre décroissant de pression générée à puissance égale, elles peuvent être de type :

- o Ecoulement axial: Roue hélice
- o Ecoulement semi-axial: Hélico-centrifuge.
- o Ecoulement radial: Roue centrifuge.

0

10.2. Calculs hydrauliques du système d'adduction :

Pour les besoins des calculs hydrauliques du système d'adduction nous avons les données suivantes:

- ✓ Niveau maximal du barrage de TICHY-HAFF 312,1m
- ✓ Niveau minimal du barrage de TICHY-HAFF......294.5m
- ✓ Niveau minimal d'eau dans le Réservoir de Bousellam......375m

Le niveau moyen du barrage est calculé comme suit :

Nmov = (Nmax + Nmin)/2;

Nmoy=(312,1+294,5)/2=303,3m.

10.3. Détermination de la hauteur d'élévation calculée :

```
La hauteur d'élévation se calcule comme suivant :
```

 $Hcal = Hg + \sum hp (asp) + \sum hp (ref) + Pexh$

Avec:

- ✓ Hg: Hauteur géométrique (m);
- $\checkmark \sum$ hp (asp) : Pertes de charges à l'aspiration (m) ;
- ✓ ∑hp (ref) : Pertes de charges au refoulement (m) ;
- \checkmark Pexh : Pression nécessaire à l'exhaure (sortie du collecteur), Pexh = (1,0÷1,5) m ; On prend Pexh = 1m.

10.4. Hauteur manométrique totale :

La hauteur manométrique est donnée par la formule HMT= $Hg+\Delta hp$; Avec :

✓ HMT : Hauteur Manométrique Totale en (m) ;

```
✓ Hg : Hauteur géométrique en (m). Hg = ha-hr ;
Ha : hauteur d'aspiration.
On a :
✓ Nmoy= 303,3m
✓ Hr : cote du réservoir = 379m
✓ Le débit caractéristique : QC=1137 l/s. donc : Le débit à refouler :
Qrf =Qc*(1.05-1.1);
Qrf =1.05*Qc=1193,85l/s=1,19385m3/s
Hg=375-303,3=71,7m.
```

10.5. Calcul des pertes de charge totales :

a) Pertes de charge linéaires :

Les pertes de charge sont calculées comme suit $\Delta H = I^*L = \Lambda^*L^*V^2/(D^*2^*g)$ Avec:

✓ L : longueur du tronçon en (m).

✓ V : vitesse moyenne d'écoulement en (m/s).

✓ ∆H: Pertes de charge linéaires en (m),

✓ I : gradient hydraulique en (m/m)

Avec : $\lambda = (1,14-0,86\text{Ln}\pounds/D)^{-2}$ (Formule de Nikuradzé)

£: Rugosité absolue pour la fonte = 0,003 mm.

b) Pertes de charge singulières :

Elles sont occasionnées par les singularités des différents accessoires de la conduite (Coude, vannes, clapets...) Elles sont estimées à 10 % des pertes de charge linéaires pour une adduction ou conduite longue.

 Δ Hs=0,1* Δ Hlin,

Les résultats des pertes de charge sont représentés dans l'annexe 3.

Donc HMT=72,855m.

10.6. Calcul du diamètre économique :

Le diamètre des conduites de refoulement est approché par la loi de Bonin comme suit:

 $D = \sqrt{Qref}$

Avec:

✓ Oref : le débit de refoulement en m3/s ;

 \checkmark D : diamètre de la conduite (m). Donc : D= $\sqrt{1,19}$ = 1,1 m = 1100 mm.

Ce diamètre est approximatif on doit établir une analyse technico-économique pour le choix du diamètre optimale de la conduite de refoulement.

Le dimensionnement de la conduite d'adduction s'établit en cherchant le diamètre

économique qui permet de donner un coût de revient minimum entre les dépenses de fonctionnement et celle d'investissement, une étude technico-économique s'avère donc indispensable.

➤ Puissance absorbée par la pompe :

```
C'est la puissance fournie la pompe, définie comme suit :
P=c*g*O HMT/h
η: rendement de la pompe en (%) (n=80%);
✓ Q : débit refoulé par la pompe en (m3/s) ;
\checkmark g: pesanteur (9.81 m/s2);
✓ c: masse volumique de l'eau (kg/ m3).
➤ Energie consommée par la pompe
E = P * t * 365 [KWh];
Avec:
\checkmark t: c'est le temps de pompage par jour en (heure); dans notre cas t = 22h.
✓ P : puissance de la pompe en (kW).
➤ Frais d'exploitation
Les frais d'exploitation sont définis comme suit :
Fex = E * e [DA]
Avec : E : énergie consommée par la pompe en (KW H) ;
✓ e : prix unitaire d'un KWh imposé (e=4,69DA).
Frais d'amortissement
Les frais d'amortissement sont donnés comme suit :
Fam = Prc * A [DA]
Avec : Prc: prix de la conduite en (DA)
✓ A : Amortissement annuel. Il est donné par la formule suivante :
A = [i/(i+1)^n-1]+i;
\checkmark i: Taux d'annuité annuel, i = 8 %;
\checkmark n : nombre d'années d'amortissement, n = 29ans.
A = 0.08 (0.08+1) 29-1 + 0.08 = 0.0896
A=8.96 %
Les frais d'exploitation et d'amortissement sont présentés dans l'Annexe 3.
```

Tableau.35. Calcul du bilan total.

Les résultats sont résumés dans le tableau.35.

Diamètre (mm)	Amortissement	Exploitation	Bilan
1000	5001444	40573028,03	45574472,03
1100	5644940,7	40172707,03	45817647,73
1250	6645416,4	39857302,62	46502719,02
1600	10574428,2	39626814,8	50201243

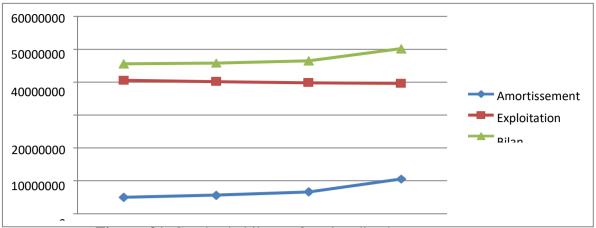


Figure .31. Graphe du bilan en fonction diamètre.

D'après le graphe du bilan, on remarque que le diamètre économique est de 1000 mm correspond à une HMT de l'ordre de 74 m.

10.7. Choix des pompes et nombre des pompes :

Les Critères du choix du nombre de pompes sont les suivants :

- ✓ Nombre minimal de pompes;
- ✓ Puissance absorbée minimale:
- ✓ (NPSH) r minimal;
- ✓ Meilleur rendement;

 $4{<}Np{\,\leq}6.....2~pompes~de~secours$

D'après les données recueillies et le choix du diamètre économique, nous avons :

- ➤ Le débit d'équipement qui est de 1194l/s ;
- ➤ La hauteur manométrique totale nécessaire à l'adduction elle est de 74 m;
- ➤ La conduite de refoulement a un linéaire de 2100 m.

Dans notre cas, nous avons utilisé le logiciel CAPRARI pour le choix du type et du nombre des pompes. Le tableau IV. Englobe le type, le nombre et les caractéristiques de chaque pompe choisie.

Tableau .36. Variantes pour le choix du nombre de pompes.

Nombre depomp es	Q (l/s)	hmt (m)	Typede pompe	Rendement %	N(tr/min)	P _{ab} (Kw H)	NPSH _r (m)	Diamètre (mm)	Nombre depomp es
5	229	74	E18S64 /2A+M 12320	78,4	2900	235	15,8	17,5	5
5	238	74.0	E14S64/3 B+M1443 0		2900	315	17,2	13,9	

Apres la comparaison entre les caractéristiques des différents nombre de pompe, et pour des raisons technico-économiques, on a choisi la variante de 5 pompes identiques (+2 pompes de secours) qui portent les caractéristiques suivantes :

- 1. Rendement 78,4 %
- 2. Puissance absorbée 235 KW
- 3. NPSHr minimal 15,8. Voir (Annexe 4).

La courbe caractéristique de la pompe est comme suit :

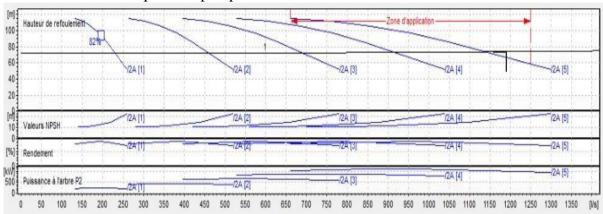


Figure .32. Courbe caractéristique de la pompe. (CAPRARI)

10.8. Protection contre de la cavitation :

La cavitation est la perturbation du courant liquide juste à l'entrée de la pompe en fonctionnement, cela se produit pour à une température constante, la pression absolue est inférieure ou égale à la tension de vapeur d'eau.

10.9. Bâtiments de la station :

Il existe différents types de bâtiment pour une station de pompage :

- ✓ Bâtiment type bloc.
- √ Bâtiment type bâche sèche.
- √ Bâtiment type bâche mouillée.
- ✓ Bâtiment de type semi-enterré et sur sol

Tableau. 37. Choixdutypedebâtiment.

Tubicadi en enema				
Paramètres	Bâtiment abloc	Bâchesèche	Bâchemouillée	Sur sol ou
				semi-enterré
$Q(m^3/s)$	>2	<2	<6	<1.5
Type de pompe	Axiale a	Pompe	Axiale noyée à axe	Pompe
	axevertic	centrifuge	verticale	centrifuge
	ale ou horizontale			
Hauteur admissible	<0	<0	<0	>0
a	(encharge)	>0	<0	(enaspiration)
l'aspiration(m)				
ΔH: variation du	1à2	1à3	N'importe	Importante
plan d'eau				
De la rivière(m)				

On choisit le bâtiment de type sur Bâche mouillée car on a une pompe immergé et Q<6m3/s.

10.10. Hauteur du bâtiment :

```
Elle est calculée comme suit : Hb = H5 + H6 + H7 + H8 + H9 

Où : H5 = Hp + Hrf + Hr 

Hp : hauteur de la pompe, Hp = 2,5654 m ; 

Hrf : hauteur à la sortie de la pompe, Hrf = 0,64516 m. 

Hr : hauteur de réserve Hr = 0,5m ; 

A.N : H5 = 2,5654 + 0,64516 + 0,5 d'où : H5 = 3,71056m. 

H6 : hauteur réservée à l'homme, H6=2,2 m ; 

H7 : hauteur du chariot, H7 = 0,3m ; 

H8 : hauteur profilée, H8 = 0,8 m ; 

H9 : hauteur de sécurité, H9 = 0,5m ; 

A.N : Hb = 3,71056+ 2,2 +0,3+0,8 +0,5=7,51056 donc Hb = 7,51056 m. 

Les hauteurs du bâtiment étant normalisées (3,6 ; 4,2 ; 4,8 ; 5,5 ;9m) on prend comme hauteur du bâtiment Hb = 9 m.
```

10.11. Longueur du bâtiment :

10.12. Largeur du bâtiment :

```
Elle est donnée par la relation :
lb = 11 + 12 + 13 + 14 + 2.s ;

✓ s : épaisseur du mur, s = 0,3 m;

✓ 11 : distance entre mur et premier organe de la pompe, 11 = 0,3m;

✓ 12 : largueur pompe moteur, 12 = 0.4445 m;

✓ 13 : longueur des accessoires d'aspiration,

✓ 14 : longueur des accessoires de refoulement, 13 + 14 = 3,25m

✓ 15 : longueur des collecteurs de refoulement, 15 = 2m.

✓ 16 : distance entre mur et escalier, 16 = 1,06172 m.
```

Finalement la largueur totale est de :7,1 m.

11. Dimensionnement du Réservoir de stockage (Bassin) :

Etant donné la superficie importante, on opte pour un réservoir rectangulaire (ou bassin).

Le volume du réservoir est estimé comme suit :

 $V = Oc \times Tnf$

Avec:

✓ V: Volume d'eau d'irrigation (m3).

 \checkmark QC : débit caractéristique (m3/h), QC = 4298,4m3/h.

 \checkmark Tnf: temps de non fonctionnement pris égal à 2 heures. On trouve donc V =4298,4 x 2= 8596,8m3.

On prend un volume de V=8000 m3.

12. Etude du système d'adduction-distribution :

Dans notre étude nous avons une conduite principale qui alimente le secteur Ce tracé est un réseau ramifié qui conduit à un coût d'investissement optimum.

13. Dimensionnement du réseau de distribution :

13.1. Caractéristiques des conduites du réseau de distribution gravitaire :

Après avoir calculé les débits de chaque ilot, et déterminé les critères hydrauliques de la conduite gravitaire, on passera au calcul du réseau de distribution, c'est-à-dire de l'ouvrage vers les bornes.

13.2. Vitesses admissibles:

La fixation d'un seuil de vitesse admissible a pour but d'éviter les risques entraînés par des vitesses importantes (risque d'érosion) et les vitesses faibles (risque de dépôts solides). La vitesse admissible comprise entre 0.5 m/s, comme vitesse minimale, et 2.5 m/s comme vitesse maximale.

13.3. Choix du matériau des conduites :

Pour choisir le matériau de canalisation il faut tenir compte de l'agressivité du sol ainsi la satisfaction des conditions hydriques (débit, pression...) et la surtout la disponibilité sur le marché.

a)- Conduites en fonte :

Présentent plusieurs avantages :

- ✓ Bonne résistance aux forces internes ;
- ✓ Bonne résistance à la corrosion ;
- ✓ Très rigides et solides.

Leur inconvénient est :

✓ Coût relativement important.

13.4. Calcul des diamètres :

Le calcul des diamètres se fait par l'application de la formule de "LABYE " qui nous donne une approche du diamètre économique qu'on normalise.

La loi : D= $(\sqrt{4*\sqrt{Q}})/(\sqrt{\prod*\sqrt{V_{ad}}})*1000$

Q : débit exprimé en m3/s, D : diamètre exprimé en mm; ✓ Vad: vitesse admissible =1.5 m/s.

13.5. Estimation des pertes de charge :

Les pertes de charge unitaires, ont été définies par la formule de LECHAPT et CALMON, qui est donnée par la formule suivante :

Avec: $h_{pu} = (L^*Q^M/D^N)^*C$

✓ hPu: Pertes de charge unitaire en m/m;

 $\checkmark\,$ L, M et N : Paramètres en fonction de la rugosité absolue (Ks) des canalisations ; pour notre cas on prend :

La rugosité équivalente : K=0.1 mm, donc : L=1.15 M=1.89 N=5.01.

 \checkmark C : coefficient compris une majoration de 10-15 % pour les pertes de charge singulière : $J{=}L\times Q^M/D^N$

Dans notre cas, les conduites seront en fonte parce que leur diamètre est supérieur à 315mm. Les pertes de charge singulières sont estimées à 10% des pertes de charge linéaires. Les calculs hydrauliques sont détaillés dans le tableau qui suivra.

L'estimation des pressions est basée sur le principe de Bernoulli entre le point A et le point B

$$:Z1 + h1 + V122g = Z2 + h21 + V222g + \Delta H$$

Où h1 et h2 sont les hauteurs de pressions

V1 et V2 sont les vitesses d'écoulement dans A et B

Z1 et Z2 sont les côtes du terrain naturel.

 ΔH : sont les pertes de charge entre A et B.

Les calculs sont détaillés dans le tableau 38.

Tableau. 38. Calculs hydrauliques du réseau de distribution.

