الجمهورية الجزائرية الديمقراطية الشعبية وزارة التعليم العالي والبحث العلمي

NATIONAL HIGHER SCHOOL FOR HYDRAULICS

"The MujahidAbdellah ARBAOUI"

المحرسة الوطنية العليا للربي "إيماله عبد علامالي" عبد الله عبدالله x+4008+. x+608+

MEMOIRE DE FIN D'ETUDES

Pour l'obtention du diplôme d'Ingénieur d'Etat en Hydraulique

Option: OUVRAGES HYDROTECHNIQUES

THEME:

Etude d'une retenue collinaire sur oued Boukhertoum (W. Jijel)

Présenté par :

BOUKERCH Asmaa

Devant les membres du jury

Nom et Prénoms	Grade	Qualité
HADJ SADOK Ahmed	Professeur	Président
ZAIBAK Issam	M.A.A	Membre
BOUZIANE Mamar	M.A.A	Membre
MIHOUBI Mustapha Kamel	Professeur	Promoteur

Session Novembre 2023

Dédicace

Je dédie ce travail

A mes chers parents qui ont sculpté la personne que je suis aujourd'hui avec une tendresse inégalée.

Votre dévouement est incroyable, et je veux vous exprimer tout mon respect et mon amour éternel pour tout ce que vous avez fait pour mon éducation et mon bonheur depuis mon enfance. Je suis profondément reconnaissante pour le soutien et l'amour que vous m'avez toujours apportés.

Je souhaite que ce travail modeste puisse réaliser vos rêves et récompenser tous les sacrifices que vous avez faits. Puisse Dieu vous accorder la santé, le bonheur et une vie longue et épanouissante.

A ma chère enseignante et sœur Farida

Je souhaite exprimer ma profonde gratitude pour votre amour inconditionnel, votre patience infinie et votre soutien sans faille.

A mes adorables sœur : Farida, Medida et Samira

A mes chèrs frère : Med Amine, Daya Eddine, Sofien

Pour exprimer mes sentiments de fraternité, de compassion sincère et de gratitude profonde, je vous souhaite une vie remplie de bonheur et que Dieu Tout-Puissant vous accorde Ses bénédictions.

A mes petite anges : Islem, Younes, Dania, Miral et Wassim

À tous mes amis et à ceux qui m'ont apporté leur aide

Je vous exprime ma profonde gratitude et vous souhaite une multitude de bonheur. Que Dieu veille sur vous pour moi.

Asmaa

Remerciements

Pour commencer, je souhaite exprimer ma gratitude envers le Dieu Tout-Puissant pour m'avoir béni d'une ambition, d'une force, d'une volonté et d'un courage qui ont été essentiels pour mener à bien cette humble œuvre. Elle a été accomplie avec un profond amour, un enthousiasme débordant et une sincérité totale.

Je tiens à exprimer ma profonde gratitude envers mes parents pour leur soutien inestimable sur les plans moral et financier. Leur encouragement constant m'a toujours motivé à donner le meilleur de moi-même. Je souhaite également remercier mes sœurs et mon frère qui ont toujours été à mes côtés.

Je ressens une profonde gratitude à mon encadreur Prof MIHOUBI.Mustapha Kamel pour son assistance, ses précieux conseils, et ses suggestions tout au long de la rédaction de mon mémoire.

Je tiens également à remercier Mr.BOUCHAIR .A

Chef département d'engineering à l'ANBT pour son aide et ses suggestions.

Je souhaite également exprimer ma gratitude envers les membres jury qui Prendront le temps d'évaluer et d'apprécier la qualité de Mon travail.

Je tiens également à remercier tous les enseignants de l'ENSH pour leur Inspiration, leurs conseils et leur assistance tout au long du processus de Formation.

ملخص

هدفت هذه المذكرة إلى إجراء دراسة تنفيذية لسد صغير على وادي "بوخرطوم" في ولاية جيجل، من النواحي التقنية والاقتصادية، بهدف ري مساحة تقدر بحوالي 15 هكتارًا من الأراضي الزراعية.

تمت دراسة الجوانب الطبو غرافية والجيولوجية والهيدرولوجية كجزء من هذه الدراسة التنفيذية. تم أيضًا دراسة مجموعة متنوعة من الأشكال الممكنة لجسم السد بهدف تحديد الشكل الأنسب لتصميمه حيث يبلغ ارتفاع السد 10.4 مترًا، وسعته تقدر بحوالي 375,000 متر مكعب، وذلك لضمان توفير مصادر مياه صالحة للاستخدام.

الكلمات المقاحة: الدراسة التنفيذية - سد صغير - بوخرطوم

Résume:

L'objectif de ce projet de fin d'études est la réalisation d'une retenue collinaire sur l'oued Boukhertoum (W. Jijel) sous un aspect technique et économique, dans le but d'irriguer une zone de 15 hectares.

Conformément à toute étude d'exécution, une analyse topographique, géologique, hydrologique, ainsi qu'une étude des différentes options ont été réalisées pour déterminer le choix du type de digue à concevoir.

Il s'agit d'une digue d'une hauteur de 10.4 mètres, avec une capacité de 375,000 mètres cubes, permettant d'assurer un volume d'eau adéquat.

Mots clés : Retenue collinaire- étude d'exécution -boukhertoum.

Abstract:

The objective of our dissertation is to conduct a comprehensive study and execution of a water reservoir located on the boukhertoum stream (W. Jijel), considering both technical and economic aspects, with the purpose of irrigating a 15-hectare area.

To achieve this goal, we have conducted an in-depth analysis of the topography, geology, and hydrology of the site. Additionally, we have explored various alternatives to determine the most suitable type of reservoir to be designed.

The selected design consists of a 10.4-meter-high dam with a total capacity of 375,000 cubic meters, ensuring an ample volume of water supply.

Keywords: water reservoir - execution – boukhertoum

Table des matières

Introduct	Introduction générale	
	Chapitre I : Présentation de la zone d'étude	
Introduc	tion	3
	tion géographique de la commune de l`Emire Abdelkader	
	ix et reconnaissance du site	
	e d'implantation de la retenue collinaire	
	ctéristiques morphologiques du site	
	ion	
	Chapitre II : Etude géologique et géotechnique	
	Chapitre II. Etude geologique et geotechnique	
Introduc	tion	8
II.1 Gé	éologie et hydrogéologie	8
II.1.1	Géologie de la région d'étude	8
II.1.2	Géologie du site	10
II.1.3	Hydrogeologie de la cuvette	10
II.1.4	Sismicité	10
II.1.5	Fondation des ouvrages	11
II.1.6	Matériaux de construction	11
Conclus	ion	11
II.2 Etc	ude géotechnique	12
II.2.1	Prospection Géotechnique du Terrain	12
II.2.2	Prospection géotechnique de laboratoire	12
Conclus	ion	

Chapitre III : Etude hydrologique

Introduc	tion19
III.1 Bass	sin versant et son complexe
III.2 Bass	sin versant de boukhertoum20
III.3 Etu	de hydro-morpho-métrique du bassin versant20
III.3.1	Paramètres géométriques
III.3.2	Paramètres de forme
III.3.3	Paramètres du relief
III.3.4	Paramètres hydrographiques
III.4 Etuc	de climatologique
III.4.1	Température34
III.4.2	Pluviométrie35
III.4.3	Insolation
III.4.4	Vent
III.4.5	Humidité36
III.5 Etu	de pluviométrique
III.5.1	Estimation des pluies journalières maximales
III.5.2	Pluies de courtes durées de différentes fréquences44
III.6 Eva	aluation des apports
III.6.1	Apports liquides 46
III.6.2	Irrégularité des apports
III.6.4	Les apports solides
III.7 Etuc	le des crues
III.7.1	Estimation du débit maximum
III.7.2	Hydrogramme de crue
III.7.3	Choix de la crue de projet
III.7.4	choix de la crue de chantier
III.8 Rég	ularisation
III.8.1	Répartition mensuelle de l'apport A80%59
III.8.2	Répartition mensuelle de la demande
III.8.3	Courbes « Hauteur-Capacité-Surface »

III.8.4	Calcul du volume utile	62
III.9 Lam	inage des crues	68
III.9.1	Méthode de kotcherine	69
III.10 Ett	ide d'optimisation	72
III.10.1	Calcul de la revanche	72
III.10.2	Largeur en crête	73
III.10.3	Calcul du volume et du coût de la digue	74
III.10.4	Calcul du coût de l'évacuateur de crues	75
Conclusio	n	78
C	Chapitre IV : Etude des variantes de la digue	
	•	
Introduct	ion	80
IV.1 Ch	oix du type du barrage	80
IV.1.1	Digue en terre homogène	80
IV.1.2	Digue zoné à noyau étanche	80
IV.2 Dét	finition du profil général de la retenue	81
IV.2.1	Hauteur de la retenue	81
IV.2.2	Largeur en crête	81
IV.2.3	La longueur en crête	81
IV.2.4	Choix des pentes des talus	81
IV.3 Dig	gue en terre homogène	82
IV.3.1	Pentes des talus	82
IV.3.2	Protection des talus	82
IV.3.3	Calcul des drains	83
IV.4 Dig	gue zoné a noyau d'argile	85
IV.4.1	Pentes des talus	85
IV.4.2	Protection des talus	85
IV.4.3	Etanchéité de la retenue	86
IV.4.4	Dimensionnement du tapis drainant	88
IV.5 Clé	d'étanchéité	88

IV.6 D	étermination du cout des matériaux pour les différentes van	riantes 88
IV.6	1 Digue en terre homogène	88
IV.6.	2 Digue zonée a noyau étanche	89
Concl	usion	90
	Chapitre V : Etude de la variante retenue	
Introduct	ion	92
V.1 Pr	otection des talus	92
V.1.1 Le	talus aval	92
V.1.2 Le	e talus amont	92
V.2 Pro	otection de la crête	93
V.3 Dr	ainage et filtres	93
V.3.1	Dispositif de drainage du remblai	93
V.3.2	Calcul des filters	94
V.4 Ca	lcul d'infiltration à travers la digue et la fondation	97
V.4.1	Tracer de la ligne de saturation	98
V.4.2	Calcul du débit d'infiltration (débit de fuite)	99
V.5 Ca	lcul de stabilité	101
V.5.1	Généralité sur la stabilité des barrages (Talus)	101
V.5.2	Stabilité des talus	101
V.5.3	Méthode de Fellenius	102
V.5.4	Conséquences de l'instabilité des talus	103
V.5.5	ordre de calcul (Méthode des tranches)	
V.5.6	Calcul des forces appliquées à chaque tranche	104
V.5.7	Classement des forces	116
V.5.8 fonction	Calcul du coefficient de sécurité pour les différents types onnement	
	ion	

Chapitre VI : Etude des ouvrages annexes

Introduct	ion
VI.1 L'é	vacuateur de crues
VI.1.1	Critères de choix de l'évacuateur de crue
VI.1.2	Différents types d'évacuateurs de crue
VI.1.3	Choix de la variante
VI.1.4	Dimensionnement hydraulique de l'évacuateur de crue 113
VI.2 Vida	ange de fond
VI.2.1	Types d'ouvrages de vidange
VI.2.2	Choix du type d'ouvrage de vidange
VI.2.3	Calcul du débit de vidange
VI.2.4	Calcul de la section de la conduite de vidange et son diamétre127
VI.2.5	Calcul de la vitesse de l'eau dans la conduite129
VI.3 Ouvi	rage de prise d'eau
VI.3.1	Calcul du débit de dimensionnement pour la prise d'eau 129
VI.3.2	Calcul de la section de la prise d'eau et son diamètre 129
	Calcul de la vitesse de l'eau dans la conduite
	Chapitre VII : Organisation de chantier
Introducti	on
VII.1 Tra	avaux préparatoires et installation de l'entreprise
VII.1.1	Installations déstinées au personnel
VII.1.2	Installations destinées au stockage des matériaux
VII.1.3	Installations destinées à la réparation des engins
VII.1.4	Installation destinée pour la préfabrication
VII.2 Mo	yens du chantier
VII.2.1	Moyens humains
VII.2.2	Moyens matériels
VII.3 Pla	nification133
VII 3 1	Définition 133

VII.3.2 Techniques de la planification	134
Conclusion.	139
Chapitre VIII : Protection et sécurité du travail	
Introduction	141
VIII.1 Cause des accidents de travail	141
VIII.1.1 Le facteur materiel	141
VIII.1.2 Le facteur humain	142
VII.2 Causes des maladies professionnelles	142
VIII.2.1 Les poussières	142
VIII.2.2 Le bruit	142
VIII.3 Conditions dangereuses dans le chantier	143
VIII.4 Actions dangereuses	143
VIII.5 Mesures préventives	143
VIII.6 Méthode et moyens de prévention	143
VIII.7 Plan de sécurité adapté aux travaux de réalisation	
Conclusion	145
Conclusion génèrale	147
Références	
Bibliographiques149	

Liste des figures

Chapitre I : Présentation de la zone d'étude
Figure I-1: Localisation de la commune de l'emire Abdelkader
Figure I-2 : Situation de la retenue collinaire de boukhertoum5
Chapitre II : l'étude géologique et géotechnique
Figure II-1: Carte de micro zonage sismique du territoire national-RPA9910
Chapitre III : Etude hydrologique
Figure III-1: Bassin topographique et bassin réel
Figure III-2: Délimitation du bassin versant de boukhertoum
Figure III-3: Carte des courbes de niveau du bassin versant
De boukhertoum
Figure III-4: Carte hypsométrique du bassin versant de boukhertoum 24
Figure III-5: Courbe hypsométrique du bassin versant de boukhertoum 25
Figure III-6: Carte des pentes du bassin versant du boukhertoum26
Figure III-7: Carte du réseau hydrographique du bassin versant de
boukhertoum30
Figure III-8 : Répartition des températures annuelles35
Figure III-9 : Répartition mensuelle de la précipitation36
Figure III-10: Résultat d'ajustement à la loi de GUMBEL39
Figure III-11: Résultat d'ajustement par la loi LOG NORMAL41
Figure III-12 : Résultat d'ajustement par la loi de GEV
Figure III-13: Résultat de comparaison entre les trois lois d'ajustement43
Figure III-14: Répartition mensuelle des apports de fréquence 80%51
Figure III-15: Représentation des hydrogrammes des crues pour différente
période de retour
Figure III-16: Courbe capacité-hauteur
Figure III-17: Courbe surface-hauteur
Figure III-18: Courbe volumétrique
Figure III-19 : courbe H=f (Q, q)
Figure III-20 : courbe $V_F=f(Q, q)$
Figure III-27 : Courbe d'optimisation

Chapitre IV : Etude des variantes de la digue	
Figure IV-1: Coupe transversale d'une digue homogène	80
Figure IV-2 : Coupe transversale d'une digue zonée	81
Chapitre V : Etude de la variante choisie	
Figure V-1 : Calcul l'infiltration qui travers le corps de la digue Figure V-2 : Forces exercées sur une tranche de sol instable sur le cercle	99
De glissement (O, Ri)	. 102
Chapitre VI : Etude des ouvrages annexes	
Figure VI-1: Evacuateur de crues latéral à entonnement frontal	. 112
Figure VI-2: Dimensions caractéristiques et géométrie du déversoir	. 114
Figure VI-3: Schéma du profil du seuil déversant type Creager	115
Figure VI-4: Ligne d'eau dans le coursier	120
Figure VI-5 : Schéma du bassin de dissipation type I	. 122
Chapitre VII : Organisation de chantier	
Figure VII-1: Illustration du chemin critique par la méthode du réseau	127
À nœud du projet	13/

Liste des tableaux

Chapitre I : Présentation de la zone d'étude
Tableau I-1 : Coordonnées de la retenue collinaire de boukhertoum 4
Chapitre II : Etude géologique et géotechnique
Tableau II-1 : Coefficients d'accélération du séisme 10
Tableau II-2 : Nombre des essais physique d'identification 12
Tableau II-3 : Nombre des essais mécanique 12
Tableau II-4: Nombre des essais de cisaillement rectiligne à la boite U.U 13
Tableau II-5: Nombre des essais de compactage selon Proctor normal 13
Tableau II-6: Nombre des essais chimique
Tableau II-7 : Résultats de l'essai humidité 14
Tableau II-8 : Résultats des essais des limites D`ATTERBERG
Tableau II-9 : Résultats de granulométrie 14
Tableau II-10: Résultats des essais chimique
Tableau II-11: Résultats des essais de compression a l'odomètre
Tableau II-12 : Résultats des essais de cisaillement rectiligne à la boite Type U.U
Tableau II-13 : Résultat de l'essai compactage selon Proctor normal16
Chapitre III : Etude hydrologique
Tableau III-1 : Répartition de la surface du bassin versant
Tableau III-2 : Les altitudes caractéristiques du bassin versant de
boukhertoum
Tableau III-3 : Classification du relief selon l'indice de pente global 27
Tableau III-4 : Détermination de l'indice de pente de roche
Tableau III-5 : Longueurs des courbes de niveau 28
Tableau III-6 : longueur des cours d'eau 31
Tableau III-7: Tableau récapitulatif du calcul du temps de concentration 32
Tableau III-8 : Récapitulatif des caractéristiques hydro-morpho-métrique
du bassin versant
Tableau III-9 : Répartition de la température moyenne annuelle
Tableau III-10 : station pluviométrique
Tableau III-11: Répartition mensuelle moyenne interannuelle de
La précipitation35

Tableau III-13: Répartition annuelle des Pjmax	37
Tableau III-14: Caractéristiques de la série des P j max	37
Tableau III-15: Ajustement à la loi de GUMBEL	
Tableau III-16: Ajustement à la loi Log-Normale	40
Tableau III-17: Ajustement à la loi de GEV	42
Tableau III-18: Resultats du test d'adéquation	44
Tableau III-19: pluies de courte durée et intensites de pluies pour	
Différentes fréquences	45
Tableau III-20: Récapitulatif de l'Apport moyen interannuelle	47
Tableau III-21 : Caractéristiques de l'écoulement	49
Tableau III-22: Répartition mensuelle de l'apport annuel 80%	50
Tableau III-23 : Différentes valeurs de a	52
Tableau III-24 : Resultats de calcul de volume mort	52
Tableau III-25: débits maximaux de crue	54
Tableau III-26 : Coefficient de forme de l'hydrogramme de crue	55
Tableau III-27: Hydrogramme de crues pour différentes périodes	
De retour.	
Tableau III-28 : Crue de projet recommandée	57
Tableau III-29 : Répartition mensuelle de l'apport annuel 80%	59
Tableau III-30 : répartition mensuelle des besoins.	59
Tableau III-31 : Surfaces submergées et les volumes d'eau	60
Tableau III-32 : Détermination de la période à bonne hydraulicité	63
Tableau III-33 : Régularisation saisonnière sans tenir compte des pertes	64
Tableau III-34 : valeurs de δ en fonction des conditions hydrogéologique	es.66
Tableau III-35 : Les volumes des pertes dans la retenue	66
Tableau III-36: Régularisation saisonnière en tenant compte des pertes.	67
Tableau III-37 : volume force et débit en fonction de b et h	70
Tableau III-38 : débits déversant en fonction de h,b et volume	71
Tableau III-39 : Récapitulatif des résultats	
Tableau III-40 : Largeur en crête	
Tableau III-41 : Calcul du cout de la digue	
Tableau III-42 : Calculs du coût du déversoir pour les différentes largeur	
Tableau III-43: Coûts du coursier pour différentes largeurs déversantes.	
Tableau III-44: Récapitulatif des prix totaux pour les différentes largeur	
déversantes	
Tableau III-45 : Caractéristiques du barrage	78

Chapitre IV : Etude des variantes de la digue

Tableau IV-1: Valeurs indicatives des pentes des talus	
Tableau IV-2: Valeurs du coefficient C	
Tableau IV-3: Epaisseur de l'enrochement et D ₅₀ minimal des pierres en fonction de la houteur de le vague	
fonction de la hauteur de la vague.	
Tableau IV-4 : Classe de barrage en terre en fonction du type de la fondat	
Tableau IV-5 : Gradient admissible en fonction de la classe de l'ouvrage	
Tableau IV-6 : Caractéristiques du noyau	
•	
Tableau IV-7: devis estimatif de la 1ere variante	
Tableau IV-8 : devis estimatif de la 2eme variante	09
Chapitre V : Etude de la variante choisie	
Tableau V-1 : Profil général de la retenue	.92
Tableau V-2 : Caractéristiques du revêtement en Rip-Rap	
Tableau V-3 : Récapitulatif des dimensions du dispositif de drainage	
Tableau V-4 : Les coordonnées de la parabole	99
Tableau V-5 : Coefficient de stabilité admissible des talus	
Tableau V-6: Valeurs de K1, K2 en fonction des pentes de talus	
Tableau V-7 : Valeurs de K1, K2 dans notre cas	
Tableau V-8: les caractéristiques géométriques	
Tableau V-9 : Valeurs du coefficient de sécurité	
Chapitre VI : Etude des ouvrages annexes	
Tableau VI-1: Valeurs des paramètres K et n	114
Tableau VI-2 : Coordonnées du profil de Greager	
Tableau VI-3 : Résultat du calcul de la ligne d'eau du coursier	
Tableau VI-4 : Choix tu type de bassin selon l'USBR	
Tableau VI-5 : Dimensions des dents déflectrices	
Tableau VI-6 : Dimensions des blocs de chicane	
Tableau VI-7 : Récapitulatif des résultats	

Tableau VI-8: Ensemble des dispositifs minimaux préconisés	127
Tableau VI-13 : Coefficients de perte de charge singulière	128
Chapitre VII : Organisation de chantier	
Tableau VII-1 : Paramètres de la méthode	135
Tableau VII-2: Symboles des opérations réalisées	137
Tableau VII-3: détermination des chemins critiques	138
Chapitre VIII : Protection et sécurité du travail	
Tableau VIII-1: Plan de sécurité	144

Liste des planches

Planche N°1 : Coupe type de la digue pour les deux variantes

Planche N°2: profil en long de la digue

Planche N°3 : schéma de calcul de la stabilité et des infiltrations

Planche N°4 : profil en long de l'évacuateur de crue

Planche N°5: profil en long de la pris d'eau et vidange de fond

Planche N°6: Planning des travaux d'exécution.

Introduction Générale

INTRODUCTION GENERALE

Face à la situation préoccupante du secteur agricole, il est impératif d'envisager le développement de nouveaux mécanismes agricoles dans notre pays. Dans cette optique, il est essentiel d'exploiter pleinement tout le potentiel disponible, car les ressources en eau actuelles jouent un rôle crucial dans l'augmentation de la production agricole, la croissance économique du pays, ainsi que l'amélioration des conditions de vie des citoyens.

Au cours de la dernière décennie, le pays a déployé des efforts considérables pour renforcer la mobilisation des ressources en eau, ce qui a permis de mieux répondre aux besoins en eau de la population, de l'agriculture et de l'industrie.

Dans cette perspective, l'État a lancé un programme d'analyse de projets visant à créer des réservoirs collinaires destinés à stocker des volumes considérables d'eau, principalement destinés à l'irrigation agricole.

Ainsi, notre mission se concentrera sur l'évaluation du projet d'aménagement d'une retenue collinaire à Boukhertoum, située dans la commune d'Emir Abdelkader, dans la wilaya de Jijel, dans le but de garantir le stockage de volumes importants d'eau, principalement destinés à l'irrigation agricole.

Ce projet d'aménagement comprend la construction d'une digue en terre utilisant des matériaux locaux, ainsi que des structures auxiliaires telles qu'un dispositif de décharge en cas de crue, une installation de prise d'eau et un système de vidange du fond.

Chapitre I:

Présentation de la zone d'étude

Introduction

Dans ce chapitre, nous examinons les caractéristiques topographiques de la commune d'Emir Abdelkader en vue d'évaluer la possibilité de créer une retenue collinaire le long de l'oued Boukhertoum. L'objectif est d'analyser ces caractéristiques pour déterminer l'endroit optimal pour installer la digue.

Cette retenue collinaire a pour objectif de mobiliser les ressources en eau par le biais d'un réservoir de stockage permettant l'irrigation des plaines d'environ 15 hectares située à l'aval.

I.1 Situation géographique de la commune de l'emir Abdelkader :

La commune d'Emir Abdelkader est située au nord de la wilaya de Jijel, à une distance d'environ 14 km de son chef-lieu.

Cette commune est délimitée par les communes suivantes :

➤ Au nord : mer méditerranée ;

➤ A l'est : la commune de taher ;

Au sud : la commune de texenna, ouadjana ;

➤ A l'ouest : la commune de kaous.

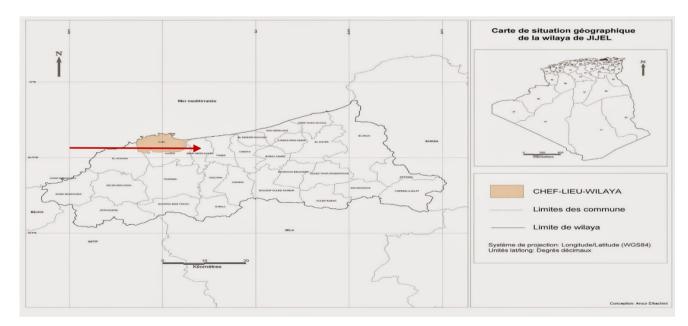


Figure I-01: Localisation de la commune de l'Emire Abdelkader. (Site)

I.2. Choix et reconnaissance du site

L'objectif de cette étude est d'identifier un site approprié pour la construction d'un ouvrage répondant aux exigences techniques et économiques optimales.

Dans le choix d'un site pour une retenue collinaire, plusieurs critères sont pris en compte, parmi lesquels les points suivants se distinguent :

- Assurer la conservation adéquate de l'eau dans la retenue ;
- > Géologie favorable pour l'emplacement de la retenue ;
- La présence d'un rétrécissement de la gorge reliant les deux rives, correspondant à une vallée étroite, permettra de minimiser le volume de la retenue ;
- ➤ Privilégier un emplacement proche des zones d'accès existantes afin de minimiser la nécessité de créer de nouvelles voies pour les engins et les travailleurs ;
- ➤ Un site adapté pour la localisation des ouvrages annexes.

Après avoir pris en considération les éléments énumérés précédemment et suite à la visite réalisée le long de l'oued Boukhertoum, nous avons sélectionné un tracé spécifique pour l'implantation de la digue.

I.3. Zone d'implantation de la retenue collinaire :

L'emplacement de la retenue collinaire de Boukhertour se trouve au nord-ouest du centre de la commune d'Emir Abdelkader, à une distance de 4,3 kilomètres en ligne droite, comme illustré sur **la figure I.02.**

Le tableau ci-dessous présente les coordonnées précises du site de la retenue collinaire dans le système de coordonnées Lambert.

Tableau I-1: Coordonnées de la retenue collinaire de boukhertoum.

	X (km)	Y (km)	Z(m) NGA
Coordonnées Lambert	778,950	391,865	27

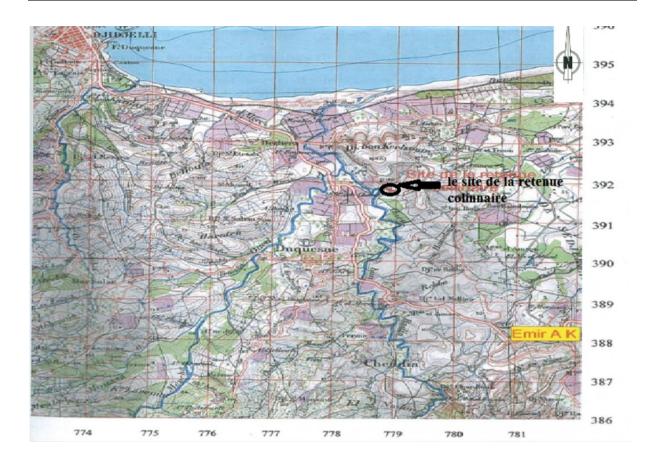


Figure I.02 : Situation de la retenue collinaire de BOUKHERTOUM Echelle : 1/50.000.

I.4. Caractéristiques morphologiques du site :

I.4.1 Topographie:

La région se caractérise par un relief accidenté et des pentes relativement raides. La majeure partie du bassin versant de Boukhertoum s'étend entre 60 et 120 mètres d'altitude. Les chaînes de montagnes les plus élevées atteignent environ 140 mètres et le point culminant, le Djebel Boukhertoum, s'élève à 148 mètres au nord.

Le principal cours d'eau est le Chaabet Boukhertoum, qui reçoit quelques affluents moins importants le long de son parcours. Sur le plan hydrographique, le Chaabet Boukhertoum est un affluent de premier ordre de l'Oued Bou Radja, lui-même étant un affluent de l'Oued Mencha. L'écoulement de l'eau se fait principalement du nord-est vers le sud-ouest

I.4.2 Végétation et climatologie

La densité de la végétation présente dans la zone agit comme une barrière protectrice contre l'érosion et empêche la formation de thalweg.

La zone d'étude est située dans la région côtière de l'est de l'Algérie, qui est classée dans l'étage bioclimatique Humide à hiver chaud.

La station météorologique de Dar El Oued ANRH (code 03-03-15) enregistre une pluviométrie moyenne annuelle de 992 mm.

La station météorologique de Jijel (code 03-03-01) enregistre une température moyenne annuelle de 18,35°C.

Conclusion

Le site proposé pour la construction d'une retenue collinaire dans la commune d'Emir Abdelkader présente des conditions favorables. En effet, sa morphologie accidentée est caractérisée par des dépressions naturelles qui sont propices au stockage de l'eau.

Chapitre II:

Etude géologique Et géotechnique

Introduction

Ce chapitre se focalise sur les aspects géologiques et géotechniques essentiels en vue de la construction d'une retenue collinaire.

Ce chapitre sera abordé en utilisant une approche double :

- Une approche géologique : Les investigations géologiques sur le terrain permettent d'établir les caractéristiques lithologiques, structurales, géomorphologiques et hydrogéologiques du site.
- Une approche géotechnique : L'évaluation géotechnique du terrain sera réalisée en appliquant une méthode basée sur le traitement et l'analyse des données géotechniques recueillies à partir des sondages effectués sur le site.

II.1 Géologie et hydrogéologie

II.1.1 Géologie de la région d'étude :

La région côtière est caractérisée par de fortes précipitations et un relief extrêmement accidenté. Elle englobe un vaste ensemble comprenant la petite Kabylie, Skikda, le Cap de Fer et l'Edough, qui se distinguent par leur aspect géographique et géologique très accidenté. On y trouve des pentes abruptes et découpées, un réseau de ravins profonds et sinueux, ainsi qu'une végétation forestière abondante, ce qui confère à cette région une physionomie distinctive.

La région est constituée d'une grande diversité de formations géologiques ou faciès, qui se présentent de la manière suivante :

- Les plages littorales de la région présentent des dunes de sable, qui sont des dépôts sédimentaires d'origine maritime.
- Quaternaire: Dans les vallées, on observe des dépôts détritiques de l'époque quaternaire, qui se composent de matériaux plus ou moins pulvérulents tels que des cailloux, des graviers et des sables parfois mélangés à de l'argile et du limon. Ces dépôts résultent de la décomposition des roches environnantes. Au pied des montagnes, on trouve des éboulis constitués de blocs de roches.
- La période du Pliocène est caractérisée par une sédimentation marine qui se trouve à proximité du littoral actuel, là où notre site de retenue collinaire est situé. Cette période se manifeste par des vestiges d'anciens littoraux, des plages et des dépôts de roches mollassiques, calcaires et poudingues. Son développement le plus important correspond au golfe néogène de Chekfa-Jijel.
- Le Miocène inférieur est caractérisé par une épaisse couche d'argile ou de marne de teinte variable, allant du foncé au noirâtre, gris ou parfois verdâtre. Cette série stratigraphique inclut également des grès.
- L'Oligocène marque une interruption générale de la sédimentation marine, survenant lors de la phase de transition entre le Nummulitique et le Néogène. Cette période est caractérisée par des faciès clairement continentaux qui présentent l'aspect de dépôts résiduels d'anciennes alluvions fluvio-lacustres ou lagunaires. On y trouve des éléments détritiques plus ou moins altérés, tels que des poudingues contenant des galets, des sables ou des grès friables, ainsi que des argiles plus ou moins ferrugineuses.

- L'Eocène inférieur se caractérise par une composition lithologique relativement homogène, avec de nombreux bancs de calcaires marneux d'un gris bleuâtre. Ces bancs sont généralement recouverts d'une patine blanche ou légèrement ocreuse aux affleurements, et ils présentent des niveaux de rognons siliceux bruns ou noirs de formes variées.
- Le Crétacé supérieur est caractérisé par la présence de bancs de calcaires et de calcaires marneux.
- Le Crétacé moyen se caractérise par des séquences alternantes de marnes et de bancs de calcaires, dont l'épaisseur peut varier.
- Au Crétacé inférieur, on observe l'accumulation de marnes qui sont localement riches en ammonites pyriteuses à coquilles lisses, caractéristiques de l'environnement alpin.
- Le Jurassique moyen est constitué de calcaires et de marno-calcaires.
- Au Jurassique inférieur, également connu sous le nom de Lias, on observe une augmentation progressive de la profondeur de la mer. On y trouve des dépôts marneux de type bathyal, ainsi que des calcaires stratifiés
- Le Trias est caractérisé par une association généralement complexe de roches détritiques et de sédiments d'origine chimique. On y trouve des roches carbonatées ainsi que des sédiments halogénés contenant divers minéraux isolés et cristallisés. On observe des dépôts argileux ou marneux de fines particules de différentes couleurs, notamment rouge, jaune, verte et violette, ce qui leur a valu le nom de marnes bariolées. On trouve également la présence de gypse et de sels.
- Les schistes et les micaschistes se distinguent par une schistosité très prononcée, avec des feuillets minces bien développés et une cristallinité élevée.
- Les schistes satinés présentent une variété de teintes allant du gris verdâtre clair au bleu foncé, avec une cristallinité relativement faible.
- Les schistes cristallins sont largement présents dans les affleurements à l'ouest et au nord-ouest d'El Milia.

II.1.2 la géologie du site :

En se basant sur les résultats de la campagne de reconnaissance géologique sur le terrain, qui a inclus la réalisation de plusieurs tranchées et fouilles, nous avons pu déterminer la structure géologique du sol et du sous-sol de fondation dans cette zone.

Cette prospection in situ révèle la présence des faciès géologiques suivants :

- Sur les deux rives, on observe l'affleurement d'argiles brunes d'une épaisseur de quelques mètres, recouvrant les marnes bleues du substratum pliocène.
- Le fond de la vallée est rempli de dépôts alluvionnaires détritiques résultant de l'érosion des formations géologiques environnantes. Ces matériaux ont été transportés par le cours d'eau et déposés à cet endroit.

Ces dépôts se manifestent sous forme de terrasses alluviales situées au fond du talweg (lit) et se caractérisent par la présence de matériaux grossiers tels que des cailloux, des graviers, des sables et des limons. Ces éléments ont une forme généralement arrondie et sont principalement composés de calcaire.

II.1.3 hydrogéologie de la cuvette :

- **Perméabilité**: Les argiles collinaires et les marnes qui composent le substratum de l'emplacement de cette retenue collinaire présentent une imperméabilité pratiquement totale.
- **Etanchéité**: Les argiles brunes colluvionnaires et les marnes pliocènes assurent une étanchéité totale de l'emplacement de la retenue collinaire de Boukhertoum.

II.1.4 Sismicité

Le site de la retenue collinaire Boukhertoum est classé dans la zone II.a selon la réglementation des Plans d'Aménagement (R.P.A 99).

La retenue collinaire est considérée comme un ouvrage de faible importance pour la communauté, ce qui la place dans le groupe d'usage 3, comme indiqué dans le tableau cidessous :

Groupe	Zone I	Zone II-a	Zone II- b	Zone III	Classification des ouvrages selon leur importance
1A	0,15	0,25	0,30	0,40	Ouvrages d'importance vitale
1B	0,12	0,20	0,25	0,30	Ouvrages de grande importance
2	0,10	0,15	0,20	0,25	Ouvrages courants
3	0,07	0,10	0,14	0,18	Ouvrages de faible importance

Figure II-1: Carte de micro zonage sismique du territoire national-RPA99 /APRES ADDENDA(DSA)

II.1.5 fondation des ouvrages :

• Corps de la digue : En fonction des différentes formations géologiques présentes dans la zone d'emprise de la digue, il est recommandé de l'ancrer jusqu'au niveau du substratum marneux sain et imperméable. Pour cela, il est nécessaire de retirer la couche alluvionnaire perméable ainsi que la partie altérée du substratum afin d'assurer une base solide et étanche pour la digue.

De chaque côté de la rive, il est nécessaire d'ancrer la digue dans les argiles brunes colluvionnaires après avoir enlevé la couche végétale.

- Evacuateur de crue : Étant situé sur la rive gauche, il est également recommandé de fonder la structure dans les argiles brunes colluvionnaires après avoir retiré ou excavé la couche végétale.
- La prise d'eau : Les structures situées au fond du thalweg de la retenue collinaire devront être fondées dans les terrasses alluviales.

II.1.6 Matériaux de construction :

Pour assurer l'étanchéité et le renforcement du corps de la digue, le remblai sera constitué d'argiles brunes colluvionnaires provenant du flanc droit de la cuvette de la retenue collinaire, juste en amont de l'axe de la digue. Ces argiles seront exploitées en quantité suffisante et de qualité appropriée.

- Matériaux d'étanchéité: Le remblai utilisé pour assurer l'étanchéité et le renforcement du corps de la digue sera constitué d'argiles brunes colluvionnaires, disponibles en quantité et de qualité sur le flanc droit de la cuvette de la retenue collinaire, juste en amont de l'axe de la digue.
- Matériaux filtres, drain et transition : Les matériaux requis, provenant des carrières situées à proximité du site de la retenue collinaire.
- Matériaux pou rip-rap: Les carrières de calcaires situées à proximité du site de la retenue collinaire fourniront les matériaux rocheux requis pour la protection du talus amont de la digue (enrochement). Ces matériaux seront extraits sous forme de blocs d'un diamètre compris entre 200 et 500 mm, afin de protéger efficacement la partie supérieure de la digue contre les mouvements des vagues.

Conclusion

Les caractéristiques géologiques du substratum marneux et son comportement hydrogéologique ne présentent pas d'obstacles majeurs à la construction d'une digue en terre homogène, avec un ancrage au fond du thalweg jusqu'au bed-rock sain après enlèvement de la couverture alluvionnaire et de la partie altérée supérieure. L'étanchéité du site et son assise sont garanties par la présence d'argiles imperméables et de marnes.

Les matériaux de construction nécessaires à la digue en terre homogène sont abondamment disponibles sur le versant gauche de la cuvette.

Nous pouvons donc affirmer que toutes les conditions géologiques et hydrogéologiques sont favorables à la réalisation d'une digue en terre homogène sur le site de la retenue collinaire de Boukhertoum, dans la wilaya de Jijel.