N° tronçon	Longueu r L(m)	L Km	débit m3/S	Diamè trem m	D.Nor mmm	Matériau de canalisatio n	V(m/s)	P.ch arge (m/ m)	C. terrain Z(m)	C.piéz o (m)	Pressio n (m)	Pression (bars)
R-ST	167.5737	0,16	2,203953	1367,4	1600	Fonte	1,1	0,08	380.00	559,91	179,91	17,9
		8		6				2		8	8	

ST-N1	13631.05	13,6	2,200395	1366,6	1600	Fonte	1,1	6,61	200.0	373,39	173,39	17,3
	50	31	3	6	1000	Tonte	1,1	0,01	200.0	,	,	17,5
N1-B1	74.7672	0,07	0,0097	427,6	450	Fonte	0,06	0,00 07	303.00	379,99 93	76,999 3	7,7
N1-N2	17,11779 904	0,01	0,01961	129,02	140	PEHD	1,27	0,12 9	303.00	379,87 1	76,871	7,7
N2-B2	62.5692	0,06	0,00991	91,72	110	PEHD	1,04	0,71	303.00	379,29	76,29	7,6
N2-N4	310,5299	0,31	0,02291	139,45	140	PEHD	1,49	5,38	303.00	374,62	71,62	7,1
N/4 D/4	771	0.00	0.012	105.05	110	DELLO	1.27	1.70	204.00	270.21	74.01	7.4
N4-B4 N4-N3	93.7022 133.2280	0,09	0,013	105,05 152,8	110 160	PEHD PEHD	1,37	1,79	304.00 304.00	378,21 378,37	74,21 74,37	7,4 7,4
N4-N3	353	0,13	0,0273	132,6	100	РЕПО	1,37	1,05	304.00	3/6,3/	74,37	7,4
N3-B3	157.7578	0,15	0,0145	110,94	125	PEHD	1,18	1,93	304.00	378,07	74,07	7,4
N4-N8	554,0106	0,55	0,0286	155,81	160	PEHD	1,42	7,43	304.00	372,57	68,57	6,9
N8-B8	875 106.5514	0,10	0,0156	115,07	125	PEHD	1,27	1,48	305.00	378,52	73,52	7,4
N8-N2	498,1714	0,49	0,02551	147,15	160	PEHD	1,27	5,33	305.00	374,67	69,67	6,9
	748	.,.	.,.	., -			, .	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		, , , , ,	,	Í
N8-N48	381,5027 219	0,38	0,02477	145,00	160	PEHD	1,23	3,91	305.00	376,09	71,09	7,1
N48-B48	79.2020	0,07	0,0917	279,00	280	PEHD	1,49	0,52	305.00	379,48	74,48	7,4
N48-N9	357,8696	0,35	0,02507	145,88	160	PEHD	1,25	3,69	306.00	376,31	70,31	7,0
	442											
N9-B9	111.8335 243.3330	0,11	0,0159	116,17	125	PEHD	1,30	1,69	306.00	378,31	72,31	7,2
N9-N11	243,3330 193	0,24	0,0265	149,98	160	PEHD	1,32	2,81	307.00	377,19	70,19	/,0
N11-B11	87.8084	0,08	0,0106	94,86	110	PEHD	1,11	1,08	307.00	378,92	71,92	7,1
N11-N10	198,3026	0,19	0,01941	128,36	140	PEHD	1,26	2,41	308.00	377,59	69,59	6,9
N10-B10	96 54.3656	0,05	0,00881	86,48	90	PEHD	1,38	1,30	309.00	378,7	69,7	6,9
N10-B10 N10-N18	217,8584	0,03	0,00881	122,26	125	PEHD	1,43	3,91	309.00	376,09	67,09	6,7
1110 1110	539	0,21		122,20	123	TEME	1,13	3,71	307.00	370,07	07,05	0,7
N18-B18	292.1567	0,29	0,0088	86,43	90	PEHD	1,38	7,54	311.00	372,46	61,46	6,1
N18-N14	108,6621 988	0,10	0,01439	110,52	125	PEHD	1,17	1,27	310.00	378,73	68,73	6,9
N18-N19	170,9936	0,17	0,0162	117,26	125	PEHD	1,32	2,70	311.00	377,3	66,3	6,6
1110 1117	86	0,17		117,20			1,52	2,70	511.00	377,5	00,5	0,0
N14-B14	111.9883	0,11	0,00559	68,89	75	PEHD	1,26	3,02	310.00	376,98	66,98	6,7
N19-B19 N19-N20	227.6929 216,0584	0,22	0,0074	79,25	90	PEHD PEHD	1,16	4,12 12,5	313.00	375,88	62,88	6,3
N19-N20	941	0,21	0,00159	36,74	40	PEHD	1,27	12,3	312.00	367,49	55,49	5,5
N20-B20	241			04.04	90	PEHD		3,9	314.00	276.1	co 1	6,2
	159.6042	0,16	0,0085	84,94	90		1,34	3,9		376,1	62,1	
N20-N21	159.6042	0,17	0,0162	117,26	125	PEHD	1,32	2,70	314.00	377,3	63,3	6,3
N20-N21 N21-B21	159.6042 129.3110	0,17 0,12	0,0162 0,0077	117,26 80,85	125 90	PEHD PEHD	1,32 1,21	2,70 2,42	314.00 315.00	377,3 377,58	63,3 62,58	6,3 6,3
N20-N21 N21-B21 N21-N22	159.6042	0,17	0,0162	117,26	125	PEHD	1,32	2,70	314.00	377,3	63,3	6,3
N20-N21 N21-B21 N21-N22	159.6042 129.3110 44,50875	0,17 0,12	0,0162 0,0077	117,26 80,85	125 90	PEHD PEHD	1,32 1,21	2,70 2,42	314.00 315.00	377,3 377,58	63,3 62,58	6,3 6,3
N20-N21 N21-B21 N21-N22 N22-B22	159.6042 129.3110 44,50875 362 159.5473 205,9355	0,17 0,12 0,04	0,0162 0,0077 0,015	117,26 80,85 112,84	125 90 125	PEHD PEHD PEHD	1,32 1,21 1,22	2,70 2,42 0,55	314.00 315.00 315.00	377,3 377,58 379,45	63,3 62,58 64,45	6,3 6,3 6,4
N20-N21 N21-B21 N21-N22 N22-B22 N14-N15	159.6042 129.3110 44,50875 362 159.5473 205,9355 39	0,17 0,12 0,04 0,16 0,20	0,0162 0,0077 0,015 0,0073 0,01299	117,26 80,85 112,84 78,71 105,00	125 90 125 90 110	PEHD PEHD PEHD PEHD PEHD	1,32 1,21 1,22 1,15 1,37	2,70 2,42 0,55 2,92 3,97	314.00 315.00 315.00 316.00 311.00	377,3 377,58 379,45 377,08 376,03	63,3 62,58 64,45 61,08 65,03	6,3 6,3 6,4 6,1 6,5
N20-N21 N21-B21 N21-N22 N22-B22 N14-N15 N15-B15	159.6042 129.3110 44,50875 362 159.5473 205,9355 39 86.6233	0,17 0,12 0,04 0,16 0,20	0,0162 0,0077 0,015 0,0073 0,01299 0,0074	117,26 80,85 112,84 78,71 105,00	125 90 125 90 110	PEHD PEHD PEHD PEHD PEHD PEHD	1,32 1,21 1,22 1,15 1,37	2,70 2,42 0,55 2,92 3,97	314.00 315.00 315.00 316.00 311.00	377,3 377,58 379,45 377,08 376,03	63,3 62,58 64,45 61,08 65,03	6,3 6,3 6,4 6,1 6,5
N20-N21 N21-B21 N21-N22 N22-B22 N14-N15 N15-B15	159.6042 129.3110 44,50875 362 159.5473 205,9355 39 86.6233 172,2841 11	0,17 0,12 0,04 0,16 0,20	0,0162 0,0077 0,015 0,0073 0,01299	117,26 80,85 112,84 78,71 105,00	125 90 125 90 110	PEHD PEHD PEHD PEHD PEHD	1,32 1,21 1,22 1,15 1,37	2,70 2,42 0,55 2,92 3,97	314.00 315.00 315.00 316.00 311.00	377,3 377,58 379,45 377,08 376,03	63,3 62,58 64,45 61,08 65,03	6,3 6,3 6,4 6,1 6,5
N20-N21 N21-B21 N21-N22 N22-B22 N14-N15 N15-B15 N15-N16 N16-B16	159.6042 129.3110 44,50875 362 159.5473 205,9355 39 86.6233 172,2841 11 100.5519	0,17 0,12 0,04 0,16 0,20 0,08 0,17	0,0162 0,0077 0,015 0,0073 0,01299 0,0074 0,0142	117,26 80,85 112,84 78,71 105,00 79,25 109,79	125 90 125 90 110 90 110	PEHD PEHD PEHD PEHD PEHD PEHD PEHD PEHD	1,32 1,21 1,22 1,15 1,37 1,16 1,49	2,70 2,42 0,55 2,92 3,97 1,5 4,00	314.00 315.00 315.00 315.00 311.00 312.00 312.00 312.00	377,3 377,58 379,45 379,45 376,03 378,5 376	63,3 62,58 64,45 61,08 65,03 66,5 64	6,3 6,3 6,4 6,1 6,5 6,7 6,4
N20-N21 N21-B21 N21-N22 N22-B22 N14-N15 N15-B15 N15-N16 N16-B16	159.6042 129.3110 44,50875 362 159.5473 205,9355 39 86.6233 172,2841 11 100.5519 1664,411	0,17 0,12 0,04 0,16 0,20 0,08 0,17	0,0162 0,0077 0,015 0,0073 0,01299 0,0074 0,0142	117,26 80,85 112,84 78,71 105,00 79,25 109,79	125 90 125 90 110 90 110	PEHD PEHD PEHD PEHD PEHD PEHD PEHD	1,32 1,21 1,22 1,15 1,37 1,16 1,49	2,70 2,42 0,55 2,92 3,97 1,5 4,00 1,6 19,9	314.00 315.00 315.00 316.00 311.00 312.00 312.00	377,3 377,58 379,45 379,45 376,03 376,03	63,3 62,58 64,45 61,08 65,03 66,5 64	6,3 6,3 6,4 6,1 6,5 6,7 6,4
N20-N21 N21-B21 N21-B22 N21-N22 N22-B22 N14-N15 N15-B15 N15-N16 N16-B16 N48-N13	159.6042 129.3110 44,50875 362 159.5473 205,9355 39 86.6233 172,2841 11 100.5519 1664,411 855	0,17 0,12 0,04 0,16 0,20 0,08 0,17 0,10 1,66	0,0162 0,0077 0,015 0,0073 0,01299 0,0074 0,0142 0,0068 0,01887	117,26 80,85 112,84 78,71 105,00 79,25 109,79 75,97 126,56	125 90 125 90 110 90 110 90 140	PEHD PEHD PEHD PEHD PEHD PEHD PEHD PEHD	1,32 1,21 1,22 1,15 1,37 1,16 1,49 1,07 1,23	2,70 2,42 0,55 2,92 3,97 1,5 4,00 1,6 19,9 5	314.00 315.00 315.00 316.00 311.00 312.00 312.00 312.00 312.00	377,3 377,58 379,45 379,45 376,03 378,5 376 378,4 360,05	63,3 62,58 64,45 61,08 65,03 66,5 64 66,4 48,05	6,3 6,3 6,4 6,1 6,5 6,7 6,4 6,6 4,8
N20-N21 N21-B21 N21-N22 N22-B22 N14-N15 N15-B15 N15-N16 N16-B16 N48-N13 N13-B13	159.6042 129.3110 44,50875 362 159.5473 205,9355 39 86.6233 172,2841 11 100.5519 1664,411	0,17 0,12 0,04 0,16 0,20 0,08 0,17	0,0162 0,0077 0,015 0,0073 0,01299 0,0074 0,0142	117,26 80,85 112,84 78,71 105,00 79,25 109,79	125 90 125 90 110 90 110	PEHD PEHD PEHD PEHD PEHD PEHD PEHD PEHD	1,32 1,21 1,22 1,15 1,37 1,16 1,49	2,70 2,42 0,55 2,92 3,97 1,5 4,00 1,6 19,9	314.00 315.00 315.00 315.00 311.00 312.00 312.00 312.00	377,3 377,58 379,45 379,45 376,03 378,5 376	63,3 62,58 64,45 61,08 65,03 66,5 64	6,3 6,3 6,4 6,1 6,5 6,7 6,4
N20-N21 N21-B21 N21-N22 N22-B22 N14-N15 N15-B15 N15-N16 N16-B16 N48-N13 N13-B13 N13-N12 N12-B12	159.6042 129.3110 44,50875 362 159.5473 205,9355 39 86.6233 172,2841 11 100.5519 1664,411 855 141.9750 48,9051 259.0248	0,17 0,12 0,04 0,16 0,20 0,08 0,17 0,10 1,66 0,14 0,04 0,25	0,0162 0,0077 0,015 0,0073 0,01299 0,0074 0,0142 0,0068 0,01887 0,0097 0,0244 0,0147	117,26 80,85 112,84 78,71 105,00 79,25 109,79 75,97 126,56 90,74 143,91 111,70	125 90 125 90 110 90 110 90 140 110 160 125	PEHD PEHD PEHD PEHD PEHD PEHD PEHD PEHD	1,32 1,21 1,22 1,15 1,37 1,16 1,49 1,07 1,23 1,02 1,21 1,20	2,70 2,42 0,55 2,92 3,97 1,5 4,00 1,6 19,9 5 1,60 0,4 3,31	314.00 315.00 315.00 316.00 311.00 312.00 312.00 312.00 313.00 313.00 313.00 313.00	377,3 377,58 379,45 379,45 377,08 376,03 378,5 376 378,4 360,05 378,4 379,6 376,69	63,3 62,58 64,45 61,08 65,03 66,5 64 66,4 48,05 65,4 66,6 64,69	6,3 6,3 6,4 6,1 6,5 6,7 6,4 6,6 4,8 6,5 6,7 6,5
N20-N21 N21-B21 N21-N22 N22-B22 N14-N15 N15-B15 N15-N16 N16-B16 N48-N13 N13-B13 N13-N12 N12-B12 N13-N17	159.6042 129.3110 44,50875 362 159.5473 205,9355 39 86.6233 172,2841 11 100.5519 1664,411 855 141.9750 48,9051 259.0248 172,6333	0,17 0,12 0,04 0,16 0,20 0,08 0,17 0,10 1,66 0,14 0,04 0,25 0,17	0,0162 0,0077 0,015 0,0073 0,01299 0,0074 0,0142 0,0068 0,01887 0,0097 0,0244 0,0147 0,0205	117,26 80,85 112,84 78,71 105,00 79,25 109,79 75,97 126,56 90,74 143,91 111,70 131,91	125 90 125 90 110 90 110 90 140 110 160 125 140	PEHD PEHD PEHD PEHD PEHD PEHD PEHD PEHD	1,32 1,21 1,22 1,15 1,37 1,16 1,49 1,07 1,23 1,02 1,21 1,20 1,33	2,70 2,42 0,55 2,92 3,97 1,5 4,00 1,6 19,9 5 1,60 0,4 3,31 2,4	314.00 315.00 315.00 315.00 316.00 311.00 312.00 312.00 312.00 313.00 313.00 313.00 314.00	377,3 377,58 379,45 379,45 376,03 378,5 376 378,4 360,05 378,4 379,6 376,69 377,6	63,3 62,58 64,45 61,08 65,03 66,5 64 66,4 48,05 65,4 66,6 64,69 63,6	6,3 6,3 6,4 6,1 6,5 6,7 6,4 6,6 4,8 6,5 6,7 6,5 6,5 6,7
N20-N21 N21-B21 N21-N22 N22-B22 N14-N15 N15-B15 N15-N16 N16-B16 N48-N13 N13-B13 N13-N12 N12-B12 N13-N17 N17-B17	159.6042 129.3110 44,50875 362 159.5473 205,9355 39 86.6233 172,2841 11 100.5519 1664,411 855 141.9750 48,9051 259.0248 172,6333 251.6916	0,17 0,12 0,04 0,16 0,20 0,08 0,17 0,10 1,66 0,14 0,04 0,25 0,17 0,25	0,0162 0,0077 0,015 0,0073 0,01299 0,0074 0,0142 0,0068 0,01887 0,0097 0,0244 0,0147 0,0205 0,0108	117,26 80,85 112,84 78,71 105,00 79,25 109,79 75,97 126,56 90,74 143,91 111,70 131,91 95,75	125 90 125 90 110 90 110 90 140 110 160 125 140 110	PEHD PEHD PEHD PEHD PEHD PEHD PEHD PEHD	1,32 1,21 1,22 1,15 1,37 1,16 1,49 1,07 1,23 1,02 1,21 1,20 1,33 1,14	2,70 2,42 0,55 2,92 3,97 1,5 4,00 1,6 19,9 5 1,60 0,4 3,31 2,4 3,50	314.00 315.00 315.00 315.00 316.00 311.00 312.00 312.00 312.00 312.00 313.00 313.00 314.00 314.00	377,3 377,58 379,45 379,45 376,03 378,5 376 378,4 360,05 378,4 379,6 376,69 377,6 376,5	63,3 62,58 64,45 61,08 65,03 66,5 64 66,4 48,05 65,4 66,6 64,69 63,6 62,5	6,3 6,3 6,4 6,1 6,5 6,7 6,4 6,6 4,8 6,5 6,7 6,5 6,4 6,3
N20-N21 N21-B21 N21-N22 N22-B22 N14-N15 N15-B15 N15-N16 N16-B16 N48-N13 N13-B13 N13-N12 N12-B12 N13-N17 N17-B17 N17-N23	159.6042 129.3110 44,50875 362 159.5473 205,9355 39 86.6233 172,2841 11 100.5519 1664,411 855 141.9750 48,9051 259.0248 172,6333 251.6916 228,8206	0,17 0,12 0,04 0,16 0,20 0,08 0,17 0,10 1,66 0,14 0,04 0,25 0,17 0,25 0,22	0,0162 0,0077 0,015 0,0073 0,01299 0,0074 0,0142 0,0068 0,01887 0,0097 0,0244 0,0147 0,0205 0,0108 0,01629	117,26 80,85 112,84 78,71 105,00 79,25 109,79 75,97 126,56 90,74 143,91 111,70 131,91 95,75 117,59	125 90 125 90 110 90 110 90 140 110 160 125 140 110 125	PEHD PEHD PEHD PEHD PEHD PEHD PEHD PEHD	1,32 1,21 1,22 1,15 1,37 1,16 1,49 1,07 1,23 1,02 1,21 1,20 1,33 1,14 1,33	2,70 2,42 0,55 2,92 3,97 1,5 4,00 1,6 19,9 5 1,60 0,4 3,31 2,4 3,50 3,53	314.00 315.00 315.00 315.00 316.00 311.00 312.00 312.00 312.00 312.00 313.00 313.00 314.00 314.00 317.00	377,3 377,58 379,45 379,45 376,03 378,5 376 378,4 360,05 378,4 379,6 376,69 377,6 376,5 376,47	63,3 62,58 64,45 61,08 65,03 66,5 64 66,4 48,05 65,4 66,6 64,69 63,6 62,5 59,47	6,3 6,3 6,4 6,1 6,5 6,7 6,4 6,6 4,8 6,5 6,7 6,5 6,4 6,3 5,9
N20-N21 N21-B21 N21-N22 N22-B22 N14-N15 N15-B15 N15-N16 N16-B16 N48-N13 N13-B13 N13-N12 N13-N12 N13-N17 N17-B17 N17-B23 N23-B23	159.6042 129.3110 44,50875 362 159.5473 205,9355 39 86.6233 172,2841 11 100.5519 1664,411 855 141.9750 48,9051 259.0248 172,6333 251.6916	0,17 0,12 0,04 0,16 0,20 0,08 0,17 0,10 1,66 0,14 0,04 0,25 0,17 0,25	0,0162 0,0077 0,015 0,0073 0,01299 0,0074 0,0142 0,0068 0,01887 0,0097 0,0244 0,0147 0,0205 0,0108	117,26 80,85 112,84 78,71 105,00 79,25 109,79 75,97 126,56 90,74 143,91 111,70 131,91 95,75	125 90 125 90 110 90 110 90 140 110 160 125 140 110	PEHD PEHD PEHD PEHD PEHD PEHD PEHD PEHD	1,32 1,21 1,22 1,15 1,37 1,16 1,49 1,07 1,23 1,02 1,21 1,20 1,33 1,14	2,70 2,42 0,55 2,92 3,97 1,5 4,00 1,6 19,9 5 1,60 0,4 3,31 2,4 3,50	314.00 315.00 315.00 315.00 316.00 311.00 312.00 312.00 312.00 312.00 313.00 313.00 314.00 314.00	377,3 377,58 379,45 379,45 376,03 378,5 376 378,4 360,05 378,4 379,6 376,69 377,6 376,5	63,3 62,58 64,45 61,08 65,03 66,5 64 66,4 48,05 65,4 66,6 64,69 63,6 62,5	6,3 6,3 6,4 6,1 6,5 6,7 6,4 6,6 4,8 6,5 6,7 6,5 6,4 6,3
N20-N21 N21-B21 N21-N22 N22-B22 N14-N15 N15-B15 N15-N16 N16-B16 N48-N13 N13-B13 N13-N12 N13-N17 N17-B17 N17-N23 N23-B23 N23-N24 N24-B24	159.6042 129.3110 44,50875 362 159.5473 205,9355 39 86.6233 172,2841 11 100.5519 1664,411 855 141.9750 48,9051 259.0248 172,6333 251.6916 228,8206 24.0994 437,5603 96.2084	0,17 0,12 0,04 0,16 0,20 0,08 0,17 0,10 1,66 0,14 0,04 0,25 0,17 0,25 0,22 0,24 0,43 0,09	0,0162 0,0077 0,015 0,0073 0,01299 0,0074 0,0142 0,0068 0,01887 0,0097 0,0244 0,0147 0,0205 0,0108 0,01629 0,00549 0,02139 0,0159	117,26 80,85 112,84 78,71 105,00 79,25 109,79 75,97 126,56 90,74 143,91 111,70 131,91 95,75 117,59 68,26 134,75 116,17	125 90 125 90 110 90 110 90 140 110 125 140 110 125 75 140 125	PEHD PEHD PEHD PEHD PEHD PEHD PEHD PEHD	1,32 1,21 1,22 1,15 1,37 1,16 1,49 1,07 1,23 1,02 1,21 1,20 1,33 1,14 1,33 1,24 1,39 1,3	2,70 2,42 0,55 2,92 3,97 1,5 4,00 1,6 19,9 5 1,60 0,4 3,31 2,4 3,50 3,53 6,38 6,55 1,38	314.00 315.00 315.00 315.00 316.00 311.00 312.00 312.00 312.00 312.00 313.00 313.00 314.00 314.00 317.00 317.00 318.00 317.00	377,3 377,58 379,45 379,45 376,03 378,5 376 378,4 360,05 378,4 379,6 376,69 377,6 376,5 376,47 373,62 373,45 378,62	63,3 62,58 64,45 61,08 65,03 66,5 64 66,4 48,05 65,4 66,6 64,69 63,6 62,5 59,47 56,62 55,45 61,62	6,3 6,3 6,4 6,1 6,5 6,7 6,4 6,6 4,8 6,5 6,7 6,5 6,7 6,5 6,7 6,5 6,7 6,5 6,7 6,5 6,7 6,5 6,7 6,7 6,7 6,7 6,7 6,7 6,7 6,7 6,7 6,7
N20-N21 N21-B21 N21-N22 N22-B22 N14-N15 N15-B15 N15-N16 N16-B16 N48-N13 N13-B13 N13-N12 N13-N17 N17-B17 N17-N23 N23-B23 N23-N24 N24-B24 N24-N25	159.6042 129.3110 44,50875 362 159.5473 205,9355 39 86.6233 172,2841 11 100.5519 1664,411 855 141.9750 48,9051 259.0248 172,6333 251.6916 228,8206 24.0994 437,5603 96.2084 287,7342	0,17 0,12 0,04 0,16 0,20 0,08 0,17 0,10 1,66 0,14 0,04 0,25 0,17 0,25 0,22 0,24 0,43 0,09 0,28	0,0162 0,0077 0,015 0,0073 0,01299 0,0074 0,0142 0,0068 0,01887 0,0097 0,0244 0,0147 0,0205 0,0108 0,01629 0,00549 0,02139 0,02366	117,26 80,85 112,84 78,71 105,00 79,25 109,79 75,97 126,56 90,74 143,91 111,70 131,91 95,75 117,59 68,26 134,75 116,17 141,72	125 90 125 90 110 90 110 90 140 110 125 140 110 125 140 125 140 125 140	PEHD PEHD PEHD PEHD PEHD PEHD PEHD PEHD	1,32 1,21 1,22 1,15 1,37 1,16 1,49 1,07 1,23 1,02 1,21 1,20 1,33 1,14 1,33 1,24 1,39 1,3 1,18	2,70 2,42 0,55 2,92 3,97 1,5 4,00 1,6 19,9 5 1,60 0,4 3,31 2,4 3,50 3,53 6,38 6,55 1,38 2,64	314.00 315.00 315.00 315.00 316.00 311.00 312.00 312.00 312.00 312.00 312.00 313.00 314.00 314.00 317.00 317.00 317.00 317.00 320.00	377,3 377,58 379,45 379,45 376,03 378,5 376 378,4 360,05 378,4 379,6 376,69 377,6 376,5 376,47 373,62 373,45 378,62 377,36	63,3 62,58 64,45 61,08 65,03 66,5 64 66,4 48,05 65,4 66,6 64,69 63,6 62,5 59,47 56,62 55,45 61,62 57,36	6,3 6,3 6,4 6,1 6,5 6,7 6,4 6,6 4,8 6,5 6,7 6,5 6,7 6,5 6,7 6,5 6,7 6,5 6,7 6,5 6,7 6,5 6,7 6,5 6,7 6,7 6,7 6,7 6,7 6,7 6,7 6,7 6,7 6,7
N20-N21 N21-B21 N21-N22 N22-B22 N14-N15 N15-B15 N15-N16 N16-B16 N48-N13 N13-B13 N13-N12 N13-N17 N17-B17 N17-N23 N23-B23 N23-N24 N24-B24 N24-N25 N25-B25	159.6042 129.3110 44,50875 362 159.5473 205,9355 39 86.6233 172,2841 11 100.5519 1664,411 855 141.9750 48,9051 259.0248 172,6333 251.6916 228,8206 24.0994 437,5603 96.2084 287,7342 131.7042	0,17 0,12 0,04 0,16 0,20 0,08 0,17 0,10 1,66 0,14 0,04 0,25 0,17 0,25 0,22 0,24 0,43 0,09 0,28 0,13	0,0162 0,0077 0,015 0,0073 0,01299 0,0074 0,0142 0,0068 0,01887 0,0097 0,0244 0,0147 0,0205 0,0108 0,01629 0,00549 0,02139 0,02366 0,00776	117,26 80,85 112,84 78,71 105,00 79,25 109,79 75,97 126,56 90,74 143,91 111,70 131,91 95,75 117,59 68,26 134,75 116,17 141,72 81,16	125 90 125 90 110 90 110 90 140 110 125 140 125 140 125 140 125 160 90	PEHD PEHD PEHD PEHD PEHD PEHD PEHD PEHD	1,32 1,21 1,22 1,15 1,37 1,16 1,49 1,07 1,23 1,02 1,21 1,20 1,33 1,14 1,33 1,24 1,39 1,3 1,18 1,22	2,70 2,42 0,55 2,92 3,97 1,5 4,00 1,6 19,9 5 1,60 0,4 3,31 2,4 3,50 3,53 6,38 6,55 1,38 2,64 2,67	314.00 315.00 315.00 315.00 316.00 311.00 312.00 312.00 312.00 312.00 313.00 313.00 314.00 314.00 317.00 317.00 317.00 317.00 320.00 320.00	377,3 377,58 379,45 379,45 376,03 378,5 376 378,4 360,05 378,4 379,6 376,69 377,6 376,5 376,47 373,62 373,45 378,62 377,36 377,36	63,3 62,58 64,45 61,08 65,03 66,5 64 66,4 48,05 65,4 66,6 64,69 63,6 62,5 59,47 56,62 55,45 61,62 57,36 57,33	6,3 6,3 6,4 6,1 6,5 6,7 6,4 6,6 4,8 6,5 6,7 6,5 6,7 6,5 6,7 6,5 6,7 6,5 6,7 6,5 6,7 6,5 6,7 6,5 6,7 6,7 6,7 6,7 6,7 6,7 6,7 6,7 6,7 6,7
N20-N21 N21-B21 N21-B22 N12-N22 N14-N15 N15-B15 N15-N16 N16-B16 N48-N13 N13-B13 N13-N12 N12-B12 N13-N17 N17-N23 N23-B23 N23-B23 N23-N24 N24-B24 N24-N25 N25-B25 N25-N26	159.6042 129.3110 44,50875 362 159.5473 205,9355 39 86.6233 172,2841 11 100.5519 1664,411 855 141.9750 48,9051 259.0248 172,6333 251.6916 228,8206 24.0994 437,5603 96.2084 287,7342 131.7042 74,9542	0,17 0,12 0,04 0,16 0,20 0,08 0,17 0,10 1,66 0,14 0,04 0,25 0,25 0,22 0,24 0,43 0,09 0,28 0,13 0,07	0,0162 0,0077 0,015 0,0073 0,01299 0,0074 0,0142 0,0068 0,01887 0,0097 0,0244 0,0147 0,0205 0,0108 0,01629 0,00549 0,02139 0,02366 0,00776 0,02396	117,26 80,85 112,84 78,71 105,00 79,25 109,79 75,97 126,56 90,74 143,91 111,70 131,91 95,75 117,59 68,26 134,75 116,17 141,72 81,16 142,61	125 90 125 90 110 90 110 90 140 110 160 125 140 125 140 125 140 125 160 90 160	PEHD PEHD PEHD PEHD PEHD PEHD PEHD PEHD	1,32 1,21 1,22 1,15 1,37 1,16 1,49 1,07 1,23 1,02 1,21 1,20 1,33 1,14 1,33 1,24 1,39 1,3 1,18 1,22 1,19	2,70 2,42 0,55 2,92 3,97 1,5 4,00 1,6 19,9 5 1,60 0,4 3,31 2,4 3,50 3,53 6,38 6,55 1,38 2,64 2,67 0,68	314.00 315.00 315.00 315.00 316.00 311.00 312.00 312.00 312.00 312.00 312.00 313.00 314.00 317.00 317.00 317.00 317.00 320.00 320.00 321.00	377,3 377,58 379,45 379,45 376,03 378,5 376 378,4 360,05 378,4 379,6 376,69 377,6 376,5 376,47 373,62 373,45 378,62 377,36 377,36 377,33	63,3 62,58 64,45 61,08 65,03 66,5 64 66,4 48,05 65,4 66,6 64,69 63,6 62,5 59,47 56,62 55,45 61,62 57,36 57,33 58,32	6,3 6,3 6,4 6,1 6,5 6,7 6,4 6,6 4,8 6,5 6,7 6,5 6,7 6,5 6,7 5,7 5,7 5,7 5,7 5,8
N20-N21 N21-B21 N21-B22 N14-N15 N15-B15 N15-N16 N16-B16 N48-N13 N13-B13 N13-N12 N12-B12 N13-N17 N17-B17 N17-N23 N23-B23 N23-N24 N24-B24 N24-N25 N25-B25 N25-N26 N26-B26	159.6042 129.3110 44,50875 362 159.5473 205,9355 39 86.6233 172,2841 11 100.5519 1664,411 855 141.9750 48,9051 259.0248 172,6333 251.6916 228,8206 24.0994 437,5603 96.2084 287,7342 131.7042	0,17 0,12 0,04 0,16 0,20 0,08 0,17 0,10 1,66 0,14 0,04 0,25 0,17 0,25 0,22 0,24 0,43 0,09 0,28 0,13	0,0162 0,0077 0,015 0,0073 0,01299 0,0074 0,0142 0,0068 0,01887 0,0097 0,0244 0,0147 0,0205 0,0108 0,01629 0,00549 0,02139 0,02366 0,00776	117,26 80,85 112,84 78,71 105,00 79,25 109,79 75,97 126,56 90,74 143,91 111,70 131,91 95,75 117,59 68,26 134,75 116,17 141,72 81,16	125 90 125 90 110 90 110 90 140 110 125 140 125 140 125 140 125 160 90	PEHD PEHD PEHD PEHD PEHD PEHD PEHD PEHD	1,32 1,21 1,22 1,15 1,37 1,16 1,49 1,07 1,23 1,02 1,21 1,20 1,33 1,14 1,33 1,24 1,39 1,3 1,18 1,22	2,70 2,42 0,55 2,92 3,97 1,5 4,00 1,6 19,9 5 1,60 0,4 3,31 2,4 3,50 3,53 6,38 6,55 1,38 2,64 2,67	314.00 315.00 315.00 315.00 316.00 311.00 312.00 312.00 312.00 312.00 313.00 313.00 314.00 314.00 317.00 317.00 317.00 317.00 320.00 320.00	377,3 377,58 379,45 379,45 376,03 378,5 376 378,4 360,05 378,4 379,6 376,69 377,6 376,5 376,47 373,62 373,45 378,62 377,36 377,36	63,3 62,58 64,45 61,08 65,03 66,5 64 66,4 48,05 65,4 66,6 64,69 63,6 62,5 59,47 56,62 55,45 61,62 57,36 57,33	6,3 6,3 6,4 6,1 6,5 6,7 6,4 6,6 4,8 6,5 6,7 6,5 6,7 6,5 6,7 6,5 6,7 6,5 6,7 6,5 6,7 6,5 6,7 6,7 6,7 6,7 6,7 6,7 6,7 6,7 6,7 6,7
N20-N21 N21-B21 N21-B22 N14-N15 N15-B15 N15-N16 N16-B16 N48-N13 N13-B13 N13-N12 N12-B12 N13-N17 N17-B17 N17-N23 N23-B23 N23-N24 N24-B24 N24-B24 N24-N25 N25-B25 N25-N26 N26-B26 N23-N32 N32-B33	159.6042 129.3110 44,50875 362 159.5473 205,9355 39 86.6233 172,2841 11 100.5519 1664,411 855 141.9750 48,9051 259.0248 172,6333 251.6916 228,8206 24.0994 437,5603 96.2084 287,7342 131.7042 74,9542 83.4137 194,3035 179.7402	0,17 0,12 0,04 0,16 0,20 0,08 0,17 0,10 1,66 0,14 0,04 0,25 0,17 0,25 0,22 0,24 0,43 0,09 0,28 0,13 0,07 0,08	0,0162 0,0077 0,015 0,0073 0,01299 0,0074 0,0142 0,0068 0,01887 0,0097 0,0244 0,0147 0,0205 0,01629 0,00549 0,02139 0,02366 0,00776 0,02396 0,0162 0,0162 0,0162 0,0162 0,0162 0,0162 0,0163 0,0162 0,0163 0,0162	117,26 80,85 112,84 78,71 105,00 79,25 109,79 75,97 126,56 90,74 143,91 111,70 131,91 95,75 117,59 68,26 134,75 116,17 141,72 81,16 142,61 117,26	125 90 125 90 110 90 110 90 140 110 160 125 140 110 125 140 140 150 160 160 160 160 160 160 160 16	PEHD PEHD PEHD PEHD PEHD PEHD PEHD PEHD	1,32 1,21 1,22 1,15 1,37 1,16 1,49 1,07 1,23 1,02 1,21 1,20 1,33 1,14 1,33 1,24 1,39 1,18 1,22 1,19 1,32	2,70 2,42 0,55 2,92 3,97 1,5 4,00 1,6 19,9 5 1,60 0,4 3,31 2,4 3,50 3,53 6,38 6,55 1,38 2,64 2,67 0,68 1,27	314.00 315.00 315.00 315.00 316.00 311.00 312.00 312.00 312.00 312.00 313.00 313.00 314.00 317.00	377,3 377,58 379,45 379,45 376,03 378,5 376 378,4 360,05 378,4 379,6 376,69 377,6 376,5 376,47 373,62 373,45 378,62 377,36 377,36 377,36 377,36 377,36	63,3 62,58 64,45 61,08 65,03 66,5 64 66,4 48,05 65,4 66,6 64,69 63,6 62,5 59,47 56,62 57,36 57,33 58,32 57,73	6,3 6,3 6,4 6,4 6,1 6,5 6,7 6,4 6,6 4,8 6,5 6,7 6,5 6,7 6,5 6,7 5,7 5,7 5,7 5,7 5,8 5,8 5,7 5,7
N20-N21 N21-B21 N21-N22 N22-B22	159.6042 129.3110 44,50875 362 159.5473 205,9355 39 86.6233 172,2841 11 100.5519 1664,411 855 141.9750 48,9051 259.0248 172,6333 251.6916 228,8206 24.0994 437,5603 96.2084 287,7342 131.7042 74,9542 83.4137 194,3035	0,17 0,12 0,04 0,16 0,20 0,08 0,17 0,10 1,66 0,14 0,04 0,25 0,17 0,25 0,22 0,24 0,43 0,09 0,28 0,13 0,07 0,08	0,0162 0,0077 0,015 0,0073 0,01299 0,0074 0,0142 0,0068 0,01887 0,0097 0,0244 0,0147 0,0205 0,01629 0,00549 0,00159 0,02366 0,00776 0,02396 0,0162 0,0162 0,0162 0,002396 0,0162 0,0162	117,26 80,85 112,84 78,71 105,00 79,25 109,79 75,97 126,56 90,74 143,91 111,70 131,91 95,75 117,59 68,26 134,75 116,17 141,72 81,16 142,61 117,26 102,39	125 90 125 90 110 90 110 90 140 110 160 125 140 110 125 140 125 140 125 140 125 140 125 140	PEHD PEHD PEHD PEHD PEHD PEHD PEHD PEHD	1,32 1,21 1,22 1,15 1,37 1,16 1,49 1,07 1,23 1,02 1,21 1,20 1,33 1,14 1,33 1,24 1,39 1,18 1,22 1,19 1,32 1,32 1,33	2,70 2,42 0,55 2,92 3,97 1,5 4,00 1,6 19,9 5 1,60 0,4 3,31 2,4 3,50 3,53 6,38 6,55 1,38 2,64 2,67 0,68 1,27 3,43	314.00 315.00 315.00 315.00 316.00 311.00 312.00 312.00 312.00 312.00 313.00 313.00 314.00 317.00 317.00 317.00 318.00 319.00	377,3 377,58 379,45 379,45 376,03 378,5 376 378,4 360,05 378,4 379,6 376,69 377,6 376,5 376,47 373,45 373,45 377,362 377,363 377,363 377,363 377,363 377,363 377,363 377,363 377,363 377,363 377,363	63,3 62,58 64,45 61,08 65,03 66,5 64 66,4 48,05 65,4 66,6 64,69 63,6 62,5 59,47 56,62 57,36 57,33 58,32 57,73 56,57	6,3 6,3 6,4 6,4 6,1 6,5 6,7 6,4 6,6 4,8 6,5 6,7 6,5 6,7 6,5 6,7 6,5 6,7 5,7 5,7 5,7 5,7 5,8 5,8 5,7

N27-B27	171.2190	0,17	0,0104	93,96	110	PEHD	1,09	2,22	320.00	377,78	57,78	T 5 0
N32-N31	148,4401	0,17	0.02293	139.51	140	PEHD	1,49	2,43	321.00	377,57	56,57	5,8 5,7
N31-B31	292.8661	0,2	0.01607	116,79	125	PEHD	1,31	3,13	323.00	376,87	53,87	5,4
N31-N29	63,6943	0,06	0,03219	165,3	180	PEHD	1,26	0,56	322.00	379,44	57,44	5,7
N29-B29	23.7446	0,02	0,01612	116,97	125	PEHD	1,31	0,31	322.00	379,69	57,69	5,8
N29-N30	401,2212	0,40	0,03172	164,09	180	PEHD	1,25	3,64	325.00	376,36	51,36	5,1
N30-B30	49.3634	0,04	0,0156	115,07	125	PEHD	1,27	0,59	325.00	379,41	54,41	5,4
N33-N34	79,92	0,08	0,0112	97,50	110	PEHD	1,18	1,20	326.00	378,8	52,8	5,3
N33-B33	65.7916	0,06	0,0057	69,56	75	PEHD	1,29	1,71	325.00	378,29	53,29	5,3
N34-B34	51.0579	0,05	0,0055	68,33	75	PEHD	1,24	1,33	325.00	378,67	53,67	5,4
N34-N35	98,5651	0,09	0,01063	94,99	110	PEHD	1,12	1,22	325.00	378,78	53,78	5,4 5,4
N35-B35 N35-N36	61.2669 162,1785	0,06	0,00513	65,99 92,32	75 110	PEHD PEHD	1,16	1,40	325.00 322.00	378,6 378,05	53,6 56,05	5,6
N36-B36	74.1227	0,07	0,00491	64,56	75	PEHD	1,11	1,51	324.00	378,49	54,49	5,5
N36-N37	301,0327	0,30	0,00972	90,83	110	PEHD	1,02	3,44	324.00	376,56	52,56	5,3
N37-B37	48.0159	0,04	0,00481	63,9	75	PEHD	1,09	0,83	323.00	379,17	56,17	5,6
N37-N38	70,1172	0,07	0,01031	93,55	110	PEHD	1,08	0,9	323.00	379,1	56,1	5,6
N38-B38	87.1533	0,08	0,0055	68,33	75	PEHD	1,24	2,13	322.00	377,87	55,87	5,6
N38-N39	283,5794	0,28	0,02192	136,40	140	PEHD	1,42	4,47	322.00	375,53	53,53	5,4
N39-B39	257.4932	0,25	0,01642	118,06	125	PEHD	1,34	4,08	323.00	375,92	52,92	5,3
N39- N122	1739,425 6	1,74	0,02312	140,09	160	PEHD	1,15	15,7 2	316.00	364,3	48,3	4,8
N122- B122	127.3168	0,12	0,0067	75,41	90	PEHD	1,05	1,86	316.00	378,14	62,14	6,2
N122- N121	673,8	0,67	0,014	109,01 1	110	PEHD	1,47	15,3 3	315.00	364,7	49,7	4,9
N121- B121	69.3537	0,06	0,0073	78,72	90	PEHD	1,15	1,1	314.00	378,9	64,9	6,5
N121- N47	297,2446	0,29	0,01624	117,41	125	PEHD	1,32	4,63	317.00	375,37	58,37	5,8
N47-B47	137.8591	0,13	0,00894	275,47	280	PEHD	0,15	0,01	317.00	379,98	62,989	6,3
N47-N46	226,826	0,22	0,02229	137,55	140	PEHD	1,45	3,62	318.00	376,38	58,38	5,9
N46-B46	125.5336	0,12	0,01333	106,37	110	PEHD	1,4	2,5	319.00	377,5	58,5	5,9
N46- N102	300,8761	0,30	0,0193	127,99	140	PEHD	1,25	3,76	320.00	376,24	56,24	5,6
N102- B102	114.3246	0,11	0,00595	71,07	75	PEHD	1,35	3,40	320.00	376,6	56,6	5,7
N102- N100	585,6548	0,58	0,01182	100,17	110	PEHD	1,24	9,64	321.00	370,36	49,36	4,9
N100- B100	127.6492	0,12	0,00587	70,59	75	PEHD	1,32	3,62	321.00	376,38	55,38	5,5
N100- N99	13,8199	0,01	0,01157	99,100	110	PEHD	1,22	0,16	321.00	379,84	58,84	5,9
N99-B99	223.6945	0,22	0,0057	69,56	75	PEHD	1,29	6,28	321.00	373,72	52,72	5,3
N99-N83	129,6674	0,13	0,02083	132,97	140	PEHD	1,35	1,88	323.00	378,12	55,12	5,5
N83-B83	297.1820	0,29	0,01513	113,33	125	PEHD	1,59	4,05	326.00	375,95	49,95	5,0
N102- N101	233,5566	0,23	0,01145	98,56	110	PEHD	1,2	3,6	320.00	376,4	56,4	5,6
N101- B101	70.2422	0,07	0,0055	68,33	75	PEHD	1,24	1,87	321.00	378,13	57,13	5,7
N101- N103	241,2196	0,24	0,01451	110,98	125	PEHD	1,18	3,1	320.00	376,9	56,9	5,7
N103- B103	58.7218	0,05	0,00901	87,45	90	PEHD	1,42	1,36	320.00	378,64	58,64	5,9
N121- N44	339,8893	0,34	0,01363	107,56	110	PEHD	1,43	7,4	314.00	372,6	58,6	5,9
N44-B44	94.5205	0,09	0,00633	73,30	75	PEHD	1,43	3,13	313.00	376,87	63,87	6,4
N44-N42	131,5092	0,13	0,01567	115,33	125	PEHD	1,28	1,94	313.00	378,06	65,06	6,5
N42-B42	183.9687	0,18	0,00934	89,04	90	PEHD	1,47	5,23	313.00	374,77	61,77	6,2
N42-N41	91,3473	0,09	0,0199	129,97	140	PEHD	1,29	1,2	313.00	378,8	65,8	6,6
N41-B41 N41-N43	114.5615 102,9509	0,11	0,01056 0,01646	94,68 118,20	110 125	PEHD PEHD	0,86	1,48	313.00 313.00	378,52 378,36	65,52	6,6
N41-N43 N43-B43	175.3114	0,10	0,01646	70,77	75	PEHD	1,43 1,34	1,64 5,18	314.00	374,82	65,36 60,82	6,1
N43-	81,8194	0,17	0,00390	126,32	140	PEHD	1,34	0,95	313.00	374,82	66,05	6,6
N118 N118-	251.0635	0,25	0,0129	104,64	110	PEHD	1,36	0,29	312.00	379,71	67,71	6,8
B118		0,05	0,03315	167,75	180	PEHD	1,3	0,49	313.00	379,51	66,51	6,7
N118- N113	53,6952	0,03	0,03313	107,70			,-	· ·				