II.2 Etude géotechnique :

II.2.1 Prospection Géotechnique du Terrain

La campagne de reconnaissance de terrain repose principalement sur les activités suivantes :

- La réalisation de plusieurs sondages à des profondeurs moyennes de quatre mètres dans différentes zones du site de la retenue collinaire, y compris la zone d'emprise de la digue et les zones avec des emprunts argileux.
- Des essais de laboratoire comprenant des tests d'identification, des tests mécaniques et des tests chimiques.
- Une évaluation quantitative et qualitative des matériaux nécessaires à la construction de la retenue collinaire.
- Des essais in situ visant à évaluer la résistance mécanique de la fondation.

II.2.2 Prospection géotechnique de laboratoire :

II.2.2.1 nombre des essais :

• Essais physiques d'indentification et de classification :

Tableau II-2: nombre des essais physique d'indentification et de classification

Essais physiques	Nombre des essais
Teneur en eau naturelle (ω)	05
Densité sèche (γ _d)	05
Degré de saturation (sr)	05
Limite de liquidité (wl)	05
Indice de plasticité (Ip)	05
Granulométrie	05

• Essais mécanique :

1. Compression a l'endomètre :

Tableau II-3: nombre des essais mécanique

Essais	Le nombre
Compressibilité (pc)	05 essais
Coefficient de tassement (ct)	05 essais
Coefficient de gonflement (cg)	05 essais

2. Cisaillement rectiligne à la boite type U.U:

Tableau II-4: nombre des essais de cisaillement rectiligne à la boite U.U

Essais	Nombre
Cohésion (Cu)	03 essais
Angle de frottement (φ)	03 essais

3. Compactage selon Proctor normal:

Tableau II-5: nombre des essais de compactage selon Proctor normal

Essais	Nombre
Teneur en eau maximale (w _{max})	02 essais
Densité sèche optimale (γd _{opt})	02 essais

• Essais chimique :

Tableau II-6: nombre des essais chimique

Essais	Nombre
Teneur en carbonate (caco ₃)	05 essais
Teneur insolubles	05 essais
Teneur en gypses (Caso ₄ ,2H ₂ O)	05 essais

II.2.2.2 mode opératoire des essais :

- Les essais physiques d'identification et de classification ont été effectués en utilisant des méthodes normalisées reconnues à l'échelle internationale.
- Des essais de compressibilité ont été réalisés à l'aide d'un odomètre, où chaque essai a été effectué sous des charges normales.
- Des essais de cisaillement rectiligne ont été réalisés sur des échantillons de sol non consolidé et non drainé, après une consolidation selon la méthode de Proctor normal. Ces essais ont été effectués sous des contraintes normales de 1, 2 et 3 bars, avec une vitesse de cisaillement de 1,22 mm/min.
- Des essais de compactage ont été réalisés sur des échantillons de sol en suivant la méthode de Proctor normal, avec une pression constante.

II.2.2.3 Résultats des essais au laboratoire :

L'ensemble des résultats des essais au laboratoire est donné ci -après :

***** Essais physiques:

a. Humidité:

Tableau II-7: Résultats de l'essai d'humidité

Puis	Profondeur (m)	ω (%)	γ_d (t/m^3)	S _r (%)	Observation
SAB1	2.5-4.00	20.82	1.68	95.34	Sol non sature dense
SAB2	0.7-4.00	18.08	1.65	79.01	Sol non sature dense
SZB2	4.00-6.00	20.78	1.64	88.81	Sol non sature dense
PZB1	0.30-3.10	20.11	1.66	89.65	Sol non sature dense
PZB2	0.60-4.00	15.16	1.81	86.39	Sol non sature dense

Avec:

 ω : Teneur en eau.

γ_d: Densité sèche.

S_r: Degré de saturation

b. Limites d'ATTERBERG:

Tableau II-8: Résultats des essais des limites d'ATTERBERG

Puis	Profondeur (m)	W _l (%)	I _P (%)	classe	Interprétation des résultats
SAB1	2.5-4.00	59.18	32.1	СН	Sol argileux, très plastique
SAB2	0.7-4.00	38.97	17.98	CL	Sol peu plastique, argileux
SZB2	4.00-6.00	54.61	26.78	СН	Sol argileux, très plastique
PZB1	0.30-3.10	32.6	12.29	CL	Sol peu plastique, faiblement argileux
PZB2	0.60-4.00	44.98	22.31	CL	Sol peu plastique, moyennement argileux

Avec:

W_l: Limite de liquidité.

 I_P : Indice de plasticité.

c. Granulométrie :

Tableau II-9 : Résultat de granulométrie

Puis	Dmax (mm)	2mm	0.1mm	2μm
SAB1	0.019	100	100	56
SAB2	0.2	100	95	30
SZB2	0.1	100	99	55
PZB1	0.4	100	79	28
PZB2	0.4	100	84	34

Service Essais chimiques:

Tableau II-10: Résultats des essais chimiques

Puis	Profondeur (m)	Insolubles %	Carbonate %	Gypse %
SAB1	2.5-4.00	69.6	29.92	11.06
SAB2	0.7-4.00	72	24.19	Traces
SZB2	4.00-6.00	57.4	22.05	13.09
PZB1	0.30-3.10	75.9	19.69	Traces
PZB2	0.60-4.00	71.0	25.19	Traces

Service Essais mécaniques :

1. Essais de compression à l'odomètre :

Tableau II-11: Résultats des essais de compression à l'odomètre :

Puis	Profondeur (m)	P _C (bars)	C _t (%)	C _G (%)
SAB1	2.50-4.00	5.55	0.230	0.061
SAB2	0.7-4.00	2.16	0.171	0.033
SZB2	4.00-6.00	3.58	0.179	0.035
PZB1	0.30-3.10	0.86	0.244	0.028
PZB2	0.60-4.00	2.24	0.152	0.045

Avec:

 P_C : Pression de consolidation C_t : Coefficient de tassement. C_G : Coefficient de gonflement

2. Essais de cisaillement rectiligne à la boite type U.U:

Tableau II-12: Résultats des essais de cisaillement rectiligne à la boite type U.U.

Puis	Profondeurs (m)	Interprétation des résultats		
		C (bars)	φ (°)	
SAB2	0.7-4.00	0.214	24	
PZB1	0.30-3.10	0.56	11	
PZB2	0.6-4.00	0.65	03	

Avec:

C: Cohésion

φ : Angle de frottement interne en degré.

3. Essais de compactage selon Proctor normal

Tableau II-13: Résultats de l'essai compactage selon Proctor normal

Puis	Profondeur (m)	W _{max} (%)	$\gamma d_{opt}(t/m^3)$
PZB1	0.30-3.10	17	1.65
PZB2	0.60-4.00	21.3	1.6

Avec:

W_{max}: teneur en eau maximal

ydopt: densité sèche optimale.

II.2.2.4 commentaire des résultats :

Essais physique:

D'après l'observation visuelle et les résultats des essais physiques, il est clair que Le sol est composé d'argile et de particules fines. Cette conclusion est basée sur plusieurs constatations. Premièrement, les dimensions maximales (Dmax) des particules sont de petite taille, et les pourcentages de particules de petite taille sont élevés d'après les résultats des tamis à mailles fines. Deuxièmement, les valeurs des indices de plasticité indiquent la présence de sols plastiques.

En outre, le fait que plus de 70% des particules passent à travers un tamis de 2 mm Indique une tendance argileuse du sol. De plus, le fait que plus de 35% des particules passent à travers un tamis de 0,1 mm indique que les propriétés du sol sont principalement influencées par ses fractions fines.

Essais de compressibilité :

Le coefficient de compressibilité (Cc) indique que les sols sont sujets à une compressibilité allant de modérée à élevée. Le coefficient de gonflement (Cg) suggère que les sols ont la capacité de gonfler lorsqu'ils sont saturés d'eau. Enfin, les résultats de la pression de consolidation (Pc) indiquent que les sols sont actuellement en état de surconsolidation, ce qui signifie qu'ils ont été soumis à une pression plus élevée dans le passé et qu'ils ont la capacité de se déformer davantage sous une charge supplémentaire.

Essais de Proctor :

Les valeurs élevées de la teneur en eau optimale indiquent la sensibilité à l'eau du sol. Cela signifie que le sol est susceptible de subir des changements significatifs de volume et de propriétés en fonction des variations de son contenu en eau.

D'autre part, les valeurs légèrement élevées de la densité sèche optimale suggèrent que les sols en question sont dépourvus de squelettes. Cela signifie qu'ils sont principalement composés de particules fines et qu'ils ont une capacité limitée à supporter des charges sans subir une déformation importante.

Essais chimiques:

Les résultats présentés dans le tableau ci-dessus, en particulier ceux concernant la présence de carbonates, indiquent la nature argileuse des sols. De plus, il est observé des pourcentages significatifs de gypse.

Conclusion:

Après une analyse approfondie des données géotechniques du site, comprenant les études sur le terrain et en laboratoire, il est conclu que toutes les conditions géotechniques sont favorables à la réalisation d'une retenue collinaire en terre homogène sur le site de la retenue collinaire Boukhertoum (W. Jijel). Les résultats des différentes analyses confirment la faisabilité du projet et démontrent que le sol et les fondations répondent aux exigences nécessaires pour la construction de la digue et de ses ouvrages annexes. De plus, les zones identifiées pour l'extraction des matériaux de construction de la retenue collinaire présentent des caractéristiques appropriées. Toutes ces conclusions sont encourageantes et permettent d'affirmer que le site est adapté à la réalisation de la retenue collinaire.

Chapitre III:

Etude Hydrologique

Introduction

L'hydrologie étudie le cycle de l'eau, c'est-à-dire les échanges entre l'atmosphère, la surface terrestre et le sous-sol.

Elle se penche également sur les précipitations, la transpiration des végétaux et l'évaporation directe des eaux de surface.

Dans cette section, nous examinerons les conditions actuelles du site de la retenue collinaire et évaluerons les possibilités du point de vue hydrologique. Pour ce faire, nous calculerons les caractéristiques hydro-morpho-métriques de notre sous-bassin, puis effectuerons des études climatologiques et des précipitations, ainsi qu'une évaluation des apports solides et liquides, et du débit maximum entrant.

Dans ce chapitre, nous entreprendrons également le processus de régulation des crues pour évaluer le débit projeté et accomplir la régularisation saisonnière.

III.1 Bassin versant et son complexe :

En principe, le bassin versant constitue l'unité géographique fondamentale sur laquelle repose l'analyse du cycle hydrologique et de ses conséquences.

Le bassin versant est une section spécifique le long d'un cours d'eau, définie comme la zone topographique entièrement drainée par ce cours d'eau et ses affluents en amont de cette section particulière. Il est entièrement défini par son exutoire, à partir duquel nous pouvons déterminer les points de départ et d'arrêt de la ligne de partage des eaux qui forment ses limites.

En général, la ligne de partage des eaux correspond à la ligne de crête, ce qui conduit à ce qu'on appelle un bassin versant topographique.

Cependant, il est important de noter que la délimitation basée uniquement sur la topographie n'est pas toujours suffisante pour déterminer la surface du bassin versant naturel. Lorsqu'un sol perméable recouvre un substratum imperméable, la division des eaux en fonction de la topographie ne correspond pas nécessairement à la répartition effective des eaux souterraines. Dans de tels cas, le bassin versant peut différer de celui strictement délimité par la topographie, et on parle alors de bassin versant réel.

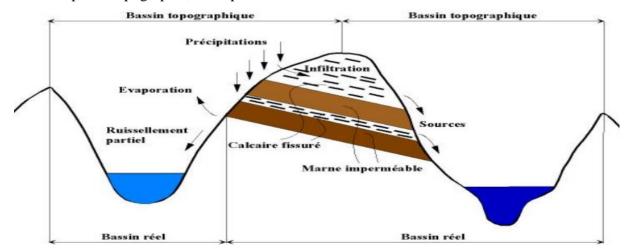


Figure III-1: Bassin topographique et bassin réel (M.Roche, 1963)

III.2 Bassin versant de Boukhertoum:

Le bassin versant de boukhertoum est situé dans la commune de l'emire Abdelkader. L'oued principal étant chaabet boukhertoum proprement dite, cette chaabet reçoit sur son parcours quelque affluents de moindre importances de l'oued Bou radia, qui lui-même est un affluent de l'oued mencha avec un sens d'écoulement du Nord-Est vers le Sud-Ouest.

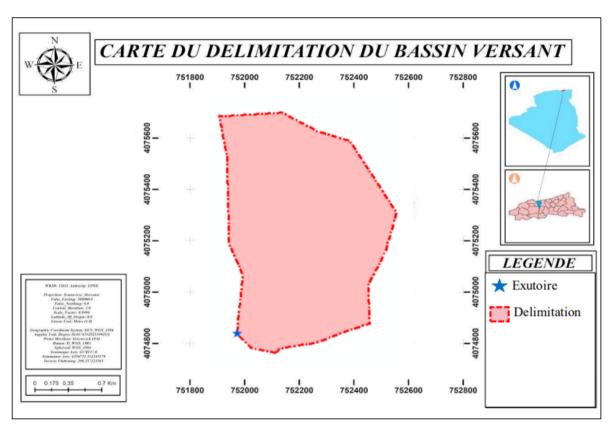


Figure III-2: Délimitation du bassin versant de boukhertoum.

III.3 Etude hydro-morpho-métrique du bassin versant de Boukhertoum :

III.3.1 Paramètres géométriques :

III.3.1.1 Surface:

Le bassin versant est la zone où les précipitations sont reçues et alimentent les cours d'eau. Les débits dépendent en partie de la surface de cette zone.

La mesure de la surface du bassin versant peut se faire de différentes manières, telles que la superposition d'une grille sur un papier transparent, l'utilisation d'un planimètre ou, de manière plus précise, par la digitalisation sur un fond topographique à l'aide d'un logiciel de cartographie comme ArcGIS.

En général, la surface d'un bassin versant est exprimée en kilomètres carrés (km²). Dans notre cas, nous avons un bassin versant d'une superficie de <u>S=0.564 km²</u>.

III.3.1.2 Périmètre :

Le périmètre du bassin versant est défini par la ligne des crêtes qui forme son contour. Il peut être mesuré à l'aide d'un curvimètre ou, de manière plus précise, en utilisant un logiciel de cartographie avec un fond topographique.

Le périmètre d'un bassin versant est généralement exprimé en kilomètres (Km). Tel que notre bassin a un périmètre de <u>P=3.017 km.</u>

III.3.2 Paramètres de forme :

La configuration géométrique d'un bassin versant a une influence sur la forme de l'hydrogramme à son exutoire. Par exemple, un bassin versant allongé favorise des débits de pointe de crue plus faibles pour une même intensité de pluie, en raison des temps de transit plus longs de l'eau jusqu'à l'exutoire.

Il existe plusieurs indices morphologiques qui permettent de caractériser le milieu et de comparer les bassins versants entre eux.

III.3.2.1 Indice de compacité (Kc) :

L'indice de Gravelius (Kc), mis au point par Gravelius en 1914 (Bendjoudi et Hubert, 2002), également connu sous le nom d'indice de forme de bassin, permet de caractériser la forme du bassin versant en exprimant son degré d'allongement.

L'indice de forme d'un bassin versant se calcule en divisant le périmètre du bassin par le périmètre d'un cercle ayant une surface équivalente.

$$K_c = 0.28 \frac{P}{\sqrt{S}}$$
 (III.1)

Avec:

P : périmètre du bassin versant en (km).

S: surface du bassin versant en (km2).

D'où:

K c = 1.124

Kc = 1.124 >1; On peut dire, que le bassin versant à la forme presque carrée (Kc=1,12), c'est à dire ramassée.

III.3.2.2 Coefficient d'allongement (Ca) :

Le coefficient d'allongement conditionne la réponse d'un bassin versant à une pluie. Il est obtenu à l'aide de la formule suivante :

$$C_{a} = \frac{L^{2}}{S}$$
 (III.2)

Avec:

L : La longueur du talweg principal en (km).

S : La superficie du bassin versant en (km²).

D'où:

 $C_a = 0.556$

Commentaire:

À mesure que le coefficient d'allongement augmente, le bassin versant s'étend davantage, ce qui se traduit par un temps de concentration plus élevé et une atténuation de la violence des crues.

III.3.2.3 Rectangle équivalent :

C'est une transformation géométrique qui convertit le bassin versant en un rectangle ayant une surface équivalente. Il facilite la comparaison des bassins versants en termes d'écoulement

Si L et l'représentent respectivement la longueur et la largeur du rectangle équivalent, alors :

$$\frac{\text{Kc}\sqrt{S}}{1.12} \left[1 + \sqrt{1 - \left(\frac{1.12}{\text{Kc}}\right)^2} \right]$$
 (III.3)

$$\frac{\text{Kc}\sqrt{S}}{1.12} \left[1 - \sqrt{1 - \left(\frac{1.12}{\text{Kc}}\right)^2} \right]$$
 (III.4)

D'où:

L= 0.90 km et l=0.761 km

III.3.3 Paramètres du relief :

L'impact du relief sur l'écoulement est facilement compréhensible, car de nombreux paramètres hydrométéorologiques tels que les précipitations, les températures, etc. varient en fonction de l'altitude. De plus, la morphologie du bassin et la pente ont une influence sur la vitesse d'écoulement de l'eau.

Le relief se détermine lui aussi au moyen d'indices ou de caractéristiques suivants :

- La courbe hypsométrique.
- > Les altitudes caractéristiques.
- L'indice de pente globale.
- L'indice de pente de roche.
- L'indice de pente moyenne.
- La dénivelée spécifique.

Le relief est un facteur clé dans la détermination du régime d'écoulement. Il est représenté par la carte des courbes de niveau, comme illustré dans **Figure** (III-3).

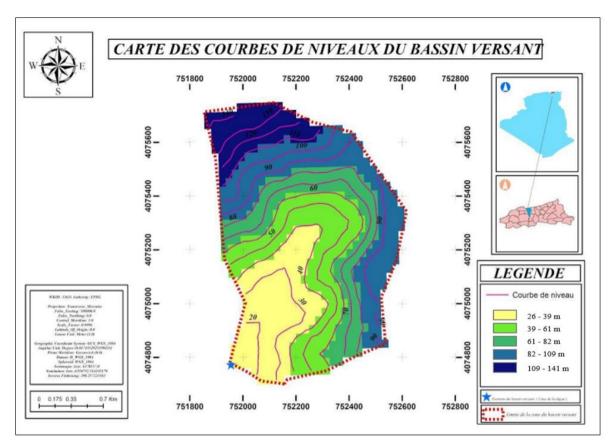


Figure III-3: Carte des courbes de niveau du bassin versant de boukhertoum

Et caractérisé par la carte hypsométrique présentée dans la Figure(III-4).

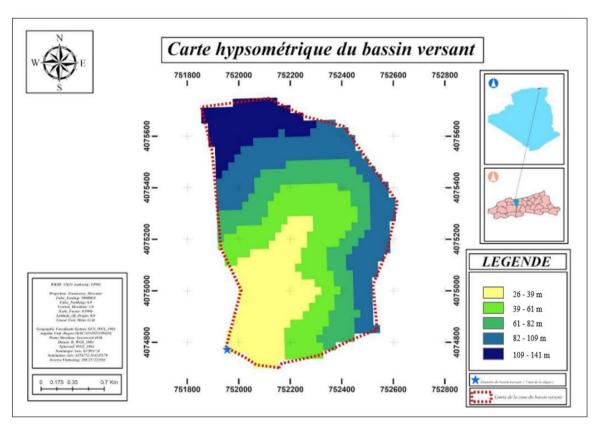


Figure III-4: Carte hypsométrique du bassin versant de boukhertoum

III.3.3.1 La courbe hypsométrique:

La courbe hypsométrique est un outil qui offre une vue d'ensemble de la pente du bassin versant, c'est-à-dire du relief.

Cette courbe illustre la répartition de la surface du bassin versant en fonction de l'altitude.

Dans un graphique, l'altitude est représentée sur l'axe des ordonnées, tandis que la surface est exprimée en pourcentage sur l'axe des abscisses.

Les surfaces partielles correspondant à chaque tranche d'altitude sont fournies dans le **Tableau (III-1)**, et la courbe hypsométrique est présentée dans **la Figure (III-5)**.

Tableau III-1: Répartition de la surface du bassin versant

Altitude1 (m)	Altitude2 (m)	$\mathbf{H_{i}}\left(\mathbf{m}\right)$	Surfaces partielles(m)	Surfaces partielles (%)	Surfaces cumulées (m)	Surfaces cumulées (%)	Si*Hi
109	141	125	0,065	11.52	0.065	11.52	8.12
82	109	95.5	0,138	24.46	0,203	35.99	13.18
61	82	71.5	0,110	19.50	0.313	55.49	7.86
39	61	50	0,129	22.87	0.442	78.36	6.45
26	39	32.5	0,124	21.98	0.564	100	4.03

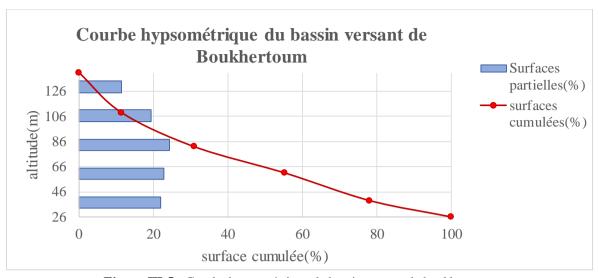


Figure III-5 : Courbe hypsométrique du bassin versant de boukhertoum

III.3.3.2 Les altitudes caractéristiques :

La courbe ci-dessus permet de déterminer les altitudes caractéristiques suivantes :

• L'altitude maximale et l'altitude minimale :

Ces altitudes sont extraites directement des cartes topographiques. L'altitude maximale correspond au point le plus élevé du bassin, tandis que l'altitude minimale est définie comme le point le plus bas.

D'où:

$$\underline{H}_{MAX} = 141 \text{ m NGA}$$
 et $\underline{H}_{MIN} = 26 \text{ m NGA}$

• Les altitudes de fréquence 5% et 95% :

Ce sont les altitudes correspondant respectivement aux points d'abscisse 5% et 95% de la courbe hypsométrique.

D'où:

$$\underline{\text{H}_{5\%}}=131 \text{ m NGA}$$
 et $\underline{\text{H}_{95\%}}=30 \text{m NGA}$

• L'altitude médiane :

C'est l'altitude qui correspond à 50% de la courbe hypsométrique.

D'où:

• L'altitude moyenne :

Elle est calculée par la formule suivante :

$$H_{\text{moy}} = \frac{\sum_{i=1}^{n} S_i.H_i}{S}$$
 (III.5)

Tel que:

$$H_{i} = \frac{H_{I+n} + H_{n}}{2} \tag{III.6}$$

Avec:

Si : surface partielle entre deux courbes de niveau (Km2).

Hi: Altitude moyenne entre deux courbes de niveau successives (m).

S: Superficie du bassin versant (Km2).

Le résultat du calcul des différentes altitudes caractéristiques est montré dans le **Tableau** (III-2).

Tableau III-2: Les altitudes caractéristiques du bassin versant de Boukhertoum

	H max	H min	Н5%	Н95%	H50%	H moy
Altitudes (m)	141	26	131	30	81	68.74

III.3.3.3 Les indice de pente :

L'objectif de ces indices consiste à décrire les inclinaisons d'un bassin versant et à faciliter ainsi les comparaisons et les classifications. Ces indices de pente sont calculés en utilisant les informations de répartition hypsométrique du bassin.

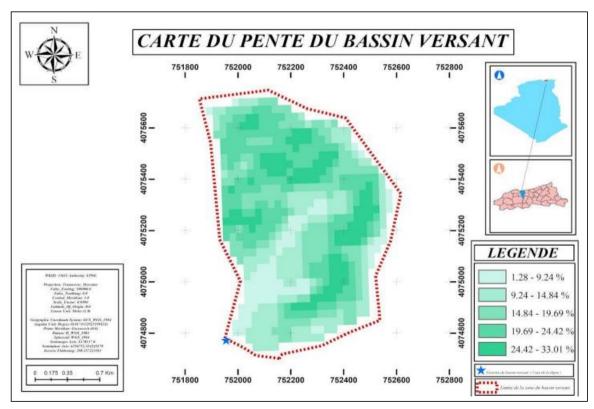


Figure III.6 Carte des pentes du bassin versant du bassin versant du boukhertoum.

\Delta L'indice de pente global :

Il est défini comme étant le rapport entre l'altitude comprise entre 5% et 95% de la Surface du sous bassin, et la longueur du rectangle équivalant.

Les altitudes correspondantes sont lues sur la courbe hypsométrique. L'indice de Pente globale est donnée par la formule suivante :

$$Ig = \frac{H_{5\%} - H_{95\%}}{L}$$
 (III.7)

Avec:

L : longueur du rectangle équivalent (Km).

H5% et H95%: sont respectivement les altitudes correspondant à S5% et S95%.

D'où:

 $I_g = 11.22\%$

Tableau III-3: Classification ORSTOM du relief selon l'indice de pente global

R1	Relief très faible	I g ≤ 0,002
R2	Relief faible	$0.002 < I g \le 0.005$
R3	Relief assez faible	$0.005 < I g \le 0.01$
R4	Relief modéré	$0.01 < I g \le 0.02$
R5	Relief assez fort	$0.02 < I g \le 0.05$
R6	Relief fort	$0.05 < I g \le 0.1$
R7	Relief très fort	0.1 ≤ I g

D'après cette classification, nous avons un relief très fort.

❖ Indice de pente de roche :

Cet indice représente la moyenne de la racine carrée des pentes, mesurées sur le rectangle équivalent, et pondéré par les surfaces comprises entre deux courbes de niveau Hi et Hi-1.pl

Il est donné par la formule suivante :

$$I_{p} = \frac{1}{\sqrt{L}} \sum_{i}^{n} \sqrt{S_{i}(H_{i} - H_{i-1})}$$
 (III.8)

Avec:

L: longueur du rectangle équivalent (m).

Si : surface partielle (%) comprise entre deux courbes de niveau consécutives H_i et H_{i-1} (km²)

Tableau III-4: Détermination de l'indice de pente de roche

Altitudes	Hi-Hi-1	Si	Si*(Hi-Hi-1)	√Si (Hi – Hi– 1)
109-141	32	0.065	2.08	1.44
82-109	27	0,203	5.41	2.34
61-82	21	0.313	6.573	2.56
39-61	22	0.442	9.724	3.11
26-39	13	0.564	7.332	2.70

D'où:

$$I_p = 12.80$$

❖ Indice de pente moyenne du bassin versant :

La pente moyenne est une caractéristique importante qui renseigne sur la topographie du bassin.

Elle est considérée comme une variable indépendante qui donne une bonne indication sur le temps de concentration Tc et influe directement sur le débit de pointe lors d'une averse.

La méthode proposée par Carlier et Leclerc (1964) consiste à calculer la moyenne pondérée des pentes de toutes les surfaces élémentaires comprises entre deux altitudes données. Une valeur approchée de la pente moyenne est alors donnée par la relation suivante :

$$I_{m} = \frac{\Delta H(0.5l_{1} + l_{2} + l_{3} + \dots + 0.5l_{n})}{S}$$
 (III.9)

Avec:

Li: Longueur totale des courbes de niveau (km).

ΔH: Dénivelée (m)

S: surface du bassin versant (km²).

Les longueurs correspondant à chaque courbe de niveau sont représentées dans le tableau suivant :

Tableau III-5: Longueur des courbes de niveau

Courbes de	Longueur (km)
ni veau	
20	0.247
30	0.688
40	1.065
50	1.254
60	1.310
70	1.290
80	1.331
90	0,619
100	0.564

110	0.475
120	0.354
130	0.304
140	0.107

D'où:

 $I_{m} = 16.7\%$

❖ La dénivelée spécifique :

Elle permet de comparer les indices de pentes de bassins de différentes superficies, conformément à la deuxième classification de l'O.R.S.T.O.M, qui est appliquée à tous les bassins, quelle que soit leur surface. Cette comparaison est réalisée en utilisant la formule suivante :

$$Ds = Ig\sqrt{S}$$
 (III.10)

Avec:

Ig: Indice de pente global (m/km).

S: Surface du bassin (km²).

D'où:

D s = 84.27 m

Tableau III-5: Classification du relief selon la denivlee specifique selon ORSTOM, 1963

Relief très faible	Ds<10m
Relief faible	10m <ds< 25m<="" td=""></ds<>
Relief assez faible	25 m <ds< 50="" m<="" td=""></ds<>
Relief modère	50 m <ds< 100="" m<="" td=""></ds<>
Relief assez fort	100 m <ds< 250="" m<="" td=""></ds<>
Relief fort	250 m <ds< 500="" m<="" td=""></ds<>
Relief très fort	Ds< 500 m

D'après cette classification, nous avons un relief modère.

III.3.4 Paramètres hydrographiques:

III.3.4.1 Le réseau hydrographique:

Il est défini comme l'ensemble des cours d'eau naturels ou artificiels, qu'ils soient permanents ou temporaires, contribuant à l'écoulement.

Selon la classification de Schum, le réseau hydrographique peut revêtir diverses formes. Elle énonce que tout tronçon de cours d'eau, qualifié d'ordre (x+1), résulte de la convergence de deux cours d'eau d'ordre (x).

La Figure (III-7) illustre la classification de Schum pour notre bassin.

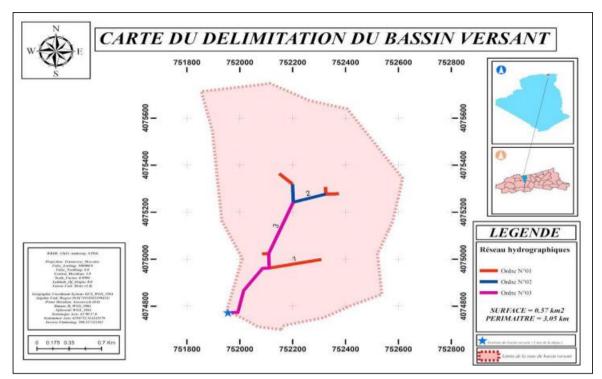


Figure III-7: Carte du réseau hydrographique du bassin versant de boukhertoum

III.3.4.2 Longueur du cours d'eau principal:

La longueur du cours d'eau principal, mesurée en suivant le tracé curviligne depuis l'exutoire jusqu'à la ligne de partage des eaux, est de 0,56 kilomètre selon le plan topographique.

Cette mesure englobe également la distance depuis le dernier point du cours d'eau jusqu'à la limite topographique du bassin versant.

III.3.4.3 La pente moyenne du cours d'eau :

Elle représente le rapport entre la dénivelée et la longueur du cours d'eau principal entre deux points suffisamment éloignés.

Tell que:

$$Ic = \frac{\Delta H}{\Delta L}$$
 (III.11)

Avec:

ΔH: dénivelée entre deux points suffisamment distants (km).

 ΔL : distance entre ces deux points (km).

D'où:

 $I_{c}=2.035\%$

III.3.4.4 La densité de drainage :

La densité du drainage est calculée en ajoutant les longueurs de tous les talwegs d'ordre i à n, notées "Li", dans le bassin versant, puis en divisant cette somme par la surface totale "S" du bassin.

Cette mesure reflète la dynamique du bassin, la stabilité du réseau hydrographique et le type de ruissellement en surface. Elle s'exprime en kilomètres par kilomètre carré (km/km²).

$$Dd = \frac{\sum_{i=1}^{n} li}{S}$$
 (III.12)

Avec:

Dd: densité de drainage (km/km²);

Li: la longueur de cour d'eau d'ordre i (km);

S: surface du bassin versant (km²).

Tableau III-6: longueur des cours d'eau

Ordre du cours d'eau	La longueur (km)
1	0.373
2	0.204
3	0.563

D'où:

$D_d = 2.021(km/km^2)$

III.3.4.5 Le temps de concentration :

Le temps de concentration (Tc) d'un bassin hydrologique représente la durée maximale nécessaire pour qu'une goutte d'eau parcoure l'ensemble du chemin hydrologique depuis n'importe quel point du bassin jusqu'à atteindre son exutoire.

Il est composé de trois termes distincts :

- ❖ Th: Temps d'humectation ; Le temps d'humectation désigne la période nécessaire pour que l'eau de pluie s'infiltre dans le sol avant de commencer à s'écouler en surface sous forme de ruissellement.
- ❖ Tr: Le temps de ruissellement, ou temps d'écoulement, correspond à la durée pendant laquelle l'eau s'écoule à la surface du sol ou dans les couches superficielles du sol jusqu'à atteindre un système de collecte tel qu'un cours d'eau naturel ou un collecteur.
- ❖ Ta: Le temps d'acheminement désigne la période nécessaire pour que l'eau se déplace à l'intérieur du système de collecte, tel qu'un réseau de cours d'eau ou de canaux, jusqu'à atteindre l'exutoire final.

Le temps de concentration (Tc) est déterminé en prenant la valeur maximale parmi la somme des trois termes suivants : le temps d'humectation, le temps de ruissellement (ou d'écoulement), et le temps d'acheminement.

En théorie, le temps de concentration (Tc) représente la période allant de la fin de la pluie nette (lorsque la pluie cesse) à la fin du ruissellement (lorsque l'écoulement s'arrête complètement).

Dans la pratique, le temps de concentration peut être déterminé à l'aide de mesures sur le terrain ou, plus couramment, estimé en utilisant des formules empiriques.

• Formule de California :

$$Tc = \left(\frac{0.87 \times Lcp^3}{Hmax-Hmin}\right)^{0.386}$$
 (III.13)

Avec:

Lcp: longueur du talweg principal en (Km).

H max : Altitude maximale du bassin versant en (m). H min : Altitude minimale du bassin versant en (m).

• Formule de Giandotti :

$$Tc = \frac{4.\sqrt{S} + 1.5.L}{0.8\sqrt{Hmoy - Hmin}}$$
 (III.14)

Avec:

S: Surface du bassin versant en (Km2);

L: longueur du talweg principal en (Km);

H moy, H min: respectivement la hauteur moyenne et minimale du bassin versant en (m).

• Formule d'ANRH-SOGREAH :

$$tc = 3 \left[\frac{S * L}{(10 * I)^{1.5}} \right]^{0.25}$$
 (III.15)

Avec

S: Surface du bassin versant en (Km²);

L: longueur du talweg principal en (Km);

I : Pente moyenne du cours d'eau (%).

• Formule de turrazza :

$$T_c = 1.662 \times S^{0.5}$$
 (III.16)

Tableau III-7: Tableau récapitulatif du calcul de temps de concentration

Formule utilisée	Tc : temps de concentration trouvés (heures)
Formule de CALIFORNIA	0.077
Formule de GIANDOTTI	0.637
Formule d'ANRH-Sogreah	0.306
Formule de turrazza	1.24

Après avoir calculé le temps de concentration en utilisant ces quatre formules différentes, nous avons choisi la valeur qui se rapproche le plus de la moyenne, conformément à la formule de Giandotti, dans un souci de sécurité. <u>Tc=0.637h.</u>

III.3.4.6 La vitesse de ruissellement :

Le ruissellement désigne l'écoulement par gravité à la surface du sol, en suivant la pente du terrain et le réseau hydrographique microscopique, des eaux météorologiques qui n'ont pas été infiltrées, évaporées ou stockées en surface.

C'est essentiellement le rapport entre la distance parcourue par le temps de concentration.

$$V_r = \frac{L}{Tc} \tag{III.17}$$

Avec:

L : Longueur de talweg principal en (Km).

Tc: temps de concentration en (h).

D'où:

V r = 0.879 km/h

Tableau III-8: Récapitulatif des caractéristiques hydro-morpho-métrique du bassin versant

Désig	nation	Symbole	Unités	Valeur
Supe	rficie	S	km ²	0.564
Périn	nètre	P	km	3.017
Indice de	compacité	KC	/	1.124
Coefficient d	'allonge me nt	KP	/	0.556
Rectangle	Longueur	Lr	km	0.90
Équivalent	Largeur	lr	Km	0.761
	Maximale	Hmax	m	141
Altitudes	Moyenne	Hmoy	m	68.74
	Médiane	Hmed	m	81
	Minimale	Hmin	m	26
Indice de po	ente globale	Ig	m/Km	112.22
Indice de pe	nte de roche	Ip	%	12.80
Indice de pe	nte moyenne	Im	m/Km	16.7
Dénivelée	spé cifique	Ds	m	84.27
Longueur du th	nalweg principal	L	Km	0.56
Pente du thal	Pente du thalweg principal		%	2.035
Densité de	Densité de drainage		Km/Km ²	2.021
Temps de co	Temps de concentration		Н	0.637
Vitesse de r	uissellement	Vr	Km/h	0.879

III.4 Etude climatologique:

Les conditions climatiques dans le bassin ont un impact crucial sur le comportement hydrologique des cours d'eau.

Les facteurs déterminants du climat comprennent; Les précipitations, y compris leur répartition dans le temps et dans l'espace, l'humidité, la Température et le vent qui ont une influence sur l'évaporation et la transpiration.

Pour notre zone d'étude, la station la plus représentative et celle qui dispose de plus D'enregistrements, est la station de Jijel (code 03-03-01) qui se trouve au nord-ouest de site de la retenue.

III.4.1 La température :

En Algérie, la présence du sirocco, un vent chaud et sec qui provient du Sahara, est une caractéristique distincte. Ce phénomène particulier entraîne des températures maximales élevées, accompagnées d'une humidité considérablement réduite. La température moyenne annuelle est d'environ 18,3 °C.

Le tableau ci-dessous présente les températures moyennes, maximales et minimales enregistrées à la station de Jijel, qui se situe à proximité de notre site. La station de Taher a été utilisée pour compléter les données manquantes sur une période d'observation s'étalant de 1972 à 2003.

Tableau III-9: Récapitulation de la température moyenne annuelle

Mois	Sep	Oct	Nov	Dec	Jan	Fer	Mar	Avr	Mai	Juin	juil	Aou	Moy Ann
T (°C)	23.9	20.8	16.7	13.5	12.2	12.4	13.5	15.4	18	22.	25.2	26	18.35
T(MIN)	20.8	17.5	13.7	10.4	8.9	9.2	10	11.9	14.8	18.8	21.8	22.6	15.07
T (MAX)	27.1	24.1	19.8	16.7	15.5	15.7	17	19	21.3	25.1	28.6	29.4	21.64

Tel que:

T min : température minimale moyenne. T max : température maximale moyenne.

T max: temperature maximure moyems

T: température moyenne.

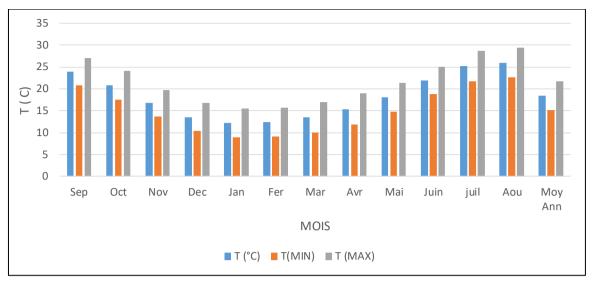


Figure III-8 : Répartition des températures annuelles.

III.4.2 La pluviométrie :

La station pluviométrique la plus proche du bassin versant de la retenue est la station de dar el oued (code 03-03-15). Les précipitations totales mensuelles sont enregistrées pendant la période de 1972 à 2003.

Tableau III-10: station pluviométrique.