N113- N111	361,8853	0,36	0,02952	158,3	160	PEHD	1,47	5,16	316.00	374,84	58,84	5,9
N111- B111	56.9958	0,05	0,00927	88,71	90	PEHD	1,46	1,43	316.00	378,57	62,57	6,3
N111- N45	163,3448	0,16	0,03228	165,53	180	PEHD	1,27	1,51	317.00	378,49	61,49	6,2
N45-B45	204.1791	0,20	0,02301	139,76	140	PEHD	1,49	3,5	317.00	376,5	59,5	5,9
N45-	201,6556	0,20	0,03825	180,19	200	PEHD	1,22	1,53	317.00	378,47	61,47	6,2
N107 N107-	117.6719	0,11	0,01524	113,74	125	PEHD	1,24	1,55	317.00	378,45	61,45	6,2
B107 N107-	81,7662	0,08	0,02665	150,40	160	PEHD	1,33	0,95	317.00	379,05	62,05	6,2
N104 N104-	304.8961	0,30	0.01141	98,41	110	PEHD	1,2	4.66	318.00	375,34	57,34	5,7
B104			- , -	,			,	,		,	, in the second	,
N104- N106	165,5247	0,16	0,02148	135,03	140	PEHD	1,4	2,46	317.00	377,54	60,54	6,1
N106- B106	49.5675	0,05	0,01007	92,45	110	PEHD	1,06	0,61	318.00	379,39	61,39	6,1
N106- N90	753,2741	0,75	0,02587	148,19	160	PEHD	1,29	8,38	317.00	371,62	54,62	5,5
N90-B90	72.9457	0,07	0,0158	115,81	125	PEHD	1,29	1,06	317.00	378,94	61,94	6,2
N90- N109	727,4593	0,72	0,03121	162,76	180	PEHD	1,22	6,36	317.00	373,64	56,64	5,7
N109- B109	296.4371	0,29	0,01541	114,37	125	PEHD	1,26	4,19	317.00	375,81	58,81	5,9
N106- N93	495,0521	0,49	0,02675	150,69	160	PEHD	1,33	5,83	318.00	374,17	56,17	5,6
N93-B93	162.4541	0,16	0.01668	118,99	125	PEHD	1,36	2,69	318.00	377,31	59,31	5,9
N93-N94	497,709	0,49	0,02006	130,49	140	PEHD	1,30	6,61	319.00	373,39	54,39	5,4
N94-B94	19.8023	0,02	0,00338	53,56	63	PEHD	1,08	0,51	319.00	379,49	60,49	6,1
N94-N86	442,6569	0,44	0,01071	95,35	110	PEHD	1,13	6,07	323.00	373,93	50,93	5,1
N86-B86	204.5156	0,20	0,00733	78,88	90	PEHD	1,15	3,68	321.00	376,32	55,32	5,5
N86-N85	161,0763	0,16	0.01412	109,48	110	PEHD	1,49	3,72	322.00	376,28	54,28	5,5
N85-B85	138.1185	0,13	0.00679	75,92	90	PEHD	1,07	2,07	321.00	377,93	56,93	5,7
N85-N84	66,6181	0,06	0,02079	132,84	140	PEHD	1,35	0,87	322.00	379,13	57,13	5,7
N84-B84	148.5945	0.14	0.014	109,01	110	PEHD	1,47	3,20	323.00	376,8	53,8	5,4
N93- N105	474,8038	0,47	0,02578	147,93	160	PEHD	1,28	5,22	320.00	374,78	54,78	5,5
N105- B105	92.3150	0,09	0,0091	87,89	90	PEHD	1,43	2,49	320.00	377,51	57,51	5,8
N94-N95	519,6969	0,52	0,00675	75,69	90	PEHD	1,06	8,19	323.00	371,81	48,81	4,9
N94-B94	19.8023	0,02	0,00338	53,56	63	PEHD	1,08	0,51	320.00	379,49	59,49	5,9
N95-B95	48.2635	0,04	0,00337	53,48	63	PEHD	1,08	1,01	320.00	378,99	58,99	5,9
N95-N96	8,1013	0,00 8	0,00964	90,46	110	PEHD	1,01	0,09	323.00	379,1	56,1	5,6
N96-B96	276.3642	0,27	0,00627	72,95	75	PEHD	1,42	9,22	323.00	370,78	47,78	4,8
N96-N87	22,0665	0,02	0,01287	104,52	110	PEHD	1,35	0,39	322.00	379,61	57,61	5,8
N87-B87	52.2164	0,05	0,0066	236,69	250	PEHD	0,13	0,00 45	322.00	380,0	57,99	5,8
N96-N97	275,0327	0,27	0,01277	104,11	110	PEHD	1,34	5,19	323.00	374,81	51,81	5,2
N97-B97	192.6917	0,19	0,0065	234,89	250	PEHD	0,13	0,01 7	323.00	379,98 3	56,983	5,7
N97-N98	58,4737	0,05	0,01165	99,44	110	PEHD	1,23	0,81	322.00	379,19	57,19	5,7
N98-B98	138.5534	0,13	0,00515	66,117	75	PEHD	1,17	3,06	322.00	376,94	54,94	5,5
N98-N88	47,7723	0,04	0,01057	94,72	110	PEHD	1,11	0,54	322.00	379,46	57,46	5,7
N88-B88	68.9756	0,06	0,00542	67,83	75	PEHD	1,23	1,56	322.00	378,44	56,44	5,6
N88-N89	463,2309	0,46	0,01228	102,1	110	PEHD	1,29	8,22	324.00	371,78	47,78	4,8
N89-B89	189.3380	0,18	0,00686	76,31	90	PEHD	1,08	2,92	324.00	377,08	53,08	5,3
N89-N81	66,0339	0,06	0,01086	96,01	110	PEHD	1,14	0,85	324.00	379,15	55,15	5,5
N81-B81	12.2101	0,01	0,004	58,27	63	PEHD	1,28	0,35	324.00	379,65	55,65	5,6
N81-N82	128,1214	0,12	0,01844	125,11	140	PEHD	1,2	1,38	324.00	378,62	54,62	5,5
N82-B82	81.9608	0,08	0,01444	110,71	125	PEHD	1,18	1,02	325.00	378,98	53,98	5,4
N89-N80	474,2493	0,47	0,01156	99,06	110	PEHD	1,22	7,49	320.00	372,51	52,51	5,3
N80-B80	223.2151	0,22	0,0047	63,162	75	PEHD	1,06	4,36	320.00	375,64	55,64	5,6
N80-N79	67,0947	0,06	0,0133	106,25	110	PEHD	1,4	1,25	319.00	378,75	59,75	5,9
N79-B79	116.0364	0,11	0,0086	85,44	90	PEHD	1,35	2,74	321.00	377,26	56,26	5,6
N79-N78	561,221	0,56	0,014	109,01	110	PEHD	1,47	12,8	321.00	367,2	46,2	4,6
N78-B78	229.7320	0,23	0,0054	67,70	75	PEHD	1,22	5,92	321.00	374,08	53,08	5,4
N78-N77	68,4184	0,06	0,0112	97,50	110	PEHD	1,18	0,9	314.00	379,1	65,1	6,5
N77-B77	392.0342	0,39	0,0058	70,17	75	PEHD	1,31	11,5	323.00	368,5	45,5	4,6
11,7, 27,7							1			 		
N77-N76	85,2283	0,08	0,0148	112,08	125	PEHD	1,21	1,07	314.00	378,93	64,93	6,5

NF-96-75 123-347 0.12 0.0142 100-79 1.0 PEHD	N76-B76	331.7826	0,33	0,009	87,40	90	PEHD	1,41	8,95	321.00	371,05	50,05	5,1
N75-N75 701791				,									
N74-B74 121,126 0,12			- ,	- , -	,	_			,-				
N74-N73 163,0882 0.16 0.00122 101,76 110 PEHD 1.28 2.82 121,00 377,18 6.518 6.5 N73-N73-N73 163,0863 0.16 0.0016 71,06 75 PEHD 1.28 2.9 31,00 377,81 6.518 6.4 N73-N70 51,6076 0.05 0.0116 92,23 110 PEHD 1.22 0.30 31,000 379,2 0.62 6.9 N70-N71 213,0763 0.11 0.01102 96,72 110 PEHD 1.24 4.8 31,000 376,52 6.52 6.5 N70-N71 213,0763 0.21 0.01102 97,23 110 PEHD 1.16 3.06 30,000 376,54 6.8 N70-N71 213,0763 0.21 0.01102 97,23 110 PEHD 1.15 3.06 30,000 376,54 6.8 N71-N71 223,0763 0.21 0.01102 97,23 110 PEHD 1.28 1.37 30,000 376,54 6.8 N71-N71 223,0763 0.21 0.01102 97,23 110 PEHD 1.28 1.37 30,000 376,54 6.8 N71-N71 223,0763 0.21 0.01102 97,23 110 PEHD 1.28 1.37 30,000 376,54 6.8 3.4 6.9 N71-N71 223,0763 0.21 0.01102 97,23 110 PEHD 1.28 1.37 30,000 376,54 6.8 3.4 6.9 N71-N71 223,0763 0.21 0.01102 0.0155 110 PEHD 1.34 3.8 31,000 376,54 6.8 5.9 N71-N71 223,0763 0.21 0.01186 98,2 110 PEHD 1.34 3.8 31,000 376,000 6.8 6.8 5.9 N71-N71 723,001 7.01 0.0186 98,2 110 PEHD 1.23 1.23 31,000 376,000 6.8 6.8 5.9 N71-N71 723,001 7.01 0.01884 67,35 7.5 PEHD 1.25 1.38 311,000 376,000 6.6 6.8 N71-N71 873,012 0.32 0.0138	N75-N74	112,9433	0,11	0,0113	97,94	110	PEHD	,	,	311.00	378,32	67,32	,
N73-B73 166-8409				,									
N73-N70				- , -	,						,		
N79-B70 1873905 1873906 267506 268.25 265.25													
N71-B71					, .	_		,	,			,	,
N71-N72 29.7987 0.23 0.01122 97.59 110 PEHD 1.18 3.46 3.08.00 376.37 80.54 6.9 N71-872 6.76-762 0.06 0.00877 69.56 75 PEHD 1.29 1.71 308.00 378.29 70.29 N72-872 6.76-762 0.06 0.00877 69.56 75 PEHD 1.29 1.71 308.00 378.29 70.29 N72-872 6.76-762 0.06 0.00877 69.56 75 PEHD 1.29 1.33 3.53 311.00 344.64 33.64 3.4 N72-872 137.3629 0.13 0.0087 70.89 75 PEHD 1.34 3.98 311.00 336.05 36.65 5.00 N92-N01 732-304 0.74 0.01136 98.27 110 PEHD 1.2 1.14 310.00 336.65 58.65 5.9 N91-801 92.5810 0.09 0.00544 67.95 75 PEHD 1.23 2.35 310.00 378.12 67.55 6.8 N91-801 92.5810 0.019 0.00534 66.51 75 PEHD 1.15 1.15 1.88 311.00 378.12 67.77 6.5 N40-340 126.5055 0.12 0.00535 66.51 75 PEHD 1.27 1.28 311.00 306.07 63.77 6.5 N40-340 126.5055 0.12 0.00535 66.51 75 PEHD 1.27 1.25 3.23 311.00 376.12 67.7 6.5 N10-340 1.00507 0.10 0.00848 84.84 90 PEHD 1.13 3.88 309.00 376.12 67.12 6.7 N117 101.0067 0.10 0.0051 66.8 75 PEHD 1.15 2.31 310.00 372.87 62.87 6.3 N117 101.0067 0.10 0.0051 66.8 75 PEHD 1.15 2.31 310.00 372.87 62.87 6.3 N116 121.6697 0.12 0.00548 68.20 75 PEHD 1.11 0.94 310.00 376.00 69.06 6.9 N116 121.6697 0.12 0.00548 68.20 75 PEHD 1.14 3.45 312.00 376.75 64.55 6.5 N116 121.6697 0.12 0.00548 68.20 75 PEHD 1.14 3.45 312.00 376.75 64.55 6.5 N116 121.6697 0.12 0.00548 68.20 75 PEHD 1.14 3.45 312.00 376.75 64.55 6.5 N116 121.6997 0.05 0.00548 68.20 75 PEHD 1.14 3.45 312.00 376.75 64.55 6.5 N116 121.5998 0.01 0.00548 68.20 75 PEHD 1.14 3.14 3.15 3.10.00 376.75 64.55 6.5 N116 121.5998 0.01 0.00548 68.20 7	N70-N71	213,9768	0,21	0,01102	96,72	110	PEHD		3,06	309.00	376,94	67,94	,
N72-B72 66.7762 0.06 0.0057 69.56 75 PEHD 1.29 1.71 0.0060 378,29 70.29 70.0 N72-B72 578.88 0.01262 103.5 110 PEHD 1.33 35.3 31.00 34.64 3.64					,				,				
NIZ-2				-,		_							
No.												,	
N92-NP1			1,00	0,01202	103,3	110	LEILE	1,55	,	311.00	311,01	33,01	3,1
N91-N91 92.8810 0.099 0.00644 67.95 75 PEHD 1.23 2.35 310.00 377.65 67.65 6.8			,	- ,	,			,					
Note					,								
NAD-B40 125,9055 0,12 0,00553 0,851 75 PEHD 1,25 3,23 311,00 376,77 65,77 66 N120 N120 161,5005 0,16 0,00848 84,84 90 PEHD 1,47 18,6 309,00 361,4 52,4 5.2 N120 N120 161,5005 0,16 0,00848 84,84 90 PEHD 1,43 3,88 309,00 376,72 67,12			- ,	- ,				,	,			,	
No.				,	,								
NI NI NI NI NI NI NI NI		827,3052	0,82	0,01392	108,7	110	PEHD			309.00	361,4	52,4	
B120		161 5000	0.16	0.00040	04.04	00	DELID	1.22	2.00	200.00	276 12	(7.12	67
NII17	B120		-, -	.,	- ,-			,	ĺ		,	,	Í
B117		329,5798	0,33	0,01358	107,36	110	PEHD	1,43	7,13	310.00	372,87	62,87	6,3
NI1-		101.9067	0,10	0,0051	65,8	75	PEHD	1,15	2,31	310.00	377,69	67,69	6,8
NI NI NI NI NI NI NI NI		72,5514	0,07	0,01058	94,77	110	PEHD	1,11	0,94	310.00	679,06	69,06	6,9
NI16- 62,1038 0,06 0,01127 97,81 110 PEHD 1,19 0,91 310,00 379,09 69,09 6,9 NI15- 112,7533 0,11 0,00579 70,10 75 PEHD 1,31 3,23 311,00 376,77 65,77 6,6 NI15- 365,8797 0,36 0,01469 111,67 125 PEHD 1,2 4,76 312,00 375,24 63,24 6,3 NI14- 138,7123 0,13 0,0089 86,92 90 PEHD 1,4 3,45 312,00 376,55 64,55 6,5 NI14- 146,2219 0,14 0,01628 117,55 125 PEHD 1,33 2,25 313,00 377,75 64,75 6,5 NI19- 110,3778 0,11 0,00738 79,15 90 PEHD 1,16 2,05 313,00 377,95 64,95 6,5 NI19- 10,3778 0,11 0,00738 79,15 90 PEHD 1,16 2,05 313,00 377,95 64,95 6,5 NI19- 50,5699 0,05 0,02201 136,68 140 PEHD 1,43 0,80 314,00 379,2 65,2 6,5 NI19- 10,1788 0,21 0,01463 111,43 125 PEHD 1,2 2,75 314,00 377,25 63,25 6,3 NI19- 270,4116 0,27 0,02288 139,36 140 PEHD 1,49 4,67 316,00 375,33 59,33 5,9 NI12- 84,8123 0,08 0,0155 114,70 125 PEHD 1,26 1,17 316,00 378,83 62,83 6,3 NI08- 111,5670 0,11 0,00701 77,14 90 PEHD 1,46 9,67 318,00 379,08 63,08 6,4 NI08- 13,9752 0,13 0,0055 68,33 75 PEHD 1,26 1,47 316,00 379,08 63,08 6,4 N68-N67 303,0221 0,30 0,011 96,63 110 PEHD 1,26 4,35 316,00 376,53 61,53 62,2 N67-N66 30,37898 0,03 0,0179 97,46 110 PEHD 1,18 9,42 316,00 376,53 63,58 6,4 N68-N67 303,0221 0,30 0,011 96,63 110 PEHD 1,18 9,42 316,00 376,53 63,58 6,4 N68-N66 103,9749 0,10 0,0065 68,53 75 PEHD 1,28 3,70 310,00 376,47 65,47 66,6 N68-N66 103,9749 0,10 0,0061 71,96 75 PEHD 1,24 3,47 310,00 376,53 63,43 64,4 N68-N66 103,9749 0,10 0,0061 71,96 75 PEHD 1,18 9,42 311,00 376,56 66,6 N68-N66 103,9749 0,10 0,0061 71,96 75 PEHD 1,18 9,	N116-	121.6697	0,12	0,00548	68,202	75	PEHD	1,24	3,18	310.00	376,82	66,82	6,7
NI15- 112.7533 0,11 0,00579 70,10 75 PEHD 1,31 3,23 311.00 376,77 65,77 6,6	N116-	62,1038	0,06	0,01127	97,81	110	PEHD	1,19	0,91	310.00	379,09	69,09	6,9
NI15- NI16- NI16	N115-	112.7533	0,11	0,00579	70,10	75	PEHD	1,31	3,23	311.00	376,77	65,77	6,6
Ni 1-	N115-	365,8797	0,36	0,01469	111,67	125	PEHD	1,2	4,76	312.00	375,24	63,24	6,3
N114- N119	N114-	138.7123	0,13	0,0089	86,92	90	PEHD	1,4	3,45	312.00	376,55	64,55	6,5
N119-	N114-	146,2219	0,14	0,01628	117,55	125	PEHD	1,33	2,25	313.00	377,75	64,75	6,5
N119- N110	N119-	110.3778	0,11	0,00738	79,15	90	PEHD	1,16	2,05	313.00	377,95	64,95	6,5
NI10-	N119-	50,5699	0,05	0,02201	136,68	140	PEHD	1,43	0,80	314.00	379,2	65,2	6,5
N119- N112 N112-	N110-	211.5985	0,21	0,01463	111,43	125	PEHD	1,2	2,75	314.00	377,25	63,25	6,3
B112 A35,4568 0,43 0,01387 108,5 110 PEHD 1,46 9,67 318.00 373,33 55,33 5,5 N108- B108 111.5670 0,11 0,00701 77,14 90 PEHD 1,10 1,86 317.00 378,14 61,14 6,1 N108- N68 51,371 0,05 0,01251 103,05 110 PEHD 1,32 0,92 316.00 379,08 63,08 6,4 N68-B68 131.9752 0,13 0,0055 68,33 75 PEHD 1,14 3,47 315.00 376,65 60,65 6,1 N67-B67 303,0221 0,30 0,011 96,63 110 PEHD 1,16 4,35 316.00 376,65 60,65 6,1 N67-B67 54.9955 0,05 0,055 216,07 225 PEHD 1,18 9,42 311.00 370,58 59,58 5,9 N66-B66 69,6747 0,07 0,00569 69,5	N119-	270,4116	0,27	0,02288	139,36	140	PEHD	1,49	4,67	316.00	375,33	59,33	5,9
N108 N108-B108 111.5670 0,11 0,00701 77,14 90 PEHD 1,10 1,86 317.00 378,14 61,14 6,1 N108-N68 51,371 0,05 0,01251 103,05 110 PEHD 1,32 0,92 316.00 379,08 63,08 6,4 N68-B68 131.9752 0,13 0,0055 68,33 75 PEHD 1,24 3,47 315.00 376,53 61,53 6,2 N68-N67 303,0221 0,30 0,011 96,63 110 PEHD 1,16 4,35 316.00 376,65 60,65 6,1 N67-B67 54,9955 0,05 0,055 216,07 225 PEHD 1,18 9,42 311.00 379,58 63,58 6,4 N67-N66 562,3772 0,56 0,01119 97,46 110 PEHD 1,18 9,42 311.00 370,58 59,58 5,9 N66-B66 69,6747 0,07 0,00569	B112	84.8123	0,08	0,0155	114,70	125	PEHD	1,26	1,17		378,83	62,83	6,3
B108 51,371 0,05 0,01251 103,05 110 PEHD 1,32 0,92 316.00 379,08 63,08 6,4 N68-B68 131.9752 0,13 0,0055 68,33 75 PEHD 1,24 3,47 315.00 376,53 61,53 6,2 N68-N67 303,0221 0,30 0,011 96,63 110 PEHD 1,16 4,35 316.00 376,65 60,65 6,1 N67-B67 54.9955 0,05 0,055 216,07 225 PEHD 1,18 9,42 316.00 379,58 63,58 6,4 N67-N66 562,3772 0,56 0,01119 97,46 110 PEHD 1,18 9,42 311.00 370,58 59,58 5,9 N66-B66 69.6747 0,07 0,00569 69,5 75 PEHD 1,29 2,00 312.00 378 66 6,6 N69-B69 103,9749 0,10 0,0061 71,96 75	N108	435,4568	0,43			110	PEHD	1,46	9,67	318.00		55,33	5,5
N68 131.9752 0,13 0,0055 68,33 75 PEHD 1,24 3,47 315.00 376,53 61,53 6,2 N68-N67 303,0221 0,30 0,011 96,63 110 PEHD 1,16 4,35 316.00 376,65 60,65 6,1 N67-B67 54.9955 0,05 0,055 216,07 225 PEHD 1,38 0,42 316.00 379,58 63,58 6,4 N67-N66 562,3772 0,56 0,01119 97,46 110 PEHD 1,18 9,42 311.00 370,58 59,58 5,9 N66-B66 69.6747 0,07 0,00569 69,5 75 PEHD 1,29 2,00 312.00 378 66 6,6 N69-N69 103.97898 0,03 0,01179 100,04 110 PEHD 1,38 3,24 311.00 379,5 68,5 6,9 N69-N69 137,5005 0,13 0,01533 114,07 110 <td></td> <td></td> <td></td> <td></td> <td></td> <td>90</td> <td></td> <td></td> <td>1,86</td> <td></td> <td>,</td> <td>61,14</td> <td>6,1</td>						90			1,86		,	61,14	6,1
N68-N67 303,0221 0,30 0,011 96,63 110 PEHD 1,16 4,35 316.00 376,65 60,65 6,1 N67-B67 54.9955 0,05 0,055 216,07 225 PEHD 1,38 0,42 316.00 379,58 63,58 6,4 N67-N66 562,3772 0,56 0,01119 97,46 110 PEHD 1,18 9,42 311.00 370,58 59,58 5,9 N66-B66 69.6747 0,07 0,00569 69,5 75 PEHD 1,29 2,00 312.00 378 66 6,6 N66-N69 30,7898 0,03 0,01179 100,04 110 PEHD 1,24 0,5 311.00 379,5 68,5 6,9 N69-B69 103.9749 0,10 0,0061 71,96 75 PEHD 1,38 3,24 311.00 376,76 65,76 6,6 N65-B65 132.9813 0,13 0,01533 114,07 110 </td <td>N68</td> <td></td> <td>,</td> <td></td> <td>,</td> <td></td> <td></td> <td></td> <td>Í</td> <td></td> <td>,</td> <td></td> <td>•</td>	N68		,		,				Í		,		•
N67-B67 54.9955 0,05 0,055 216,07 225 PEHD 1,38 0,42 316.00 379,58 63,58 6,4 N67-N66 562,3772 0,56 0,01119 97,46 110 PEHD 1,18 9,42 311.00 370,58 59,58 5,9 N66-B66 69.6747 0,07 0,00569 69,5 75 PEHD 1,29 2,00 312.00 378 66 6,6 N66-N69 30,7898 0,03 0,01179 100,04 110 PEHD 1,24 0,5 311.00 379,5 68,5 6,9 N69-B69 103.9749 0,10 0,0061 71,96 75 PEHD 1,38 3,24 311.00 376,76 65,76 6,6 N69-N65 137,5005 0,13 0,01533 114,07 110 PEHD 1,45 3,69 312.00 376,3 64,3 6,4 N65-N64 228,565 0,22 0,02191 136,37 140 </td <td></td>													
N67-N66 562,3772 0,56 0,01119 97,46 110 PEHD 1,18 9,42 311.00 370,58 59,58 5,9 N66-B66 69.6747 0,07 0,00569 69,5 75 PEHD 1,29 2,00 312.00 378 66 6,6 N66-N69 30,7898 0,03 0,01179 100,04 110 PEHD 1,24 0,5 311.00 379,5 68,5 6,9 N69-B69 103.9749 0,10 0,0061 71,96 75 PEHD 1,38 3,24 311.00 376,76 65,76 6,6 N69-N65 137,5005 0,13 0,01533 114,07 110 PEHD 1,61 3,53 311.00 376,47 65,47 6,6 N65-B65 132.9813 0,13 0,00923 88,51 90 PEHD 1,45 3,69 312.00 376,3 64,3 6,4 N65-N64 228,565 0,22 0,02191 136,37 140<		,										,	,
N66-B66 69.6747 0,07 0,00569 69,5 75 PEHD 1,29 2,00 312.00 378 66 6,6 N66-N69 30,7898 0,03 0,01179 100,04 110 PEHD 1,24 0,5 311.00 379,5 68,5 6,9 N69-B69 103.9749 0,10 0,0061 71,96 75 PEHD 1,38 3,24 311.00 376,76 65,76 6,6 N69-N65 137,5005 0,13 0,01533 114,07 110 PEHD 1,61 3,53 311.00 376,47 65,47 6,6 N65-B65 132.9813 0,13 0,00923 88,51 90 PEHD 1,45 3,69 312.00 376,3 64,3 6,4 N65-N64 228,565 0,22 0,02191 136,37 140 PEHD 1,42 3,50 310.00 376,5 66,5 6,7 N64-B64 145.0228 0,14 0,01268 103,75 110 </td <td></td> <td></td> <td></td> <td>,</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>				,									
N69-B69 103.9749 0,10 0,0061 71,96 75 PEHD 1,38 3,24 311.00 376,76 65,76 6,6 N69-N65 137,5005 0,13 0,01533 114,07 110 PEHD 1,61 3,53 311.00 376,47 65,47 6,6 N65-B65 132.9813 0,13 0,00923 88,51 90 PEHD 1,45 3,69 312.00 376,3 64,3 6,4 N65-N64 228,565 0,22 0,02191 136,37 140 PEHD 1,42 3,50 310.00 376,5 66,5 6,7 N64-B64 145.0228 0,14 0,01268 103,75 110 PEHD 1,33 2,66 310.00 377,34 67,34 6,7 N67-N63 349,5863 0,35 0,0177 122,57 125 PEHD 1,44 6,58 316.00 373,42 57,42 5,7 N63-B63 214.1166 0,21 0,0122 101,76	N66-B66	69.6747	0,07		69,5	75	PEHD	1,29	2,00	312.00	378	66	6,6
N69-N65 137,5005 0,13 0,01533 114,07 110 PEHD 1,61 3,53 311.00 376,47 65,47 6,6 N65-B65 132.9813 0,13 0,00923 88,51 90 PEHD 1,45 3,69 312.00 376,3 64,3 6,4 N65-N64 228,565 0,22 0,02191 136,37 140 PEHD 1,42 3,50 310.00 376,5 66,5 6,7 N64-B64 145.0228 0,14 0,01268 103,75 110 PEHD 1,33 2,66 310.00 377,34 67,34 6,7 N67-N63 349,5863 0,35 0,0177 122,57 125 PEHD 1,44 6,58 316.00 373,42 57,42 5,7 N63-B63 214.1166 0,21 0,0122 101,76 110 PEHD 1,28 3,70 317.00 376,3 59,3 5,9 N63-N62 185,7394 0,18 0,0221 136,96													
N65-B65 132.9813 0,13 0,00923 88,51 90 PEHD 1,45 3,69 312.00 376,3 64,3 6,4 N65-N64 228,565 0,22 0,02191 136,37 140 PEHD 1,42 3,50 310.00 376,5 66,5 6,7 N64-B64 145.0228 0,14 0,01268 103,75 110 PEHD 1,33 2,66 310.00 377,34 67,34 6,7 N67-N63 349,5863 0,35 0,0177 122,57 125 PEHD 1,44 6,58 316.00 373,42 57,42 5,7 N63-B63 214.1166 0,21 0,0122 101,76 110 PEHD 1,28 3,70 317.00 376,3 59,3 5,9 N63-N62 185,7394 0,18 0,0221 136,96 140 PEHD 1,44 2,92 314.00 377,08 63,08 6,3											,		
N65-N64 228,565 0,22 0,02191 136,37 140 PEHD 1,42 3,50 310.00 376,5 66,5 6,7 N64-B64 145.0228 0,14 0,01268 103,75 110 PEHD 1,33 2,66 310.00 377,34 67,34 6,7 N67-N63 349,5863 0,35 0,0177 122,57 125 PEHD 1,44 6,58 316.00 373,42 57,42 5,7 N63-B63 214.1166 0,21 0,0122 101,76 110 PEHD 1,28 3,70 317.00 376,3 59,3 5,9 N63-N62 185,7394 0,18 0,0221 136,96 140 PEHD 1,44 2,92 314.00 377,08 63,08 6,3											-		
N67-N63 349,5863 0,35 0,0177 122,57 125 PEHD 1,44 6,58 316.00 373,42 57,42 5,7 N63-B63 214.1166 0,21 0,0122 101,76 110 PEHD 1,28 3,70 317.00 376,3 59,3 5,9 N63-N62 185,7394 0,18 0,0221 136,96 140 PEHD 1,44 2,92 314.00 377,08 63,08 6,3	N65-N64	228,565		0,02191	136,37		PEHD	1,42		310.00	376,5		
N63-B63 214.1166 0,21 0,0122 101,76 110 PEHD 1,28 3,70 317.00 376,3 59,3 5,9 N63-N62 185,7394 0,18 0,0221 136,96 140 PEHD 1,44 2,92 314.00 377,08 63,08 6,3													
N63-N62 185,7394 0,18 0,0221 136,96 140 PEHD 1,44 2,92 314.00 377,08 63,08 6,3													
											-		