		Co	oordonnée	Année de		
Station	Code	X (km)	Y (km)	Z (m)	service	N (ans)
Dar el oued	03-03-15	774.1	396.15	5	1972-2003	31

(Source : A.N.R.H)

Le tableau ci-dessous présente les données des précipitations mensuelles (mm) de la station de dar el oued :

Tableau III.11 Répartition mensuelle moyenne interannuelle de la précipitation

mois	Sep	Oct	Nov	Déc	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Tota
P	47,	86,6	146,	153,	144,	112,	105,3	75,5	44,5	12,8	4,9	10,4	919
(mm)	86	6	8	5	1	1							
P (%)	5, 2	9,4	15,9	15,7	14,7	12,2	11,5	8,2	4,8	1,4	0,5	1,1	100

(Source: A.N.R.H)

La répartition mensuelle est présentée par la figure ci-dessous :

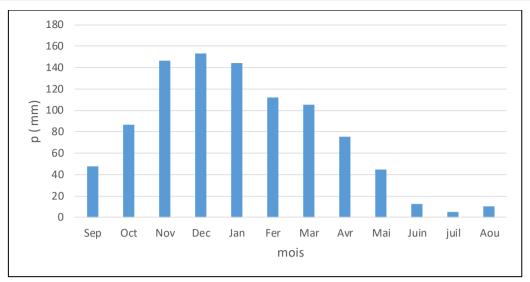


Figure III-9: Répartition mensuelle de la précipitation.

III.4.3 Insolation:

La moyenne de l'ensoleillement a été enregistrée à Taher sur une période de neuf ans, de 1992 à 2000. La durée totale d'insolation s'élève à 7,46 heures par jour en moyenne. Les journées estivales connaissent une insolation comprise entre 9,9 et 10,9 heures, tandis que les journées hivernales affichent des durées minimales d'insolation oscillant entre 4,7 et 5,4 heures.

III.4.4 vents:

Les vitesses moyennes mensuelles de vent varient entre 2.2 à 2.7 m/s

III.4.5 Humidité:

L'humidité relative moyenne mensuelle s'établit à 65,25%. Elle atteint son pic en décembre, atteignant 71%, et son point le plus bas en juillet, chutant à 58%.

III.5 Etude pluviométrique :

III.5.1 Estimation des pluies journalières maximales :

Les précipitations maximales journalières de fréquence rare correspondent aux précipitations à l'origine de crues importantes, nécessitant une protection adéquate des ouvrages.

L'objectif de l'étude est de réaliser un ajustement de la série de données des précipitations maximales journalières en utilisant une loi théorique. Ce processus vise à déterminer l'intensité de la pluie pour une période de retour donnée. Cette étude comprendra les étapes suivantes :

- Testé l'homogénéité de la série ;
- Détermination des paramètres statiques de la série ;
- Adjustment statique;
- Choix de la loi adéquate ;
- Calcul des pluies et intensités de courte durée

Tableau III.13: Répartition annuelle des Pjmax.

Années	P _{jmax} (mm)	Années	P _{jmax} (mm)		
72/73	76.3	88/89	59.9		
73/74	134.6	89/90	144.3		
74/75	72	90/91	98.8		
75/76	126	91/92	56.4		
76/77	45.5	92/93	73.7		
77/78	57.1	93/94	72		
78/79	115	94/95	79.8		
79/80	75.6	95/96	55.5		
80/81	109.10	96/97	65.2		
81/82	52.8	97/98	58.4		
82/83	141.2	98/99	50.9		
83/84	64.8	99/00	55.6		
84/85	164.5	00/01	35.3		
85/86	90.6	01/02	105.5		
86/87	69	02/03	56.7		
87/88	117.4				

III.5.1.1 Caractéristiques empiriques de la série de dar el oued :

La série des pluies maximales journalières de la station de Dar El Oued présente les propriétés suivantes :

Tableau III-14: Caractéristiques de la série des Pjmax.

Caractéristique	Valeur	Caractéristique	Valeur
Nombre de données	31	Médiane	72
Minimum	35.3	Coeff de variation Cv	0.402
Maximum	165	Coeff d'asymétrie Cs	0.862
Moyenne	83.2	Coeff d'aplatissement Ck	2.45
Ecart-type	33.5		

III.5.1.2 Les lois d'ajustement de la série pluviométrique :

Il existe plusieurs méthodes pour ajuster les séries pluviométriques, et l'efficacité d'une méthode d'estimation dépend de la distribution de probabilité, de la taille et des caractéristiques de l'échantillon. De nombreuses études empiriques et théoriques ont été menées pour déterminer les moments où une méthode d'estimation est optimale pour une loi spécifique.

L'ajustement des données a été réalisé en utilisant le logiciel "HYFRAN", en utilisant la méthode du maximum de vraisemblance.

Dans notre étude on va utiliser les trois lois suivantes :

- ➤ La loi de GUMBEL (Loi doublement exponentielle).
- La loi de GALTON (Log-normale).
- La loi de GEV.

A-Ajustement de la série pluviométrique à la loi de GUMBEL :

Cette loi a une fonction de répartition qui s'exprime selon la formule suivante :

$$F(x) = e^{-e^{-y}} (III.18)$$

Tel que:

$$y = a(x - x0)$$
 (III.19)

L'équation de la droite de Gumel :

$$P_{\text{max,j}} = \frac{1}{a}y + x_0 \tag{III.20}$$

$$y = -[\ln(-\ln(F(x)))]$$
 tel que: $F(x) = \frac{m - 0.5}{n}$ (III.21)

Avec:

1/a : la pente de la droite de GUMBEL.

y : variable réduite de GUMBEL.

x : précipitation maximale journalière (mm).

 x_0 : le paramètre de position (mm).

m : l'ordre de classement.n : la taille de l'échantillon

* Résultats de l'ajustement :

La droite de Gumel est donnée par la Figure (III-10), Les résultats de calcul des fréquences expérimentales et des valeurs théoriques sont présentés dans le Tableau (III-15) ci-dessous : **Tableau III-15 :** Ajustement à la loi de GUMBEL

T = 1/q	q = F(X) (probabilité au non-dépassement)								
P. Retour	Fréquence	Quantile Xt	Ecart-type	Intervalle de confiance (95%)					
10000.0	0.9999	309	46	218 - 399					
1000.0	0.999	248	34.8	180 - 317					
100.0	0.99	188	23.6	142 - 234					
50.0	0.98	170	20.3	130 - 210					
20.0	0.95	146	15.9	115 - 177					
10.0	0.9	127	12.6	102 - 151					
5.0	0.8	107	9.29	89.1 - 126					

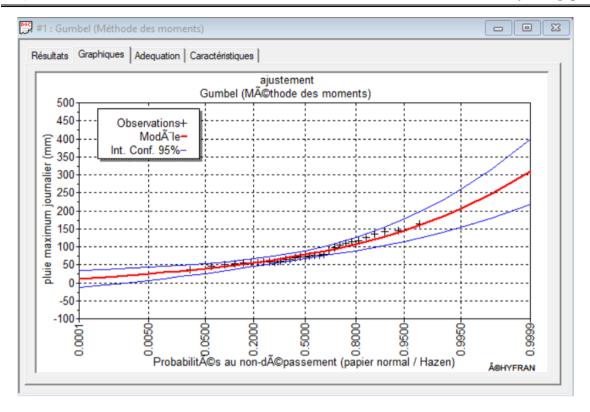


Figure III-10 : Résultat d'ajustement à la loi de GUMBEL

Paramètre

Nombre d'observations : n = 31

U = 68.1431

Alpha = 26.1021

Résultats

 $X^2 = 9.42$

P-value = 0.0514

Degrés de liberté: 4

Nombre de classes: 7

B-Ajustement de la série pluviométrique à la loi Log normale (Loi Galton) :

Calcul des fréquences expérimental (au non dépassement) :

$$T = \frac{1}{1 - q} \tag{III.22}$$

Et:

$$q = F(x_i) = \frac{m - 0.5}{n}$$
 (III.23)

Avec:

m : numéro d'ordre de la valeur.

n : taille de l'échantillon.

Paramètres d'ajustement à la loi normale :

$$x_{p\%} = x_{moy} + \sigma.U_{p\%}$$
 (III.24)

Avec:

 σ : écart-type.

Xp% : hauteur de pluie moyenne. Up% : variable réduite de Gauss.

Les résultats de calcul sont représentés par le **Tableau (III-16)** ainsi que le graphique est donné par la **Figure (III-11)**.

Tableau III-16: Ajustement à la loi Log-normale

T = 1/q	q = F(X) (probabilité au non-dépassement)								
P. Retour	Fréquence	Quantile Xt	Ecart-type	Intervalle de confiance (95%)					
10000	0.9999	324	64	199 - 450					
1000	0.999	254	42.9	170 -338					
100	0.99	190	25.6	139 -240					
50	0.98	171	21.1	129 - 212					
20	0.95	146	15.6	115-176					
10	0.90	127	11.9	103 - 150					
5	0.8	107	8.65	90 - 124					

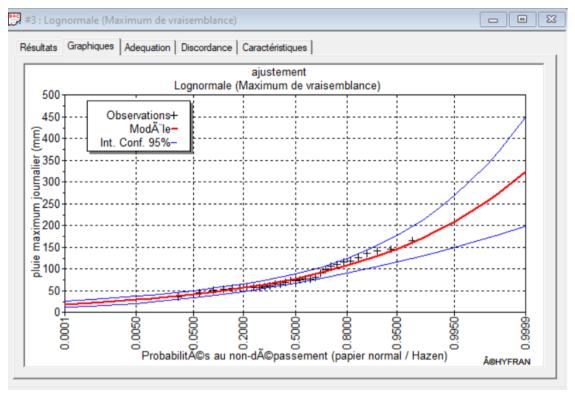


Figure III-11: Résultat d'ajustement par la loi LOG NORMAL

Paramètres

Taille: n = 31

Mu = 4.348

Sigma =0.38531

* Résultat de la statistique :

 $X^2 = 6.71$

p-value = 0.1520

Degrés de liberté: 4

Nombre de classes: 7

C-Ajustement de la série pluviométrique à la loi GEV :

Les quantiles de cette loi :

$$x = u + \alpha k(1 - e - Ky) \tag{III.25}$$

Les paramètres de la loi de GEV, par la méthode des maximums de vraisemblance :

U=48.15

 $\alpha = 17.17$

K=0.023267

* Résultats de l'ajustement à la loi de GEV :

Dans le tableau suivant, on trouve les paramètres de la loi de GEV ainsi que son graphique dans la figure d'après :

Tableau III-17: Ajustement à la loi de GEV

T = 1/q	q = F(X) (probabilité au non-dépassement)								
P. Retour	Fréquence	Quantile Xt	Ecart-type	Intervalle de confiance (95%)					
10000	0.9999	539	376	/					
1000	0.999	350	163	/					
100.0	0.99	219	57.9	/					
50.0	0.98	188	39.9	110 - 267					
10.0	0.90	127	14.7	98.6 - 156					
20.0	0.95	152	23	107 - 197					
5.0	0.8	105	9.32	86.3-123					

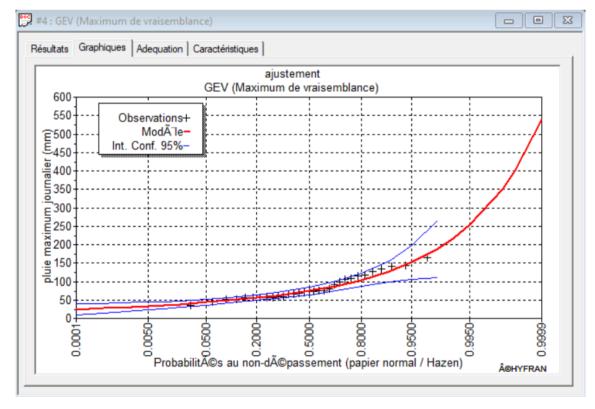


Figure III-12 : Résultat d'ajustement par la loi de GEV

Paramètre

Nombre d'observations : n = 31

U = 66.3157

Alpha = 22.5457

K=-0.15939

* Résultats

 $X^2 = 7.61$

P-value = 0.0547

Degrés de liberté: 3

III.5.1.3 Choix de la loi d'ajustement :

Lorsqu'on effectue un ajustement à une loi de probabilité théorique, la question cruciale est de déterminer si cette loi convient ou non. Les critères de sélection d'une loi sont basés sur une évaluation graphique de l'ajustement ainsi que sur un test de dispersion.

***** Test graphique:

Ce test repose sur une observation visuelle des courbes d'ajustement. Il implique d'examiner la répartition des points sur le graphique de probabilité et de déterminer s'il y a un alignement adéquat sans la présence de courbes indésirables.

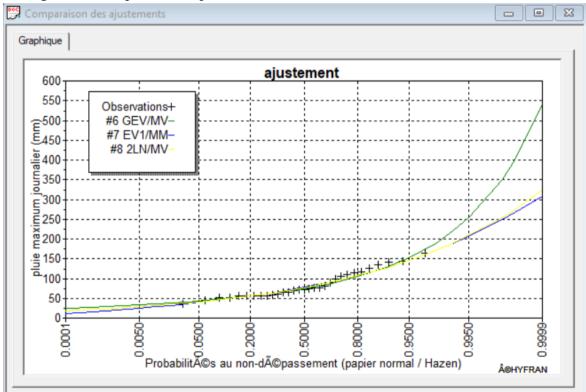


Figure III-13: Résultat de comparaison entre les trois lois d'ajustement

Interprétation des graphiques :

D'après l'examen visuel des graphiques d'ajustement présentés dans **les figures III-10, III-11 et III-12** et ses intervalles de confiance, on remarque que :

- La loi GALTON (log normal) donne un bon ajustement par rapport aux deux autres lois, les points sont très proches de la droite théorique avec une bonne convergence.
- L'ajustement graphique à la loi de GUMBEL et à celle de GEV ne s'adaptent pas aux séries de données car les valeurs sont en partie négatives au voisinage de zéro.

❖ Test d'adéquation de Khi-deux « x2 »:

Ce test, également connu sous le nom de test du chi-carré ou de Pearson, implique de définir une règle de décision pour évaluer l'ajustement en comparant les valeurs calculées et théoriques de χ 2.

Il est généralement effectué à un seuil de signification (niveau de risque) de α =5% et dépend du nombre de degrés de liberté de la distribution statistique.

Lois statistique	Degré de liberté	X ² calcule	X ² théorique
Loi de Gumbel	4	9.42	9.49
Loi de log normale	4	6.71	9.49
Loi de CEV	3	7.61	7.81

Tableau III-18: les résultats du test d'adéquation.

Interprétation des résultats du test :

Selon le tableau ci-dessus, la condition du test est satisfaite pour les trois distributions. Par conséquent, le test du chi-deux indique que ces distributions sont appropriées.

❖ Sélection de la loi :

En se basant sur les conclusions du test d'adéquation du khi-deux ainsi que sur L'observation des graphiques, le choix se porte sur la loi de la log-normale, en raison de son meilleur ajustement aux données.

III.5.2. Pluies de courtes durées de différentes fréquences et leurs intensités :

La pluie à courte durée est employée pour estimer les crues. Les calculs des pluies de courte durée pour différentes fréquences ont été réalisés en utilisant la relation formulée par MONTANARI, qui s'exprime comme suit :

$$P_{ct} = P_{j.max}(\frac{t}{24})^b \tag{III.26}$$

Avec:

Pct : Pluie de courte durée (mm) de fréquence égale à celle Pj.max ;

Pj.max : Pluie journalière maximale fréquentielle (mm);

t: Temps (h);

b: Exposant climatique régional (b = 0.50).

Les intensités maximales de période t (h) et période de retour T (ans) sont calculées par la relation suivante :

$$I_{t} = \frac{P_{ct}}{t} \tag{III.27}$$

Tableau III.19 Pluies de courte durée et intensités de pluie pour différentes fréquences

Période de retour	10	000	10	00	50		20		10	
Fréquence %	0.9	999	0.	99	0	.98	0	.95	0.9	
P _{j.max}		254	190		17			46	12	27
T(h)	Pct	It	Pct	I_{t}	Pct	I_{t}	Pct	I_{t}	Pct	I_t
` ′	(mm)	(mm/h)	(mm)	(mm/h)	(mm)	(mm/h)	(mm)	(mm/h)	(mm)	(mm/h)
0.5	36.66	73.32	27.42	54.85	24.68	49.36	21.07	42.15	18.33	36.66
0.637	41.38	64.96	30.95	48.59	27.86	43.73	23.79	37.34	20.69	32.48
1	51.85	51.85	38.78	38.78	34.91	34.91	29.80	29.80	25.92	25.92
2	73.32	36.66	54.85	27.42	49.36	24.68	42.15	21.07	36.66	18.33
3	89.80	29.93	67.18	22.39	60.46	20.15	51.62	17.21	44.90	14.97
4	103.70	25.92	77.57	19.39	69.81	17.45	59.60	14.90	51.85	12.96
5	115.93	23.19	86.72	17.34	78.05	15.61	66.64	13.33	57.97	11.59
6	127.00	21.17	95.00	15.83	85.50	14.25	73.00	12.17	63.50	10.58
7	137.18	19.60	102.61	14.66	92.35	13.19	78.85	11.26	68.59	9.80
8	146.65	18.33	109.70	13.71	98.73	12.34	84.29	10.54	73.32	9.17
9	155.54	17.28	116.35	12.93	104.72	11.64	89.41	9.93	77.77	8.64
10	163.96	16.40	122.64	12.26	110.38	11.04	94.24	9.42	81.98	8.20
11	171.96	15.63	128.63	11.69	115.77	10.52	98.84	8.99	85.98	7.82
12	179.61	14.97	134.35	11.20	120.92	10.08	103.24	8.60	89.80	7.48
13	186.94	14.38	139.84	10.76	125.85	9.68	107.45	8.27	93.47	7.19
14	194.00	13.86	145.11	10.37	130.60	9.33	111.51	7.96	97.00	6.93
15	200.80	13.39	150.21	10.01	135.19	9.01	115.42	7.69	100.40	6.69
16	207.39	12.96	155.13	9.70	139.62	8.73	119.21	7.45	103.70	6.48
17	213.77	12.57	159.91	9.41	143.92	8.47	122.88	7.23	106.89	6.29
18	219.97	12.22	164.54	9.14	148.09	8.23	126.44	7.02	109.99	6.11
19	226.00	11.89	169.05	8.90	152.15	8.01	129.90	6.84	113.00	5.95
20	231.87	11.59	173.45	8.67	156.10	7.81	133.28	6.66	115.93	5.80
21	237.60	11.31	177.73	8.46	159.96	7.62	136.57	6.50	118.80	5.66
22	243.19	11.05	181.91	8.27	163.72	7.44	139.78	6.35	121.59	5.53
23	248.65	10.81	186.00	8.09	167.40	7.28	142.93	6.21	124.33	5.41
24	254.00	10.58	190.00	7.92	171.00	7.13	146.00	6.08	127.00	5.29

III.6 Evaluation des apports :

III.6.1 Apports liquides:

La méthode privilégiée pour estimer les apports en eau consiste à se baser sur des observations hydrométriques, lorsque de telles données sont disponibles dans le bassin versant propre du site à étudier, ou à défaut, en utilisant des données analogues provenant d'un bassin voisin. En l'absence de ces informations, des modèles et des formules empiriques basés sur la pluviométrie et les caractéristiques du bassin versant peuvent être utilisés comme alternatives.

III.6.1.1 Apports moyens annuels A_0 :

En l'absence de stations hydrométriques le long de notre principal cours d'eau, nous allons estimer les apports à l'aide de formules empiriques. Nous utiliserons les formules empiriques les plus couramment utilisées en Algérie pour estimer l'apport moyen, qui ont démontré leur efficacité en fournissant des résultats satisfaisants.

> Formule de Samie

$$A_0 = L_e.S (III.28)$$

Et:

$$L_{e} = P^{2}(293 - 2.2\sqrt{S})$$
 (III.29)

Avec

Le : lame d'eau écoulée (mm)

p: Précipitation moyenne (m)

S: Surface du bassin versant (Km²)

➤ Formule de l'ARNH

$$A_0 = 0.915 \times P^{2.684} \times S^{0.842} \tag{III.30}$$

Avec:

P: Précipitation moyenne (mm)

S : Surface du bassin versant (Km²)

➤ Formule de Medinger

$$L_e = 1.024 \times (\overline{P} - 0.26)^2$$
 (III.31)

Avec:

Le : lame d'eau écoulée (mm)

S: Surface du bassin versant (Km²)

p: Précipitation moyenne (mm)

> Formule de Sogreah

Le =
$$270 \times (\frac{P - 150}{1000})^{1.85}$$
 (III.32)

Et:

$$A = Le. S (III.33)$$

Avec:

A: Apport moyen annuel en (Hm3);

P: Précipitation moyenne annuel en (mm);

Tableau III-20: Récapitulatif de l'apport moyen interannuel

Formule Empirique	L'apport moyen annuel (Mm³)
F.Samie	0.16
ARNH	0.55
Medinger	0,30
Sogreah	0.29
Moyenne	0.325

En se basant sur ces résultats, nous choisissons finalement la valeur de la méthode Medinger, car elle se rapproche le plus de la moyenne des autres valeurs, c'est-à-dire :

 $A_0 = 0.30 \text{ Mm}^3$

III.6.1.1 Caractéristiques de l'écoulement

A -Module de l'écoulement :

Il est donné par :

$$Me = \frac{A0}{T}$$
 (III.34)

Avec:

A₀: Apport moyen annuel (1).

T: Temps d'une année en secondes T= 31536000 s.

D'où:

 $M_e = 9.51 \text{ l/s}.$

B -Module de l'écoulement relatif :

Il est donné par :

$$M0 = \frac{Me}{S}$$
 (III.35)

Avec:

M₀: Module de l'écoulement (l/s). S : Surface de bassin versant (Km²).

D'où:

 $M_0 = 16.86 \text{ l/s/Km}^2$.

C - Lame d'eau écoulée :

Elle est donnée par la formule suivante :

$$Le = \frac{A0}{S}$$
 (III.36)

Avec:

 A_0 : Apport moyen annuel (1).

S : Surface de bassin versant (Km²).

D'où:

 $L_e = 531.91 \text{ mm}$

D - Coefficient de l'écoulement :

Il est donné par :

$$Ce = \frac{Le}{P0}$$
 (III.37)

D'où:

 $C_{\rm e} = 0.51$

E -Coefficient de variation :

La variabilité de l'apport annuel est quantifiée par le coefficient de variation (Cv), que nous avons estimé dans notre cas en l'absence de données hydrométriques à l'aide de formules empiriques :

Sokolovsky

Elle est donnée par :

$$Cv = a + 0.063 \times Log_{10}(S + 1)$$
 (III.38)

Et:

$$a = 0.78 - 0.29 \times Log_{10}(M_0)$$
 (III.39)

Avec:

M₀: Module de l'écoulement relatif (l/s/km²).

S: Superficie du bassin (Km2).

• Kristekly-Menkel

Elle est donnée par :

$$Cv = 0.83/(S^{0.06} \times M_0^{0.27})$$
 (III.40)

Avec:

M₀: Module de l'écoulement relatif [l/s/km²].

Antonov

Elle est donnée par :

$$Cv = 0.7/(S + 1000)^{0.097}$$
 (III.41)

Avec:

S: Superficie du bassin (Km2)

• Formule Algérienne de N. Padoum

Cette formule produit des résultats fiables, car elle est basée sur une analyse statistique de 42 cours d'eau du nord de l'Algérie.

Elle s'écrit comme suit :

$$Cv = 0.93 \times K/M_0^{0.23}$$
 (III.42)

Avec:

K : coefficient de réduction ; on prend K=0.66

M : module spécifique du bassin versant en (1/s/km2).

Tableau III-21: Caractéristiques de l'écoulement

	Caractéristiques	Valeurs				
Module	de l'écoulementMe (l/s)	9.	51			
Module	e spécifique M0 (l/s/km)	16	16.68			
Lame d'ea	Lame d'eau écoulée moyenne Le (mm) 531.91					
Coeffic	cient de l'écoulement Ce	0.51				
	F. Sokolovsky	0.41				
Coefficient de variation Cv	F.Antonov	0.35				
	F. Kristekly –Menkel	$C_v = 0.35$				
	F. Algérienne de N. Padoum	0.31				
	Moyenne	0.36				

Conclusion:

Le coefficient de variation moyen, calculé à partir des formules empiriques, sera donc basé sur la formule d'Antonov, qui a donné une valeur proche de la moyenne.

Cv = 0.35

III.6.2 Irrégularité des apports

III.6.2.1 Les apports fréquentiels

Pour déterminer les apports fréquentiels, on utilise la loi de Pearson III exprime par l'expression (III.43) :

$$A_{80(\%)} = (F_{p\%} \times C_{\nu} + 1) \times A_0$$
 (III.43)

Avec:

A% : Apport de fréquence donnée.

Ao: Apport moyen annuel (Hm).

Cv : Coefficient de variation.

F_p % : La fonction de Rybkine-Foster pour une fréquence donnée tirée de la table.

• Détermination du coefficient d'aplatissement Cs:

Il est donnes par:

$$C_s = 2 \times C_v$$

Avec:

Cs : le coefficient d'aplatissement Cv : le coefficient de variation

D`ou: Cs =0.70

Pour obtenir $F_{p\%}$, en projetant la valeur de CS sur la table de Rybkine-Foster pour une Probabilité de 80 %, nous aurons : $F_{p\%} = -0.85$.

III.6.2.2 Distribution mensuelle d'apport 80% :

La distribution moyenne mensuelle des apports liquides sur chaabet boukharoum suit la même distribution mensuelle de précipitation et elle est portée dans le tableau suivant : **Tableau III-22 :** distribution Moyennes mensuelles des apports de fréquence 80%

Mois	Sep	Oct	Nov	Déc	Jan	Fév	Ma	Av	Ma	Jui	Juit	Aou
A_{80} (Mm^3)	0.06	0.10	0.17	0.16	0.16	0.13	0.12	0.088	0.05	0.015	0.054	0.01

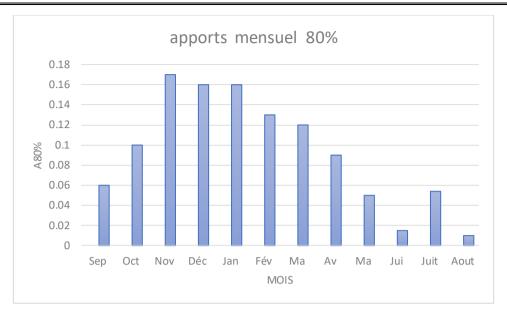


Figure III-14: Répartition mensuelle d'apport 80%.

III.6.3 Les apports solides

L'évaluation de l'envasement est essentielle dans de telles situations afin de garantir que le dimensionnement de l'ouvrage soit plus fiable en ce qui concerne sa durée de vie.

Pour résoudre cette question, nous devons calculer les apports solides sur une année d'exploitation du barrage. En l'absence de données précises sur les débits solides de l'oued Boukhartoum, nous choisirons de faire un calcul empirique en utilisant les formules suivantes :

> Formule de Tixeront

Le volume mort est estimé à :

$$V_{\rm m} = (1.05 \div 1.10) \frac{Q_{\rm s} \cdot T}{\gamma_{\rm s}}$$
 (III.44)

Et:

$$Q_s = \alpha. L_e^{0.15}.S \tag{III.45}$$

Tel que:

Q_S: Débit solide en (tonne/an).

γ_S: Poids spécifique des sédiments (1.2t/m³)

T: temps d'exploitation [T = 10 ans]

 α : Caractéristique de perméabilité. On prend $\alpha = 350$ (perméabilité moyenne)

Tableau III.23 Différentes valeurs de α

Variation de perméabilité	а
Elevée	8.5
Moyenne	75
Faible à moyenne	350
Faible	1400
Imperméable	3200

➤ Formule de Fournier :

$$E_{s} = \frac{1}{36} \left[\frac{Pm^{2}}{Pa} \right]^{2.65} \left[\frac{h}{s} \right]^{0.46}$$
 (III.46)

Avec:

Pm : Pluie mensuelle moyenne du mois le plus pluvieux (mm).

Pan: Pluie moyenne annuelle (mm)

h: l'altitude a $0.45*(Hmax - H_{min})$ (m),

S: Superficie du bassin (km2)

En tenant compte du poids spécifique moyen des sédiments, Le volume annuel est exprimé comme suit :

$$V_{m} = \frac{Es*S*T}{vs}$$
 (III.47)

Tableau III-24 : Résultats de calcul de volume mort

Formule	rmule Volume mort (m ³)	
Tixeront	4512.57	
Fournier	4866.004	

Conclusion

Étant donné les valeurs obtenues, nous choisissons d'utiliser la valeur fournie par la méthode de F. Tixeron, qui se rapproche le plus de la moyenne.

D'où:

V m=4512.57m3.

III.7 Etude des crues

Les crues sont des phénomènes hydrologiques caractérisés par des débits d'écoulement variables, où les débits peuvent atteindre des niveaux considérablement élevés.

L'objectif de leur étude est de calculer l'hydrogramme des crues fréquentielles sur le bassin versant et de déterminer les débits maximaux probables associés à ces crues.

L'estimation des crues revêt une importance cruciale en ce qui concerne la sécurité de l'ouvrage à construire.

Les paramètres définissants une crue sont :

- 1- Le débit maximum (débit de pointe).
- 2- Le volume.
- 3- Le temps.
- 4- La forme (Hydrogramme de crues).

Dans notre situation, nous allons évaluer le débit maximal en utilisant une approche empirique.

III.7.1 Estimation du débit maximum

• Formule de Mallet-Gauthier :

Elle donné par :

$$Q_{maxP\%} = \frac{2 * K * \log_{10}(1 + A * Pmoy) * S * \sqrt{1 + 4 * \log_{10}(T) - \log_{10}(S)}}{\sqrt{L}}$$
(III.48)

Avec:

 $Q_{\text{max P}\%}$: Débit maximum pour une fréquence donnée (m3/s);

K : constante dépendant des caractéristiques géographiques et climatiques du bassin 1 < K < 3;

A : Paramètre du bassin qui varie entre 20 et 30 ;

 P_{mov} : Pluie moyenne interannuelle (mm);

S: Surface du bassin versant (km^2) ;

T: Période de retour (an);

L: Longueur du talweg principal (km).

• Formule de POSSENTI

$$p\% = \frac{\mu * PmaxJ\% * S}{Lp}$$
 (III.49)

Avec:

P_{maxi}% : Pluie maximale journalière correspondant à la période de retour donnée (m).

S: Superficie du bassin versant (km²).

 μ : Coefficient 700< <800, on prend =750.

Lp: Longueur du cours d'eau principal (Km).

• Formule de Giandotti

Elle est donnée par :

$$Q_{\text{max p\%}} = \frac{170 \times S \times (H_{\text{moy}} - H_{\text{min}})^{1/2}}{4 \times S^{1/2} + 1.5L} \times P_{\text{tc}}$$
(III.50)

Avec:

S: superficie du bassin versant (Km²).

L: longueur du talweg principal (Km).

Hmoy, Hmin: altitudes moyennes et minimales (en m).

Ptc: pluies de courte durée de t = Tc

• Formule de turrazza

Elle est donnée par :

$$Q_{\text{max p\%}} = \frac{C \times P_{ct} \times S}{T_c \times 3.6}$$
 (III.51)

Avec:

S: superficie du bassin versant (Km²).

C : coefficient de ruissellement de fréquence donnée

Tc: temps de concentration (H)

Ptc: pluies de courte durée pour t=Tc (mm)

Tableau III-25 : Débits maximaux de crue

Formule		MALLET- GAUTHIER	POSSENTI	Giandotti	turrazza
f (%)	T (ans)	Q max p% (m3/s)	Q max p% (m3/s)	Q max p% (m3/s)	Q max p% (m3/s)
0.9999	10000	23.86	244.73	8.60	11.03
0.999	1000	20.91	191.86	6.74	8.14
0.99	100	17.47	143.51	5.04	5.32
0.980	50	16.29	129.16	4.54	4.45
0.90	10	13.16	95.93	3.37	2.79
0.8	5	11.55	80.82	2.84	2.14

Sur la base de ces résultats, primitivement les valeurs adoptées sont celle de **MALLET GAUTHIER**.

III.7.2 Hydrogramme de crue

L'hydrogramme de crue est une représentation caractéristique de la crue, fournissant des informations essentielles telles que:

- ❖Le volume total de la crue.
- La durée de la crue.
- ❖Le débit maximal atteint pendant la crue (débit de pointe).

L'hydrogramme de crue est tracé en utilisant la méthode de Sokolovski, qui subdivise l'hydrogramme en deux parties non symétriques, l'une de ces parties est calculée en fonction du temps de montée, tandis que l'autre est basée sur le temps de la décrue.

A-Pour la montée :

$$Q_{\rm m} = Q_{\rm max} \left(\frac{t}{t_{\rm m}}\right)^{\rm n} \tag{III.52}$$

B-Pour la décrue :

$$Q_d = Q_{max} \left(\frac{t_d - t}{t_d}\right)^m \tag{III.53}$$

Avec:

t_m, t_d: temps de montée et de décrue.

m, n: puissances des paraboles pour les bassins de petites gabarits m=3 et n=2.

Temps de base: tb=tm+td.

Tel que:

 $t_{\rm m} = t_{\rm c} = 0.637 \text{ h}$

 $t_d = \sigma t_m = 2.5*0.637 = 1.59 h$

Tableau III-26: Coefficients de forme de l'hydrogramme de crue

Description du cours d'eau	σ
Petit cours d'eau et valons dans des bassins versants dénudés et faiblement perméables	2-2.5
Petits cours d'eau et vallons dans des bassins versants brisés ou perméables, moyens cours d'eau avec terrasses de lit majeur normal	3.0-4.0
Grands et moyens cours d'eau avec des terrasses de débordement étendus	4.0-7.0

(Touai bi a, 2004)

$$t_{b} = t_{m} + t_{d} = 2.227 \text{ h}$$

Les résultats des calculs des débits de crue, ainsi que l'hydrogramme de crue par la méthode empirique pour diverses périodes de retour, sont présentés dans le **Tableau** (**III-27**) et la **Figure** (**III-15**).

Tableau III-27: Hydrogramme de crues pour différentes périodes de retour

Période de retour	10000	1000	100	50	20	10
0	0.000	0.000	0.000	0.000	0.000	0.000
0.1	0.588	0.515	0.431	0.401	0.360	0.324
0.2	2.352	2.061	1.722	1.606	1.438	1.297
0.3	5.292	4.638	3.875	3.613	3.236	2.919
0.4	9.408	8.245	6.889	6.423	5.753	5.189
0.5	14.700	12.883	10.764	10.036	8.989	8.108
0.6	21.169	18.551	15.499	14.453	12.944	11.676
0.637	23.860	20.910	17.470	16.290	14.590	13.160
0.7	21.135	18.522	15.475	14.429	12.924	11.657
0.98	17.248	15.116	12.629	11.776	10.547	9.513
9	13.870	12.156	10.156	9.470	8.482	7.650
1	10.965	9.609	8.029	7.486	6.705	6.048
1.1	8.497	7.446	6.221	5.801	5.196	4.686
1.2	6.430	5.635	4.708	4.390	3.932	3.546
1.3	4.728	4.144	3.462	3.228	2.891	2.608
1.4	3.357	2.942	2.458	2.292	2.053	1.852
1.5	2.281	1.999	1.670	1.557	1.395	1.258
1.6	1.463	1.282	1.071	0.999	0.895	0.807
1.7	0.869	0.761	0.636	0.593	0.531	0.479
1.8	0.462	0.405	0.338	0.316	0.283	0.255
1.9	0.208	0.182	0.152	0.142	0.127	0.114
2	0.069	0.061	0.051	0.047	0.042	0.038
2.1	0.012	0.011	0.009	0.008	0.007	0.007
2.227	0.000	0.000	0.000	0.000	0.000	0.000

Figure III-15 : Représentation des hydrogrammes de crues pour différentes périodes de retour

III.7.3 Choix de la crue de projet

La crue de projet est définie comme la crue maximale que l'ouvrage doit être en mesure d'évacuer sans provoquer de dommages graves en aval.

Ainsi, il est nécessaire de calculer cette crue en tenant compte de l'effet de laminage causé par la retenue. Cette valeur est déterminée en se basant sur un débit de pointe estimé grâce à l'étude du régime des crues.

Dans cette perspective, il est nécessaire de prendre une décision, car il est clair que la protection d'un ouvrage contre toutes les crues possibles est impossible. Nous optons donc pour une période de retour de crue, ce qui équivaut à accepter un certain niveau de risque, lequel doit être en adéquation avec l'intérêt économique de l'ouvrage et les exigences en matière de sécurité.

En d'autres termes, il s'agit de rechercher un équilibre optimal entre les coûts de construction et les risques liés aux crues en aval. Pour évaluer ce compromis, nous nous référons aux recommandations du Comité Australien des Grands Barrages.

Tableau II.28 Crue de projet recommandée

Catégories des dommages	Crue de projet recommandé
Elevés : Perte de vie, dommage considérable.	1/100 000 à 1/10 000
Importants: Pas de perte de vie, dommages importants.	1/10 000 à 1/1 000
Faible : Pas de perte de vie, dommages légers	1/1 000 à 1/100

Dans notre situation, nous choisirons la crue centennale, étant donné que les contraintes géologiques et géotechniques sont faibles, que les données hydrologiques sont de qualité moyenne, et que le risque en aval est modéré. Dans de telles circonstances, la crue centennale est la recommandation la plus appropriée.

D'où:

Q max, 1% = 17.47 m3/s Pour 100 ans.

III.7.3 choix de la crue de chantier :

La crue représente l'une des phases du cycle hydrologique d'un cours d'eau. Elle se caractérise par des débits et des niveaux d'eau élevés, et les crues peuvent survenir en raison de la fonte des neiges ou de fortes précipitations intenses.

Pour dimensionner l'ouvrage de dérivation, il est nécessaire de sélectionner le niveau de protection que l'on souhaite attribuer au chantier en cas de crues. Ce choix de la crue dépend du niveau de risque accepté.

Par conséquent, en tenant compte de toutes ces exigences, opter pour la crue décennale (10 ans) serait la meilleure option pour la conception des ouvrages de dérivation et des prises d'eau.

D'où:

 $Q \max, 5\% = 13.16 \text{ m}3/\text{s}$ Pour 10 ans.

III.8 Régularisation:

L'objectif de la régularisation est de trouver la capacité optimale de la retenue et le niveau correspondant qui permettent d'obtenir une régularité dans les débits à Boukhertoum, tout en répondant aux besoins d'irrigation avec un risque minimal de défaillance.

Il existe deux types de régularisation :

- ➤ La régularisation saisonnière.
- ➤ La régularisation interannuelle.

Pour notre étude, on s'intéresse à la régularisation saisonnière.

Les paramètres indispensables au calcul de la régularisation sont :

- ✓ La répartition mensuelle de l'apport (A 80% Hm³).
- ✓ La répartition mensuelle de la demande en eau.
- ✓ La répartition mensuelle des infiltrations et d'évaporation.
- ✓ Les courbes caractéristiques de la retenue.