N62-N61	65,8771	0,06	0,0229	139,42	140	PEHD	1,49	1,04	313.00	378,96	65,96	6,6
N61-B61	202.1242	0,20	0,0136	107,44	110	PEHD	1,43	4,33	312.00	375,67	63,67	6,4
N61-N59	153,3751	0,15	0,0219	136,34	140	PEHD	1,42	2,39	311.00	377,61	66,61	6,7
N59-B59	104.1409	0,10	0,0089	86,92	90	PEHD	1,4	2,66	310.00	377,34	67,34	6,7
N59-N60	414,043	0,41	0,01658	118,63	125	PEHD	1,35	6,81	314.00	373,19	59,19	5,9
N60-B60	88.2436	0,08	0,00768	80,74	90	PEHD	1,21	1,61	313.00	378,39	65,39	6,5
N60-N55	211,9667	0,21	0,01678	119,35	125	PEHD	1,37	3,57	317.00	376,43	59,43	5,9
N55-B55	130.8925	0,13	0,0091	87,89	90	PEHD	1,43	3,60	320.00	376,4	56,4	5,6
N55-N56	240,9657	0,24	0,01431	110,21	125	PEHD	1,17	3,01	321.00	377	55,99	5,6
N56-B56	92.2602	0,09	0,00521	210,29	225	PEHD	0,13	0,00	322.00	379,99	57,991	5,8
								9				
N56-N58	54,4164	0,05	0,01312	105,53	110	PEHD	1,38	1,01	322.00	378,99	56,99	5,7
N58-B58	129.9443	0,13	0,00791	81,94	90	PEHD	1,24	2,76	325.00	377,24	52,24	5,2
N56-N57	68,8431	0,06	0,01138	98,28	110	PEHD	1,2	0,93	322.00	379,07	57,07	5,7
N57-B57	28.7976	0,02	0,00617	72,37	75	PEHD	1,4	0,67	322.00	379,33	57,33	5,7
N60-N54	161,8082	0,16	0,01657	118,6	125	PEHD	1,35	2,65	314.00	377,35	63,35	6,4
N54-B54	54.9239	0,05	0,00889	86,87	90	PEHD	1,4	1,33	314.00	378,67	64,67	6,5
N54-N53	198,215	0,19	0,01816	124,16	125	PEHD	1,48	3,75	314.00	376,25	62,25	6,3
N53-B53	59.2009	0,05	0,00927	88,71	90	PEHD	1,46	1,43	312.00	378,57	66,57	6,7
N53-N52	136,0744	0,13	0,02646	149,87	160	PEHD	1,32	1,52	312.00	378,48	66,48	6,7
N52-B52	108.2075	0,10	0,01719	120,79	125	PEHD	1,4	1,78	310.00	378,22	68,22	6,8
N52-N49	1991,440	1,99	0,02376	142,01	160	PEHD	1,18	18,9	310.00	361,07	51,07	5,1
	8							3				
N49-B49	83.1682	0,08	0,00657	74,7	75	PEHD	1,49	3,14	305.00	376,86	71,86	7,2
N49-N50	423,7018	0,42	0,02141	134,81	140	PEHD	0,35	6,41	306.00	373,59	67,59	6,8
N50-B50	115.7423	0,11	0,01484	112,23	125	PEHD	1,21	1,48	306.00	378,52	72,52	7,3
N50-N51	127,3135	0,12	0,03222	165,32	180	PEHD	1,27	1,13	307.00	378,87	71,87	7,2
N51-B51	176.4454	0,17	0,01738	121,46	125	PEHD	1,42	3,09	308.00	376,91	68,91	6,9
N49-N48	463,5241	0,46	0,01574	115,59	125	PEHD	1,28	6,92	305.00	373,08	68,08	6,9
N48-N5	321,288	0,32	0,02147	135,00	140	PEHD	1,39	4,91	305.00	375,09	70,09	7,1
N5-B5	132.0903	0,13	0,0123	102,18	110	PEHD	1,29	2,33	304.00	377,67	73,67	7,4
N5-N6	161,8745	0,16	0,0224	137,89	140	PEHD	1,46	2,66	304.00	377,34	73,34	7,3
N6-B6	99.0193	0,09	0,0101	92,59	110	PEHD	1,06	1,11	304.00	378,89	74,89	7,5
N6-N7	276,445	0,27	0,0236	141,54	160	PEHD	1,17	2,54	304.00	377,46	73,46	7,4
N7-B7	81.5336	0,08	0,0135	107,05	110	PEHD	1,42	1,71	303.00	378,29	75,29	7,6
N7-N2	494,2489	0,49	0,02341	140,96	160	PEHD	1,16	4,53	303.00	375,47	72,47	7,3

Remarque:

Pour diminuer la pression qui est en dessus de 7 bars on devrait utiliser un brise de charge.

Conclusion

Le chapitre se focalise sur la partie principale du projet qui est le dimensionnement des conduites et réseau d'adduction et distribution ce qui nous a permis de déterminer les nombres exactes de tuyaux adducteurs et celui des bornes ainsi que les différents diamètres tout le long du réseau, en effet il s'agit d'un vaste secteur de plus de 1033ha divisé en 122 ilots et bornes d'irrigations alimentée sous pression adéquate environnant les 5 bars .

Chapitre V

Dimensionnement du réseau d'irrigation

Introduction.

Les réseaux d'irrigation sont une branche de canalisations de distribution conçues pour maintenir une pression constante en tout point, de sorte que l'alimentation en eau aux points de livraison (bouches d'incendie) ne modifie pas la pression du réseau. Les réseaux ont des points particuliers où sont généralement installés des vannes de régulation de pression, des vannes de survitesse, des vannes d'arrêt et des instruments de mesure du débit et de la pression.

Pour ces raisons, le choix des équipements adéquats s'avère nécessaire. Un réseau d'irrigation, consiste en tout, d'un ouvrage de prise (principal) ou en une station de pompage (principale), un système de transport, un système de distribution, un système d'application à la parcelle.

Un réseau collectif de distribution par conduit sous pression, dessert les différentes parcelles à irriguer par l'intermédiaire des bornes d'arrosage. Chaque ilot irrigant dispose d'un l'eau individuelle de matérielle mobile. Plan des plantations des bornes est compris entre l'entré des l'utilisateur qui cherche avoir chacun une borne et la limitation du nombre de borne de manière à limite les coûts.

On procédera dans le chapitre suivant au dimensionnement de notre secteur d'irrigation avec le calcul des diamètres des différentes conduites du réseau ainsi que les pressions aux bornes.

1. Dimensionnement du réseau de distribution.

1.1. Principe de tracé d'un réseau de distribution.

Pour tracé un réseau de distribution on doit :

- > Tracer l'adducteur et les conduites principales qui relient la source d'eau ainsi que les réservoirs et stations de pompages, puis tracer les conduites secondaires.
- Choix des lieux de plantation des bornes de distribution.
- Déterminer le sens de l'écoulement à travers les cotes de terrain.
- > Tracer les courbes de niveau.

1.2. Mode du tracé et implantation des bornes.

1.2.1Borne : Une borne est constituée par le corps de borne proprement dit, et ou les prises quil'équipent.

Un corps de borne comprend :

- -Base d'entrée à brides.
- Dispositif d'obturation.
- Boitier de distribution à une ou plusieurs sorties.

Le principe d'implantation des bornes sont les suivant :

- S'il s'agit de deux ilots les bornes sont implantées entre ces deux derniers.
- S'il s'agit d'un grand ilot la borne est implantée au milieu.
- S'il s'agit d'un vaste ilot on peut implantées deux bornes.

1.2.2. Rôle et fonction de la borne d'irrigation.

La borne d'irrigation est l'organe hydraulique destiné à assurer la livraison de l'eau, à partir des réseaux collectifs des distributions sous pression.

La Borne doit remplir les fonctions générales suivantes :

- Etablir ou interrompre la fourniture d'eau sans coup de bélier
- Compter les volumes distribués par la prise
- -Réguler la pression ovale
- Limiter le débit des prises d'eau.

1.3. Les débits caractéristiques pour les différentes parcelles.

Le dimensionnement du réseau de distribution nécessite la détermination des débits caractéristiques des différentes parcelles qui constituent le périmètre a étudier. Le calcul des débits caractéristiques pour les différentes parcelles s'effectue a partir de la formule suivante : Qcar=qs.S......

Tel que : qs : Débit spécifique du mois de pointe en (l/s/ha).

S : La superficie de la parcelle en ha.

1.3.1. Dimensionnement a la parcelle.

Projection d'un système d'irrigation par aspersion classique sur une parcelle de pomme De terre.

On va projeter un système d'aspersion semi-mobile comprenant des canalisations principales fixes et des rampes mobiles. Pour ce fait on va prendre un ilot qui va servir de modèle pour tous les autres, aléatoirement on a pris la parcelle S de notre zone d'étude qui s'étend sur une superficie égale à 14,5 ha.

1.4.Le diamètre de l'ajutage.

La texture du sol étant moyenne la perméabilité du sol est donc de K=0,00028 cm/s, la perméabilité du sol K= 10,08 mm/h.

On pose p<k tel que p : pluviométrie de la buse.

Le diamètre de la buse se calcul, par la relation suivante :

p=1.5.d/1.04

D'où d=10,08*1.04/1.5= 6,98 mm. D'après la fiche technique d'un arroseur (Annexe), le diamètre de la buse normalisé le plus proche est de 7 mm.

1.5.La portée du jet (L).

La portée du jet se calcul par l'équation suivante :

$$L=3.d^{0, 5}.h^{0, 25}.$$

Ou d : Diamètre de la buse en mm.

h: Pression a la buse en m.

$$L=3*7^{0.5}*30^{0.25}=18,58m$$
.

Comme cette formule demande encore plus de précision on va prendre la valeur du catalogue figure annexe (5), pour le diamètre de la buse de 7 mm et une pression de 3 bars la portée est de 18 m.

1.6. Ecartement entre les rampes et arroseurs.

Les normes américaines recommandent l'écartement maximum suivant :

E₁: Entre les lignes d'arrosage : 1,3 a 1,02 L.

E_a: Entre les arroseurs sur la rampe : 0,8 à 0,5 L.

Les valeurs maximales correspondent a des conditions de vent peu violent (<10 Km/h).

Les valeurs minimales correspondantes a des conditions de vitesse de vent assez dure (> 15 Km/h).

Notre zone d'étude présente des vitesses maximales de vents de l'ordre de 7,8 m/s = 28,08 Km/h, donc on prend les valeurs minimales:

$$E_1=1,02*18=18,4 \text{ m}.$$
 $E_2=0,5*18=9 \text{ m}.$

On prend les valeurs normalisées des écartements qui sont donc :

 $E_1=24m$.

 $E_a=18m$.

D'après la figure annexe (5), la valeur de (E_1*E_a) correspond a (18*24)m.

1.7.Le débit de l'asperseur.

Le débit d'un asperseur se calcul par la relation suivante :

m= (0,94-0,95) pour les pressions moyennes (2-4) bars et un diamètre <12mm.

m= (0,98-0,99) pour des grandes pressions ou le diamètre des buses >12mm.

$$q=0, 95. \pi.d^2. \sqrt{2*\sqrt{g*\sqrt{h/4}}}=0, 95. \pi. (7*10^{-3})^2. \sqrt{2*\sqrt{9}}, 81*\sqrt{30/4}=0,9*10^{-3}m3/s=3,24m^3/h.$$

h: pression a la buse (30 m).

m=0,95.

Ou bien a partir du tableau annexe on trouve le débit : q=3,22 m³/h.

1.8. Vérification de la pluviométrie de la buse.

Si on admet que l'écartement est proportionnel à L, la pluviométrie horaire p en (mm/h) peut être appréciée via la relation :

$$p=q/(E_1*E_a)$$

D'où : p=3,24/(18*24)=8 mm/h. pour $E_1*E_a=18*24$.

Donc le diamètre (d) de la buse assurera la pluviométrie P<K= mm/h.

1.9. Nombre d'irrigation/mois.

Nirr=besoin nette/dose nette=71,18/57=1,3=2 fois/mois.

Pour cela la dose nette= 71,18/2=35,6 mm/jour une irrigation.

1.10.Le temps nécessaire pour donner une dose par 1 asperseur.

Le temps T pour donner une dose sans dépasser la capacité d'infiltration est calculé par la relation suivante :

T= dose brute/p.

Tel que : dose brute=dose nette(RFU)/0,75=35,6/0,75=47,47mm.

Donc T= dose brute/p=47,47/3,5=14 h.

Nombre de position d'un asperseur/jour=1.

1.11. Nombre d'irrigation/mois.

Nirr=besoin nette/dose nette=71,18/57=1,3= 2 fois/mois.

Pour cela la dose nette=71,18/2=35,6 mm pour une irrigation.

1.12. La durée d'une rotation d'irrigation.

D.R.I= (nbre jrs/mois)/Nirr=31/2= 15 jours.

1.13. Volume fourni par 1 asperseur pendant 1 mois.

V=nombre de positions par jour*nombre de jours par mois*dose* E₁*E_a.

Nombre de positions d'asperseur par jour= temps max de travail/temps d'irrigation.

Nombre de positions d'asperseur par jour=20/15=1,33 on le prend1.

 $V=364,1008 \text{ m}^3$.

1.14. Volume a éprendre en 1 mois sur toute la parcelle.

Vt= besoin mensuel en eau*S.

Pour le mois de pointe :

B mensuel=71,18 mm = $71,18*10=711,8m^3$ /ha, et S=14,5 ha (la surface de la pomme de terre).

$$Vt = 711.8*14.5 = 10321.11 \text{ m}^3.$$

1.15. Le nombre d'asperseurs.

Le nombre d'asperseurs se calcul par le rapport entre toute la quantité d'eau a épandre durant le mois de pointe sur la quantité que peut apporter un seul asperseur.

$$N=Vt/V$$
.

Nasp=Vt/Vasp=10321,11/364,1008 = 28,35.

Donc on prend 29 asperseurs.

1.16. Calcul de la rampe.

1.16.1. Longueur de la rampe.

 $Lr=L/2-E_a/2=324/2-18/2=153 \text{ m}.$

1.16.2. Nombre d'asperseur par rampe (na).

 $N_{a/r}$ =Lr/Ea=153/18= 9 asperseurs.

1.16.3. Nombre de rampes qui fonctionnent en même temps.

Nr = Nasp/(Nasp/r) = 29/9 = 3,22.

Alors on a 3 qui fonctionnent en même temps.

1.16.4. Débit d'une rampe (Qr).

Le débit de la rampe =le débit de l'asperseur *le nombre d'asperseur/rampe.

 $Qr=3,22*9=28,98 \text{ m}^3/\text{h}$

1.16.5. Nombre de position des rampes.

N positions= $L/E_1=204/24=9$.

L: largeur=m, E: espacement entre les rampes (= 24m).

Le nombre de position égale a 9.

1.16.6. Nombre de poste.

Nposte=Nposition*Nbande/Nrampe=9*1/3=3;

1.16.7. Surface de chaque poste.

Sposte=S/Nposte=14,5/3=4,83 ha.

1.16.8. Calcul des pertes de charge (formule de Manning).

 $J=a.Q^b/D^c$.

Avec : a=0,000073 telle que n : rugosité=0.003. b= et c= « fonction du matériau de la conduite () ».