III.8.1 Répartition mensuelle de l'apport A80% :

La répartition mensuelle de l'apport 80% est donnée dans le tableau suivant :

Tableau III-29: Répartition mensuelle de l'apport annuel 80%

Mois	Oct	Nov	Dec	Jan	Fev	Mar	Avr	Mai	Jui	Juil	Aou	Sep
W80% (Hm3)	0.10	0.17	0.16	0.16	0.13	0.12	0.09	0.05	0.015	0.054	0.01	0.06

III.8.2 Répartition mensuelle de la demande :

La répartition mensuelle des besoins en eau d'irrigation obtenue auprès de l'ANBT est donnée dans le tableau ci-dessous.

Tableau III-30: Répartition mensuelle des besoins

Mois	Oct	Nov	Déc	Jan	Fév	Mar	Avr	Mai	Jun	Jul	Aou	Sep	Année
U80% (%)	0.0	0.0	0.0	0.0	0.0	5	15	20	25	20	15	0.0	100
U80% (Hm3)	0.0	0.0	0.0	0.0	0.0	0.03	0.09	0.12	0.15	0.12	0.09	0.0	0.6

III.8.3 Courbes « Hauteur-Capacité-Surface » :

Nous allons tracer la courbe des surfaces submergées S=f(H) et la courbe des volumes d'eau dans la cuvette V=f(H). Les données relatives aux surfaces et aux hauteurs seront obtenues en utilisant la carte topographique qui présente une vue en plan du site et de la cuvette.

Les volumes sont calculés à partir de la formule suivante :

$$V_n = V_{n-1} + \Delta V_n = V_{n-1} + \left(\frac{S_{n-1} + S_n}{2}\right) \Delta H$$
 (III.54)

Et:

$$V_1 = \frac{2}{3} S_1 * H_1 \tag{III.55}$$

Avec:

 S_n : surface du plan d'eau correspondant à la courbe de niveau $H_n\left(m^2\right)$.

 S_{n-1} : surface du plan d'eau correspondant à la courbe de niveau H_{n-1} (m^2).

ΔH: Différence d'altitude entre les deux courbes de niveau successives

 V_n : Volume d'eau correspondant à la courbe de niveau $H_n\ (m^3)$.

 ΔV_n : Volume élémentaire compris entre deux courbes de niveaux successives (m³).

Tableau III-31 : Surfaces submergées et les volumes d'eau

Cote (m)	H (m)	S (km ²)	Δ H (m)	V(Mm ³)
26	0	0	0	0
27	1	0.00251	1	0,00125
28	2	0.0061	1	0.00555
29	3	0.0118	1	0,0145
30	4	0.02	1	0,0304
31	5	0.03147	1	0,05613
32	6	0.0465	1	00,95
33	7	0.0903	1	0,1634
34	8	0.1192	1	0,26815
35	9	0.2992	1	0,47735
36	10	0.4792	1	0.86655

La figure ci-dessous présente la représentation graphique des courbes topographiques et volumétriques :

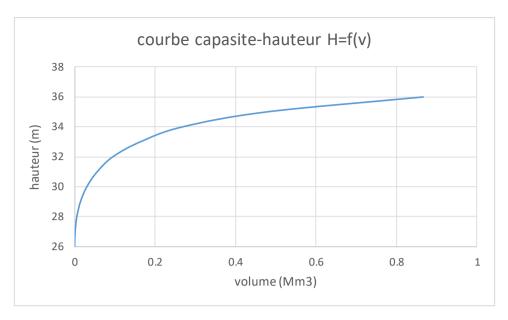


Figure III-16 : Courbe capacité-hauteur

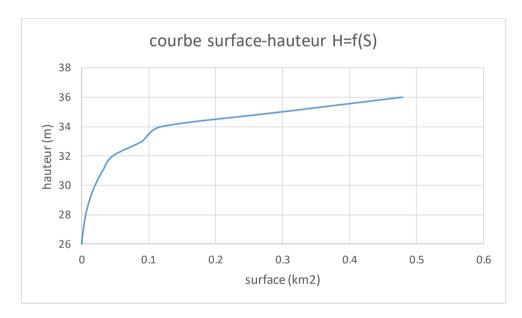


Figure III-17 : Courbe surface-hauteur

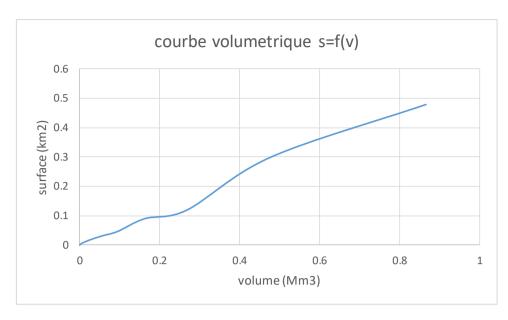


Figure III-18: Courbe volumétrique

III.8.4 Calcul du volume utile :

Pour obtenir le volume utilisable de la retenue, les éléments requis sont les suivants :

- ➤ La consommation totale.
- > Le volume mort de la retenue.
- \triangleright L'apport interannuel A_{80%}.

Le calcul de la régularisation est effectué en utilisant "la méthode du bilan d'eau".

- Procédé de calcul :
- ✓ Détermination de la période à bonne hydraulicité.
- ✓ Détermination des périodes excédentaires et déficitaires sur un cycle hydrologique.
- ✓ Calcul des volumes excédentaires et déficitaires "Vs" et "Vd".
- ✓ Détermination du type de fonctionnement de la retenue et calcul du volume utile. Les calculs se font comme suit :

$$Vrf = Vri + (W-U). (III.56)$$

Avec:

 V_{rf} : Volume de remplissage final. V_{ri} : Volume de remplissage initial.

Détermination de la période à bonne hydraulicité :

Pour déterminer la période à bonne hydraulicité, on calcule la différence entre les apports mensuels et la consommation mensuelle ; la période à bonne hydraulicité commence à partir du mois ou on a la plus grande série des (+). Comme le montre le tableau suivant :

Mois Jan Fér Mar Mai Jui Juil Aou Sép Oct Nov Déc Avr $W_{80\%}$ 0.16 0.13 0.12 0.088 0.05 0.015 0.054 0.01 0.06 0.10 0.17 0.16 $U_{80\%}$ 0.000 0.000 0.03 0.09 0.12 0.15 0.12 0.09 0.000 0.000 0.000 0.000 $\overline{\mathrm{W}_{80}}_{\%}$ -0.16 0.13 0.09 -0.002 0.06 0.10 -0.07 -0.135 -0.066 -0.08 0.17 0.16 U80

Tableau III-32: Détermination de la période à bonne hydraulicité

D'après le tableau ; la période de bonne hydraulicité est celle du mois de septembre jusqu'au mois de mars.

III.8.4.1 Régularisation saisonnière sans tenir compte des pertes :

La capacité utile détermine la hauteur maximale à laquelle la retenue peut être remplie dans des conditions d'exploitation normales, correspondant à la cote de niveau normal de la retenue (NNR).

Le cycle de remplissage et de vidange périodiques est désigné comme le "temps de fonctionnement", auquel s'ajoutent deux consignes d'exploitation :

1ère Consigne d'exploitation :

Il s'agit de remplir la retenue jusqu'à atteindre le niveau normal (NNR) pendant les périodes de crues, puis de restituer l'eau par la suite. Tout excédent d'eau est évacué par l'évacuateur de surface.

On établit un niveau initial de remplissage, puis on détermine le niveau de remplissage final pour chaque mois, en prenant en compte à la fois le NNR (niveau normal de retenue) et le niveau du volume mort (NVM) qu'il ne faut pas dépasser.

2ème Consigne d'exploitation :

Cette consigne implique d'évacuer les eaux excédentaires en utilisant la vidange de fond. L'approche consiste à remplir la retenue d'eau, puis à la restituer aux consommateurs.

Les résultats des calculs de la régularisation saisonnière sont présentés dans le tableau ci-dessous :

Tableau III-33 : Régularisation saisonnière sans tenir compte des pertes

Régi	ularisatio	n saisonn	ière		nière cons exploitati			xième cons exploitati	
Mois	W _{80%}	U _{80%}	W _{80%} - U _{80%}	Vrf	Vri	S	Vrf	Vri	S
sept	0.060	0	0.060	0.0645	0.0645	0	0.005	0.005	0
oct	0.100	0	0.100	0.164	0.164	0	0.005	0.005	0
nov	0.170	0	0.170	0.334	0.334	0	0.005	0.005	0
dec	0.160	0	0.160	0.494	0.367	0.127	0.005	0.005	0
jan	0.160	0	0.160	0.527	0.367	0.16	0.005	0.005	0
fev	0.130	0	0.130	0.497	0.367	0.13	0.138	0.138	0
mar	0.120	0.03	0.090	0.457	0.367	0.09	0.268	0.268	0
avr	0.088	0.09	-0.002	0.365	0.365	0	0.358	0.358	0
mai	0.050	0.12	-0.070	0.295	0.295	0	0.356	0.356	0
jui	0.015	0.15	-0.135	0.16	0.16	0	0.286	0.286	0
juil	0.05	0.12	-0.066	0.094	0.094	0	0.151	0.151	0
aout	0.010	0.09	-0.080	0.005	0.005	0	0.085	0.085	0

D'après le tableau ci-avant, nous avons les résultats suivants :

• Le volume excédentaire :

$$S{=}W_{80\%} \ \text{-} \ U_{80\%} \, = 0.507 \ Mm^3$$

 $S = 0.507 \text{ Mm}^3$

• Le volume utile :

$$V_u = V_d = 0.353 Mm^3$$

• Le volume normal de la retenue :

Le volume normal de la retenue sera :

 $V_{NNR} = Vu + Vm = 0.353 + 0.0045 = 0.367 \text{ Mm}^3$

 $V_{NNR} = 0.367 \text{ Mm}^3$

III.8.4.2 Régularisation saisonnière en tenant compte des pertes :

Les pertes dans la retenue sont de deux sortes :

- ✓ Pertes par évaporation.
- ✓ Pertes par infiltration.

A - Pertes par évaporation:

On a:

$$V_{\rm ep} = E_s \cdot S_{\rm moy} \tag{III.57}$$

Avec:

V_{ep} : volume perdu à cause de l'évaporation.

E_s: Evaporation mensuelle (m).

 S_{moy} : Surface du plan d'eau correspond au volume moyen (V_{moy}) , elle est déterminée sur la courbe S=f(V). Cette courbe est représentée sur la figure III.19.

 V_{moy} : volume moyen $\left[V_{moy} = \frac{V_{rf,i} + V_{rf,i+1}}{2}\right]$.

 $V_{rf,i}$ et $V_{rf,i+1}$: les volumes de la retenue de deux mois successifs.

B - Pertes par infiltration:

Le volume mensuel des pertes par infiltration est donné par :

$$V_{\rm inf} = \frac{\delta \cdot V_{\rm moy}}{100} \tag{III.58}$$

Avec:

V_{inf}: volume perdu à cause de l'infiltration.

δ : Coefficient qui dépendant des conditions hydrogéologiques de la cuvette

 V_{moy} : volume moyen $\left[V_{moy} = rac{V_{rf,i} + V_{rf,i+1}}{2} \right]$

 $V_{rf,i}$ et $V_{rf,i+1}$: les volumes de la retenue de deux mois successives.

Tableau III-34 : Valeurs de δ en fonction des conditions hydrogéologique

	Hauteur d'infiltration pendant	δ			
Nature	une année (cm)	Année	Mois		
Sol a faible perméabilité	0 à 50	5 à 10	0,5 à 1,0		
Sol à perméable moyenne	50 à 100	10 à 20	1 à 1,5		
Sol a forte perméabilité	>100 à 200	>20 à 40	>1,5 à 3,0		

 $\underline{\delta}$ =0,5 Le calcul des pertes est représenté dans le tableau suivant : **Tableau III-35 :** Les volumes des pertes dans la retenue

Mois	V _{moy} (Mm ³)	S _{moy} (km ²)	Es (m)	$V_{ep} (Mm^3)$	$V_{inf} (Mm^3)$	$\pi = V_{evap} + V_{inf}$ $(\mathbf{Mm^3})$
sep	0.0347	0.0189	0.111	0.0020979	0.0001735	0.0022714
oct	0.1142	0.0635	0.062	0.003937	0.000571	0.004508
nov	0.249	0.1391	0.048	0.00667	0.001245	0.0079218
Dec	0.414	0.2317	0.043	0.009963	0.00207	0.0120331
Jan	0.510	0.2856	0.04	0.011424	0.00255	0.013974
Fev	0.512	0.2867	0.045	0.012901	0.00256	0.0154615
Mar	0.477	0.2670	0.062	0.016554	0.002385	0.018939
Avr	0.411	0.2300	0.072	0.01656	0.002055	0.018615
Mai	0.33	0.1846	0.09	0.016614	0.00165	0.018264
Jui	0.227	0.1268	0.121	0.015342	0.001135	0.0164778
Juil	0.127	0.0707	0.171	0.012089	0.000635	0.0127247
aout	0.049	0.0269	0.161	0.004330	0.000245	0.0045759

Les résultats de la régularisation saisonnière avec pertes sont dans le tableau ci-après.

Tableau III-36: Régularisation saisonnière en tenant compte des pertes

	Régularisation saisonnière							signe	Deuxième consigne			
Mois	W _{80%}	U _{80%}	π	U' _{80%}	W _{80%} - U' _{80%}	Vrf	Vri	S	Vrf	Vri	S	
sep	0.06	0	0.0022714	0.00227	0.059	0.064	0.064	0,00	0.005	0.005	0.00	
oct	0.10	0	0.004508	0.0045	0.098	0.162	0.162	0,00	0.005	0.005	0.00	
nov	0.17	0	0.0079218	0.0079218	0.166	0.328	0.328	0,00	0.005	0.005	0.00	
dec	0.16	0	0.0120331	0.012033	0.154	0.481	0.375	0.11	0.005	0.005	0.00	
janv	0.16	0	0.013974	0.013974	0.153	0.528	0.375	0.153	0.0204	0.0204	0.00	
fev	0.13	0	0.0154615	0.01546	0.122	0.497	0.375	0.122	0.1734	0.1734	0.00	
mar	0.12	0.03	0.018939	0.03932	0.081	0.456	0.375	0.081	0.2954	0.2954	0.00	
avr	0.088	0.09	0.018615	0.09896	-0.011	0.364	0.364	0,00	0.3764	0.3764	0.00	
mai	0.05	0.12	0.018264	0.1242	-0.0742	0.289	0.289	0,00	0.3654	0.3654	0.00	
jui	0.015	0.15	0.0164778	0.1532	-0.138	0.151	0.151	0,00	0.2912	0.2912	0.00	
juil	0.05	0.12	0.0127247	0.1212	-0.0712	0.0809	0.0809	0,00	0.153	0.153	0.00	
aout	0.010	0.09	0.0045759	0.092	-0.077	0.005	0.005	0,00	0.082	0.082	0.00	

D'après le tableau ci-avant, nous avons les résultats suivants :

• Le volume excédentaire :

$$S'=W_{80\%} - U'_{80\%} = 0.466 \text{ Mm}^3$$

 $S'=0.466 \text{ Mm}^3$

 $V_s{=}0.833\ Mm^3\ et\ V_d{=}0.371\ Mm^3$

 $V_{\text{S}} > V_{\text{d}}$ donc la retenue fonctionne à un seul temps.

• Le volume utile :

 $V'_u=V_d = 0.371 Mm^3$ $\underline{V'_u}=0.371 Mm^3$

• Le volume normal de la retenue :

Le volume normal de la retenue sera :

$$V'_{NNR} = V'u + Vm = 0.371 + 0.004512 = 0.375 \text{ Mm}^3$$

 $V'_{NNR} = 0.375 \text{ Mm}^3$

NNR= 34.5 m NGA

C- Estimation de l'erreur :

Les volumes des pertes sont considérés comme une consommation, pour ces calcules on doit vérifier la condition suivante : (2% $<\epsilon<5$ %)

Si cette condition (2% $< \varepsilon < 5$ %) n'est pas vérifiée on doit faire des itérations.

On a:

$$\varepsilon = \frac{V'u - Vu}{V'u}.100 \tag{III.59}$$

AN:
$$\varepsilon = \frac{0.371 - 0.353}{0.371} * 100 = 4,6$$
 $\varepsilon = 4.6 < 5\%$ donc la condition est vérifiée.

Donc on prend:

 $Vu=0.371Mm^{3}$

 $V_{NNR} = 0.375 \text{ Mm}^3$

NNR= 34.5 m NGA

III.9 Laminage des crues

Le calcul du laminage des crues a pour objectif d'adapter les dimensions et les coûts de la structure d'évacuation tout en maintenant la sécurité globale de l'aménagement. Cette méthode optimise la capacité de rétention temporaire de la réserve et assure un débit progressif des déversements en cohérence avec le débit entrant de la crue. Cette relation peut être formulée comme suit :

$$Qdt = q. dt + S. dt (III.60)$$

Avec:

Q : Le débit entrant de la crue.

q : Le débit déversé par l'évacuateur de crue (débit laminé)

S : La surface du plan d'eau de la cuvette.

Le débit cumulé à l'instant t est :

$$Q - q = S.\frac{dh}{dt}$$
 (III.61)

D'où:

 $\frac{dh}{dt}$: La vitesse de remplissage ou de montée de la retenue.

IL existe plusieurs procédés de calcul, nous citons :

- 1. Méthode de Muskingum.
- 2. Méthode Step by step.
- 3. Méthode graphique.
- 4. Méthode de Kotecherine.
- 5. Méthode de Hidenblat.

III.9.1 Méthode de kotcherine :

La méthode de Kotcherine est un procédé grapho-analytique basé sur les principes suivants :

- ➤ L'hydrogramme de crue est de forme triangulaire ou trapézoïdale
- Les débits transitant par l'évacuateur de crue s'écoulent selon une fonction linéaire.
- Le laminage commence lorsque la cuvette atteint son niveau normal de retenue.
- Les pertes par infiltration et évaporation sont négligées au moment de la crue.

III.9.1.1 estimation de débite de crue laminée :

Le volume stocke est estime selon la formule suivante :

$$V_F = V_c (1 - \frac{q_{lam}}{Q_{\%}}) \tag{III.62}$$

Avec:

V_F: le volume de charge sur le déversoir déduit par la courbe capacité hauteur.

 V_C : le volume de la crue correspondant au $Q_{1\%}$ (m³)

Q_%: le débit de la crue (m³/s).

q_{lam} : le débit laminé.

De cette relation se déduire le débite de crue laminée :

$$q_{lam} = Q_{max}(1 - \frac{V_f}{V_{cr}}) \tag{III.63}$$

Cette relation démontre une diminution du débit maximal de la crue à mesure que le niveau d'eau dans la cuvette augmente.

III.9.1.2 Estimation de la charge au-dessus de réservoir :

En faisant passer ces volumes par un évacuateur de crue aux dimensions que nous avons définies, nous analysons plusieurs scénarios. Le débit de crue qui traverse l'évacuateur de crue est alors calculé en utilisant la relation suivante :

$$Q = m \times b \times \sqrt{2g} \times (H)^{3/2}$$
 (III.64)

Avec:

m : coefficient de débite (m=0.49) b : est la largeur de déversoir (m)

H: la charge sur le déversoir.

g : l'accélération de pesanteur ; $(g = 9.81 \text{ m}^2/\text{s})$.

On aussi:

$$H_0 = H + \frac{aV^2}{2g} \tag{III.65}$$

Avec:

H₀: charge globale;

V : vitesse d'approche d'eau déterminée d'abord dans le lit d'après la formule :

$$V = \frac{Q}{S} \tag{III.66}$$

Avec:

S: b*(H+P) et p: la hauteur de la pelle

Le débit laminé est calculé pour différentes charges "**H**" et différentes largeurs de l'évacuateur de crues "**b**". On fait varier H de (0.2 à 1.2 m) et b de (4 à 14 m).

III.9.1.3 procède de calcule :

- Présenter différentes valeurs de la hauteur de l'eau, notées "H".
- Établir la cote PHE correspondante pour chaque hauteur.
- En utilisant la courbe de capacité en fonction de la hauteur, calculer le volume PHE relatif à chaque cote PHE.
- Déterminer le volume en charge pour chaque hauteur d'eau.
- Déterminer le volume en charge pour chaque hauteur d'eau.

Tableau III-37: volume force et débit en fonction de b et h.

Données initiales		b (m)	H (m)	Q (m ³ /s)	S (m ²)	V ₀ (m/s)	PHE (m)	V _{PHE} (m ³)	V _f (m ³)
$g(m^2/s)$	9.81	14	0.2	2.717	2.8	0.970	34.7	547950	172950
α	1	12	0.4	6.588	4.8	1.372	34.9	567847	192847
$Q_{1\%}$ m ³ /s	17.47	10	0.6	10.087	6	1.681	35.1	587743	212743
m	0.49	8	0.8	12.424	6.4	1.941	35.3	607640	232640
		6	1	13.022	6	2.170	35.5	627536	252536
		4	1.2	11.142	4.8	2.321	35.7	647433	272433

Tableau III-38 : Débits déversant en fonction de h et b et le volume de crue

H (m	V ₀ (m/s	H ₀ (m)	V _f (m ³)	q lam (m ³ /)	Q (m3/s)						
))				14	12	10	8	6	4	
0.2	0.97	0.248	17295	10.60	3.75	3.216	2.680	2.144	1.70	1.072	
0.4	1.37	0.495	19284	9.81	10.582	9.070	7.558	6.047	4.535	3.023	
0.6	1.68	0.744	21274	9.02	19.499	16.714	13.928	11.142	8.357	5.571	
0.8	1.94	0.992	23264	8.23	30.022	25.733	21.444	17.155	12.86	8.577	
1	2.17	1.240	25253	7.44	41.957	35.963	29.969	23.975	17.981	11.987	
1.2	2.32	1.474	272433	6.65	54.377	46.609	38.841	31.07	23.304	15.536	

D'après les tableaux III-37 et III-38 nous traçons les courbes représente dans la figure III-19 et III-20.

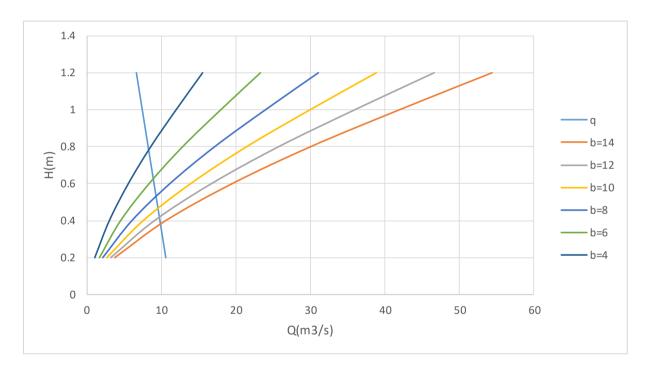


Figure III-19 : courbe H=f(Q, q)

Figure III-20 : courbe $V_f = f(Q, q)$

III.10 Etude d'optimisation

L'objectif de l'étude d'optimisation est de trouver la largeur optimale de l'évacuateur de crue qui correspond à la hauteur optimale de la digue, dans le but de parvenir au devis le plus économique pour l'aménagement.

Le calcul vise à estimer le coût approximatif de l'ouvrage pour les différentes largeurs de déversoir correspondant aux différentes hauteurs de la digue.

III.10.1 Calcul de la revanche

> Formule de Stevenson Gaillard

$$R = 0.75 * H + \frac{V^2}{2 * g}$$
 (III.67)

Et:

$$H = 0.75 + 0.34 * \sqrt{F} - 0.26 \sqrt[4]{F}$$
 (III.68)

Avec:

V: Vitesse de propagation des vagues (m/s). V = 1.5 + 2H

F: La largeur du plan d'eau le long de laquelle le vent souffle fréquemment en direction du barrage, appelée "Fetch", doit être maintenue à une valeur inférieure à 18 kilomètres. Dans ce cas, nous avons F=0,215 km.

> Formule de Mallet et Pacquant

$$H = 0.5 + 0.33 \times \sqrt{F}$$
 (III.69)

> Formule de Molitor

$$H = 0.75 + 0.032 \times (U \times F)^{0.5} - 0.27 F^{0.25}$$
 (III.70)

Avec:

U: (vitesse du vent) = 18.8 km/h

Il existe une formule simplifiée qui nous donne la revanche :

$$R = 1 + 0.3\sqrt{F}$$

Tableau III-39: Récapitulatif des résultats

Formule	H(m)	V (m/s)	R(m)
F. Stevenson Gaillard	0.73	1.98	0.93
F. MALLET et PACQUANT	0.65	1.93	0.84
F. Molitor	0.630	2.76	0.86
F. Simplifiée	-	-	1.14
La moyenne	-	-	0.94

Pour notre cas on opte une valeur de R=1 m par mesure de sécurité.

III.10.2 Largeur en crête

Différentes formules sont utilisées pour le calcul de la largeur en crête

> Formule de Knapen

$$bcr = 1.65 * \sqrt{Hb}$$
 (III.71)

> Formule de Preece

$$bcr = (1.1 * \sqrt{Hb}) + 1$$
 (III.72)

> Formule Simplifié

$$bcr = 3.60 * \sqrt[3]{Hb} - 3$$
 (III.73)

> Formule pratique

$$b_{cr} = \frac{5}{3}\sqrt{H_b} \tag{III.74}$$

Et:

$$H_b = NNR - C_f + h_{d\acute{e}v} + R + t \tag{III.75}$$

Avec:

H_b: Hauteur du barrage (m)

Pour les retenues collinaires de faible hauteur, il est généralement recommandé de considérer une valeur de tassement comprise entre 0,5 % et 1,5 % de la hauteur de la retenue collinaire. Cependant, par souci de sécurité, dans notre cas, nous allons opter pour un tassement de t=0,5 mètre.

Les résultats de calcul selon les différentes méthodes sont récapitulés dans le tableau cidessous :

Tableau III-40 : Largeurs en crête

ı.			Largeur en crete de la digue Bcr				
b	$\mathbf{H}_{\mathbf{d}}$	$\mathbf{H_{b}}$	Knappen	preence	simplifiée	Pratique	moyenne
4	1.4	10.1	5.244	4.496	4.782	5.297	4.954
6	1.2	9.9	5.192	4.461	4.730	5.244	4.906
8	0.99	9.7	5.136	4.424	4.675	5.188	4.855
10	0.74	9.4	5.070	4.380	4.608	5.121	4.794
12	0.49	9.2	5.002	4.335	4.541	5.053	4.732
14	0.24	8.9	4.933	4.289	4.472	4.983	4.669

On opte pour une largeur de crête égale à : $b_{cr} = 5 \text{ m}$

III.10.3 Calcul du volume et du coût de la digue

Tout d'abord, nous calculons le volume de la digue pour les différentes lames déversantes afin de déterminer son coût, Le volume de la digue est donné par :

$$\mathbf{V}\mathbf{b} = \sum_{i} V_{i} \tag{III.76}$$

Avec

$$Vi = \frac{Si + Si + 1}{2} * Li$$
 (III.77)

Tel:

V_i : le volume du barrage à la cote i.

L_i: Distance entre deux coupes voisines.

S_i: Section transversale correspondante à la coupe i

$$Si = \frac{b + Bi}{2} Hi$$
 (III.78)

Tel que:

$$Bi = (m1+m2).Hi+b$$
 (III.79)

Avec:

Bi: Largeur de base,

m1, m2 : Les fruits des talus.b : Largeur en crête (m).

H_i: Hauteur de la tranche au point i.

$$Hi = NNR - C_f + h_{dév} + R + t$$
 (III.80)

Avec:

R: Revanches-en (m). t: Tassement en (m). C_f: la cote de fond

En se basant sur le profil longitudinal de l'axe du barrage, nous pouvons calculer les volumes de la digue correspondant aux différentes largeurs de déversoir en utilisant les formules précédemment mentionnées.

Tableau III-41: Calcul du cout de la digue

B(m)	Vb (m ³)	cout (DA)
4	20294.79	10147395
6	22654.81	11327405
8	24561.77	12280885
10	26744.31	13372155
12	27991.42	13995710
14	29451.28	14725640

Les valeurs choisies pour les fruits des talus de la digue amont et aval sont respectivement $m_1=2,5$ et $m_2=3$, avec un coût estimé de 500,00 DA par mètre cube de remblai.

III.10.4 Calcul du coût de l'évacuateur de crues

Dans ce calcul, les coûts liés au déversoir et au coursier sont pris en considération, en supposant que le profil du chenal d'écoulement et du bassin de dissipation reste constant, quelles que soient les différentes largeurs du déversoir.

III.10.4.1 Coût du déversoir

Le déversoir sera réalisé en béton armé de type Creager, car il s'adapte mieux à l'écoulement.

La forme de la section transversale du déversoir est déterminée en utilisant l'équation du profil suivante :

$$\frac{Y}{H} = 0.47 * \left(\frac{Y}{H}\right)^{1.80}$$
 (III.81)

Avec:

H: Charge sur le seuil (m).

Y : Ordonnée du profil (m).

X : Abscisse du profil (m).

Le volume du déversoir sera donc :

$$V_{d\acute{e}v} = S. L$$
 (III.82)

Avec:

S: Section transversale (m²).

L: Largeur déversant (m).

Le mètre cube du béton vaut 35000.00 DA

Tableau III-42 : Calculs du cout du déversoir pour différentes largeurs

B (m)	$h_{d\acute{e}v}(m)$	Section de profil (m²)	Volume du déversoir (m³)	Coûts (DA)
4	1.4	13.49	53.96	1888600
6	1.2	10.24	61.44	2150400
8	0.99	6.97	55.76	1951600
10	0.74	3.90	39	1365000
12	0.49	1.71	21.24	743400
14	0.24	0.41	5.74	200900

III.10.4.2 Coût du coursier

Nous choisissons un coursier de section rectangulaire pour garantir des conditions d'écoulement optimales.

La longueur approximative du coursier est de 27 mètres (selon le plan topographique). Le volume du béton du coursier est donné par :

$$V_{b\acute{e}ton} = S_{b\acute{e}ton} * L_{b\acute{e}ton}$$
 (III.83)

Et:

$$s_{beton} = ((2 * H_{mur}) + b_{cou}) * e$$

Avec:

b_{cou} : la largeur du coursier est donnée par :

$$b_{cou} = (Qe \ max)^{0.4}$$
 (III.84)

e : L'épaisseur du mur est prise égale à 0,2 mètres

L: la longueur du coursier est L = 27m (selon le plan topographique)

 H_{mur} : la hauteur du mur : $H = H_{cr} + R$ (R=1 précédemment calculée)

Tableau III-43: Couts du coursier pour différentes largeurs déversant

b	Charge	q	$\mathbf{b}_{\mathrm{cou}}$	Her	Hmu	section	Vi béton	Coût
(m)	h (m)	(m3/s)	(m)	(m)	re	(m2)	(m3)	(DA)
			, ,		(m)			
4	1.4	6.65	2.13	0.99	1.99	1.22	32.94	1152900
6	1.2	7.44	2.23	1.04	2.04	1.262	34.074	1192590
8	0.99	8.23	2.32	1.086	2.08	1.296	34.992	1224720
10	0.74	9.02	2.41	1.12	2.12	1.33	35.91	1256850
12	0.49	9.81	2.49	1.16	2.16	1.362	36.774	1287090
14	0.24	10.60	2.57	1.20	2.20	1.394	37.638	1317330

Tableau III-44 : Récapitulatif des prix totaux pour différentes largeurs

Largeurs		Coût total						
déversants	Coût de la	ît de la Coût de l'évacuateur de crue (DA)						
(m)	digue (DA)	Déversoir	Coursier	(DA)				
4	10147395	1888600	1152900	13188895				
6	11327405	2150400	1192590	14670395				
8	12280885	1951600	1224720	15457205				
10	13372155	1365000	1256850	15994005				
12	13995710	743400	1287090	16026200				
14	14725640	200900	1317330	16243870				

A partir de la courbe d'optimisation représentée par la Figure (III.21)

- La largeur déversant donnant le coût minimum est 4 m.
- $= q = 6.65 \text{ m}^3/\text{s}$
- \rightarrow h_{dév} = 1.4 m
- \triangleright La hauteur du barrage est : $H_b = 10.4$ m

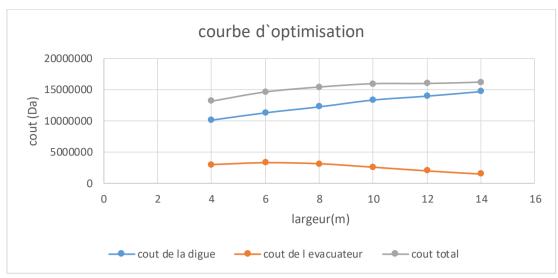


Figure III-21: Courbe d'optimisation.

Tableau III-45 : Caractéristiques du barrage

Dénomination	Unités	Valeurs
Volume mort	Mm ³	0.004715
Volume utile	Mm ³	0.371
Volume au niveau normal de la retenue	Mm ³	0.375
Cote de fond (▼FOND)	m	27
Cote au niveau mort (▼NVM)	m	28
Cote au niveau normal de la retenue (▼NNR)	m	34.5
Cote de plus hautes eaux (▼NPHE)	m	35.7
Cote de la crête (▼CRETE)	m	37.5
Largeur de déversoir	m	4
La hauteur de charge déversée	m	1.4
Largeur en crête	m	5
Le débit évacué	m ³ /s	6.65

Conclusion:

À la fin de ce chapitre, nous avons été en mesure de définir tous les paramètres hydrologiques requis pour la planification de l'ouvrage hydraulique, en nous appuyant sur les résultats des calculs relatifs aux caractéristiques morphologiques et hydro-morpho-métriques du bassin versant, ainsi que sur les besoins de la future retenue collinaire.

Chapitre IV:

Etude des variantes de la digue

Introduction

Lors de l'étude et de la sélection du site, il est essentiel de prendre en compte les divers types d'ouvrages qui peuvent être envisagés en fonction des données disponibles, notamment la géologie, l'hydrologie et la topographie. À partir des investigations géotechniques, des données hydrologiques et des relevés géologiques, nous devons élaborer différentes options de conception de barrage.

IV.1 Choix du type du barrage :

En fonction de la topographie, des conditions géotechniques et géologiques du site, deux options alternatives peuvent être envisagées initialement pour la construction du barrage en utilisant des matériaux disponibles localement :

- Digue en terre homogène.
- Digue zonée à noyau étanche.

IV.1.1 Digue en terre homogène

Les barrages homogènes sont habituellement construits en utilisant de l'argile légèrement plastique. Leurs caractéristiques hydrauliques et mécaniques permettent généralement l'utilisation en toute sécurité de pentes de talus de 2,0 à 2,5 à l'amont et à l'aval du barrage, à condition de respecter les exigences de compactage spécifiques du barrage.

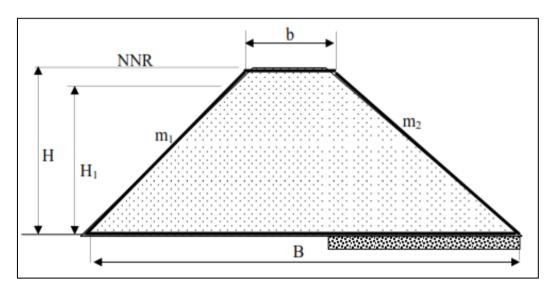


Figure IV-1 : Coupe transversale d'une digue homogène

IV.1.2 Digue zoné à noyau étanche

Cette variante est choisie lorsque la quantité de matériaux de construction disponible pour les barrages homogènes est insuffisante. Ces digues sont principalement composées d'un noyau en terre imperméable situé entre deux zones perméables qui garantissent la stabilité de l'ensemble.

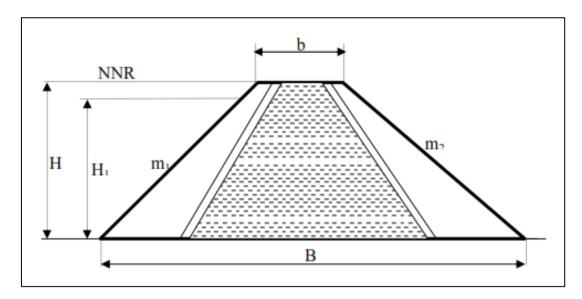


Figure IV-2 : Coupe transversale d'une digue zonée

Afin de choisir la meilleure option, nous effectuons une étude comparative économique des variantes précédemment proposées pour le site envisagé. Les digues proposées sont dimensionnées de manière approximative pour cette étude comparative, en ne tenant pas compte des coûts des ouvrages annexes, car nous supposons que ces coûts sont identiques pour toutes les variantes.

IV.2 Définition du profil général de la retenue

IV.2.1 Hauteur de la retenue

• Calcul de la revanche

La revanche a été calculée dans l'étude d'optimisation, telle que :

R = 1m.

Calcul du tassement.

Par mesure de sécurité, nous avons estimé le tassement à 0.5m.

t = 0.5 m.

Donc la cote en crête est :

 $H_b = CNNR - C f + h_{dév} + R + t$

Nous prenons la hauteur de barrage

 $H_b = 10.4$ m.

IV.2.2 Largeur en crête

D'après l'étude d'optimisation, nous avons trouvé la largeur en crête égale à :

 $B_{cr} = 5m$.

IV.2.3 La longueur en crête

La longueur de la crête est tirée à partir du plan de l'aménagement qui égale à :

 $L_{cr} = 160 \text{ m}.$

IV.2.4 Choix des pentes des talus

La pente des talus doit être choisie de manière à garantir la stabilité statique, ce qui signifie que les pentes des talus sont déterminées en fonction des conditions de stabilité mécanique du massif du barrage et de ses fondations. Le tableau suivant présente les valeurs des pentes des talus en fonction de la hauteur et du type du barrage.

Tableau IV-1: Valeurs indicatives des pentes des talus

Hauteur de la digue (m)	Type de Digue	Fruit des talus		
Tradical ac la argue (m)	Type ac Digue	Amont	Aval	
II . 5	Homogène	2.5	2.0	
H < 5 m	A zones	2.0	2.0	
	Homogène granularité étendue	2.0	2.0	
5 m ≤ H ≤ 10 m	Homogène à fort pourcentage d'argile	2.5	2.5	
	A zones	2.0	2.5	
	Homogène granularité étendue	2.5	2.5	
$10 \text{ m} \leq \text{H} \leq 20 \text{ m}$	Homogène à fort pourcentage d'argile	2.5	3	
	A zones	2.5	3	

IV.3 Digue en terre homogène

IV.3.1 Pentes des talus

Les pentes des talus que nous avons sélectionnées pour cette option en se basant sur le **Tableau** (IV-1)

- Parement amont $m_1 = 2.5$.
- Parement aval $m_2 = 3$.

IV.3.2 Protection des talus

Talus amont

• Tennessee Valley Authority (T.V.A)

Il est recommandé d'utiliser une formule empirique pour calculer l'épaisseur minimale de la couche d'enrochement nécessaire à la protection du talus amont.

$$e = C.v^2 (IV.1)$$

Avec:

e : épaisseur minimum de la couche

V : Vitesse des vagues déterminées par formule de Gaillard.

C: Coefficient qui dépend du fruit du talus et du poids spécifique γ_p de l'enrochement utilisé. Il est donné par le tableau ci-dessous.