1.16.9. Calcul de la longueur fictive.

$$l_f\!\!=\!\!E_a\,(n\!+\!1)(2n\!+\!1)/6n=\!18^*(9\!+\!1)^*(2^*9\!+\!1)/(6^*9)\!=\!63,\!33m.$$

$$L_{ft} = (L_{PR} - E_r) + (l_{fr} - E_a/2) = (564-24) + (63,33-12) = 591,33m.$$

Tel que le longueur de la porte rampe

Lpr=largeur-El/2= 576-24/2=564m.

$$L_{r\acute{e}elle} = (L_{PR}-E_r) + (L_{rampe}-E_a/2) = (564-24) + (153-18/2) = 684 \text{ m}.$$

1.16.10. Calcul de la perte de charge unitaire.

$$20\%$$
 = deltaH/H= donc delta H= J= $30*0,2 = 6$ m.c.e.

$$j=J/L_{ft}=6/591,33=0,010.$$

1.16.11. Calcul du diamètre de la porte rampe.

1)
$$D_{ec} = (\sqrt{4*\sqrt{q_{pr}}})/\sqrt{\pi} * \sqrt{v}$$
; avec $q_{pr} = n*qr$; $V = Vec = (1.25-1.5)m/s$.

n : nombre de rampe qui fonctionne en même temps= 3 rampes.

$$q_{pr}=3*28,98=86,94\text{m}^3/\text{h}.$$

Dec=
$$(\sqrt{4}*\sqrt{86,94}/\sqrt{3600})/\sqrt{\pi}*\sqrt{1,4}=0,148$$
m=148mm.

2) D=
$$(\sqrt{4*\sqrt{q_{pr}}})/\sqrt{\pi}*\sqrt{v}$$
; V=V_{max}=1,8m/s.

Dec=
$$(\sqrt{4}*\sqrt{86,94}/\sqrt{3600})/\sqrt{\pi}*\sqrt{1,8}=0,131$$
m=131mm.

3) Calcul du diamètre en tenant en compte des pertes de charge :

$$j=a*q^b_{pr}/D^c$$
. $a=10,294*n^2$; $b=2$; $c=5,33$.

$$D = ^{5.33} \sqrt{10.294} \sqrt{n^2*\sqrt{q^2}} p_r \sqrt{j} = ^{5.33} \sqrt{10.294} \sqrt{(0,002^2)*86,94/3600} / \sqrt{0,00513} = 0,100 m = 100 mm.$$

On prend le diamètre le plus grand qui est calculé en prenant compte des pertes de charge.

D=100mm qui correspond au diamètre normalisé D=110mm.

$$Q=v*s$$
.

Alors la vitesse sera Vpr= 2,54m/s.

Recalcule de j avec le diamètre choisi.

$$\mathbf{j} = a \cdot q_{\text{Dr}}^{\text{b}}/D^{\text{c}} = 10,294 \cdot (86,94/3600)^{2}/(0,11)^{5,33} = 0,0031 \text{m/m}.$$

 $Jr=deltaH-j*L_{pr}=6-0.0031*564=4.2m.$

1.16.12. Calcul du diamètre de la rampe.

1)
$$D_{ec} = (\sqrt{4*\sqrt{q_r}})/\sqrt{\pi} * \sqrt{v}$$
; $V=Vec=(1.25-1.5)$ m/s.

Dec=
$$(\sqrt{4} \times \sqrt{(29/3600)})/\sqrt{\pi} \times \sqrt{1}$$
, 3 = 0.09m=88,82mm.

2) =
$$(\sqrt{4*}\sqrt{q_r})/\sqrt{\pi}*\sqrt{v}$$
; V=Vmax=1,8m/s.

$$D=(\sqrt{4}*\sqrt{(29/3600)})/\sqrt{\pi}*\sqrt{v}=0.075m=75.5mm.$$

3) Calcul du diamètre en tenant en compte des pertes de charge :

La perte de charge disponible pour la rampe la plus dévalorisée est donnée par la formule suivante :

$$Ir=6-[i(Lpr-Er)=6-[Dh/Lft(Lpr-Er)]=6-[6/(564-24)*591,33]=0,5m.$$

1.16.13. Les pertes de charge unitaires dans la rampe.

 $I_{r \text{ unitaire}} = Ir/Lf = 0.5/63,33 = 0.008.$

$$D = ^{5.33} \sqrt{10.294} \sqrt{n^2 * \sqrt{q^2}_{pf}} \sqrt{ir} = ^{5.33} \sqrt{10.294} \sqrt{(0,002)^2 * (86,94/3600)} / \sqrt{0,008} = 0,092 m = 92 mm$$

On prend le diamètre le plus grand qui est le diamètre qui est le diamètre en prenant en compte des pertes de charge.

D=90mm qui correspond au diamètre normalisé D=90mm.

Q=
$$V*S$$
. Donc la vitesse sera $Vr = 3.8 \text{m/s}$.

Vérification Il faut que $\Delta H_{TOT} = \Delta H_{pr} + n\Delta H_{p} = <(\Delta H = 6 \text{ m.c.e})$

N : n : nombre de rampes qui travaillent en même temps=3 rampes.

 $\Delta H_{TOT} = \Delta H_{pr} + 3\Delta H_p = 4.2 + 3*0.5 = 5.7 < 6$ m.c.e. D'où la condition est vérifiée.

1.16.14. Calcul du diamètre de la conduite secondaire.

$$Q_{CS} = 2*Q_{PR} = 174 \text{ m}^3 / \text{h}.$$

$$D_{ec} = (\sqrt{4*\sqrt{q_r}})/\sqrt{\pi} * \sqrt{v}$$
; $V=Vec=(1.25-1.5)$ m/s.

D=
$$(\sqrt{4*}\sqrt{q_r})/\sqrt{\pi*}\sqrt{v} = (\sqrt{4*}\sqrt{(174/3600)}/\sqrt{\pi*}\sqrt{1.4}) = 0.210$$

Donc le diamètre de la conduite secondaire est de : D = 250 mm.

1.16.15. Calcul des pertes de charge.

$$\mathbf{j} = a * q_{pr}^{b}/D^{c} = 10,294 * (174/3600)^{2}/(0,250)^{5,33} = 0,0002 \text{m/m}.$$

$$Jr = deltaH - j*L_{pr} = 6-0,0002*564=5,11 \text{ m}.$$

1.16.16. Calcul des pertes de charge totale.

$$\Delta H_R + \Delta H_{PR} + \Delta H_{CS} = 0.5 + 4.2 + 5.11 = 9.81 \text{ m}.$$

1.16.17La pression a la borne.

$$P = \Delta H_t + 3.0 = 12.81 \text{ m} = 1.3 \text{bars}.$$

1.17. Dimensionnement d'un réseau d'irrigation par goutte à goutte : Données générales

:Culture : Olivier

Besoin de pointe : 195,727 mm (Juillet)

Organisation du réseau : Avec un écartement de 4*4m, et un espacement des goutteurs 4 m,

- surface : 1,7 ha;
- Longueur: 80 m;
- Largeur: 72 m.

Caractéristique du goutteur :

- Débit nominal : 41/h et pression nominale : 10 m.c.e.
- Espacement des goutteurs : 2 m. Le nombre de goutteurs par arbre :2.

1.17.1. Besoins d'irrigation des cultures en irrigation localisée :

1.17.2. La formule de Freeman et Garzoli :

$$Kr = Cs + 0.5 (1 - Cs)$$

Pour notre cas on considère un taux de couverture égale à 80% (pour les arbres adultes) donc :

On prendra un coefficient Kr = 0.9. Bjl = Bj*Kr; Bjl = (195.727/30)*0.9=5.87 mm/j.

1.17.3. Dose nette pratique:

La dose (RFU) étant définie par la hauteur d'eau 'P':

Dp = (Hcc-Hpf). Y. Z. da. $P\% = RFU \times P\%$.

Avec:

- ✓ Hcc: (24%), Hpf: (12%), da=1.45 et Y: (2/3);
- \checkmark Z: P. racines (1500 mm),
- ✓ P : Pourcentage du sol humidifié

P% =n.Spd.Sh/Sa.Sr

Avec:

- ✓ P : Volume du sol humidifié ;
- \checkmark N : Nombre de point (de goutteurs) de distribution par arbre =2 ;
- ✓ Spd : Distance entre deux points de distribution voisins du même arbre = (2m) ;
- ✓ Sh: Largeur de la bande humidifiée (tirée de la table) = 1m (arbres);
- ✓ Sr: Ecartement entre rangs d'arbre (4m);
- ✓ Sa: espacement des arbres sur les rangs (4m).

P% = 2.2.1/4.4 = 25%

 $DP = \{(24-12)/100\} \times 1500 \times 2/3 \times \times 0.25 \text{ on trouve } Dp = 30\text{mm}.$

1.17.4.Fréquence et intervalle des arrosages (Fr):

L'intervalle entre deux d'arrosage (tour d'eau) est donné par la formule suivante :

Fr =Dose pratique/Bjl= 30/5,87=5,11 jours.

Donc on prend une fréquence de 5 jours.

1.17.5. Calcul de la dose (brute) :

On recalcule la nouvelle dose pratique :

$$Dp' = Fr. Bjl = 5*5,87 = 29,35mm$$

Dbrute=29,35/Ef.Cu.

Avec:

✓ Eff: efficience du réseau d'irrigation Eff=90%;

✓ Cu : coefficient d'uniformité Cu=90%.

Dbrute =Dr/Cu * eff = 29,35/(0,9*0,9) = 36,23 mm donc 37 mm.

1.17.6. Durée de fonctionnement par d'arrosage (h) :

$$\theta = Tf = Dbr*Sa*Sr/n*Qg$$

Avec : Sr et Sd espacement entre rang et distributeur,

• n et Qg nombre et débit du goutteur.

$$\theta = Tf = 37*2*4/2*4 = 37 \text{ h/mois.}$$

1.17.7.Durée d'arrosage effective :

> soit on prend un débit de 8 l/h donc on obtient θ =18,5 h;

➤ soit on augmente le nombre de goutteurs à 4 goutteur/arbre.

1.17.8. Nombre de poste :

Le nombre de poste par jour est défini comme suit :

N= Temps de travail/ Durée d'arrosage journalier= 1. On prend 1 poste.

1.17.9. Surface du poste :

Sp =Surface totale/ Nombre de poste= 2,06/1=2,06ha.

Nbre de goutteurs = Sp = Surface totale/ $SrxSpd=(2,06\times10000/4\times4)=1288$ goutteurs.

1.18. Calculs hydrauliques:

- \checkmark S=2,06 ha,
- ✓ La longueur de la rampe: 72 m
- ✓ La longueur de la porte rampe: 428m
- ✓ La longueur de la conduite secondaire : 87,80m,
- \checkmark S irriguée = 2,00ha.
- 1. La variation maximale du débit entre goutteur ne doit pas dépasser 10% selon la règle

de Christiansen:

$$\Delta q/q = 10\%$$

2. La variation maximale de la pression :

$$q = K.Hx$$

avec : x=0.5 (caractéristique du goutteur).

$$\Delta q/q(g) = x\Delta H/H(n)$$

Avec : q(g) : débit nominal du goutteur

$$\Delta H(\text{max}) = 1/0.5 = 2 \text{ mce.}$$

Donc selon la règle de Christainsen 10% ΔH singulières = 0.2 m

- Le reste 1.8 ΔH linéaire = 1.8 m;
- Donc pour les rampes= $2/3 \times 1.8 = 1.2 \text{ m}$;
- Pour le porte rampe = $1/3 \times 1.8 = 0.6$ m.

1.19. Dimensionnement des canalisations du réseau :

Les rampes et les porte-rampes sont en PEHD.

$$\emptyset$$
r(cal) = [P. d. c (r) * 2.75/ 0.478 * Q(r)1.75 L(r)]^{-1/4,75}

$$\emptyset$$
pr(cal) = [P. d. c (pr) * 2.75/ 0.478 * Q(pr)1.75 L(pr)]^{-1/4,75}

Avec:

- Pdc(r) : la perte de charge dans la rampe ;
- Q(r) : le débit de la rampe en l/h ;
- L(r): la longueur de la rampe en m;
- Ør (cal) : le diamètre de rampes ;
- Øpr (cal) : le diamètre de porte rampe.

Pour les rampes : L=72 m

1) Le nombre d'arbres par rampe:

N arbres =
$$Lr/Ea = 72/4 = 18$$
 arbres.

2) Nombre des goutteurs par rampe:

3) Débit de la rampe :

$$Qr=Ng \times Qg$$

$$Qr = 4 \times 36 = 144 \text{ l/h}$$

$$Pdc = 1.2m$$

4) Diamètre de la rampe :

$$Qr=144 l/h$$
;

$$Pdc = 1.2m$$
;

$$\emptyset$$
r(cal) = [P. d. c (r) * 2.75/ 0.478 * Q(r)1.75 L(r)]^{-1/4,75}

 $D_rampe= 10.22 \text{ mm}$, on prend DN = 16 mm.

1.20. Vérification des pertes de charges :

On recalcule les pertes de charges pour un D = 16 mm

Perte de charge selon Hazen-williams.

$$\Delta H = (3.592/Cw)^{1.852} *L/D^{4.87} *Q^{1.852}$$
 Avec :

✓ L : la longueur de la conduite ; \checkmark Q : débit (m3/s) et D : diamètre intérieur de la canalisation (m) ;

On a : Cw= 130 (PE), L=72m, D= 0.016m, Q= 0.00004m3/s

 ΔH _rampe= 0.4 m < 1.2 m (vérifiée).

1.20.1. Pour la porte rampe :

1) Le nombre des rampes:

 $Nr=Lpr/Er=2 \times 428/4=214$ rampes.

2) Débit du porte rampe:

Qpr=Qr×Nr= 144×214=30816 l/h;

3) Diamètre de la porte rampe :

$$Pdc = 0.6 \text{ m}$$

Cw= 130 PEBD, L=428m, D= 0.018m, Q= 8,56m3/s

Donc les pertes de charges sur rampes et porte-rampe sont :

ΔH _rampe+porte rampe = 1 m < 1.8m (Règle de Christiansen Vérifiée).

1.21. Calcul des diamètres de la conduite tertiaire:

Pour calculer le diamètre on doit fixer la vitesse d'écoulement (valeur optimale) d'environ 1.05 m/s tel que :

D=
$$(\sqrt{4*\sqrt{q_r}})/\sqrt{\pi}*\sqrt{v} = A_{vec}$$
:

✓ Q : débit de la conduite considérée (m3/s);

✓ V : vitesse d'écoulement (m/s). on prend D= 20 mm.

Conclusion

Dans ce chapitre on a pu faire le dimensionnement des différentes parcelles d'irrigation et de trouver les diamètres adéquat a l'alimentation en eau des cultures.

Chapitre VI ETUDE TECHNIQUO-ECONOMIQUE

Introduction.

Afin de réaliser un système d'irrigation adéquat même en termes de cout on doit procéder à l'étude des prix unitaires des diamètres de conduites qui est plus que nécessaire.

1. Cout des conduites.

Les prix des conduites sont dans le tableau suivant :

Tableau .39. Les prix des conduites.

Diamètre	Longueur (m)	Prix	Prix totale	Matériau
nominal (mm)		unitai	*10 ³ (DA)	
		re(DA/m)		desconduites
40	216,06	64,6	13,957	PEHD
63	80,2759	160,25	12,864	PEHD
75	4429,5838	225,21	997,586	PEHD
90	4831,9425	296,03	1430,399	PEHD
110	15364,1	357,96	5499,733	PEHD
125	6482,94	473,08	3066,949	PEHD
140	5874,44	615,65	3616,598	PEHD
160	9405,42	758,22	7131,377	PEHD
180	1536,9	960,9	1476,807	PEHD
200	201,6556	1163,39	234,604	PEHD
225	151,2552	1511,7	228,652	PEHD
250	244,9081	1860	455,529	PEHD
280	79,202	2470	195,628	PEHD
1600	13798,6287	4611,00	63625,476	FONTE

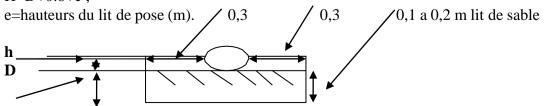
2. Frais des travaux du réseau d'irrigation.

Il s'agit des frais des travaux exécutés pour la réalisation des tranchées et autres emplacements pour la pose de canalisations.

2.1.calcul des volumes de remblai et de déblai :

A)-La longueur du fond de tranchée :

La longueur d'ouverture de tranché est donnée par la formule suivante :


 $B=D+(2\times0.3)$;

Avec : D : le diamètre de la conduite en (m).

B)- Profondeur de la tranchée :

La profondeur de la conduite doit être correctement installée.

H=D+0.8+e;

2.1.1. Volume de déblai :

On s'intéresse a une surface rectangulaire :

 $S=B\times H$.

Vdéblai=Vd-Vc-Vs;

Vd: volume de déblai (m3); Vs: volume du sable (m3);

VC : volume occupé par la conduite (m3). Vc= $L\times(\pi\times D24)$.

2.1.2. Volume de lait du sable :

Ce lit correspond à une couche de sable de 12 cm sur le fond de la tranchée. $Vs=e\times B\times L$.

Tableau.6 Calcul des différents volumes.