Tableau IV-2: Valeurs du coefficient C

Fruit du talus	Valeur de C pour différents γ _p				
r ruit du taius	$\gamma_p = 2.50$	$\gamma_{\rm p}$ = 2.65	$\gamma_p = 2.80$		
1/4	0.027	0.024	0.022		
1/3	0.028	0.025	0.023		
1/2	0.031	0.028	0.026		
1/1.5	0.036	0.032	0.030		
1/1	0.047	0.041	0.038		

A partir du **Tableau (IV.2)**, pour $\gamma_p = 2.65 \text{ t/m}^3$, nous trouvons C = 0.025. $e = (1.98)^2 \times 0.028 = 12 \text{cm}$

Quant aux dimensions des éléments, elles seront telles que 50 % de l'enrochement soit constitué de blocs d'un poids égal ou supérieur au poids calculé suivant la formule :

$$W = 0.52.\gamma_{\rm p}.e^3$$

W = 0.002381 tonne

• US ARMY corps of Engineers

Les ingénieurs d'US ARMY utilisent un tableau déterminé à partir d'abaques qui permettent d'obtenir l'épaisseur minimale de la couche d'enrochement et les dimensions minimales des blocs de roche en fonction de la hauteur de la vague.

Tableau IV-3: Epaisseurs de l'enrochement de D50 minimale des pierres en fonctions de la hauteur de la vague

Hauteur des vagues m	Epaisseur minimale de la couche (m)	D 50 minimal (m)
0- 0.30	0.30	0.20
0.30- 0.60	0.40	0.25
0.60- 1.20	0.45	0.30
1.20- 1.80	0.55	0.40
1.80- 2.40	0.70	0.45
2.40- 3.00	0.80	0.55

D'après L'U.S.B.R on déduit H $_{v}\!=\!0.73m$ par conséquent à partir du **Tableau (IV-3)** on a :

 $E_{min} = 0.45m$

 $D_{50 \text{ min}} = 0.30 \text{ m}.$

Après comparaison des résultats obtenus par les 2 méthodes, et pour des raisons de sécurité nous optons pour une épaisseur $\underline{e}_{min} = 0.45m$ et un diamètre de 50% des blocs

$$D_{50 \text{ min}} = 0.30 \text{ m}.$$

Talus aval

Le talus aval sera protégé par deux couches de gravier et de sable a granulométrie plus ou moins uniforme d'une épaisseur de 10cm chacune

IV.3.3 Calcul des drains

Le système de drainage de la digue comprend un tapis drainant relie par prisme de drainage contribuant ainsi à renforcer la stabilité de l'ouvrage.

IV.3.3.1 Dimensionnement du Drain Tapis :

La longueur est déterminée par la formule suivante :

$$Ld = \frac{Lb}{3} \tag{IV.2}$$

Avec:

Lb: Longueur transversale du barrage (Lb= 58.68 m).

Donc:

$$Ld = \frac{58.68}{3}$$

$$Ld = 19.5 \text{ m}$$

IV.3.3.3 Dimensionnement du prisme aval:

> Hauteur

$$Hp = (0.15 \div 0.2) Hb$$
 (IV.3)

Avec:

H_b: hauteur du barrage,

 $H_b = 10.4$ m.

Donc:

$$H_p = 0.15 \text{ x } H_b = 0.15 \text{ x } 10.4 = 1.56 \text{m}$$

 $H_p = 2 \text{ m}$

> Largeur en crête

$$B_p = (1/3 \div 1/4) H_p$$
 (IV.4)

 $B_p = 1/4 * 2 = 0.5m$

Nous prenons:

$$B_p = 1 \text{ m}$$
.

> Fruits de talus

Concernant les fruits de talus pour cette variante, nous avons :

$$m_1 = (1 \div 2.5)$$

$$m_2 = (1.5 \div 2.5)$$

Nous prenons:

 $m_1 = 1.5$ et

 $\underline{m}_2 = 2.5.$

> Largeur en base du prisme

Elle est exprimée par :

$$B_p = b_p + (m_1 + m_2) H_p$$
 (IV.5)

$$B_p=1+(1.5+2.5) \times 2=9m$$

$$B_{p} = 9 \text{ m}.$$

Les filtres

Il est courant en ingénierie de placer des filtres entre des sols de granulométrie très différente pour éviter le phénomène de renard, où les particules plus fines que le sol peuvent être entraînées par les forces de filtration. Afin de prévenir ce phénomène, la digue, soumise au flux, est protégée par des sols de granulométrie plus grossière qui résistent à l'entraînement dû aux forces de filtration. La conception des filtres doit donc respecter les conditions suivantes :

- Les filtres doivent avoir une perméabilité supérieure à celle du matériau qu'ils protègent, de manière à agir comme un système de drainage. En pratique, il est généralement accepté que la perméabilité du matériau filtrant soit au moins 100 fois supérieure à celle du matériau à protéger.
- Ils doivent être suffisamment fins pour prévenir le phénomène de renard.
- Le filtre ne doit ni se colmater ni se dégrader en raison de l'entraînement de ses éléments.
- Le matériau ne doit pas subir de modifications ou de dégradation dans le temps.
- Le matériau ne doit pas subir de modifications ou de dégradation avec le temps.
- Ils ne doivent pas contenir plus de 5% de particules plus petites que le tamis 200 (0.074 mm), et ces particules ne doivent pas être en plastique.
- Pour prévenir la dégradation du filtre, on tolère une taille maximale des particules de 5 cm (2 pouces).

IV.4 Digue zoné a noyau d'argile

IV.4.1 Pentes des talus

Fruits des talus d'après le Tableau (IV-1):

Parement amont $m_1 = 2.5$

Parement aval $m_2 = 3$

IV.4.2 Protection des talus

Talus amont

• Tennessee ValleyAuthority (T.V.A)

A partir du **Tableau** (**IV-2**), pour $y_p = 2.65 \text{ t/m}^3$, nous trouvons C = 0.025.

$$e = (1.98)^2 \times 0.025 = 0.12 \text{ m}$$

Quant aux dimensions des éléments, elles seront telles que 50 % de l'enrochement soit constitué de blocs d'un poids égal ou supérieur au poids calculé suivant la formule :

 $W = 0.52 \text{ yp.e}^3$

Nous aurons donc:

W = 0.002381tonne

• Méthode de l'US Army Corps of Engineers

La hauteur des vagues H $_{v}$ est égale à 0.73 m, à partir du Tableau (IV-3) Nous trouvons : 0.62 m <H $_{v}$ < 1.20 m.

e = 0.45 m

 $D_{50} = 0.30 \text{ m}$

Après comparaison des résultats obtenus par les 2 méthodes, et pour des raisons de sécurité nous optons pour une épaisseur d'enrochement e=0.45 m et un diamètre de 50% des blocs $\underline{D}_{50}=0.30$ m.

Talus aval:

Pour les barrages zonés, la mesure la plus adaptée consiste à protéger les parements en utilisant des revêtements en enrochements.

IV.4.3 Etanchéité de la retenue

IV.4.3.1 Noyau

Le noyau est une composante qui garantit l'imperméabilité de la retenue et réduit la quantité d'eau qui pourrait s'écouler. Il est construit en utilisant un matériau imperméable disponible sur le site d'emprunt. Dans notre projet, nous opterons pour l'utilisation de l'argile.

Les matériaux destinés à la construction du noyau doivent satisfaire aux critères suivants :

- ✓ Ils doivent présenter une résistance au cisaillement significatif.
- ✓ ils doivent posséder une excellente imperméabilité.
- ✓ Ils doivent être insolubles dans l'eau et ne pas contenir de particules de gypse.

> Largeur en crête

$$L_{cr} = \left[\frac{1}{17} \div \frac{1}{3}\right] * \text{Hb} \tag{IV.6}$$

Avec:

H b : hauteur totale du barrage

$$L_{cr} = 0.33 \times 10.4 = 3.5 \text{ m}$$

D'où:

 $L_{cr} = 4 \text{ m}.$

> Hauteur du noyau

$$Hn = Hb - 1 (IV.7)$$

D'où:

H n = 9.4 m

Largeur à la base du noyau

Elle est déterminée suivant la condition :

$$\frac{\Delta H}{B_{noy}} \le Jadm => Bnoy \ge \frac{\Delta H}{Jadm}$$
 (IV.8)

Avec:

 ΔH : Différence de charge entre l'amont et l'aval; $\Delta H = H_1 - H_2$

 H_2 : Hauteur d'eau à l'aval, H_2 = 0.

H₁: Hauteur d'eau à l'amont, H₁=7.5 m.

B_{noy}: Largeur à la base du noyau (m)

 J_{adm} : Gradient hydraulique du noyau admissible évalué en considération de la composition du sol.

Les **Tableaux** (VI-4) et (VI-5) nous permettent de déterminer le gradient hydraulique J_{adm} . **Tableau I V-4 :** Classe de barrage en terre en fonction du type de la fondation

	Classes de barrages				
Type de sols de fondation	I	II	Ш	IV	
	Hauteurs de barrage (m)				
Sols rocheux	>100	70÷100	25÷70	<25	
Sols sablonneux, pierreux, terrain argileux non plastique	75	35÷75	15÷35	<15	
Terrain argileux plastique	>50	25÷50	15÷25	<15	

D'après le Tableau (VI-4), la retenue de notre projet est de classe IV.

Tableau IV-5: Gradient admissible en fonction de la classe de l'ouvrage

Type de sols de fondation	Classes de barrages					
Type de sois de fondation	I	II	Ш	IV		
Argile compactée	1.5	1.5	1.8	1.95		
Limon	1.05	1.15	1.25	1.35		
Sable moyen	0.7	0.8	0.9	1		
Limon sableux	0.51	0.65	0.75	0.85		
Sable fin	0.45	0.55	0.65	0.75		

D'après le tableau :

$$J_{adm} = 1.95$$

$$B_{noy \ge \frac{\Delta_H}{J_{adm}} = \frac{7.5 - 0}{1.95} = 3.84}$$

$$B_{noy} > 3.84m$$

Nous avons la possibilité de calculer la largeur à la base du noyau en utilisant une méthode alternative. Les dimensions de la base du noyau seront ainsi déterminées par :

$$Bmin = 6 + C * Hn (IV.9)$$

Et:

$$\mathbf{B}$$
 max = $(0.8 \div 1.2) * Hb$ (IV.10)

Avec:

 $0.15 \le C \le 0.3$

C = 0.3

Nous trouvons:

 $\underline{\mathbf{B}}_{\min} = 8.82\mathbf{m}$

 $B_{max} = 12.48 \text{ m}$

Nous prenons:

 $\underline{B}_{\text{noy}} = 11 \text{ m}$

> Pente des talus

$$m1 = m2 = \frac{B \text{ noy-bnoy crt}}{2*Hn}$$
 (IV.11)

Nous prenons:

 $\underline{m_1 = m_2 = 0.4}$

Tableau IV-6: Caractéristiques du noyau

Caractéristiques du noyau			
Largeur en crête (m)	4		
Hauteur du noyau (m)	9.4		
Largeur à la base du noyau (m)	11		
Pente des talus	0.4		

IV.4.4 Dimensionnement du Drain Tapis

Sa longueur est déterminée par la formule suivante :

$$Ld = \frac{Lb}{3}$$
 (IV.12)

Avec:

 L_b : Longueur transversale de la retenue, L_b = 58.68 m.

Donc:

 $L_d = 19.5 \text{ m}.$

IV.5 Clé d'étanchéité:

Une clé d'étanchéité est prévue pour créer une liaison solide entre la fondation et le corps de la digue en argile, garantissant ainsi une étanchéité efficace.

Pour les deux variantes, une clé d'étanchéité composée d'argile compactée est prévue en continuité avec la couche d'argile existante. Cette clé d'étanchéité remplit un double rôle en garantissant l'étanchéité de la structure tout en assurant l'ancrage de la digue. Elle présente une hauteur de 3 mètres par rapport au terrain naturel et est caractérisée par des talus de m = 1.

IV.6 Détermination du cout des matériaux pour les différentes variantes IV.6.1 Digue en terre homogène :

Vu que la retenue à une hauteur de 10.4 mètres, les pentes des talus sont respectivement de m1 = 2.5 et m2 = 3. Les coûts associés à la mise en œuvre de la première variante sont récapitulés dans **le tableau IV.7**.

Tableau VI.7: devis estimatif de la 1ère variante.

Désignation	Unité	Quantité (m3)	P.U (DA)	Montant (DA)
Décapage de la couche de terre végétale	m3	609.8	300	182940.00
Enrochement	m3	21280,57	800	17024456
Gravier	m3	1797.56	600	1078536.00
Sable	m3	495.94	600	297564.00
Remblai en argile compacte	m3	25568.77	300	7670631.00
Produit asphaltique	m3	165.2	100 0	165200.00
Montant total				10341391DA

IV.6.2 Digue zonée a noyau étanche :

Les pentes des talus pour la deuxième variante sont fixées à m1 = 2.5 et m2 = 3. Les coûts associés à la réalisation de cette deuxième variante sont résumés dans **le tableau IV.8**

Tableau VI.8: devis estimatif de la 2ère variante.

Désignation	Unité	Quantité (m3)	P.U (DA)	Montant (DA)
Décapage de la couche de terre végétale	m3	609.8	300	182640
Enrochement	m3	18008	800	14406400
Gravier	m3	609	600	365400
Sable	m3	623	600	373800
Noyau	m3	3271	300	1962600
Produit asphaltique	m3	167.2	1000	167200
Montant total				17458040 DA

Conclusion:

Dans ce chapitre, nous avons réalisé une analyse comparative de deux variantes de la digue. D'un point de vue technique, toutes les deux options sont réalisables. Cependant, du point de vue économique, la digue en terre homogène présente le coût de construction le plus bas. De plus, la disponibilité des matériaux nécessaires sur place et la simplicité de mise en œuvre de ce type de digue en font une option particulièrement avantageuse pour notre projet. C'est pourquoi la digue homogène s'avère être le choix le plus approprié dans notre contexte.

Chapitre V:

Etude de la variante choisie

Introduction

La digue de la retenue d'Oued Boukhertoum est une digue homogène ayant une hauteur totale de 10,4 m. Sa crête a une largeur de 5 m et s'étend sur une longueur de 160 m. Les valeurs hypothétiques des pentes des talus amont et aval sont respectivement de 2,5 et 3, comme indiqué dans le tableau suivant :

Tableau V-1: Profil général de la retenue

Caractéristiques de la retenue				
Hauteur de la retenue (H _b) 10,4 m				
Largeur en crête (B _{cr})	5,0 m			
Longueur en crête (L _{cr})	160 m			
Fruits des talus	m1=2,5 m2 =3,0			
Clé d'étanchéité	H=3m et m1=m2=1			

Une fois que la variante a été sélectionnée, il est nécessaire de réaliser une étude détaillée de la digue. Cette étude approfondie permettra d'examiner en détail tous les éléments de la digue afin de préparer les plans d'exécution du projet.

V.1 Protection des talus

Les talus d'un barrage sont vulnérables à l'érosion causée par le ruissellement des eaux de pluie, aux renards résultant du dégagement des eaux de saturation du barrage. En ce qui concerne le parement amont, qui est exposé aux attaques des vagues, il est généralement nécessaire de mettre en place une protection pour préserver l'intégrité des talus.

V.1.1 Le talus aval:

Sera soumis à une protection contre l'érosion grâce à la construction d'une structure en enrochement qui devra être mise en œuvre immédiatement après l'achèvement des travaux de terrassement. Il est essentiel de veiller à recouvrir le parement par deux couches de gravier et sable d'une épaisseur de 10cm pour assurer une protection adéquate.

V.1.2 Le talus amont :

L'objectif ici est de préserver le talus amont des effets mécaniques des vagues. En effet, ce talus est généralement composé d'un matériau argileux saturé, ce qui le rend relativement vulnérable aux sollicitations dynamiques externes. De plus, il peut être sujet à la dessiccation, ce qui pourrait entraîner l'apparition de fissures en saison sèche dans la partie émergée.

Pour les petits barrages, une protection limitée à une bande de chaque côté du niveau normal peut être envisagée. Cette approche sert également à prévenir efficacement les dommages causés par les animaux fouisseurs et le piétinement du bétail.

Pour la protection du talus amont, nous avons choisi de recourir à un revêtement en enrochements. Nous devons maintenant déterminer l'épaisseur nécessaire ainsi que le diamètre moyen des pierres.

L'épaisseur de l'enrochement et le diamètre correspondant à 50 % des blocs ont été calculés selon la méthode de l'US Army Corps. Les résultats sont répertoriés dans le tableau cidessous

Tableau V-2: Caractéristiques du revêtement en Rip-rap

Caractéristiques du Rip-Rap				
Epaisseur (m)	0.45			
Diamètre médiane D50%	0.3			

V.2 Protection de la crête

La crête du barrage doit être construite avec des matériaux imperméables à l'eau et capables de supporter la circulation des véhicules. Une couche de protection doit être soigneusement compactée (Une couche de gravier bitumé soigneusement compactée). Pour les barrages homogènes, il est essentiel de prévoir une épaisseur de recouvrement adéquate pour les matériaux de la couche de crête.

La crête doit être profilée avec précision pour empêcher toute stagnation d'eau, ce qui pourrait causer des infiltrations dans le corps du barrage. Dans ce but, il est recommandé d'adopter un dévers amont uniforme d'environ 3 à 4 %, ce qui permettra de diriger efficacement les eaux de pluie vers le parement amont, qui est mieux protégé.

V.3 Drainage et filtres :

V.3.1 Dispositif de drainage du remblai

L'expérience démontre que même dans de petits barrages (hauteur inférieure à 5 mètres), l'absence de drainage peut fréquemment provoquer des problèmes. Après plusieurs années de service, notamment dans le cas de remblais très imperméables, la ligne de saturation finit par traverser le talus aval. Afin de contrôler les infiltrations à travers le remblai, il est impératif de mettre en place un système de drainage efficace, accompagné d'une filtration adéquate.

En ce qui concerne la qualité des matériaux utilisés, outre la granulométrie, plusieurs essais sont essentiels pour évaluer leur performance, notamment :

- ✓ Mesure du coefficient de friabilité des sables.
- ✓ Réalisation des essais Los Angeles (résistance aux chocs) et essai Micro-Deval pour les graviers
- ✓ Détermination de l'équivalent de sable (la présence d'argile peut induire une cohésion et ainsi provoquer la fissuration du matériau).
- ✓ Éviter l'utilisation de matériaux calcaires pour les composants du système de drainage.

L'objectif principal de ces structures est de réguler le débit de filtration et de diminuer la quantité de matériaux saturés dans le barrage, ce qui renforce la stabilité de l'ouvrage.

Les conditions des drainages :

- ✓ Avoir une capacité d'évacuation adéquate pour prévenir le colmatage.
- ✓ Empêcher l'effet de renard en utilisant une ou plusieurs couches filtrantes.

V.3.1.1 Tapis drainant:

La solution traditionnellement adoptée pour assurer le drainage d'un remblai homogène consiste à utiliser un tapis de matériau drainant qui couvre généralement entre 1/4 et 1/3 de l'emprise du barrage. Il est important de noter que l'emplacement idéal pour ce tapis de drainage se situe légèrement en aval de l'axe du remblai, de manière à maximiser l'effet d'étanchéité apporté par le remblai amont.

V.3.1.2 Prisme de drainage:

Les prismes sont les éléments les plus couramment utilisés pour le drainage des barrages en terre. Dans leur partie centrale, ils sont généralement construits en utilisant des pierres. L'emplacement des prismes est particulièrement important dans la portion du remblai qui traverse le lit de la rivière. La hauteur minimale des prismes dépend du niveau d'eau dans le talus en aval, et leur stabilité est déterminée en fonction des critères établis par le concepteur du barrage.

Tableau V-3: Récapitulatif des dimensions du dispositif de drainage

Caractéristiques du tapis drainant					
L (m) 19.5					
Caractéristiques du prisme de drainage					
B (m)	9				
B (m)	1				
H _p (m)	2				
m1, m2	1.5,2.5				

V.3.2 Les filtre:

Les filtres sont composés de couches minces successives de matériaux perméables, et la taille des éléments augmente dans la direction de l'écoulement. Ces filtres sont conçus pour faciliter la transition entre une couche de granulométrie spécifique vers une couche de granulométrie plus grossière. Lorsqu'un filtre est constitué de plusieurs couches, chacune d'entre elles doit remplir la fonction de filtre par rapport à la couche précédente.

L'importance des filtres dans le fonctionnement d'un barrage en terre est cruciale, en particulier en ce qui concerne la sécurité de l'ouvrage. Ils peuvent remplir diverses fonctions complémentaires, et parfois, dans les petits barrages, les filtres peuvent également fonctionner comme des drains.

V.3.2.1 Règles des filtres

L'exigence principale pour les sols des filtres est de s'assurer qu'ils ne favorisent pas le phénomène de renard.

Condition 1:

$$\frac{D5}{D17} \ge 0.32 * \sqrt[6]{\eta} (1 + 0.05 * \eta) \frac{n}{1 - n}$$
 (V.1)

Avec:

η: Coefficient d'hétérogénéité du sol du filtre, η=D60/D10;

n : Porosité du sol en fonction d'unité $n = no-0,1Log \eta$;

no= 0,4 pour les sols caillouteux;

no= 0,45 pour les sols argileux.

Condition 2

Condition d'exigence d'un filtre (TERZAGI ,1922) (CIGB ,1994) :

$$\frac{D15}{d85} < 4\tag{V.2}$$

Avec:

D15 : Diamètre de filtre ;

d15 : Diamètre du sol à protéger.

V.3.2.2 Détermination de la courbe granulométrique des Filtres

Selon les critères:

$$12 \text{ mm} < D15/d15 < 40 \text{ mm}$$
 (V.3)

$$12 \text{ mm} < D50/d50 < 58 \text{ mm}.$$
 (V.4)

Avec:

D15, D50 : Diamètre de filtre.

d15, d50 : Diamètre du sol à protéger.

Granularité du sol protégé

d15 = 0.0009 mm; d50 = 0.01 mm; d85 = 0.18 mm. (Annexe III)

On trace les limites des couches de filtres avec :

- La première couche de filtre est située entre les matériaux du corps du barrage et la première couche de drainage, avec les limites suivantes:
 - -0.0108 mm < D15 < 0.0432 mm;
 - 0.12 mm <D50< 0.58 mm

La courbe granulométrique moyenne est :

D15 = 0.027mm;

D50 = 0.35mm.

- On établit la configuration de la deuxième couche des filtres en se basant sur la courbe moyenne de la première couche:
 - -0.324 mm< D15< 1.08 mm
 - -4.2 mm < D50 < 20.3 mm.

D'où la courbe granulométrique moyenne de deuxième couche du filtre a les dimensions Suivantes :

 $D_{15} = 0.702 \text{ mm}$;

 $D_{50} = 12.25$ mm.

V.3.2.3 Vérification de l'absence du renard dans le sol des filtres

Premier Filtre

Condition 01:

$$\frac{D5}{D17} \ge 0.32 * \sqrt[6]{\eta} (1 + 0.05 * \eta) \frac{n}{1 - n}$$
 (V.4)

D'après la courbe granulométrique du sable :

D5 = 0.007 mm; D10=0.0068 mm; D15=0.0171 mm;

D17=0,015 mm; D50=0,227mm; D85=1.23 mm; D60= 0,15 mm

Tel que:

- $\eta = D60/D10 = 22.06$ (Coefficient d'hétérogénéité);
- no= 0.4 d'où n=0.27;
 - -D5/D17=0.466 > 0.416

La condition est vérifiée donc pas de phénomène de renard dans le sol.

Condition 2: (zone de transition)

$$\frac{D15}{d85} < 4 = \frac{0.0171}{0.047} = 0.3638 < 4 \tag{V.5}$$

La condition est vérifiée donc pas de zone de transition.

Second Filtre

$$\frac{D5}{D17} \ge 0.32 * \sqrt[6]{\eta} (1 + 0.05 * \eta) \frac{n}{1 - n}$$
 (V.6)

Avec:

D5/D17=0.466 > 0,464

La condition est vérifiée de non-existence du phénomène de renard.

Conclusion

On prévoit :

- Une première couche de filtre en sable d'épaisseur =15 cm.
- La deuxième couche est en gravier d'épaisseur =15 cm.
- L'enrochement d'épaisseur = 50 cm.

V.3.2.4 Vérification de la nécessité de construire un filtre entre la digue et le drain :

✓ Condition de perméabilité

$$\frac{D15}{d15} > 5 \tag{V.7}$$

Avec:

D₁₅: diamètre correspondant à 15% du drain. d₁₅: diamètre correspondant à 15% de l'argile.

Tel que:

 $\begin{array}{l} D_{15} = 0.0171 \text{ mm} \\ d_{15} = 0.00066 \text{mm} \\ \frac{D15}{d15} = \frac{0.0171}{0.00066} = 25.90 > 5 \end{array}$

Donc la condition de perméabilité est vérifiée.

✓ Condition de non entraînement des particules fines :

$$\frac{D15}{d85} < 5 \tag{V.8}$$

Avec:

D15 : diamètre correspondant à 15% du drain. d85 : diamètre correspondant à 85% de l'argile.

Tel que:

D15 = 0.0171 mm d85=0.047mm. $\frac{D15}{d85} = \frac{0.0171}{0.047} = 0.363 < 5$

Donc la condition de perméabilité est vérifiée.

V.4 Calcul d'infiltration à travers la digue et la fondation

L'écoulement de l'eau à travers le corps du barrage en terre et sous ses structures est induit par la charge d'eau en amont. Cela entraîne des pertes d'eau et peut provoquer des problèmes d'instabilité, tels que les renards. Les données statistiques indiquent que plus de la moitié des incidents liés aux barrages sont dus à des problèmes de filtration. C'est pourquoi il est essentiel de réaliser une analyse de filtration, de déterminer la position de la ligne phréatique à l'intérieur du barrage, de calculer le gradient de filtration, les vitesses d'écoulement de l'eau à travers le barrage, ainsi que les débits de filtration à travers l'ouvrage et le sol de fondation.

V.4.1 Tracer de la ligne de saturation

Il y a diverses approches pour calculer la filtration à travers des barrages en terre, notamment les méthodes expérimentales, les méthodes hydromécaniques, et les méthodes hydrauliques. Dans le tracé de la ligne de saturation, la méthode grapho-analytique de KOZENY est employée.

Hypothèses de calcul de filtrations hydrauliques des barrages en terres

- ✓ On suppose qu'il y a filtration dans un seul plan.
- ✓ Les composantes des vitesses perpendiculaires à ce plan sont considérées nulles.
- ✓ Le sol du massif du barrage est supposé homogène, isotrope, et la couche imperméable a un coefficient de filtration nul.
- ✓ La position de la ligne phréatique ne dépend pas de la qualité du sol des barrages en terre homogène, mais uniquement des dimensions de la section transversale du barrage.

Selon KOZENY, la ligne de saturation peut être approximée par une parabole d'axe horizontal, avec le foyer "o" situé au pied du parement aval du barrage (à la fin du drain). L'équation de la parabole s'écrit :

$$y^2 - y_0^2 - 2xy_0 = 0. (V.9)$$

Avec:

$$yo = \sqrt{h^2 + d^2} - d (V.10)$$

Tel que:

d : largeur de base du massif diminuée de 0.7*b

b : Projection horizontale de la partie mouillée du parement amont.

h: la hauteur d'eau

La ligne phréatique traverse le talus aval en un point "Co" à une distance "a" du foyer "o" et à une distance "a + Δ a" du point d'intersection "C" de la parabole de Kozney avec le talus aval.

Selon les travaux de Casagrande, la valeur de "a" ne dépend que de la distance focale de la parabole de base et de l'angle θ du talus aval. Il a établi la courbe de variation de "C" en fonction de ces paramètres.

Telle que:

$$C = \frac{\Delta a}{a + \Delta a}$$
 En fonction de θ , d'où on peut déterminer « Co ».

Pour avoir la ligne de saturation, il suffit de relier la parabole de base au point « Co » et « b » par une courbe normale au parement amont en « b » et tangente à la parabole. b: correspond au point où le talus amont croise le niveau d'eau.

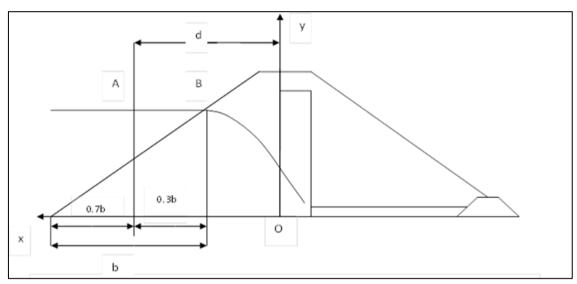


Figure V-1: Calcul d'infiltration à travers le corps de la digue.

Dans notre cas:

h=7.5m

d=45.55 m

Donc: $y_0 = 0.61 \text{m}$

L'équation de la parabole devient donc :

$$y^2 = (0.61)^2 + 2(0.61) x$$
 (V.11)

Et enfin:

$$y^2 = 1.16 + 2.16x$$
 (V.12)

Les coordonnées de la parabole sont données dans le Tableau (V-4).

Tableau V-4 : Coordonnées de la ligne de saturation

X	0	5	10	15	20	25	30	35	40	45.5
y	0.60	2.54	3.54	4.32	4.97	5.55	6.08	6.56	7.01	7.5

V.4.2 Calcul du débit d'infiltration (débit de fuite)

V.4.2.1 A travers le corps de la digue

L'écoulement à travers le corps du barrage est essentiellement influencé par la nature du matériau (en l'occurrence, de l'argile). Les principes de l'écoulement à travers une digue homogène peuvent être appliqués à ce contexte.

Le débit de fuite peut être calculé comme suit :

$$qn = K.I.A (V.13)$$

Avec:

 q_n : débit d'infiltration (m³ /s/ml).

I : gradient hydraulique.

K : Coefficient de perméabilité.

A : section d'infiltration par unité de longueur.

Le gradient hydraulique est déterminé par : $I = \frac{dy}{dx}$ A=y * 1

Donc:

$$q = k * y * \frac{dy}{dx}$$
 (V.14)

Avec:

$$y\frac{dy}{dx} = y0 \tag{V.15}$$

D'où:

$$q = k * y0 \tag{V.16}$$

Nous aurons alors:

 $K=10^{-7} \text{ m/s}$

 $Y_0 = 0.61 \text{m}$

Ce qui nous donne : $q = 10^{-7} \times 0.61 = 6.1 \text{ x } 10^{-8} \text{ m}^2 / \text{s/ml}$

 $Q_d = q * L = 6.1 \times 10^{-8} \times 160 = 9.76 \times 10^{-6} \text{ m}_3/\text{s}$

 $O_d = 9.76 \times 10^{-6} \text{ m}_3/\text{s}$

V.4.2.2 A travers la fondation:

Le débit d'infiltration à travers les fondations est donné par la loi de Darcy.

$$q = K * I * A \tag{V.17}$$

Avec:

K : Coefficient de perméabilité. K=10⁻⁸ m/s

$$I = \frac{H}{Lb} \tag{V.18}$$

Avec:

H : Charge de la retenue, H= 7.5 m

Lb: 58.68 m L'emprise du barrage.

A : Section d'infiltration par unité de longueur. A=T.1

T : Profondeur du sol de fondation perméable. T=3m

$$q = k * I * T \tag{V.19}$$

D'où:

$$\begin{split} q = & 10^{\text{-8}} * \frac{7.5}{58.68} * 3 = 3.834 \text{x} 10^{\text{-9}} \text{ m}^2 / \text{s/ml} \\ Q_F = & q * L = 3.834 \text{ x} 10^{\text{-9}} \text{ x} 160 \\ Q_F = & 6.134 \text{ x} 10^{\text{-7}} \text{ m} 3/\text{s}. \end{split}$$

V.4.2.3 Débit total d'infiltration:

$$QT = Qd + QF (V.20)$$

Donc:

QT= $9.76 \times 10^{-6} + 6.134 \times 10^{-7} = 1.8 \times 10^{-5} \text{ m}3/\text{s}$ QT = $7.11 \times 10^{-5} \text{ m}3/\text{s} = 771.0552 \text{ m}3/\text{an}$ QT=2242.20 m3/an.

V.5 Calcul de stabilité

V.5.1 Généralité sur la stabilité des barrages (Talus)

L'étude de la stabilité d'un barrage revêt une importance fondamentale, car elle détermine essentiellement la géométrie de l'ouvrage, y compris les pentes des talus et les principes de drainage à appliquer. Il est évident qu'un barrage mal dimensionné peut devenir instable, mettant ainsi en danger la sécurité des populations, les activités agricoles et les aménagements en aval du barrage. De plus, cela pourrait entraîner des coûts considérables pour les travaux de maintenance et de reconstruction, ce qui pourrait avoir un impact négatif sur l'économie locale.

De manière schématique, on peut identifier deux formes d'instabilité mécanique qui peuvent survenir au niveau d'un barrage en remblai, à savoir :

- Le glissement des talus.
- Il est peu probable que l'instabilité mécanique en fondation se produise, car le remblai exerce une charge relativement faible sur sa base.

L'analyse de la stabilité du barrage consistera à déterminer les actions et combinaisons d'actions les plus défavorables par rapport au mécanisme de rupture envisagé.

Dans cette étude, nous examinerons la stabilité en ce qui concerne le risque de glissement des talus.

V.5.2 Stabilité des talus

Il existe plusieurs méthodes pour calculer la stabilité au glissement, parmi lesquelles les méthodes de calcul à la rupture telles que la méthode de FELLENIUS, BISHOP, TAYLOR, etc. Dans notre cas, nous utiliserons la méthode de FELLENIUS, également connue sous le nom de méthode suédoise, car elle est considérée comme la plus pessimiste.

Dans les calculs, nous considérerons les cas de sollicitation suivants :

- Cas01: fin de construction (talus amont et aval)
- Cas02 : fonctionnement normal (pour le talus aval)
- Cas03: Vidange rapide (talus amont)

Pour mener à bien cette étude, nous prendrons en considération les éléments suivants :

- Les caractéristiques géométriques de la digue.
- Les propriétés des matériaux utilisés dans la construction.
- ❖ Les différents niveaux d'eau dans la cuvette en fonction de l'exploitation du barrage, notamment le niveau de retenue normale et le scénario de vidange rapide.
- Les données relatives au niveau piézométrique dans les différentes couches du sol.
- L'accélération due à la pesanteur en cas de séisme, avec une période de retour de 500 ans.

V.5.3 Méthode de FELLENIUS

La stabilité des talus peut être évaluée à l'aide de diverses méthodes, mais la méthode la plus couramment employée est la méthode grapho-analytique, également connue sous le nom de méthode des tranches, développée par FELLENIUS. Cette méthode repose sur le calcul de la rupture circulaire pour déterminer la stabilité des talus.

L'étude de stabilité d'un remblai peut être réalisée de deux manières différentes :

- 1/- Soit par un calcul de vérification de la stabilité, en considérant que les valeurs caractéristiques du remblai sont fixées et/ou déterminées à priori.
- 2/- Ou bien, en utilisant une série de calculs de dimensionnement, où l'on modifie un ou plusieurs paramètres (comme l'angle de talus, par exemple) jusqu'à atteindre le coefficient de sécurité désiré.

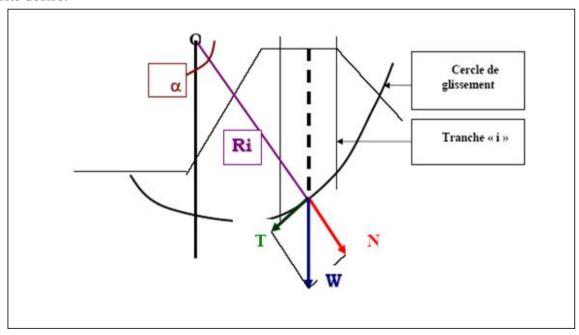


Figure V-2 : Forces exercées sur une tranche de sol instable sur le cercle de glissement (O, Ri)

V.5.4 Conséquences de l'instabilité des talus

- Déformation ou rupture des éléments interne de drainage
- Rupture des conduites de vidange ou des conduites d'aspiration d'eau
- Interception et remontée de la ligne de saturation et augmentation du débit de fuit

L'évaluation de la stabilité des talus prend en considération les propriétés géotechniques des matériaux utilisés pour la construction ainsi que les caractéristiques du sol de la fondation.

Les calculs sont réalisés pour trois scénarios de fonctionnement :

- ❖ A la fin de construction (talus aval et talus amont).
- ❖ Fonctionnement normal (talus amont et talus aval).
- Lors d'une vidange rapide (talus amont).

La méthode grapho-analytique pour vérifier la stabilité des talus d'un barrage implique de calculer le coefficient de stabilité "K". Ce coefficient est défini comme le rapport entre le moment résultant des forces de stabilité et le moment résultant des forces de basculement (forces motrices) par rapport au centre de glissement du terrain. Il doit être supérieur ou égal au coefficient admissible " k_{adm} " déterminé en fonction du tableau ci-dessous :

Tableau V-5 : Coefficient de stabilité admissible des talus

Combinaison des charges	Classe de l'ouvrage					
et des actions	I	II	Ш	IV		
Fondamentales (sans séisme)	1,20 ÷ 1,30	1,15 ÷ 1,20	1,10 ÷ 1,15	1,05 ÷ 1,10		
Spéciales Avec séisme)	1.05	÷1.10	1,	05		

(Source: méthode de Fondeev

Pour chaque scénario opérationnel et pour les deux talus, nous calculons le coefficient de sécurité en l'absence de séisme ainsi qu'en présence de séisme. Ensuite, nous les comparons aux coefficients de sécurité admissibles pour vérifier la stabilité de nos talus.

V.5.5 Ordre de calcule (Méthode des tranches)

- ❖ Tracer à l'échelle le profil en travers du barrage.
- ❖ Tracez deux lignes depuis le point médian du talus moyen (Point B). La première ligne doit être verticale, tandis que la deuxième doit former un angle de 85 degrés par rapport à la ligne du talus.
- ightharpoonup Tracez les arcs de cercle avec les rayons R_1 et R_2 avec :

 $R_1 = K_1 H_b$.

 $R_2 = K_2 H_b$.

Avec:

H b : Hauteur du barrage.

K1, K2 : sont déterminés en fonction de pentes de talus d'après le tableau suivant :

Tableau V-6: Valeurs de K1 et K2 en fonction des pentes de talus

Pente de talus	1	2	3	4	5	6
$K_1 = R_1/H_b$	0,75	0,75	1,0	1,5	2,2	3
$K_2 = R_2/H_b$	1,5	1,75	2,3	3,75	4,8	5.5

(Source: Mihoubi, M. (2019) Manuel de dimensionnement des barrages en matériaux locaux)

Tableau V-7: Valeurs de K1 et K2 dans notre cas

talus	Pente du talus	K1	K2	R1 (m)	R2 (m)
aval	3	1	2.3	10.4	24.15
amont	2,5	0,875	2,025	9.18	21.06

- ❖ En prenant comme point central "B", l'intersection des rayons R1 et R2 avec les deux lignes (verticale et inclinée) délimite la zone des cercles. Ensuite, une courbe de rayon "R" est tracée à l'intérieur des limites du talus aval, c'est-à-dire entre l'axe horizontal du barrage et la surface du terrain adjacente au talus aval, tout en marquant le point central de glissement "O".
- Nous subdivisons la zone délimitée par la courbe en tranches verticales d'une épais seur b équivalente à 0,1R. Les tranches du côté gauche sont identifiées par des chiffres positifs, tandis que celles du côté droit sont marquées avec des chiffres négatifs, en commençant par la tranche "zéro" située sous le centre de glissement (projection).

Les efforts agissants sur une partie de glissement sont :

- ✓ Poids de la tranche « G ».
- ✓ Forces de frottement à la base de la partie commune « F f ».
- ✓ Forces de pressions interstitielles « U ».
- ✓ Forces de Cohésion « F c ».
- ✓ L'effort du séisme « T'n ».

Le poids de la tranche se divise en deux parties distinctes :

- Composante normale (forces stabilisatrices) : $N=G_i \cos \alpha$
- Composante périphérique (forces déstabilisatrices) : T= G_i sin α

Avec:

α: L'angle d'inclinaison de la base de la tranche par rapport à l'horizontale.

Les caractéristiques géotechniques des sols :

Ces valeurs sont présentées dans le tableau ci-dessous :

Tableau V-8 : les caractéristiques géométriques

Paramètre	Unité	argile
°φ	degré	24
С	t/m³	2.14
δ_{sat}	t/m³	2.02
δ_{h}	t/m³	1.9

V.5.6 Calcul des forces appliquées à chaque tranche

V.5.6.1 Force de pesanteur (poids propre de la tranche) :

La force de pesanteur est exercée au centre de gravité de chaque tranche et est calculée à l'aide de la formule suivante :

$$Gi = b \sum (\gamma i hi)$$
 (V.21)

Avec:

Gi: poids propre de la tranche.

b: largeur d'une tranche (b=0.1R).

hi: hauteurs des tranches.

 γi : densité du massif correspondant (en dessous, au-dessus de la ligne de saturation et des fondations).

Le poids volumique du sol d'humidité naturelle est déterminé selon l'expression suivante :

$$\gamma s = (1 - n)\gamma sp(1 + w) \tag{V.22}$$

Avec:

 γ_{sp} : poids volumique spécifique du sol.

W: teneur en eau en fraction de l'unité.

n : porosité du sol en fraction de l'unité.

Le poids volumique du sol saturé est égal :

$$\gamma ss = (1 - n)(\gamma sp - \gamma w) \tag{V.23}$$

Avec:

γw: poids volumique de l'eau.

En cas de vidange rapide, on utilise le poids d'une tranche dont le poids volumique a été déjaugé, ce poids est calculé à l'aide de la formule suivante :

$$\gamma' = (\gamma ss - 1) \tag{V.24}$$

Le poids "Gi" est une force qui se compose de deux composantes :

 $Nn = Gi \cos \alpha = b \gamma s \sum hi \cos \alpha$ et $Tn = Gi \sin \alpha = b \gamma s \sum hi \sin \alpha$

Avec:

Nn : composante normale stabilisatrice.

Tn : composante tangentielle déstabilisatrice au cercle de glissement.

Et:

$$sin\alpha = \frac{\text{Num\'ero d'ordrede la section}}{\text{Nombre total de tranches}} \quad et \quad \cos\alpha = \sqrt{1-\sin^2\alpha}$$

V.5.6.2 Force de pression interstitielle

Dans le cas où le barrage est à son niveau normal de la retenue (NNR).

$$Ui = \gamma w * h * dl \tag{V.25}$$

Avec:

dl : longueur de l'arc délimitant la base de la tranche.

γw: le poids volumique d'eau h : la hauteur de tranche

V.5.6.3 Forces de cohésion

$$Fc = C * dl (V.26)$$

$$dl = \frac{2\pi * R * \theta}{360^{\circ}} \approx \frac{b}{\cos \alpha}$$
 (V.27)

Avec:

 θ : Angle au centre des tronçons de la courbe de glissement.

C: cohésion du sol considéré.

V.5.6.4 Forces de frottement

$$Ff = (Nn - Ui * dl)tg\phi = (Gi cos\alpha - Ui * dl)tg\phi$$
 (V.28)

Avec:

 φ : L'angle de frottement interne dépend à la fois de la nature du sol et de la configuration de la surface de glissement par rapport à la ligne de la nappe phréatique.

V.5.6.5 Force séismique

$$T'n = a * Gi (V.29)$$

Avec:

G_i: poids de la tranche. a : Coefficient de séisme.

V.5.7 Classement des forces

On peut classer toutes ces forces comme suit :

V.5.7.1 Les forces stabilisatrices

Les forces stabilisatrices incluent les forces de frottement, les forces de cohésion, la composante normale du poids propre de la tranche, et la force interstitielle. Le moment de cette force par rapport au centre de glissement est calculé comme suit :

$$\sum M_{\text{résistant}}^{t} = \sum_{i=1}^{n} R. \left[C_i * l_i + (W_i.\cos\alpha - U_i.l_i). tg\phi_i \right]$$
 (V.30)

V.5.7.2 Les forces déstabilisatrices

Les forces motrices sont définies par la composante tangentielle (T_n) , qui est la force de cisaillement de poids (G_n) responsable du glissement du talus. Le moment de cette force par rapport au centre de glissement est calculé de la manière suivante :

$$\sum M_{\text{moteur}}^{t} = \sum_{i=1}^{n} R. w_{i} \sin \alpha = R \sum_{i=1}^{n} W_{i} \sin \alpha$$
 (V.31)

V.5.8 Calcul du coefficient de sécurité pour les différents types de fonctionnement

Le coefficient "Ks" sera déterminé pour les différents scénarios d'exploitation de la retenue.

V.5.8.1 Retenue pleine: (talus aval)

Le calcul est réalisé en utilisant les contraintes effectives, en prenant en considération les écoulements internes de la digue dus aux infiltrations.

Ce scénario est généralement considéré comme le plus défavorable pour le talus aval en raison de la gravité d'une rupture sous charge.

$$K_{ss} = \frac{\sum (N_n - U_i l_i) tg\phi_i + \sum C_i dl}{\sum T_n} = \frac{\sum (G_n cos\alpha - U_i l_i) tg\phi_i + \sum C_i dl}{\sum G_i sin\alpha} \ge K_{adm}$$
 (V.32)

$$K_{as} = \frac{\sum (N_n - U_i l_i) tg\varphi_i + \sum C_i dl}{\sum T_n + \frac{1}{R} \sum (G_i * a * dn_i)} = \frac{\sum (G_i cos\alpha - U_i l_i) tg\varphi_i + \sum C_i dl}{\sum (G_i sin\alpha) + \frac{1}{R} \sum (G_i * a * dn_i)} \ge K_{adm}$$
(V.33)

Avec:

K_{SS}: coefficient de sécurité sans séisme.

K_{as} : coefficient de sécurité avec séisme.

d_{ni} : distance entre le centre de gravité de la tranche et le centre du cercle de glissement.

V.5.8.2 Retenue vide (fin de construction): (talus amont et aval)

La phase la plus critique survient à la toute fin de la construction, lorsque les pressions interstitielles atteignent leur niveau maximal et que le drainage n'a pas encore eu lieu. Dans ce contexte, le calcul sera effectué en utilisant les contraintes effectives tout en prenant en compte les densités de mise en place des terres, qui sont généralement à 95% de la densité Proctor.

$$K_{ss} = \frac{\sum N_n tg\phi_i + \sum C_i dl}{\sum T_n} = \frac{\sum (G_i cos\alpha) tg\phi_i + \sum C_i dl}{\sum G_i sin\alpha} \ge K_{adm}$$
 (V.34)

$$K_{as} = \frac{\sum N_n t g \varphi_i + \sum C_i dl}{\sum T_n + \frac{1}{R} \sum (G_i * a * dn_i)} = \frac{\sum G_i cos\alpha t g \varphi_i + \sum C_i dl}{\sum (G_i sin\alpha) + \frac{1}{R} \sum (G_i * a * dn_i)} \ge K_{adm}$$
(V.35)

V.5.8.3 Vidange rapide :(talus amont)

La vidange rapide est considérée comme le scénario le plus défavorable. Dans ce cas, la diminution rapide du niveau d'eau provoque un écoulement en régime transitoire à l'intérieur de la digue. L'état critique se produit juste après la vidange, lorsque les pressions hydrostatiques internes n'ont pas encore eu le temps de se dissiper. Dans cette situation, les moments de stabilisation résultent du poids saturé.

$$K_{ss} = \frac{\sum N_n tg\phi_i + \sum C_i dl}{\sum T_n} = \frac{\sum (G_i cos\alpha) tg\phi_i + \sum C_i dl}{\sum G_i sin\alpha} \ge K_{adm}$$
 (V.36)

$$K_{as} = \frac{\sum N_n t g \varphi_i + \sum C_i dl}{\sum T_n} = \frac{\sum G_i cos\alpha t g \varphi_i + \sum C_i dl}{\sum (G_i s i n \alpha)} \ge K_{adm}$$
(V.37)

Tableau V-9 : Valeurs du coefficient de sécurité dans le cas des contraintes normales et effectives.

			Coefficients d	le sécurité	
	Cas de sollicitation		normales	Contrain	tes effectives
Cas d			Avec séisme Kas, _{adm} =1,05	Sans séisme Kss, adm = 1,10 ÷ 1,15	Avec séisme Kas, _{adm} = 1,05
Fin de Construction	$\begin{array}{c} \textbf{Tal us amont} \\ R_1 = 15.46 \text{ m} \\ R_2 = 17.05 \text{ m} \\ R_3 = 18.06 \text{ m} \end{array}$	2,51 2,49 2,47	1,68 1,68 1,66	2,20 2,20 2,18	1,53 1,48 1,47
Fin	Talus aval R ₁ = 16.55 m R ₂ = 17.46 m R ₃ = 19.69 m	1,95 2,13 1,85	1,40 1,50 1,39	1,71 1,87 1,62	1,23 1,32 1,18
Fonctionnement Normal	Talus aval R ₁ = 17.02 m R ₂ = 18.34 m R ₃ = 19.77 m	1,91 1,77 1,75	1,36 1,29 1,73	1,68 1,56 1,54	1,20 1,13 1,12
Vidange Rapide.	Talus amont $R_1 = 16.51 m$ $R_2 = 17.52 m$ $R_3 = 19.10 m$	2,53 4,66 2,36	1,68 1,46 1,59	2,25 4,16 2,12	1,49 2,22 1,50

Commentaire des résultats :

Pour évaluer l'influence des forces de cohésion sur les coefficients de sécurité, nous avons réalisé des calculs de stabilité dans deux scénarios distincts : sous contraintes normales et contraintes effectives. Les résultats obtenus indiquent que les forces de cohésion n'influent pas considérablement sur la stabilité des talus. Dans les deux cas, la stabilité est confirmée et l'écart entre les coefficients de stabilité est dans des limites acceptables.

Conclusion

D'après les résultats obtenus pour différents types de fonctionnements, nous remarquons que le coefficient de sécurité minimum calculé pour les différents cas de sollicitation soit strictement supérieur aux coefficients de sécurité admissible sans séisme et avec séisme. Donc la stabilité est assurée et dans le cas échéant réduire dans les limites la valeur du fruit des talus de la digue en cas insuffisance des matériaux de la zone d'emprunt.

Chapitre VI:

Etude des ouvrages annexes

Introduction

Les ouvrages annexes, dans ce contexte, se réfèrent à des structures hydrauliques conçues pour diriger le flux d'eau du bief amont vers le bief aval. Ils comprennent des éléments tels que des orifices spécifiques, des déversoirs, des canaux, des conduites, des galeries, et d'autres infrastructures similaires. Ces ouvrages exploitent la charge hydraulique effective disponible pour accomplir cette fonction.

Les dimensions verticales des ouvrages annexes, leur conception et leur composition sont déterminées en fonction du débit de conception, de la charge hydraulique effective, du relief topographique, des caractéristiques géologiques du site, ainsi que des contraintes liées à leur construction et à leur exploitation.

VI.1 L'évacuateur de crues

Les évacuateurs de crues sont conçus pour gérer l'évacuation des crues exceptionnelles lorsque la retenue est pleine à son niveau normal, de manière à éviter tout débordement de la digue et à prévenir les risques d'érosion en aval qui pourraient endommager la digue.

VI.1.1 Critères de choix de l'évacuateur de crue

Les principaux critères à prendre en considération pour le choix de l'évacuateur de crues sont les suivants :

- La qualité des prévisions de crues
- La sismicité de la région où se trouvent l'aménagement et la fiabilité de son exploitation
- La période d'utilisation et les niveaux de fonctionnement
- Les caractéristiques topographiques et géologiques spécifiques du site aménagé
- Le type de barrage envisagé
- Les exigences d'exploitation

VI.1.2 Différents types d'évacuateurs de crue

• Evacuateur central

Il est construit en béton, en maçonnerie ou en gabions, et il est entouré de bajoyers (murs latéraux qui servent à protéger la digue). À l'aval du barrage, un bassin de dissipation est aménagé pour réduire l'énergie de l'eau après la chute. La longueur de ce bassin est généralement d'au moins 1,5 fois la hauteur de la chute.

• Evacuateur latéral

L'évacuateur de crues latéral est un canal à ciel ouvert creusé dans les rives du cours d'eau et situé à proximité d'une extrémité de la digue. Son emplacement est déterminé en fonction des caractéristiques topographiques et géologiques du site.il est composé de :

- Un canal d'amenée qui guide le courant vers l'ouvrage
- Un seuil qui contrôle le débit d'écoulement.
- Un chenal d'évacuation qui relie l'ouvrage au lit principal du cours d'eau. Ce chenal peut être revêtu ou non en fonction des caractéristiques des sols de fondation.

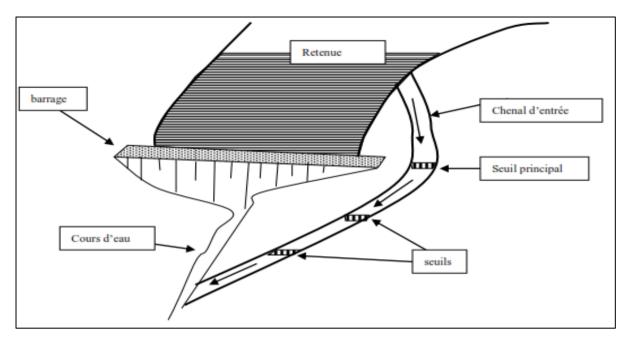


Figure VI-1 : Evacuateur de crues latéral à entonnement frontal

* Évacuateur de crue latéral à entonnement frontal

Ce type d'évacuateur de crues appartient à la catégorie des évacuateurs d'écoulement à surface libre. Ses avantages incluent un fonctionnement très fiable, même pour des débits supérieurs au débit de la crue de projet, ainsi qu'une facilité de construction. Cependant, il présente quelques inconvénients, notamment son coût relativement bas et la difficulté de le modifier une fois construit.

* Évacuateur de crues latéral à entonnement latéral

Ce type d'ouvrage est un évacuateur d'écoulement à surface libre, choisi principalement en fonction de la topographie du site. Il présente l'avantage majeur de nécessiter moins d'excavations tout en offrant une largeur de déversement considérable. Cependant, son inconvénient principal réside dans le risque de saturation, car sa capacité de débit est limitée par la section d'entonnement du coursier.

VI.1.3 Choix de la variante

Pour des raisons topographiques et notamment l'accessibilité sur la crête de la digue, dans notre étude nous optons pour un évacuateur de crue latéral à entonnement frontal sur la rive gauche.

L'évacuateur de crues latéral à entonnement frontal est constitué des éléments suivants :

- > Un canal d'approche.
- Un déversoir.
- ➤ Un chenal d'écoulement
- ➤ Un convergent
- Un coursier.
- > Un bassin de dissipation.
- Un canal de fuite.

VI.1.4 Dimensionnement hydraulique de l'évacuateur de crue

VI.1.4.1 Canal d'approche:

Le canal d'approche est conçu pour diriger l'écoulement de la crue vers le seuil déversant. Il est essentiel que les vitesses dans ce canal soient maintenues à un niveau bas afin de réduire les pertes d'énergie et de minimiser le risque d'érosion. La vitesse d'approche peut être calculée à l'aide de la formule suivante :

$$V = \frac{Q}{S_{can}}$$
 (VI.1)

Avec:

Q : Débit à évacuer (m^3/s), Q = $6.65m^3/s$

S_{can}: section du canal d'approche (m₂).

Tel que:

$$S_{can} = H * b (VI.2)$$

Avec:

H: charge hydraulique (m)

$$H=h_{d\acute{e}v}+P \tag{VI.3}$$

Avec:

 $h_{d\acute{e}v}$: Lame déversée en (m), h = 1.4m

b : largeur du déversoir, b = 4 m

P: Hauteur de pelle en (m)

$$0.4 \le \frac{P}{h_{\text{dév}}} \le 1.6 \tag{VI.4}$$

$$0.56 \le P \le 2.2$$
 (VI.5)

Nous prenons: P=1m

D'où:

H = 2.4 m

V=0.70 m/s

La vitesse admissible pour le tronçon non revêtu est (2.5÷2.9) m/s, V<V_{adm}, donc pas de risque d'érosion.

> Hauteur du mur du canal d'approche :

La revanche du canal est calculée d'après la formule suivante :

$$R_e = 0.6 + 0.05V (h_{d\acute{e}v})^{1/3}$$
 (VI.7)

Donc:

 $R_{e} = 0.64 \text{ m}$

La hauteur de mur est

$$H_{\rm m} = H + R_{\rm e} \tag{VI.8}$$

Donc:

 $H_m = 3.04 \text{ m}$ nous prenons $H_m = 3 \text{ m}$

> Longueur du canal d'approche :

La longueur du canal d'approche est égale à 12 m (D'après le plan topographique)

VI.1.4.2 Déversoir

Le déversoir a pour but de collecter les eaux de la retenue, il joue un rôle d'une section de contrôle, il est dimensionner en fonction des contraintes de stabilité et de débit de pointe de l'hydrogramme.

On adopte à un déversoir à profil Creager qui a l'avantage d'éviter toute suppression qui provoque la cavitation et l'érosion par la suite.

La figure suivante, montre les dimensions du déversoir :

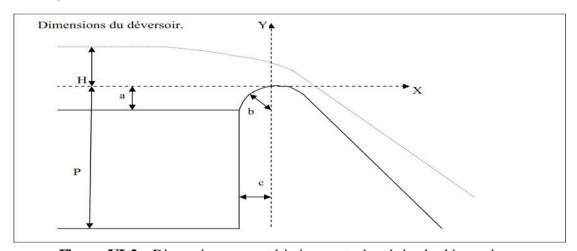


Figure VI-2 : Dimensions caractéristiques et géométrie du déversoir

Avec a, b et c sont déterminé comme suit :

$$a = 0.12 \times H = 0.168 \text{ m}$$

$$b = 0.4 \times H = 0.56 \text{ m}$$

$$c = 0.3 \times H = 0.42 \text{ m}$$

Les coordonnées du profil du déversoir sont déterminées à l'aide de l'équation suivante :

$$y = \frac{X^{1.85}}{2H^{0.85}}$$
 (VI.9)

Avec:

H: charge d'eau sur le déversoir (m)

Y(m)	X(m)
0	0
0.1	0.42
0.2	0.61
0.3	0.76
0.4	0.89
0.5	1
0.6	1.1
0.7	1.2
0.8	1.3
0.9	1.4
1	1.45

Tableau VI-2 : Coordonnés du profil de Greager

Figure VI-3 : Schéma du profil du seuil déversant type Creager

VI.1.4.3 Chenal d'écoulement

Le chenal d'écoulement est positionné juste en aval du déversoir, et il doit avoir une pente suffisamment douce pour permettre un écoulement régulier des eaux. Généralement, une forme rectangulaire est la plus appropriée pour ce type de chenal. Cependant, en raison de sa courte longueur, l'écoulement dans ce chenal peut ne pas être uniforme. Un ressaut se forme habituellement immédiatement en aval du déversoir, ce qui entraîne un écoulement irrégulier des eaux.

La longueur du chenal est fixée à 10 mètres, et la pente est égale à 0,1 % (à partir du plan topographique). Afin de vérifier les conditions d'écoulement, il est nécessaire de calculer la profondeur critique "yc" ainsi que la pente critique "Ic".

❖ Profondeur critique

$$y_c = \sqrt[3]{\frac{Q^2}{gb^2}}$$
 (VI.12)

Avec:

Q : Débit à évacuer (m^3/s), Q = 6.65 m^3/s

b: largeur du chenal, b = 4m

g: l'accélération de pesanteur, g = 9.81m/s

 $y_{c} = 0.65m$

Pente critique

La pente critique se détermine par la formule de Manning pour $y = y_c$

$$I_{cr} = \left[\frac{Q(b+2*y_c)^{2/3}}{K(b*y_c)^{5/3}} \right]^2$$
 (VI.13)

Avec:

Q : débit évacué (en m³/s).

I : la pente en (m/m).

b : largeur de déversoir (m)

K : coefficient de Manning-Strickler, K= 71

y_c: profondeur critique (m)

D'où:

 $I_{cr} = 0.00335$

<u>I cr</u>=0.33 %

 $0.1 \% < 0.32 \% => I < I_{cr}$: écoulement fluvial donc la condition est vérifiée.

VI.1.4.4 Convergent

Le convergeant, ou ouvrage convergent, joue le rôle de transition entre le chenal d'écoulement et le coursier. Sa largeur est égale à celle du chenal d'écoulement à son début, puis elle s'ajuste pour correspondre à la largeur du coursier à sa fin. Son objectif principal est de guider les filets d'eau de l'écoulement fluvial à la fin du chenal vers un écoulement torrentiel au début du coursier.

> Longueur du convergent

La longueur du convergent est calculée à l'aide de la formule suivante :

$$L = 2.5 \times (I_1 - I_2) \tag{VI.15}$$

Avec:

 I_1 : est la largeur au plafond du bief amont ; I_1 =4m

I₂: est la largeur au plafond de la section de contrôle; I₂=2m

D'où : <u>L=5m</u>

VI.1.4.5 Le coursier :

Le coursier, qui succède au chenal d'écoulement, a pour fonction de transporter l'eau du convergent vers le bassin de dissipation. Il est recommandé de lui donner une section rectangulaire, ce qui favorise un écoulement régulier.

A. Largeur du coursier

Elle est donnée par :

$$B = Q^{0.4}$$
 (VI.16)

Avec:

$$B = 6.65^{0.4} = 2.13 \text{ m}$$

B = 2 m.

B. Longueur et pente du coursier

La longueur et la pente du coursier sont obtenues directement du plan topographique, et d'après le plan la longueur est 27 m et la pente est 0.11.

C. Profondeur critique

La condition de l'état critique est :

$$\frac{Q^2 * B}{g * S^3} = 1 \tag{VI.17}$$

Pour un canal rectangulaire:

$$h_{cr} = \sqrt[3]{\frac{Q^2}{g * B^2}}$$
 (VI.18)

B : est la largeur du coursier égale à 2 m

 $h_{cr} = 1.04 \text{ m}.$

D. Calcul de la profondeur normale

La profondeur normale, également appelée profondeur du courant en régime uniforme, est déterminée en utilisant la formule de l'écoulement uniforme, communément connue sous le nom de formule de Chézy.

$$Q = S * C * \sqrt{R * I}$$
 (VI.19)

Avec:

S: section du coursier

I : pente du coursier, I=0.10
C_n : coefficient de Chézy
R : rayon hydraulique

En substituant de la même manière que pour le chenal d'écoulent, nous aurons :

$$Q = \frac{1}{n} * I^{\frac{1}{2}} * (h_n * b)^{\frac{5}{2}} * (2h_n + b)^{(-\frac{3}{2})}$$
 (VI.20)

Nous aurons:

 $h_n = 0.42 \text{ m}$

$$V_n = \frac{Q}{b.h_n}$$

 $V_n = 7.91 \text{m/s}$

Nous constatons que h_n< h_{cr}, donc le régime d'écoulement est torrentiel et le canal à forte pente.

E. Calcul de la ligne d'eau dans le coursier

Le calcul repose sur la méthode d'intégration numérique indirecte. Cette méthode consiste en la résolution de l'équation différentielle du mouvement pour les canaux prismatiques. L'équation à résoudre, en supposant que dQ/dx est nul, est la suivante :

$$\frac{dy}{dx} = (S_0 - S_f)(1 - F_r^2)$$
 (VI.21)

Avec:

 S_0 : Pente du fond ;

S_f: Pente de la ligne d'énergie;

 $F_{\rm r}$: Nombre de Froude.

En prenant en compte l'hypothèse selon laquelle la pente de la ligne d'énergie Sf peut être calculée pour chaque profondeur en utilisant l'équation de Manning, l'équation devient sous forme de différences finies :

$$\frac{\Delta y}{\Delta x} = \frac{S_0 - (n^2 Q^2) / (A^2 R^{4/3})}{1 - (B * Q^2) / (q * A^3)}$$
(VI.22)

Avec:

B: Largeur du coursier (m).

n : Coefficient de rugosité ;

A: La section transversale (m^2);

Q: Débit (m3/s);

R: Rayon hydraulique (m);

B: Largeur du coursier (m).

Nous faisons varier la valeur de Yi et calculons la distance correspondante Δx en fonction de la profondeur moyenne Ymoy=Yi+Yi-1. Cette valeur nous permet de calculer la section mouillée moyenne et le rayon hydraulique moyen. Nous calculons ces valeurs pour chaque valeur de yi en utilisant y_{moy} , et les ajoutons cumulativement jusqu'à ce stade, en vérifiant que

la somme ne dépasse pas la longueur L. Si elle dépasse L, nous continuons avec une valeur de yi < yi-1 jusqu'à ce que la somme des Δx atteigne la longueur L du coursier.

Les résultats de calcul sont représentés dans le tableau suivant :

Tableau VI-3: Résultat du calcul de la ligne d'eau du coursier

Y (m)	ymoy(m)	Smoy(m ²)	Pmoy(m)	Rmoy(m)	V(m/s)	Fr ²	1-Fr ²	Sf	S_0 - S_F	$\Delta X(\mathbf{m})$	L(m)
1.04											
1.01	1.03	2.05	4.05	0.51	3.24	1.05	-0.05	0.004	0.10	-0.01	0
0.98	1.00	1.99	3.99	0.50	3.34	1.14	-0.14	0.005	0.10	-0.05	0.05
0.95	0.97	1.93	3.93	0.49	3.45	1.25	-0.25	0.005	0.09	-0.08	0.13
0.92	0.94	1.87	3.87	0.48	3.56	1.38	-0.38	0.006	0.09	-0.12	0.25
0.89	0.91	1.81	3.81	0.48	3.67	1.52	-0.52	0.006	0.09	-0.17	0.41
0.86	0.88	1.75	3.75	0.47	3.80	1.68	-0.68	0.007	0.09	-0.22	0.63
0.83	0.85	1.69	3.69	0.46	3.93	1.87	-0.87	0.007	0.09	-0.28	0.91
0.8	0.82	1.63	3.63	0.45	4.08	2.08	-1.08	0.008	0.09	-0.35	1.27
0.77	0.79	1.57	3.57	0.44	4.24	2.33	-1.33	0.009	0.09	-0.44	1.71
0.74	0.76	1.51	3.51	0.43	4.40	2.62	-1.62	0.010	0.09	-0.54	2.25
0.71	0.73	1.45	3.45	0.42	4.59	2.96	-1.96	0.011	0.09	-0.66	2.91
0.68	0.70	1.39	3.39	0.41	4.78	3.36	-2.36	0.013	0.09	-0.81	3.72
0.65	0.67	1.33	3.33	0.40	5.00	3.83	-2.83	0.014	0.09	-0.99	4.71
0.62	0.64	1.27	3.27	0.39	5.24	4.40	-3.40	0.016	0.08	-1.22	5.93
0.59	0.61	1.21	3.21	0.38	5.50	5.09	-4.09	0.019	0.08	-1.51	7.44
0.56	0.58	1.15	3.15	0.37	5.78	5.93	-4.93	0.022	0.08	-1.89	9.33
0.53	0.55	1.09	3.09	0.35	6.10	6.96	-5.96	0.025	0.07	-2.39	11.72
0.5	0.52	1.03	3.03	0.34	6.46	8.25	-7.25	0.030	0.07	-3.09	14.81
0.47	0.49	0.97	2.97	0.33	6.86	9.88	-8.88	0.035	0.06	-4.12	18.93
0.44	0.46	0.91	2.91	0.31	7.31	11.96	-10.96	0.043	0.06	-5.72	24.65
0.43	0.43	0.87	2.87	0.30	7.64	13.69	-12.69	0.048	0.05	-7.39	32.04

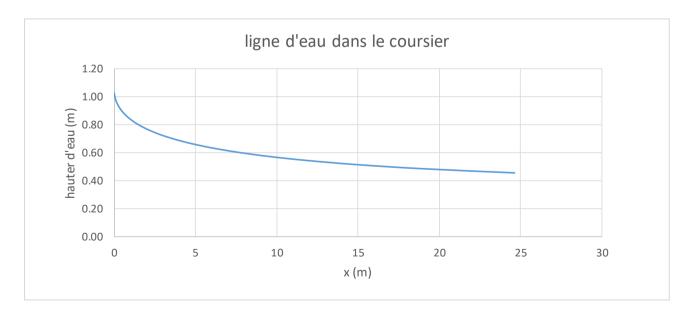


Figure VI-4: Ligne d'eau dans le coursier

VI.1.4.6 Dissipateur d'énergie

L'énergie accumulée à l'extrémité du coursier, résultant de la grande vitesse de l'écoulement du débit évacué, est dissipée en provoquant un ralentissement soudain de la vitesse de l'écoulement. Ce processus entraîne également un changement du régime d'écoulement, passant de torrentiel à fluvial.

Dans les bassins à ressaut hydraulique, l'énergie dissipée peut être exprimée en fonction du nombre de Froude à la section initiale du ressaut, noté Fr1.

L'intervalle optimal du nombre de Froude qui garantit à la fois une dissipation d'énergie élevée et la régularité du courant aval se situe entre 4.5 et 9, correspondant à un ressaut stable.

Pour des grandes valeurs, le ressaut est dit fort. Il est appelé faible ou oscillant pour des faibles valeurs de Fr1.Ces valeurs entraînent la formation des ondulations dans le courant aval ou à des tourbillons instables voire à une dissipation d'énergie quasiment nulle.

Les différents types de ressaut hydraulique en fonction du nombre de Froude sont les suivants :

Tableau VI-4: Choix du type de bassin selon l'USBR

Fourchette du nombre de Froude	Type de ressaut hydraulique
$1.0 \le Fr \le 1.7$	Ressaut ondulé.
$1.7 \le Fr \le 2.5$	Ressaut faible de petites apparaissions en surface
$2.5 \le Fr \le 4.5$	Ressaut oscillant
$4.5 \le Fr \le 9$	Ressaut stable (Stationnaire).
Fr≥9	Ressaut fort (Ecoulement très turbulent).

\triangleright Calcul de la vitesse à l'entrée du dissipateur V_1 :

$$V_1 = \frac{Q}{b_{cou} \times y_1} \tag{VI.24}$$

Avec:

Q : Débit lamine (m³/s)

Y1: hauteur d'eau à la fin du coursier (m), dans notre cas ; Y1=0.44m

b_{cou}: la largeur du coursier

D'où:

 $V_1 = 7.55 \text{ m/s}$.

> Calcul du nombre de Froude à l'entrée du dissipateur FR₁:

$$Fr_1 = \frac{V_1}{\sqrt{g * Y_1}} \tag{VI.25}$$

D'où:

 $Fr_1 = 3.63$

D'après le Tableau (VI-4), nous avons un ressaut oscillant.

> Choix du type de dissipateur :

Le choix du type de bassin de dissipation dépend du nombre de Froude et de la vitesse d'écoulement à l'entrée du bassin. Selon la classification de l'USBR, il existe trois types de bassins de dissipation :

- Si $(2,5 < F_{rl} < 4,5)$ le saut est oscillant ; on conçoit un dissipateur de **type I.**
- Si $(F_{rl} > 4.5)$ le saut est stable, alors :
 - ✓ Si $(V_1 < 15 \text{ m/s})$, on conçoit un dissipateur de **type II.**
 - ✓ Si $(V_1 > 15 \text{ m/s})$, on conçoit un dissipateur de **type III.**

Dans notre cas, nous optons pour un bassin de dissipation **type I** $(2,5 < Fr1 < 4,5et V_1 < 15m/s)$.

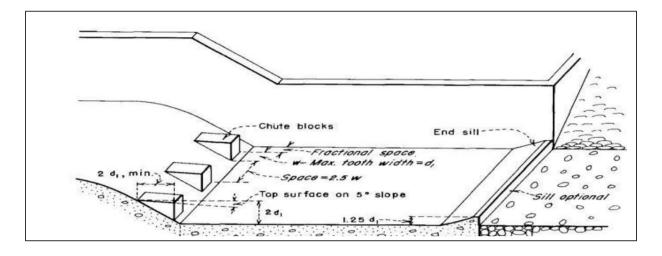


Figure VI-5 : schéma du bassin de dissipation type I (USBR, 1987)

> Conception d'un dissipateur de Type I

A-La hauteur conjuguée de (Y1):

$$\frac{Y_2}{Y_1} = 0.5 \left(\sqrt{8Fr_1^2 + 1} - 1 \right) \tag{VI.26}$$

D'où:

 $Y_2 = 1.88 \text{ m}$

B- La longueur des dissipateurs (LI):

$$L_{I} = Y_{2}(1.62 + 0.1788Fr_{1} + 0.007Fr_{1}^{2})$$
 (VI.27)

D'où:

L=4.44 m

C- Les dimensions des dents déflectrices (ou bloc de chute) :

Tableau VI-5: Dimensions des dents déflectrices

Grandeur	Formule	Valeur (m)
Hauteur h	Y1	0.44
Epaisseur W	Y1	0.44
Espace entre les dents S	Y1	0.44

D- Les dimensions des blocs de chicane :

$$h_3 = Y_1(0.545 + 0.175 * Fr_1)$$
 (VI.29)

Tableau VI-6: Dimensions des blocs de chicane

Grandeur	Formule	Valeur (m)
Hauteur	h3	0.51
Epaisseur	0.75h3	0.38
Epaisseur supérieure	0.2h3	0.102
Espace entre les blocs	0.75h3	0.38

Distance entre blocs de chute et blocs de chicanes :

$$d=0,8*d2$$

$$d_2 = \frac{L}{1.071 + 0.358Fr_1 - 0.025Fr_1^2 + 0.00055Fr_1^3}$$
(VI.30)

 $d_2 = 2.14 \text{ m}$ d=1.712m

E- Les dimensions du seuil terminal

$$h_4 = Y_1(0.956 + 0.063 * Fr_1)$$
 (VI.31)

D'où:

 $h_4=0.52$ m.

Epaisseur de la face supérieure du seuil= 0,04.h4= 0.020 m.

VI.1.4.7 Canal de restitution

Le canal de restitution est conçu pour diriger les eaux évacuées vers l'oued une fois leur énergie dissipée. Selon le relief, cette section comprend approximativement un tronçon d'environ 46 mètres de longueur, adoptant une forme trapézoïdale avec un rapport de talus de 1/1. La pente du canal est de 0,08 %. Une partie du canal (14 mètres de longueur) est revêtue d'enrochement, tandis que l'autre partie (32 mètres de longueur) est constituée de terre.

• La hauteur critique

La hauteur critique dans un canal trapézoïdal (h_{cr}) peut être calculée à l'aide de la formule suivante, basée sur la méthode d'Agroskine :

$$h_{cr} = k \left(1 - \frac{Z'}{3} + 0.105 * Z'^2 \right)$$
 (VI.32)

$$K = \sqrt[3]{\frac{Q^2}{b^2 * g}}$$
 (VI.33)

$$Z' = \frac{K * m}{b} \tag{VI.34}$$

Avec:

m: fruit des talus du canal de fuite, m=1

D'où:

Z'=0.52

K=1.04

 $h_{cr} = 0.89 m$

La pente critique

$$I_{cr} = \frac{g * h_c}{C^2 * R_c} \tag{VI.35}$$

Avec:

I_{cr}: pente critique R_c: rayon critique S_c: section critique P_c: périmètre critique

avec: $C_c \equiv \frac{R_c^{\frac{1}{6}}}{n}$ C_c : coefficient de Chézy

n : coefficient de rugosité, n=0.015 (m)

Tableau VI-7: Récapitulatif des résultats

Grandeur	Valeur (m)
$S_{c}(m^{2})$	2.57
$P_{c}(m)$	4.51
$\mathbf{R}_{\mathbf{c}}\left(\mathbf{m}\right)$	0.57
C _c (m ⁻⁶)	60.70
I cr (%)	0.41

Profondeur normale dans le canal

Selon la formule de Chézy:

$$Q = S * C * \sqrt{R * I}$$
 (VI.36)

Pour la hauteur normale nous avons :

$$S_{n} = m * h_{n}^{2} + b * h_{n}$$
 (VI.37)

$$P_{n} = b + 2h_{n}\sqrt{1 + m^{2}}$$
 (VI.38)

En remplaçant chaque terme par sa valeur, nous obtenons l'équation suivante, que nous résolvons à l'aide d'une méthode itérative :

$$Q = \frac{1}{n} * I^{1/2} * (mh_n^2 + bh_n)^{5/2} (2h_n \sqrt{1 + m^2} + b)^{-3/2}$$
 (VI.39)

Le résultat du calcul par itération donne :

 $H_n = 2.07 \text{ m}$

• Vitesse dans le canal

$$V = \frac{Q}{S} = \frac{Q}{b. h_{p} + m. h_{p}^{2}}$$
 (VI.40)

D'où:

V = 0.79 m/s

VI.1.5 Hauteurs des murs bajoyers :

> Canal d'approche et chenal découlement :

Tout au long du chenal d'écoulement, les murs bajoyers atteindront le même niveau que la crête de la digue.

> Le coursier :

1- Hauteur au début du 1er tronçon

 $H_m = he + r$

Avec:

hm: hauteur du mur bajoyer;

he: hauteur d'eau

he = 1.04 m

r : revanche de sécurité donnée par : r=0,61+0,14V^{1/3}

V : la vitesse ou niveau de la section de contrôle V=3.19m/s ;

Ce qui donne:

r=0.816m,

 $h_{\rm m} = 1.85 \text{ m}$

2- Hauteur à la fin du 1er tronçon

On procède de même manière que précédemment

he = 0.44 m

On aura: V = 7.55 m/s, r = 0.88 Hm = 1.32 m

VI.2 Vidange de fond :

Un ouvrage de vidange est principalement conçu pour vider le barrage et se compose généralement d'un orifice équipé d'une vanne et d'une conduite d'évacuation. Il peut remplir plusieurs fonctions, notamment :

- Vider entièrement la retenue pour des besoins de purge et d'entretien.
- Servir éventuellement de dispositif d'évacuation auxiliaire.
- Abaisser le niveau d'eau en cas de danger pour le barrage, que ce soit en raison de phénomènes naturels ou de conflits armés.
- Contrôler la montée du plan d'eau lors du premier remplissage du barrage

La conduite de vidange est généralement positionnée sous le corps de la digue, mais pour les grands ouvrages, une galerie latérale peut être envisagée. La conduite peut fonctionner sous pression avec un diamètre relativement petit ou en écoulement à surface libre avec un gros diamètre.