Conduite	Longueur	Largeur	Hauteur	Vdéblai	V _{sable}	Vconduite	V _{remblai}
Ø1600	13798,6287	7,8	10,2	75 895	3035,	27 743,8	45115,
Fonte					7		5
Ø 40 PEHD	216,06	4 ,0	4,84	9,98	13,83	0,3	115,85
Ø 63 PEHD	80,2759	3,0	3,863	51,25	5,32	0,25	45,68
Ø 75 PEHD	4429,5838	4 ,0	4,88	2915,23	299,0	19,6	2596,6 3
Ø 90 PEHD	4831,9425	3,0	3,4	3300,7	333,4 0	30,74	2936,5 6
Ø 110 PEHD	15364,1	4 ,0	4,91	11017,6	1090, 8511	146,1	9780,6 5
Ø 125 PEHD	6482,94	3,0	3,93	4817,63	470,0 13	79,56	4268,0 6
Ø 140 PEHD	5874,44	4 ,0	4,94	4520,97	434,7 1	90,43	3995,8 3
Ø 160 PEHD	9405,42	4 ,0	4,96	7577,01	714,8 11	189,11	6673,0 9
Ø 180 PEHD	1536,9	4 ,0	4,98	1294,68	119,8 782	39,11	1135,7
Ø 200 PEHD	201,6556	4 ,0	5,0	177,5	16,13 2	6,34	155,03
Ø 225 PEHD	151,2552	3,0	4,025	140,38	12,48	6,014	121,89
Ø 250 PEHD	244,9081	4 ,0	5,05	239,4	20,81	12,02	206,57
Ø 280 PEHD	79,202	3,0	3,88	140,19	6,97	4,88	128,34
La somme				112 217,52	6573, 91	28 368,25	77159, 54

Tableau .7. Coût des travaux de terrassement.

volumes	unité de	quantités	prix	Monta
	mesure		unita	nt
			ire(DA)	(DA)
Déblai	m3	112 217,52	1000	112217520
Pose du lit de	m4	6573,91	1100	7231301
sable				
Remblai de la	m5	77159,54	600	46295724
tranchée				
Evacuation	m6	35 057,98	500	17528990
deterres				
			total	183273535
			TTC	218095507

Conclusion

L'étude technique-économique nous permet d'estimer les différents couts des conduites et installations afin d'éviter une mauvaise gestion du projet.

Conclusion générale.

Cultivé depuis l'antiquité, l'olivier est un arbre rustique, peu exigeant est bien adapté aux conditions difficiles des régions méditerranéennes. Il y est un élément caractéristique du paysage et y valorise efficacement les ressources en eau. Très fréquemment la culture de l'olivier a un impact positif sur l'environnement et la conservation des paysages.

Il constitue un élément essentiel dans la lutte contre la désertification, un des problèmes écologiques les plus importants des régions méditerranéennes. De plus en tant que zones de refuges et d'alimentation pour la faune sauvage, les oliveraies contribuent significativement au maintien de la biodiversité de ces régions.

A la fin de notre projet on a déduit que la zone d'étude est sujette à des conditions naturelles, techniques et économiques favorables à la croissance et développement des arboricultures.

La région de Tazmalt comptabilise 1500 000 oliviers, malgré que la production de l'huile d'olive a connu pendant de décennies, des déboires dus a une prise en charge artisanale voir traditionnelle.

La culture de l'olivier occupe dans le monde 8,6 millions d'hectares. L'Algérie, sur une surface cultivée de 178 000 hectares et un rendement 16,9 quintaux a l'hectare et une production annuelle de 300 000 tonnes, occupe la neuvième place mondiale, en effet après quelques années de disette due a la sécheresse l'olivier a repris des forces grâce a une intense pluviosité en 2003,2004 qui étaient généreuse en pluie et neiges.

Donc, l'étude de ce projet nous a permis de comprendre que notre zone e à un type de sol et un climat adéquat pour les différentes cultures maraichères, fourragères et surtout a l'arboriculture.

Notre dimensionnement du réseau se fera par des conduites en fonte pour les grands diamètres et en PEHD pour celles des parcelles.

Le secteur de Tazmalt sera alimenté sous-pression par le réservoir de Bousellam relié gravitairement au barrage de Tichy-HAF.

REFERENCES BIBLIOGRAPHIQUE

ANRH, Alger (Agence Nationale des ressources hydrauliques).

ONM, Alger (Office National de la météologie).

Subdivision de la Wilaya de Bouira d'irrigation et de drainage.

ONID (Office Nationale d'Irrigation et de Drainage).

DRE, Tizi-Ouzou.

Thèse de Mr, Abd El hafidh sur étude du périmètre d'Oued Sahel (Secteur Chorfa)

REFERENCES SITOGRAPHIQUES:

www. Futura-science.com

www. Wikiwater.fr

www.archives.fr

www.dms.umontreal.ca

Annexe 1
Table de X2 théorique

able	e de X2 th	eorique							
1	0.9	0.5	0.3	0.2	0.1	0.05	0.02	0.01	0.001
1	0.016	0.455	1.074	1.642	2.705	3.841	5.412	6.635	10.827
2	0.211	1.386	2.408	3.219	4.605	5.991	7.824	9.210	13.815
3	0.584	2.366	3.665	4.642	6.251	7.815	9.837	11.345	16.266
4	1.064	3.357	4.878	5.989	7.779	9.488	11.668	13.277	18.467
5	1.610	4.351	6.064	7.289	9.236	11.070	13.388	15.086	20.515
6	2.204	5.348	7.231	8.558	10.645	12.592	15.033	16.812	22.457
7	2.833	6.346	8.383	9.83	12.017	14.067	16.622	18.475	24.322
8	3.490	7.344	9.524	11.030	13.362	15.507	18.168	20.090	26.125
9	4.168	8.343	10.656	12.242	14.684	16.919	19.679	21.666	27.877

apparentes de so	ls (Baize	, 2000)
Testure de l'horizon	Gasse	Densité apparent en t/m3
Argileuse lourde	ДД	1,35
Argileuse	Д	1,45
Argi lo-sa bleuse	As et AS	1.55
Argile-limo no-sa bleuse	Als	1,5
Limo n-anglik-sableuse	LAS	1,45
Argile-limoneuse et limon-argileux	Alet la	1.4
Sablo-argile ux et sable-argilo-limoneux	Sa et Sal	1,5
Limon sa blo-argile use	Isa	1,5
Limone use	L	1,35
Limon pur	ш	1,45
Limon sa ble ux	ls	1.45
Sable use et sablo-limon euse	SetSI	1,4
Sable	Se	1.35

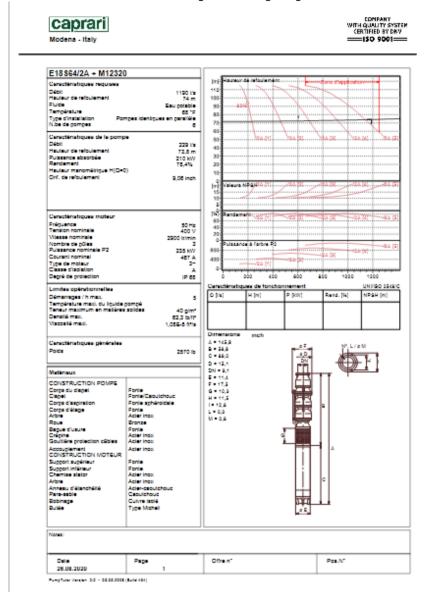
Annexe 2 Coefficient culturel Kc

		Stades de dév	eloppement de l	la culture		Durée totale de la période végétative	
CULTURE	Initial	Dévelop- pement	Mi- saison	Fin de saison	Récolte		
Bananier tropical subtropical	0.4 -0.5	0.7 -0.85 0.8 -0.9	1.0 -1.1	0.9 -1.0 1.0 -1.15	0.75-0.85 1.0 -1.15	0.7 -0.8 0.85-0.95	
Haricot vert sec	0.3 -0.4	0.65-0.75	0.95-1.05 1.05-1.2	0.9 -0.95 0.65-0.75	0.85-0.95 0.25-0.3	0.85-0.9	
Chou	0.4 -0.5	0.7 -0.8	0.95-1.1	0.9 -1.0	0.8 -0.95	0.7 -0.8	
Coton	0.4 -0.5	0.7 -0.8	1.05-1.25	0.8 -0.9	0.65-0.7	0.8 -0.9	
Raisin	0.35-0.55	0.6 -0.8	0.7 -0.9	0.6 -0.8	0.55-0.7	0.55-0.75	
Arachide	0.4 -0.5	0.7 -0.8	0.95-1.1	0.75-0.85	0.55-0.6	0.75-0.8	
Mais sucré grain	0.3 -0.5	0.7 -0.9 0.7 -0.85*	1.05-1.2	1.0 -1.15	0.95-1.1 0.55-0.6*	0.8 -0.95 0.75-0.9*	
Oignon sec vert	0.4 -0.6	0.7 -0.8 0.6 -0.75	0.95-1.1 0.95-1.05	0.85-0.9 0.95-1.05	0.75-0.85 0.95-1.05	0.8 -0.9 0.65-0.8	
Pois, frais	0.4 -0.5	0.7 -0.85	1.05-1.2	1.0 -1.15	0.95-1.1	0.8 -0.95	
Poivron, frais	0.3 -0.4	0.6 -0.75	0.95-1.1	0.85-1.0	0.8 -0.9	0.7 -0.8	
Pomme de terre	0.4 -0.5	0.7 -0.8	1.05-1.2	0.85-0.95	0.7 -0.75	0.75-0.9	
Riz	1.1 -1.15	1.1 -1.5	1.1 -1.3	0.95-1.05	0.95-1.05	1.05-1.2	
Carthame	0.3 -0.4	0.7 -0.8	1.05-1.2	0.65-0.7	0.2 -0.25	0.65-0.7	
Sorgho	0.3 -0.4	0,7 -0.75	1.0 -1.15	0.75-0.8	0.5 -0.55	0.75-0.85	
Soja	0.3 -0.4	0.7 -0.8	1.0 -1.15	0.7 -0.8	0.4 -0.5	0.75-0.9	
Betterave sucrière	0.4 -0.5	0.75-0.85	1.05-1.2	0.9 -1.0	0.6 -0.7	0.8 -0.9	

Kc	Inital	développe- ment	saison	de saison	Recolte	Total
Haricots verts	0,3-0,4	0,65-0,75	0,95-1,05	0,9-0,95	0,85-0,95	0,85-0,9
Haricots secs	0,3-0,4	0,7-0,8	1,05-1,2	0,65-0,75	0,25-0,3	0,7-0,8
Chou	0,4-0,5	0,7-0,8	0,95-1,1	0,9-1,0	0,8-0,95	0,7-0,8
Vigne	0,35-0,55	0,6-0,8	0,7-0,9	0,6-0,8	0,55-0,7	0,55-0,75
Maïs doux	0,3-0,5	0,7-0,9	1,05-1,2	1,0-1,15	0,95-1,1	0,8-0,95
Maïs grain	0,3-0,5	0,7-0,85	1,05-1,2	0,8-0,95	0,55-0,6	0,75-0,9
Pois	0,4-0,5	0,7-085	1,05-1,2	1,0-1,15	0,95-1,1	0,8-0,95
Patates	0,4-0,5	0,7-0,8	1,05-1,2	0,85-0,95	0,7-0,75	0,75-0,9
Riz	1,1-1,15	1,1-1,5	1,1-1,3	0,95-1,05	0,95-1,05	1,05-1,2
Soja	0,3-0,4	0,7-0,8	1,0-1,15	0,7-0,8	0,4-0,5	0,75-0,9
Betterave	0,4-0,5	0,75-0,85	1,05-1,2	0,9-1,0	0,6-0,7	0,8-0,9
Tournesol	0,3-0,4	0,7-0,8	1,05-1,2	0,7-0,8	0,35-0,45	0,75-0,85
Tabac	0,3-0,4	0,7-0,8	1,0-1,2	0,9-1,0	0,75-0,85	0,85-0,95
Tomate	0,4-0,5	0,7-0,8	1,05-1,25	0,8-0,95	0,6-0,65	0,75-0,9
Blé	0,3-0,4	0,7-0,8	1,05-1,2	0,65-0,75	0,2-0,25	0,8-0,9

ANNEXE 3 Calcul des pertes de charges

D	L	D	V	Re	Λ	Δ	Δ	Hg(HMT
int	(m)	éb	it			Н	Н	m	(m)
(m		i t	e			1	t)	
m		(1/	SS			((
)		s)	e			m	m		
			())		
			m						
			/s						
)						
100	2100	119	1,	14911	0,00	1,71	1,881	71,7	73,581
0		4	52	2	6				
				0	9				
110	2100	119	1,	13596	0,00	1,05	1,155	71,7	72,855
0		4	26	6	6				
				6	8				
125	2100	119	0,	11894	0,00	0,53	0,583	71,7	72,283
0		4	97	6	6				
				2,5	6				
160	2100	119	0,	92606	0,00	0,15	0,165	71,7	71,865
0		4	59	4	6				
					4				


Calcul des frais d'exploitation

Diamèt	Q(m ³ /h)	Hmt(m)	Puissan	E KWh	Prix du	Frais
re			ce	annuels	K	exploitati
(mm)			(KW)		W	on(DA)
			, ,		h	
					(D	
					A)	
1000	4298,4	73,581	1077,3306	8650965,4	4,69	40573028,0
			93	65		3
1100	4298,4	72,855	1066,7010	8565609,1	4,69	40172707,0
			18	75		3
1250	4298,4	72,283	1058,3261	8498358,7	4,69	39857302,6
			23	68		2
1600	4298,4	71,865	1052,2060	8449214,2	4,69	39626814,8
			08	44		

Calcul des frais d'amortissement

Cuicui des	Trais a amore	issement				
D (mm)	Prix	Prix	L(m)	Prix	ANNUIT	Frais
	ML	de		(DA)	E	d'amortissem
	(TTC)	pose				ent(DA)
1000	24 000	2760.00	2100	561960	0,089	5001444
				00		
1100	27 145	3058.00	2100	634263	0,089	5644940.7
				00		
1250	31 832	3724.00	2100	746676	0,089	6645416,4
				00		
1600	51 967	4611.00	2100	1188138	0,089	10574428,2
				00		

ANNEXE 4 Les caractéristiques de la pompe choisis

Annexe 5 Diamètres des conduites PEHD

Diamètre extérieur	Diametre exte	ideur meyen	l
nominal d _a (mm)	d_(mm)	d(mm)	
16	16,0	16,3	
20	20,0	20,3	
25	25,0	25,3	
32 40	32,0 40,0	32,3 40,4	
50	50,0	50,4	
63	63,0	63,4	
75 90	75,0 90,0	75,5 90,6	
110	110,0	110,7	
125	125,0	125,8	
140	140,0	140,9	
180	180,0	181,1	
200	200,0	201,2	
225	225,0	226,4	
250	250,0 280,0	251,5 281,7	
315	315,0	316,9	
355	355,0	357,2	
400	400,0 450,0	402,4 452,7	
500	500,0	503,0	
560	560,0	563,4	
630 710	630,0 710,0	633,8 716,4	
800	800,0	807,2	
900	900,0	908,1	
1200	1000,0	1009,0	
1400	1400,0	1412,6	
1600	1600,0	1614,4	
	Matériaux		k V
	Materialis		Rugosité en [mm]
Cuivre étiré			0,001 - 0,002
Laiton			0,001 - 0,002
Plomb			0,001 - 0,002
Aluminium			0,002
Verre			0,001 - 0,002
Polyéthylène – PE			0,002
Acier étiré sans soudure			0.05
Acier étiré sans soudure			0,2
Acier étiré sans soudure		nauffage	0,1
Acier étiré sans soudure	e : entartré		0,4
Acier galvanisé : neuf			0,15
Tôle galvanisée pour ga	ine de climatisation	et de ventilation	0,150
Fonte : neuve			0,1
Fonte : usée			1 – 1,5
Béton lisse			0,5
Béton armé			2,5
Béton rugueux			5

Annexe 6 Caractéristiques de l'asperseur circulaire PERROT ZF 30

de la buse	pression à la buse	portée	débit		ement n	irrig	face juée	d'asp	nsité ersion n/h
ø	bar	m	m³/h	disp.	disp.	disp.	disp.	disp.	disp
4,0	2,5	13	0.93	12/18	18/18	216	324	4,3	2.88
	3,0	14,5	1,02	18/18	18/24	324	432	3,16	2.36
	3,5	15,3	1,11	18/18	18/24	324	432	3,42	2.57
	4,0	16	1,19	18/18	18/24	324	432	3,71	2.76
4,2	2,5	13,5	1,04	12/18	18/24	324	432	4,8	2,42
	3,0	15	1,14	18/18	18/24	216	432	3,52	2,64
	3,5	15,8	1,23	18/18	18/24	324	432	3,8	2,85
	4,0	16,5	1,32	18/24	24/24	324	576	3,06	2,3
4,5	2,5	14	1,20	18/18	18/24	432	432	3,71	2,78
	3,0	15,5	1,32	18/18	18/24	324	432	4,07	3,05
	3,5	18,3	1,42	18/18	18/24	324	432	4,38	3,29
	4,0	17	1,52	18/24	24/24	324	576	3,52	2,64
4,8	2,5	14,5	1,38	18/18	18/24	432	432	4,27	3,2
	3,0	16	1.51	18/18	18/24	324	432	4,66	3,5
	3,5	16,5	1.63	18/24	24/24	324	576	3,78	2,82
	4,0	17	1,75	18/24	24/24	432	576	4,05	3,04
5,0	2,5	14,5	1,48	18/18	18/24	432	432	4,57	3,43
	3,0	16,5	1,83	18/18	18/24	432	432	5,04	3,77
	3,5	17	1,76	18/24	24/24	324	576	4,08	3,05
	4,0	17,5	1,88	18/24	24/24	324	576	4,35	3,26
5,5	2,5	15,2	1,82	18/18	18/24	432	432	5,62	4,22
	3,0	17	1,99	18/24	24/24	432	576	4,61	3,45
	3.5	17,5	2,14	18/24	24/24	324	576	4,95	3,71
	4,0	18	2,29	18/24	24/24	432	576	5,31	3,98
6,0	2,5 3,0 3,5 4,0	16,2 17,5 18 18,5	2,16 2,37 2,56 2,74	18/24 18/24 18/24 18/24	24/24 24/24 24/24 24/24	432 432 432	576 576 576 576	5,00 5,50 5,92 6,35	3,75 4,12 4,43 4,76
7,0	2.5 3.0 3.5 4.0	17,5 18,0 18,5 19,0	2,96 3,22 3,48 3,73	18/24 18/24 24/24 24/24	24/24 24/24 24/24 24/30	432 432 576	576 576 576 /20	6,9 7,5 6.0	5.1 5.6 6.0