Dans certaines situations, l'évacuation d'eau pendant la construction peut se faire à travers la conduite de vidange de fond, en fonction de la capacité du déversoir, des caractéristiques du barrage, et pour des raisons économiques. Ceci est particulièrement envisageable lorsque les travaux débutent en saison sèche, et que la construction de l'ouvrage d'entrée intervient après l'achèvement des travaux sur la digue.

VI.2.1 Types d'ouvrages de vidange

Il existe trois types de vidange de fond distincts, à savoir :

• Conduite de vidange en charge

En général, elle est intégrée avec la prise d'eau ou l'évacuateur en forme de tulipe. Sa structure est constituée d'acier enveloppé de béton armé, ou elle peut être réalisée sous forme de conduite en tôle armée enterrée sous le remblai. Le diamètre de cette conduite est déterminé en fonction du débit d'eau à évacuer.

• Conduite à écoulement libre

Il existe deux types de conduites couramment utilisées pour les vidanges de fond :

- Les tuyaux cylindriques de gros diamètre en acier, généralement préférés
- Les canalisations en béton de type galerie ou ovoïde, mesurant habituellement entre 1 et 2 mètres de hauteur.

• Ouvrages de vidanges à batardeau

Il peut être astucieux d'envisager la vidange de fond sous forme d'un orifice dans l'évacuateur de crue de surface, équipé d'un système d'obturation tel qu'une vanne à glissière ou, de manière plus simple, un batardeau.

VI.2.2 Choix du type d'ouvrage de vidange :

La conduite en charge est préférée car elle présente l'avantage de l'économie, car elle peut être directement raccordée à la galerie de dérivation. De plus, une élévation par rapport à la galerie de dérivation est prévue pour la conduite de vidange afin d'éviter tout risque d'envasement.

 $H^2 * \sqrt{V}$ Type de conduite Nombre de position de Diamètre (mm) vannes PVC ou acier 160-200 ≤30 300 en acier Une vanne en aval Acier 30÷100 300-400 100÷300 400-600 Une vanne de garde 300÷700 Acier ou béton 600-800 amont et une vanne de garde avale 700÷1500 800-1200 ≥1500 Galerie ou béton armé (tuyau posé dans la galerie Vanne de garde et vanne de visite) de réglage en aval

Tableau VI-8: Ensemble des dispositifs minimaux préconisés

Avec:

H: hauteur du barrage (m).

V : Volume d'eau stocké (Mm3).

Dans notre cas, $H^2\sqrt{V}$ =66.23 donc on opte pour une conduite en acier de diamètre de 300mm et une seule vanne en aval.

VI.2.3 Calcul du débit de vidange :

Lors de l'évacuation par vidange de fond, le volume d'eau évacué est composé du volume utile de la retenue et du volume entrant à la retenue durant cette période.

Le débit évacué par la vidange sera :

$$Q_{\rm vf} = \frac{V_{\rm u}}{T} + Q_{\rm r} \tag{VI.79}$$

Avec:

Vu : volume utile (m).

T: Temps de vidange en jours

Tel que : T=10 jours

Q r : Débit entrant dans la retenue pendant le vidange (pris égal au débit moyen annuel).

Donc:

$$Q_{vf} = \frac{0.371*10^6}{864000} + \frac{0.30*10^6}{365*24*3600} = \frac{0.438 \text{ m}^3/\text{s.}}{20.438 \text{ m}^3/\text{s.}}$$

VI.2.4 Calcul de la section de la conduite de vidange de fond et son diamètre

Ce calcul vise à déterminer la section et le diamètre de la conduite de vidange en utilisant la formule de l'écoulement en charge :

$$Q_{vf} = \mu * S * \sqrt{2 * g * Z}$$
 (VI.80)

Avec:

Qvf: débit de vidange (m3/s)

 μ : coefficient de débit μ € (0.8 ÷ 0.85), nous prenons μ =0.80.

S: section de la conduite (m₃)

Z: différence de niveau d'eau entre le bief amont et bief aval (m). Z = 7.5 m

Tel que:

$$S = \frac{Q_{vf}}{\mu \sqrt{2gZ}} = \frac{\pi D^2}{4}$$
 (VI.81)

D'où:

 $S=0.037 \text{ m}^2$

Et:

$$D = \sqrt{\frac{4S}{\pi}}$$
 (VI.82)

D'où:

D=0.217m

on prend

D=250mm

* Correction de la valeur de coefficient μ

$$\mu = \sqrt{\frac{1}{1 + \sum \xi_L + \sum \xi_S}}$$
 (VI.83)

Avec : $\sum \xi_S$: Somme des coefficients des pertes de charge singulières.

$$\sum \xi_s = \xi_{so} + \xi_{en} + \xi_{va} + \xi_{gr}$$
 (VI.84)

Tableau VI-9 : Coefficient de perte de charge singulière

ξ_{so}	1
ξ _{en}	0.25
ξ_{va}	0.15
$\xi_{ m gr}$	0.20

Donc:

 $\sum \xi_{\rm s} = 1.6$

 $\sum \xi_L$: Somme des coefficients des pertes de charge linéaires.

$$\sum \xi_{L} = \frac{\lambda * L}{d}$$
 (VI.85)

Avec:

L : longueur de la conduite de la vidange de fond égale à 78 m

d : diamètre de la conduite de vidange, d = 250 mm

λ : Coefficient de frottement calculé par la formule de Strickler

Tel que:

$$\lambda = \frac{125 * n^2}{D^{1/3}} \tag{VI.86}$$

Avec:

n : rugosité de la conduite en acier ; n=0.014 s/m^{1/3}

D'où:

 $\lambda = 0.0038$ et aussi $\sum \xi_L = 1$

Ce qui nous donne :

 $\mu = 0.527$

En utilisant cette nouvelle valeur du coefficient de débit, le diamètre de la conduite de vidange sera calculé comme suit :

D = 276 mm

Nous optons pour un diamètre normalisé de 300 mm

VI.2.5 Calcul de la vitesse de l'eau dans la conduite

Le débit évacué aura une vitesse de sortie des vannes :

$$V_{\rm vf} = \frac{Q_{\rm vf}}{S_{\rm vf}} \tag{VI.87}$$

D'où:

 $V_{vf} = 6.19 \text{ m/s}$

VI.3 Ouvrage de prise d'eau

Les installations de captage d'eau sont conçues pour extraire, à tout moment, le débit requis d'une source d'eau telle qu'un cours d'eau ou un réservoir, afin de l'utiliser dans diverses applications telles que l'irrigation, le traitement de l'eau potable ou la production d'énergie électrique.

VI.3.1 Calcul du débit de dimensionnement pour la prise d'eau

D'après le Tableau (III.30), les prélèvements en eau atteignent leur pic en mois de juin

$$Q_{max} = \frac{V_{max}}{T} \tag{VI.88}$$

Tel que:

 $V_{max} = 150000 \text{ m}^3$

Nous supposons que la consommation se fait 10 heures par jours pendant 30 jours.

Donc:

 $Q_{max} = 0.14 \text{ m}^3/\text{s}.$

VI.3.2 Calcul de la section de la prise d'eau et son diamètre

$$Q = \mu * S * \sqrt{2 * g * H}$$
 (VI.89)

Avec:

 μ : coefficient de débit, μ =0.3 S: section de la conduite en m2

H: charge d'eau minimale, H=1.04 m

D'où:

 $S=0.103 \text{ m}^2$

Le diamètre de la prise d'eau sera égal à : D= 362 mm

Nous prenons : D = 400 mm

* Correction de la valeur de coefficient μ

$$\mu = \sqrt{\frac{1}{1 + \sum \xi}} \tag{VI.90}$$

Avec:

 $\sum \xi$: Somme des coefficients de pertes de charge singulières et linéaires.

Nous supposons que les pertes de charge singulières sont égales à 15% des pertes de charges Linéaires.

$$\sum \xi = 1.15 \frac{\lambda * L}{D} \tag{VI.91}$$

Avec:

 $\lambda = 0.033$; d=400mm

Donc :

 $\sum \xi = 7.40$

D'où:

 μ =0.34; S=0.091m²; D=340 mm

Nous prenons donc un diamètre normalisé de 350 mm.

VI.3.3 Calcul de la vitesse de l'eau dans la conduite

$$V = \frac{Q}{S} \tag{VI.92}$$

D'où : <u>V=1.53</u> m/s

Conclusion

Le diamètre de la conduite de vidange de fond est de 300mm, cette conduite sera utilisée en deux fonctions (la vidange et la dérivation des eaux des crues pendant la construction de l'ouvrage).

La conduite de prise d'eau aura un diamètre de 350 mm, elle est équipée de deux vannes papillon qui sera groupée avec la vanne de vidange au pied aval du barrage. Les vannes peuvent être soit opérées manuellement soit à distance par des organes de commande hydrauliques.

Chapitre VII:

Organisation de chantier

Introduction

La planification d'un chantier comprend toutes les mesures prises pour réaliser un travail dans les conditions optimales afin de réduire les coûts de production en créant un environnement propice à la productivité pour les travailleurs et les machines.

Pour cela il faut:

- Préciser les méthodes d'exécution et les modes opératoires pour appliquer efficacement les techniques modernes de construction avec une grande efficacité.
- ➤ Coordonner les tâches en recrutant des travailleurs qualifiés afin d'assurer leur organisation et leur synchronisation.
- ➤ Organiser de manière adéquate les postes de travail fixes qui nécessitent une mécanisation de plus en plus avancée, afin de les structurer efficacement.
- Déterminer avec précision la quantité et la qualité du personnel à embaucher, sachant que le coût de la main-d'œuvre a un impact significatif sur le prix de revient.

VII.1 Travaux préparatoires et installation de l'entreprise

Pour mettre en place un chantier, il est essentiel de prévoir un terrain spacieux autour de l'entreprise, en ménageant des zones de stockage et des voies de circulation pour les engins. Ensuite, ces espaces seront progressivement occupés par les locaux, les engins et les postes de travail fixes.

Nous pouvons distinguer les installations suivantes :

VII.1.1 Installations destinées au personnel

En général, sont :

- Abris-clos et vestiaire : Le local doit être bien ventilé, éclairé et chauffé pendant la saison froide. Il doit également être équipé d'armoires, avec une surface minimale de plus de 1,25 m² par personne.
- Les réfectoires : Si le nombre de repas dépasse 25, nous prévoyons un local de restauration. Ce local sera équipé de tables et de sièges en nombre suffisant, avec une surface minimale de plus de 1,5 m² par personne. De plus, un garde-manger et des chauffe-gamelles seront installés dans l'abri ou dans un lieu couvert.
- Les installations sanitaires: Pour les installations sanitaires, il est nécessaire de prévoir des lavabos ou des rampes pour la toilette. Il doit y avoir au moins un orifice pour 5 travailleurs. De plus, si un local est prévu, il devra être équipé de lavabos, avec un lavabo pour un maximum de 10 personnes. Par ailleurs, pour tous les travaux salissants, il est obligatoire de fournir des douches, avec une douche pour 8 personnes.
- **Poste de secours :** Une trousse de premiers secours doit être disponible sur tous les chantiers, quel que soit leur type. De plus, la présence d'un infirmier est obligatoire dès lors que le nombre de personnes atteint 200.
 - Les bureaux de chantier : La maîtrise d'œuvre spécifie le nombre de bureaux à installer dans les documents écrits du projet.

132

VII.1.2 Installations destinées au stockage des matériaux

Pour le stockage des ciments, nous avons le choix entre des silos métalliques ou des baraquements en bois ou en métal. Les agrégats peuvent être stockés en plein air, mais il est important de prévoir des zones distinctes pour chaque type d'agrégat afin d'éviter leur mélange et faciliter le dosage du béton. En ce qui concerne les aciers, ils doivent être protégés dans des endroits présentant une forte humidité, tels que des baraquements ou des hangars.

VII.1.3 Installations destinées à la réparation des engins

En règle générale, les réparations majeures ne sont pas effectuées sur le chantier luimême. Cependant, il est essentiel d'avoir un atelier bien équipé pour assurer l'entretien courant et les réparations d'urgence des différents équipements.

VII.1.4 Installation destinée pour la préfabrication

Cette installation est composée de hangars équipés du matériel nécessaire pour fabriquer les différents éléments de l'ouvrage tels que les poutres, les dalles, les conduites, les murettes, et ainsi de suite.

VII.2 Moyens du chantier

VII.2.1 Moyens humains

Pour la réalisation de l'ouvrage, il est nécessaire de fournir une justification quant à l'utilisation de personnel qualifié pour les études préliminaires et la construction. Il convient de préciser leurs titres et compétences respectifs.

VII.2.2 Moyens matériels

Pour réaliser les travaux de terrassement, différents engins sont utilisés en fonction de la nature des tâches à effectuer :

Le compactage est un processus qui vise à augmenter artificiellement la densité d'un sol en utilisant des moyens mécaniques on a les engins généralement utilisés ci-après :

- Compacteurs à pneus
- Rouleaux à pieds dameurs
- Décapeuse automotrice (grader)
- Pelle hydraulique
- Camions (damper)

VII.3 Planification

VII.3.1 Définition

Son objectif principal est de rechercher en permanence la manière la plus efficace et économique d'utiliser la main-d'œuvre et les autres ressources nécessaires à la réalisation de l'action entreprise, elle consiste en :

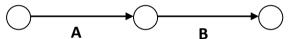
- ✓ La mise en place des postes de travail;
- ✓ Observations instantanées ;
- ✓ Analyse des tâches ;
- ✓ Chronométrage ;
- ✓ Définition des objectifs et des attributions ;

- ✓ Simplification des méthodes ;
- ✓ Stabilisation des postes de travail.

VII.3.2 Techniques de la planification

Il existe deux principales méthodes de planification à savoir :

- Méthodes basées sur le réseau ;
- Méthodes basées sur le graphique.


VII.3.2.1 Méthodes basées sur le réseau

A- Définition du réseau

Le réseau est une représentation graphique d'un projet qui permet de visualiser les relations entre les différentes opérations, qu'elles soient successives, simultanées ou convergentes, ainsi que leur durée de réalisation. On distingue généralement deux types de réseaux:

Réseau à flèches

L'opération est symbolisée par une flèche et la succession des opérations est indiquée par des nœuds dans le réseau.

L'opération A précède l'opération B

Réseau à nœuds

L'opération est représentée par un nœud, tandis que la succession des opérations est indiquée par des flèches.

L'opération (B) ne peut commencer que si l'opération (A) est complètement achevée.

B- Construction du réseau

La construction d'un réseau implique la réalisation des quatre (4) opérations suivantes :

Etablissement d'une liste des tâches

Dans cette première phase, il est essentiel de réaliser un inventaire précis et détaillé de toutes les opérations nécessaires à la réalisation d'un projet.

Détermination des tâches antérieures

Une fois la liste des tâches établie, la construction du réseau peut s'avérer complexe, car il peut être difficile de déterminer si les tâches antérieures doivent être effectuées de manière successive ou convergente.

- Construction des graphes partiels.
- > Regroupement des graphes partiels.
- Détermination des tâches de début de l'ouvrage et de fin de l'ouvrage.
- Construction du réseau.

Méthode du chemin critique (Critical Path Method / CPM)

L'objectif de cette méthode est de réduire le temps de réalisation d'un ouvrage en prenant en compte trois phases distinctes :

1ère phase : détermination de l'effectif nécessaire pour effectuer le travail considéré.

2ème phase: analyse systématique du réseau, heure par heure, jour pour jour.

3ème phase : adaptation du réseau aux conditions ou contraintes fixées par l'entreprise.

VII.3.2.2 Les étapes de la planification

La planification consiste à établir une série d'étapes pour guider l'exécution des travaux à réaliser. Elle comprend les étapes suivantes :

Collection des informations

L'établissement d'une synthèse d'analyse des informations acquises par des études comparatives permet l'usage correct du plan de réalisation de notre projet.

Décomposition du projet

C'est une étape cruciale car chaque projet peut être analysé de différentes manières. Nous attribuons à chaque tâche un responsable et identifions les besoins en équipements nécessaires.

Relations entre les tâches

Lors de la réalisation des tâches, il y a deux relations clés à considérer : une relation d'enchaînement logique et une relation d'enchaînement préférentiel.

Les paramètres de la méthode C.P.M

Les paramètres indispensables dans l'exécution de cette méthode sont les suivants :

Tableau VII-1: Paramètre de la méthode

DCP	TR
DFP	DCPP
DFPP	MT

Avec:

TR: temps de réalisation

DCP: date de commencement au plus tôt DCPP: date de commencement au plus tard

DFP : date de finition au plus tôt DFPP : date de finition au plus tard

MT: marge totale.

Et:

$$DFP = DCP + TR$$
$$DCPP = DFPP - TR$$

Chemin critique (C.C)

C'est le chemin qui donne la durée totale du projet (DTR) reliant les opérations possédant la marge totale nulle (0).

Donc pour retrouver un chemin critique il suffit de vérifier la double condition suivante :

$$\mathsf{C.C} \Longleftrightarrow \begin{cases} \mathsf{MT} = 0 \\ \sum \mathsf{TR}_{\scriptscriptstyle{\mathrm{C.C}}} = \mathsf{D.T.P} \end{cases}$$

Attribution des durées de chaque opération

Pour attribuer le temps nécessaire à la réalisation d'un projet, il est important de prendre en compte deux éléments :

- Le nombre de ressources disponibles (moyens humains et matériels);
- Les dimensions du projet.

En utilisant les normes C.N.A.T, on pourra appliquer la formule suivante :

$$T = \frac{Q * N}{n}$$
 (VII.1)

Avec:

Q : quantité de travail ;

N: rendement;

n: nombre d'équipes.

VII.3.2.3 Plannings des Travaux

Il existe trois types de plan de travail :

• Plan de travail au plus tôt

Toutes les opérations démarrent à leur date la plus précoce. Ce type de planification est adopté par une entreprise qui dispose de ressources suffisantes et qui travaille sur plusieurs chantiers.

• Plan de travail au plus tard

Toutes les opérations débutent à leur date la plus tardive, sans retard des tâches. Ce type de planification est choisi par une entreprise lorsque ses ressources sont limitées, ce qui le rend plus économique.

• Plan de travail intermédiaire

Les opérations sont programmées pour commencer à une date intermédiaire, entre la date au plus tôt et la date au plus tard. Ce type de planification est adopté par une entreprise qui dispose de ressources suffisantes et qui travaille sur un seul chantier, bénéficiant ainsi de moyens optimaux.

VII.3.2.5 délai de construction et programme des travaux :

Le délai de construction de l'ouvrage est déterminé en prenant en considération la durée de réalisation de chaque étape qui le compose. Il est important de noter que certaines de ces étapes peuvent être exécutées en parallèle. La réussite de ces travaux dépend d'une planification efficace des différentes tâches, impliquant une utilisation optimale de la main-d'œuvre et des équipements, afin de répondre à plusieurs exigences, notamment :

- Séquencer correctement les opérations pour assurer une progression fluide du travail.
- Respecter les délais fixés pour chaque étape.
- Respecter les délais fixés pour chaque étape.

VII.3.2.4 Symboles des différentes opérations

Ces symboles sont consignés dans le tableau suivant :

Tableau VII-2: Symbole des opérations réalisées

Phases des Travaux	Opérations	Duré (mois)
Phase 01 : Travaux de préparation, installation de chantier, développement du réseau routier assurant l'accès au chantier;	A	1
Phase 02 : décapage et réalisation de la portion de tranchée d'ancrage au droit de la conduite de vidange ;	В	1
Phase 03 : décapages généraux et ouverture de la tranchée d'ancrage ;	С	2
Phase 04 : préparation des zones d'emprunt ;	D	2
Phase 05 : déboisement de la cuvette ;	Е	3
Phase 06: remblai de la tranche d'ancrage et des fondations	F	1
Phase 07: approvisionnement du filtre	G	2
Phase 08 : mise en place un système de drainage	Н	1
Phase 09 : remblai compacté	I	4
Phase 10: excavations de l'évacuateur de crues	J	1
Phase 11 : génie civil de l'évacuateur de crues	K	2
Phase 12 : revêtements de talus	L	3
Phase 13: équipements hydrauliques	M	1
Phase 14: travaux des finitions	N	2

Cette méthode implique de placer les tâches dans l'ordre de priorité tout en tenant compte des ressources disponibles.

VII.3.2.4 Identification des chemins critiques à l'aide de la méthode du Tableau :

Le chemin critique est défini comme le parcours reliant les tâches ayant une marge totale de zéro, et il représente la durée totale du projet (DTR).

Les résultats sont récapitulés dans le tableau ci-dessous :

Tableau VII.03: Détermination des chemins critiques

Operation	TR	D	.Р	D.]	F.P	M.T
Operation	IK	D.C.P	D.F.P	D.C.P.P	D.F.P.P	IVI. I
A	1	0	1	0	1	0
В	1	1	2	1	2	0
С	2	2	4	2	4	0
I	2	5	7	5	8	1
F	3	7	10	8	11	1
J	1	4	5	4	5	0
G	2	5	7	5	7	0
D	1	7	8	7	7 8	
K	4	8	12	8	12	0
Н	1	2	3	2	3	0
E	2	3	5	3	7	2
L	3	10	13	11	14	1
M	1	5	6	7	12	6
N	2	12	14	12	14	0

Conclusion

L'organisation du chantier revêt une importance primordiale pour la réalisation et l'achèvement des projets dans les délais impartis.

Une bonne organisation dépend d'une planification adéquate du chantier, qui implique une définition précise du réseau par le biais de différentes méthodes.

La recherche du chemin critique est particulièrement importante pour justifier efficacement la décomposition du projet.

Selon nos calculs, le temps nécessaire pour réaliser la retenue collinaire de boukhertoum, située dans la commune de l'emire Abdelkader, est estimé à 14 mois.

Chapitre VIII:

Protection et sécurité Du travail

Introduction

Le travail est au cœur de l'existence humaine et occupe une place fondamentale dans l'organisation des sociétés et la vie des individus. Il joue un rôle crucial en tant que source d'insertion sociale et de développement personnel. Le travail devient ainsi un élément constitutif du bien-être social et une source d'épanouissement personnel.

Pour atteindre un certain niveau de confort et de distinction, la plupart des hommes et des femmes exercent des activités professionnelles qui, à des degrés différents, comportent des risques, des accidents et des maladies. Ces risques et maladies peuvent varier considérablement en fonction de la nature de l'activité professionnelle.

Dans le but d'éliminer les risques et les dangers et de préserver la santé physique et mentale des travailleurs, il est essentiel d'améliorer les conditions de travail et de mettre en place une approche de la cellule d'hygiène et de sécurité pour prévenir les risques professionnels.

La protection de la santé et de la sécurité au travail représente le fondement sur lequel le droit du travail s'est construit progressivement. C'est un élément central qui vise à garantir un environnement de travail sûr et sain pour tous les travailleurs.

Comme de nombreux autres pays à travers le monde, l'Algérie a mis en place un dispositif et une réglementation visant à appliquer des règles de sécurité sur le lieu de travail. Cependant, en raison de conditions de travail défavorables, le pays a connu une augmentation des accidents, passant de 3 600 en 2009 à 4 600 en 2010. Cette hausse explique le taux élevé d'accidents du travail en Algérie.

Selon les statistiques officielles, environ 50 000 accidents de travail se produisent chaque année en Algérie, dont 750 à 800 entraînent un décès. Cela équivaut à près de trois décès par jour.

De nos jours, l'amélioration des conditions de travail est devenue une composante des systèmes de gestion des entreprises dans les sociétés modernes. En plus de cela, les stages de formation destinés aux travailleurs sont mis en place, considérés comme des outils d'évaluation à la fois pour la structure organisationnelle et pour l'individu. L'objectif est de mieux gérer les différentes pressions liées au travail, de minimiser les pertes de vies humaines et de protéger la force de production.

VIII.1 Causes des accidents de travail

L'accident du travail n'est jamais le fruit du hasard ou de la fatalité. Les enquêtes menées après les accidents révèlent toujours une multitude de causes qui se combinent pour provoquer et aggraver l'accident.

Ces causes sont le résultat de différents éléments ou facteurs, classés en deux catégories distinctes :

- Facteur matériel.
- Facteur humain.

VIII.1.1 Le facteur matériel :

Concerne les conditions dangereuses susceptibles d'évoluer au cours de travail. Les causes d'accidents d'origine matérielle proviennent soit :

- De la profession en général et du poste de travail en particulier
- De la nature et de la forme des matériaux mis en œuvre.
- Des outils et machines utilisés : implantation, entretien
- De l'exécution du travail : difficultés particulières
- Du lieu du travail : éclairage, conditions climatiques,
- Des conditions d'hygiène et de sécurité : Ventilation, protection.

VIII.1.2 Le facteur humain:

Par opposition aux conditions dangereuses techniquement et pratiquement détectables, les actions dangereuses sur le lieu de travail sont attribuables au facteur humain. Dans certains cas, l'intervention de psychologues expérimentés est nécessaire, car certaines actions dangereuses relèvent de réactions psychiques difficiles à prévoir. En effet, chaque individu est unique et réagit différemment aux circonstances en fonction de son état d'esprit personnel.

- ✓ La négligence des travailleurs.
- ✓ La fatigue excessive
- ✓ Manque de concentration.
- ✓ L'agitation
- ✓ La nervosité.
- ✓ Inaptitude mentale ou physique.
- ✓ Taux d'erreur important.

VIII.2 Causes des maladies professionnelles :

VIII.2.1 Les poussières :

La poussière est l'un des facteurs majeurs responsables de graves maladies par inhalation. Parmi ces maladies, la silicose, causée par les poussières de silicium, est l'une des plus graves et fréquentes maladies professionnelles. L'asbestose, causée par les poussières d'amiante, ainsi que la sidérose, causée par les poussières d'oxyde de fer, sont également notables.

Ces maladies se manifestent par plusieurs symptômes, tels que :

Dyspnée: au début, il y a une difficulté respiratoire, notamment lors d'efforts physiques, qui peut ensuite évoluer vers une insuffisance respiratoire plus grave.

L'hémoptysie : l'expectoration de sang peut survenir, avec un risque accru de tuberculose.

VIII.2.2 Le bruit

Les surdités professionnelles surviennent suite à des traumatismes sonores causés par la nocivité du bruit pour l'oreille interne, en particulier les bruits aigus et impulsifs d'une durée inférieure à une seconde. Il s'agit d'une surdité de perception, car elle affecte l'oreille interne.

Un exemple courant est celui des personnes exposées au bruit généré par un marteaupiqueur. Cette exposition prolongée peut entraîner une surdité de perception, avec certains critères spécifiques : une durée minimale d'exposition de deux ans, un déficit auditif bilatéral résultant de lésions irréversibles de la cochlée, c'est-à-dire qui ne s'aggravent plus après l'arrêt de l'exposition aux risques. De plus, l'utilisation du marteau-piqueur peut également causer des tendinites au niveau des coudes et des poignets en raison des microtraumatismes dus aux vibrations.

VIII.3 Conditions dangereuses dans le chantier :

- > Installation non protégée ou male protégée.
- Outillages, engins et équipements en mauvais état.
- Matière défectueuse, stockage irrationnel.
- > Protection individuelle inexistante.
- > Défauts dans la construction.
- Eclairage défectueux.
- > Facteur d'ambiance impropre.
- Conditions climatiques défavorables.

VIII.4 Actions dangereuses :

- Engager des interventions sans précaution sur des installations sous tension, sous pression ou contenant des substances toxiques ou inflammables. Engager des interventions sans précaution sur des machines en mouvement.
- Agir sans prévenir ou sans autorisation.
- Négliger l'utilisation de l'équipement de protection individuelle.
- > Imprudence durant le travail.

VIII.5 Mesures préventives

Il est essentiel que les services appropriés assurent une protection satisfaisante du personnel :

- ➤ Les appareils de levage doivent être installés sur une surface qui offre une résistance adéquate.
- Les câbles et les chaînes de levage ne doivent pas être soumis à des charges dépassant leur capacité maximale spécifiée.
- Les travaux doivent être effectués uniquement lorsque l'installation est mise hors tension et qu'il n'y a aucun danger.
- Les abris doivent être airés et chauffés.
- > Assurer une protection individuelle.
- Assurer un entretien continu.
- Assurer un stockage rationnel.

VIII.6 Méthode et moyens de prévention

- ❖ Demander l'autorisation d'agir et avertir.
- La protection individuelle est obligatoire.
- Développer l'esprit de sécurité et d'hygiène.
- ❖ L'intervention à une meilleure utilisation.
- Veiller à une meilleure utilisation.
- ❖ Eviter toute cadence de travail supérieure à la normale.
- ❖ Veiller à être toujours concentré lors du travail notamment lors de manipulation des engins dangereux.

VIII.7 Plan de sécurité adapté aux travaux de réalisation

Étant donné que les travaux de terrassement représentent la majeure partie du temps nécessaire à la construction du barrage, un plan de sécurité spécifique a été élaboré pour les travaux de terrassement en général, ainsi que pour les travaux de soutènement et de fondation profondes.

On a résumé ce plan dans le Tableau (VIII-1).

Tableau VIII-1: Plan de sécurité

Objectifs visés	Mesures appropriées à envisager					
1-Prévenir les risques d'accident Par chutes, chutes et engins de terrassement	Disposition concernant: - La réalisation du chantier de jour comme nuit. - Les zones interdites au public. - Les précautions particulières à prendre en cas de brouillard - Réglementation de la circulation, signalisation interne aux chantiers, dépôts (panneaux, repérages, etc).					
2-Limiter les risques d'incident Lors de l'approvisionnement du Chantier. Assurer la stabilité, la Consolidation et la reprise des éléments stockés.	Repérage des lignes électriques					
3-Prévenir les accidents lors de L'utilisation du matériel : De renversement des engins ; De l'éboulement des terrains ;	Des dispositions doivent être prises pour assurer le guidage sécurisé des camions et des engins, notamme lors des manœuvres en marche arrière.					
4-Eviter les heurtes entre les Engins et renversement des engins.	Interdiction de dépassement et de stationnement					
5-Assurer la stabilité à la Conservation et la reprise aisée des éléments stockés	Définition des lieux de stockage des divers matériaux ; - Moyens de calage de chargement et de déchargement					
6-Eliminer les surcharges en bordure des fouilles	Mode de stockage des déblais et leur mode de déchargement					
7-Prévenir les chutes des objets	Il est nécessaire d'effectuer un examen approfondi des câbles soumis à des sollicitations particulières.					
8-Prévenir les chutes des organes de levages	Disposition et consignes particulières concernant L'entretien des matériels, des installations, les engins et les véhicules					
9-Heurts des personnes par les outils	Il est essentiel que les travailleurs qui utilisent la pioche ou la pelle dans leurs activités maintiennent une distance suffisante entre eux.					

Conclusion

La sécurité au travail est examinée de manière claire et simple afin de surmonter les difficultés qui peuvent entraver le bon déroulement des travaux et garantir l'efficacité économique d'une telle construction. Les accidents survenant au personnel, qu'il s'agisse de blessures mineures ou de décès, constituent une source continue de problèmes, de retards et de pertes pour l'entreprise. Il est donc essentiel de prendre les mesures nécessaires pour prévenir ces accidents et assurer la sécurité des travailleurs.

Conclusion Générale

CONCLUSION GENERAL

Ce travail nous a permis de mener une analyse d'exécution concernant la retenue collinaire localisée le long d'oued boukhertoum, dans la wilaya de Jijel. Cette retenue a pour objectif d'assurer l'irrigation des zones agricoles, contribuant ainsi au développement socio-économique de la région.

En se basant sur les études géologiques et géotechniques du site, ainsi que sur les données hydrologiques du bassin versant et sur les résultats des calculs d'optimisation, notre choix s'est porté sur une digue homogène construite avec des matériaux locaux, ayant une hauteur de 10.4 mètres correspondant à volume de matériaux de la digue égal à 20294.79 de mètre cube.

L'ouvrage réservoir permet de stocker un volume 0,375 million de mètres cubes (Mm3). La faisabilité du projet a été confirmée par les résultats obtenus du calcul de stabilité et ce suivant les différentes situations de sollicitations de charges. Le calcul en question a été effectué une analyse de la stabilité des talus de la digue, suivant la méthode Fellenius, également connue sous le nom de méthode suédoise ou dite la méthode des tranches.

Les caractéristiques topographiques du site ont conduit à la sélection d'un évacuateur de crues de type latéral avec un entonnement frontal ayant une largeur déversante de 4 mètres et une lame déversante de 1.4 mètre.

Le choix du type de vidange de fond dépend des conditions topographiques et géologiques spécifiques du site. Dans notre cas, la solution retenue est une vidange de fond tubulaire en acier avec un diamètre de 300 mm. Le prélèvement de l'eau se fait à un seul niveau de prise de diamètre 350 mm.

D'après les résultats obtenus suite au dimensionnement et aux calculs de stabilité, il apparaît que le site envisagé pour la réalisation de cet aménagement est favorable à la fois d'un point de vue technique et économique avec un cout de mètre cube d'eau égale à 507.38 DA/m³.

En conclusion, cette étude nous a permis d'aborder presque tous les aspects liés à l'étude d'une retenue collinaire (petit barrage) ainsi qu'à la réalisation de cette retenue et de ses ouvrages annexes.

Nous espérons avoir fourni les efforts nécessaires pour que ce travail soit conforme aux normes professionnelles des bureaux d'études et qu'il se rapproche au maximum de la réalité des études sur le terrain.

BIBLIOGRAPHIE

Bibliographie

Mihoubi, M. Manuel de dimensionnement des barrages en matériaux locaux

Bernardo, A. R. & Santos L. (2004) Manuel de conception et projets typiques des digues enterres : procédures méthodologiques pour l'exécution des études des retenues collinaires etpetits barrages. ANBT Alger.

Degoutte, G. (2002) Petits barrages: Recommandation pour la conception. Editions CEMAGREF.

Durand, J.M., Royet, P & Meriaux, P (1999). Technique des petits barrages en Afrique Sahélienne et Equatoriale. CEMAGREF. 415 p.

Maalel, K. & Hafsia, Z. (2012) Ouvrages hydrauliques, Polycopié du cours. Département de Génie Civil de l'ENIT. Tunisie.

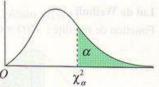
Meylan, P. & Musy, A. (1999) Hydrologie fréquentielle. Editions HGA, Bucarest. Hongrie.

Musy, A. & Higy, C. (1998) Hydrologie appliquée. Editions HGA, Bucharest, Hongrie. 367p.

Touaibia, B. (2004) Manuel pratique d'hydrologie. Edition Madani. Blida. Algérie. 166p.

M.Roche. (1963). Hydrologie de surface.

Murphy, T. E., (1973). Spillway Crest Design.


ANNEXE

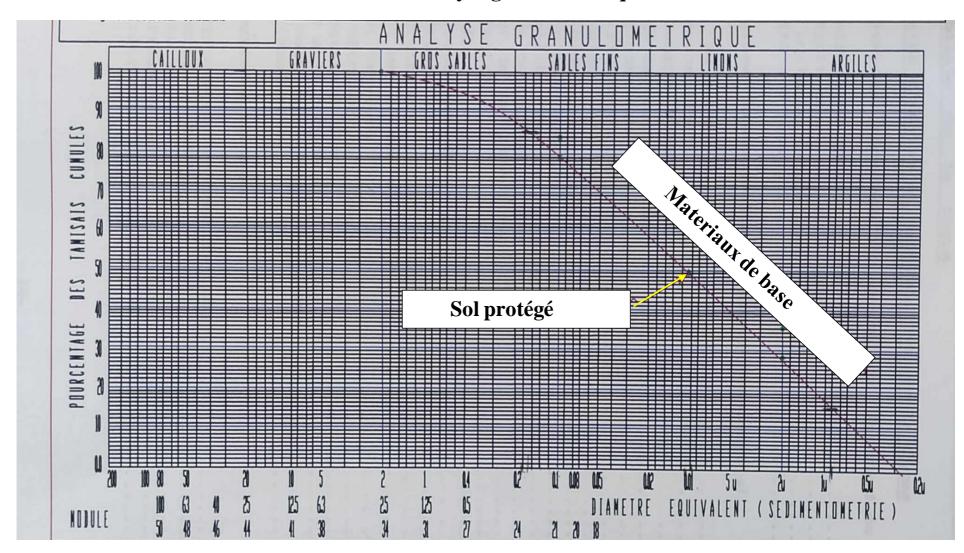
Annexes I : la table de khi deux

Table de distribution de χ^2 (loi de K. Pearson)

La table donne la probabilité α , en fonction du nombre de degrés de liberté ν , pour que χ^2 égale ou dépasse une valeur donnée $\chi^2_{\alpha'}$.

$$\alpha = P(\chi^2 \ge \chi_\alpha^2)$$

								λα	
v	$\alpha = 0,990$	$\alpha = 0.975$	$\alpha = 0,950$	$\alpha = 0,900$	$\alpha = 0.100$	$\alpha = 0.050$	$\alpha = 0.025$	$\alpha = 0.010$	$\alpha = 0.001$
1	0,0002	0,0010	0,0039	0,0158	2,71	3,84	5,02	6,63	10,83
2	0,02	0,05	0,10	0,21	4,61	5,99	7,38	9,21	13,82
3	0,12	0,22	0,35	0,58	6,25	7,81	9,35	11,34	16,27
4	0,30	0,48	0,71	1,06	7,78	9,49	11,14	13,28	18,47
5	0,55	0,83	1,15	1,61	9,24	11,07	12,83	15,09	20,52
6	0,87	1,24	1,64	2,20	10,64	12,59	14,45	16,81	22,46
7	1,24	1,69	2,17	2,83	12,02	14,07	16,01	18,47	24,32
8	1,65	2,18	2,73	3,49	13,36	15,51	17,53	20,09	26,13
9	2,09	2,70	3,33	4,17	14,68	16,92	19,02	21,67	27,88
10	2,56	3,25	3,94	4,87	15,99	18,31	20,48	23,21	29,59
11	3,05	3,82	4,57	5,58	17,27	19,67	21,92	24,72	31,26
12	3,57	4,40	5,23	6,30	18,55	21,03	23,34	26,22	32,91
13	4,11	5,01	5,89	7,04	19,81	22,36	24,74	27,69	34,53
14	4,66	5,63	6,57	7,79	21,06	23,68	26,12	29,14	36,12
15	5,23	6,26	7,26	8,55	22,31	25,00	27,49	30,58	37,70
16	5,81	6,91	7,96	9,31	23,54	26,30	28,84	32,00	39,25
17	6,41	7,56	8,67	10,08	24,77	27,59	30,19	33,41	40,79
18	7,01	8,23	9,39	10,86	25,99	28,87	31,53	34,80	42,31
19	7,63	8,91	10,12	11,65	27,20	30,14	32,85	36,19	43,82
20	8,26	9,59	10,85	12,44	28,41	31,41	34,17	37,57	45,32
21	8,90	10,28	11,59	13,24	29,61	32,67	35,48	38,93	46,80
22	9,54	10,98	12,34	14,04	30,81	33,92	36,78	40,29	48,27
23	10,20	11,69	13,09	14,85	32,01	35,17	38,08	41,64	49,73
24	10,86	12,40	13,85	15,66	33,20	36,41	39,37	42,98	51,18
25	11,52	13,12	14,61	16,47	34,38	37,65	40,65	44,31	52,62
26	12,20	13,84	15,38	17,29	35,56	38,88	41,92	45,64	54,05
27	12,88	14,57	16,15	18,11	36,74	40,11	43,19	46,96	55,48
28	13,57	15,31	16,93	18,94	37,92	41,34	44,46	48,28	56,89
29	14,26	16,05	17,71	19,77	39,09	42,56	45,72	49,59	58,30
30	14,95	16,79	18,49	20,60	40,26	43,77	46,98	50,89	59,70


Quand v est supérieur à 30, on utilise la table de la loi normale (table de l'écart réduit) avec :

$$t = \sqrt{2\chi^2} - \sqrt{2\nu - 1}$$

Annexe II : Valeurs des vitesses admissibles selon le type de sol

Turner de cele	Diamètre d ₅₀		V _{adm} (m/s)	pour différents hau	iteurs (m)		
Types de sols	(mm)	(H+P)=0.4	(H+P)=1.0	(H+P)=2.0	(H+P)=3.0	(H+P)>5.0	
Sable très fin	0.05-0.15	0.15-0.20	0.20-0.30	0.25-0.40	0.40-0.45	0.40-0.55	
Sable fin	0.15-0.25	0.20-0.35	0.30-0.45	0.40-0.55	0.45-0.60	0.55-0.70	
Sable moyen	0.25-1.0	0.35-0.50	0.45-0.60	0.55-0.70	0.60-0.75	0.70-0.85	
Sable gros	1.0-2.5	0.50-0.75	0.60-0.75	0.70-0.80	0.75-0.90	0.85-1.00	
Gravier fin	2.5-5.0	0.75-0.85	0.75-0.85	0.80-1.0	0.90-1.10	1.00-1.20	
Gravier moyen	5.0-10	0.85-0.90	0.85-1.05	1.0-1.15	1.10-1.30	1.20-1.45	
Cailloux fin	10-15	0.90-1.10	1.05-1.20	1.15-1.35	1.30-1.50	1.45-1.65	
Cailloux moyen	15-25	1.10-1.25	1.20-1.45	1.35-1.65	1.50-1.85	1.65-2.0	
Cailloux gros	25-40	1.25-1.50	1.45-1.85	1.65-2.10	1.85-2.30	2.0-2.45	
Cailloux très gros	40-75	1.50-2.0	1.85-2.40	2.10-2.75	2.30-3.10	2.45-3.30	
Petite pierre	75-100 100-150	2.0-2.45	2.4-2.80	2.75-3.20	3.10-3.50	3.30-3.80	
Pierre moyenne		2.45-3.0	2.80-3.35	3.20-3.75	3.50-4.10	3.80-4.40	
Grosse pierre	150-200	3.0-3.50	3.35-3.80	3.75-4.30	4.10-4.65	4.40-5.0	
Petite bloc	200-300	3.50-3.85	3.80-4.35	4.30-4.70	4.65-4.90	5.0-5.50	
Moyenne bloc	300-400	-	4.35-4.75	4.70-4.95	4.90-5.30	5.50-5.60	
Grosse bloc	400-500	-	-	4.95-5.35	5.30-5.50	5.60-6.0	
Roche sédimentaire, c <mark>marnes</mark>	onglomérales,	2.10	2.50	2.90	3.1	10	
Calcaire poreux et c compacts, grés cal		2.50	3.0	3.40	3.7	70	
Grés dolomitiques, calcai stratifies, sil		3.70	4.50	5.20	5.60		
Roches cristallines, mar	bres et granites	16.0	20.0	23.0	25.0		
Diabases, basaltes e	t quartzites	21.0		25	.0		

Annexe III : analyse granulométrique

Annexe IV: Stabilité des talus Stabilité pour le cas de fin de construction talus amont(R=15.46m)

	1	1							I						1
N	b	h1	h2	dl	sin	cos	G	N	T	tg	N*tg	С	C * dl	dn	G*a*dn
-4	1.28	1.05	0	1.3356779	-0.2857142	0.95831485	26.0736	24.986718	-7.4496	0.44	10.9941559	2.14	2.85835079	14.97	39.0321792
-3	1.54	2.13	0	1.5766233	-0.2142857	0.97677102	63.63588	62.1576836	-13.63626	0.44	27.3493808	2.14	3.37397396	14.44	91.8902107
-2	1.54	3.03	0	1.555959	-0.1428571	0.98974332	90.52428	89.5958013	-12.93204	0.44	39.4221526	2.14	3.32975221	13.96	126.371895
-1	1.54	3.76	0	1.5439437	-0.0714285	0.99744572	112.33376	112.046828	-8.02384	0.44	49.3006042	2.14	3.30403945	13.51	151.76291
0	1.54	4.31	0	1.54	0	1	128.76556	128.76556	0	0.44	56.6568464	2.14	3.2956	13.29	171.129429
1	1.54	4.75	0	1.5439437	0.07142857	0.99744572	141.911	141.548519	10.1365	0.44	62.2813484	2.14	3.30403945	13.09	185.761499
2	1.54	5.25	0	1.555959	0.14285714	0.98974332	156.849	155.24025	22.407	0.44	68.3057099	2.14	3.32975221	13.1	205.47219
3	1.54	5.12	0	1.5766233	0.21428571	0.97677102	152.96512	149.411897	32.77824	0.44	65.7412346	2.14	3.37397396	13.04	199.466516
4	1.54	5.05	0	1.6069875	0.28571429	0.95831485	150.8738	144.584603	43.1068	0.44	63.6172252	2.14	3.43895329	13.17	198.700795
5	1.54	4.8	0	1.6487344	0.35714286	0.93404977	143.4048	133.947221	51.216	0.44	58.9367772	2.14	3.52829163	13.43	192.592646
6	1.54	4.3	0	1.7044677	0.42857143	0.9035079	128.4668	116.070769	55.0572	0.44	51.0711384	2.14	3.64756079	13.79	177.155717
7	1.54	3.49	0	1.7782388	0.5	0.8660254	104.26724	90.2980786	52.13362	0.44	39.7311546	2.14	3.80543109	14.25	148.580817
8	1.54	2.26	0	1.8765571	0.57142857	0.82065181	67.51976	55.410213	38.58272	0.44	24.3804937	2.14	4.01583226	14.8	99.9292448
9	0.15	0.31	0	0.195826	0.64285714	0.76598609	0.9021	0.69099605	0.57992143	0.44	0.30403826	2.14	0.41906766	15.39	1.3883319
Somme									263.956261		618.09226		45.0246188		1989.23438

Fss	2.51222258
Fas	1.68892752

Stabilité pour le cas de fin de construction talus amont (R=17.05m)

Num	b	h1	h2	dl	sin	cos	G	N	Т	tg	N*tg	С	C * dl	dn	G*a*dn
-4	1.57	1.3	0	1.6382925	-0.2857142	0.95831485	39.5954	37.9448597	-11.312971	0.44	16.6957383	2.14	3.50594589	16.45	65.13443
-3	1.7	2.49	0	1.7404284	-0.2142857	0.97677102	82.1202	80.2126318	-17.597187	0.44	35.293558	2.14	3.72451671	15.82	129.91415
-2	1.7	3.49	0	1.7176171	-0.1428571	0.98974332	115.1002	113.919654	-16.442885	0.44	50.1246477	2.14	3.67570049	15.36	176.79390
-1	1.7	4.37	0	1.7043534	-0.0714285	0.99744572	144.1226	143.75447	-10.294471	0.44	63.2519669	2.14	3.64731628	14.94	215.31916
0	1.7	4.94	0	1.7	0	1	162.9212	162.9212	0	0.44	71.685328	2.14	3.638	14.57	237.37618
1	1.7	5.48	0	1.7043534	0.07142857	0.99744572	180.7304	180.268763	12.9093143	0.44	79.3182559	2.14	3.64731628	14.39	260.07104
2	1.7	5.71	0	1.7176171	0.14285714	0.98974332	188.3158	186.384305	26.9022571	0.44	82.0090941	2.14	3.67570049	14.25	268.35001
3	1.7	5.83	0	1.7404284	0.21428571	0.97677102	192.2734	187.807086	41.2014429	0.44	82.6351177	2.14	3.72451671	14.28	274.56641
4	1.7	5.76	0	1.7739473	0.28571429	0.95831485	189.9648	182.046088	54.2756571	0.44	80.1002789	2.14	3.79624714	14.44	274.30917
5	1.7	5.47	0	1.8200315	0.35714286	0.93404977	180.4006	168.50314	64.4287857	0.44	74.1413814	2.14	3.89486739	14.72	265.54968
6	1.7	4.94	0	1.8815552	0.42857143	0.9035079	162.9212	147.200592	69.8233714	0.44	64.7682604	2.14	4.02652814	14.13	230.20765
7	1.7	4.07	0	1.9629909	0.5	0.8660254	134.2286	116.245378	67.1143	0.44	51.1479661	2.14	4.20080056	15.63	209.79930
8	1.7	2.74	0	2.0715241	0.57142857	0.82065181	90.3652	74.1583646	51.6372571	0.44	32.6296804	2.14	4.43306159	16.24	146.75308
9	0.3	0.62	0	0.391652	0.64285714	0.76598609	3.6084	2.76398422	2.31968571	0.44	1.21615306	2.14	0.83813532	16.91	6.101804
Somme									334.96455		785.017427		50.428653		2760.24603

Fss	2.51222258
Fas	1.68892752

Stabilité pour le cas de fin de construction talus amont (R= 18.06m)

Num	b	h1	h2	dl	sin	cos	G	N	Т	ta	N*tg	С	C * dl	dn	G*a*dn
INUIII	U	11.1	112	ui	SIII	cos	U	IN	1	tg	IV-tg	C	C · ui	un	Grarun
-4	1.5	1.23	0	1.5652476	-0.2857142	0.95831485	35.793	34.3009633	-10.226571	0.44	15.0924239	2.14	3.34962983	17.49	62.601957
-3	1.8	2.51	0	1.8428065	-0.2142857	0.97677102	87.6492	85.6131988	-18.781971	0.44	37.6698075	2.14	3.94360593	16.85	147.688902
-2	1.8	3.57	0	1.8186533	-0.1428571	0.98974332	124.6644	123.385757	-17.8092	0.44	54.2897331	2.14	3.89191816	16.3	203.202972
-1	1.8	4.43	0	1.8046095	-0.0714285	0.99744572	154.6956	154.300464	-11.049685	0.44	67.892204	2.14	3.86186429	15.85	245.192526
0	1.8	5.1	0	1.8	0	1	178.092	178.092	0	0.44	78.36048	2.14	3.852	15.5	276.0426
1	1.8	5.59	0	1.8046095	0.07142857	0.99744572	195.2028	194.704197	13.9430571	0.44	85.6698466	2.14	3.86186429	15.26	297.879473
2	1.8	5.91	0	1.8186533	0.14285714	0.98974332	206.3772	204.260455	29.4824571	0.44	89.8746001	2.14	3.89191816	15.16	312.867835
3	1.8	6.04	0	1.8428065	0.21428571	0.97677102	210.9168	206.017419	45.1964571	0.44	90.6476642	2.14	3.94360593	15.19	320.382619
4	1.8	5.97	0	1.8782971	0.28571429	0.95831485	208.4724	199.782196	59.5635429	0.44	87.9041663	2.14	4.0195558	15.35	320.005134
5	1.8	5.66	0	1.9270922	0.35714286	0.93404977	197.6472	184.612322	70.5882857	0.44	81.2294219	2.14	4.12397723	15.66	309.515515
6	1.8	5.07	0	1.9922349	0.42857143	0.9035079	177.0444	159.961015	75.8761714	0.44	70.3828464	2.14	4.26338274	16.08	284.687395
7	1.8	4.13	0	2.078461	0.5	0.8660254	144.2196	124.897837	72.1098	0.44	54.9550484	2.14	4.44790647	16.63	239.837195
8	1.8	2.69	0	2.1933785	0.57142857	0.82065181	93.9348	77.0877633	53.6770286	0.44	33.9186159	2.14	4.69382992	17.27	162.2254
9	0.18	0.37	0	0.2349912	0.64285714	0.76598609	1.29204	0.98968467	0.83059714	0.44	0.43546126	2.14	0.50288119	17.97	2.32179588
somme									363.399969		848.32232		52.64794		3184.45132

Fss	2.51222258
Fas	1.68892752

Stabilité pour le cas de fin de construction talus aval (R= 16.55m)

Num	b	h1	h2	dl	sin	cos	G	N	Т	tg	N*tg	С	C * dl	dn	G*a*dn
-4	0.06	0.052	0	0.0630593	-0.3076923	0.95148591	0.060528	0.05759154	-0.018624	0.44	0.02534028	2.14	0.13494682	16.54	0.10011331
-4	0.00	0.032	0	0.0030373	-0.3070723	0.73140371	0.000328	0.03737134	-0.010024	0.44	0.02334026	2.14	0.13474002	10.54	0.10011331
-3	1.65	1.3	0	1.6957714	-0.2307692	0.97300851	41.613	40.4898032	-9.603	0.44	17.8155134	2.14	3.62895079	15.93	66.289509
-2	1.65	2.37	0	1.6698802	-0.1538461	0.98809481	75.8637	74.9605285	- 11.6713385	0.44	32.9826325	2.14	3.5735437	15.38	116.678371
-1	1.65	3.26	0	1.6549034	-0.0769230	0.99703703	104.3526	104.043406	- 8.02712308	0.44	45.7790988	2.14	3.54149334	14.92	155.694079
0	1.65	3.99	0	1.65	0	1	127.7199	127.7199	0	0.44	56.196756	2.14	3.531	14.54	185.704735
1	1.65	4.55	0	1.6549034	0.07692308	0.99703703	145.6455	145.213957	11.2035	0.44	63.894141	2.14	3.54149334	14.27	207.836129
2	1.65	4.94	0	1.6698802	0.15384615	0.98809481	158.1294	156.24684	24.3276	0.44	68.7486096	2.14	3.5735437	14.13	223.436842
3	1.65	5.17	0	1.6957714	0.23076923	0.97300851	165.4917	161.024833	38.1903923	0.44	70.8509263	2.14	3.62895079	13.98	231.357397
4	1.65	5.2	0	1.7341297	0.30769231	0.95148591	166.452	158.376733	51.216	0.44	69.6857626	2.14	3.7110376	14.21	236.528292
5	1.65	5.02	0	1.7875	0.38461538	0.92307692	160.6902	148.329415	61.8039231	0.44	65.2649428	2.14	3.82525	14.44	232.036649
6	1.65	4.6	0	1.8599509	0.46153846	0.8871202	147.246	130.624901	67.9596923	0.44	57.4749564	2.14	3.98029489	14.79	217.776834
7	1.65	3.87	0	1.9581081	0.53846154	0.84265009	123.8787	104.386398	66.7039154	0.44	45.9300149	2.14	4.19035143	15.26	189.038896
8	1.65	2.56	0	2.0933057	0.61538462	0.78822698	81.9456	64.591733	50.4280615	0.44	28.4203625	2.14	4.4796741	15.89	130.211558
Somme														_	

Fss	2.51222258
Fas	1.68892752

Stabilité pour le cas de fin de construction talus aval (R= 17.40m)

				.,			-		_		270	-	G 1. 11		GD AL
Num	b	h1	h2	dl	sin	cos	G	N	T	tg	N*tg	С	C * dl	dn	G*a*dn
-4	0.23	0.19	0	0.2417272	0.30769231	0.95148591	0.84778	0.80665073	0.26085538	0.44	0.35492632	2.14	0.51729615	17.31	1.46750718
-3	1.74	1.5	0	1.788268	0.23076923	0.97300851	50.634	49.2673129	- 11.6847692	0.44	21.6776177	2.14	3.82689356	16.68	84.457512
-2	1.74	2.6	0	1.7609646	- 0.15384615	0.98809481	87.7656	86.7207342	-13.5024	0.44	38.157123	2.14	3.76846427	16.13	141.565913
-1	1.74	3.46	0	1.7451709	- 0.07692308	0.99703703	116.79576	116.449698	- 8.98428923	0.44	51.237867	2.14	3.7346657	15.67	183.018956
0	1.74	4.23	0	1.74	0	1	142.78788	142.78788	0	0.44	62.8266672	2.14	3.7236	15.28	218.179881
1	1.74	4.82	0	1.7451709	0.07692308	0.99703703	162.70392	162.221833	12.5156862	0.44	71.3776066	2.14	3.7346657	15	244.05588
2	1.74	5.23	0	1.7609646	0.15384615	0.98809481	176.54388	174.442092	27.1605969	0.44	76.7545206	2.14	3.76846427	14.84	261.991118
3	1.74	5.46	0	1.788268	0.23076923	0.97300851	184.30776	179.333019	42.53256	0.44	78.9065284	2.14	3.82689356	14.82	273.1441
4	1.74	4.48	0	1.8287186	0.30769231	0.95148591	151.22688	143.890246	46.5313477	0.44	63.3117083	2.14	3.91345783	14.49	219.127749
5	1.74	5.27	0	1.885	0.38461538	0.92307692	177.89412	164.209957	68.4208154	0.44	72.252381	2.14	4.0339	15.18	270.043274
6	1.74	4.78	0	1.9614028	0.46153846	0.8871202	161.35368	143.140109	74.4709292	0.44	62.9816479	2.14	4.19740189	15.56	251.066326
7	1.74	3.85	0	2.064914	0.53846154	0.84265009	129.9606	109.511311	69.9787846	0.44	48.1849769	2.14	4.41891605	16.07	208.846684
8	1.18	1.83	0	1.4970307	0.61538462	0.78822698	41.89236	33.0206885	25.7799138	0.44	14.5291029	2.14	3.20364572	16.87	70.6724113
somme									332.95832		662.5526739		46.66826469		2427.637312

Fss	2.130059218
Fas	1.501067520

Stabilité pour le cas de fin de construction talus aval (R= 19.69m)

Num	b	h1	h2	dl	sin	cos	G	N	Т	tg	N*tg	С	C * dl	dn	G*a*dn
_			_												
-3	1.05	0.78	0	1.0844353	-0.25	0.96824584	15.8886	15.3840708	-3.97215	0.44	6.76899115	2.14	2.32069162	19.31	30.6808866
-2	1.96	2.04	0	1.9878028	-0.1666666	0.9860133	77.56896	76.484026	-12.92816	0.44	33.6529714	2.14	4.25389801	18.68	144.898817
-1	1.96	3.09	0	1.9668412	-0.0833333	0.99652173	117.49416	117.085483	-9.79118	0.44	51.5176127	2.14	4.20904018	18.1	212.66443
0	1.96	3.85	0	1.96	0	1	146.3924	146.3924	0	0.44	64.412656	2.14	4.1944	17.72	259.407333
0	1.50	3.03	0	1.70		1	140.3724	140.3724	0	0.44	04.412030	2.17	7.1777	17.72	237.401333
1	1.96	4.54	0	1.9668412	0.08333333	0.99652173	172.62896	172.02851	14.3857467	0.44	75.6925442	2.14	4.20904018	17.36	299.683875
2	1.96	5.02	0	1.9878028	0.16666667	0.9860133	190.88048	188.210691	31.8134133	0.44	82.8127042	2.14	4.25389801	17.22	328.696187
	1.50	3.02	Ü	1.9070020	0.10000007	0.9000133	170.00010	100.210071	31.0131133	0.11	02.0127012	2.11	1.25509001	17.22	320.070107
3	1.96	5.29	0	2.0242793	0.25	0.96824584	201.14696	194.759707	50.28674	0.44	85.6942709	2.14	4.33195769	17.13	344.564742
4	1.96	5.34	0	2.0788939	0.33333333	0.94280904	203.04816	191.435641	67.68272	0.44	84.2316821	2.14	4.44883302	17.26	350.461124
5	1.96	5.14	0	2.1560749	0.41666667	0.90905934	195.44336	177.669612	81.4347333	0.44	78.1746295	2.14	4.61400021	17.49	341.830437
	1.50	3.14	U	2.1300747	0.41000007	0.70703734	173.44330	177.005012	61.4347333	0.44	70.1740273	2.14	4.01400021	17.42	341.030437
6	1.96	4.64	0	2.2632131	0.5	0.8660254	176.43136	152.79404	88.21568	0.44	67.2293775	2.14	4.84327594	17.88	315.459272
7	1.96	3.39	0	2.4131011	0.58333333	0.81223286	128.90136	104.697921	75.19246	0.44	46.067085	2.14	5.16403632	18.5	238.467516
,	1.70	2.27	Ŭ	2		5.01225200	120,70120	-5.102.7221	70.172.0	0	101007000	2.1 .	2.10.00002	10.0	
8	0.83	1.17	0	1.1135619	0.66666667	0.74535599	18.83934	14.042015	12.55956	0.44	6.17848658	2.14	2.38302236	19.33	36.4164442
somme									394.879563		682.433011		49.2260935		2903.23106

Fss	1.85286648
Fas	1.34911173

Stabilité pour le cas du fonctionnement normal talus aval (R= 17.02m)

					1											
Num	b	h1	h2	dl	sin	cos	G	N	T	tg	N*tg	C	C * dl	U*dl*tng	dn	G*a*dn
														0.020208392		
-4	0.23	0.19	0	0.2417272	-0.3076923	0.95148591	0.84778	0.80665073	-0.26085538	0.44	0.35492632	2.14	0.51729615	1 1200 12 0 7 0	16.85	1.4285093
-3	1.7	1.47	0	1.7471584	-0.2307692	0.97300851	48.4806	47.1720364	-11.1878308	0.44	20.755696	2.14	3.73891899	1.130062058	16.23	78.6840138
3	1.7	1.47	0	1.7471504	0.23010)2	0.57500051	40.4000	47.1720304	11.1070300	0.44	20.755070	2.17	3.73071077	1.937951676	10.23	70.00-0130
-2	1.7	2.56	0	1.7204827	-0.1538461	0.98809481	84.4288	83.4236594	-12.9890462	0.44	36.7064101	2.14	3.68183291		15.6	131.708928
														2.558260046		
-1	1.7	3.41	0	1.705052	-0.0769230	0.99703703	112.4618	112.128579	-8.65090769	0.44	49.3365748	2.14	3.64881132		15.24	171.391783
0	1.7	4.16	0	1.7	0	1	137.1968	137.1968	0	0.44	60.366592	2.14	3.638	3.11168	14.78	202.77687
0	1.7	4.10	U	1.7	0	1	137.1906	137.1908	U	0.44	00.300392	2.14	3.036	3.548554258	14.76	202.77087
1	1.7	4.73	0	1.705052	0.07692308	0.99703703	155.9954	155.53319	11.9996462	0.44	68.4346038	2.14	3.64881132	3.540554250	14.58	227.441293
														3.891043599		
2	1.7	5.14	0	1.7204827	0.15384615	0.98809481	169.5172	167.499066	26.0795692	0.44	73.6995891	2.14	3.68183291		14.37	243.596216
2	1.7	5.36	0	1.7471584	0.23076923	0.072009.51	176.7728	172 001 420	40.7937231	0.44	75.6806331	2.14	3.73891899	4.120498388	14.33	253.315422
3	1.7	5.30	0	1./4/1584	0.23076923	0.97300851	170.7728	172.001439	40.7937231	0.44	/5.0800531	2.14	3./3891899	4.229426776	14.55	255.515422
4	1.7	5.38	0	1.7866791	0.30769231	0.95148591	177.4324	168.824429	54.5945846	0.44	74.2827489	2.14	3.82349328	4.22)420770	14.51	257.454412
														4.197526667		
5	1.7	5.18	0	1.8416667	0.38461538	0.92307692	170.8364	157.695138	65.7063077	0.44	69.3858609	2.14	3.94116667		14.69	250.958672
	1.7	4.7	0	1.01/212	0.46152046	0.0071202	155.006	127 5000 54	71 5412200	0.44	60.5020206	0.14	4 10000000	3.962935352	15.00	222 004054
6	1.7	4.7	0	1.916313	0.46153846	0.8871202	155.006	137.508954	71.5412308	0.44	60.5039396	2.14	4.10090989	3.515195738	15.09	233.904054
7	1.7	3.96	0	2.0174448	0.53846154	0.84265009	130.6008	110.050776	70.3235077	0.44	48.4223413	2.14	4.31733177	5.515195738	15.58	203.476046
8	1.49	2.36	0	1.8903184	0.61538462	0.78822698	68.21816	53.7713944	41.9804062	0.44	23.6594135	2.14	4.04528146	1.962906669	16.26	110.922728
0.000000									240.0202254		661 5902205		16 52260566	29 19624062		
somme		l		l					349.9303354		661.5893295		46.52260566	38.18624962		

Fss	1.914454444
Fas	1.369975826

Stabilité pour le cas du fonctionnement normal talus aval (R= 18.34m)

Num	b	h1	h2	dl	sin	cos	G	N	T	tg	N*tg	C	C * dl	U*dl*tng	dn	G*a*dn
-3	1.59	1.23	0	1.6421449	-0.25	0.96824584	37.94058	36.7358086	-9.485145	0.44	16.1637558	2.14	3.51419017	0.888728841	17.75	67.3445295
-2	1.83	2.24	0	1.8559587	-0.16666667	0.9860133	79.52448	78.4121947	-13.25408	0.44	34.5013657	2.14	3.97175171	1.829232937	17.06	135.668763
-1	1.83	3.42	0	1.8363875	-0.08333333	0.99652173	121.41684	120.994519	-10.11807	0.44	53.2375885	2.14	3.92986915	2.763395841	16.63	201.916205
0	1.83	4.23	0	1.83	0	1	150.17346	150.17346	0	0.44	66.0763224	2.14	3.9162	3.405996	16.22	243.581352
1	1.83	4.85	0	1.8363875	0.08333333	0.99652173	172.1847	171.585795	14.348725	0.44	75.4977497	2.14	3.92986915	3.918850827	15.91	273.945858
2	1.83	5.28	0	1.8559587	0.16666667	0.9860133	187.45056	184.828745	31.24176	0.44	81.3246477	2.14	3.97175171	4.311763353	15.73	294.859731
3	1.83	5.52	0	1.8900159	0.25	0.96824584	195.97104	189.748144	48.99276	0.44	83.4891832	2.14	4.04463397	4.590470552	15.68	307.282591
4	1.83	5.55	0	1.9410081	0.33333333	0.94280904	197.0361	185.767417	65.6787	0.44	81.7376633	2.14	4.15375736	4.739941815	15.83	311.908146
5	1.83	5.34	0	2.0130699	0.41666667	0.90905934	189.58068	172.340088	78.99195	0.44	75.8296389	2.14	4.30796958	4.729909036	16.02	303.708249
6	1.83	4.85	0	2.113102	0.5	0.8660254	172.1847	149.116324	86.09235	0.44	65.6111827	2.14	4.52203825	4.509359636	16.45	283.243832
7	1.83	3.71	0	2.2530485	0.58333333	0.81223286	131.71242	106.981156	76.832245	0.44	47.0717086	2.14	4.82152371	3.677876308	17.02	224.174539
8	1.13	1.68	0	1.5160541	0.66666667	0.74535599	36.82896	27.450686	24.55264	0.44	12.0783019	2.14	3.24435575	1.120667182	17.83	65.6660357
somme									393.873835		692.6191083		48.3279105	40.4861923		2713.29983

Fss	1.7783888
Fas	1.292796

Stabilité pour le cas du fonctionnement normal talus aval (R= 19.77m)

Num	b	h1	h2	dl	sin	cos	G	N	Т	tg	N*tg	C	C * dl	U*dl*tng	dn	G*a*dn
-3	0.59	0.88	0	0.6093494	-0.25	0.96824584	10.07248	9.75263682	-2.51812	0.44	4.2911602	2.14	1.30400767	0.23594008	19.35	19.4902488
-2	1.97	2.18	0	1.9979447	-0.16666667	0.9860133	83.31524	82.1499345	13.8858733	0.44	36.1459712	2.14	4.27560157	1.916428516	18.7	155.799499
-1	1.97	3.26	0	1.9768761	-0.08333333	0.99652173	124.59068	124.15732	10.3825567	0.44	54.6292207	2.14	4.23051488	2.835631095	18.15	226.132084
0	1.97	4.14	0	1.97	0	1	158.22252	158.22252	0	0.44	69.6179088	2.14	4.2158	3.588552	17.63	278.946303
1	1.97	4.82	0	1.9768761	0.08333333	0.99652173	184.21076	183.570025	15.3508967	0.44	80.770811	2.14	4.23051488	4.192558858	17.36	319.789879
2	1.97	5.3	0	1.9979447	0.16666667	0.9860133	202.5554	199.722318	33.7592333	0.44	87.8778198	2.14	4.27560157	4.659206943	17.18	347.990177
3	1.97	5.58	0	2.0346073	0.25	0.96824584	213.25644	206.48466	53.31411	0.44	90.8532505	2.14	4.35405952	4.995367723	17.13	365.308282
4	1.97	5.63	0	2.0895005	0.33333333	0.94280904	215.16734	202.861714	71.7224467	0.44	89.259154	2.14	4.47153115	5.176110734	17.22	370.518159
5	1.97	5.42	0	2.1670752	0.41666667	0.90905934	207.14156	188.30397	86.3089833	0.44	82.853747	2.14	4.63754103	5.168041049	17.46	361.669164
6	1.97	4.92	0	2.2747601	0.5	0.8660254	188.03256	162.840974	94.01628	0.44	71.6500284	2.14	4.86798653	4.924400579	17.81	334.885989
7	1.97	3.36	0	2.4254128	0.58333333	0.81223286	128.41248	104.300836	74.90728	0.44	45.8923679	2.14	5.19038344	3.585730319	18.55	238.20515
8	0.82	1.15	0	1.1001454	0.66666667	0.74535599	18.2942	13.6356916	12.1961333	0.44	5.9997043	2.14	2.35431125	0.556673595	19.42	35.5273364
somme									414.788813		719.841144		48.4078535	41.8346415		

Fss	1.751287
Fas	1.73121478

Stabilité pour le cas de fin de vidange rapide talus amont (R= 16.51m)

Num	b	h1	h2	dl	sin	cos	G	N	Т	tg	N*tg	С	C * dl	dn	G*a*dn
Nulli	U	111	112	uı	SIII	cos	U	IN	1	ıg	IV-tg	C	C · ui	un	Grandii
-4	0.93	0.65	0	0.9774186	0.30769231	0.95148591	11.7273	11.1583608	-3.6084	0.44	4.90967873	2.14	2.09167574	16.2	18.998226
-3	1.65	1.81	0	1.6957714	0.23076923	0.97300851	57.9381	56.3742644	13.3703308	0.44	24.8046763	2.14	3.62895079	15.65	90.6731265
-5	1.05	1.01	0	1.0/3//14	0.23070723	0.77300031	37.7301	30.3742044	13.3703308	0.44	24.0040703	2.14	3.020/307/	13.03	70.0731203
-2	1.65	2.76	0	1.6698802	0.15384615	0.98809481	88.3476	87.2958054	13.5919385	0.44	38.4101544	2.14	3.5735437	15.21	134.3767
-1	1.65	3.55	0	1.6549034	0.07692308	0.99703703	113.6355	113.298801	- 8.74119231	0.44	49.8514727	2.14	3.54149334	14.74	167.498727
0	1.65	4.15	0	1.65	0	1	132.8415	132.8415	0	0.44	58.45026	2.14	3.531	14.5	192.620175
1	1.65	4.6	0	1.6549034	0.07692308	0.99703703	147.246	146.809715	11.3266154	0.44	64.5962744	2.14	3.54149334	14.22	209.383812
2	1.65	4.89	0	1.6698802	0.15384615	0.98809481	156.5289	154.665394	24.0813692	0.44	68.0527735	2.14	3.5735437	14.11	220.862278
3	1.65	5.01	0	1.6957714	0.23076923	0.97300851	160.3701	156.041472	37.0084846	0.44	68.6582478	2.14	3.62895079	14.14	226.763321
4	1.65	4.93	0	1.7341297	0.30769231	0.95148591	157.8093	150.153326	48.5567077	0.44	66.0674634	2.14	3.7110376	14.28	225.35168
5	1.65	4.64	0	1.7875	0.38461538	0.92307692	148.5264	137.101292	57.1255385	0.44	60.3245686	2.14	3.82525	14.55	216.105912
	1.03	4.04	U	1.7673	0.36401338	0.92307092	140.3204	137.101292	37.1233363	0.44	00.3243080	2.14	3.62323	14.33	210.103912
6	1.65	4.09	0	1.8599509	0.46153846	0.8871202	130.9209	116.142575	60.4250308	0.44	51.102733	2.14	3.98029489	14.84	194.286616
7	1.65	1.02	2.19	1.9581081	0.53846154	0.84265009	32.6502	27.5126939	17.5808769	0.13981308	3.84663459	0.68	1.33151354	15.4	50.281308
8	1.22	1.88	0	1.5477775	0.61538462	0.78822698	44.49584	35.0728217	27.3820554	0.44	15.4320415	2.14	3.31224388	15.96	71.0153606
									244.17482		574.50698		43.270991		2018.2172

Fss	2.53006423
Fas	1.68599735

Stabilité pour le cas de fin de vidange rapide talus amont (R= 17.52m)

N	,	1.1	1.2	11			C	N	T.		N.T.W.	C	C * 11	,	C+ +1
Num	b	h1	h2	dl	sin	cos	G	N	T	tg	N*tg	С	C * dl	dn	G*a*dn
-5	0.7	0.48	0	0.7583333	0.38461538	0.92307692	6.5184	6.01698462	2.50707692	0.44	2.64747323	2.14	1.62283333	18.07	11.7787488
-4	1.72	1.76	0	1.8076989	0.30769231	0.95148591	58.72768	55.8785603	18.0700554	0.44	24.5865665	2.14	3.86847556	17.37	102.00998
-3	1.72	2.7	0	1.7677132	0.23076923	0.97300851	90.0936	87.6618396	20.7908308	0.44	38.5712094	2.14	3.78290627	16.65	150.005844
-2	1.72	3.53	0	1.7407236	0.15384615	0.98809481	117.78904	116.38674	18.1213908	0.44	51.2101654	2.14	3.72514859	16.04	188.93362
-1	1.72	4.17	0	1.7251115	0.07692308	0.99703703	139.14456	138.732279	10.7034277	0.44	61.0422027	2.14	3.69173851	15.52	215.952357
0	1.72	4.64	0	1.72	0.07072300	1	154.82752	154.82752	0	0.44	68.1241088	2.14	3.6808	15.1	233.789555
0	1.72	4.04	U	1.72	0	1	134.62732	134.82732	0	0.44	06.1241088	2.14	3.0808	13.1	233.169333
1	1.72	4.94	0	1.7251115	0.07692308	0.99703703	164.83792	164.34951	12.67984	0.44	72.3137845	2.14	3.69173851	14.8	243.960122
2	1.72	5.04	0	1.7407236	0.15384615	0.98809481	168.17472	166.172569	25.8730338	0.44	73.1159302	2.14	3.72514859	14.61	245.703266
3	1.72	4.94	0	1.7677132	0.23076923	0.97300851	164.83792	160.388699	38.03952	0.44	70.5710276	2.14	3.78290627	14.55	239.839174
4	1.72	4.62	0	1.8076989	0.30769231	0.95148591	154.16016	146.681221	47.4338954	0.44	64.5397371	2.14	3.86847556	14.64	225.690474
5	1.72	4.03	0	1.8633333	0.38461538	0.92307692	134.47304	124.12896	51.7204	0.44	54.6167424	2.14	3.98753333	14.85	199.692464
6	1.72	0.85	2.24	1.9388579	0.46153846	0.8871202	28.3628	25.1612128	13.0905231	0.1210356	3.04540246	0.58867314	1.14135356	15.18	43.0547304
7	1.09	1.65	0	1.2935381	0.53846154	0.84265009	34.8909	29.40082	18.7874077	0.44	12.9363608	2.14	2.76817155	15.62	54.4995858
somme									137.431838		597.320711		43.3372296		2154.90992

Fss	4.661641348
Fas	2.460010174

Stabilité pour le cas de fin de vidange rapide talus amont (R= 19.10m)

N	,	1.1	1.0	11				M	T		NTW.	G	C * II	1	C+ +1
Num	b	h1	h2	dl	sin	cos	G	N	T	tg	N*tg	С	C * dl	dn	G*a*dn
-4	0.75	0.44	0	0.7882408	0.30769231	0.95148591	6.402	6.09141282	1.96984615	0.44	2.68022164	2.14	1.68683527	18.9	12.09978
-3	1.91	1.76	0	1.9629839	0.23076923	0.97300851	65.21504	63.454789	- 15.0496246	0.44	27.9201071	2.14	4.20078546	18.26	119.082663
-2	1.91	2.86	0	1.9330129	0.15384615	0.98809481	105.97444	104.712795	-16.30376	0.44	46.0736296	2.14	4.13664756	17.7	187.574759
-1	1.91	3.94	0	1.9156761	0.07692308	0.99703703	145.99276	145.560188	11.2302123	0.44	64.0464827	2.14	4.09954683	17.33	253.005453
-1	1.71	3.74	0	1.7130701	0.07072308	0.77103103	143.77270	143.300100	11.2302123	0.44	04.0404027	2.14	4.07754085	17.55	255.005455
0	1.91	4.45	0	1.91	0	1	164.8903	164.8903	0	0.44	72.551732	2.14	4.0874	16.87	278.169936
					0.0540.00		400 =0=04	400 0 400 00		0.44	00 40 00 440	244	4 000 7 4 400	4.4.40	207 (201 70
1	1.91	4.96	0	1.9156761	0.07692308	0.99703703	183.78784	183.243282	14.1375262	0.44	80.6270442	2.14	4.09954683	16.63	305.639178
2	1.91	5.28	0	1.9330129	0.15384615	0.98809481	195.64512	193.315928	30.0992492	0.44	85.0590085	2.14	4.13664756	16.53	323.401383
3	1.91	5.38	0	1.9629839	0.23076923	0.97300851	199.35052	193.969753	46.0039662	0.44	85.3466911	2.14	4.20078546	16.54	329.72576
4	1.91	5.31	0	2.0073865	0.30769231	0.95148591	196.75674	187.211267	60.5405354	0.44	82.3729573	2.14	4.29580716	16.67	327.993486
5	1.91	5	0	2.0691667	0.38461538	0.92307692	185.27	171.018462	71.2576923	0.44	75.2481231	2.14	4.42801667	16.95	314.03265
6	1.91	2.25	2.15	2.1530341	0.46153846	0.8871202	83.3715	73.9605417	38.4791538	0.225	16.6411219	1.09431818	2.35610431	17.32	144.399438
7	1.91	3.58	0	2.2666585	0.53846154	0.84265009	132.65332	111.780332	71.4287108	0.44	49.183346	2.14	4.85064923	17.93	237.847403
8	1.39	1.99	0	1.7634514	0.61538462	0.78822698	53.66234	42.2981043	33.0229785	0.44	18.6111659	2.14	3.77378606	18.5	99.275329
somme									320.416369		706.361631		50.3525584		2932.24722

Fss	2.36165896
Fas	1.596655092